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Dataset Discovery and Exploration: A Survey

NORMAN W. PATON, JIAOYAN CHEN, and ZHENYU WU, Department of Computer Science,

University of Manchester, UK

Data scientists are tasked with obtaining insights from data. However, suitable data is often not immediately to hand, and
there may be many potentially relevant datasets in a data lake or in open data repositories. As a result, data discovery and
exploration are necessary, but often time consuming, steps in a data analysis worklow. Data discovery is the process of
identifying datasets that may meet an information need. Data exploration is the process of understanding the properties of
candidate datasets and the relationships between them. Data discovery and data exploration often go hand in hand, and beneit
from tool support. This paper surveys research areas that can contribute to data discovery and exploration, in particular
considering dataset search, data navigation, data annotation and schema inference. For each of these areas, we identify key
dimensions that can be used to characterize approaches and the values they can hold, and apply the dimensions to describe
and compare prominent results. In addition, by surveying several adjacent areas that are often considered in isolation, we
identify recurring techniques and alternative approaches to related challenges, thereby placing results within a wider context
than is generally considered.

CCS Concepts: · Information systems→ Data federation tools;Mediators and data integration; Data cleaning.

Additional Key Words and Phrases: data search, data navigation, data annotation, data lake, schema inference

1 INTRODUCTION

There are ever more repositories containing structured or semi-structured data that are candidates for future
analysis. These may be collected within organisations in data lakes [38], published as open data by public sector
organisations [5], or obtained from the Web, either from Web tables [29] or by extraction from the deep Web [36].
Analyses can be applied to these data directly, or can combine external and internal data to obtain insights that
are not provided by either in isolation [61].
In principle, this data deluge presents signiicant opportunities, but evidence suggests that unlocking value

from large data repositories comes only with signiicant costs. It is often quoted that data scientists, who are
hired to obtain insights from data, spend in the region of 80% of their time on data preparation, and thus rather
less on actually analysing the data and interpreting the results. This is supported by survey evidence [76], where
it is also reported that 19% of a data scientist’s time is spent discovering and selecting suitable datasets, the focus
of this survey.
To support data scientists and data engineers in the management and use of data repositories, a variety of

metadata models have been developed [31, 43, 83], which in turn underpin data catalogs [39, 43, 88]. Such catalogs
often support policies around data governance [51], and thus record the provenance of datasets [64] along with
usage information [51], and potentially the results of statistical data proiling over individual data sets or groups
of data sets [1, 62]. However, in a setting where there may be millions of datasets, and where these datasets may
change rapidly [39], it is impractical to manually curate data catalogs with rich descriptions of all the available
data and it can still be challenging to understand what data is available to support a speciic task.
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School1

Name Postcode Type Town Gender Borough
Goresbrook RM9 4TX Free Dagenham Mixed Barking and Dagenham
St Mary’s NW3 6PG Independent London Mixed Camden
City of London EC4V 3AL Not applicable London Boys City of London

School2

Name Address Town Postcode Phase LA_Name
Argyle Tonbridge Street London WC1H 9EG Primary Camden
Millenium 50 John Harrison Way London SE10 0BG Primary Greenwich
Marshalls Park Pettits Lane Romford RM1 4EH Secondary Havering

School3

Name Pupils A*-C At Least One Average Points LA_Name
St Mary’s 167 34% 99% 325.5 Camden
Riverston 39 62% 100% 384.8 Greenwich

Deprivation

Code Name Income Deprivation Rate Deprivation Rate Quintile
E09000002 Barking and Dagenham 19.4% 1
E07000066 Camden 13.8% 2

Brownield Sites

Id Organisation Site Name Address Hectares Planning Status
670 Barking and Dagenham 9-10 The Triangle 0.05 Permissioned
19 London Borough of Camden Park Village East/ Augustus St 0.01 Not permissioned

Fig. 1. Running example with Open Government Data.

As a result, there has been signiicant efort invested in the development of techniques that, for example, support
search over datasets that have been minimally annotated, automate annotation of datasets with terms from
ontologies, facilitate exploration of relationships between datasets, identify recurring domains, and infer recurring
structural patterns. This research all seeks to support data scientists in identifying datasets that, individually
or together, may be useful for a task at hand. The associated body of research results on data discovery and
exploration at scale has yet to be reviewed as an integrated body of work.
In terms of the applicability of this work, the market for data catalogs, which may be expected to build on

the results of such analyses, has been predicted to grow from $523M in 2020 to $1,788M in 20261, relecting the
growing business need for a consolidated view of the available data. To illustrate the concepts and techniques
associated with data discovery and exploration, we will use the running example in Figure 1, which is derived
from several UK Open Government sites2.

We assume throughout that we are dealing with datasets that have an explicit structure, represented in Figure
1 by tables with named attributes, but most techniques discussed can also be applied with minimal adaptation to
semi-structured models such as XML or JSON. We do not consider text or specialised data types such as videos
or images. To relect this, we will use the word dataset to represent a table or a semi-structured document, for
example in JSON or XML, except where the context is speciic to an individual paradigm.
Data discovery and exploration is challenging, addressing the requirement to identify several, potentially

interrelated datasets within huge repositories, where the datasets within the repositories were likely produced
independently of each other. Independently produced datasets tend to manifest a variety of heterogeneities [52]
that complicate the data environment facing data scientists and engineers. For example, such heterogeneities
may involve inconsistent naming of attributes, capturing a concept using one table or attribute or several, and
inconsistent formatting of values. There is no silver bullet for understanding and resolving these heterogeneities

1https://www.mordorintelligence.com/industry-reports/data-catalog-market
2Speciically: https://data.london.gov.uk, https://webarchive.nationalarchives.gov.uk/, https://www.gov.uk/government/ collections/english-
indices-of-deprivation
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at scale, so data discovery and exploration involves a collection of diferent tasks and techniques. In describing
these tasks, we use the following notation which assumes tabular data, although in practice some surveyed
approaches use diferent data models. A collection � consists of a set of datasets � ∈ � . Each such dataset is
associated with a set of � > 0 attributes, which we denote together as � (�1, . . . , ��) or individually as �.�� .In this
survey, we focus on the following inter-related areas:

Dataset Search: Given a repository of data, a search aims to retrieve datasets that, individually or together,
satisfy an information need. Thus, given a collection of datasets� and a search request �, Search(�, �) → �

returns a collection � ⊆ � . There may additionally be a function Rank or Score applicable to the result
collection � that imposes an order on the results of the search relecting their similarity to the request �.
A request may be expressed in diferent ways. For example, a request could be based on keywords; with
reference to Figure 1, a search for school would likely retrieve all three school-related tables, though a
search for school attainment would likely not be able to establish that School3 is about attainment, whereas
School1 and School2 are not. Alternatively, given one table, a search could look for similar tables; in relation
to Figure 1, a search with School1 might be expected to identify a high level of similarity with School2. The
dataset search techniques surveyed assume there is access to a collection of datasets, and so do not support
repository discovery.

Data Navigation: Having identiied a dataset, for example as a result of a search process, it is often useful
to be able to explore related datasets that may provide additional information or context. Relationships
used in navigation are typically between the attributes of datasets. Thus, given a dataset � (�1, . . . , ��) and
a collection of datasets � , there there may be an operation of the form RelatedAttributes(�.�� ,�) → �

that returns a collection of attributes from datasets in � that are related to �.�� . Diferent approaches infer
relationships with diferent semantics, and as with search, results may associated with ranks or scores.
For example, in Figure 1, School1.Borough may be a candidate for joining with Deprivation.Name, thus
providing additional information about income in the vicinity of a school. However, joining is not the only
relationship it may be interesting to explore. It may also be useful to know which columns share the same
domain3 as a given column. For example, in Figure 1 the attributes School1.Town and School2.Town seem
to belong to the same domain, and for the values given, it is possible that Brownield Sites.Organisation

and School1.Borough belong to the same domain, even though there are representational inconsistencies
relating to Camden.

Data Annotation: In a large repository, there are likely to be a variety of naming conventions, for example
because the data was originally produced by diferent publishers. This is a nuisance, as it places the burden
on the user of resolving inconsistencies as part of the process of selecting data for analysis. Data annotation
is the process of associating intensional or extensional data items with a term from a vocabulary or a concept
from an ontology. Thus, assuming we have a vocabulary� that deines a collection of terms � ∈ � , there may
be operations of the form AnnotateDataset(�,� ) → � or AnnotateAttributes(�.�� ,� ) → � where
� ⊆ � that, respectively, annotate datasets or attributes within datasets with terms from the vocabulary
� . It is then possible, for example, to search or browse repositories using the annotations; this has the
efect of linking a potentially ad hoc collection of datasets in a repository to a well deined description of
generic or application-speciic concepts. For example, in Figure 1 the columns School1.Borough, Brownield
Sites.Organisation and School3.LA_Name could all be annotated with the type GovenmentOrganization from
Schema.org4.

3A domain is the set of values that a property may legitimately hold. For example, if the domain is color than legitimate values would include
red, green and black, but not California, which belongs (among others) to the domain of US States.
4https://schema.org
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Fig. 2. The dimensions

Schema Inference: Data integration can be associated with the notion of a global schema ś a schema that
an end user interacts with, and behind which the heterogeneity of diferent sources is hidden, for example
using mappings expressed as views [56]. As such, given a collection of datasets� , there may be an operation
of the form InferSchema(�) → � that returns an inferred schema � that deines a collection of dataset
deinitions where each such deinition may be of the form � (�1, . . . , ��). Note that, typically, the objective
is that the inferred schema should be smaller than the underlying collection (i.e., |� | ≪ |� |) as the inferred
schema should contain a single dataset deinition for, say, ��ℎ��� whereas there may be many diferent tables
about schools in � . The inferred schema may also be associated with a function Mappings that describes
how the dataset deinitions in the inferred schema relate to the datasets in � . Such an inferred schema
provides a consolidated but abstract representation of a complex data environment. For example, in Figure 1
the tables School1 and School2 could be associated with a School table in a global schema that contains the
attributes of both School1 and School2, except in the case of School1.Borough and School2.La_Name which
are represented by a single attribute in the global schema, such as School.GovenmentOrganization.

Together, the above activities can support data discovery and exploration. Data discovery is the process of
identifying datasets that may meet an information need. This may, for example, be done directly through a
search, by navigating from related datasets, or by browsing the datasets with a speciic annotation. As such,
data discovery can beneit directly from the techniques covered in this survey. Data exploration is the process of
understanding the properties of candidate datasets and the relationships between them. This may, for example,
be carried out by exploring the relationships of a given dataset, by viewing shared annotations at dataset or
attribute level, or by exploring relationships that are shared by several datasets in an inferred schema. As such,
data exploration can beneit directly from the techniques covered in this survey. In practice, data discovery and
data exploration often go hand in hand.
The areas surveyed can be considered to represent early stages in data integration, that can inform the

construction of application-speciic data integration pipelines, for example that make use of Extract-Transform-
Load platforms [90]. However, we note that data discovery and exploration is a prerequisite to analysis not only
in enterprise settings [70], but is also a key activity for individual data scientists using notebooks, who also stand
to beneit from access to tool support for dataset discovery and exploration [13, 102].

To characterise the state of the art in dataset discovery and exploration, in this paper we make the following
contributions:

(1) We provide the irst survey of automated techniques that span data discovery and exploration, which
underpins the population of current and future data catalogs to support data scientists in obtaining value
from large data repositories.

(2) We deine dimensions for each of Dataset Search, Data Navigation, Data Annotation and Schema Inference
that identify key recurring features of these areas.

(3) We apply the dimensions from (2) to compare and contrast key papers in each of these areas, and identify
potential gaps and opportunities for future work.

