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Intelligent Cooperative Caching at Mobile Edge based on
Offline Deep Reinforcement Learning
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Cooperative edge caching enables edge servers to jointly utilize their cache to store popular contents, thus
drastically reducing the latency of content acquisition. One fundamental problem of cooperative caching is
how to coordinate the cache replacement decisions at edge servers to meet users’ dynamic requirements and
avoid caching redundant contents. Online deep reinforcement learning (DRL) is a promising way to solve this
problem by learning a cooperative cache replacement policy using continuous interactions (trial and error) with
the environment. However, the sampling process of the interactions is usually expensive and time-consuming,
thus hindering the practical deployment of online DRL-based methods. To bridge this gap, we propose a novel
Delay-awarE Cooperative cache replacement method based on Offline deep Reinforcement learning (DECOR),
which can exploit the existing data at the mobile edge to train an effective policy while avoiding expensive
data sampling in the environment. A specific convolutional neural network is also developed to improve the
training efficiency and cache performance. Experimental results show that DECOR can learn a superior offline
policy from a static dataset compared to an advanced online DRL-based method. Moreover, the learned offline
policy outperforms the behavior policy used to collect the dataset by up to 35.9%.
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1 INTRODUCTION
As one of the prominent characteristics of the smart city, the ever-increasing amount of mobile
data traffic is constantly being generated by various mobile devices and smart applications from
different sectors like industry [43], healthcare [47], transportation [20], and social network [44].
Ericsson predicts that mobile data traffic is expected to grow around 4.2x from 2021 to 2027 [5].
Such a vast amount of mobile data traffic poses grand challenges on the communication network of
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the smart city, causing a series of problems such as infrastructure overload and network congestion,
which inevitably reduces Quality-of-Experience (QoE) to be perceived by users.

Mobile edge caching is one of the core technologies of the smart city to solve the above problem
by storing contents in cache-equipped edge servers closer to users [24]. Therefore, users can
directly obtain contents from the nearby edge servers instead of the remote cloud, reducing the
transmission delay and improving the QoE. Due to the limited storage of the edge servers, only
popular contents are cached on the edge servers to exploit the potential of the mobile edge caching
as much as possible. However, the content popularity is usually unknown in advance and varies
with user preferences. Thus the edge servers need to determine how to continuously replace the
cached contents with new popular ones to meet users’ dynamic requirements. Although the cache
replacement problem has been exhaustively studied [36], most of them focus on a single edge server
scenario, requiring each edge server in the smart city executes an independent cache replacement
policy. However, such approaches would result in an insufficient utilization of the limited storage
since multiple edge servers may redundantly store the same popular contents [32]. A practical
solution is to enable the edge servers to share the cached contents with their nearby servers for
cooperative edge caching. In this case, an edge server may tend to cache contents other than the
popular contents already cached in a nearby server to meet more requirements [3]. Compared with
the single edge cache replacement problem, the cooperative cache replacement problem should
also consider the coordination between servers to avoid caching too many redundant contents, and
it is proven to be NP-hard [39].
Reinforcement learning (RL), developed for solving decision-making problems, is naturally a

promising approach for solving the cooperative cache replacement problem. By introducing deep
neural networks (DNNs) with powerful representation ability [42], deep RL (DRL) can effectively
handle the complex communication network state of the smart city. Recently, online DRL has been
proven to automatically learn a cooperative cache replacement policy by continuously interacting
with the environment [27, 30, 35]. However, these works emphasize the superiority of online DRL
but ignore the potential risks brought by the exploration nature of online DRL. To find an excellent
cooperative cache replacement policy, the online DRL agent would execute different replacement
decisions to explore better decisions. During this process, it also inevitably explores poor decisions,
thus degrading the cache performance. In addition, the policy requires a large number of interactions
to be well-trained, and the interaction collection is expensive and time-consuming.
To address the above two challenges, we propose a novel Delay-awarE Cooperative cache

replacement method based on Offline DRL (DECOR). DECOR decouples the interaction phase from
the policy training, so no matter how bad the policy becomes during training, it does not affect the
cache performance in the actual environment. In addition, the policy can be directly trained with
historical log data that already existed in the network without interacting with the environment.

• Wedevelop a powerful and effective scheme namedDECOR for cooperative cache replacement
scheme, making use of advanced offline DRL to improve cache performance and enhance user
experience. Compared to the advanced online DRL-based method, DECOR can successfully
learn a superior policy from a static dataset without interacting with the environment.
• We formulate the problem of real-time cooperative cache replacement without prior knowl-
edge of content popularity as a delay-minimization problem, where the effect of the delayed
hits mechanism in reducing transmission delay is explicitly discussed. To handle the uncer-
tainties and dynamic nature of the environment, we model the optimization problem as a
Markov Decision Process (MDP) to support solving by the offline DRL.
• We design a multi-head Convolutional Neural Network (CNN) to achieve parallel processing
of content popularity for different servers while preventing information interference among
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them. Each head in the network is dedicated to extracting temporary features of content
popularity from the data associated with a specific edge server.
• We undertake extensive experiments to thoroughly validate the efficiency of DECOR. The
user requests and preferences are simulated using a real-world dataset called Movielens. The
experimental results reveal that the offline policy learned by DECOR surpasses both the
default behavior policy and the policy learned by an advanced online DRL-based method in
interactions with a static dataset.

The rest of this paper is organized as follows: The related work on the cooperative cache
replacement problem is reviewed in Section 2. Section 3 briefly introduces the background of RL
and delayed hits. Section 4 discusses the system model including three parts: network, fetching
delay, and delivery delay models, and then presents the problem formulation of cooperative edge
caching with delayed hits. The details of DECOR are shown in Section 5. Section 6 describes the
experimental setting and gives detailed analysis of the experimental results. Finally, the conclusion
of this paper is presented in Section 7.

2 RELATEDWORK
The cooperative cache replacement problem has attracted many researchers to fully utilize the
insufficient storage of edge servers [34]. Since the problem is NP-hard, heuristic-based methods are
feasible candidates for solving it in low time complexity, thus meeting users’ dynamic requirements
promptly. Wang et al . [28] developed a heuristic cooperative cache replacement scheme for zone-
based cooperative content caching and delivering in large radio access networks. The scheme divides
the edge server storage into two parts to separately cache locally popular contents and globally
popular contents. Zhang et al . [38] proposed a greedy cooperative caching algorithm to proactive
replace the cached layered video files during off-peak hours to reduce the total transmission delay.
However, these works have an impractical assumption that the content popularity is known in
advance. Some researchers tried extracting the content popularity from historical information to
address this issue. The solution developed in [40] predicts user preferences based on the users’
request history and social information, which is further used to optimize the cache replacement
policy into a low-complexity heuristic algorithm. Although the performance of heuristic-based
methods is usually good enough, their design relies heavily on an expert understanding of the
environment and requires too much time and human resources.

