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Abstract

Pea protein is an attractive nonanimal-derived protein source to support dietary protein requirements. However, although high in
leucine, a low methionine content has been suggested to limit its anabolic potential. Mycoprotein has a complete amino acid
profile which, at least in part, may explain its ability to robustly stimulate myofibrillar protein synthesis (MyoPS) rates. We
hypothesized that an inferior postexercise MyoPS response would be seen following ingestion of pea protein compared with
mycoprotein, which would be (partially) rescued by blending the two sources. Thirty-three healthy, young [age: 21 ± 1 yr, body
mass index (BMI): 24 ± 1 kg·m�2] and resistance-trained participants received primed, continuous infusions of L-[ring-2H5]phenylal-
anine and completed a bout of whole body resistance exercise before ingesting 25 g of protein from mycoprotein (MYC, n ¼ 11),
pea protein (PEA, n ¼ 11), or a blend (39% MYC, 61% PEA) of the two (BLEND, n ¼ 11). Blood and muscle samples were taken
pre-, 2 h, and 4 h postexercise/protein ingestion to assess postabsorptive and postprandial postexercise myofibrillar protein frac-
tional synthetic rates (FSRs). Protein ingestion increased plasma essential amino acid and leucine concentrations (time effect;
P < 0.0001), but more rapidly in BLEND and PEA compared with MYC (time � condition interaction; P < 0.0001). From similar
postabsorptive values (MYC, 0.026 ±0.008%·h�1; PEA, 0.028 ±0.007%·h�1; BLEND, 0.026 ±0.006%·h�1), resistance exercise and
protein ingestion increased myofibrillar FSRs (time effect; P < 0.0001) over a 4-h postprandial period (MYC, 0.076 ±0.004%·h�1;
PEA, 0.087 ± 0.01%·h�1; BLEND, 0.085 ±0.01%·h�1), with no differences between groups (all; P > 0.05). These data show that all
three nonanimal-derived protein sources have utility in supporting postexercise muscle reconditioning.

NEW & NOTEWORTHY This study provides evidence that pea protein (PEA), mycoprotein (MYC), and their blend (BLEND) can
support postexercise myofibrillar protein synthesis rates following a bout of whole body resistance exercise. Furthermore, these
data suggest that a methionine deficiency in pea may not limit its capacity to stimulate an acute increase in muscle protein syn-
thesis (MPS).

muscle protein synthesis; mycoprotein; pea protein; protein blend; resistance exercise

INTRODUCTION

Dietary protein andmuscle contraction increasemuscle pro-
tein synthesis (MPS) rates, making adequate protein intake and
regular exercise essential for the reconditioning of skeletal
muscle tissue (1–3). Furthermore, the modality of exercise, par-
ticularly the amount of active muscle tissue, can exaggerate
the demand for exogenous amino acids, meaning greater serv-
ings of protein may be required following whole body com-
pared with single/lower limb exercise (4). Essential amino
acids (EAAs) are themain drivers of postprandial MPS rates (5),
with the magnitude of the increase thought to be primarily
determined by rapid and/or large increases in plasma leucine
concentrations (6–8). Animal-derived protein sources are high

in EAAs and leucine and, as a result, have frequently been
demonstrated to robustly stimulateMPS rates (9–14). However,
concerns surrounding the sustainability of (increased) produc-
tion of animal-based proteins (15) are driving nutritional
research to investigate alternative sources (16), particularly for
use within sports and exercise nutrition (17).

Plant-based protein sources generally have lower EAA and
leucine contents compared with animal-based sources
(18, 19) that underpin the suggested, and to some extent
observed, inferior capacity to stimulate MPS rates (10, 20).
We have demonstrated that mycoprotein, a fungal-derived
protein source, is capable of supporting a robust increase in
MPS (21, 22), even to a greater extent than milk protein (21),
and as a result support longer-term muscle protein turnover
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(23, 24) and adaptive responses to training (24). This is likely
owed to the complete EAA profile and in vivo bioavailability
of those amino acids following ingestion (25). Pea protein
isolate is a promising alternative protein source on account
of its versatility and commercial advancement as a food in-
gredient (26), cost-effectiveness and sustainable production
(27), complete amino acid profile, and high leucine content
(18). However, it is low in methionine (<1.6% total protein;
World Health Organization (WHO) (18, 28, 29), with single
amino acid deficiencies theorized to limit the anabolic
capacity of plant proteins (18, 19). Although there are data to
demonstrate that pea protein can increase anabolic signaling
pathways (30) and support equivalent hypertrophy in
response to resistance training compared with whey (31, 32),
no studies to date have assessed the acute MPS response to
pea protein ingestion.

Blending protein sources has been proposed to mitigate
common EAA deficiencies (17, 19). Studies have demonstrated
that blending plant- with animal-derived proteins is a viable
method for augmenting the postprandial MPS response (33–
37), though less work has investigated plant-only protein
blends. Two recent studies demonstrate that plant-based pro-
tein blends are equally as effective for stimulating MPS rates
as animal-derived comparators (milk protein), though both
studies provide �30 g of protein (likely mitigating any EAA li-
mitation) and data were obtained from restingmuscle (38, 39).

In the present work, we first hypothesized that bolus
ingestion of mycoprotein (containing 25 g protein) would
result in a greater myofibrillar protein synthesis (MyoPS)
response following whole body resistance exercise (to maxi-
mize systemic muscle amino acid demand and exacerbate
any deficiency) compared with an isonitrogenous bolus of
pea protein. Second, we hypothesized that blending myco-
protein with pea protein would improve the MyoPS response
compared with pea protein alone.

METHODS

Participants

Thirty-three resistance-trained, young and healthy individ-
uals volunteered to take part in the present study [age: 21± 1
yr, body mass: 75±2 kg, body mass index (BMI): 24±1
kg·m�2]. Participants’ characteristics are presented in Table 1.
Participants were considered resistance-trained if they were
engaged in resistance training >3 times per week for >3 mo
before taking part in the study. This population was selected
as training status impacts the anabolic response to exercise
(40). Therefore, selecting resistance-trained individuals ensured
maximal muscle amino acid demand, optimal exercise execu-
tion, (more) ecological validity (to exercise training), and an
assumed greater homogeneity of responses to exercise. Subjects
had not undergone any previous stable isotope tracer protocols
in the previous 6mo ensuring negligible background stable iso-
tope enrichments. Exclusion criteria included any metabolic
impairment, cardiovascular complications, or allergies tomyco-
protein/edible fungi or environmental molds. Subjects were
admitted to the study after being deemed healthy based on
blood pressure (<140/90 mmHg), BMI (18–30 kg·m�2), and
responses to a routine medical health questionnaire.
Experimental procedures, potential risks, and the purpose of

the study were explained to the participants before obtain-
ing informed written consent. This study was approved by
the Sport and Health Sciences ethics committee of the
University of Exeter (200325/B/03) in accordance with the
Declaration of Helsinki and is registered at ClinicalTrials.
Gov (NCT04894747). Recruitment and data collection were
carried out in the Nutritional Physiology Research Unit at
the University of Exeter between May 2021 and June 2022.

