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Abstract—Feature selection, which aims to improve the classification accuracy and reduce the size of the selected feature subset, is

an important but challenging optimization problem in data mining. Particle swarm optimization (PSO) has shown promising

performance in tackling feature selection problems, but still faces challenges in dealing with large-scale feature selection in Big Data

environment because of the large search space. Hence, this article proposes a bi-directional feature fixation (BDFF) framework for

PSO and provides a novel idea to reduce the search space in large-scale feature selection. BDFF uses two opposite search directions

to guide particles to adequately search for feature subsets with different sizes. Based on the two different search directions, BDFF can

fix the selection states of some features and then focus on the others when updating particles, thus narrowing the large search space.

Besides, a self-adaptive strategy is designed to help the swarm concentrate on a more promising direction for search in different stages

of evolution and achieve a balance between exploration and exploitation. Experimental results on 12 widely-used public datasets show

that BDFF can improve the performance of PSO on large-scale feature selection and obtain smaller feature subsets with higher

classification accuracy.

Index Terms—Bi-directional feature fixation (BDFF), evolutionary computation, feature selection, large-scale, particle swarm optimization

(PSO)

Ç

1 INTRODUCTION

FEATURE selection is the process of selecting a portion of
features relevant to the labels in classification problems

and removing redundant or noisy features from the entire
feature set. The goal of feature selection is to select as few

features as possible while maximizing the discriminative
capability of the selected features. As feature selection can
reduce the data dimensionality and the difficulty of analyz-
ing and solving problems, it has become an effective data
preprocessing method in many fields [1], [2].

Feature selection is essentially a binary discrete optimiza-
tion problem and has been proved to be NP-hard [3], [4].
Most existing feature selectionmethods can be roughly classi-
fied into three categories: filter methods, wrapper methods,
and embedded methods [5], [6]. Filter methods analyze the
features through some statistical or informatics methods and
then select the features with high scores. Wrapper methods
search for the optimal feature subset by evaluating all candi-
date subsets on a specific problem. Embedded methods usu-
ally embed feature selection into the training process of
machine learning through regularization [7], [8]. In general,
wrappermethods perform better than filter methods in classi-
fication accuracy and have a larger scope of application than
embeddedmethods [9]. Evolutionary computation (EC) tech-
niques are powerful in solving variants of NP-hard optimiza-
tion problems [10], [11], [12], [13] and they have been widely
applied as wrapper methods for feature selection due to their
excellent global search ability [14]. Particle swarm optimiza-
tion (PSO) is a representative EC technique first proposed by
Kennedy and Eberhart [15]. Compared with other EC meth-
ods, PSO has the advantage of simple implementation and
fast convergence [16], thus becoming an effective method for
feature selection [9], [14]. Therefore, this paper focuses on
PSO-basedmethods to solve feature selection problems.
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Due to the development of the Big Data era, data from
various application fields also grows with the increment of
the number of features. In general, the potential search
space for feature selection with D features is 2D and it grows
exponentially when the number of features increases. Under
this circumstance, PSO methods face two challenges. Firstly,
they require more computational resources for the evalua-
tions of candidate feature subsets. Secondly, the search abil-
ity of these PSO methods drops sharply because of “the
curse of dimensionality” [17], [18], [19], [20], [21].

Therefore, many PSO variants have been proposed for
large-scale feature selection recently. They can be roughly
divided into two categories. In the first category, PSO-based
algorithms aim to design a more effective and reasonable
evolutionary mechanism for particles to improve their per-
formance on large-scale feature selection problems [22][23]
[24]. In the second category, PSO-based algorithms use
some correlation measures to indicate the importance of
each feature and focus on searching for solutions formed by
features with more importance in the subsequent search
process [25][26][27][28][29][30]. These correlation-based
algorithms usually perform better because they can narrow
the search space according to the correlation measures.
However, they still face the following three challenges.
Firstly, the implementation of these algorithms is more
complicated than those in the first category because of addi-
tional correlation measurement methods or control mecha-
nisms based on correlation. Secondly, the correlation
information of features is sometimes difficult to obtain. For
example, the cost of correlation computing is expensive in
high-dimensional data, and the commonly used entropy-
based correlation measures are difficult to estimate
accurately on continuously distributed observations [31].
Thirdly, the correlation analysis is usually incomplete
because it is time-consuming to calculate correlation values
of all feature combinations and it is difficult to calculate a
proper correlation value of multiple variables. Usually, only
correlations between two single variables, e.g., correlations
between two single features or correlations between a single
feature and the label, are considered in the correlation anal-
ysis. In other words, the correlation information of feature
subsets composed of multiple features is always missed,
which affects the correctness of analyzing feature impor-
tance. Thus, over-reliance on incomplete correlation analy-
sis results may mislead particles and prevent them from
finding optimal solutions.