ACM Comput. Surv.
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In addressing these objectives, we identify complementary and competing approaches to challenges facing
data scientists, clarify the relationships between diferent technical areas, and highlight directions that stand to
beneit from further work. With a view to ensuring that the survey focuses on results that are of good quality
and inluential, in selecting papers for inclusion in the survey, we have prioritised: (i) papers from well regarded
outlets Ð over 80% of the papers discussed are from top outlets in databases, artiicial intelligence or closely
related disciplines (e.g., PVLDB, ACM SIGMOD, IEEE ICDE, VLDB J., EDBT, AAAI, ISWC, Semantic Web Journal,
ACM SIGIR); (ii) papers that are well cited Ð over 70% of the papers discussed have over 25 Google Scholar
citations, with most of the others being too recent to have obtained many citations; and (iii) papers that cover
diverse approaches, so that distinctive and innovative techniques are suitably represented.
The remainder of the paper is structured as follows. In Sections 3 to 6 we introduce key concepts in data

discovery and exploration in the form of dimensions, and use the dimensions to describe representative results
from each of the areas. Then, in the light of the review material, for each topic we highlight the characteristics of
the state-of-the-art and identify open issues. Overall lessons learned are presented in Section 7.

2 DIMENSIONS

The survey uses a collection of dimensions to provide a framework for summarising results in each of the areas
covered by the survey, namely Dataset Search, Data Navigation, Data Annotation and Schema Inference. This
section introduces the dimensions, which are illustrated in Figure 2. These dimensions form table headers when
surveying papers in each area, but typically the speciic values that are used to populate the dimensions vary
from area to area (e.g., the Input to a Dataset Search task is not the same as the Input to a Data Navigation task).
Furthermore, not all dimensions apply to every area (e.g., a Dataset Search tends to involve Ranking Criteria, but
this is not the case for Schema Inference). The dimensions are as follows:

Input: The input describes the data that is speciic to a run of a task, such as the Keywords that specify a
Dataset Search.

Output: The output describes the data produced by a run of a task, for example indicating that an XML

Schema is the result of a Schema Inference task.
Subject: The subject describes the focus of a task, for example indicating that a Keyword search is being

conducted against the Header of each dataset in a collection.
Ranking Criteria: The ranking criteria indicate how results are ordered, where multiple alternative results

may be available. For example, where a Dataset Search is looking for results that are similar to a given
dataset, the results could be ordered by Header Similarity.

Additional Evidence: The additional evidence describes existing data resources that may be used in addition
to the Input to carry out a task. In contrast with the Input dimension, additional evidence is not speciic to
a run of the task. For example, an existing Ontology could be used to generalize or rewrite the Keywords for
many runs of a Dataset Search.

Auxiliary Data Structure: An auxiliary data structure is used to support the carrying out of a task. For
example, an LSH Index can be used to support eicient, scalable and approximate Dataset Search.

Approach: A task is carried out using an approach, which makes explicit the algorithm type or method. For
example, Schema Inference is often initiated by Clustering similar datasets from a collection.

Purpose: The purpose speciies the reason why a task is being carried out, where a task could address
diferent goals. For example, in Schema Inference, one possible purpose is to produce a format that is precise
enough to allow users to Query the underlying data resources, and a diferent purpose is to concisely
Summarize the resources.

As such, the dimensions seek to capture key features of dataset discovery and exploration tasks, capturing
information on: (i) inputs, outputs and output ordering; (ii) how the task is carried out in terms of the evidence

ACM Comput. Surv.
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Fig. 3. Data Search dimensions and their values

used, key data structures and algorithmic approach; and (iii) the speciic purpose that is being pursued. The
speciic values for the dimensions used by the diferent areas are introduced in Sections 3 to 6.

3 DATASET SEARCH

Dataset search is the process of identifying datasets on the basis of some information on what is required. It
refers to the task of inding datasets from repositories that are most relevant to given keywords, datasets or
queries. Datasets are ranked according to the extent to which they are predicted to satisfy the requirements
expressed in the search. In practice, dataset search can be the irst step taken by a data scientist when looking for
data on which to act (e.g., I wonder what data there is on schools in England) or can be used later in the process
to supplement earlier discoveries (e.g., I wonder what other datasets are similar to this one). Dataset search is
constrained by the available information on what is required; for example, when looking for schools in England,
there may be a keyword search for school, perhaps qualiied with location information. In contrast, when looking
for something similar to a known dataset, the input to the search is the known dataset. The need to meet such
diverse requirements means that there is not a single best approach to dataset search; diferent approaches are
complementary, and may be expected to coexist in a data discovery and exploration system. Furthermore, dataset
search must provide rapid responses at scale, accommodate imprecise requests, and produce a plausible ranking
of candidate solutions.

Chapman et al. [21] has previously provided an overview of dataset search, but focuses primarily on keyword
search over published metadata. Datasets can also be identiied from publications by way of the data citation
index [80, 87]. Here, we characterise and compare recent generic results in dataset search and provide equal
attention to dataset search for diferent query input categories, thus complementing the earlier survey and
techniques that depend on curation or explicit references.

ACM Comput. Surv.
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3.1 Dataset Search Dimensions

In this subsection, we introduce the dimensions used to characterize dataset search techniques; Figure 3 illustrates
dimensions and their associated values, on which we now elaborate. The Output of a search is always a collection
of datasets, as described in Section 1.

Input: Dataset search is assumed to act over large repositories, and to be carried out by a user who has some
idea as to what is required. This idea as to what is required constitutes a request, and can be expressed in a
variety of forms. As in information retrieval for textual data, a search for relevant structured data can be
carried out using Keywords that may be compared with features of the datasets in a repository. However,
as the focus is on datasets that are structured or semi-structured, data contain intensional and extensional

elements. A search that provides only intensional elements, such as the name of the collection or the names
of attributes would be considered to be searching using the terms from the Header. In contrast, a search
that is given the Body of a dataset is extensional, and would be considered to be seeking to answer the
question what other datasets contain values that are similar to those given. Although a classical database
query, say in SQL, assumes familiarity with the intensional aspects of a database, which typically are not
known with any conidence during dataset search, some languages, such as SPARQL [72], can express
queries that range over both extensional and intensional data (e.g., to retrieve the types of the resources
that have any attribute with a given value), and thus query languages can be designed that express data
search tasks.

Subject: The Input to the Search, of one of the types described above, is then compared in the search to some
features of the datasets in the repository. The Subject of the Search may be closely associated with the
Input to the Search; for example, if the Input to the Search is the Body of a dataset, there is a good chance
that the Subject of the Search will also be the Body of a dataset, and thus there is a similarity search at the
extensional level. However, if the Input to the Search is Keywords, then these keywords can be matched with
the Header or Body of datasets in the repository, or with supplementary data such as human or computer
generated Annotations or the textual Caption of a Web table.

Ranking Criteria: Search requests often yield multiple results that need to be ranked, in terms of closeness
to the input request; this raking tends to involve computing metrics that involve one or several criteria,
drawn from: Header Similarity ś how similar are the names of datasets or their attributes; Value Similarity ś
how similar are the extensional values in the datasets; Format Consistency ś how consistently are the values
in two columns formatted; Value Distribution ś how consistent is the distribution of numerical values in
two columns; and Domain Similarity ś how consistent are the predicted domains of diferent columns.

Additional Evidence: A search may use additional information, for example to reduce the impact of repre-
sentational inconsistencies on the recall of a search. For example, an Ontology can identify relationships
between terms that can inform either the search or the ranking, and Word Embeddings provide vector
encodings of textual values that are closer in the vector space for words that are expected to have similar
meanings [3].

Auxiliary Data Structures: Search needs to scale, and as a result is likely to depend on data structures
that support the eicient evaluation of requests over large repositories. Search may depend directly on an
Inverted Index to provide a mapping from content, such as words or numbers, to their locations in a dataset.
However, exact lookups may provide low recall, so approximate indexes are often deployed. For example,
Locality Sensitive Hashing (LSH) is an approximate indexing scheme that builds on hash functions for
which the collision probability is higher for values that are more similar [44]. Hash functions have been
developed that support diferent notions of similarity, such as Jaccard and Cosine similarity. An LSH Index

exploits such hashing for similarity lookup, and LSH Forest is a reinement that reduces the need for manual
parameter tuning [7]. In addition to indexes, Relationships between datasets in a repository may provide
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additional information on similarity. For example, in a search where the Input to the Search is the Body of a
dataset, the use of relationships could establish that the given Body matches several joined datasets better
than any individual dataset.

3.2 Dataset Search Proposals

In this section, we review speciic dataset search techniques in the light of the dimensions from Section 3.1; the
values of the dimensions for speciic techniques are provided in Table 1. In practice, dataset search techniques
can be grouped based on the Input to Search dimension; the techniques used tend to follow from the input, and
we discuss proposals following the values for this dimension.

3.2.1 Keyword-driven Search. Keyword search is a well established paradigm for use with documents that can
also be applied to initiate a discovery and exploration process for data. This task returns a ranked list of datasets
from the corpus in descending order of their relevance scores with respect to one or several keywords. Keyword
search allows users to target data with minimal knowledge of dataset structure and relationships. Instead, users
can submit a set of keywords, and the search system returns a ranked list of datasets that are relevant to the
query.

As there is an existing survey that reviews results on keyword search for datasets with an emphasis on metadata
search [21], we do not cover this ground again here, though we include Google Dataset Search in Table 1, as
a prominent example of such an approach. Google Dataset Search [16] provides a keyword-based search over
published annotations of Web datasets. The annotations, represented using Schema.org5 or W3C DCAT6, are
retrieved via Web crawls. The crawled annotations are then processed to resolve inconsistencies in how terms
are used in annotations, to reconcile the annotations with a knowledge graph, and to identify replicated data sets.
The resulting representation is then indexed and searched using Web search technologies. Such an approach is
potentially efective, but requires that datasets are suitably annotated.
Analogous to Web search, it is also possible to apply an information retrieval style search to datasets. For

example, OCTOPUS [17] supports keyword searches on the content and context of Web datasets, and returns the
top-k most relevant datasets. Using syntactic similarity measures, these datasets are clustered into groups of
unionable datasets. In contrast to OCTOPUS, which matches datasets syntactically, more recent solutions tend to
prefer semantic matching. For example, TRSS [100] represents both Input keyword queries and the datasets that
are the Subject of the search in a semantic space. Speciically, they consider both word-based searches where the
query and the dataset consist of lexical tokens, and entity-based searches where entities in the dataset are terms
from a knowledge base that occur in the subject attribute of the dataset. The subject attribute is considered to
capture what a dataset is about (e.g., in Figure1 the Name is the subject attribute of the school tables, as the tables
are about schools). The resulting terms are then mapped into a vector space using word or graph embeddings,
and the similarity between keyword-dataset pairs is used to calculate the ranking.