Pretesting

All participants underwent a pretesting protocol at least 5
days before a single experimental trial. Participants reported
to the laboratory to assess body composition, leg strength,
and to become familiarized with the exercise protocol to be
used during the experimental trial (described in Resistance
Exercise Protocol). Body composition [body fat (%) and lean
mass (kg)] was assessed using Air Displacement Plethys-
mography (BodPod, Life measurement, Inc. Concord, CA).

Experimental Protocol

Participants were randomly assigned to one of three paral-
lel groups and completed a single experimental trial in a dou-
ble-blind manner. An overview of the experimental protocol
can be found in Fig. 1. Participants were asked to avoid vigor-
ous physical activity and alcohol in the 48 h preceding the
trial. All participants were provided with a standardized meal
to consume as their last food intake �10 h before arriving at
the laboratory [4.6 MJ (1,110 kcal), 29% energy from fat, 46%
energy from carbohydrate, 25% energy from protein].

On the day of the trial, participants arrived at the labora-
tory at 7:30 AM after the 10-h overnight fast. A Teflon can-
nula was inserted into an antecubital vein of one arm for the
infusion of the stable isotope tracer. Before the infusion was
initiated, a baseline venous blood sample was taken from
this site to measure background isotopic enrichments.
Following the baseline blood sample, the infusion protocol
began with a single intravenous priming dose of L-[ring-2H5]
phenylalanine (2.12 μmol/kg) (t ¼ �270 min). After the pri-
ming dose, a continuous tracer infusion was initiated (t ¼
�270 min) at a rate of 0.05 μmol·kg�1·h�1 of L-[ring-2H5]phe-
nylalanine for the duration of the protocol. Once this infu-
sion was in progress, a second Teflon cannula was inserted
retrogradely into a dorsal hand vein of the contralateral arm
and placed in a heated hand unit (55�C) to allow for subse-
quent arterialized-venous blood sampling (41). Arterialized
venous blood samples were then taken throughout the re-
mainder of the infusion at the following time (t) points:
�180, �120, �60, 0, 15, 30, 45, 60, 90, 120, 150, 180, 210, and
240 min. Following a 90-min period to allow the achieve-
ment of isotopic steady state (22), a baseline muscle biopsy
sample was collected (t ¼ �180 min), then again at t ¼ �60
min from the same leg at least 2 cm distal to the previous
incision for the calculation of resting and postabsorptive
myofibrillar protein synthesis (MyoPS) rates. Muscle biopsies
were sampled from the visual midpoint of the m. vastus lat-
eralis with a modified Bergstr€om suction needle under local
anesthetic (2% lidocaine) (42). All biopsy samples were im-
mediately freed from any visible blood, connective, and adi-
pose tissue before being frozen in liquid nitrogen (within
30–60 s) and stored at �80�C until analysis. At �60 min,
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participants were taken to the research gymnasium adja-
cent to the laboratory to execute a bout of whole body re-
sistance exercise, as described in Resistance Exercise Protocol.
Following exercise, a third muscle biopsy was collected from
the contralateral leg to that where the initial two biopsies
were collected from, before consuming a beverage (details in
Protein Beverage Preparation) containing 25 g of protein
from either mycoprotein (MYC), pea protein (PEA), or a blend
of mycoprotein and pea protein (BLEND) (t ¼ 0). Each bever-
age was administered randomly in a double-blind fashion
and consumed within an allotted 5-min period. Participants
then rested in a semi-supine position for 4 h, with further
muscle biopsies collected (from the same leg as biopsy 3) at
least 2 cm distal to the previous incisions, 2 and 4 h following
beverage consumption to determine postprandial, postexer-
ciseMyoPS rates over an early (0–2 h) and later (0–4 h) phase.
Following completion of the trial, participants were provided
with food and transport home.

Average incorporation times between the collection of
biopsies for calculation of resting postabsorptive MyoPS did
not differ between groups (MYC, 121 ±0.3 min; PEA, 122±0.8
min; BLEND 121±0.4 min; P > 0.05). Average incorporation
times between the collection of biopsies used to calculate 2 h
(MYC, 121 ±0.5 min; PEA, 122±0.9 min; BLEND 122±0.5 min;
P > 0.05) and 4 h (MYC, 241 ±0.5 min; PEA, 241±0.4 min;
BLEND 241±0.7 min P > 0.05) postprandial MyoPS rates
also did not differ between groups.

Resistance Exercise Protocol

During the pretesting visit, three repetition max (RM) was
assessed to estimate 1RM for leg press, leg extension, and

Romanian deadlift (RDL) exercises (43). 3RM, rather than
1RM, was selected as an accurate approach to predict 10RM
to minimize safety risks (43). Strength testing began with a
brief warm-up with a low weight on each exercise. Thereafter,
participants attempted a self-selected weight for 3RM. Weight
was increased for each subsequent attempt with final 3RM
being accepted as the last weight lifted correctly before a
failed attempt (±5 kg from failed attempt). 10RMwas then cal-
culated as 70% of estimated 1RM.

Once 3RM testing had finished, participants rested for �5
min and were then asked to complete one set (�10 repeti-
tions) at the calculated 70% 1RM for familiarization and veri-
fication purposes. Participants were then familiarized with
the upper body exercises consisting of cable chest fly (pecto-
ral), reverse dumbbell fly (posterior deltoid, rhomboids),
straight arm cable pull-down (latissimus dorsi), and lateral
dumbbell raise (medial deltoids). The weight assigned for
the upper body exercises was estimated based on body mass
of the participant by multiplying body mass by a correction
factor for each exercise (chest fly, 1.12/0.6; reverse fly, 0.22/
0.15; lateral raise, 0.2/0.15; straight arm pulldown, 1/0.8;
male/female, respectively) aiming to ensure failure after �10
repetitions. The exercises included were selected to target
the whole body to provide a comprehensive and maximal
stimulus of a large volume of muscle mass while also mini-
mizing risks associated with exercising while attached to in-
travenous infusion lines (e.g., elbow flexion). As well as
increasing ecological validity, this nature of exercise maxi-
mizes postexercise systemic amino acid demand and there-
fore has been suggested to alter the postexercise protein
requirements tomaximize the MPS response (4).