Nevertheless, correlation-based algorithms are effective
methods for large-scale feature selection by focusing on a
portion of important features specifically rather than on all
features equally, even though there are still some challenges
as mentioned above. To overcome the above challenges
faced by traditional correlation-based algorithms, an algo-
rithm that can narrow the search space but does not over-
rely on correlation measures is greatly expected. Therefore,
this paper proposes a novel framework named bi-direc-
tional feature fixation (BDFF) for PSO. The main novelties
and contributions of BDFF can be summarized as follows.

(1) Using bi-direction guidance when updating particles
to fully search for solutions with different numbers of
selected features. Many existing feature selection algorithms
consider the number of selected features in their fitness

evaluation to find a solution with fewer features [26], [28],
[32][33][34][35][36]. Different from those existing algo-
rithms, BDFF does not need to consider the number of
selected features in its fitness function, so it simplifies the
fitness evaluation. Instead, it uses the information of the
number of selected features to update particles and can also
help particles find solutions with fewer features.

(2) Narrowing the search space by the feature fixation
strategy to improve search efficiency. Therefore, BDFF can
not only reduce the search space but also reduce the diffi-
culty of searching for a better solution.

(3) Proposing a self-adaptive direction change (SADC)
strategy for particles so that they can change the search
direction adaptively with the information provided by the
swarm. With the SADC strategy, particles can switch the
state of each feature between being fixed and not being fixed
dynamically, which increases the flexibility of feature fixa-
tion and further improves their search ability.

(4) Having advantages in simple implementation and fine-
grained control. BDFF is not complex to be implemented and
can be easily applied to many existing PSO-based feature
selection algorithms. Besides, BDFF has a small control granu-
larity because it takes the neighborhood containing only sev-
eral features as the basic unit for fixation.

The rest of this paper is organized as follows. In Section 2,
the related work of applying PSO to feature selection is pre-
sented. Section 3 introduces the detailed implementation of
the proposed BDFF for PSO. The experimental results and
analysis of BDFF are given in Section 4. Finally, Section 5
concludes this paper.

2 RELATED WORK

2.1 Feature Selection Problem

The feature selection problem is a binary discrete optimiza-
tion problem, which means that the optional values for each
dimension are “0” or “1”. Assuming that there are D fea-
tures in the data, the solution for the feature selection prob-
lem can be represented by a D-dimension vector x. The
binary value of “1” or “0” at the dth dimension xd represents
the dth feature is selected or not selected, respectively. Then,
the goal of the feature selection optimization problem is to
select a feature subset from the D features to maximize the
discriminative capability f(x) of the data, as shown in
Eq. (1). For example, in classification problems, f(x) can be
the classification accuracy of the selected feature subset,
and the goal of feature selection is to maximize f(x).

max fðxxxxxxxÞ
s:t: xxxxxxx ¼ ðx1; x2; . . . ; xDÞ

xd 2 f0; 1g; d ¼ 1; 2; . . . ; D
(1)

2.2 PSO-Based Algorithms for Large-scale Feature
Selection

Most existing PSO-based algorithms for feature selection
can be divided into two categories: one of the categories
tries to use different mechanisms to help particles search
effectively, while the other utilizes the correlation informa-
tion to gain further improvement.