Semantic matching solutions can also apply deep contextualized language models, such as BERT [27], to match
keywords with datasets on the basis of their semantics rather than their syntax. In Natural Language Processing
(NLP), BERT has achieved impressive results on a wide variety of tasks (e.g. [2]). TSBERT [23] uses BERT to
match keywords and datasets, following a select-then-rank framework. Firstly, a feature selection technique
chooses the most relevant content from the cells, rows and columns of each dataset, then BERT is used to encode
the concatenated text sequence of the selected dataset content as features. The resulting encoding, potentially
combined with other features, is then used to derive the similarity between search terms and the dataset.
Instead of matching and calculating relevance scores of keyword-dataset pairs or keyword-annotation pairs,

WWT [75] deines a keyword search over datasets as a column mapping task: given multiple-keyword sets, the

5https://schema.org
6https://www.w3.org/TR/vocab-dcat-2/
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Proposal Input Subject Ranking Additional Auxiliary

Evidence Data

Structure

Google Body
Dataset Keywords Header Value Similarity Ontology Relationships
Search[16] Caption
OCTOPUS Keywords Body Value Similarity - Inverted Indexes
[17] Format Similarity
TRSS Keywords Body Value Similarity Word Embeddings Relationships
[100] Annotations
TSBERT Keywords Body Value Similarity Word Embeddings Relationships
[23] Header Similarity
WWT Keywords Header Value Similarity - Relationships
[75] Body Header Similarity
TUS Body Body Value Similarity Ontology LSH Forest
[66] Domain Similarity Word Embeddings

Header Similarity
D3L Header Header Value Similarity Word Embeddings LSH Forest
[12] Body Body Format Similarity Relationships

Value Distribution
QCR [81] Body Body Value Distribution - Inverted Indexes
InfoGather Body Body Domain Similarity - Inverted Indexes
[94] Header Value Similarity Relationships

Caption
EntiTables Body Body Value Similarity Word Embeddings Relationships
[99] Ontology
Aurum Query Header Value Similarity LSH Index
[33] Body Relationships
KGLac Query Body Value Similarity Word Embeddings Relationships
[42] Caption Ontology

Table 1. Dimensions for dataset search proposals

system treats each keyword set as a column query, and therefore matches each keyword set with columns from
diferent datasets, inally consolidating relevant columns from matching tables into a new dataset. Intuitively,
WWT identiies a set of datasets via column search, with both column headers and the context of datasets taken
into account to calculate the relevance. As a strategy, by using keywords to provide example values for a target
table, WWT can be considered to have some similarity to dataset-driven search, as discussed next.

3.2.2 Dataset-driven Search. Given a dataset, that may have been identiied by other search or navigation tasks,
techniques that search based on the Header and/or Body of that dataset can be used to identify additional data of
relevance. Such a follow-on search may be to address a speciic requirement. For example, Table Union Search

ACM Comput. Surv.
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(TUS) [66] aims to retrieve individual datasets that are union compatible with a given dataset. TUS considers
similarity between the values in diferent columns, in the domains represented in diferent columns and in
the word embeddings of values from diferent columns. With less of an explicit focus on unionability, Dataset
Discovery in Data Lakes (D3L) [12] seeks to identify collections of one or more datasets that, when joined, are as
similar as possible to the given dataset. A further diference between TUS and D3L is that, although TUS considers
several types of evidence in identifying related attributes, a probabilistic model is used to select the single most
promising type of evidence for each column pair. In contrast, D3L uses a ranking function that considers the
Euclidean distance between columns taking into account all the available evidence.
Compared with TUS and D3L, QCR [81] addresses a more specialised dataset search problem, namely join-

correlation search: ind the top-k datasets that are joinable with the given dataset and contain columns highly
correlated with the numerical columns in the given dataset. For example, in Figure 1, an analyst may want to
study the potential relationship between average grades in school and deprivation levels. They may ind School3

and Deprivation, which are joinable and have correlation in Column School3.Average Points and Deprivation.Income

Deprivation Rate and Deprivation.Deprivation Rate Quintile. The proposed solution, QCR, relies on a hashing
scheme that builds on sketches that capture correlations between numerical columns. Using this hashing scheme,
the join-correlation search task identiies the top-k candidate datasets taking into account both joinability and
the presence of correlations.
In essence, TUS, D3L and QCR all work by taking as input a dataset and returning related datasets. There

is, however, a related problem of table augmentation: given a dataset, search for relevant datasets that can be
used to extend the given dataset with additional attributes or rows. InfoGather [94] and EntiTables [99] treat
datasets as rows of entities. In Figure 1, School1 and School3 both contain data about entities of type School, though
School1 primarily contains location attributes and School3 primarily contains performance attributes. Thus, in
principle, each table could be used to augment the other with columns that provide additional information about
individual schools. InfoGather [94] identiies three forms of augmentation: augmentation by attribute name where
the goal is to populate a given attribute based on its name; augmentation by example where as well as the attribute
name some example values are provided; and attribute discovery that identiies potentially relevant attributes.
Using schema matching techniques [78], a preprocessing phase creates a weighted, directed graph where nodes
represent datasets and edges represent matches between their attributes, and derives properties for this graph
that support eicient ranking of datasets at search time. At search time, given a search dataset and the graph, a
pagerank variant identiies tables that are candidates for augmenting the search dataset. EntiTables [99] considers
two forms of dataset augmentation: the addition of rows and the addition of attributes; both tasks are seen as
ranking problems, where the goal is to identify a ranked collection of rows/entities or a ranked collection of
attributes, respectively. Then probabilistic models are used to rank candidate entities and attributes. The approach
is evaluated using the Wikitables corpus [10], by removing rows or columns from existing tables, and using the
approach to identify candidate replacements.

3.2.3 uery-driven Search. The provision of a Query based search process involves specifying the language to
be used for querying and the model over which the language is to be evaluated. In Aurum [33], the model is a
graph that describes the columns in the underlying repository, such that each column is a node, and the edges
represent relationships between the columns; the creation of this graph is described in more detail in Section 4.
The language can then use functions to carry out a keyword search over headers, identify columns that are similar
or related to a given column, or identify columns that are directly or indirectly related to a given column. For
example, assume that we would like to identify tables that have columns that are similar to those in School1 in
Figure 1 and that mention London. This could be captured as:

drs = columns("School1")

res = table(match(drs)) AND table(valueSearch("London"))
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In this example, drs is a discovery result set that contains the columns from School1, table(match(drs)) returns
the tables that have columns that are similar to those in drs, table(valueSearch("London")) returns the tables that
contain the value London, and AND computes the intersection of its operands. Result ranking is an extensibility
point in Aurum, but tends to build on the similarity of result values to requests.

Some approaches use structured queries by building their data search systems/frameworks on existing database
engines, enabling them to interact with their users and locate relevant datasets via structured queries, as in
SPARQL [72]. SPARQL allows users to query information from any data source that can be mapped to RDF. It can
express queries that range over both data and metadata, as mentioned in Section 3.1, and thus it can express data
a variety of discovery and exploration tasks. KGLac [42] creates a knowledge graph to interconnect datasets and
columns, capturing metadata and semantics between them. The graph is then represented in RDF, so users can
execute SPARQL queries over the graph to search for datasets that meet quite speciic criteria.

3.3 Dataset Search Conclusions

State-of-the-art. Dataset search is the process of identifying the data sets that meet a user-speciied requirement.
As the requirement can be speciied in quite diferent ways, it transpires that dataset search proposals are quite
diverse. The input to the search can take the form of keywords, a dataset or a query, giving rise to quite diferent
technical solutions. Furthermore, where the search starts from a dataset � , the result can either be other datasets
that are similar to � , other datasets that when joined are similar to � , or other datasets that can be used to augment
the data in � in some way. Furthermore technical solutions need to address data heterogeneity and scale both
when trying to identify and rank candidate solutions. Thus dataset search is a rich and diverse topic, and there is
no one-size-its-all solution.

Benchmarking and Performance. Evaluations of dataset search techniques investigate both efectiveness and
scalability.
As searches assess the relevance of the datasets in a collection to an Input request, the notion of efectiveness

involves metrics that take into account the ranking of solutions. This can be as direct as the fraction of the
searches that contain a relevant result in the top-k (as in [17]) or can also consider the position in the top-k
of the relevant results, for example using the Mean Reciprocal Rank, the Normalised Discounted Cumulative
Gain (as in [23, 100]) or precision/recall at k (as in [12, 66]). These metrics require an understanding as to the
relevance of a result for a query, which can be obtained through crowsdsourcing [17], expert annotation [12, 100]
or by generating data sets for experimentation [66]. Evaluations sometimes make use of web tables; for example
among keyword search results, TRSS [100] uses tables from the WikiTables corpus [10], and the same datasets
and keyword queries are used when evaluating TSBERT [23]. Several of the dataset-driven search evaluations
use open government data sets [12, 65, 81], and the benchmark of synthesized data proposed for TUS [66] has
been used to compare TUS, D3L and Aurum [12]. There has also been some evaluation relating to usability:
Aurum [33] used questionnaires on usefulness and time savings; and Voyager [13], which builds on D3L [12],
uses a questionnaire to assess usability and task times to assess productivity.

In relation to scalability, keyword search papers tend not to put much emphasis on scalability evaluations, most
likely because keyword search at scale is well understood from web indexing. However, dataset-driven search
techniques carry out similarity comparisons at the dataset level, which involves maintaining custom indexes
for this purpose. Aurum, D3L and TUS have been compared in relation to indexing time and search time [12]
for repositories with up to 12,500 tables and 100,000 attributes. These systems all use LSH indexes and general
lessons are: that LSH indexes take less space than the underlying datasets, with D3L requiring the most space
because it indexes more features than Aurum or TUS; that index creation times are dominated by tasks other
than the inserting of data into the index, such as graph building in Aurum and ontology access in TUS; that the
time taken to build the index grows broadly linearly with dataset size; and that search times are highest for TUS,
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due to the overhead of accessing an external ontology and because computation of similarity scores requires
signiicant post-processing.

Directions. Dataset search has given rise to techniques that, given a variety of diferent types of input, can
identify datasets from repositories that match syntactic or semantic features of the input. In relation to the Input,
the most investigated cases are Keywords and datasets (some or all of the Header, Body or Caption). It would be
good to have further usability studies to investigate how suitable these are in practice; how straightforward
are these to supply, and how often do searches really lead to a useful result? The usefulness of a result to a
human user may not be quite the same as relevance used in an empirical evaluation of a method. There are a few
evaluations that explore usability aspects data search and exploration (e.g., [13, 60]), but these are more providing
summative evaluations on existing approaches than formative evaluations can inform the tasks to be supported.
Furthermore, dataset search techniques often use quite limited information to inform the search, either intrinsic
(e.g., dataset-driven approaches often only search using the table body) or extrinsic (i.e., searches rarely use much
in the way of additional evidence, such as annotations or usage patterns). In addition, most work has focused on
tables, without reinements to allow for the fact that searches can be expected to be over heterogeneous data
models and formats. There are also likely to be further technical opportunities to exploit, such as making more
extensive use of large language models.

4 DATA NAVIGATION

Data navigation is the process of exploring a collection of datasets by following relationships between the
datasets. Navigation can usefully follow diferent categories of relationship, for example to combine datasets
using join paths, or to identify similarity relationships that reveal where the same type of data may recur. There
are several diferent types of relationship in Figure 1 that may usefully be used for navigation. For example, a
join of School1 on its Borough attribute with Deprivation on its Name attribute would provide information on the
economic environment of the schools. Furthermore, there are several diferent attributes that describe the domain

of local government regions, thus capturing a recurring type of data (e.g., School1.Borough, School2.LA_Name

and BrownieldSites.Organisation). When using independently produced datasets, there are also likely to be
representational inconsistencies to contend with. For example, BrownieldSites.SiteNameAddress combines site
name and street information in a single attribute, whereas street information is stored on its own in School2.Address.
Furthermore, it is likely to be important to be able to identify andmaintain information about relevant relationships
at scale.

There is earlier work of relevance to navigation that has likely inluenced the results considered here, but that
has already been covered by comprehensive surveys. Data Proiling [1] is the process of deriving metadata that
describes properties of individual datasets and certain relationships within and between datasets. For example, data
proiling may discover features such as primary keys, functional dependencies and inclusion dependencies. These
can be used, among other things, to identify candidate join paths between collections. Schema Matching [78] is the
batch process of identifying similar datasets and attributes; schema matching has often been used as evidence to
inform the writing or generation of schema mappings for data integration [8], and is related to ontology mapping
for knowledge bases [47].Schema matching algorithms can be used to identify potentially equivalent attributes of
relevance to dataset discovery and exploration, though in this section we will give priority to techniques that
were speciically designed for these tasks. Experimental work has been carried out comparing matching with
other data navigation techniques [54].

