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A B S T R A C T   

This article presents a state-of-the-art review of the applications of Artificial Intelligence (AI), Machine Learning 
(ML), and Deep Learning (DL) in building and construction industry 4.0 in the facets of architectural design and 
visualization; material design and optimization; structural design and analysis; offsite manufacturing and 
automation; construction management, progress monitoring, and safety; smart operation, building management 
and health monitoring; and durability, life cycle analysis, and circular economy. This paper presents a unique 
perspective on applications of AI/DL/ML in these domains for the complete building lifecycle, from conceptual 
stage, design stage, construction stage, operational and maintenance stage until the end of life. Furthermore, data 
collection strategies using smart vision and sensors, data cleaning methods (post-processing), data storage for 
developing these models are discussed, and the challenges in model development and strategies to overcome 
these challenges are elaborated. Future trends in these domains and possible research avenues are also presented.   

1. Introduction 

Building and construction industry is slowly but constantly evolving 
embracing new technologies such as Digital Twin (DT), Building Infor-
mation Modelling (BIM), Artificial Intelligence (AI), Internet of Things 
(IoTs) and Smart Vision (SV) to further enhance the efficiency, pro-
ductivity, accuracy, and safety of the built environments. Industry 4.0, 
or the fourth industrial revolution, refers to the transformation of the 
traditional industry practices and manufacturing methods into autono-
mous smart systems using state-of-the-art digital technologies. Along a 
similar line of thought, building and construction industry 4.0 can be 
identified as the confluence of state-of-the-art industrial production 
systems, cyber-physical systems, and digital and computing technolo-
gies to redefine the building and infrastructure design, construction, 
operation, and maintenance while considering the circularity. Industrial 
production systems would include 3D printing and assembly, prefabri-
cation and offsite manufacturing, cyber-physical systems would include 
IoT, robots, cobots, actuators, and digital and computing technologies 
would include BIM, AI, deep learning (DL), machine learning (ML), 

cloud computing, big data and data analytics, Blockchain, augmented 
reality (AR), digital twins. Due to this digital transformation, massive 
amounts of data are generated, and systematic analysis of these data and 
predictive modeling can be used to generate innovative architectural 
and structural designs, improve construction and operational safety, 
reduce the embodied and operational energy requirements, reduced 
construction and operational costs, increased construction speeds, 
improved payback periods and enhance sustainability. 

However, analyzing massive amounts of data and recognizing pat-
terns by human or conventional computer programs using rule-based 
approaches is not realistic. Therefore, the capability of AI to process 
massive amounts of data, recognize the pattern, and ability to build 
large-scale statistical models is a key facilitator of the building and 
construction industry 4.0 to process its digitized data. However, AI is a 
concept introduced in the 1940s, and in general, AI can be identified as 
the science of developing intelligent machines or computer programs to 
mimic human intelligence. In the last few years, the field of AI has seen a 
substantial improvement in various domains such as computer vision, 
robotics, autonomous vehicles, language translation, gaming, medical 
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diagnosis, speech recognition, and generative designs. The core tech-
nologies behind these advancements are machine learning and deep 
learning. Machine learning is a subfield of AI where predictions are 
made based on past experiences. Machine learning can meaningfully 
transform the data and learn useful patterns and representations using 
the input data. Deep learning is a subfield of machine learning, and it 
can be identified as a machine learning technique with multiple layers of 
simple and adjustable computing elements. Deep learning is generally 
performed using a stack of layers called neural networks. Deep learning 
with a stack of Convolution Neural Networks (CNN) is a widely used 
technique at present due to the enhancement of computer power and 
this is used extensively in the domains of visual object recognition, 
speech recognition, image synthesis, speech synthesis, and machine 
translation. Domains of AI, ML, DL and widely used algorithms are 
illustrated in Fig. 1: where MLP is Multi-Layer Perceptron, GAN is 
Generative Adversarial Network, CNN is Convolutional Neural Net-
works, RNN is Recurrent Neural Network, LSTM is Long Short-Term 
Memory Network and RBFN is Radial Basis Function Network. 

There is a multitude of applications of AI, ML, and DL in the building 
and construction industry, and most of these applications came to reality 
in the past few years due to the increased computational power with 
high performing graphics processing units (GPU), availability of 
advanced ML and DL algorithms and relative convenience of imple-
mentation of these algorithms using widely used computer languages, 
ML and DL libraries, and software. 

This paper aims to summarise and review the state-of-the-art ML/DL 
algorithms, data acquisition methods, applications of AI, ML, and DL in 
construction and building 4.0 and challenges. Applications of AI in the 
building construction industry have been divided into seven segments in 
this paper. These segments are architectural design and visualization; 
material design and optimization; structural design and analysis; offsite 
manufacturing and automation; construction management, progress 
monitoring and safety; smart operation, building management and 
health monitoring; and durability, life cycle analysis and circular 
economy as shown in Fig. 2. This review paper presents a holistic 
perspective of applications of artificial intelligence and computer vision 
in the building and construction industry 4.0 and this paper is unique 
compared to other papers because this covers the applications of AI and 
computer vision in the whole building lifecycle from the planning stage, 
construction stage to operational and maintenance stages. 

It is essential to have a good understanding about cutting-edge ML 
and DL algorithms and the next section discusses the basics of these 
algorithms and how to obtain input data that are necessary to train these 
ML and DL models. Then the applications of AI, ML and DL are discussed 
aligning with the previously specified sections. 

2. ML/DL algorithms and data acquisition 

This section will give a brief introduction to the ML/DL process, 
widely used ML/DL algorithms and state-of-the-art sensors and vision 
technologies that can be used to collect data to be input into these 
algorithms. 

2.1. Machine learning 

Machine learning is a subfield of artificial intelligence where a 
computer observes a given set of data and generates a model based on 
the input data which can be used to solve problems. ML is different from 
traditional programming. In traditional programming, rules are coded in 
a computer language without explicit learning from the data. In contrast 
to traditional programming, ML uses data to generate predictive models 
which are then used for predictions with the unseen data. For some 
problems, it is extremely difficult to develop a rule-based program due 
to the complexity of the code and ML can be used in these instances 
provided sufficient data is available relevant to the considered problem. 

Machine learning methods can be categorized in a variety of ways. 
One of the prominent methods of categorization of ML models is by the 
amount of supervision they get during the model training process. Here, 
the ML models can be categorized mainly as supervised learning, un-
supervised learning, or reinforcement learning as presented in Fig. 3. 
Supervised learning is where the dataset has both the predictors as well 
as the results which are termed ‘labels’. Initially, the supervised machine 
learning model is trained using the labeled dataset as shown in Step 1 of 
Fig. 3 and then inferences can be made for unseen data using the trained 
ML model. Two of the most widely used supervised tasks are classifi-
cation and regression. In classification tasks, a discrete class label is 
predicted, whereas in regression tasks, a continuous value is predicted. 
Some of the widely used supervised learning algorithms are k-Nearest 
Neighbors, Support Vector Machines (SVMs), Logistic Regression, Linear 
Regression, and Neural Networks. 

Fig. 1. Domains of AI, ML, DL and widely used algorithms.  
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Fig. 2. Application AREAS of AI in building and construction industry 4.0.  

Fig. 3. Categorization of machine learning.  

S.K. Baduge et al.                                                                                                                                                                                                                               



Automation in Construction 141 (2022) 104440

4

In unsupervised learning, an unlabelled dataset is used to determine 
hidden patterns or intrinsic structures in data. Unsupervised learning is 
widely used for tasks such as clustering, anomaly detection, and novelty 
detection, visualization and dimensionality reduction. Reinforcement 
learning is an ML method that trains the ML model by rewarding the 
desired behaviors and penalizing the undesired behaviors. The learning 
system known as reinforcement learning agent observes the environ-
ment and take actions that will incur rewards or penalties. The aim is to 
find the best strategy called ‘policy’ by achieving the maximum rewards 
over time. The action to be implemented in a given instance is deter-
mined by the policy. 

In addition to supervised, unsupervised and reinforcement learning, 
another category called semi-supervised learning is sometimes used. 
Semi-supervised learning is used in instances where the dataset is only 
partially labeled. 

2.2. Deep Learning 

DL is a subfield of machine learning as shown in Fig. 1 and DL can be 
understood as the study of artificial neural networks and other related 
machine learning algorithms which consists of more than one hidden 
layer. Hence, the computation path in a deep learning algorithm has 
several steps from the inputs to the outputs. 

Compared with the previously discussed ML algorithms, DL algo-
rithms are generally useful with the higher dimensional data such as 
images, video and audio due to the presence of long computational 
paths. Some of the widely used DL algorithms in the construction and 
building industry are briefly introduced in the following subsections. 

2.2.1. Feedforward neural networks 
Feedforward neural networks (FNN), which are also known as the 

“Multi-Layer Perceptrons” (MLPs), are a widely used deep learning al-
gorithm that only has information flowing in the forward direction 
without any feedback. The architecture of the FNNs is shown in Fig. 4, 
where circles represent the neurons. FNNs have multiple layers of neu-
rons which are interconnected, and the input data is fed into the input 
layer and data is streamed through the hidden layers and the output 
layer yields the result. 

A neuron in the hidden layer takes the input from the previous layer, 
calculates the weighted input (wixi) with the addition of a bias term (b), 
and transfers the result through a nonlinear activation function, f(x) as 
shown in Fig. 4. Various nonlinear activation functions such as ReLu, 
sigmoid, softmax, tanh can be used depending on the application. 