The first category of algorithms focuses on designing dif-
ferent evolutionary mechanisms for feature selection to
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improve their performance. For example, the earliest PSO-
based algorithm that can be used for feature selection is
binary PSO (BPSO) proposed by Kennedy and Eberhart
[37], which used the velocity of particles to represent the
probability of a feature being selected. After BPSO, many
PSO-based algorithms attempted to improve the encoding
representation, the initialization strategy, the updating
mechanism, and the evaluation function of PSO to obtain a
better performance on feature selection and 0/1 problems.
Xue et al. [38] proposed a PSO-based approach with novel
initialization strategies and updating mechanisms for fea-
ture selection. Shen et al. [39] developed a bi-velocity dis-
crete PSO (BVDPSO) using the two velocities of particles to
respectively represent the possibilities of being 1 and 0. Gu
et al. [23] discretized the competitive swarm optimizer
(CSO) [40] and applied CSO to large-scale feature selection
problems. Later, the potential PSO proposed by Tran et al.
[41] used potential entropy-based cut-points to discretize
values of each feature and then encoded the particles with
those discrete values. In self-adaptive PSO introduced by
Xue et al. [24], multiple candidate solution generation strat-
egies were applied simultaneously by a self-adaptive mech-
anism to increase the diversity of the swarm.

In the first category, although many different mecha-
nisms have been proposed to enhance the search ability of
particles, few of them can distinguish which features are
worth further searching. Therefore, they always treat all fea-
tures equally and keep searching for solutions by consider-
ing the entire feature set, which wastes computational
resources and makes it difficult to find a better solution.

The second category of PSO-based algorithms uses cor-
relation measures as an auxiliary tool to figure out the
weight of importance of each feature, which shows more
potential for large-scale feature selection and has
attracted great attention in recent years. Commonly used
correlation measures are based on similarity or informa-
tion theory [31], [42], including Relief-F [43], mutual
information (MI) [44], symmetric uncertainty (SU) [45],
etc. Chuang et al. [46] first used the correlation-based fea-
ture selection as a filter method to select the important
features and then used the BPSO with chaotic theory to
search for the final optimal solution on those important
features. After sorting features with SU measure, Tran
et al. [25] designed the variable-length PSO with local
search (VLPSO-LS) to dynamically shorten the length of
particles thus narrowing the search space. Chen et al. [26]
introduced the evolutionary multitasking framework into
PSO, which identified a promising feature subset with
high Relief-F values and generated two related tasks on
the promising feature subset and the whole feature set,
respectively. Song et al. [27] proposed the variable-size
cooperative coevolutionary PSO, which employed a space
division strategy based on SU measure and allocated a
larger subswarm for those features that were more rele-
vant to the label. Besides, the PSO variant developed by
Chen et al. [28] generated new particles with a correla-
tion-guided updating strategy and those features with
higher correlation were more likely to be selected. To
reduce the computational cost, Song et al. [29] proposed a
hybrid feature selection algorithm named HFS-C-P that
used SU measure to discard low-correlation features and

to cluster features so that it could search in a small solu-
tion space. In [47], the SU measure was also used to dis-
tinguish relevant and redundant features in the local
search strategy and to affect the mutation probability in
the adaptive flip mutation strategy.

In the second category, the correlation-based PSO
algorithms can narrow the search space because they can
point out promising features and then focus on those
promising features rather than all features. However,
they still face the following challenges. First, the calcula-
tion of correlations is time-consuming. To obtain the cor-
relations between D features and the label, the time
complexity is O(D). If the correlations among features
are also required, the time complexity will rise dramati-
cally to O(D2), which does matter in large-scale feature
selection problems in Big Data environments. Second,
due to the high computational consumption, correlations
between groups of multiple features are rarely consid-
ered, so the correlation information used to assist PSO is
incomplete in most cases. Third, the entropy-based corre-
lation measures such as MI and SU can only be applied
to datasets with continuous numerical features by discre-
tization [31], [42] or non-parametric estimation methods
[48], which increases the difficulty of their application
and weakens the stability of their performance on differ-
ent data.