DRL has already yielded remarkable results in solving cooperative cache replacement problems in
recent years [7]. It can automatically learn the cooperative cache replacement policy by interacting
with the environment without knowing the content popularity. Xu et al . [35] proposed a deep
deterministic policy gradient-based algorithm to decide the cache decisions and plan users’ mobility
trajectories inside a cooperative caching domain in a global view and developed a cross-domain
content delivery method. Instead of the content popularity-based policy, Song et al . [25] proposed a
QoE-driven cache replacement method based on DRL in the cooperative edge caching-aided vehicle
networks. Unlike the above centralized DRL, a multi-agent DRL is used in [27] to enable each edge
to learn its optimal local policy while cooperating with other edges in a decentralized manner.
Wang et al . [30] used a deep Q-learning (DQN) network to jointly decide the cache node selection
and content replacement for a device-to-device assisted collaborative edge caching scenario. The
approach incorporates DQN into a federated learning framework to improve training efficiency. The
DRL methods used in the above work operate in an online fashion, requiring continuous interaction
with the environment to sample a large amount of data for training an ideal agent. Unfortunately,
the sampling process is typically costly and time-consuming. Moreover, the trial-and-error nature of
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DRL may lead to performing poor cache replacement decisions during the online training process,
thereby deteriorating the performance of the edge caching system.

To cope with the limitations of online DRL, offline DRL has been proposed and has demonstrated
excellent and reliable performance in different fields [22]. A decentralized approach based on the
offline DRL algorithm has been proposed in [10] to address the task of cooperative spectrum sensing
in a cognitive radio network. In this approach, each secondary user utilizes a local Conservative
Q-Learning (CQL) model to determine the presence of licensed users based on their local sensing,
while a fusion center employs another CQL model to make a global decision by aggregating the
results from all local CQL models. Zhan et al . [37] developed a model-based offline RL framework
for optimizing the combustion efficiency of thermal power generating units. The framework initially
trains a simulator offline using real datasets and subsequently utilizes a combination of real and
simulated datasets to train the RL agent offline. Xiao et al . [33] formulated the interactive recom-
mendation as a probabilistic inference problem. To solve this problem, the authors incorporated
several regularization techniques into an online DRL algorithm to train an RL agent offline. While
offline DRL has been successfully applied in various real-world scenarios, there remains a notable
gap in its application to the edge caching replacement problem.

3 BACKGROUND
‘

3.1 Reinforcement Learning
RL has recently shown extraordinary potential in many domains, such as wireless charging [17],
video games [18], task scheduling [45], and computation offloading [23]. The decision-making
problem solved by RL is modeled as an MDP that is denoted as a 5-tuple < S,A,T ,R,γ >, where
S , A, T : S × A→ S , R : S × A→ R are the state space, action space, state transition probability
matrix, and reward function, respectively. γ ∈ (0, 1) is a discount factor. At each time step t , the RL
agent receives a state st from the environment and follows a policy π (at |st ), which is a probability
of taking action at when receiving the state st , to produce an action at to the environment.
The environment executes at and transits to the next state at by following the state transition
probability matrix T (st+1 |st ,at ), then generates an immediate reward rt (st ,at ) simultaneously.
The environment returns the new state st+1 and reward rt (st ,at ) to the RL agent. The RL agent
repeats the above interactions until the decision-making process ends and samples a trajectory
τ π = (s0,a0, r0, s1,a1, r1). We can obtain the accumulated reward when starting at the time step t as
follows:

Gt =

∞∑
k=0

γ krt+k . (1)

The true action value qπ (st ,at ) = Eπ [Gt |st ,at ] of the policy π , also regarded as the Q-value, is
the expected accumulated reward when following the policy after executing action at for a given
state st . It evaluates how good a state-action pair is and can guide how to select actions to achieve
the highest accumulated reward. However, due to a large number of trajectories, it is challenging
to compute qπ (st ,at ) directly with them. We use a Q-function Qπ (st ,at ) to approximate qπ (st ,at )
and calculate it through Bellman Operator Bπ :

BπQ
π (st ,at ) = Est+1 [rt + γQ

π (st+1,π (at+1 |st+1))]. (2)

Qπ (st ,at ) eventually converges to the true Q-value qπ (st ,at ) by continually updating using the
operator. An optimal function can be determined by Q∗(st ,at ) = maxπ Qπ (st ,at ), and its corre-
sponding optimal policy, which RL aims to find, can be obtained by π ∗(at |st ) = argmaxat Q∗(st ,at ).
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Fig. 1. Example of the edge caching with/without delayed hits. Both have the same steps 1-2. Transparent
step 3 uses the delayed hits mechanism, but opaque steps 3-4 do not use it.

3.2 Delayed Hits
The workflow of edge caching is that: when users send requests to an edge server for some contents,
if the contents are cached in the server (regarded as cache hits), the server can return them to
users immediately. If the contents do not exist in the server (regarded as cache misses), the fetching
processes for the missed contents are triggered to retrieve them from the cloud. When the missed
contents arrive at the server from the cloud, the server returns them to the users.

In traditional edge caching-aided network models, the fetching processes triggered by different
requests are independent, leading to intense competition for the link resources between the cloud
and edge servers, thus significantly increasing the transmission delay of requests. The problem is
even more severe in a massive explosion of requests like the smart city. The delayed hits mechanism
is a simple but efficient method to solve the problem: when a request for a missed content triggers a
fetching process, all subsequential requests for the same missed content share the fetching process
without triggering new ones before the missed content has been retrieved from the cloud [1]. A
simple example of the differences between edge caching with/without delayed hits is illustrated in
Fig. 1. Suppose that the content size of the red content is RC unit, and the bandwidth of the link
between the cloud and edge server is 1

2RC unit per second. At any given time, each user can only
have one request being served. At time t , a request d1 from one user arrives at the edge server for
the red content, triggering a fetching process. The process is expected to be completed at time
t + 2. At time t + 1, before the fetching process triggered by d1 is completed, a second request d2
from another user arrives at the server, triggering a new fetching process for the same content if
the delayed hits mechanism is not used. The new fetching process competes for the link resource
with the previous one, causing the fetching delay of both to be extended. As a result, the fetching
delay of d1 and d2 is 3. When the delayed hits mechanism is introduced, d2 chooses to wait for
the completion of the fetching process triggered by d1 instead of arising a new one. Then, the
red content arrives at t + 2 to serve both d1 and d2. In this case, the fetching delay of d1 and d2 is
reduced to 2 and 1, respectively.
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Fig. 2. Architecture of the cooperative edge caching-aided mobile edge computing network. The dashed
arrows represent the process of content request for light-colored contents, and the solid arrows represent
the process of content delivery for dark-colored contents. The colored arrows represent the request/delivery
processes of content corresponding to their respective colors.