The neural network can be trained using the dataset, and in this 
training process, the output from the output layers of the network is 
compared with the expected real values and the loss is calculated. There 

are numerous methods to calculate the losses such as mean squared 
error, mean absolute error, and binary cross-entropy. By summing up 
the losses for the entire training dataset and adding any regularization to 
reduce the overfitting, the cost function will be calculated. The aim is to 
minimize the cost function by adjusting the weights of the neural 
network by a method called backpropagation. The backpropagation 
calculates the gradient between error and the weights. Based on the 
gradient between error versus weights, optimization algorithms such as 
Adam, NAdam, Adadelta, Gradient descent can calculate the weights 
which minimise the loss. The same dataset is processed numerous times 
to adjust these weights and then the trained model with minimized error 
can be obtained. The trained models have the adjusted weights for each 
input data at each neuron and these weights are proportional to the 
relevance of input data for the output results. Finally, the model is used 
to predict output using new data. 

2.2.2. Convolutional neural networks 
Convolutional Neural Network (CNN) is a unique type of Artificial 

Neural Network (ANN) that can be used to process data with grid-like 
topology. CNNs are mostly used in classification using images and 
computer vision applications. CNNs mainly have three types of layers in 
their architecture. These are convolution layer, pooling layer and fully 
connected (FC) layer. In a typical CNN, convolutional layers are fol-
lowed by a pooling layer, or another convolutional layer and the FC 
layer is at the end as shown in Fig. 5. 

Input layer of the CNN holds the input image data. The convolution 
layer is the core building block of the CNN, and it uses a few components 
such as filter/kernel/feature detector and a feature map. The feature 
detector/filter/kernel is a 2D array of weights that is smaller than the 
size of the image. A dot product is calculated between the pixel value of 
the image and the weights of the filters, and the result is fed into an 
output array. This process is known as convolution and the feature de-
tector is moved across the whole image to do this computation and 
determine the features. In this method, all the neurons of a layer are not 
inter-connected to neurons of the next layer like in NN (Fig. 4). Only 
neurons belonging to the filter are connected to the convolved neuron of 
the next layer (Fig. 5). The output from this process is known as a feature 
map or an activation map, or a convolved feature and this method 
revolutionized the deep learning by reducing the links between neurons 
leading to lower memory and processing demand for large input such as 
images, video, and audio. The depth of the output from the convolution 
layer will depend on the number of filters. After the convolution layer, 
an activation function is applied. The pooling layer is used to reduce the 
dimension of the image by taking the sum and average of the domain. 
This process is also known as downsampling. The fully connected layer 
is at the end of the network as shown in Fig. 5 and neurons in this layer 

Fig. 4. Schematic of a feedforward neural network and a single neuron.  
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are fully connected to the activations in the previous layer. The filter 
size, number of filters, padding and strides are the hyperparameters that 
decide the architecture of the DL algorithms. The cost function will then 
be calculated based on the results compared with actual values, and the 
weights of the kernels are updated by backpropagating this error. 

There are different CNN types that have been developed by various 
researchers. Some of the well-known CNNs are AlexNet, VGGNet, and 
ResNet. 

2.2.3. Generative adversarial networks 
Generative Adversarial Network (GAN) is a deep learning algorithm 

that focuses on generative modeling to create images, videos, and au-
dios. Using GANs, new data instances can be created resembling the data 
in the training dataset. GANs use two types of deep neural networks 

called ‘generator’ and ‘discriminator’ in their architecture. The gener-
ator is responsible for creating new features resembling the trained data 
in the dataset incorporating the feedback from the discriminator. The 
discriminator is responsible for identifying the real data from the data 
created by the generator and providing feedback to the generator about 
the quality of the output images compared with the real images in the 
dataset. At the initial stages of the training, the generator creates 
obvious fake results and the discriminator can clearly identify these fake 
results. However, as the training progresses, the generator can create 
results that can deceive the discriminator and if the training process is 
successful, the discriminator starts to classify the fake data as real, and 
the accuracy of the discriminator reduces. Architectures of the GAN and 
conditional GANs are represented in Fig. 6. 

There are several variations in GANs such as Progressive GANs, 

Fig. 5. Typical architecture of a CNN [1].  

Fig. 6. Architecture of (a) GAN and (b) cGAN.  
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Conditional GANs, Cycle GANs, Text-to-image GANs, Super Resolution 
GANs, InfoGANs, DCGANs and Wasserstein GANs. Most of these algo-
rithms have been used in generative designs in building and construc-
tion industry. 

2.2.4. Variational autoencoders 
Variational Autoencoder (VAE) is another deep generative algorithm 

that has been widely used. A VAE is an autoencoder whose encodings 
distribution is regularised throughout the training. An autoencoder 
consists of an encoder and a decoder neural network and a latent space 
(encoded space) as shown in Fig. 7. The encoder transforms old features 
into a new feature representation in the latent space and the decoder 
reverses this process to try to reconstruct the original features. An 
Autoencoder is trained using the data and the best encoding-decoding 
scheme is sought through an iterative optimization process. When the 
latent space is well organized, new data can be generated through the 
decoder by decoding the points sampled from the latent space. Hence, 
variational autoencoders regularize the training to ensure that the latent 
space is well organized to facilitate the generative process. 

2.2.5. Recurrent neural networks 
Recurrent Neural Network (RNN) is useful for generating predictions 

for sequential or time-series data. Similar to the ANNs and CNNs, RNNs 
use a dataset to train the algorithm. However, in contrast to the ANNs 
and CNNs, RNNs use prior inputs to influence the current input and 
output from the network as shown in Fig. 8. 

RNN also has different variants such as Long Short-Term Memory 
(LSTM), Bidirectional recurrent neural networks, Gated recurrent units 
(GRUs) which have been used in construction applications. 

2.2.6. Other machine learning and deep learning algorithms 
In addition to the previously discussed algorithms, a multitude of ML 

and DL algorithms have been used by researchers in the domain of 
construction and building industry. Some of these widely used ML and 
DL algorithms are presented in Table 1 with very brief descriptions. Even 
though ML and statistics have inherent similarities, there are some 
obvious differences between the two. Statistics mainly focuses on 
drawing population inferences from a sample and the main aim of ma-
chine learning is to find generalizable predictive patterns using data. 

2.3. Sensors and vision systems for data acquisition 

ML and DL need data for training the models. The accuracy and 
versatility of the developed models will vastly depend on having a good 
dataset. The majority of the time for an end-to-end ML/DL model 
deployment is spent on the dataset which involves collecting, cleaning, 
analyzing, visualizing and feature engineering [2]. This section briefly 
discusses the approaches for data collection in ML/DL in construction 
and building industry applications. 

Strain gauges, load cells, accelerometers, displacement measuring 
devices (Laser, Linear Variable Differential Transformer (LVDT), Draw- 
wire), thermal, Infrared (IR), Ultraviolet (UV), air quality, sound, and 

other basic sensors are widely used for data collection and these devices 
must be connected to a dedicated data acquisition system for data 
collection. Sensors are available with or without specific data collecting 
systems. These data collection systems could be a large-scale Input/ 
Output (I/O) device, a portable data acquisition system, or a 
microcontroller-based device capable of immediately connecting to the 
internet. Most new sensors with embedded microcontroller-based data 
gathering systems include cloud compatibility via Internet of Things 
(IoT). IoT entails embedding sensors in everything with the help of 
smaller size, lower cost, and less energy consumption in new sensors and 
connecting them to the internet via specific protocols for information 
exchange and communications to achieve intelligent analysis, moni-
toring, and management over a cloud-based system. Widely used sensor 
types and connectivity protocols can be found in the literature. 

RGB and Infrared Images and video-based vision systems are 
becoming increasingly used in deep learning algorithms and variety of 
cameras can be used for collecting image and video data. Cameras are 
distinguished by the presence of an image sensor connected to a 
specialized visual data acquisition system. Depending on the type of the 
sensors, there are various types of cameras available. The cost of the 
camera is primarily determined by the type of sensor utilized. The most 
prevalent are RGB and monochrome cameras, which cover the visible 
wavelength range of 380–700 nm and are inexpensive. In newer RGB 
and Monochrome cameras, CMOS sensors are utilized, whereas in older 
cameras, CCD sensors are used. CCD and CMOS sensors can detect sig-
nals in the 200 nm to 1100 nm wavelength range, which also includes 
the UV, VNIR. InGas sensors are utilized in the Short-Wave Infrared 
(SWIR) wavelength range of 900 nm to 2400 nm. To detect MWIR (2400 
nm to 5000 nm), InSb sensors are employed. Based on these camera 
designs, there are primarily two forms of data gathering. One method is 
to capture the entire image and process the data based on pixels, which 
is then used in a vision system. A vision system consists of cameras 
attached to a dedicated computer or PLC that run vision software and 
can interface with other devices (robots) via output ports (serial, par-
allel, PCI). Reflected energy from objects, on the other hand, can be 
recorded in individual wavelengths utilizing spectroscopic imaging 
technologies alongside camera sensors. Once the reflected wave energy 
is recorded, chemometrics methods can be used to identify the substance 
based on its chemical properties. 

3. Methodology 

A three-step procedure was followed to identify the literature to be 
included in this review article. In the first step, journal papers, confer-
ence papers and books were extracted from sources such as Scopus, Web 
of Science, Google Scholar, SpringerLink and ProQuest. For the pre-
liminary search of the literature, previously mentioned seven major 
sections (architectural design and visualization; material design and 
optimization; structural design and analysis; offsite manufacturing and 
automation; construction management, progress monitoring and safety; 
smart operation, building management and health monitoring; and 
durability, life cycle analysis and circular economy) were used as 

Fig. 7. Schematic of an autoencoder.  
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keywords with the terms machine learning, deep learning and artificial 
intelligence. Two thousand five-hundreds and sixty-four articles were 
identified through the preliminary search of the databases. 

In the second step, 1245 of these papers were excluded after reading 
the abstract and not meeting the relevant criteria for this paper. In the 
third step, manual screening of 1247 full articles was carried out and 
based on the suitability of these articles for this review article, 200 
literature papers were selected and included. 