2.3 Bare Bones PSO

Bare bones PSO (BBPSO) proposed by Kennedy [49] is a
simple but efficient PSO variant. It drops the velocity part in
the standard PSO and only uses the historical optimal posi-
tion found by each particle and the global optimal position
found by the swarm so far to update the position of each
particle, as shown in:

xi;d ¼ N
�

pbesti;dþgbestd
2 ; pbesti;d � gbestd

�� ���; if r < 0:5

pbesti;d; otherwise

(
(2)

where xi,d is the dth dimension of the position of the ith par-
ticle, pbesti,d is the dth dimension of the historical optimal
position found by the ith particle, gbestd is the dth dimension
of the global optimal position found by the swarm so far,
N ðm; sÞ is a Gaussian distribution with a mean m and a var-
iance s, and r is a random value uniformly sampled within
[0, 1].

To help particles escape from the local attractor and per-
form better in feature selection, Qiu [22] introduced an
adaptive chaotic jump (ACJ) strategy into BBPSO and then
proposed BBPSO-ACJ. Chaos is a non-linear system and
unpredictable. When BBPSO-ACJ is combined with a cha-
otic system, it can help the stagnated particles change their
positions greatly and jump out of the trapped local optima.
Therefore, swarm diversity can be promoted and the global
search ability can be greatly enhanced. The position of each
particle in BBPSO-ACJ is updated by:

xi;d ¼ N
�

pbesti;dþgbestd
2 ; pbesti;d � gbestd

�� ���; if r > Pcj;i

pbesti;dð1þ ð2zk � 1ÞÞ; otherwise

(
(3)

where Pcj;i is the probability of the ith particle performing
the chaotic jump, and zk 2 ð0; 1Þ is a value of a chaotic
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sequence generated with Eq. (4) every time it is used.

zk ¼ 0:13; k ¼ 0
4zk�1ð1� zk�1Þ; k � 1

�
(4)

To balance the convergence speed and the diverse swarm,
BBPSO-ACJ designs a strategy tomake Pcj;i related to the stag-
nant generations si, i.e., generations without fitness improve-
ment of the ith particle. Therefore,Pcj;i can be calculated by:

Pcj;i ¼ 1

1þ e2�si
(5)

Moreover, BBPSO-ACJ employs a method to decode the
position of a particle into the representation of the selected
feature subset. If the value of xi,d is greater than 0.5, then the
dth feature will be selected into the feature subset; other-
wise, the dth feature will be discarded.

3 BI-DIRECTIONAL FEATURE FIXATION

FRAMEWORK

In this section, the proposed BDFF for PSO to solve large-
scale feature selection problems is introduced. First, the
main idea of BDFF is given to illustrate how BDFF works
with different search directions. After introducing the search
direction initialization and the feature neighborhood repre-
sentation, the details about feature fixation and the self-adap-
tive direction change strategy are discussed. Finally, the
overall framework of BDFF is presented.

3.1 Main Idea of Design

A common initialization method for position x of a particle
in PSO-based feature selection algorithms is to randomly
select some features, as shown in:

xi;d ¼ 1; if r > 0:5
0; otherwise

�
(6)

where xi,d is the dth dimension of the ith particle. Since each
feature has an equal probability of being selected and being
not selected, the particles in the initial swarm have a mathe-
matical expectation of the feature number which is equal to
one-half of the total feature size. Focusing on the fact that
the number of selected features contained in the global opti-
mal solution can be greater or less than the mathematical
expectation of the number of selected features contained in
the initial particles, the BDFF framework is hence proposed.

The main idea of BDFF is to guide some particles to search
for solutions with more features and the other particles to
search for solutions with fewer features after initialization. As
the particle swarm evolves and acquires new information,
BDFF then changes the search direction of some particles adap-
tively to help the swarmapproaches the global optimal solution
in terms of the feature number aswell as the fitness value.