Table 1. Participants’ characteristics

MYC (n 5 11) PEA (n 5 11) BLEND (n 5 11)

Sex (M/F) 7/4 9/2 8/3
Age, yr 21 ± 1 20 ± 1 21 ± 1
Height, cm 176 ± 4 175 ±3 176 ± 3
Weight, kg 75 ± 4 75 ±3 76 ± 4
BMI, kg·m-2 24 ± 1 24 ± 1 24 ± 1
Systolic blood pressure, mmHg 120 ± 3 125 ±2 123 ± 3
Diastolic blood pressure, mmHg 70 ±2 70 ±2 69 ±2
Fat, % body mass 18 ± 2 14 ±2 14 ± 2
Lean mass, kg 61 ± 4 64 ±4 64 ± 4
Leg press 1RM, kg 259 ±20 247 ± 18 252 ±22
Leg extension 1RM, kg 101 ± 8 112 ±8 109 ± 8
Romanian deadlift 1RM, kg 105 ±9 117 ± 10 110 ± 8
Total exercise volume, kg � rep 12,917 ± 782 12,406 ±828 14,009 ± 1803
Lower body exercise volume, kg � rep 10,371 ± 667 9,473 ± 712 11,025 ± 820
Upper body exercise volume, kg � rep 2,546 ± 189 2,934 ±223 2,985 ± 303

Values are represented as means ± SE. No significant differences between groups (all P > 0.05). BLEND, mycoprotein/pea blend; BMI,
body mass index; MYC, mycoprotein; PEA, pea protein; 1RM, one repetition maximum.

Figure 1. Protocol schematic of the experi-
mental visit.
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For the experimental trial, exercises were performed in the
following order: chest fly, reverse dumbbell fly, straight arm
cable pulldown, lateral dumbbell raise, leg press, leg exten-
sion, RDL. Upper body exercises were performed as supersets
(chest fly/rear deltoid dumbbell fly; straight arm cable pull-
down/lateral dumbbell raise). Participants performed four
sets of each exercise separated by 90-s rest. The first set of
each exercise was performed as 10 repetitions at 75% of calcu-
lated 10RM. Participants were instructed to work to failure on
the remaining three sets at their 10RM. For subsequent sets,
the weight was increased when participants were able to per-
form >12 repetitions and decreased when participants were
unable to perform 8 repetitions. Verbal encouragement was
provided throughout. Average time spent performing the
entire exercise protocol did not differ between conditions
(MYC, 53± 1 min; PEA, 57±2 min; BLEND, 54±2 min; P >
0.05). Average time between the completion of exercise and
the nextmuscle biopsy was 20±1min.

Protein Beverage Preparation

Freeze-dried mycoprotein was produced and provided by
Marlow Foods Ltd., Quorn Foods, Stokesley, UK. Mycoprotein
was produced as previously described (44). Pea protein was
produced and supplied by Corsucra Ltd., Warcoing, Belgium.
The mycoprotein and pea blend was produced by mixing the
freeze-dried powders (39%MYC, 61% PEA). All protein sources
were independently analyzed (Premier Analytical Services,
UK) for energy, macronutrient content, and amino acid com-
position, the details of which are displayed in Table 2.

The evening before the experimental trial the powdered
protein sources were assimilated with 400 mL of water and
40 mL of energy-free flavoring (Clearwater, FL), blended for
�2 min and refrigerated overnight (440 mL of final fluid vol-
ume). Drinks were enriched (2%) with L-[ring-2H5]phenylala-
nine to maintain systemic isotopic precursor steady state
following protein ingestion (21). During the experimental
trial, once participants had consumed the drink, an addi-
tional 100 mL water were added to “rinse” the bottle and
ensure that all the protein had been consumed. Double
blinding of the drinks was achieved by having a separate
researcher from those carrying out the experimental trial vis-
its prepare the drinks in an opaque bottle. The drinks were
matched for protein content (25 g) requiring 47.7, 31.7, and
36.9 g of MYC, PEA, or BLEND powders, respectively.

Blood Sample Collection and Analyses

Ten milliliters of arterialized-venous (with the exception of
the baseline sample which was a venous collection) blood were
collected into a syringe at each time point. Fivemilliliters of that
sample were added to EDTA-containing tubes (BD vacutainer
LH; BD Diagnostics, Nu-Care) and centrifuged for 10 min at
4,000 rpm at 4�C. The plasma supernatant was then removed,
aliquoted, and stored at�80�C for later analyses. The remaining
5 mL of blood were added to additional vacutainers (BD vacu-
tainers SST II, BD Diagnostics, Nu-Care) and left upright to clot
at room temperature for 30min and then centrifuged for 10min
at 4,000 rpm at 4�C. The serum supernatant was then removed,
aliquoted, and stored at�80�C for future analyses.

Serum insulin concentrations were measured using a com-
mercially available ELISA kit (DRG Insulin ELISA, EIA-2935,

DRG International Inc., Springfield, NJ). Plasma L-[ring-2H5]
phenylalanine enrichments (MPEs) and concentrations of gly-
cine, phenylalanine, leucine, valine, isoleucine, lysine, histi-
dine, glutamic acid, methionine, proline, serine, threonine,
tyrosine, and alanine were determined in tert-butyldimethyl-
silyl derivatives by GC-MS with electron impact ionization
(Agilent, Santa Clara, CA) as described previously (45). Briefly,
to prepare samples for GC-MS, 10 μL of 2 mM nor-leucine was
added as an internal standard to 450 μL plasma and deprotei-
nized on ice with 450 μL of 15% 5-sulfosalicylic acid. Samples
were then vortexed and centrifuged at 4,000 rpm for 10min at
4�C. The supernatant was then loaded onto cation exchange
columns. Columns were then filled with ddH2O, followed by 6
mL of 0.5 M acetic acid, and then washed once more with
ddH2O, with the columns allowed to drain between each step.
The amino acids were then eluted with 2 mL of 6 M ammonia
hydroxide (NH4OH). The eluate was dried using a Speed-Vac
for 8 h at 60�C before undergoing derivatization (as described
in theMuscle Tissue Analyses) formuscle.