4.1 Data Navigation Dimensions

As in Section 3, we use dimensions to capture key features of diferent techniques using consistent terminology;
the dimensions are illustrated in Figure 4. Taking them in turn:
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Fig. 4. Data navigation dimensions and their values

Input: The data that is the starting point for the data navigation process. In the scope of this survey, navigation
is not typically from one dataset to similar datasets, as identiication of the datasets that are similar to a
given dataset is considered to be a form of Dataset Search (as discussed in Section 3). Navigation between
datasets often involves related attributes, and as a result it is common to have as a starting point Attribute
Names and/or Attribute Values, perhaps with some other contextual information such as Dataset Names.

Output: The output of a navigation task is typically either a set of related items or a graph that represents the
occurrence of a relationship between many data sets. For example, given School1.Borough and a request to
ind other attributes with the same domain, the result could be the set {School2.LA_Name, School3.LA_Name,

Deprivation.Name, BrownieldSites.Organisation}. Alternatively, a request could, for example, ask for a graph
to be constructed in which the nodes are the datasets and the edges are connections between the datasets
that represent pairs of attributes that share the same domain. These approaches provide complementary
ways of representing similarity between the attributes of datasets, where the former provides a local
perspective, and the latter is more global. The nature of the relationship over which navigation takes place
also varies between approaches, and surveyed papers include those that support navigation based on join
paths, shared domains and semantic similarity.

Additional Evidence: The information, in addition to that in the Input, that informs the identiication of
relationships for navigating. Additional evidence is typically used to help identify relationships between
attributes that are related but that manifest representational inconsistencies either in their names or values.
For example, Word Embeddings [3] or an Ontology may be used to relect the semantics of attribute values
in addition to or instead of syntactic similarity. A further source of evidence for a relationship between
datasets is Provenance, which makes explicit which values are derived from others [64].

Auxiliary Data Structures: The construction of the result may require the maintenance of additional data
structures to provide access to the evolving solution space. Scale presents a signiicant challenge to
identifying and maintaining relationships, as it is likely to be prohibitively expensive to conduct all-against-
all comparisons of attributes in a repository. As a result, auxiliary data structures tend to be indexes;
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Table 2. Data Navigation dimensions applied to proposals.

Proposal Input Output Additional Auxiliary Approach

Evidence Data

Structures

JOSIE Attribute Values Set of Attributes Inverted Index Bespoke
[105]
LSH Ensemble Attribute Values Set of Attributes LSH Index Partitioning
[107]
PEXESO Attribute Values Set of Tables Word Inverted Index Bespoke
[28] Embeddings
Auto-Join Attibute Values Transformation Bespoke
[106] Program
Seeping Attribute Names Knowledge Graph Word Bespoke
Semantics Dataset Names Embeddings,
[34] Ontology
[65] Attribute Values Navigation Graph Word Bespoke

Embeddings,
Tags

C4 [58] Attribute Values Domain Hierarchy Clustering
Optimization

D4 [69] Attribute Values Set of Domains Bespoke
RAF-STD Attribute Values Set of Domains Linkage Graph Bespoke
[73]
DomainNet Attribute Values Set of Bipartite Graph
[57] Homographs Graph Analysis
FRT [82] Attribute Names Ranked Tables Hypernyms Hash Index Bespoke

Attribute Values
Juneau [103] Attribute Values Ranked Tables Provenance Proile Index Bespoke

for example, an Inverted Index [74] containing values from diferent attributes would group together
information about attributes with overlapping values, and thus could be used to accumulate evidence of
similarity between the attributes. An LSH index [44] could play a similar role, but accommodate some
inconsistency in the way that values are represented.

Approach: The technique that is used to identify the relationships to be navigated. Many techniques for
identifying navigation opportunities involve custom algorithms, contending with challenges from one or
more of heterogeneity or scale.

4.2 Data Navigation Proposals

In this section, we review data navigation techniques, applying the dimensions from Figure 4. Here the subsections
are ordered by the nature of the relationship over which navigation can take place.

4.2.1 Join Path Discovery. A join path captures a relationship between datasets that can underpin a join. With
reference to Figure 1, even in the absence of declared foreign keys, analyses could establish that Deprivation.Name

is a key for Deprivation, and that the values from School1.Borough are included in Deprivation.Name, thus inferring
a foreign key relationship that could be used for joining. Join paths can be used in diferent ways during data
discovery and exploration.
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Although this survey groups results within topics such as Dataset Search and Data Navigation, individual
approaches may have elements that belong to more than one group. For example, from the Dataset Search

approaches, D3L [12] constructs a graph of join paths behind the scenes, with a view to identifying which
collection of joinable tables together are the best match to a query table. Analogously, Aurum [33] constructs an
explicit graph of join paths for users to query. There is not always a crisp distinction between categories. However,
there are approaches that speciically focus on joins, in particular to contend with the fact that independently
produced datasets that may be candidates for joining.

JOSIE [105] supports a version of the joinable table discovery problem: given a table column, identify the set of
tables with which that column can most usefully be joined. In JOSIE, given a query consisting of the values in a
column � , the aim is to ind the top-k columns in a collection that have the highest overlap with � . An exhaustive
search for the top-k columns is impractical for large repositories, and JOSIE provides techniques that dynamically
identify subsets of the candidate attributes that are worthy of further consideration. For settings in which there
are very large numbers of tables, for example Web tables, LSH Ensemble [107] provides an approximate solution
to the same problem. In essence, an index is produced that aims to returns the attributes in a repository with

the highest set containment, such that the containment of X in Y is deined as � (�,� ) = |�∩� |
|� |

. As an individual
LSH index can give low recall when indexing columns with highly variable cardinalities, LSH Ensemble provides
techniques for identifying how to partition data over several LSH indexes to retain good recall and precision.
PEXESO [28] also addresses the joinable table discovery problem, though allowing for the possibility that

there may be representational inconsistencies in columns that it may be semantically meaningful to join. For
example, in Figure 1, it is semantically meaningful to join Deprivation.Name with BrownieldSites.Organisation,
but values may not be represented consistently (e.g., see Camden). In PEXESO, an oline component constructs
an inverted index of candidate join columns, using word embeddings with a view to capturing the meanings
of values as multi-dimensional vectors, thereby abstracting over representational inconsistencies. The online
component then looks up the column index using the same embeddings; the idea is then that the user can choose
which of the joinable columns may be most useful in a given setting.

Representational inconsistencies, in potentially joinable columns may give rise to a requirement for some form
of similarity join (e.g., [86]) rather than an equi-join. Alternatively, it may be possible to infer a transformation
that can reformat the values in one of the potentially joinable attributes. In Auto-Join [106], similar values in the
potentially joinable columns are sampled, and used as training data to infer format transformation programs.
These transformation programs can then extract, recombine or reorder tokens that enable equi-joins to be applied
to the resulting values.

4.2.2 Related Collection Discovery. In join path discovery, as discussed in Section 4.2.1, relationships are identiied
between individual data items, that allow navigation from one instance to another. This is clearly useful, but it
may also be useful to identify more abstract relationships between collections. When collections are related, there
will typically also be relationships between data items within those collections, but the graph of relationships at
the collection level is expected to be compact, and thus useful for comprehension.

Seeping Semantics [34], along with Aurum [33] (discussed in Section 3.2), aims to populate a knowledge graph,
in which datasets are nodes and edges support both joins (through Aurum) and semantic similarity (through
Seeping Semantics). In Seeping Semantics, it is assumed that there is access to an ontology that characterises
relevant concepts in a domain. This ontology is then matched with schema information from datasets in the
repository; the matching uses a composite matcher that considers both syntactic similarity and word embeddings.
Initial syntactic matches are then iltered, to retain only those associated with semantically related terms. Where
a schema element from a dataset is matched with several ontology concepts, a pruning step seeks to identify the
most specialised generally applicable concept. Where several datasets match the same concept, these datasets are
themselves connected in the knowledge graph, indicating semantic relatedness. As such, the knowledge graph
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from Seeping Semantics and Aurum provides diferent types of edge with which to navigate between source
datasets.

With a view to making navigation eicient, in the sense that a target dataset can be identiied by following a
small number of links, a proposal has been made for a graph structure that is speciically designed to support
navigation [65]. Navigation takes place through a directed acyclic graph (DAG) in which diferent nodes represent
sets of attributes, and thereby the datasets that contain those attributes. Each node is associated with a subset of
the attributes of its parents, and thus with a smaller number of datasets. The user navigates through the DAG
from the root until a leaf node is reached. The DAG is constructed to maximise the probability that a table can
be found by navigating from the root, visiting a child at each point based on the similarity of the child to the
user’s requirement. The DAG construction algorithm penalises solutions with long paths. As each graph node
represents a set of datasets, the DAG is likely to be much smaller than the Knowledge Graph generated by Seeping
Semantics, in which each dataset forms a single node. As such, this approach is an attempt to abstract over the
individual sources for the purposes of navigation. Further techniques that seek to abstract over the features of
individual sources are discussed under Schema Inference in Section 6.

4.2.3 Domain Discovery. A domain is a collection of values that instantiate an application concept. For example,
Camden and Greenwich are both members of the domain of London Boroughs, and both Al Gore and Mike Pence

belong to the domain of Former US Vice-Presidents. The discovery of a domain, which may occur in many diferent
attributes in a repository, identiies where these attributes are related in the sense that they are representing the
same application concept. Note that a single value may belong to multiple domains; for example, both Al Gore

and Mike Pence belong to the domain of Authors. Thus in relation to navigation, domain discovery can support
users in answering the question what other attributes contain information that represents the same application

concept as this one.

Motivated by the prevalence of tabular datasets in enterprises, Concept Construction from Coherent Clusters
(C4) [58] creates a hierarchy of domains, where each domain is a set of values drawn from potentially many
columns. The approach is irst to cluster values based on their co-occurrence in columns, so a pair of values is
more likely to be part of a coherent domain if the pair of values appears together in a column (for example, in
Figure 1 Camden and Greenwich appear together in both School2.LA_Name and School3.LA_Name, which is a
signal that they could be part of the same domain). As the clustering process merges smaller clusters to give
larger ones, a potentially deep hierarchy of clusters is produced. The hierarchy represents domain containment,
which occurs in practice (e.g., with reference to Figure 1, the boroughs listed belong to the domain of Local
Government Areas in London, which might be considered to be part of the wider domain of Local Government

Areas in England). As such, there is an optimization step that, given a ixed (probably small) maximum depth of
tree, selects a subset of the nodes from the tree of clusters based on how well the clusters are covered by the
values in table columns. This optimization objective assumes that domains are likely to be found in their entirety
in at least some columns.

Data Driven Domain Discovery (�4) [69], a bespoke algorithm, explores overlap relationships between sets of
column values with a view to identifying which sets of values can be considered to comprise separate domains.
A particular focus is placed on coping with the fact that the same value may legitimately belong to more than
one domain. For example, in Figure 1, in School1, City of London is the name of a school and the name of a
borough, and both School Names and Borough Names are domains that it would be useful to identify in our open
government scenario. A consequence of the emphasis on overlapping sets of values in the algorithm is that �4,
like C4, assumes that the values in a domain are represented consistently across diferent tables.
Also providing a bespoke algorithm that builds domains from attribute extents, RAF-STD [73] has been

developed in the context of online product speciications. RAF-STD iteratively extends the values in candidate
domains, based on the similarity of the collections of values in diferent attributes. RAF-STD is not dependent
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on values being represented consistently in diferent sources, but depends on the provision of a reliable linkage
graph for the instances from which the domains are being inferred to obtain high recall.