The critical focus of a paper and topics covered by the article can be 
understood by reading keywords. Accordingly, the occurrence of key-
words to understand the correlation amongst papers was analyzed. 
VOSviewer software [3] was used to create a network map of these 
keywords which is presented in Fig. 9. The network map generated by 
the software clearly represents several clusters of keywords where the 
central theme of “Artificial Intelligence” is connected to key research 
outlined before. The size of a node in Fig. 9 directly represents the fre-
quency of a keyword's occurrence in the literature, while the density of 
link between any two nodes shows how frequently they are cited as a 
pair within the literature. 

In the upcoming sections, applications of AI, ML and DL methods for 
the previously mentioned seven segments in the building and con-
struction industry are reviewed. 

4. Architectural design and visualisation 

Architectural design in the construction industry involves planning 

and development of the structures considering the aesthetics and the 
function of the structure. The main components in the architectural 
design include planning the shape of the structure, considering the 
aesthetics of the structure including the colours, texture, materials, 
generation of the layouts of the structures with the architectural ele-
ments. Architectural design and visualization is a complex process that 
requires the expertise, past experience and creativity of the architects. AI 
can assist in architectural design and visualization by considering the 
patterns in previous design data to generate new designs. Deep learning 
algorithms have been used extensively in the architectural design and 
visualization domain with applications such as 2D and 3D generative 
architectural design, classification of architectural styles and building 
types, architectural drawings and space recognition and indoor scene 
synthesis. 

Generative deep learning models such as GANs and VAEs have 
demonstrated remarkable capabilities for generating innovative archi-
tectural designs in both 2D and 3D. GANs have revolutionized the 
automated generative design of architectural features such as building 
masses, floor plans, interior design plans and facades. 

The generation of architectural floor plans using deep learning al-
gorithms is a widely researched area. Chaillou [4] used GANs to 
generate architectural drawings using a trained model with an image 
dataset and this model was named ‘ArchiGAN’. In his work, several steps 
were followed to finally generate fully furnished architectural plans of a 
building when the shape of the land is given as the input. Nauata et al. 
[5] proposed House-GAN algorithm to generated layouts of houses using 
an innovative graph constrained GAN. Workflow of this algorithm is 
illustrated in Fig. 10. Initial input to this algorithm is a bubble diagram 
specifying the constraints such as connectivity of rooms, number of 
rooms and type of the room. In this bubble diagram, nodes represent the 
rooms with their type and the edges represent the adjacency of the 
rooms. Then the room masks are generated depending on the room type. 
Wasserstein GAN Gradient Penalty (WGAN-GP) algorithm was used to 
train the models. 

Radford et al. [6] improved the conventional GAN and proposed 
Deep Convolutional GAN (DCGAN) by including a set of constraints on 
the architecture of GAN and generated new bedroom designs. Use of 
DCGANs improved the stability of the generator training across a wide 
range of datasets and facilitated training with deeper networks and 
images with higher resolutions. 

Isola et al. [7] developed ‘pix2pix’ software using a conditional 
generative adversarial network (cGAN) and it was used to generate 
building façades using a given layout of the façade. cGANs were pro-
posed by Mirza and Osindero in 2014 [8]. cGAN is also a generative 
algorithm that considers conditions on an input image when generating 
the output images. This pix2pix software has a wide range of applica-
tions including generating photos provided a sketch, generating color 
images from the input black and white pictures and synthesizing photos 
from architectural labels. Wang et al. [9] proposed ‘pix2pixHD’ software 

Fig. 8. Schematic of an RNN.  

Table 1 
Widely Used ML and DL algorithms in building and construction applications.  

ML/DL Algorithm Description 

Linear Regression This is a supervised ML method that finds the linear line of 
best fit for the given data. 

Logistic Regression 
Logistic regression is a supervised ML algorithm that is mostly 
used in binary classification which outputs the probabilities 
for classification classes. 

Support Vector 
Machines 

This algorithm can be used for linear, non-linear regression, 
classification, and outlier detection. However, this is mostly 
used for classification. SVM algorithm tries to find an optimal 
hyperplane in an N-dimensional space to classify data points. 

Decision Trees 

Decision trees are also a supervised ML method that can be 
used for both regression and classification. This algorithm 
creates a tree-like model to predict the class or the value by 
using simple decision rules. 

K- Nearest 
Neighbours 

This can be used for both regression and classification. This 
algorithm estimates the likelihood of a data point belonging 
to one class depending on the neighboring points in the 
dataset. 

Random Forests 
This algorithm is an ensemble of decision trees and attempts 
to achieve a more accurate and stable result by merging the 
decision trees  
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Fig. 9. Main research interest clusters using co-occurrence network of keywords.  
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to extend the conditional image generation to high-resolution images. A 
new objective function, a novel generator and a new discriminator were 
proposed in pix2pixHD, and the resolution of the generated images was 
enhanced to 2048 × 1024 compared with the 256 × 256 resolution in 
the original pix2pix software. Huang and Zheng [10] utilized pix2pixHD 
algorithm to recognize and generate architectural drawings and 
generate apartment layouts as shown in Fig. 11. 

Apart from 2D architectural generative design, 3D generative designs 
have also been performed by researchers using GANs. In this scenario, 

the 3D representation of the architectural features can be achieved using 
point clouds, voxel-based methods and using 2D views. However, 3D 
generative models require significant computational resources 
compared with the 2D generative models. 

Even though GANs are very promising in the architectural design 
discipline, it has some challenges and drawbacks as well. GANs are not 
able to generate architectural designs that are truly novel or innovative 
since the algorithm is trained using the previously available data. Also, 
the lack of architectural data sets for some architectural subjects is 

Fig. 10. Workflow of House-GAN [5].  

Fig. 11. Apartment Floor Layout Recognition and Generation using cGANs [10].  
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another challenge. This issue can be mitigated to some extent using data 
augmentation techniques such as rotation, tilting and oversizing to 
generate more data for the smaller datasets. Rapid convergence of the 
generator network can occur when working with GANs yielding only 
few outputs with little diversity and this issue is known as “mode 
collapse”. Also, training instability is another major issue in the GANs. 
However, many remedial methods such as using modified objective 
functions, adding regularization to the objective and normalization of 
parameters have been proposed to alleviate these issues [11]. 

In the realm of deep generative models, variational autoencoders is 
another type of algorithm which is widely used. VAEs are used both in 
the 2D and 3D generative architectural designs. Wu et al. [12] proposed 
an algorithm based on an encoder-decoder network to generate resi-
dential floor plans by taking the perimeter of the house as an input. In 
the proposed method, a living room is placed initially in the floor plans 
using a CNN and then the other rooms are generated iteratively using 
two deep neural networks as shown in Fig. 12. Then the walls are 
generated using an encoder-decoder network and locations of doors and 
windows are determined. Some of the generated floor plans using this 
algorithm are shown in Fig. 13. This algorithm could enforce the room 
location constraints. However, more meaningful constraints such as the 
area of different rooms and the orientation of the house could not be 
introduced. 

‘Graph2Plan’ is another algorithm proposed for floor plan layout 
generation based on GCNs and CNNs considering the user input layout 
[13]. In this algorithm, a more detailed introduction of layout con-
straints including room adjacencies was possible. 

Generating vectorized architectural floor plans from rasterized im-
ages using deep learning is another widely investigated area. Many re-
searchers [14,15] have used deep learning algorithms such as GANs, 
ResNET, CNN, Fully Convolutional Network (FCN) to generate vector-
ized floor plans with high accuracy using rasterized images with varying 
complexities. 

Table 2 presents a non-exhaustive list of the attempts to apply AI in 
architectural design in addition to the previously discussed applications. 

Even though the application of AI in architectural design is very 
promising, there are some important factors and challenges that need to 
be considered to attain the full potential of these algorithms. One major 
consideration is the sourcing of a high-quality dataset suitable for the 
investigated issue. Another major consideration is the time and re-
sources taken to pre-process the data to be used in these algorithms. Data 
pre-processing is an integral aspect of obtaining an ML model with high 
accuracy. However, some algorithms require intensive data pre- 
processing before inputting into the model. Hence, this needs to be 
considered when the data collection experiments are planned and at-
tempts should be made to generate more robust algorithms to automate 
this time-consuming data pre-processing component. Training deep 
learning models with a large dataset is computationally intensive and 
the time consumed for training can be reduced by using high- 
performance cloud computing with GPUs. 

In addition to the machine learning and deep learning algorithms 
discussed previously, rule-based generative algorithms such as genetic 
algorithms (GA) [26], simulated annealing [27], cellular automata [28] 

have been widely used to generate architectural features. Many appli-
cations of these optimization algorithms in building form generation 
[29], façade design [30], energy efficient architectural design [31], floor 
plan generation [32] can be found in previous literature. 

There are numerous commercial applications of AI in architecture. 
Higharc company [33] uses AI to generate various architectural layouts 
for houses. Software tools such as Finch [34] uses ML and DL in various 
aspects in Architecture such as conceptual designs, plan generation and 
building form generation. 

5. Material design and optimisation 

Selecting an appropriate construction material is an important aspect 
once the architectural design phase is completed. Construction material 
affects the speed of construction, durability, strength, energy efficiency, 
emission, aesthetics and thermal comfort of the structure; and high- 
performing materials and composites can be designed and developed 
considering these criteria using AI techniques. 