4 SYSTEMMODEL
In this section, we first present the network model of the cooperative edge caching-aided mobile
edge computing (MEC) network. Then, the fetching and delivery delay models are discussed in
detail. Finally, we formulate the cooperative cache replacement problem as an optimization problem
based on the above three models.

4.1 Network Model
As shown in Fig. 2, we consider a fundamental cooperative edge caching-aided MEC network
which consists of a remote cloud with unlimited cache capacity, K base stations (BSs) equipped
with cache-aided edge servers, and multiple users, where the BSs are connected with the cloud
via wired backhaul links, the BSs are connected with others via wired bi-directional links, and
the users are communicated with the BSs via wireless fronthaul links. The topology of BSs is
defined as G = {V, E}, where V = {v1,v2, ...,vk , ...vK } is the set of BSs with size K , and E =
{e1,1, e1,2, ..., eK,K−1, eK,K } is the set of connections between BSs with size K ×K . Ifvm is connected
to vn , em,n = en,m = 1 and its corresponding link bandwidth bm,n = bn,m > 0; Otherwise
em,n = en,m = 0 and bm,n = bn,m = 0. It should be noticed that em,m = 0. We consider vm and vn
are neighboring if em,n = en,m = 1. Each BS covers a specific area of users to serve them, and the
service coverage of all BSs is non-overlapping. The bandwidth size of the backhaul links is the
same as b0,k = bk,0 = BD, where 0 is the index of the remote cloud.
We assume that there is a content library containing a series of contents with different indexs
C = {1, 2, ...,C} in the remote cloud, and there are N users requesting the contents in the library.
All contents have the same size as 1 unit [11, 46], and we can divide contents of different sizes
into multiple small slices with the same size to achieve this assumption. It is assumed that the
limited storage space of all BSs has the same size as L unit, where L << C indicates that only a
small portion of the contents can be cached on the BSs.
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The service process of the cooperative edge caching-aided MEC network will last for a long
term. During this term, the contents in the library are constant. To detect changes in MEC network
status in real-time, we equally split the service term into multiple small timeslots, denoted as
T = {1, 2, ..., t , ...,T }, and record the network status at the beginning and the end of each timeslot.
This time division method can also be extended to a service process that does not have an explicit
termination time but does have a terminal state. In this case, T represents the timeslot when the
service process reaches the terminal state. At the beginning of the timeslot t , the BS vk receives
some new requests At,k = {at,k1,1 ,a

t,k
1,2 , ...,a

t,k
i, j , ...,a

t,k
N ,C−1,a

t,k
N ,C } from users without knowing the

content popularity, where at,ki, j ∈ {0, 1}. a
t,k
i, j = 1 means that a new request demanding the content

j from the user i to the BS vk is raised in the timeslot t ; Otherwise, at,ki, j = 0. Apart from these
newly arrived requests, vk has some old requests that still need to be processed. We define an
entire request set of vk at the beginning of the timeslot t to contain all old and new requests as
Dt,k = {dt,k1,1 ,d

t,k
1,2 , ...,d

t,k
i, j , ...,d

t,k
N ,C−1,d

t,k
N ,C }, where d

t,k
i, j ∈ {0, 1}. d

t,k
i, j = 1 means that a request

demanding the content j from the user i exists on thevk at the beginning of the timeslot t . Similarly,
the request set of vk at the end of the timeslot t can be defined as D′t,k = {d

′t,k
1,1 ,d

′t,k
1,2 , ...,d

′t,k
N ,C }. In

each timeslot, only one request per user can be served by the MEC network:∑
k

∑
j

dt,ki, j ≤ 1,
∑
k

∑
j

d
′t,k
i, j ≤ 1,∀t , i; (3)

Besides, users can raise new requests only if their existing requests are successfully processed:∑
k

∑
j

(d
′t,k
i, j + a

t+1,k
i, j ) ≤ 1,∀t , i; (4)

According to the above constraints, we can deduce that:

dt+1,ki, j = d
′t,k
i, j + a

t+1,k
i, j . (5)

In the timeslot t , the set of contents cached on vk is denoted as U t,k , which is also regarded
as the cache strategy of vk . If the content j is cached on vk during the timeslot t , then j ∈ U t,k ;
Otherwise, content j < U t,k and it is missed on vk . According to the workflow of edge caching, we
can find that the transmission delay of requests is divided into three parts: request sending delay,
content fetching delay, and content delivery delay. Since the size of requests is much smaller than
the size of contents, compared with the content fetching delay and content delivery delay, we can
ignore the request sending delay.

4.2 Fetching Delay Model
In this model, we explicitly consider the impact of delayed hits. When multiple fetching processes
are triggered for the same missed content, only one fetching process is executed. The current
requests and the subsequential arrived requests for the missed content share this fetching pro-
cess before the process ends. For each BS, each content corresponds to one fetching process.
Considering that BS can fetch missed contents from the cloud or the neighboring BSs, we use
X
t,k
j = {x t,(0,k)j ,x t,(1,k )j , ...,x t,(m,k )

j , ...x t,(K,k)j },m , k to indicate where vk fetches the missed con-
tents from. x t,(m,k )

j ∈ {0, 1} where x t,(m,k )
j = 1 means that vk fetches the missed content j from

server vm in the timeslot t . Whenm = 0, vk fetches the missed content from the cloud. If vk is not
connected to vm , it cannot fetch contents from vm , so we have the following:

x t,(m,k )
j ≤ em,k ,∀t , j; (6)
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Table 1. Summary of Main Notations

Notation Description
I(·) The value is 1 if the condition within parentheses is true; Otherwise, the value is

0.
C The content library in the remote cloud.
C The total number of content types.
K The number of BSs.
L The cache storage size of each BS.
At,k The set of requests arriving at the BS vk in the timeslot t .
at,ki, j The value is 1 if a new request from the user i for the content j arrives at vk at

the beginning of the timeslot t ; Otherwise, the value is 0.
Dt,k The set of requests exists on vk at the beginning of the timeslot t .
dt,ki, j The value is 1 if the request from the user i for the content j exists on vk at the

beginning of the timeslot t ; Otherwise, the value is 0.
D
′t,k The set of requests exists on vk at the end of the timeslot t .