Muscle Tissue Analyses

Myofibrillar protein extractions were performed as previ-
ously described (46). The process was carried out with �50
mg of muscle tissue, which was homogenized using a me-
chanical glass pestle in a glass tube in homogenization buffer
[in mM: 50 Tris·HCl pH 7.4, 1 EDTA, 1 EGTA, 10 b-glycero-
phosphate salt, 50 NaF, and 0.5 activated Na3VO4; (Sigma-
Aldrich Company Ltd., Poole, UK)] with a complete protease

Table 2. The nutritional composition of the experimental
beverages [(46.7 g of mycoprotein, 31.7 g of pea protein
and 36.9 g of mycoprotein/pea protein blend (39/61%)]

MYC PEA BLEND

Macronutrients
Protein, g 25 25 25
Carbohydrate, g 2.8 1.0 1.6
Fat, g 3.5 1.7 1.9
Fiber, g 11.3 0.8 4.7
Energy, kcal 165 121 133
Energy, kJ 692 512 560

Amino acid content, g
Alanine 1.4 1.0 1.1
Arginine 1.5 2.0 1.8
Asparagine 2.1 2.7 2.5
Cysteine 0.2 0.2 0.5
Glutamine 2.7 4.0 3.4
Glycine 1.0 1.0 1.0
Histidine 0.5 0.6 0.5
Isoleucine 1.0 1.1 1.0
Leucine 1.7 1.9 1.7
Lysine 1.7 1.7 1.6
Methionine 0.4 0.2 0.3
Phenylalanine 1.0 1.3 1.2
Proline 1.0 1.0 1.0
Serine 1.1 1.3 1.2
Threonine 1.2 0.9 1.0
Tryptophan 0.4 0.2 0.3
Tyrosine 0.8 0.9 0.8
Valine 1.2 1.1 1.1
EAA 10.5 10.9 10.5
BCAA 3.9 4.1 3.9

Protein content (g) is calculated from the sum of the amino
acids measured after complete hydrolysis. BCAA, branched-chain
amino acids; BLEND, mycoprotein/pea protein blend; EAA, essen-
tial amino acids; MYC, mycoprotein; PEA, pea protein.
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inhibitor cocktail tablet [1 tablet per 50 mL of buffer; Roche,
Burgess Hill, UK]). The homogenate was transferred into a
clean 2-mL Eppendorf and centrifuged at 2,200 g for 10 min
at 4�C. The supernatant (sarcoplasmic fraction) was aliquoted
and stored at �80�C for subsequent analysis. The remaining
pellet was then washed in 500 μL of homogenization buffer
and centrifuged again at 700 g for 10 min at 4�C and the re-
sultant supernatant was discarded. The remaining protein
portion (myofibrillar and collagen) (47) was then solubilized
in 750 μL of 0.3 M sodium hydroxide and heated at 50�C for
30 min and centrifuged at 10,000 g for 5 min at 4�C. The su-
pernatant (myofibrillar fraction) was then aliquoted into a
new 2-mL Eppendorf and precipitated in 500 μL of 1 M
perchloric acid. These samples were centrifuged at 700 g for
10 min at 4�C and the resultant supernatant was discarded.
The remaining myofibrillar pellet was washed in 1 mL of 70%
ethanol and centrifuged at 700 g for 5 min at 4�C before the
ethanol was removed. This step was repeated once more
before the amino acids were then hydrolyzed by adding 2 mL
of 6 M hydrochloric acid and heating at 110�C for 24 h. Once
hydrolyzed, the amino acids were then dried on a heating
block (110�C) for 24 h. Samples were then reconstituted in 1.5
mL of 25% acetic acid and pipetted into the cation exchange
column. The Eppendorf was then rinsed with another 1.5 mL
of 25% acetic acid. The columns were then eluted with 2 mL
of 6 M NH4OH into a 2-mL Eppendorf and the eluate dried in
a Speed-Vac for 8 h at 60�C. Samples were cleaned by adding
1 mL of ddH2O and 1 mL of 0.1% formic acid in acetonitrile
and centrifuged at 10,000 g for 3 min at 4�C. The supernatant
was aliquoted into a new Eppendorf and dried in the Speed-
Vac for 5 h at 60�C. To derivatize the muscle sample, 50 μL of
MTBSTFA þ 1% tert-butyldimethylchlorosilane and 50 μL of
acetonitrile were added to the dry samples, vortexed, and
heated at 95�C for 45 min (48). The samples were analyzed by
GC-MS (7890 GC coupled with a 5975 MSD; Agilent
Technologies) in triplicate using electron impact ionization
and selected ion monitoring for measurement of isotope
abundance (49). One microliter of the sample was injected in
splitless mode (injector temperature: 280�C). Peaks were
resolved using an HP5-MS 30 m � 0.25 mm inner diameter
(ID)� 0.25 μmcapillary column (Agilent). Heliumwas used as
the carrier gas at 1.2 mL/min constant flow rate. The tempera-
ture ramp was set from 80�C to 245�C at 11 �C/min, then to
280�C at 40 �C/min (49). Selected ion recording conditions
were used to monitor fragmentsm/z 237 and 239 for them þ
3 and m þ 5 fragments of phenylalanine-bound protein and
m/z 336 and 341 for the m þ 0 and m þ 5 fragments of the
phenylalanine-free fraction. A single linear standard curve
from mixtures of known m þ 5/m þ 0 ratios for L-[ring-2H5]
phenylalanine was used to determine the enrichments of the
protein-bound samples using them þ 5/m þ 3 ratio.

Calculations

The fractional synthetic rates (FSRs) of myofibrillar pro-
teins were calculated using the standard precursor-product
equation (45):

FSRð% � h� 1Þ ¼ DEp=Eprecursor � t
� �� 100

where DEp is the increment in protein-bound L-[ring-2H5]
phenylalanine in myofibrillar protein between two muscle
biopsies, Eprecursor is the average L-[ring-2H5]phenylalanine

enrichment in the plasma precursor pool over time, and t
indicates the time (h) between twomuscle biopsies.