To minimize material consumption, cost, and time due to exhaustive 
testing, current investigations to develop models incorporating ML that 
predict mechanical properties were performed by researchers [35]. 
Present technologies with AI applications commonly focus on concrete, 
steel and timber, targeting material properties and their microstructure. 
Concrete is the most used construction material in the world, and it has 
been thoroughly researched [36]. Several studies have been conducted 
to predict concrete behavior using ANN, DL, SVM, GA and fuzzy logic. 
Most of the applications use ANN or SVM to predict concrete compres-
sive strength [37], tensile strength [38] and other mechanical properties 
such as elastic modulus [39]. Other applications consider concrete 
exposed in an extreme environment, for instance, high temperature 
[40]. Few studies used ANN to predict the strength of concrete with 
nanomaterials [41], granulated blast furnace slag [42], fly ash [43], and 
other mineral admixtures [44]. In the previous years, a growing interest 
in ANN and DL applications has been observed in property prediction of 
Fibre Reinforcement Polymer (FRP) [45], Recycled Concrete Aggregate 
(RCA) [46], and permeable pavements [47]. Durability aspects of con-
crete have also been widely investigated using AI algorithms. Concrete 
property prediction under sulphate attack [48], chloride penetration 
[49], and other durability aspects such as predicting carbonation depth 
[50] have been investigated in this domain. 

The main challenge to optimizing the use of concrete, timber and 
steel is to optimize the use and design based on an objective function and 
various constraints. ML and DL algorithms can assist in this process of 
predicting various objective functions based on previous data. There can 
be a single objective function or multiple objective functions for the 
optimization. These objective functions generally include cost, perfor-
mance criteria such as compressive strength, shear strength and envi-
ronmental criteria such as embodied carbon and embodied emissions 
[51]. Various constraints are based on different decision variables in the 
optimization problem and these can be imposed by the designer, client 
requirements and building standards. Construction material optimiza-
tion is mostly carried out for concrete due to its composite nature with 
multiple ingredients. 

Fig. 12. Schematic of the Workflow to Determine Room Locations [12].  
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Most optimizations are mainly performed using optimization algo-
rithms such as linear programming, second-order conic optimization, 
metaheuristic optimization algorithms and ML/DL is applied mainly for 
the property prediction as a part of the optimization process [51]. Ap-
plications of ML/DL in material optimization in previous research are 
mostly on optimization of environmental performance [52], cost [53], 
strength [54]. 

A non-exhaustive list of ML, DL algorithms used in material property 
prediction is presented in Table 3 with the algorithms used. 

DL/ML can assist in microstructural analysis, surface and bond 
characteristics investigation of construction materials. Most of these 
investigations have also used ANN. They are summarized in Table 4. 

6. Structural analysis and design 

AI algorithms can assist in structural analysis and design process 
once the construction material has been selected. Structural design is 
commonly carried out using analytical models created from funda-
mentals or simply through codes of practice or/and using computer 
simulations based on numerical simulations such as Finite Element 
Analysis (FEA). When it comes to AI algorithms, their blackbox nature is 
the main challenge to integrating in real-world structural engineering 
design. However, there are some ambiguous and unpredictable design 
challenges where designs are based on statistical analysis and probabi-
listic theories where the benefits of AI in resolving those uncertainties 
outweigh the disadvantage of blackbox nature. This section discusses the 
use of artificial intelligence (AI) to improve certain aspects of structural 
engineering. Seismological design, buckling and fatigue analysis, 
loading capacity prediction, and damage level prediction of existing 
structures for retrofitting are among the topics discussed. Finally, in 
comparison to traditional design approaches, how new features such as 
generative design can aid structural design by providing a greater 
number of design possibilities are discussed. 

The complexity of seismic events makes it difficult to efficiently 
identify the earthquake response and extract indicative features from 
continuously detected seismic data, affecting the performance of tradi-
tional seismic load and response models for structures and impeding 
seismology growth in general. AI techniques can aid in this and can be 
used as effective statistical tools to address these difficulties, leveraging 
their advantages in data analysis. AI helps in finding unknown features 
by extracting useful sensing data from noisy data and revealing seismic 
occurrences that are below the detection level. Another significant 
aspect is the use of AI to assist in the architectural design process with 

Fig. 13. Generated Floor Plans by Wu et al. [12].  

Table 2 
Applications of artificial intelligence in architectural design.  

Application Algorithm Used/Proposed Reference 

Generate floor plans using a video 
FloorNet (A combination of 
three neural networks) [16] 

Generate 3D room layouts using a 
single RGB panaroma 

DuLa-Net [17] 

Generate conceptual architectural 
designs 

GCN and GAN [18] 

Indoor scene synthesis CNN [19] 
Automated recognition of spaces in 

an architectural floor plan DeepLabV3+ [20] [21] 

Generation of urban building forms ANN [22] 
Generation of early-stage 

architectural design sketches 
self-sparse GAN [23] 

Generation of 3D decorative 
architectural parts 

CurveInfoGAN, VAE and 
Evolutionaly Algorithm 

[24] 

House style recognition CNN [25]  

Table 3 
Applications of ML, DL algorithms in construction materials.  

Construction 
Material 

Predicted Property ML/DL Algorithm Used with 
References 

Concrete 

Compressive Strength 

ANN [35] 
SVM [35] 
Decision Trees [55] 
Linear Regression [56] 
Random Forest [57] 
Naïve Bayes [58] 
Logistic Regression [58] 
k-Nearest Neighbors [58] 
Ensemble [59] 

Damage Index Decision Trees [60] 

Shear Capacity 

ANN [61] 
SVM [62] 
Gaussian Process Regression 
[63] 
Random Forest [64] 
XGBoost [65] 

Tensile Strength ANN [66] 
SVM [67] 

Slump ANN [68] 
Drying Shrinkage ANN [69] 
Coefficient of Thermal 
Expansion Random Forest [70] 

Chloride Permeability 
ANN [71] 
Ensemble [72] 

Elastic Modulus 
ANN [73] 
SVM [74] 
Non Linear Regression [75] 

Steel 

Yield Strength 
SVM [76] 
Random Forests [76] 

Tensile Strength 
SVM [76] 
Random Forests [76] 

Fatigue Strength 

ANN [77] 
k-Nearest Neighbors [77] 
Random Forest [77] 
XGBoost [78] 

Fracture Strength 
ANN [77] 
k-Nearest Neighbors [77] 
Random Forest [77] 

Timber 

Compressive Strength ANN [79] 
Bending Strength ANN [80] 
Moisture Content ANN [81] 
Thermal Conductivity ANN [82]  
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the knowledge of seismology. The failure of the structural system which 
did not considered well in the architectural design phase leads to un-
expected revisions in the implementation project phase and cost time 
and money. To circumvent this, deep learning and ImageAI python li-
brary can be used to construct an Irregularity Control Assistant (IC 
Assitant) that can offer architects with general information regarding 
the suitability of structural system decisions [96]. 

Buckling and fatigue analysis of structural components can also be 
improved using AI algorithms and models. Jimenez-Martinez and 
Alfaro-Ponce [97] studied the fatigue of steel components using a neural 
network approach. In terms of structural member instability, the buck-
ling behaviour of structural elements under axial stress was predicted 
using an artificial neural network technique for a variety of geometries 
including shells [98], panels [99], and I-section beams [100]. 

Loading capacity and damage level prediction in existing structures 
for retrofitting can also be improved using AI. Tan et al. [101] and Padil 
et al. [102] used a non-probabilistic artificial neural network models 
using vibration data to detect, localise, and quantify damage in steel 
beams. More detailed review of application of vibration based damage 
detection from traditional methods to machine learning and deep 
learning has been discussed by Avci et al. [103]. Determining the flex-
ural loading capacity of existing RC structures is problematic since 
cracks and damage at the time of assembly are difficult to quantify. As a 
result, retrofitting is frequently done on the safe side with a lot of cost 
associated. In one study by Zhang et al. [104] used ML techniques to 
estimate the steel weight loss distribution from the observational 
corrosion-induced crack distribution of RC beams, which can then be 
used to predict flexural load. 

Deep learning-based automated generative design and analysis can 
be conducted using AI algorithms. By using a deep learning approach, 
automated structural analysis and design of prestressed members can be 
achieved. For example, deep learning and grid search accessible 
hyperparameters can be used to anticipate optimum prestressing of 
members without requiring structural engineers to perform endless 
analysis and design iterations [105]. Yoo et al. [106] has actively 

conducted a conceptual computer-aided engineering (CAE) to demon-
strate the future possibilities of structural engineering. In their study, 
they proposed a deep learning-based CAD/CAE system in the conceptual 
design phase that generates 3D CAD drawings automatically and ana-
lyses their engineering performance. Fig. 14 depicts the usage of DNN, 
CNN, and transfer learning in CAD and CAE. 

7. Offsite manufacturing and automation 

Offsite manufacturing and automation can accelerate the construc-
tion of the building than conventional on-site construction once the 
structural analysis and design process is complete. This domain is an 
integral part of the building and construction industry 4.0. Currently, 
offsite manufacturing is widely used in prefabricated buildings where 
modules or panels are fabricated in a factory and then transported and 
assembled on site. However, from the design of the layouts of the 
modules to the fabrication of the modules are done using either manual 
methods or using programmed software. The future of offsite 
manufacturing, which is closely associated with expanding automation 
through robotics and AI, inevitably makes prefabricated and modular 
buildings a more obvious choice in substituting for many conventional 
construction practices [107]. Transitioning from conventional con-
struction practices to an industrialized construction system required 
many drivers such as AI, BIM, Lean construction as shown in Fig. 15. 
Integrated analysis for manufacturing's big data, which is the source of 
intelligence, is beneficial to all aspects of automation in offsite 
manufacturing. The uptake of smart offsite manufacturing through 
prefabrication and standardized modular systems closely depends on the 
successful employment of main emerging enablers such as automation 
and AI, so the raw materials are efficiently converted to components and 
sub-assemblies that fit into the manufacturing and assembly process 
[108]. Besides, the digital twin paves the way for the cyber-physical 
integration of offsite manufacturing, which is an important bottleneck 
towards the industrialized production of smart buildings. 