d
′t,k
i, j The value is 1 if the request from the user i for the content j exists on vk at the

end of the timeslot t ; Otherwise, the value is 0.
X t,k
j Determine the source node of the fetching process for the missed content j.

x t,(m,k)
j The value is 1 ifvk fetches themissed content j fromvm in the timeslot t ; Otherwise,

the value is 0.
U t,k The cache strategy of vk in the timeslot t .
O
′t,k The set of contents fetched from vk ’s neighboring BSs or the remote cloud at the

end of the timeslot t .
F t,kj The remaining size of the content j to be fetched from vk at the beginning of the

timeslot t .
F
′t,k
j The remaining size of the content j to be fetched fromvk at the end of the timeslot

t .
r t,km The average fetching rate from vm to vk in the timeslot t .
π The decision-making policy for replacing cached contents of all BSs with their

newly arrived contents.
Flaдt,ki, j The value is 1 if vk delivers the content j to the user i in the timeslot t ; Otherwise,

the value is 0.
V t,k
i, j The remaining size of the content j to be delivered from vk to the user i in the

timeslot t .
r t,ki The delivery rate from vk to the user i in the timeslot t .

Since there is at most one fetching process per BS for the same content in each timeslot, we also
have:

m,k∑
m

x t,(m,k )
j ≤ 1,∀t , j,k ; (7)

The delayed hits mechanism can effectively reduce the frequency of fetching the same content
but cannot avoid the fetching of different contents. When multiple fetching processes for different
contents coexist, they inevitably compete for bandwidth resources. This problem becomes more
complex when cooperation is required among multiple BSs. Furthermore, over time, some ongoing
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fetching processes will be resolved while some new processes are triggered, resulting in dynamic
changes in the fetching rate for each process. To solve the above problems, our model needs to
perceive the state of each fetching process in real-time. The fetching process of content j at the
beginning of the timeslot t on the BS vk is recorded by using the remaining size of the content j
that still needs to be fetched, denoted as F t,kj . Meanwhile, we use F

′t,k
j to record the remaining size

of the content j at the end of the timeslot t . F t,kj can be determined according to two different cases:
in timeslot t , (1) there are new requests for a missed content j to trigger a new fetching process
on the BS vk ; (2) there is no new fetching process triggered on vk . For case (1), when there does
not already exist a fetching process for the content j, the content j is not cached on the BS vk , and
new requests for the missed content j arrive at vk , a new fetching process is triggered, and the
remaining size F t,kj becomes to 1:

F t,kj (new) = I(F
′t−1,k
j == 0) × I(

∑
i

at,ki, j > 0) × I(j < U t,k ), (8)

where I(·) = 1 if and only if the condition within parentheses is true; Otherwise, it is 0.
When a new fetching process for the missed content j is triggered, we must determine where

to fetch it. Here, we provide a simple source node selection method. Since all fetching processes
equally share the the BS-to-BS links between the BSs, we can easily calculate the average fetching
rate of all links from vk ’s neighboring BSs to vk in the timeslot t − 1 by:

r t−1,km =
bm,k

max{
∑

j x
t−1,(m,k )
j , 1}

, (9)

where the max operator ensures that if there is no fetching process from the neighboring BS to vk ,
the average fetching rate equals the link bandwidth per timeslot. Then we choose the neighboring
BS that owns the highest average fetching rate in the timeslot t − 1 and has cached the missed
content j in the timeslot t as the source node:

x t,(m,k )
j =


em,k × I(j ∈ U t,m) × I(m == argmaxn{r

t−1,k
1 , ..., r t−1,kn , ..., r t−1,kK }), i f F t,kj (new) == 1;

x t−1,(m,k )
j , i f F

′t−1,k
j > 0;

0, Otherwise;
(10)

It should be noticed that the source node does not change during the fetching process. If all
neighboring BSs of vk do not cache the missed content j , the remote cloud is selected as the source
node:

x t,(0,k)j = I(
K∑

m=1
x t,(m,k )
j == 0), r t,k0 =

BD

max{
∑

j x
t,(0,k )
j , 1}

; (11)

Here, it can be found that the fetching rate of all links is calculated in real-time. When new
fetching processes occur and compete for link resources, the fetching rate of old fetching processes
decreases, thus increasing the fetching delay. When old fetching processes are resolved and the
required contents arrive at the target BSs, the fetching rate of other fetching processes also increases,
thus reducing the fetching delay.

Then, we can calculate F
′t,k
j by subtracting the fetching size of the content j during the timeslot

t from F t,kj :

F
′t,k
j = max{F t,kj −

K∑
m=0

x t,(m,k )
j × r t,km , 0}. (12)
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If there is no new fetching process triggered in case (2), F t,kj can be directly determined according
to the remaining size of the content j at the end of the timeslot t − 1, F

′t−1,k
j :

F t,kj (old) = F
′t−1,k
j ; (13)

We use F t,kj (old) to represent that the fetching process for content j is still in resolving. It should be
noted that if there is no fetching process for content j , we can still use the equation to calculate the
remaining size of the content since it always remains 0 until a new fetching process is triggered.

By combing the above two cases, F t,kj can be determined by:

F t,kj = max{F t,kj (new), F
t,k
j (old)}. (14)

When F t,kj > 0 and F
′t,k
j == 0, the fetching process for the missed content j is successfully

completed at the end of the timeslot t , which means that the missed content j arrives at vk from
the source node. We define the set of all newly arrived contents at the end of the timeslot t as:

O
′t,k =

1≤j≤C⋃
F t,kj ×I(F

′t,k
j ==0)>0

{j}; (15)

Because the content library is constant during the service term, only the contents that exist in the
library can be fetched. So the range of j is between 1 and C .

After that, we use a cooperative cache replacement policy π to update the cache strategies of all
BSs with their newly arrived contents:

{U t+1,1,U t+1,2, ...,U t+1,K } = π (U t,1 ∪ O
′t,1;U t,2 ∪ O

′t,2; ...;U t,K ∪ O
′t,K ). (16)

4.3 Delivery Delay Model
The delivery delay model is built upon the fetching delay model. The BSs can only deliver contents
to the users if the requests already exist on the BSs and their required contents arrive at the BSs, or
if new requests arrive at the BSs and find their required contents already cached on the BSs. The
BSs do not deliver contents to users if there are no requests from users or the contents required by
requests are in the fetching processes. According to the above conditions, we set Flaдt,ki, j to judge
whether vk delivers the content j to the user i in the timeslot t :

Flaдt,ki, j =


1, i f (I(j ∈ O

′t−1,k ) × d
′t−1,k
i, j ) ∨ (at,ki, j × I(j ∈ U

t,k )) == 1;
0, i f d

′t−1,k
i, j + at,ki, j × I(j ∈ U

t,k ) == 0;
Flaдt−1,ki, j , otherwise;