Related to domain discovery, DomainNet [57] identiies homographs in data repositories, where a homograph
is a data value that occurs with more than one meaning. In domain discovery based on overlaps between datasets,
as in �4 and �4, homographs are values that risk the merging of domains that represent diferent concepts. For
example, in Figure 1, the value City of London is used in School1 to represent both the Name of a school and the
name of a Borough.

These approaches to domain discovery are motivated by diferent applications, and features of these applications
inluence algorithm designs; it would be interesting to see an empirical comparison of each approach on the others
data. Note that, unlike in data annotation (Section 5), none of these approaches give names to the discovered
domains.

4.2.4 Multiple Relationship Frameworks. Several proposals have been made that support more than one type of
similarity within an overarching framework.

In Finding Related Tables (FRT), Das Sharma et al. [82] identify related tables �1 and �2 as those that are related
to a given target table� by queries�1 and�2, respectively. Then the nature of the relationship between�1 and�2
depends on properties of the queries and the relatedness of their results. In practice, the idea is that the queries
select or project values from �1 and �2 that in turn can be unioned or joined to yield a result that is similar to � .
In common with many other techniques, there is signiicant technical focus on deriving degrees of relatedness.
In FRT, this builds on the subject column of a table, a column that is inferred to contain information about the
entities the table is about [91]. In Figure 1, Name is likely to be inferred as the subject column of each of the School
tables. The values in these columns are then used to look up the type of the column in an external hypernym
store, such as WebIsA [84]. The similarity between query results is then based on the similarity of the types
inferred for column values in the hypernym store. This use of subject columns potentially provides a useful way
of abstracting over representational inconsistencies in column values, but also depends on having access to a
suitable hypernym store. The approach has been developed in the context of Web tables, and uses a hypernym
store inferred from a Web crawl.

A still wider range of relationships is explored in Juneau [103], which is designed to support data scientists in
identifying related tables for data science tasks. Tasks identiied include augmenting training data, linking tables
that have high column overlap, identifying additional features for machine learning, and data cleaning. Each of
these tasks require diferent emphases when looking for datasets that are similar to a given dataset. As a result,
Juneau provides a large number of diferent similarity metrics, many covering similar ground to that covered
earlier in this section on navigation, but also including similarity of provenance, informed by how datasets were
produced by a Python program. The contribution of this work has been to combine these techniques in a single
relationship framework to provide targeted support for data science tasks [102].

4.3 Data Navigation Conclusions

State-of-the-art. Obtaining value from data repositories often depends on combining datasets to obtain a more
complete picture than is provided by datasets in isolation. This in turn involves navigating between datasets, to
identify additional data that can be combined through joins, or to identify datasets that contain similar types
of data. Speciic results have to deal with challenges that result from scale (large numbers of datasets, or large
datasets) or heterogeneity (diferent names in metadata, data values being formatted in diferent ways) or both. As
a result, results are often approximate, building on models of similarity that are designed to capture an intuition
as to what is likely to be suitable in a given setting [103].
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Benchmarking and Performance. Evaluations of data navigation techniques investigate both the efectiveness
and scalability.
In relation to efectiveness, although it is not unknown for techniques to provide exact solutions to a prob-

lem [105], most problem speciications give rise to approximate or best-efort solutions, to accommodate data
inconsistencies [28, 34, 73, 106] or scale [107]. This is relected in the data sets used for evaluation, where data sets
can usefully be large and produced by multiple publishers; many techniques are evaluated using open government
data (e.g., [69]) or web tables (e.g., [106]) or both (e.g., [28, 105, 107]). However, although there is some shared
practice in the data sets used, variations in the problems addressed tend to mean that individual approaches
develop their own test cases. For example, in join discovery, some techniques focus on overlapping attribute
values and thus require consistent representations in joinable columns (e.g., Josie [105] and LSH-Ensemble [107]),
while others focus on cases where values have inconsistent representations (e.g., Auto-Join [106]). It is a similar
story in domain discovery, where some techniques build on value overlap (e.g., C4 [58] and D4 [69]) whereas
others build on value similarity (e.g., RAF-STD [73]). In such settings, many experiments develop Ground Truths
that relect the task at hand; this may have been obtained by comparing an approximate algorithm with the exact
result [107], or by manual annotation (e.g., [28, 69, 73]). For example, manual annotation is commonly used in
domain discovery as only an expert user can determine what values constitute a domain, especially because
domains can overlap. There are also cases where the suitability of a result is subjective, giving rise to user studies
in which the results are assessed by individuals, for example in Seeping Semantics that postulates relationships
between collections [33] and when navigating within data collections for discovery purposes [65].

In relation to performance, many of the techniques in data navigation involve the comparison of collections of
collections of values, for example exploring the collection of attributes, each of which is a collection of values, to
identify which attributes may join or which attributes draw values from the same domain. Such comparisons can
be supported by indexes, whether exact inverted indexes (e.g., as in Josie [105]) or approximate indexes (e.g., as
in LSH-Ensemble [107]). Experiments on scalability then report runtimes for diferent dataset sizes. The nature
of the evaluation varies from problem to problem. For example, in join discovery, scalability results have been
reported for the following problems: identify the columns that may join with a given column [105]; or identify the
cost of evaluating a join involving syntactically inconsistent columns [106]. Thus although there has been some
consistency of practice in dataset selection, problem variants can give rise to very diferent scalability challenges.
As a result, there are fewer head-to-head performance studies than might be expected, though LSH-Ensemble
and Josie are compared in [105].

Directions. Although existing techniques can identify a variety of navigation opportunities at scale, there is
quite some diversity in these. This is relected in the fact that, as well as the individual types of navigation, there
are papers that describe several types of navigation in a single environment. It would be good to have more
insight on how these can be used in practice in diferent settings, such as notebooks [13, 103], data lakes [70] or
open data systems [60]. Such experience may cast light on the recurring dichotomy between techniques that
assume consistent value representations when inferring relationships (that support joins, for example) and those
that allow for inconsistent value representations (but that are then more diicult to compute over). Much of the
work on navigation could also provide a foundation for the provision of more abstract representations of the data
in repositories, as discussed further in Section 6.

5 DATA ANNOTATION

Data Annotation is to associate data elements with some pre-deined annotations from vocabularies and knowledge
graphs (KGs)7, so as to enriching the data meta information and semantics. Considering the tables in Figure 1, we

7The deinition of KG often varies from literature to literature. For simplicity, we regard that KG includes relational facts, ontology, semantic
network, catalog, etc.
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could annotate that the Phase column of School2 is composed of categorical values whereas the Pupils column
of School3 contains integers. Such annotations bring data type information. Given a KG such as Wikidata8, we
could further annotate the cell Camden in Deprivation with the entity WD:Q149836, and annotate the column
Name with the semantic type WD:Q149621 (district)9. Diferent kinds of semantics have already been deined for
these annotations in Wikidata, allowing us to capture a broader and more accurate understanding of the tables
(e.g., łCamdenž does not refer to the city Camden in New Jersey in USA, but an area of London in UK). In many
semi-structured datasets in formats such as TSV and CSV, there is a shortage of meta information such as the ile
name and column header, or the meta information has no concrete meanings (e.g., the column header Name). In
such cases, both data type annotations and semantic annotations become especially important to curate and fully
understand the data.

There have been quite a few studies on data annotation, especially for tabular data, mainly from theDatabase, the
Semantic Web, Natural Language Processing and Machine Learning communities. Table annotation is sometimes
called table interpretation, while table annotation with knowledge base constructs is also known as semantic

table interpretation, semantic table annotation, table to KG matching and so on [18, 45, 101]. The speciic task of
annotating table cells by KG entities is also equivalent to table entity linking [10]. There is some literature that
partially reviews table annotation studies from speciic perspectives. Pujara et al. [77] summarizes a tutorial in
KDD’21 on recent advances in table understanding, where some semantic table annotation works on table cell
typing and entity linking are reviewed. Cafarella et al. [18] briely reviews Web table processing and application in
the past ten years, covering some works on subject column discovery, column type annotation and inter-column
relationship annotation. Zhang et al. [101] focuses a comprehensive literature review on processing Web tables,
which includes a part on table interpretation. Diferent from these review works, in this section we aim to give a
more comprehensive overall picture on data annotation, especially diferent kinds of annotations towards tabular
data.

5.1 Data Annotation Dimensions

Input: Data annotation mainly focuses on semi-structured data, especially tabular datasets without high
quality meta information, such as Web tables, CSV iles, TSV iles and spreadsheets. For simplicity, we refer
to such tabular data and relational databases as tables. Besides tables, semi-structured data for annotations
also include graphs, and tables can sometimes be transformed into graphs using tools such as GraphDB
OntoReine and BootOX [35, 46]. The annotations can be a pre-deined vocabulary, which includes ad
hoc labels deined for a task (e.g., łPrimary Schoolž and łSecondary Schoolž for annotating a column’s
semantic type), and widely recognized terms (e.g., xsd:integer for annotating a column’s data type). The
annotations can also be data-level and schema-level semantics deined in a KG such as instances (a.k.a.
entities), semantic types (a.k.a. classes or concepts), data and object properties, etc.

Output (Annotations) and Annotation Subject: Data annotation outputs diferent annotations for data
elements of diferent subjects. A table cell or graph node can be annotated by an entity if it is an entity
mention, or a data type if it is a literal such as a number and a date; a table column can be annotated by a
semantic type according to its cells. Specially, one whole table row is sometimes annotated by an entity
and one whole table is sometimes annotated by a class. In this case, the table usually has a subject column,
whose cells are subject entities of their corresponding rows. One example is the Name column in School2 in
Figure 1. Note that one column can be annotated by multiple classes, and they are usually hierarchical with
a subsumption relationship (e.g., School and Organization). The relationship between two columns can be
annotated by hierarchical object properties (i.e., relations) if both columns contain entities, and hierarchical

8https://www.wikidata.org/
9WD: is short of the IRI preix https://www.wikidata.org/wiki/.
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data properties if one column contains entities while another column contains literals as e.g., the entities’
attribute values [45, 59]. The annotation for the relationship between two graph nodes is similar.

Additional Evidence: Quite a few additional resources could be utilized to support data annotation. In table
annotation, one common kind of resource is the table context, such as the table caption, and the surrounding
text from Web pages or articles [104]. Similarly, table headers (table schema), i.e., the column names,
sometimes could also be utilized. Besides the additional evidence from the data to annotate, vocabularies
and KGs are sometimes augmented by some eicient knowledge retrieval tools, especially lookup services
which enable eicient keyword-based entity search based on a lexical index (e.g., DBpedia Lookup10),
and the query engine which enables complex knowledge access via logical queries (e.g., Wikidata Query
Service11). Both lookup services and query engines are especially important when the KG or vocabulary
for annotation has a huge size, as they can help to eiciently extract a candidate annotation set with a
reasonable size and a high recall [22, 30, 68]. Meanwhile, some external resources such as search engines
and synonym dictionaries could also be used as additional evidence for matching [104]. Nowadays, with
the application of machine learning and Natural Language Processing (NLP) methods applied in data
annotation, some pre-trained word embeddings and models such as Word2Vec and BERT have also been
widely used, especially for text understanding and inference.

Approach: The key challenge in data annotation is capturing the contextual meaning of the target data
element and the disambiguation of the candidate annotations. We divide these widely used techniques into
four categories: (i) Lexical Matching, which compares the surface forms of a data element and an annotation
for equivalence matching, usually with the help of lexical similarity metrics (e.g., edit distance and cosine
similarity) or lexical indexes; (ii) Joint Optimization, which jointly or collectively annotates multiple related
data elements with their correlation and consistency considered for disambiguation (e.g., the type of
the entity annotation to a cell should be consistent with the type annotation of this cell’s column); (iii)
Neural Networks & Embedding, which irst represents the data elements and annotations in a vector space
with their semantics such as text and contexts conserved, often using neural networks (NNs), pre-trained
embeddings and models, and then calculates the vector distance or predicts the matching with a machine
learning classiier; (iv) Crowdsourcing, which aims at developing platforms and tools for easier manual
annotation with human labour reduced. It is worth mentioning that many successful table annotation
systems or methods often combine technologies of more than one category. One typical paradigm is initially
matching data elements with annotations such as KG entities and classes by lexical matching with diferent
string similarity metrics, and then adjusting the matching degrees via joint optimization which models the
inluence between annotations or maximizes an overall score using iterative algorithms or probabilistic
models [59, 79, 104].