For the automation of construction manufacturing, a tremendous 
transformation has taken place in the past years with the emerging ap-
plications of AI. Automated construction includes different techniques, 
such as prefabrication of building parts, ready-made modules, and ro-
botic technology. Smart robotics have been progressing rapidly to drive 
a wide range of semi- or fully autonomous construction applications. For 
offsite manufacturing, robots can typically be divided into ground robots 
and aerial robots. Ground robots have been developed to automate some 
manual processes and take over repeatable tasks, such as brick-laying, 
masonry, prefabrication, assembly, model creation, rebar tying, demo-
lition, and some other activities to enhance efficiency, quality and 
safety. Aerial robots, on the other hand, equipped with image acquisi-
tion systems are widely being employed for and efficiently automated 
land survey, scanning, site monitoring, and structure health monitoring. 
Both types of robots are being trained by various machine and deep 
learning algorithms, and thus they can be equipped with the talent to 
learn from data and conditions. 

To evaluate measurements and precisely verify the quality of precast 
concrete panels, trained inspectors are currently used, and the process is 
time-consuming. One such method of dimensional quality testing of 
precast concrete panels is terrestrial laser scanning [111]. In the 
manufacturing stage, with camera sensors, and in the assembly stage, 
with 3D laser sensors, AI can be employed as a more cost-effective op-
tion for these quality assessment criteria. 

Machine learning algorithms are being incorporated into the addi-
tive manufacturing processes, also known as 3D printing, and change the 
future of digital and intelligent manufacturing. Increasing the level of 
automation, involvement of more sophisticated robots, and flexibility of 
shapes and consequently more optimised solutions are some advantages 
of additive manufacturing techniques being improved by AI [110]. In 
practice though, the applications of AI methods in additive 
manufacturing are still limited to checking printability [112], and 

Table 4 
DL/ML assisted microstructural analysis of construction materials.  

Application Description ML/DL Algorithm 
Used with 
References 

Material 
microstructure 
analysis 

Concrete compressive strength 
prediction using microstructural 
images 

CNN [83] 

Self-healing of concrete ANN [84] 
Prediction of steel reinforcement 
microstructure based on 
manufacturing processes such as 
rolling and cooling 

ANN [85] 

Carbonation of reinforced concrete 
causing steel corrosion ANN [86] 

Microcosmic variation in timber 
affecting compressive strength ANN [87] 

Surface and bond 
investigation 

Model and predict surface roughness 
indices of concrete 

ANN [88] 

Tile-wall bonding integrity 
considering surface roughness 

SVM [89] 

Estimate concrete surface roughness 
through image processing CNN [90] 

Investigation of surface roughness 
coefficients of metals and 
reinforcements 

ANN [91] 

Failure assessment of steel-steel 
connections due to earthquake 

ANN [92] 

Estimate the ultimate capacity of arc 
spot welding ANN [93] 

Estimate stress concentration factors 
of steel joints ANN [94] 

Evaluate bending stresses in bolt 
connection to steel plates 

ANN [95]  
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modularisation for prefabrication techniques [113]. AI techniques can 
also play even a more effective role in the emerging technology of 4D 
printing, which adds the fourth dimension of time into 3D printing, 
enabling the 3D printed objects to change their shape and behavior over 
time in response to external stimuli, like heat, light, temperature, and 
others [114]. Also, in the past decade, a great improvement has been 
achieved in the applications of 3D or 4D printing in manufacturing 
through cloud-based 3D printing empowered with AI techniques that 
can optimize and enhance the printing processes and management with 
regard to productivity, knowledge transfer, collaboration, and universal 
software development [115]. 

Regarding the advancement in the development of AI algorithms in 
offsite manufacturing, a wide range of heuristic algorithms have been 
developed for automation and modularisation of construction, whose 
data can be used for combining the knowledge domains in construction 
manufacturing with machine learning techniques. Over the past few 
decades, a number of prediction models including ANN and Ant Colony 

Optimisation (ACO) have been developed in this regard [116]. ANNs are 
utilized by Navarro-Rubio, Pineda [117] as a predictive analysis tech-
nique to anticipate the efficient structural design of a prefab concrete 
connection. Several other algorithms have also been developed to 
identify the collision-free tool path for optimum performance additive 
manufacturing techniques in offsite construction. On application of 
these algorithms are on the performance of multiple nozzle systems 
based on the single-nozzle approach in 3D printers that can help develop 
an intelligent additive manufacturing system [110]. He et al. [118] 
developed a program interfaced within BIM for generating the geometry 
details of 3D-printed modules, while providing a robotic simulation of 
3D printing to explore a flexible plan in producing the 3D-printed 
modules or components. Steuben et al. [119] proposed an automated 
AI algorithm for optimum geometry partitioning for 3D printing of 
different objects used in prefabrication. Also, generative algorithms are 
being employed to optimize the material distribution, which is a key 
benefit associated with additive Manufacturing [120]. Vacharapoom 

Fig. 14. Deep CAD/CAE framework [106].  

Fig. 15. Transitioning from a conventional construction to industrialised construction.  
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and Dawood [121] developed an innovative planning system and its 
prototype called artificial intelligence planner for data integration to 
encourages the automation in the offsite manufacturing planning pro-
cess and improve the efficiency of the production plans for bespoke 
precast concrete products. 

Chen et al. [122] proposed an algorithm to facilitate automated 
scheduling problems of the production of prefabricated bathroom units 
manufacturing with space constraints. A similar approach was employed 
to address the problem with precast concrete systems by Li et al. [123]. 
An integrated, comprehensive planning system dubbed the ‘Artificial 
Intelligence Planner’ (AIP) has been developed to improve the efficiency 
of production planning processes in order to eliminate uncertainties in 
design and offsite manufacturing by Benjaoran and Dawood [124]. 
Kaveh and Sharafi [125] developed some algorithms using design 
structure matrices with applications in the modularisation of complex 
building systems that facilitate automated design for manufacture and 
assembly (DfMA) of modular systems. AI algorithms also have a great 
potential in the management of manufacturing platforms with regard to 
processes and supply chain, as well as error compensation. 

8. Construction management, progress and safety 

Improvements in construction technology have led to better con-
struction quality with improved construction durations. Construction 
management involves managing the construction project through proj-
ect planning, coordination, budgeting, supervision. At present, these 
processes are performed using the experience of the engineers and using 
commercially available software. Progress monitoring is also carried out 
using manual extraction of information from sites such as taking photos 
and documenting the progress. Construction safety is also administered 
onsite using manual supervision methods. However, these processes can 
be automated using AI to enhance the efficiency and the accuracy. This 
section reviews the applications of AI in construction management, 
progress monitoring and construction safety. 

8.1. Application of AI for improvements in construction management 

Focus of the majority of publications in construction management 
was on the optimization of project costs by application of AI. Another 
main focus was on cost or cash flow optimization for construction pro-
jects using intelligent algorithms such as GA, SVM and ANN, Particle 
Swarm Optimization (PSO) and Ant Colony Optimization (ACO). SVM 
was used across multiple publications to optimize cash flow [126], and 
for project duration prediction by Cheng et al. [127] and for solving 
complex problems related to resourcing, cost optimization and waste 
minimization [128]. 

Another area of focus for construction management was prediction of 
project success based on multiple factors. Decision support systems 
(DSS) employing various algorithms such as ANNs and GAs were used to 
categorize, predict and optimize factors leading to project success [129]. 
ACO was used for determining the critical path for complex projects by 
Duan et al. [130] while constraint programming was used to solve 
multimode resource-constrained project scheduling problems by Menesi 
et al. [131]. Estimation of worker productivity has also been investi-
gated by various researchers using AI algorithms [132]. Computer vision 
and DL algorithms have been used to identify workers onsite and 
monitor their productivity as shown in Fig. 16 [133]. 

Risk management is another aspect of construction management that 
has benefitted from application of artificial intelligence. Long short-term 
memory (LSTM) was used for cost index forecasting (price trend indi-
cator) for highway construction industry by Cao et al. [134] to minimize 
cost risks. Similarly, an AI based system to rank and select contractors 
best suited for the job while minimizing project management efforts and 
project costs without delays was developed by Kashiwagi et al. [135]. 
Addressing traditional method for risk management, use of SVM in 
combination with Random Forest (RF), K-nearest neighbor (KNN), Lo-
gistics Regression (LR) and Decision Tree (DT) algorithms to develop 
safety indicator for the risk level of a site was demonstrated by Poh et al. 
[136]. The only use of Natural Language Processing (NLP) was seen in 

Fig. 16. Construction worker identification using computer vision and DL algorithms [133].  
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the method developed by Soibelman et al. [137] for generating a data-
base for construction knowledge documentation. 

8.2. Application of AI for improvements in construction safety 

There have been a lot of applications of AI, ML and DL in monitoring 
and improving construction safety and most of the research in this 
domain employ neural networks. Region-based convolutional neural 
network (RCCN) and single-shot multi-box detector (SSD) were used for 
object detection and increased safety in construction environments by 
Liu et al. [138]. ANN-based approach was used to predict the adoption 
potential or acceptability of a new formwork system by Elazouni et al. 
[139]. Similarly, ANN was used to estimate the factor of safety for slope 
stabilization during construction by Foong et al. [140] and to analyze 
data from wearable sensors used by workers while manually lifting loads 
by Pistolesi et al. [141]. Automated training was developed by Bangaru 
et al. [142] to train workers for earplug wearing. ANNs were used by 
Aythan et al. [143] to predict future safety problems by utilizing 
collected big data and to predict outcomes of construction incidents. 