Without loss of generality, BDFF also adopts Eq. (6) for par-
ticle initialization. Assuming that there is a datasetwithD fea-
tures for selection, and the global optimal solution contains
fewer thanD/2 selected features. Herein we give an example
of the evolution process guided by BDFF, as shown in Fig. 1.
After initialization, all particles in the swarm S select around

D/2 features, and their fitness values are poor. Then, the par-
ticles are divided evenly into two subswarms with different
initial search directions. One subswarm SSu (composed of
particles with upward arrows in Fig. 1) searches in the solu-
tion space with more thanD/2 features. The other subswarm
SSl (composed of particles with downward arrows in Fig. 1)
searches in the solution space with fewer than D/2 features.
Each particle can judge whether it is in the correct direction,
i.e., the direction that is more likely to guide it to find the
global optimal solution, according to the information from
the whole swarm. For example, in Fig. 1, the particles in SSu
with upward arrows are probably in the wrong direction,
because their fitness values are worse than those of the par-
ticles searching in the opposite direction (i.e., particles with
downward arrows). Therefore, it is necessary to adjust the
search direction of someparticles in SSu in time to avoid a use-
less search, while the rest particles in SSu are still reserved for
exploration. Eventually, most of the particles gather together
in one of the subswarms with similar fitness values and fea-
ture numbers to the global optimal solution.

In a feature selection problem, an optimal solution means
that it should contain as fewer features as possible under the
premise of optimal fitness (i.e., discriminative capability like
Eq. (1)). To approach the optimal solution, most of the exist-
ing EC-based feature selection algorithms consider reducing
the number of selected features and optimizing fitness at the
same time in their evaluation. However, reducing the num-
ber of selected features is not the core goal of feature selec-
tion. Therefore, these EC-based algorithms may be misled
by such consideration to focus on finding a feature subset
with fewer features and ignore the importance of discrimi-
native capability. Differently, the proposed BDFF frame-
work adopts a novel technique named feature fixation to
approach the optimal solution. With feature fixation, BDFF
only needs to consider optimizing discriminative capability
in its evaluation, and the size of the selected feature subset
can be optimized automatically in its update process. For
example, if the classification accuracy is adopted as the fit-
ness function in the classification problem, then the only
goal of BDFF is to maximize the classification accuracy.

3.2 Initialization of Search Direction

There are two search directions for particles: the direction of
searching for solutions with more features and the direction

Fig. 1. Evolution process of the particles guided by BDFF.
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of searching for solutions with fewer features. Supposing
that there are N particles in the swarm, the search direction
of the ith particle pi is initialized by:

dirðpiÞ ¼ dirl; if i � N
2

diru; otherwise

�
; i ¼ 1; 2; . . . ; N (7)

where dir(pi) returns the search direction of pi, and dirl and
diru are search directions representing that pi searches for
solutions with fewer features and searches for solutions
with more features, respectively. After initialization, par-
ticles with direction dirl are in subswarm SSl, and the other
particles with direction diru are in subswarm SSu.

3.3 Representation of Feature Neighborhood

To ensure the subsequent feature fixation can be carried out,
we introduce the representation of feature neighborhood
here, which has two purposes. First, feature neighborhood
can provide common information among adjacent features,
and considering the features in the same neighborhood as a
whole can make the search more efficient. Second, the use
of feature neighborhood can gain a fine-grained control for
the feature fixation and avoid fixing too many features at a
time.

Assuming that there are D features in the data, each fea-
ture neighborhood consists of T adjacent features, then all
features can be divided into R feature neighborhoods and R
is calculated by:

R ¼ D

T

� �
(8)

where symbol d�e represents the ceiling function. If the num-
ber of features in the last neighborhood is less than T, extra
features with random selection states will be added to the
neighborhood as the stuff-bits. An example of neighbor-
hood division with T ¼ 3 is shown in Fig. 2, where value 1
indicates that the feature is selected, and value 0 indicates
that the feature is not selected.

To strengthen the correlation between two features in
the same neighborhood, SU values between features and
the label of the dataset are used to sort all features
before the neighborhood division. After being sorted by
SU, features in the same neighborhood have a similar
correlation for labels, thus they are more integrated and
can be regarded as a whole in the feature fixation stage.
The SU value between a feature F and the class label C
can be calculated as:

SUðF; CÞ ¼ 2
HðF Þ �HðF jCÞ
HðF Þ þHðCÞ (9)

where H(F) and H(C) are the entropies of F and C, and H
(F jC) is the conditional entropy of Fwhen C is given. Notice

that SU is only used for the feature sorting at the beginning
of BDFF, but does not play a dominant role in feature fixa-
tion. More importantly, BDFF still works well without the
assistance of feature sorting by SU, which can be verified in
Section 4.6.