5.2 Data Annotation Proposals

Here we review data annotation proposals, grouped by the nature of the annotation produced.

5.2.1 Entity Annotation. In textual data, there are often words or phrases that describe entities, often known as
entity mentions in NLP. For tables and graphs, such entity mentions may appear at the level of a whole table
cell, a phrase/word inside a table cell, a graph node, or even a whole table row with one cell as the subject and
the remaining cells as its attributes. A straightforward solution for annotating such entity mentions is directly
comparing their surface forms with annotations via string similarity metrics such as TF-IDF, cosine similarity
and BM25. Some strategies, such as ensembling scores from diferent metrics, matching by some tokens of the
entity mention, looking for diferent forms or synonyms of words from external resources, could be adopted to

10https://lookup.dbpedia.org/
11https://query.wikidata.org/
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Fig. 5. Data Annotation dimensions and their values

improve the performance. However, it still sufers from the scalability issue, and in many cases cannot capture
the semantics for disambiguation, especially when a large scale KG is considered for annotation candidates. For
the scalability issue, successful solutions, such as Efthymiou et al. [30] and MTab [68], adopt modern KG retrieval
tools such as lookup services based on lexical indexes.

To capture the semantics for disambiguation, the contexts of both mentions to annotate and entity annotations
should be considered and utilized. Efthymiou et al. [30] proposes to use semantic embedding for better performance,
besides KG lookup. It includes two stages: an of-line stage, which calculates the embedding of each KG entity
via a random walk of its neighbourhood and Word2Vec for its textual information; and an on-line stage, which
irst constructs a disambiguation graph whose vertices are candidate entities of each mention accessed by lexical
matching and edges are normalized cosine similarities between candidate entities, and then applies a weighted
PageRank algorithm to compute the scores of candidates of each mention. TURL [26] embeds a table for diferent
semantic table annotation tasks. It pre-trains a structure-aware Transformer with a Masked Entity Recovery
objective, and ine-tunes this model with labeled samples when applied to entity annotation. Instead of pre-
training a new Transformer model from scratch, BERTMap [40] prefers to ine-tune a pre-trained BERT model.
Note that although BERTMap is originally developed for matching two ontologies, it can be applied to annotate
graph nodes with KG entities.
Joint optimization is also widely used for utilizing the correlation between annotations for disambiguation.

TabEL [10] adopts the Iterative Classiication Algorithm to collectively disambiguate all mentions in a given table,
using diferent kinds of features, such as prior probability features, semantic relatedness features, entity-mention
similarity features and so on. The on-line stage of Efthymiou et al. [30] also belongs to joint optimization, where
entity candidates of each mention are considered for disambiguation. Limaye et al. [59], TableMiner+ [104] and
T2K Match [79] consider the correlation of not only the entity annotations, but also other kinds of annotations.
The irst method uses a probabilistic graph model to optimize an overall score that takes all the annotations of
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Table 3. Data annotation dimensions applied to proposals.

Proposal Input Output Annotation Additional Approach

(Annotation) Subject Evidence

[30] Tables Entity Table Row Knowledge Retrieval Lexical Matching
KG Word Embedding NN & Embedding

Joint Optimization
MTab [68] Tables Entity Table Cell Pre-trained Model Lexical Matching

KG Semantic Type Table Column Knowledge Retrieval
Data Type Relationship
Property

TURL [26] Tables Entity Table Cell Table Context NN & Embedding
KG Semantic Type Table Column Table Header

Property Relationship
BERTMap Graphs Entity Graph Node Pre-trained Model Lexical Matching
[40] KG NN & Embedding
TabEL [10] Tables Entity Table Cell Ð Lexical Matching

KG Joint Optimization
Tables Entity Table Cell Table Context Lexical Matching

[59] KG Semantic Type Table Column Table Header Joint Optimization
Property Relationship

TableMiner+ Tables Entity Table Cell Table Context Lexical Matching
[104] KG Semantic Type Table Column Table Header Joint Optimization

Property Relationship Search Engine
Data Type

T2K Match Tables Entity Table Row Table Header Lexical Matching
[79] KG Semantic Type Table Joint Optimization

Property Relationship
OpenReine Tables Entity Table Cell Ð Crowdsourcing
[92] KG
ColNet [22] Tables Semantic Type Table Column Knowledge Retrieval Lexical Matching

KG Word Embedding NN & Embedding
SDType Graphs Semantic Type Graph Node Ð Joint Optimization
[71] KG
[67] Tables Data Type Table Column Table Header Lexical Matching

KG Knowledge Retrieval
TTLA [4] Tables Data Type Table Column Ð Joint Optimization

Vocabulary

a table into consideration, while the following two methods adopt iterative algorithms to let the annotations
impact each other. One simple iteration idea often adopted by such methods is irst determining a column’s
semantic type via its cells’ partial entity annotations and then adjusting the cells’ entity annotations under the
constraint of the column type.
It is worth mentioning that table or graph entity annotation has a signiicant overlap with entity linking in

NLP, which has been widely investigated [85]. Some of the entity linking methods could also be applied to table
or graph entity annotation after extension. Meanwhile, developing a user friendly system for easier human
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annotation and crowdsourcing is also a feasibility solution. OpenReine [92] is such a table annotation system
that supports entity annotations from Wikidata.

5.2.2 Semantic Type Annotation. Like entity annotations, semantic type annotations can be directly inferred
from the entities. In semantic column type annotation, a column is usually annotated with the common types of
the entity annotations of its cells. For example, MTab [68] irst gets cells’ high quality entity annotations via
data preprocessing (e.g., data type prediction, header prediction and subject column prediction) and diferent
matchings withWikiGraph Ð a target KG built from DBpedia, Wikipedia andWikidata Ð and then infers semantic
column types. However, this solution will fail if the entities are challenging to annotate, or some or even all of the
entity mentions in a column do not have entity associations in the KG, or the semantic types for annotation do not
have enough instances [22]. In joint optimization methods with diferent kinds of annotations considered, such
as Limaye et al. [59], TableMiner+ [104] and T2K Match [79], column type annotations and entity annotations
are improved together, usually in an iterative way.

Another more straightforward solution is directly predicting the semantic column types without entity linking.
ColNet [22] irst gets relevant KG entities and semantic types via lexical matching by table cells, and then trains
a one-vs-rest classiier for each candidate semantic type using synthetic columns generated from relevant KG
entities. Word embeddings and a Convolutional Neural Network are adopted by the classiier for embedding
the column semantics for disambiguation. TURL [26], which embeds a table via pre-training a structure-aware
Transformer, can also be applied to predict semantic column types via ine-tuning with labeled samples.

Semantic type annotation for graph nodes has been investigated for years in domains such as KG construction
and reinement. For example, SDType [71] calculates the statistical distribution of the types in the subject and
object positions of each property, and then simply infers the type of an entity according to its associated properties
with a weighted voting approach. Modern KG embedding techniques have also been applied to type KG entities,
where the types are embedded with their relationships concerned (e.g., [97]).

5.2.3 Property Annotation. As with semantic type annotation, properties can be annotated by utilizing the
annotated entities. Given a pair of entities �1 and �2, a straightforward solution, is to match �1 with all the
associated entities of �2 in the KG, and adopt the properties that associate the matched entity with �2. Similarly,
�2 can also be matched with the associated entities of �1. To annotate the relationship between two table columns,
simple majority voting or weighted voting (as in e.g., T2KMatch [79]) can be adopted based on all entity pairs from
table cells. Some systems, such as MTab [68] and TableMiner+ [104] also detect the subject column for assistance,
and utilize the names (headers) of surrounding columns as indicators. As in semantic column type annotation,
table properties are also jointly annotated with other kinds of annotations for disambiguation in systems such as
T2K Match [79], Limaye et al. [59] and TableMiner+ [104]. TURL [26] also ine-tunes its pre-trained structure-
aware table representation model to directly predict property annotations with the table contexts embedded for
disambiguation. For graph data, the relationship between two nodes can also be annotated by relations (object
properties), which is sometimes known as link prediction. There have been quite a few methods using graph
algorithms and deep learning techniques, including random walk, graph kernel, graph feature engineering, graph
embedding, graph neural networks and so on [19, 63].

5.2.4 Data Type Annotation. Data types often need to be recognized before annotating entities, semantic types
and properties, and some semantic table annotation systems irstly annotate data types for cells and columns. For
example, MTab [68] irst predicts a table cell’s type as empty, named entity or literal type (such as numerical
tags, email, URL and phone number), and then determines a column’s data type via majority voting with its cells.
Similarly, TableMiner+ [104] addresses data type annotation as a preprocessing step. It uses regular expressions
over each cell to classify them into empty, named entity, number, date expression, long text or other.
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Some methods, in contrast, are developed speciically for data type annotation for table columns. Neumaier et
al. [67] constructs contextual data types using data properties and the subjects of data properties, such as height
of people and height of building, represent these types as a tree, and develop a nearest neighbours classiication
model to predict the type of a numeric table column. Alobaid et al. [4] deines a number typology (vocabulary),
which includes types such as nominal, ordinal and interval-ratio and sub-types such as categorical, counts and
sequential, for annotating numerical table columns. Their method, TTLA, uses complex type-wise heuristic rules
and a type detection order to detect the type and sub-type of a column from a set of values.

5.3 Data Annotation Conclusions

State-of-the-art. Data annotation, which associates data elements of tables or graphs with pre-deined (and
often shared) semantic labels, can enhance data understanding and has started to play a fundamental role for
supporting other dataset discovery and exploration tasks including dataset search, data navigation and schema
inference. Diferent kinds of annotations, including data types and KG deined entities, semantic types and
properties, have been supported by the current methods for data elements in tables and graphs. Some typical
technologies and paradigms together with external resources for annotation, including lexical matching with KG
index and retrieval service, joint optimization of multiple annotations for disambiguation, and table semantic
embedding, have been well investigated in the existing studies.

Benchmarking and Performance. For semantic table annotation, there are several widely used benchmarks with
diferent ground truth annotations. One typical benchmark is the table set extracted fromWikipedia pages, which
was originally proposed in [59] and recently released by [22, 30]. Wikipedia tables often have high quality and
their cells’ hyperlinks to other Wikipedia pages can be utilized to get the ground truth entity annotations via the
correspondence between Wikipedia pages and entities of KGs such as Wikidata. Another typical benchmark is
called T2Dv2 which was extracted from regular pages of the Web with manual entity annotations from DBpedia
[79]. Note that with the entity annotations to the cells, the columns’ type annotations and inter-column property
annotations can be inferred via semantics in the KG. These two benchmarks both have a medium scale with
hundreds of tables. Recently, the yearly SemTab challenge12 on matching tabular data to KG has developed quite a
few real-life and synthetic benchmarks with varying sizes and tasks of cell entity annotation, (hierarchical) column
type annotation and inter-column property annotation, covering KGs of DBpedia, Wikidata and Schema.org [45].
Regarding the evaluation, most of the current data annotation works focus on the annotation quality with

metrics such as Precision, Recall and F1 Score. Although some works report the computation, eiciency and
scalability are much less considered in the current studies. SemTab also focuses on the accuracy evaluation. It
attracts around 10 systems for evaluation in each year, covering all the approaches listed in Table 3. According to
SemTab’s evaluation reports and studies of the methods reviewed in this paper, those systems that ensemble
diferent lexical matching methods, such as MTab [68], can often easily achieve quite good performance. Neural
network and embedding-based approaches have shown strong capability in capturing the semantics and often
achieve better performance on matching cases with diferent surface forms, but they often need to be carefully
combined with some lexical matchingmethods or KG indexes for higher overall performance and higher scalability.