Statistical Analysis

A two-sided power analysis with expected effect sizes esti-
mated from previous research (10, 21) revealed that n ¼ 10 in
each groupwas sufficient to detect expected differences in post-
prandial, postexercise MyoPS rates between protein conditions
(MYC vs. PEA vs. BLEND) when using a repeated-measures
analysis of variance (ANOVA) (P < 0.05, Power 80%, f ¼ 0.67;
G*power v.3.1.9.2). Factoring in a 20% drop-out rate, 36 partici-
pantswere therefore recruited for the study. The study recruited
36 participants with 3 drop-outs, therefore data is presented for
n ¼ 33. Statistical significance was set at P < 0.05. All calcula-
tions were performed onGraphPad 7.1. Participants’ characteris-
tics, total work done, and background L-[ring-2H5]phenylalanine
enrichments were analyzed using independent samples t tests.
Differences in serum insulin concentrations, plasma amino acid
concentrations, plasma tracer enrichments, and myofibrillar
L-[ring-2H5]phenylalanine enrichments were compared using
two-way [group (MYC vs. PEA vs. BLEND) � time] repeated-
measures ANOVA. Separate two-way ANOVAs were performed
on postabsorptive and postexercise postprandial plasma
L-[ring-2H5]phenylalanine enrichments.MyoPS rates were calcu-
lated as FSRs and analyzed using a two-way (group � time)
ANOVA. Total postprandial insulin and amino acid availabilities
were calculated as incremental area under the curve (iAUC)
with a baseline set as an average of t¼ �180,�120,�60, and 0.

RESULTS

Participants’ Characteristics

No differences in bodymass, height, BMI, body fat percent-
age, lean mass, or strength (leg press, leg extension, RDL
[1RM]) were found between groups (all P > 0.05; Table 1).
Total work (repetition � weight) performed across all exer-
cises did not differ between conditions (MYC, 12,917±782 kg;
PEA, 12,406±828 kg; BLEND, 14,009±1083 kg; P > 0.05).
When separated for total work performed for the upper body
exercises, work done also did not differ between groups (MYC,
2546±189 kg; PEA, 2934±223 kg; BLEND, 2985±303 kg; P >
0.05). Similarly, total work performed for the lower body exer-
cises did not differ between groups (MYC, 10,371±667 kg;
PEA, 9,473±712 kg; BLEND, 11,025±820 kg; P> 0.05).

Serum Insulin and Plasma Amino Acid Concentrations

All serum insulin and plasma amino acid concentrations
are presented for n¼ 33 (MYC, 11; PEA, 11; BLEND, 11). Serum
insulin concentrations over the time course of the experi-
ment are presented in Fig. 2. Fasting serum insulin concen-
trations were similar between groups. The ingestion of
protein significantly increased serum insulin concentrations
(time effect; P < 0.001) to a similar extent between groups
(P > 0.05). Accordingly, postprandial serum insulin iAUC
did not differ between groups (P> 0.05).

Plasma total (TAA), essential (EAA), branched-chain (BCAA),
nonessential (NEAA), and individual amino acid concentra-
tions over the time course of the experiment are presented in
Figs. 3, 4, and 5. All plasma amino acid concentrations changed
over time (time effects; P < 0.0001). This increase occurred
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following protein ingestion for all amino acids with the excep-
tion of alanine, which showed a large increase before protein
ingestion and consequent to exercise. Plasma concentrations
of TAA, NEAA, EAA, and BCAA displayed a more rapid
increase following ingestion of PEA and BLEND compared
with MYC (time � group interactions; all P < 0.0001). Plasma
leucine concentrations peaked more rapidly in the PEA and
BLEND conditions compared with MYC (time � group inter-
actions; all P < 0.0001) with greater concentrations detected
at 15, 30, 45, and 60 with PEA, and 15 and 30 min with
BLEND, compared with MYC. No differences were observed
at any time point between PEA and BLEND for all amino
acids (P > 0.05), except for threonine, where concentrations
were elevated at 120 and 210 min in BLEND compared with
PEA (P > 0.05). Plasma methionine concentrations decreased
following ingestion of PEA and increased following ingestion
of MYC and BLEND (time � group interaction; P < 0.0001).
Accordingly, plasma methionine concentrations were ele-
vated at 60, 90, 120, 150, and 180 min in MYC compared with
PEA. Methionine concentrations were elevated during the
postprandial period compared with PEA, and lower than
MYC, though not statistically different from either condition
at any timepoint (P> 0.05).

Total postprandial plasma amino acid availabilities, calcu-
lated as iAUC, are also displayed in Figs. 3, 4, and 5 for all
amino acid parameters (inset graphs). Greater plasmamethi-
onine availability was observed in the MYC compared with
PEA and BLEND conditions (P < 0.0001). Furthermore, me-
thionine availability was greater in the BLEND compared
with PEA condition (P < 0.0001). There was also greater
plasma availability of glycine in the MYC compared with
PEA conditions (P < 0.05). Postprandial plasma amino acid
availability for all other plasma amino acid outcomes did not
differ between groups (P> 0.05).

Plasma and Skeletal Muscle Tracer Analysis

The samples from one participant from the MYC group
were excluded from tracer analyses due to insufficient mus-
cle tissue. Therefore, all data presented for plasma and mus-
cle L-[ring-2H5]phenylalanine are for n ¼ 32 (n ¼ 10 MYC, n ¼
11 PEA, n¼ 11 BLEND).

The time course of plasma L-[ring-2H5]phenylalanine
enrichments are displayed in Fig. 6. Plasma L-[ring-2H5]phe-
nylalanine enrichments changed over time (time effect; P <
0.0001) and to a different extent between groups (time �
group interaction; P < 0.05). Plasma L-[ring-2H5]phenylala-
nine enrichments were elevated between 30 and 60 min in
theMYC compared with PEA (P< 0.0001) and at 30min com-
pared with BLEND (P < 0.05). Plasma L-[ring-2H5]phenylala-
nine enrichments were higher in the BLEND compared with
PEA conditions at the 30-min time point (P > 0.05). Isotopic
steady state had been regained in all groups by 120min.