Furthermore, SVM was used to analyze complicated scaffolding 
structures in real-time and assess scaffold safety conditions by Sakha-
karmi et al. [144] while it was used in combination with linear 
discriminant analysis (LDA), ANN, and k-nearest neighbor for analysis of 
cloud data by Chen et al. [145] in multiple project areas such as safety 
management and construction management. SVM was also used by Goh 
et al. [146] along with other ML algorithms to develop models for pre-
dicting unsafe behavior by analyzing the relationship between the 
cognitive factors and behavioral data. 

NLP was used for the analysis of databases and to predict outcomes of 
safety incidents, provided an incident has taken place or there are suf-
ficient indicators present in a construction project to predict an incident. 
NLP was used in conjunction with CNNs to review accident precursors 
from injury reports and to provide a prediction of the outcome of an 
incident given that an incident has occurred by Baker et al. [147]. Case- 
Based Reasoning (CBR) was combined with Rule-based reasoning (RBR) 
algorithm by Niu et al. [148] to interpret data from smart construction 
objects (sensors), ultimately leading to an OHS management system. 
Similarly, CBR was used by Campbell et al. [149] to improve hazard 
identification and management during a worker's daily tasks of identi-
fying hazards and determining appropriate mitigations. Construction 
equipment tracking has also been investigated widely using AI algo-
rithms [150] and most of these studies used CNN. This can ensure 
worker safety as well as the productivity of operations. 

Innovative platforms such as Newmetrix [151] are commercially 
available to provide onsite safety monitoring and predictive analytics 
and suggest best practices for enhanced construction safety. 

8.3. Application of AI for improvements in progress monitoring 

Construction progress monitoring is an essential aspect of delivering 
the project on time. SVM has been used for progress monitoring using 
point clouds and 4D BIM by Golparvar-Fard et al. [152] while it has been 
used to identify and document concrete regions in construction photo-
graphs for as-built component identification by Zhu et al. [153]. Answer 
Set Programming (ASP) has been used to analyze a knowledge base 
generated using Ultra-wideband (UWB) sensors for progress monitoring 
by Johansen et al. [154]. Markov process was used to update real-time 
forecast of tunneling project based on lithology when using Tunnel 
boring machine (TBM) while fuzzy logic and fusion-regression were 
used to predict the productivity of workers and machinery in order to 
provide progress forecasts [155]. 

Commercial applications such as BuildAI [156] is currently used by 
the construction industry to monitor the progress using AI combined 
with a plethora of sensors fixed in the construction sites. 

A non-exhaustive list of the applications of ML/DL algorithms in 
construction management, progress monitoring and construction safety 

is presented in Table 5. 

9. Smart building operation and health monitoring 

9.1. Introduction 

Traditional buildings lack sensors, resulting in a lack of important 
data that is crucial in the decision-making phase of building manage-
ment and maintenance. Collecting data and designing a building man-
agement system that combines all elements is a difficult challenge due to 
significant variations in building components, large amounts of data, 
variability of building dynamics, weather, and unavoidable un-
certainties. In modern buildings, IoT is the backbone for efficiently 
collecting this data and later analyzing it using technologies such as AI. 
The use of AI in operational and building management cannot be dis-
cussed without mentioning the term “smart building,” which refers to an 
efficient environment achieved through optimized structures, services, 
systems, as well as the interrelationships between them. In a smart 
building, various technologies are combined to provide the occupants 
with high-grade and safe, secure and cost-efficient services, including 
data analytics, data collecting, data storage and data viewing [164]. A 
schematic of a smart building and integration of AI is shown in Fig. 17. 

The key component of AI is “data”. If the training data is varied and 
copious, AI/ML solutions will deliver superior results. IoT devices pro-
vide a large volume of data that contains critical information about the 
physical environment. The pattern and irregularities will not be recog-
nized if they are processed using traditional programming. AI could be 
used to analyze patterns and trends and make judgments based on that 
information. Cloud computing systems make big data processing easier 
and allow for intelligent decision-making based on machine learning 
and big data analysis. 

Historically, the primary focus of AI research in the context of smart 
buildings has been on energy conservation. Building owners and oper-
ators also have a preference for technology and tactics that may 
immediately lead to cost reductions. In addition, an integrated building 
management system (BMS), which offers protocol access to various 
manufacturers and the use of IoT technology to make substantive energy 
savings is utilized for energy management, monitoring and comfort 
purposes. This novel integration method's approach is backed by new 
trials with developing AI technologies and interaction with robotic ML, 
among other things. 

9.2. Energy and emission management 

Buildings utilise around 40% of all energy produced globally. 
Because of global warming, energy conservation in buildings is an 

Table 5 
Applications of ML/ DL algorithms in construction management, progress 
monitoring and construction safety.  

Application ML/DL algorithm used with references 

Construction Management 

ANN [138] [155] 
Long Short-Term Memory (LSTM) [157] 
SVM [158] 
Decision Trees [159] 
K-Nearest Neighbours (KNN) [160] 
Logistics Regression [160] 

Progress Monitoring 

ANN [161] 
CNN [134] 
SVM [153] [161] 
KNN [162] 

Construction Safety 

ANN [141] [144] 
CNN [163] 
KNN [145] 
SVM [145] [148] 
LSTM [140] 
Random Forest [136] 
Decision Trees [136]  
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essential subject. A significant portion of this energy is utilised to keep 
the building's inhabitants comfortable. Current systems are inefficient 
because they rely on sensors that run pre-programmed software that do 
not adapt to changing conditions. There are many AI-based methodol-
ogies being used to enhance thermal comfort in indoor spaces. A review 
of the current state-of-the-art can be found in Ngarambe et al. [165] 
focused on thermal comfort predictive models using diverse ML algo-
rithms and their deployment in building control systems for energy 
saving purposes. Seyedzadeh et al. [166] have also provided a review on 
the use of four main ML approaches including ANN, support vector 
machine, Gaussian-based regressions and clustering, in forecasting and 
improving building energy performance. Mehmood et al. [167] reem-
phasized in their review paper that AI, when combined with big data, 
can tremendously increase the energy efficiency and cost-effectiveness 
of buildings that are designed to provide occupants with comfortable 
indoor living environment. Some interesting energy optimization 
methods developed using AI are discussed in the following sections. 

Data-driven predictive modeling has gained huge interest due to its 
flexibility in model development and the rich data available in modern 
buildings. Fan et al. [168] used deep learning to enhance the perfor-
mance of building cooling load prediction. Balancing between energy 
conservation and comfort management is an issue in modern building 
automation which can often be diametrically opposed to each other. 
Verma et al. [169] proposed a design for a multi-agent topology-based 
building management system using AI to optimize energy consumption 
and comfort by managing temperature, illuminance and CO2 concen-
tration within a building. Mocanu et al. [170] sought to use deep 
learning methods to predict a building's energy consumption through 
the application of Conditional Restricted Boltzmann Machines (CRBM) 
and Factored Conditional Restricted Boltzmann Machines (FCRBM) 

which they compared to traditional ANNs, SVMs and RNNs. Ma et al. 
[171] introduced the concept of Smart Building Cluster (SBC) as the 
joint operation of multiple Smart Buildings (SBs) could be more ad-
vantageous than the independent operation of each individual SB In a 
smart grid environment. Zhang et al. [172] have performed data anal-
ysis using the IoT generated building data to derive an accurate thermal 
comfort model for smart building control. A deep neural network (DNN) 
is used by them to model the relationship between the controllable 
building operations and thermal comfort. Pham et al. [173] suggested a 
Random Forests (RF)-based prediction model to estimate short-term 
energy usage in numerous buildings at the hourly level. The efficacy 
of the RF model was tested using five one-year datasets of hourly 
building energy usage. One Taikoo Place is Hong Kong's first AI-enabled 
building, completed in 2018, and equipped with Arup Neuron, an AI 
smart building console that saves energy through advanced data ana-
lytic capabilities, machine learning, and predictive maintenance algo-
rithms [174]. 

9.3. Climate controlling systems 

Sustainable use of total energy consumption with heating, ventila-
tion, and air-conditioning (HVAC) accounts for a substantial percentage 
of a building's energy end-use. Compared to current technology, auto-
mated Fault Detection and Diagnosis (AFDD) has the potential to 
significantly enhance the energy efficiency of various HVAC systems and 
components. Lee et al. [175] proposed a real-time fault diagnostic model 
for air-handling units (AHUs); the model used deep learning to improve 
the operational efficiency of AHUs and thereby reduce the energy con-
sumption of HVAC heating, ventilating, and air conditioning systems in 
buildings. On the other hand, the effects of operating restrictions on the 

Fig. 17. Components of a smart building and integration of AI.  
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chiller, duct, damper, and ventilation are critical for determining energy 
savings. They have proposed a large multizone commercial building 
energy management system that blends distributed optimization with 
adaptive learning. One Taikoo Place's Neuron system uses a central re-
pository or a common data model to improve operation workflows and 
replace manual processes through digitalization and automation [174]. 

9.4. Security 

Another critical operational function of a structure is occupant se-
curity. There is considerable potential for AI technology to be used to 
improve the safety of building inhabitants and security based on the 
vision systems and sensors. The literature reveals that some research 
efforts have been conducted into the use of AI to improve safety within 
Smart Buildings and that these systems have clear use cases and po-
tential benefits as discussed in following paragraphs. 

There are technologies ranging from fire and danger detection sys-
tems to systems capable of detecting hazardous chemical pollutants. The 
present state-of-the-art fire detection and alarm systems in smart 
buildings have been examined by Liu et al. [176]. They identified new 
technologies and concepts created to increase the capacity of the fire 
protection systems for smart buildings. The study outlined the advan-
tages of a fire sensor system using video cameras, computers and AIs for 
sensing and tracking flames. Chooch.ai, an AI-based company, sells 
readily available AI algorithms that can detect fire and smoke and can be 
deployed at edge computers in a matter of days [177]. 