(17)

Here, we use V t,k
i, j to record the remaining size of the content j from vk to the user i in the

timeslot t :

V t,k
i, j =

{
1, i f at,ki, j == 1;
max{V t−1,k

i, j − Flaдt−1,ki, j × r t−1,ki , 0}, otherwise .
(18)

The delivery rate r t,ki from vk to the user i can be calculated by r t,ki = B log2(1 + SINRt,ki )
according to the Shannon capacity formula [31]. All wireless channels have the same bandwidth B,
and SINRt,ki is the signal-interference-noise ratio (SINR) from vk to the user i in the timeslot t :

SINRt,ki =
pk × |h

k,t
i |

2

σ 2 +
∑
u,i |h

k,t
u |

2
, (19)
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where pk is the transmit power of vk , σ 2 is the power of background additive noise, and |hk,ti |
2 is

the channel gain between vk and the user i .
Then, we can deduce the value of d

′t,k
i, j according to V t,k

i, j :

d
′t,k
i, j =

{
1, i f V t,k

i, j − Flaд
t,k
i, j × r

t,k
i > 0;

0, otherwise .
(20)

4.4 Problem Formulation
This paper aims to find a cooperative cache replacement policy to minimize the transmission
delay of requests in the network over a long term. From the system model, we can find that the
transmission delay is affected by the subsequential requests and the dynamic channel features, so
it is hard to calculate the transmission delay directly. To solve this issue, we count the number of
requests in the network for each timeslot in real-time and obtain the total transmission delay of all
requests during the service term by accumulating the request number for all timeslots. Therefore,
we formulate the cooperative cache replacement problem as an optimization problem as follows:

min
π

∑
t

∑
k

∑
i

∑
j

dt,ki, j ,

s .t . C1 : (3), (4), (6), (7),
C2 : U t,k ∩ O

′t,k = ∅,∀t ,k,
C3 : |U t,k | ≤ L,∀t ,k,
C4 : |U t,k | + |O

′t,k | ≤ C,∀t ,k,
C5 :

∑K
m=0 x

t,(m,k)
j ≤ 1,∀t ,k, j

(21)

where constraint 2 ensures that the newly arrived contents of each BS are not already cached on the
local BS; Constraint 3 guarantees that the number of cached contents does not exceed the storage
capacity of each BS; In the cooperative edge caching-aided mobile edge computing network where
a massive number of users simultaneously request different contents, the limited cached contents
on the BSs are insufficient to meet the demands of such a substantial user base, necessitating
continuous fetching of new contents from the cloud or neighboring BSs. Constraint 4 emphasizes
that the sum of the number of cached content types and the number of the newly arrived content
types is, at most, the number of cloud content types, which enforces that users can only request the
contents that exist in the content library; Constraint 5 enforces that there only exists one source
node for each fetching process on each BS. The main notations of the system model are presented
in Table 1.

5 DECOR: A DELAY-AWARE COOPERATIVE CACHE REPLACEMENT METHOD
BASED ON OFFLINE DRL

The delay-aware cooperative cache replacement method based on offline DRL named DECOR is
proposed in this section in detail. First, we outline the DECOR system framework and explain how
it works. Next, we model the cooperative cache replacement problem to an MDP model and discuss
our design concept. Then, we present the structure of the Q-function neural network. Finally, the
offline DRL algorithm is presented.

5.1 DECOR System Framework
The DECOR system framework is illustrated in Fig. 3, containing two components, an environment
component and a training component. The environment component utilizes a behavior policy to
constantly interact with the cooperative edge caching-aided MEC network to update the BSs’ cache
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Fig. 3. DECOR System Framework. The environment component first samples a static dataset using the
behavior policy πβ during execution. Then training component trains a policy offline π based on the dataset.
In the training process, the training component does not interact with the environment component. Finally,
the behavior policy πβ is replaced with the well-trained offline policy π .

strategies. The behavior policy is deployed in the cloud. In each timeslot, it receives the local states
from all BSs and produces actions for them. Then the cloud sends the actions to the corresponding
BSs. After the BSs execute these actions, they send new local states and rewards to the cloud.
During this process, the cloud stores the states, actions, and rewards in a static dataset. The training
component uses the static dataset to train an offline policy until the policy is well-trained. During
the training process, the training component does not interact with the environment component,
which means that even if the environment component samples new data, these data are not used in
the training process [15]. At the same time, changes in the performance of the offline policy during
the training process have no impact on the execution of the MEC network. After the offline policy
is well-trained, it will replace the behavior policy to interact with the MEC network.

5.2 The Cooperative Edge Caching MDP Model
To apply the offline DRL to the cooperative edge caching problem, we should first model this
problem as an MDP. We should carefully design the state space, action space, and reward function
to ensure training convergence and improve the cache performance. Moreover, the behavior policy
is not limited to DRL-based methods, it can also be heuristic-based or even rule-based methods
(e.g., Least Recently Used (LRU), Least Frequently Used (LFU), First In First Out (FIFO)), which
implies that the structure of the collected dataset may not meet the requirements of an MDP for
the state, action, and reward. Therefore, the state space, action space, and reward function should
be designed in a form that can be efficiently extracted from raw data. Furthermore, because the
cloud should frequently communicate with the BSs to exchange states, actions, and rewards, they
should be lightweight to reduce communication costs. Based on the above considerations, the state
space, action space, and reward functions are defined as follows:
• State Space: Local states of all BSs construct the state observed by the decision-making
policy st = {s1t ; s2t ; ...; skt ; ...sKt }. The local state design for each BS is similar. First, the local
state should contain information that can reflect the content popularity because caching
popular contents can efficiently avoid BSs frequently fetching contents from the cloud or the
neighboring BSs, thus reducing the transmission delay. To reflect content popularity, we use
the past requested content history as part of the local state skt . We define the requested history
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of cached contents as Xk
t = (x

k,1
t , x

k,2
t , ..., x

k, l
t , ...x

k,L
t ), where x

k, l
t = (x

k,l
t ,x

k,l
t−1, ...,x

k,l
t−n+1) is

a vector that records the requested history of vk in past n timeslots of the content cached
in the lth location, and xk,lt is the number of times the content cached in the lth location
of vK has been required by new requests in the timeslot t . Besides, the policy should also
know the popularity of the newly arrived contents to make cache replacement decisions.
Similar to the cached contents, we define the requested history of the newly arrived contents
as X′kt = (x

′k,1
t , x

′k,2
t , ..., x

′k,c
t , ...x

′k,C
t ). Since the amount of new contents is variable which

does not meet the fixed input size of DNN, we record the requested history of all contents
instead of the new contents and set the value of x

′k,c
t as 0 vector, where c < O′t,k . Apart from

the content popularity, the fetching rate should be considered because it affects the arrival of
missed contents, thus influencing the cache replacement decision-making. The remaining
size of contents to be fetched reflects the information of the fetching rate to a certain, so
we use its history Fkt = (f

k,1
t , f

k,2
t , ..., f

k,c
t , ...f

k,C
t ) as part of the local state, where fk,ct =

(F t,kc , F
t−1,k
c , ..., F t−n+1,kcf ). Similarly, because the number of the fetching process is variable,

we record the history of all contents and set the value of fk,ct as 0 vector, where F t,kc == 0.
Merging the parts of the state, We have st = {(X1

t ,X
′1
t , F

1
t ); (X

2
t ,X

′2
t , F

2
t ); ...; (X

K
t ,X

′K
t , F

K
t )}.