Algorithm 1. Particle Position Update with Feature
Fixation

Input: The ith particle pi to be updated, the total number of fea-
tures D, the number of features T in feature neighborhood, the
historical optimal position pbesti of pi, the position xi of pi
Output: The updated particle pi
BEGIN
1: FOR j ¼ 1 toDDO
2: Calculate the neighborhood index k ¼ b j = T c þ 1;
3: IF dir(pi) ¼ ¼ dirl THEN
4: IF no feature inneighborhoodk is selected in pbestiTHEN
5: xi,j  pbesti,j;
6: CONTINUE;
7: END IF
8: ELSE
9: IF all features inneighborhoodk are selected inpbestiTHEN
10: xi,j  pbesti,j;
11: CONTINUE;
12: END IF
13: END IF
14: Use any chosen position update mechanism to update xi,j;
15: END FOR
16: RETURN pi;
END

3.4 Feature Fixation Guided By Search Directions

Feature fixation, which is the core part of the BDFF
framework, aims to fix some features and keep their
selection states unchanged when the particle is being
updated. The feature fixation process of each particle is
guided by its current search direction and uses the fea-
ture neighborhood as the basic unit. When the condition
of feature fixation meets, all features in the same neigh-
borhood will be fixed as a whole until the search direc-
tion changes.

Supposing that there is a particle pi in the subswarm SSl,
its condition of feature fixation can be described as follows.
If none of the features in a feature neighborhood are
selected in the historical optimal position of pi (i.e., the
pbesti), all these features in the neighborhood will be fixed
as a whole. Then in the newly generated position xi of pi, the
fixed features will be kept unselected and have the same
selection states as what they have in the pbesti. As more fea-
ture neighborhoods are fixed with the guidance of the
search direction dirl, the number of selected features in the
new xi will become less. Thus, pi can search for feature sub-
sets with fewer features. On the contrary, if pi is in the other
subswarm SSu, the features in the same neighborhood will
be fixed and kept selected if all of these features are selected
in the pbesti. Then more selected features will be contained
in the new xi, and pi can search for a feature subset with
more features.

The pseudo-code of feature fixation in the particle update
procedure is given in Algorithm 1. If the feature

Fig. 2. An example of division for feature neighborhoods.
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neighborhood is fixed, its corresponding dimension values
of xi will be the same as those in pbesti. Otherwise, the
dimension values of xi will be updated by the update mech-
anism of any chosen PSO-based algorithm in the first cate-
gory mentioned in Section 2.2.

An example of a feature fixation procedure carried out by
a particle is shown in Fig. 3. In the k – 1 generation, the
search direction of a particle is dirl, i.e., searching for solu-
tions with fewer selected features. Therefore, only feature
neighborhoods with no features selected (i.e., with T zeros)
in the pbestk-1 are fixed. Then in the k generation, this parti-
cle turns to the opposite direction diru, i.e., searching for sol-
utions with more selected features. Therefore, the
previously fixed neighborhoods are canceled fixation and
can be updated, while those neighborhoods with all features
selected (i.e., with T ones) are fixed and will be kept
unchanged in the next generation until the search direction
changes again.

Besides guiding particles to search for solutions with dif-
ferent numbers of features, feature fixation has three extra
advantages. Firstly, no matter which search direction the
particle is currently in, feature fixation can reduce the num-
ber of features that each particle needs to search, thus nar-
rowing the search space. Secondly, the information of the
fixed features is still retained in the swarm, so other particles
can learn from the information when being updated.
Thirdly, different features are fixed in different particles and
they can be unfixed when the search direction of the particle
is changed, which improves the diversity of the swarm.