Detecting and tracking pedestrians is an important part of smart 
building surveillance. Architects are focused on the design of smart 
buildings as sensor technology advances. Traditional image classifica-
tion approaches, such as histograms of orientated gradients filters and 
ML algorithms, struggle to perform effectively with large volumes of 
pedestrian input photos [178]. The advancements in deep learning 

algorithms perform exponentially good in handling the huge volume of 
image data and Kim et al. [178] proposed a pedestrian detection model 
based on deep CNN for the classification of pedestrians from the input 
images. 

9.5. Smart building cities 

Smart buildings are the primary starting point for transforming cities 
into smart cities. Smart cities must have three characteristics: they must 
be instrumented, linked, and intelligent. Smart buildings are micro-
cosms of smart cities, with overlapping demands ranging from control-
ling lighting and energy to providing people with security and safety. 
The concept of a smart city is the most prominent modern trend, 
combining the concepts of smart mobility, smart economics, smart 
people, smart governance, smart environment, and smart lifestyle. 
Smart city characteristics need the construction and operation of 
buildings and infrastructure. A conceptual illustration of an operational 
smart city [179] is shown in Fig. 18. 

When the smart buildings are interconnected into a smart city 
network, the smart building itself can impact the behavior of the other 
smart buildings or infrastructure because it becomes a consistent outside 
environment element influencing the other elements of the network. 
When confronted with complicated environmental challenges and vast 
amounts of data, AI systems have the ability to make knowledge-based 
judgments that balance the city's environmental results against its peo-
ple's social and economic well-being. AI systems may be used to detect 
environmental changes like temperature, moisture, emissions, water 
pollutants, noise, and other environmental indicators. AI systems can 
detect such abnormalities to react to the changes and swiftly implement 
solutions to any problems [180]. Most importantly, disaster manage-
ment in cities improved with these AI-driven variation detection systems 
[181]. Toyota is currently constructing a 175-acre smart city in Japan 

Fig. 18. Conceptual Illustration of an operational smart city [179].  
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[182], and Terminus Group, a Chinese technology firm, is planning to 
build an AI city in the Chongqing Hi-Tech Industrial Development Zone 
[183]. 

9.6. Structural health monitoring (SHM) and durability 

Material deterioration through time, as well as dynamic loading such 
as wind, earthquake, and ambient vibration, can cause infrastructure to 
lose its design capacity and require maintenance or demolition due to 
loss of intended performance. Historically, these conditions were 
assessed through manual inspection or testing. SHM, on the other hand, 
has arisen, utilizing various sensors to expedite periodic inspections and 
decrease the direct and indirect expenses associated with undesired 
failure of aging infrastructure [184]. 

Recently, the constraints on sensor measuring capabilities have been 
addressed as the cost of micro-controllers has decreased dramatically. 
However, as datasets grow larger and larger, the process of data analysis 
must increase as well. Unlike classic statistic and physics-based struc-
tural health monitoring (SHM) models, data-driven models provide so-
lutions for identification and forecasting durability and life cycle, 
including damage detection and remaining life prediction [185]. 

The application of ML to SHM and damage detection involves three 
main steps. First, field data are collected using applicable sensors. 
Relevant features are then extracted from the collected data. Finally, 
extracted features are processed and results are assessed for insights on 
the condition of a structural system. Research studies in the application 
of ML to SHM have commonly used classification techniques and 
anomaly detections to identify potential problems early on. The imple-
mentation of SHM algorithms can be further classified into the visual 
approach and non-visual approach. 

The visual SHM approach has been widely used in damage identifi-
cation. Visual techniques mainly use edge detection in identifying 
damage and cracks. Techniques implemented for damage identification 
are primarily pattern recognition, Artificial Neural Networks (ANN), 
Convolutional Neural Networks (CNN), and Deep Learning (DL) [186]. 
Visual SHM was used in various structural applications such as bridges, 
buildings, tunnels and pavements, and structural concrete elements 
[187]. In the past, the most advanced vision-based method utilized in 
civil engineering was digital image correlation to quantify stress. The 
common goal of computer vision is to replace traditional inspection with 
a rapid, affordable, safe, and totally autonomous method. Deep learning- 
based method of classifying concrete cracks from photography can be 
used to expedite the crack detection process [188]. AI based SHM 
techniques have been used for: general SHM [189], multi-level damage 
detection [190], non-contact assessment of deflection [191], corrosion 
detection [192], concrete surface bug hole recognition [193], concrete 
crack detection [194], concrete spalling [195], steel crack detection 
[196], fatigue detection [197], and surface and subsurface damages 
[198], pavement crack detection [199], brick building condition 
assessment [200]. 

The non-visual SHM approach usually involves measuring features 
using accelerometers, acoustic sensors, and electromagnetic devices. 
Accelerometers measure vibration or natural frequency as a diagnostic 
feature in structural assessment. Techniques implemented to vibration 
monitoring are ANN, DL, Support Vector Machine (SVM), Principal 
Component Analysis (PCA), k-Nearest Neighbour (KNN), and low-rank 
matrix decomposition [201]. SHM through vibration analysis was 
applied to various structures such as bridges [202], wind turbines [203], 
power plants [204], and high-rise buildings [205]. On the other hand, 
acoustic sensors detect mechanical waves that can be used to detect 
cracking, specifically in concrete members [206]. Lastly, electromag-
netic anomaly detection can be performed to investigate corrosion in 
concrete as presented by Butcher et al. [207]. This measures the mag-
netic flux transmitted by the device within a structural concrete element 
through non-destructive testing. 

In general, major ML-based problems include three techniques: 

classification, localization, and segmentation. Fig. 19 illustrates the 
frequent crack detection approaches: classification, object localization, 
and pixel-level segmentation. 

The majority of deep computation vision-based algorithms rely 
heavily on pre-processing methods such as edge detection and seg-
mentation. Current crack detection algorithms in use, such as CrackNET 
[208], CrackNETR [209], UNET [210], etc. have various reported 
drawbacks when used in real-world applications due to demanding sit-
uations such as weather, temperature, camera position, and quality, 
shadow, and light, and so on. Compared to manufacturing, where 
computer vision is more advanced, and conditions are controlled, these 
issues are more severe in civil engineering. 

Effective maintenance techniques can save building maintenance 
expenses, which account for more than 65% of annual facility man-
agement costs [211], as well as lengthen the service life of building 
components. Predictive maintenance, also known as condition-based 
maintenance, differs from reactive or preventive maintenance in that 
it aims to detect incipient failures and eventual degradation based on the 
detection of trends in component conditions using historical data so that 
early actions can be taken [212]. This method is heavily reliant on 
operational data gathered and communicated by sensors. Several 
machine-learning algorithms, such as ANN, SVM, and Markov chains, 
can be used to anticipate the status of building components. However, 
deep learning is not well suited to every problem/building as not every 
building produces large data sets for training. Other limitations of 
implementing such system often associated with technical limitations 
related to solution complexity as well as to legal and financial re-
strictions. Also, the performance of predictive maintenance applications 
depends on the appropriate choice of the machine learning method. 

Through artificial neural network (ANN) layers, deep learning based 
SHM techniques seek to build completely automated feature extraction 
and hierarchical representation mechanisms from raw input data [213]. 
However, the lack of sensor data corresponding to different damage 
scenarios continues to remain a challenge. Most of the supervised 
machine-learning/deep-learning techniques, when trained using this 
inherently limited data, lack robustness and generalizability. Physics- 
informed learning, which involves the integration of domain knowl-
edge into the learning process can be considered as a potential remedy to 
this challenge [214]. 

10. Sustainability, life cycle analysis and circularity 

Employing AI in areas of civil engineering can increase our ability to 
create regenerative systems based on the principles of circularity. Also, 
AI can be a hugely powerful tool that can be used to accelerate the 
transition to a circular economy specifically in the process of Reuse, 
Repair and Recycle. The applicability of clustering algorithms can be 
used by any organization to improve resource sharing through digital 
sharing platforms which encourages Reuse. Time Series analysis can be 
used to identify repeated patterns or to forecast future occurrences that 
urge repair [215]. Applications include preventative maintenance of 
structures through health monitoring and monitoring of urban resources 
such as water. 

Traditional design methods are time-consuming and costly when 
producing multiple variations of the same design. Due to the speed with 
which an AI algorithm can analyze huge amounts of data and offer initial 
designs or design revisions, engineers and researchers working with AI 
can build products, components, and materials that are suited for the 
circular economy by applying AI for better designs faster. AI also aids in 
reducing complexity by shifting countless ideas and recommending the 
ones that best suit the circular design requirements [216]. In a circular 
economy, AI provides autonomous and remote monitoring of efficiency 
during the manufacturing process as well as the product's final lifecycle. 
Companies such as Autodesk, IBM, and Microsoft have already devel-
oped facilitating software as well as cloud operations to enable this. At 
the end of their useful life, items must typically be manually inspected 
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for damage and wear before being disassembled, sorted, and separated 
in order to circulate resources in the economy. There are numerous 
chances for AI to assist in streamlining the infrastructure required in the 
process. To maximise value preservation, condition evaluation can be 
automated using machine vision, and recommendations for reuse, 
resale, repair, or recycling can be made. Deep neural networks could 
help demolition engineers estimate demolition materials more rapidly. 

Although the circular economy clearly goes beyond a waste 
perspective, waste management (recycling) will also have to be radically 
improved in order to recover high-quality secondary raw materials. AI 
enables automation of waste recycling process, which is economical and 
provide higher material recovery than conventional methods with lower 
costs. These systems employ several sensors and cameras (Visible range, 
Near infrared spectroscopy, metal, 3D laser sensors, RGB cameras) to 
detect objects and their materials and deliver data to the control soft-
ware. There, a combination of Artificial Intelligence and Machine 
Learning algorithms can detect individual objects in data and determine 
robot movement. 