Myofibrillar protein-bound L-[ring-2H5]phenylalanine enrich-
ments were equivalent between groups at baseline (P > 0.05).
Myofibrillar protein-bound L-[ring-2H5]phenylalanine enrich-
ments increased and to the same extent in each group (time
effect; P < 0.0001, time � group interaction; P > 0.05) during
the postabsorptive period (0.0038±0.001 to 0.0067±0.002 in
MYC; 0.0039±0.001 to 0.0069±0.002 in PEA; 0.0039±0.001
to 0.0067±0.001 in BLEND). Exercise increased myofibrillar
protein-bound L-[ring-2H5]phenylalanine enrichments to the
same extent between groups (time effect; P < 0.0001, time �
group interaction; P> 0.05) (0.0067±0.002 to 0.0107±0.001 in
MYC; 0.0069±0.002 to 0.0125±0.003 in PEA; 0.0067±0.001 to
0.0135±0.002 in BLEND). Protein ingestion further increased
myofibrillar protein-bound L-[ring-2H5]phenylalanine enrich-
ments at 2 h (0.0107±0.001 to 0.0191±0.002 in MYC;
0.0125±0.003 to 0.0211±0.003 in PEA; 0.0135±0.002 to
0.0230 ± 0.002 in BLEND) and 4 h (0.0107 ± 0.001 to
0.0277 ± 0.002 in MYC; 0.0125 ± 0.003 to 0.0303 ± 0.004 in
PEA; 0.0135 ± 0.002 to 0.0311 ± 0.003 in BLEND) (time
effect; P < 0.0001) with no differences between groups at
any time point (P > 0.05).

Myofibrillar FSRs were calculated using the average
plasma L-[ring-2H5]phenylalanine enrichments during the
prandial period of interest as the precursor pool (Fig. 7).
Postabsorptive myofibrillar FSRs were similar between
groups (MYC, 0.026±0.008%·h�1; PEA, 0.028±0.007%·h�1;
BLEND, 0.026±0.006%·h�1; P > 0.05). Whole body resist-
ance exercise increased myofibrillar FSRs during exercise
(time effect; P < 0.05) to a similar extent in each group
(MYC, 0.051±0.017%·h�1; PEA, 0.071 ±0.017%·h�1; BLEND,

Figure 2. Time course (A) and incremental area under the curve (iAUC; B) (calculated as above postaborptive values) of serum insulin concentrations for
a 3-h postabsorptive period (time course only) and a 4-h postprandial period in healthy resistance-trained men. The dashed vertical line represents drink
consumption [46.7 g of mycoprotein containing 25 g of protein (MYC; n ¼ 11), 31.7 g of pea protein containing 25 g of protein (PEA; n ¼ 11), or 36.9 g of
mycoprotein/pea protein blend (39/61%) containing 25 g of protein (BLEND; n ¼ 11)], following a bout of whole body resistance exercise. Time course
data were analyzed using a two-way repeated-measures ANOVA (group � time) with Sidak post hoc tests used to detect differences at individual time
points. iAUC data were analyzed using a one-way ANOVA. Time effect; P < 0.0001. Group effect; P > 0.05. Group � time interaction; P > 0.05. Values
are represented as means ± SE.
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0.076±0.015%·h�1; time � group interaction; P > 0.05).
Myofibrillar FSRs remained elevated compared with postab-
sorptive rates during the early (MYC, 0.077±0.015%·h�1;
PEA, 0.089±0.014%·h�1; BLEND, 0.091±0.013%·h�1; P <
0.05) and late (MYC, 0.078±0.014; PEA, 0.089±0.012;
BLEND, 0.077±0.014; time effect P < 0.05) postprandial pe-
riod, with no differences between groups observed at either
timepoint (time� group interaction; P> 0.05), and no differ-
ences between early and late periods irrespective of group
(P > 0.05). Accordingly, there were no differences between
groups in myofibrillar FSRs over the entire 4-h postprandial
window (MYC, 0.076±0.004%·h�1; PEA, 0.087±0.01%·h�1;
BLEND, 0.085±0.01%·h�1; time � group interaction; P >

0.05).

DISCUSSION

The present study compared postexercisemyofibrillar protein
synthesis (MyoPS) rates following ingestion of isonitrogenous

boluses of mycoprotein, pea protein, and a mycoprotein/pea
protein blend. We hypothesized that ingestion of mycoprotein
would support greater rates of postexercise MyoPS over a 4-h
postprandial period compared with pea protein, owing to its
more complete amino acid profile. Furthermore, we hypothe-
sized that blending the two sources would correct for the amino
acid deficiencies and rescue the lower response seen with pea
protein.However, contrary to our hypotheses,we observed simi-
lar postexercise MyoPS rates following ingestion of all three pro-
tein sources.

Due to increasing concerns surrounding the sustainability
of animal protein production, research is investigating the
application of nonanimal proteins to support postexercise
skeletal muscle remodeling (17). We have previously demon-
strated that mycoprotein is a bioavailable protein source ca-
pable of supporting acute (21, 22) and intermediate MyoPS
(23, 24), and, resultantly, longer-term muscle hypertrophy
(24). Pea protein is widely available in commercial (sports)
nutrition products (26), due to its versatility and cost-

Figure 3. Time course and incremental area
under the curve (iAUC; calculated as above
postaborptive values) of plasma total amino
acids (TAA) (A and B), essential amino acids
(EAA) (C and D), nonessential amino acids
(NEAA) (E and F), and branched-chain amino
acids (BCAA) (G and H) over a 3-h postab-
sorptive period (time course only) and 4-h
postprandial period in healthy resistance-
trained men. The dashed vertical line repre-
sents drink consumption [46.7 g of mycopro-
tein containing 25 g of protein (MYC; n ¼ 11),
31.7 g of pea protein containing 25 g of pro-
tein (PEA; n ¼ 11), or 36.9 g of mycoprotein/
pea protein blend (39/61%) containing 25 g
of protein (BLEND; n ¼ 11)], following whole
body resistance exercise. Time course data
were analyzed using a two-way repeated-
measures ANOVA (group � time) with Sidak
post hoc tests used to detect differences at
individual time points. iAUC data were ana-
lyzed using a one-way ANOVA. 	Individual
differences between MYC and PEA at that
time point and a difference between condi-
tions on the bar graphs (P< 0.05). #Individual
differences between MYC and BLEND at that
time point (P < 0.05). Time effect; all P <
0.0001. Group effect; P> 0.05. Time� group
interaction; all P < 0.0001. Values are repre-
sented asmeans ± SE.
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effective/sustainable production (27), relatively balanced
amino acid profile, and high leucine content (18) [although a
low methionine content is a proposed limitation to its ana-
bolic potential (16, 19)]. However, data on the MyoPS
response from studies in humans are lacking. In agreement
with previous work (30), we demonstrate a rapid increase
and high availability of plasma leucine, branched-chain
amino acid (BCAA), and (most) EAA concentrations follow-
ing pea protein ingestion (see Figs. 3, 4, and 5). This post-
prandial aminoacidemia was more rapid when compared
with mycoprotein ingestion, though overall bioavailability
throughout the experiment was equivalent. Unsurprisingly,
methionine availability over the 4-h postprandial period was
significantly lower following pea protein ingestion compared
with mycoprotein (Fig. 4). In fact, plasma methionine con-
centrations decreased following pea protein ingestion result-
ing in a negative iAUC, suggesting that postprandial plasma
methionine clearance was greater than exogenous appear-
ance. Though this was likely exaggerated by the whole body
nature of the exercise performed, the same observation has