3.5 Self-Adaptive Direction Change Strategy

Changing the search direction of each particle in time is the
key to making full use of all particles in the swarm. It is
expected that all particles search in the correct direction so
that none of themdo ameaningless search in thewrong direc-
tion. However, the swarm does not know which direction is
correct at the beginning of the search. Therefore, the SADC
strategy is proposed to help particles determine the correct
direction according to the information gained during the evo-
lution process. Two metrics, i.e., average improvement (AI)
and average fitness (AF), are designed in the SADC strategy
to balance the abilities of exploitation and exploration of the
swarm.

Algorithm 2. SADC Strategy

Input: The swarm S to be changed search direction
Output: The swarm S after changing the search direction
BEGIN
1: Count the number of particles nl and nu in SSl and SSu;
2: IF nl ¼¼ 0OR nu ¼¼ 0 THEN
3: RETURN S;
4: END IF
5: Calculate AIl and AIu of SSl and SSu with Eq. (10);
6: IF AIl < AIu THEN
7: Randomly select a particle pr and dir(pr) ¼ ¼ dirl;
8: dir(pr) diru;
9: END IF
10: IF AIl > AIu THEN
11: Randomly select a particle pr and dir(pr) ¼ ¼ diru;
12: dir(pr) dirl;
13: END IF
14: IF AIl ¼ ¼ AIu THEN
15: Calculate AFl and AFu of SSl and SSu with Eq. (11);
16: IF AFl < AFu THEN
17: Randomly select a particle pr and dir(pr) ¼ ¼ dirl;
18: dir(pr) diru;
19: END IF
20: IF AFl > AFu THEN
21: Randomly select a particle pr and dir(pr) ¼ ¼ diru;
22: dir(pr) dirl;
23: END IF
24: END IF
25: RETURN S;
END

The AI of a subswarm is the average boost fitness value
of the particles in the subswarm within several generations.
Considering that in the kth generation, the value of AI from
generation (k –W) to k is calculated by:

AI ¼ 1

SSj j
X
pi2SS

ðfðpbestpbestpbestpbestpbestpbestpbestki Þ � fðpbestpbestpbestpbestpbestpbestpbestk�Wi ÞÞ (10)

where SS is the subswarm SSl or SSu, jSSj is the size of SS, pi
is a particle of SS, pbesti

k is the historical optimal position of
pi in the kth generation, W is the generation window for AI
calculation, and f is the fitness function. A larger AI value
means that the search direction is more promising and the
particles searching in this direction are more likely to find a
better solution.

The AF of a subswarm is the average fitness value of all
pbests in the subswarm, which can be calculated by:

AF ¼ 1

SSj j
X
pi2SS

fðpbestpbestpbestpbestpbestpbestpbestki Þ (11)

The larger the value of AF is, the better the particles in
the subswarm perform, and the more likely the optimal
solution is to be found in this search direction.

The procedure of the SADC strategy is described in Algo-
rithm 2. First, the number of particles in the two opposite
directions is counted. If there is no particle in one of the
directions, it means that all particles have the same direction
and the correct direction has been determined by the
swarm. Therefore, no particle will change its search

Fig. 3. An example of feature fixation guided by different search
directions.
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direction. Otherwise, a random particle in the direction with
a less AI value will change its direction. Furthermore, if the
AI values of the two directions are the same, a random par-
ticle in the direction with a less AF value will change its
direction. Notice that if the AI values and the AF values of
both directions are the same, all particles will keep their
direction unchanged.

Algorithm 3. Framework of BDFF

Input: The total number of features D, the number of features
in a feature neighborhood T, the maximum number of fitness
evaluations MAX_FE, the size of the swarm N, window of gen-
erations for changing directionW
Output: The global optimal solution found by the swarm gbest
BEGIN
1: Set the number of fitness evaluations FEs 0;
2: Initialize the swarm with Eq. (6);
3: Initialize the search direction of each particle with Eq. (7);
4: Sort features with SU;
5: Divide D features into R feature neighborhoods;
6: k 1;
7: WHILE FEs <MAX_FEDO
8: FOR i ¼ 1 to NDO
9: Update xi of particle pi with Algorithm 1;
10: Evaluate xi and update pbesti;
11: END FOR
12: Update gbest;
13: IF k % W ¼ ¼ 0 THEN
14: Change search direction of pi with Algorithm 2;
15: END IF
16: k k þ 1;
17: ENDWHILE
18: RETURN gbest;
END