• Action Space: Local actions of all BSs construct the action produced by the policy at =
{a1t ;a2t ; ...;akt ; ...aKt }. The local action of each BS has a similar design, and we use the design of
akt as an example: in the timeslot t , several missed contents O′t,k arrive atvk . If O

′t,k +U t,k ≤

L, the missed contents can be directly cached into vk . If O
′t,k + U t,k > L, vk should select

some contents from U t,k to evict and choose the same number of conents from O′t,k to cache
with the objective of minimizing the transmission delay. The eviction and cache steps can be
combined into one step, i.e., selecting L contents from O′t,k ∪ U t,k to cache. In this case, the
local action space size of akt is a combination number C |O

′t,k |+ |U t,k |

L . However, the number
of the newly arrived contents O′t,k is not fixed, but the output size of DNN is fixed, so we
select L contents from the content library C instead of O′t,k ∪ U t,k . In this way, the local
action space size of akt is fixed as CC

L .
• Reward Function: The cooperative cache replacement problem is formulated as an opti-
mization problem to minimize the total transmission delay of all requests. However, the
objective of DRL-based methods is to maximize the expected return. Thus, we define the
negative value of the number of requests in the BS vk per timeslot as the local reward
rkt (s

k
t ,a

k
t ) =

∑
i
∑

j −d
t+1,k
i, j . Then, the reward function is the sum of the local reward of all

BSs:

rt (st ,at ) =
∑
k

rkt (s
k
t ,a

k
t ) =

∑
k

∑
i

∑
j

−dt+1,ki, j . (22)

5.3 Neural Network Structure
According to the MDP model of the cooperative cache replacement problem, it can be easily
found that the state is time series data. How to efficiently extract information about the content
popularity, fetching rate, and their changing trends from the state needs to be considered. In
addition, because we extend the action space size from C |O

′t,k |+ |U t,k |

L to CC
L , there exists some

invalid actions that cannot be executed in the MEC network. Therefore, how to filter invalid actions
is another consideration.

For the first consideration, CNN has been proven to efficiently extract the temporary correlation
features from time series data in recent years [6, 12], so we use CNN to extract knowledge about
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Fig. 4. Structure of the Q-function neural network

the content popularity and fetching rate from history. For the second consideration, we construct a
mask layer to filter the invalid actions based on the information provided by the state. To be more
specific, we construct a multi-head CNN, where each head processes the local state of one BS for
extracting temporary knowledge about its content popularity and fetching rate. For any of the BS,
its local state contains three parts: the requested history of cached contents, the requested history
of newly arrived contents, and the fetching history of missed contents, where the requested history
of cached and newly arrived contents is related to the content popularity and the fetching history
of missed contents is related to the fetching rate. Due to the difference in the feature of the content
popularity and fetching rate, each head uses two 1-D CNNs to extract their knowledge separately,
as shown in Fig. 4. Thus, the number of 1-D CNNs in the Q-function neural network is 2 × K = 2K .
For the local state skt of the BS vk , its corresponding 1-D CNNs are defined as convkc and convkf . We
also set the number of input channels for each CNN to be equal to the number of content types of
its input, so the number of input channels for convkc is L +C , and the number of input channels for
convkf is C . The temporary knowledge vk,ct and vk,ft are produced as follows:

vk,ct = conv
k
c ([X

k
t ,X

′k
t ]), v

k,f
t = conv

k
f (F

k
t ). (23)

To ensure that the local actions produced by the Q-function neural network are cooperative,
it needs to aggregate the temporary knowledge of all BSs to capture a global view, then jointly
produce the local actions for all BSs based on this view. Here, we concatenate the temporary
knowledge of all BSs into a single vector as the input of a two-layer fully connected neural network
(FCNN), defined as f c , to jointly produce the Q-value estimations for all actions:

qt = f c([v1,ct , v
1,f
t , v

2,c
t , v

2,f
t , ..., v

k,c
t , v

k,f
t , ..., v

K,c
t , v

K,f
t ]). (24)

We choose the action with the highest Q-value from the Q-value estimation qt as the output.
However, invalid actions are sometimes estimated with high Q-values, causing the policy to select
invalid actions that cannot be executed. To filter these invalid actions, we construct a mask layer,
defined asmaskt , according to the state st to set the Q-values of invalid actions as −in f but not
change the Q-values of valid actions. For any action at = {a

1
t ;a2t ; ...;akt ; ...;aKt }, its Q-value can be
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updated by:

q
′t(at ) =maskt (qt(at )) =

{
qt(at ), i f

∏
k a

k
t ∈ (O

′t,k ∪ U t,k );
−in f , otherwise .

(25)

Then, we can calculate the probability of each action to be selected by inputting the Q-value
estimation vector qt into a softmax layer:

prob(at ) =
eq
′t(at )∑

ât e
q′t(ât ))

; (26)

The probability of invalid actions is e−inf = 0, meaning that there is no chance of selecting invalid
actions.

5.4 Offline DRL Algorithm
The Q-function can constantly fix its estimated Q-values for state-action pairs < st ,at > to
approximate the true Q-values using the ground truth rewards of the newly sampled data according
to Equation 2. Unfortunately, this approach does not work well in the offline scenario because
only a static dataset, denoted as D, is available for training, and no new data is provided. As the
offline policy is continuously updated, it will gradually deviate from the state access distribution
of the dataset and explore some unseen state-action pairs outside the dataset. Because the offline
policy cannot interact with the MEC network to sample these unseen state-action pairs, it lacks the
ground truth rewards of the unseen pairs to fix their misestimated Q-values. These misestimated
Q-values may guide the offline policy to select improper actions, thus degrading its performance.
Moreover, using Equation 2, the effect of the misestimated Q-values may be widespread to other
estimated Q-values, making the estimated Q-values of the seen state-action pairs wrong. The shift
between the distribution of the offline policy and that of the dataset caused by the offline policy
updates is usually regarded as a distribution shift. It is a critical challenge that needs to be addressed
by the offline DRL.