been reported previously following plant protein ingestion,
even at rest (39). To illustrate, the difference in methionine
content between the mycoprotein and pea beverages in the
present study was �67%, yet the difference in plasmamethi-
onine 4-h iAUC was �200%. Similarly, Pinckaers et al. (39)
observed�160% differences in 5-h plasmamethionine avail-
ability between milk protein and a plant protein blend (7.5 g
pea) despite only a �55% difference in methionine content
between drinks. These data imply that small amounts of cer-
tain AAs in pea/plant protein display a lower less bioaccessi-
bility and, therefore, are less efficiently digested and/or
absorbed into peripheral circulation. Indeed, the methio-
nine-containing albumin fraction of pea protein has been
shown to exhibit poor digestibility (50). This suggests that
considerations of amino acid composition alone may not
inform how much of a given amino acid will become avail-
able in circulation.

The common (often single) amino acid deficiencies reported
for various plant-based proteins have led researchers to suggest
that blending different sources may be a strategy to overcome

Figure 4. Time course and incremental
area under the curve (iAUC; calculated as
above postaborptive values) of plasma leu-
cine (A and B), valine (C and D), isoleucine
(E and F), and methionine (G and H) over a
3-h postabsorptive period (time course
only) and 4-h postprandial period in healthy
resistance-trained men. The dashed verti-
cal line represents drink consumption [46.7
g of mycoprotein containing 25 g of protein
(MYC; n ¼ 11), 31.7 g of pea protein contain-
ing 25 g of protein (PEA; n ¼ 11), or 36.9 g
of mycoprotein/pea protein blend (39/61%)
containing 25 g of protein (BLEND; n ¼ 11)],
following whole body resistance exercise.
Time course data were analyzed using a two-
way repeated-measures ANOVA (group �
time) with Sidak post hoc tests used to detect
differences at individual time points. iAUC
data were analyzed using a one-way ANOVA.
	Individual differences between MYC and
PEA at that time point and a difference
between conditions on the bar graphs (P <
0.05). #Individual differences between MYC
and BLEND at that time point (P< 0.05). Time
effect; all P < 0.0001. Group effect; all P >
0.05, with exception of leucine P < 0.05.
Time � group interaction; all P < 0.0001.
Values are represented asmeans ± SE.
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the theoretical substrate limitation to optimal MPS rates (17,
19), particularly postexercise (4). Although a sports nutrition
strategy, blending is also commonplace in the habitual diet as
meals provide protein of differing amino acid compositions
from a variety of sources. We aimed tomitigate the amino acid
deficiencies (particularly methionine) within pea protein by
blending it withmycoprotein. This approach increased theme-
thionine content [though still considered deficient; (28)] and,
upon ingestion, attenuated the negative postprandial plasma
methionine availability (iAUC) compared with pea protein
ingestion. Blending the two protein sources also favorably
modulated plasma leucine kinetics [rapidity (MYC, 90 min;
BLEND, 30 min) and magnitude (MYC, 177 lmol·L�1; BLEND,
210 lmol·L�1) of appearance] compared with mycoprotein

which, based on current consensus (6, 7, 10, 13, 51), should
result in an earlier and/or greater increase in MyoPS. To pick
apart these potential effects of leucine signaling and substrate
limitation we assessed temporal (2 and 4 h) post- (whole body)
exercise MyoPS rates. However, irrespective of the diverse
postprandial plasma amino acid kinetics across all three con-
ditions, we report equivalent postexercise MyoPS in the
early, late, and total postprandial periods (see Fig. 7). This
corroborates previous data comparing plant- versus animal-
based sources (52) and protein blends (36, 38, 39), which also
demonstrated equivalent stimulation of MyoPS despite dif-
ferences in plasma methionine (and other amino acids)
availabilities. Furthermore, these data now support a wider
body of evidence showing a disconnect between plasma

Figure 5. Time course and incremental area under the curve (iAUC; calculated as above postaborptive values) of plasma glycine (A and B), lysine (C and
D), histidine (E and F) glutamic acid (G and H), proline (I and J), serine (K and L), threonine (M and N), tyrosine (O and P), and alanine (Q and R) over a 3-h
postabsorptive period (time course only) and 4-h postprandial period in healthy resistance-trained men. The dashed vertical line represents drink con-
sumption [46.7 g of mycoprotein containing 25 g of protein (MYC; n¼ 11), 31.7 g of pea protein containing 25 g of protein (PEA; n¼ 11), or 36.9 g of myco-
protein/pea protein blend (39/61%) containing 25 g of protein (BLEND; n ¼ 11)], following whole body resistance exercise. Time course data were
analyzed using a two-way repeated-measures ANOVA (group � time) with Sidak post hoc tests used to detect differences at individual time points.
iAUC data were analyzed using a one-way ANOVA. 	Individual differences between MYC and PEA at that time point and a difference between condi-
tions on the bar graphs (P < 0.05). #Individual differences between MYC and BLEND at that time point (P < 0.05). †Individual differences between PEA
and BLEND at that time point (P < 0.05). Time effect; all P < 0.0001. Group effect; all P > 0.05. Time � group interaction; all P < 0.05 with exception of
proline and alanine. Values are represented as means ± SE.
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leucine/amino acid kinetics and postprandial MyoPS rates
when comparing protein sources (21, 22, 37–39, 52–57).
Therefore, while blending is clearly an effective strategy to
modulate and/or improve amino acid composition and

postprandial plasma amino acid kinetics, current evidence
implies this does not necessarily appreciably affect the
MyoPS response. Although previous work has implied that
protein blending can increase MyoPS, bringing parity with a
high-quality (animal derived) control (33–35, 38, 39), few
have included a single source plant control condition to dem-
onstrate unequivocally. Indeed, those that have observed
equivalent rates of MyoPS across all conditions (36, 37), in
congruence with the present work.