Directions. Many techniques have been proposed and evaluated for data annotation, especially semantic
table annotation, but there are likely to be signiicant remaining opportunities for annotating data repositories.
One problem, for example, is that the current studies often regard annotation as an isolated task, ignoring
the annotation’s downstream tasks and resulting requirements. Meanwhile, state-of-the-art machine learning
techniques, such as pre-trained (large) language models (e.g., BERT [27] and ChatGPT13) in combination with

12https://www.cs.ox.ac.uk/isg/challenges/sem-tab/
13https://openai.com/blog/chatgpt
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School

Name Postcode Address Type Town Gender Phase Borough
St Mary’s NW3 6PG Independent London Mixed Camden
Argyle WC1H 9EG Tonbridge Street London Primary Camden

Fig. 6. Example of an inferred School table with example rows from School1 and School2 in Figure 1.

prompt learning, which have signiicantly improved many natural language understanding and inference tasks,
have not been widely explored for data annotation. Data annotation tools that can better utilize such techniques
are expected to have better performance, especially for data with semi-structured and unstructured text.

6 SCHEMA INFERENCE

Schema inference is the process of identifying datasets that share structural elements, and thereby of generating a
global schema that can represent the data captured by multiple datasets. Consider the example from Figure 1. The
igure contains 5 tables, but two of them (School1 and School2) contain information about school locations. Thus
a schema inference process could infer a single table deinition for inclusion in a global schema that includes
the attributes from both School1 and School2, merging pairs of attributes that are inferred to be equivalent, as
illustrated in Figure 6. At scale, schema inference can generate a summary of the structural properties in a
repository that is much more concise than the original list of datasets. In addition, schema inference can identify
recurring relationships, and in some cases can infer inheritance hierarchies.

As a result, schema inference can be seen as complementing the other areas covered in this survey. By default,
a Dataset Search is likely to return a ranked list of similar datasets; schema inference over such datasets can
identify recurring patterns and make explicit relationships between the search results. Dataset Navigation
typically identiies relationships between individual datasets; however, schema inference seeks to generalise
from relationships between individual datasets to relationships between groups of datasets. Dataset Annotation
can identify conceptually related datasets by associating them with related terms from a vocabulary; schema
inference can potentially identify conceptually similar datasets in the absence of a relevant vocabulary.
There is a substantial literature on schema inference, with most results focusing on speciic data models.

Diferent lavours of schema inference may be referred to as schema extraction [41], schema discovery [50],
structure inference [25], graph summarization [37] and schema induction [93]. An inferred schema may have a
precise relationship to the underlying individuals; for example, when inferring an XML Schema from a collection
of XML documents, the documents may all conform to the inferred schema. This has some obvious advantages in
terms of the role and use of the inferred schema, but if the underlying documents are highly heterogeneous, the
inferred schema may become cumbersome, or even a union of the underlying representations. As such, in other
approaches, the inferred schema may not attempt to have such a crisp relationship to the underlying data, and
may more seek to produce a summary that captures recurring features. In this paper, as the scope is discovery
and exploration over heterogeneous and independently produced datasets, our focus is primarily on schema
inference for summarising the structural features of datasets.

6.1 Schema Inference Dimensions

As in previous sections, we use a collection of dimensions to capture key features of diferent approaches using
consistent terminology. The dimensions and their values are listed in Figure 7. Taking them in turn:

Input: The data that is the starting point for the schema inference process. This is usually data described
using a single data representation that includes instances, such as the tuples in a table, an XML document
or a JSON dataset. The Input may include some type information, e.g., an RDF document may include
annotations on the types of resources and their properties.
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Output: The result of the schema inference process is a schema described using some notation. The Output
could use an existing representation, such as an E/R Diagram or an XML Schema, or a representation that
has been developed speciically to capture the result of the inference process. The Output may or may
not use a notation that is speciically designed for use with the Input. For example, if the input is an XML
document, the output could be an XML Schema or an E/R diagram; the nature of the output tends to be
inluenced by the Purpose of schema inference, a further dimension that is described below.

Additional Evidence: The information, contained within or in addition to the Input, that informs the schema
inference process. For example, when inferring a type from two existing datasets, the similarity of the
Attribute Names and Attribute Types of the two datasets are likely to be useful for establishing how similar
they are and which of their attributes may be able to be merged in the inferred schema. Furthermore, when
inferring relationships between inferred types, it may well be useful to consider Relationship Types and
Relationship Values between the datasets in the repository for which a schema is being inferred.

Approach: The technique that is used to carry out schema inference. There are often several facets of a
schema inference process, for example inference of types and relationships may be in distinct phases, so
summarising them in a few words is likely to lose relevant information, but several techniques recur. For
example, Clustering on similarity of Attribute Names and Relationship Names is a popular approach to
identifying the entity types in datasets. Fuller details of the approaches followed by the surveyed techniques
are provided in the text.

Purpose: The reason why schema inference is taking place; the role to which the Output will be put. The
purpose informs the level of detail that needs to be captured. Schema inference may provide enough
information to allow the user to Query the available data; in this case all attributes in the underlying
datasets need to be present in the inferred schema. As retaining all attributes from sources can lead to
unwieldy inferred schemas, a less detailed model may be more suitable to Document the available data;
such an approach may, for example, drop attributes that appear only rarely in sources, thereby abstracting
over some speciics. Approaches that aim to Document the schemas of a collection of data sources may
generate a conceptual schema with a visual representation, such as an E/R model. A further possibility is
that the goal is to give a concise insight into the most commonly available data, in which case the role of
the approach is to Summarize the available data.

6.2 Schema Inference Proposals

This section describes speciic schema inference proposals, applying the dimensions from Section 6.1 to provide
consistent terminology and to allow comparison. Schema inference techniques can be grouped in diferent ways;
we will group papers primarily based on the Purpose of the schema inference, with an emphasis in the discussion
on the applicability of these techniques for discovery and exploration. As there is a substantial literature on
schema inference, we discuss representative examples, rather than seeking to provide exhaustive coverage. We
aim to include examples that are representative of prior work by including approaches that: (i) support diferent
purposes, thus representing the diferent roles that schema inference can play; and (ii) act over diferent data
models, thus representing diferent communities that have worked on schema inference.
Existing surveys provide more detailed coverage by model, speciically in relation to XML [53], graph sum-

marization [20] and the Semantic Web [49]. While these surveys provide focused material on schema inference
for speciic models, here we aim to complement them by revisiting schema inference as one of a collection of
approaches to dataset discovery and exploration, where it can fulil a variety of purposes over diferent data
models.

6.2.1 Inferring Schemas for uerying. Before we move on to our main focus on techniques that support the
documenting and summarizing of data, we consider some examples where the aim is to infer a schema that
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Fig. 7. Schema inference dimensions and their values

precisely describes the underlying data, for a speciic data model. Baazizi et al., propose a parametric schema
inference technique for JSON [6]. The approach is parametric in the sense that diferent approaches can be used
to combine type deinitions obtained from diferent individuals or collections. Given a collection of JSON datasets,
the approach infers a type for each JSON record, and then merges these types to produce a type that describes
all the available data. The proposed approach is always sound, in the sense that the inferred type is always a
correct type for the given collection. However, there are diferent ways of generating sound types, and diferent
parameters trade of the preciseness of the result with the size of the result. For example, assume that + is the
operation for fusing types, ? represents an optional ield, and a record is represented as a set of ���� : ���� pairs.
Consider the following type fusion:

{���� : ���, �������� : ��� } + {���� : ���, ������� : ��� }

A possible result of the fusion is:
{���� : ���, �������� : ���?, ������� : ���?}

Any valid input of type {���� : ���, �������� : ��� } or {���� : ���, ������� : ��� } can be represented as
{���� : ���, �������� : ���?, ������� : ���?}. However, for example, in the original ields �������� and �������
never appear together in a record, whereas in the fused type they can. So, in this case, the inferred type is concise,
but not especially precise, as information has been lost. The trade-of between concise and precise representations
can be controlled by parameterising the approach with diferent fusion strategies.
Note that although this approach is systematic, and guarantees soundness, it is not designed to resolve

representational inconsistencies. As a result, if a name is represented by {� �������� : ���, �������� : ��� } and
by {� ������� : ���, ������� : ��� }, no attempt will be made to resolve the representational inconsistency, and
both representations will be present in the inferred schema.

The approach of inferring schema deinitions that precisely and concisely describe collections of inputs has also
been investigated for XML [53]. For example, a bespoke algorithm has been developed that, given a collection of
XML documents, infers an XML Schema with which the documents are consistent [9]. Given certain constraints
on the underlying documents, a regular expression is inferred in which each XML element name occurs only once,
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Table 4. Schema inference dimensions applied to proposals.

Proposal Input Output Evidence Approach Purpose

[6] JSON Type Description Attribute Names Tree-Merging Query
Attribute Types

[9] XML XML Schema Attribute Names Bespoke Query
Relationship Names

[25] RDF E/R Relationship Names Clustering Document
GMMSchema Property Property Graph Relationship Names Clustering Document
[14] Graph Schema Type-Annotations
[50] RDF E/R, Is-A Relationship Names Clustering Document
HInT RDF E/R Relationship Names Bespoke Document
[48] Type Annotations
[37] RDF E/R Relationship Names Graph Document

Relationship Types Summarization
Ontology

[89] RDF Type Description Relationship Names Clustering Query
Relationship Types

HIEDS RDF E/R, Is-A Relationship Names Optimization Document
[24] Type Annotations

Relationship Values
[98] Relations XML Schema Relationship Names Bespoke Summarize

XML Relationship Values
[96] Relations Relational Schema Attribute Values Clustering Summarize

Relationship Values
[95] RDF Relational Schema Type Annotations Optimization Summarize

Relationship Names
Relationship Types

and this expression is simpliied to reduce the number of XML type deinitions used. This approach identiies
and seeks to address several challenges with the inference of a precise schema deinition: the data over which
inference is taking place may not represent all the legitimate cases, the training data contains only positive cases,
and rich schema languages may present fundamental barriers to inference.
Approaches that generate schemas to which all instances must conform provide useful ways of inferring

missing schema information for individual modelling languages, but for practical purposes are designed to work
in settings where the available documents are largely consistent. For example, in XML, the relationship between
pupils and the schools they attend could be modelled with school as a parent element of pupil (/school/pupil)
or the other way around (/pupil/school). If both cases are represented in the available XML documents, then
schema inference is likely to include both cases in the inferred schema, even though they both represent the
same application concepts.

6.2.2 Inferring Schemas to Document a Collection. Due to our focus on data discovery and exploration, we
subsequently focus on papers that seek to infer schemas that look to provide useful information about the
underlying data, without seeking to infer a schema that directly captures the structure of all the existing data.
RDF is a graph-based data model that is central to the Semantic Web, as well as being used as the model for

several graph data management systems. In both settings, RDF graphs can be created that share terminology, but
the resulting graphs are not constrained to support only certain properties. Furthermore, the foundational role of
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RDF in Linked Open Data [11] means that RDF is expected to be used in settings where numerous independent
publishers are active, thus inevitably leading to inconsistent representations.