Recently, many offline DRL algorithms have been developed to solve this challenge from different
aspects. However, most of them have a core idea: to require that the state access distribution of
the offline policy does not overly deviate from the state access distribution of the dataset. The
authors in [8] use a conditional variational auto-encoder (VAE) to fit the distribution of the dataset
and use a perturbation model to control the offset range between the distribution of VAE and that
of the dataset. Advantage-Weighted Regression [21] adds KL-divergence into the loss function
to constrain the offline policy from deviating too much from the distribution of the dataset. In
this paper, we adopt an advanced offline DRL algorithm improved from CQL [14] to alleviate the
distribution shift. We incorporate the working mechanism of Double DQN (DDQN) [26] into CQL
to make the estimates of Q-values more conservative. The loss function of the improved CQL is
presented as follows:

LCQL = αÛ(Est∼TD,at∼π (at |st )[Qθ (st ,at )] − Est ,at∼TD [Qθ (st ,at )]) + LDDQN (θ ,θ
−), (27)

where TD represents the distribution of the dataset. LDDQN (θ ,θ
−) is the loss function of DDQN:

LDDQN (θ ,θ
−) =

1
2
Est ,at ,rt ,st+1∼TD [(Qθ (st ,at ) − (rt + γQ̂θ− (st+1, argmax

at+1
Qθ (st+1,at+1))))

2]; (28)

DDQN contains two neural networks: a Q-function network and a target Q-function network. It
selects the next state-action pair < st+1,at+1 > depending on the highest Q-value estimated by
the Q-function network, and uses the Q-values of the selected next state-action pair < st+1,at+1 >
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Algorithm 1 Offline DRL Algorithm
1: Collect a dataset D with a behavior policy πβ from the cooperative edge caching-aided MEC

network.
2: Create a Q-function neural network Q with randomly generated initial parameters θ .
3: Create a target Q-function neural network Q̂ with parameters θ− = θ .
4: for step t = 1, 2, 3, ...,N do
5: Randomly sample a minibatch of data from D to update Qθ using GQ gradient steps with

Equation. 27:
θt ← θt−1 − η ▽θ LCQL .

6: Every P steps reset Q̂θ− = Qθ .
7: end for

estimated by the target Q-function network to compute the loss and update the neural network
parameters. Here is the loss function of DQN used in the original CQL:

LDQN (θ ,θ
−) =

1
2
Est ,at ,rt ,st+1∼TD [(Qθ (st ,at ) − (rt + γ max

at+1
Q̂θ− (st+1,at+1)))

2]; (29)

It is obvious that the value of the second part of LDDQN is closer or smaller than the value of the
second part of LDQN because the target Q-function network of DQN always selects the highest
Q-value:

rt + γQ̂θ− (st+1, argmax
at+1

Qθ (st+1,at+1)) ≤ rt + γ max
at+1

Q̂θ− (st+1,at+1); (30)

Therefore, after several updates, the Q-function network tends to be more conservative in estimating
Q-values. In this way, the estimated Q-values of the state-action pairs inside the dataset are closer
to their true Q-values, and the estimated Q-values of the state-action pairs outside the dataset are
more conservative to prevent the offline policy from exploring them. After that, we can find the
optimal Q-function by minimizing the loss function of the improved CQL:

Q∗θ ← argmin
Qθ

LCQL . (31)

The first part of LCQL enforces that all state-action pairs are estimated with low Q-values. The
second part of LCQL encourages the Q-function network to give high Q-value estimates for the
state-action pairs inside the dataset. The third part uses the background truth reward provided
by the dataset to approximate the estimated Q-values to the true Q-values. By combining the
three parts, LCQL drives the Q-function network to select the state-action pairs available inside the
dataset and avoid choosing the unseen state-action pairs outside the dataset. The hyperparameter
α is a tradeoff factor used to adjust the weight of the first and second parts of LCQL .

The details of the offline DRL algorithm are presented in Algorithm 1. At first, the behavior
policy πβ deployed in the cloud constantly interacts with all BSs to collect a static dataset. It should
be noticed that πβ can be derived from rule-based, heuristic-based, or DRL-based methods. Then,
we initialize the parameters of the Q-function and target Q-function networks. After that, we
constantly sample data from the dataset to compute the gradients according to Equation. 27. The
gradients are used to update the parameters of the Q-function network. The update process will
repeat multiple times until the Q-function network is well-trained. The parameters of the target
Q-function network are assigned with the parameters of the Q-function network at every P steps.
The hyperparameter η is the learning rate.
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Fig. 5. The comparision between two distributions of the content popularity.

6 EXPERIMENT
This section evaluates the performance of DECOR and compares it to rule-based, deep learning
(DL)-based, and DRL-based methods, where the rule-based method, LRU, is used as the behavior
policy to sample static datasets:
• LRU: In each timeslot, LRU will replace the contents not requested for the longest time with
the newly arrived contents. Each BS independently executes an LRU as its cache replacement
policy.
• LFU: LFU will replace the least requested contents with the newly arrived contents.
• FIFO: FIFO will replace the earliest cached contents with the newly arrived contents.
• Belady: Belady [2] holds a view of future requests and will replace the contents not requested
in the future for the longest time with newly arrived contents. Although Belady cannot be
perfectly realized in the real world because we cannot obtain an accurate future view in the
real environment, we can achieve a certain level of Belady by using DL to predict future
requests. In this work, we use Belady as the upper bound of the rule-based methods to
evaluate the superiority of our approach.
• DL: DL [16, 41] uses the states in the dataset as input and the actions in the dataset as outputs
to learn their mapping relationship. Here, we use the categorical cross-entropy loss function
to minimize the error between the given actions and the output actions so that the learned
policy can be seen as a cloning policy of the behavior policy. DL does not utilize the rewards
in the dataset.
• DDQN: The online DDQN [29] collects data by interacting with the environment and stores
them in a replay buffer. Then, it samples a minibatch of data from the replay buffer to update
the learned policy. After that, the new policy is used to collect new data. The above steps
repeat until the policy is well-trained. We exchange the replay buffer with a static dataset
and remove the data collection phase to apply DDQN in the offline scenario.