There are various aspects to contemplate as to why we did
not observe a requirement for blending within the design of
the current work. Although we used a lower protein dose (25 g
vs. 30 g) than previous comparable studies, combined with
whole body exercise tomaximize the possibility of substrate li-
mitation (4), the dose of 25 g may still be adequate to mitigate
any amino acid shortcomings (though negative postprandial
methionine availability suggests otherwise). It is necessary,
therefore, for future work to assess at what protein dose (if
ever) amino acid deficiencies curtail the stimulation of
MyoPS. This would be more obviously pertinent to popula-
tions where protein intake and/or diet quality may be com-
promised, or where the anabolic response to protein ingestion
may be impaired (58). Second, while the whole body exercise
likely increased demand for exogenous amino acids across all
tissues, the contractile stimulus will also have independently
stimulated MyoPS at the site of interest (vastus lateralis).
Evidence of the intense and exhaustive nature of the exercise
stimulus is demonstrated by a rise of plasma alanine concen-
trations following exercise, but before protein ingestion (see
Fig. 5). This is likely attributable to increased alanine efflux
from muscle, to buffer excess pyruvate production in muscle
and provide substrate for increased rates of gluconeogenesis
to support blood glucose homeostasis during increased
demands of exercise (59, 60). Therefore, it is plausible such a
maximal contractile stimulus obfuscated any nutrient-related
regulatory differences between groups. In addition, exercise
increases muscle protein breakdown (2) and improves amino
acid recycling (3, 61), potentially mitigating any specific
amino acid deficiency, at least in the short term. However, we

Figure 6. Time course of plasma L-[ring-2H5]phenylalanine enrichments (A) and plasma phenylalanine concentrations (B) during the experimental trial
over a 3-h postabsorptive period and 4-h postprandial period in healthy resistance-trained men. The dashed vertical line represents drink consumption
[46.7 g of mycoprotein containing 25 g of protein (MYC; n ¼ 11), 31.7 g of pea protein containing 25 g of protein (PEA; n ¼ 11), or 36.9 g of mycoprotein/
pea protein blend (39/61%) containing 25 g of protein (BLEND; n ¼ 11)], following whole body resistance exercise. Time course data were analyzed using
a two-way repeated-measures ANOVA (group� time) with Sidak post hoc tests used to detect differences at individual time points. 	Individual differen-
ces between MYC and PEA at that time point and a difference between conditions on the bar graphs (P < 0.05). #Individual differences between MYC
and BLEND at that time point (P < 0.05). †Individual differences between PEA and BLEND at that time point (P < 0.05). Time effect; both P < 0.0001.
Group effect; phenylalanine concentrations P < 0.05, L-[ring-2H5]phenylalanine enrichments P > 0.05. Time � group interaction; all P < 0.05. Values
are represented as means ± SE.

Figure 7. Myofibrillar protein fractional synthetic rates (FSRs) calculated
using the plasma L-[ring-2H5]phenylalanine precursor pool for a postab-
sorptive (basal), exercise, and temporal postprandial periods (0–2 h and
2–4 h) (A) and a total 4-h postprandial period (B) for mycoprotein (MYC),
pea protein (PEA), and mycoprotein/pea protein blend (BLEND) conditions.
Postprandial state represents a 4-h period following drink consumption
[46.7 g of mycoprotein containing 25 g of protein (MYC; n ¼ 11), 31.7 g of
pea protein containing 25 g of protein (PEA; n ¼ 11), or 36.9 g of mycopro-
tein/pea protein blend (39/61%) containing 25 g of protein (BLEND; n ¼
11)], following whole body resistance exercise. Data were analyzed using a
two-way (group � time) ANOVA. 	A significant difference between basal
and postexercise postprandial conditions (group � time interaction; P <
0.0001). Time effect; P< 0.0001. Group effect; P> 0.05. Values are repre-
sented as means ± SE.
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cannot confirm an improvement in amino acid recycling as
we did not apply a 3-pool model. This implies our pragmatic
4-h postprandial period may have been too brief for substrate
limitation to become restrictive to the synthesis of new tissue.
In support, bolus ingestion of 21 g of protein that was devoid
of phenylalanine and tyrosine robustly increased mixed mus-
cle protein synthesis over 3 h, though admittedly there was
no “complete” protein used for comparison in this study (62).
There are currently no data assessing the role of single amino
acid deficiencies and MyoPS over periods of days or weeks.
Nonetheless, diets devoid (63) or low (64, 65) of methionine
result in a negative nitrogen balance over 7–24 days. Given
the limitations of nitrogen balance studies (66, 67), research
assessing muscle protein turnover/accretion over a period of
days/weeks to assess at what stage single amino acid deficien-
cies become rate limiting is warranted.

Beyond single amino acid deficiencies, it is interesting to
consider if multiple amino acid deficiencies are more conse-
quential with respect to limiting acute postprandial (postex-
ercise) MyoPS rates. It has been shown that the ingestion of
BCAAs or branched chain keto acids alone (68, 69), EAAs
(70), or a small bolus of protein enriched with EAAs (71), are
all capable of stimulating an early (1–2 h) increase in MyoPS.
However, these are evidently deficient in multiple amino
acid substrates and, accordingly, are unable to support more
sustained (3–5 h) increases in MyoPS compared with com-
plete protein sources (68–72). Nevertheless, data are not
entirely consistent, as the ingestion of low doses of EAAs þ
leucine stimulated an equivalent postexercise MyoPS rates
over a 4-h postprandial period compared with whey protein
(73, 74). Clearly, to understand the role (or necessity) of pro-
tein blending, more work is needed to elucidate the relation-
ship between amino acid deficiencies and acute muscle
remodeling. Future research will need to investigate the role
of multiple and single (specific) amino acid deficiencies to
assess under what circumstances (e.g., dose, time period) it
becomes limiting tomuscle reconditioning.

In conclusion, ingestion of isonitrogenous boluses of myco-
protein, pea protein, and amycoprotein/pea protein blend sup-
port equivalent MyoPS rates following a single bout of whole
body resistance exercise. Therefore, while protein blending is a
theoretically attractive strategy to correct for lower amino acid
content and/or bioavailability, we do not provide evidence
within this design that is necessary for optimally stimulating
postexercise MyoPS rates. Nonetheless, these data are the first
to demonstrate pea protein as an effective protein source to
support the postexerciseMyoPS response.
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