Approaches that cluster over an RDF graph can identify recurring patterns within the graph. Although nodes in
an RDF graph may be annotated with types, independent publishers may use diferent types to describe the same
real world concept. As a result, the annotated type is only one source of evidence, and the notion of similarity
used by clustering algorithms can consider diferent kinds of evidence. Christodoulou et al. [25] uses hierarchical
clustering to group individual resources into entity types. The similarity of two resources is represented by the
Jaccard similarity of their sets of relationship names, and the similarity of two clusters is represented by the
average similarities of their members14. In this setting, bottom-up hierarchical clustering is used to merge pairs
of clusters, starting with unary clusters and ending up with a single cluster that represents the type of which
all resources are members. For example, with reference to Figure 1, given that the Jaccard similarity between

two sets � and � is: ������� (�, �) = |�∩� |
|�∪� |

, the Jaccard similarity between the attributes of School1 and School2

(assuming that Borough and LA_Name are equated) is:

������� (���������� (��ℎ���1), ���������� (��ℎ���2)) =
|����,��������,����,������ℎ |

|����,��������,� ���,����,������,������ℎ,�������,�ℎ��� |
=

4
8
= 0.5.

In contrast, Jaccard similarity between the attributes of School1 and School3 (assuming that Borough and LA_Name

are equated) is:

������� (���������� (��ℎ���1), ���������� (��ℎ���3)) =
|����,������ℎ |

|����,��������,� ���,����,������,������ℎ,������,�∗−�,����������,������������� |
=

2
10

= 0.2.

As a result, School1 and School2 are going to be clustered together more readily than School1 and School3. The
silhouette coeicient is used to identify a suitable number of clusters, taking into account cohesion within clusters
and separation between clusters. The relationships between resources in diferent clusters are considered to be
valid relationships between the corresponding clusters.

Hierarchical clustering has also been used in schema inference for property graphs [14]. In contrast with [25],
here the clustering is top-down, and clusters are divided into sub-clusters taking into account the annotations of
the nodes in the clusters and the most frequent property names.
Kellou-Menouer and Kedad also propose an approach to schema discovery for RDF data that builds on

clustering [50]. The input is an RDF graph, and the output is essentially an E/R model with inheritance, though
this is represented as an RDF graph in the paper. Given an RDF resource (a node in an RDF graph), the user-
deined properties associated with the resource are extracted; these properties constitute resource descriptions,
and include incoming and outgoing relationships. The evidence used for schema discovery is the user-deined
properties. The irst step in the approach uses a density-based clustering algorithm [32] to group together resource
descriptions based on a property vector that associates each property with a probability that the property is
found in a resource description in the cluster. Each cluster represents a type. Given the types from clustering, the
property vector may indicate that some properties are always present, and that some are sometimes present. This
information is used to create a type hierarchy, where the less frequently occurring properties are used to identify
subtypes.

In RDF, resources can be annotated (using rdf:type) with one or more types. As this type information is partial,
the clustering approaches described above for RDF use relationship names as evidence, and ignore any available
type annotations. With a view to making the most of the available evidence, HInT [48] combines relationship
names with annotations when inferring types for the inferred schema. Initially, patterns are created that represent
the relationships in which an instance participates, and these patterns are used as keys in an approximate

14In Table 4, when considering RDF, as triples can contain both literals and node identiiers; we do not distinguish between attributes and
relationships, considering both to be relationships.
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(LSH [44]) index that provides access to the corresponding type annotations. Then types for the global schema
are created that share relationship and type information. In this approach, the result is essentially an E/R model,
in which the patterns provide the relationships of the inferred types, which in turn have been created taking into
account rdf:type annotations on RDF resources.
Some schema inference techniques build directly on the relationships in the underlying data. For example,

graph summarization can identify nodes that are considered to be equivalent based on the graph of relationships
in which they participate. For example, Goasdoué, et al. [37] propose several deinitions of node equivalence that
use diferent types of evidence, which may lead to more or less concise summaries; there is not necessarily a
correct level of summarization. For example, with respect to Figure 1, is it most appropriate to infer that there is a
single school type, or to have separate types for school location and school attainment? Also building on graph
structures, Tsuboi and Suzuku [89] infer type descriptions using an expression that captures the co-occurrence of
relationship names. The type descriptions are inferred by reining clusters created on the basis of relationship
names, by combining similar clusters and identifying mutually exclusive patterns. The type descriptions inferred
would be able to say that a school description contains either address or attainment data, if this is the case in the
underlying data (as in Figure 1).
Most approaches that seek to produce a summary that captures the main features of the available data, at

least initially produce an essentially lat schema, without inheritance-style relationships. However, it is also
possible to generate a summary schema that puts hierarchical relationships irst, as in HIELDS [24]. In HIELDS, a
hierarchy is constructed, in which the most general type is at Level 0, of which all values are members. Then
at Level 1 is a collection of more specialised types, which can be distinguished using relationship-value pairs
for a single relationship. At Level 2, the types from Level 1 are further subdivided, using evidence from a further
relationship-value pair. A suitable subdivision is identiied using an optimization algorithm that seeks to satisfy
various objectives relating to the size of the groups and their cohesion. For example, in an open government
example, Level 0 might group on the basis of the rdf:type to provide groups that include one associated with the
type School. The school group could then be further divided on the basis of diferent properties of school, for
example by Borough or Town.

6.2.3 Inferring Concise Summaries. The previously described results for schema inference have sought to infer
complete (Section 6.2.1) or reasonably comprehensive (Section 6.2.2) descriptions of the available data. However,
the resulting schemas may be substantial, and a more concise summary may be useful for highlighting the main
concepts in a repository.
The beneits of producing a concise summary of a complex schema have been recognised for a considerable

time, and initial investigations were in the context of a single schema, rather than heterogeneous sources. For
example, Yu and Jagadish [98] provide an approach, primarily focused on hierarchical data models (though
applicable to relational) that takes into account the relative importance of diferent schema elements that are
candidates for inclusion in a summary and the coverage of the schema elements from the input in the summary.
The objective is to include important elements in the summary, while also representing a signiicant portion of
the input. Focusing on relational schemas, Yang et al. [96] use entropy to characterise the information content and
thus importance of individual tables, taking into account the relationships in which they participate. Tables are
then clustered in a way that considers both the similarity and importance of the tables, such that important tables
have a good chance of being cluster centers, and thus summary tables. The number of tables in the summary is a
parameter.

Changing the setting away from an individual database schema to a potentially large and complex RDF graph,
Yan et al. [95] describe an approach to inferring a speciied number of summary tables that represent important
types and attributes. The identiication of summaries is cast as an optimization problem, in which metrics are
used to score tables and attributes on the basis of the value that they provide, and constraints are used to control
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how many such tables are produced. There is also an option in the formulation of the optimization problem to
prefer tight previews (in which tables in the summary cover closely related concepts) or diverse previews (in
which tables in the summary may include attributes from more loosely related concepts).

6.3 Schema Inference Conclusions

State-of-the-art. There is considerable variety in the schema inference literature, relecting the diferent pur-
poses for which a schema can be inferred. Overall, schema inference seeks to consolidate complex heterogeneous
structures, which supports data discovery and exploration by providing an integrated and more concise represen-
tation of the available data. However, most techniques are input data-model speciic, not only in the sense that
the input datasets must all conform to a single data model, but also in the sense that much of the evidence used
to inform the schema inference process is speciic to that data model. This has allowed existing approaches to
exploit model-speciic features to carry out inferences, but reduces applicability to homogeneous collections.

Benchmarking and Performance. Evaluations of schema inference techniques investigate both the efectiveness
and scalability of the inference process.
The notion of efectiveness varies with Purpose. Where the Purpose is Query, the structure of the inferred

schema tends to be derived very directly from the underlying datasets, and thus the inferred schema may be
correct in some well deined sense. As a result, efectiveness may make use of metrics relating to succinctness
(how much smaller the inferred schema is than the underlying data [6]) or precision (how closely the inferred
schema aligns with a ground truth schema [9]). Where the Purpose is to Document the available data, steps in
the inference processes tend to be based on uncertain similarity measures, and efectiveness typically relates
the inferred schema to a manually created or pre-existing ground truth. For example, DBpedia [55] has been
used in the evaluation of several RDF proposals (e.g., [15, 37, 93]), as individual RDF resources in DBpedia have
been manually associated with classes from the DBpedia ontology. Thereby, inferred clusters of RDF resources
can be related to manually created class annotations. Where the Purpose is Summarize, sometimes the technique
produces a summary of a given size; in this case, a measure of how efective this has been is to compare the
inferred summary to a manually produced summary of the same size [98]. A further measure relates to the
fraction of the structural elements in the original datasets that are represented in the summary [37].
In relation to scalability, schema inference algorithms may run at the schema level or the instance level. For

example, algorithms for RDF tend to cluster individual RDF resources [25, 48, 50], and algorithms for XML or
JSON cluster individual documents [6, 9]. In contrast, algorithms over tabular datasets cluster the tables and not
the rows, as every row in a table has a consistent schema [96, 98]; this clearly has a signiicant impact on the
cardinality of the input to the inference process. A variety of techniques have been applied to support scalability,
which tend to exploit parallelism or indexing. As can be seen in Table 4, a common initial step involves clustering
data items, such as RDF resources, based on similarity. Let’s assume that the similarity of RDF resources is based
on the Jaccard similarity of their properties (as in [25, 48, 50] from Table 4). In this setting, one approach is to
adopt a parallel clustering algorithm, where RDF resources are assigned to nodes for parallel clustering in a
way that takes into account their Jaccard similarity [15]. Such similarity patterns can also be indexed using LSH
indexes, to avoid the need for exhaustive comparison of instances during clustering [48]. Scalability techniques
tend to be evaluated on a mixture of real and synthetic datasets (e.g., as in [37, 48], where RDF datasets of up to
100 million triples are experimented with). However, the diversity of data-models supported and purposes of the
techniques militates against the creation of widely used community benchmarks.

Directions. There are now a wide range of results that support schema inference for diferent purposes over
speciic data models. However, the fact that existing techniques target speciic input data models means that they
are not applicable to heterogeneous repositories, thus reducing their applicability. The aspiration of providing
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clarity in complex data environments is signiicantly blunted if heterogeneous environments are out of scope.
Similarly, schema inference techniques often lean heavily on speciic properties of the input, for example the
hierarchical nature of JSON or XLM, or shared vocabularies in RDF. As a result, approaches do not account for
common schematic heterogeneities; recourse to additional sources of evidence (e.g., external ontologies, word
embedddings) could be of value for identifying and thus taking account of further heterogeneities.

7 CONCLUSIONS

Dataset discovery and exploration is an area of growing importance: there is ever more data with the potential to
provide insights, and the need to make the most of such data as a diferentiating factor in business is increasingly
widely recognised [61]. This growing momentum, and the recognition that many organisations are not making
full use of the available data, is driving research on diferent aspects of, and approaches to, data discovery and
exploration. In this survey, we have reviewed and compared representative technical results in dataset search,
data navigation, data annotation and schema inference. We have brought together these complementary areas in
a single survey with a view to: (i) highlighting the variety of challenges faced when trying to identify and obtain
an understanding of the relevant data in a repository; and (ii) making explicit the diverse technical proposals
that have been made with a view to making complex data repositories more accessible to data scientists and
engineers. In so doing, we have: (i) identiied how common objectives can be addressed in diferent ways, for
example with navigation between related datasets supported directly at the dataset level, implicitly within
dataset search or more abstractly through schema inference; (ii) identiied how these research directions can
support each other, for example, table annotations with richer and shared semantics can directly augment dataset
search and data navigation, while descriptive and summary schemas could be utilized for table annotation as
evidence; and (iii) identiied where recurring themes have surfaced across diferent tasks, for example the use of
inferred relationships for both navigation and search, and the use of embeddings to support scalable approaches to
inconsistent data representations in search, navigation and annotation. Our aim has been to provide a consolidated
review of the literature, bridging adjacent technical areas, and encouraging a more integrated view of approaches
to dataset discovery and exploration.
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