6.1 Simulation Setup
We design a MEC simulation environment including a remote cloud and K = 2 BSs. We set the
size of 1 unit as 1 GB so that the storage size of the two BSs is L = 3 GB. The number of wired
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backhaul links between the cloud and BSs is 5, and the link bandwidth is 256 MB/s. The number of
the BS-to-BS links between the BSs and their bandwidth is set to 1 and 256 MB/s, respectively. For
the wireless channel between the BSs and users, we set the transmit power of the BSs to pk = 46
dBm, and the channel bandwidth is B = 40 MHz [4]. Recently, video service has become the major
service in mobile networks [5], so we define the content type as video. There are a total of C = 10
video contents, and all contents have the same size of 1 GB.

We adopt a real-world dataset, Movielens [9], to simulate the request arrivals and user preferences
by assuming that each movie is one content and each movie rating item corresponds to a request
[19]. Thus, a user rates a movie at a specific time can be seen as a request arriving at the edge
server for the corresponding content simultaneously. To simulate the explosion of user requests in
the MEC network, we scale the time unit of Movielens from the hourly level to the second level. To
avoid losing generality, the two BSs have different request arrivals and user preferences sampled
from Movielens, shown in Fig. 5. The distribution of content popularity is calculated by:

Proportionk (c) =

∑
t
∑

i a
t,k
i,c∑

j
∑

t
∑

i a
t,k
i, j

; (32)

The content popularity of all contents in distribution 1 is relatively close, which is quite different
from distribution 2 where users prefer content 7 and 10 over others.

DECOR is based on a PyTorch implementation. The input channel number of 1-D CNN convc is
C + L = 13, and convf isC = 10 for each BS. Both CNNs have 2 kernel sizes and 64 output channels,
followed by a 1-D MaxPool layer with padding size 2. Each layer of the two-layer FCNN f c has 64
neurons. We choose ReLU as the activation function due to its fast updating speed. Moreover, the
learning rate of offline training is set to 1 × 10−6. The target Q-function network update interval
is set to P = 30, and the minibatch size is 128. The parameters of the Q-function network are
optimized via Adam [13]. The history length of states is n = 10 s.

6.2 Results analysis
We first test the offline training convergence of DECOR, and its learning curve is shown in Fig.
6. It can be found that although DECOR fluctuates between the training epochs 51 and 72, it still
successfully converges to a better point than the behavior policy, LRU, with a delay reduction
rate of 33%. In contrast, the online DRL-based method, DDQN, fails to learn a better cooperative
cache policy from the static dataset and even converges to a worse point than LRU. Besides, since
the optimization objective of DL is the distribution divergence between its policy and the dataset,
the DL’s curve only shows the cache performance of its policy. When DL converges, its learned
policy can be seen as a cloning policy for the dataset and has a similar cache performance to LRU.
Thus, it cannot learn a better policy from the dataset either. Fig. 7 compares the cache performance
of DECOR to the rule-based, DL-based, and DRL-based methods. It can be found that DECOR
outperforms all other methods, which shows its superiority. Although Belady maintains a future
view with a length of 48 s, since its cache replacement rule is quite simple, it still loses to DECOR.

Moreover, we investigate the impact of two resource factors, the storage size of BSs and the
wired link bandwidth that are closely related to the cooperative cache replacement policy, on the
cache performance, which is presented in Fig. 8. Since DDQN cannot learn a better policy from
the dataset and DL just learns a cloning policy, we do not evaluate their cache performance. In
general, the average transmission delay of all methods decreases in a rapid and then falt trend as
both two resources increase. It is not hard to understand because when resources are sufficient, the
most popular contents are cached on the BSs, or the missed contents can be quickly fetched from
the neighboring BSs or the cloud. In this case, the fetching delay is very short, even if no cache
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Fig. 6. The learning curve comparision between DL, DDQN and DECOR.

0

5

10

15

20

25

30

35

40

Av
er

ag
e 

tra
ns

m
iss

io
n 

de
la

y 
(s

ec
on

d)

DECOR
LRU
DDQN
DL
FIFO
LFU
Belady

Fig. 7. The cache performance comparision.

replacement policy is implemented. In Fig. 8(a), DECOR outperforms all rule-based methods in
most cases, except when the storage size is 6 and 8 GB, which is inferior to Belady. The reason is
when the storage size is 6 and 8 GB, the most popular contents are cached, and only a small number
of unpopular contents need to be replaced. Belady is suitable for the case because it replaces the
contents not requested in the future for the longest time. In Fig. 8(b), we find that the improvement
rate of DECOR to LRU is 21.7%, 28.9%, 33%, 35.9%, and 34.6% as the wired link bandwidth increases,
showing a trend of growth followed by decline. This is because the fetching process becomes shorter
when the bandwidth increases, resulting in fewer subsequential requests that can share it. In this
case, BSs need to fetch contents to replace the cached ones more frequently, which strengthens the
effect of the cooperative cache replacement policy. However, when the bandwidth is sufficient, the
fetching delay is reduced to 0, and the cache replacement policy has no effect.

Finally, we verify whether the cache replacement policy learned by DECOR can coordinate the
two BSs. Here, we test the delay reduction rate of DECOR to LRU on the average transmission
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Fig. 8. The impact of storage size and wired link bandwidth on the cache performance.

delay in three cases: (i) the two BSs have different content popularity distributions 1 and 2 shown
in Fig. 5, respectively, (ii) they have the same content popularity distribution 1, (iii) they have the
same content popularity distribution 2. Fig. 9 shows that the delay reduction rate in three cases
is 33%, 37.6%, and 46.4%. It shows that the cache replacement policy of DECOR can utilize the
storage of BSs more effectively when the two BSs have the same content popularity distribution.
This is because when the two BSs have different distributions, the cache replacement policy is hard
to coordinate the BSs to cache one content that is popular in one BS but unpopular in another.
However, when the two BSs have the same distribution, the policy can better coordinate them
to achieve a higher delay reduction rate, which verifies that the policy is cooperative. Besides,
we find that the delay reduction rate in case (ii) is lower than in case (iii). The reason is that the
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content popularity of all contents in distribution 1 is close, thus degrading the effect of the cache
replacement policy.

7 CONCLUSION
This paper has proposed a novel delay-aware cooperative cache replacement method based on
offline DRL, named DECOR, to coordinate the cache replacement decisions of different edge servers
for high cache performance in an MEC network of the smart city. Different from the existing online
DRL-based methods, DECOR can effectively exploit the potential of the huge data in the smart
city and avoids the learned policy at the early stage of the training process degrading the cache
performance of the actual network. To efficiently extract the knowledge about content popularity
and content fetching history from time series data, CNNs are utilized to improve training efficiency
and cache performance. The experimental results show that DECOR can successfully learn an
offline policy from a static dataset, compared to an online DRL-based method. The offline policy
outperforms the behavior policy used to sample the dataset and can coordinate edge servers to
make cooperative cache replacement decisions.
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