The procedures for material or item recognition, as well as the 
related algorithms and software in the background, are critical for waste 
sorting. If this software is paired with appropriate hardware and an extra 
Artificial Intelligence implementation is carried out, robotic systems 
may conduct multitasking jobs and therefore execute many sorting tasks 

at the same time. Once the system is in place, it is simple to train the 
system for new material, making the technology highly future-proof in 
terms of shifting waste streams. The robots employed in certain cases 
replace human sorters and/or find use in previously unsortable regions 
(e.g., construction site waste, marine waste, hazardous waste) and/or 
allow for automatic quality verification and improvements (e.g., plas-
tics). Human sorting is hampered, particularly in the case of building 
and demolition waste, by the limiting item size (in terms of occupational 
health and safety requirements) and the dust or other hazards involved 
such as asbestos. 

Deep CNN can be applied in numerous different levels in the field of 
item detection, sorting and waste recycling, while using pretrained 
networks (PCNN) at the lower layers. These PCNN offer the advantage of 
saving training time while also requiring fewer photos to achieve suc-
cessful trained network convergence. To date, works on digital image 
analysis approaches have been published by [217]. A market analysis 
that identifies different commercial solutions available to fully automate 
the waste treatment process is shown in Fig. 20. All robots use AI-based 
machine vision system works in the visible range for determining waste. 
The Zen robot [218] has so far only been used for construction and 
demolition waste. 

Fig. 19. AI enabled asphalt crack detection (a) cracked image (b) crack identification (c) Segmentation.  

Fig. 20. Commercial solutions for automated waste sorting.  

S.K. Baduge et al.                                                                                                                                                                                                                               



Automation in Construction 141 (2022) 104440

20

11. Future trends 

Even though the current adoption of AI-based applications in the 
building and construction industry is relatively low, in future more 
progressive implementation of these AI-based techniques is expected. 
Currently, the adoption of AI is mostly used in design and monitoring 
domain. However, novel techniques such as 3D and 4D printing and 
robotics are starting to get popular. 

Pan and Zhang [114] reviews the future trends in AI in construction 
industry as illustrated in Fig. 21. Smart robotics, Cloud Virtual Reality 
(VR)/Augmented Reality (AR), Artificial Intelligence of Things (AIoT), 
Digital Twins, 4D printing and blockchain were listed as most promising 
AI-assisted technologies which will prevail in the future construction 
industry. These technologies are currently being widely researched and 
in future, direct applications in the construction field are anticipated. 
Robotics are already prevalent in manufacturing settings and recycling 
process. However, AI-enabled robotics can become prominent in the 
construction industry for applications such as module fabrication for 
prefabricated buildings, additive manufacturing, brick and block laying, 
welding, and rebar tying [219]. 

Cloud VR/AR is the deployment of AR/VR technologies in the cloud 
so that continuous sharing of VR/AR technologies can be performed 
across multiple devices. AR adds a layer of digital objects to the actual 
environment which augments the reality, and this can be viewed using a 
mobile device or another viewing device. VR generates an immersive 
experience in a virtual environment containing computer-generated 
imagery. This cloud VR/AR technologies will become predominant in 
applications such as BIM incorporated clash detection, worker education 
and training and architectural model refinements. AIoT incorporated AI 
algorithms to IoT for an efficient operation. IoT can generate vast 
amounts of data which can be processed using AI algorithms to make 
accurate predictions. AIoT can assist in automating and remote-control 
construction operations, yield accurate predictions for construction 
project planning and maintenance. 

Digital twins generate a digital replica of a building, and this replica 
can continuously evolve with time as more data become available dur-
ing the lifecycle of the building. AI technology can be combined with 
digital twins to improve the accuracy of the digital twin models and 
continuously advance these models based on the massive amounts of 
data collected during the construction phase and remaining lifecycle of 

Fig. 21. Future trends of applications of AI in construction 4.0 [114].  
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the building. 4D printing extends the additive manufacturing technol-
ogy to another dimension to incorporate time-dependent variation of the 
printed model influenced by various factors such as heat, pressure, 
electricity and magnetism. This technology is still at its inception and in 
future, 4D printed structures with materials such as concrete, geo-
polymer and mortar can be expected which can change its true form 
influenced by external stimuli. AI can be linked with 4D printing similar 
to the 3D printing process to develop generative designs, modeling and 
prediction of robotic arm motion and quality control of printed ele-
ments. Blockchain refers to a linked series of block of data which forms a 
distributed ledger. This facilitates a distributed, encrypted, and secure 
recording of digital transactions. In the construction field, blockchain 
concepts can be applied into predictive asset maintenance, accelerated 
payment processing and streamlined supply chains. Furthermore, ap-
plications of blockchain in the construction industry have been reported 
in integration with BIM as a procurement solution [220], implementing 
smart contracts including automated delivery of agreed contracts and 
enhanced copyright for project documentation [221], construction 
supply chain management with improved product compliance and 
authenticity [222]. Even though the current applications of blockchain 
in the construction industry are limited, this can be widely used in the 
future with AI as chains of blocks (ledgers) will generate a huge amount 
of data. 

12. Conclusions 

This paper reviews the state-of-the-art applications of AI/ML/DL 
algorithms in building and construction industry 4.0 with a special focus 
on the domains of architectural design and visualization; material 
design and optimization; structural design and analysis; offsite 
manufacturing and automation; construction management, progress 
monitoring and safety; smart operation, building management and 
health; and sustainability, life cycle analysis and circular economy. This 
paper presents a novel investigation into the applications of AI/DL/ML 
in building and construction industry encompassing the complete 
building lifecycle. Researchers have successfully used AI/ML/DL algo-
rithms in these domains to improve and automate the processes in 
building and construction industry and following conclusions can be 
drawn from this review article:  

• ML and DL are the core of AI-based applications and these are being 
extensively used in the construction industry due to the enhanced 
computational capacity and the massive amounts of data generated.  

• Generative deep learning models such as GANs and VAEs are widely 
used for automated architectural generative design in applications 
such as floor plan generation, innovative conceptual designs and 
indoor scene synthesis.  

• ML algorithms are widely used in property prediction of construction 
materials such as concrete, steel, timber and these algorithms can 
assist in optimization of materials to develop cost-effective, sus-
tainable, and robust materials and composites.  

• AI assisted structural design is still at its inception. However, other 
application of ML/DL models in structural domain such as strength 
and performance prediction of structural elements, buckling and 
fatigue analysis are prevalent.  

• AI techniques can be incorporated into offsite manufacturing and 3D 
printing of buildings to enhance the efficiency in manufacturing, 
facilitate automated design for manufacture and assembly of 
modular systems and robotic arm path improvements. Also, smart 
vision can be used to automate the manufacturing process and 
quality control.  

• Smart buildings and cities can generate massive amounts of data 
which can be processed using AI algorithms to develop intelligent 
systems which can improve the operational efficiency including en-
ergy and emission and user comfort.  

• Sustainable disposal of end-of-life buildings can be carried out 
though recycling construction demolition waste through AI enabled 
robot systems and these robotic sorting systems can be used to sort 
and recycle any waste material type promoting circular economy. 

From this review paper, it could be seen that the widespread appli-
cations of AI in industry 4.0 domain is prevalent. However, use of smart 
vision technologies with AI is becoming more popular due to the ad-
vances in colour cameras and hyperspectral cameras, improvements in 
the computational capacity to process streaming data with high pixel 
densities, seamless integration of computer vision with deep learning 
algorithms and advances in the deep learning algorithms for classifica-
tion and object detection. Robotics is becoming popular as the end of the 
pipeline operators when combined with computer vision and AI algo-
rithms. Construction 4.0 can accelerate the digital transformation of the 
construction industry, and this will generate massive amounts of data 
that can be used effectively to improve operational efficiency, make 
informed decisions, drive innovation and growth and enhance sustain-
ability. As this research paper suggested, most of the applications of AI 
in the construction domain are still in the research phase with only a few 
companies offering promising commercial solutions. However, it can be 
forecasted that this will soon be changed considering the exponential 
growth of AI applications research and the highly successful outcomes. 

The future evolution of Building and Construction 4.0 into Building 
and Construction 5.0 will close the gap and add the missing ingredient 
intelligence. This enables us to combine the power of intelligent, precise, 
and accurate machinery with human creativity and ingenuity. Also, 
adopting AI in a human-centric manner will result in environmentally 
friendly manufacturing and personalized solutions. Intelligent, human- 
centered design, manufacturing, and maintenance will emerge as AI 
advances to Construction 5.0. Cost optimization and reduction of human 
factor failure are other advantages. In future, customers will benefit 
from more personalized designs with 3D printing. Smart cities 
communicate and collaborate with AI and humans, 3D printed and 
optimized prefab modules, AI-based notifications for regular mainte-
nance, and more energy-efficient generative designs will be important in 
meeting the global goal of reducing carbon equivalent emissions in the 
future. 

Furthermore, collaborative robots will gain market share in the 3D 
printing robot industry. Advanced systems will control different mate-
rials that behave differently during the printing process, as well as 
printing process parameters such as layer thickness and material mass. 
AI-enabled cobot systems will recognize the materials used in the 
printers and configure the jobs accordingly. During the printing process, 
additional cobots will embed supplementary elements such as sensors 
and other personalized items. Future 3D printing techniques, with more 
personalized AI integration, will enable a much faster iterative loop of 
initial production, component testing, and creation of a redesigned ob-
ject in both prefabricated and onsite construction. As a result, processes 
that take weeks now will be able to be completed in hours in the future. 
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