The SADC strategy can be divided into two stages: early
exploration and late exploitation. In the early stage, the SADC
strategy prefers the search direction corresponding to the sub-
swarm with a greater AI value even if its AF value is worse.
Because the AF values of both SSl and SSu are at a poor level
in the early stage, a subswarmwith betterAFmay not indicate
that its direction is correct. Instead, a more promising direc-
tionwith better AI isworthy of greater efforts to search, which
enhances the exploration ability of the swarm S. In the late
stage, the AI values of both SSl and SSu are likely to be the
same and equal to 0. Then the SADC strategy encourages S to
search in the direction corresponding to the subswarm with
better AF, which enhances the exploitation ability of S. With
the twometrics to assess the search directions of particles, the
SADC strategy can make the trade-off between the explora-
tion and the exploitation in different stages.

3.6 Overall Framework

The overall framework is described in Algorithm 3. First, each
particle is initialized and assigned a search direction. Then,
the features are sorted by SU and divided into feature neigh-
borhoods. In each generation, particles fix some feature neigh-
borhoods according to their search directions and only update
those features that are not fixed, thus reducing the combina-
tions of features to search and narrowing their search space.
After every W generations, BDFF adjusts the search directions

of particles adaptively to balance the exploration ability and
the exploitation ability of the swarm. Noting that there is no
specific update mechanism for the position in the BDFF frame-
work. Therefore, most PSO-based algorithms thatmainly focus
on designing different evolutionary mechanisms and
have no mechanism to narrow the search space can be
adopted in the framework of BDFF. In this paper, we
adopt the update mechanism of BBPSO-ACJ mentioned
in Section 2.3.

The time complexity of BDFF is O(MAX_GEN � N �
(DAU þ TE)), where MAX GEN is the maximum number of
generations, N is the size of the swarm, DAU is the average
number of unfixed features of the whole swarm, and TE is
the time complexity of evaluating a particle. Usually, DAU is
less than the total number of features D in the BDFF frame-
work. In the worst case, the time complexity of BDFF is O
(MAX GEN � N � ðD þ TEÞ).

4 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, experiments are carried out to evaluate the per-
formance of BDFF on twelve public large-scale feature selec-
tion problems comparedwith other PSO-based algorithms.

4.1 Datasets

We used twelve public datasets for feature selection in the
experiments and the detailed information is listed in Table 1,
where symbol “#” means the number of corresponding
items. All the used datasets are for classification problems
and can be accessed from [26] and [31]. A common charac-
teristic of the twelve datasets is that they have a small num-
ber of samples but a large number of features, which makes
it difficult to solve the classification problems.

4.2 Algorithms for Comparison and Parameter
Settings

All the used algorithms and their parameter settings are
listed in Table 2. The proposed BDFF using the update
mechanism of BBPSO-ACJ is named BBPSO-ACJ-BDFF. We
used six PSO-based algorithms which can be used in feature
selection for comparison. BPSO [37], BVDPSO [39], BBPSO-
ACJ [22], and CSO [23] can be classified in the first category
as mentioned in Section 2.2. BPSO and BVDPSO are two
typical PSOs for binary optimization problems and they are

TABLE 1
Detailed Information of Datasets

Dataset #Samples #Features #Classes Data Type

Colon 62 2000 2 discrete
WarpAR10P 130 2400 10 continuous
GLIOMA 50 4434 4 continuous
Leukemia_1 72 5327 3 discrete
9_Tumor 60 5726 9 continuous
TOX_171 171 5748 4 continuous
Brain_Tumor_1 90 5920 5 continuous
Nci9 60 9712 9 discrete
Arcene 200 10000 2 continuous
CLL_SUB_111 111 11340 3 continuous
Lung_Cancer 203 12600 5 continuous
SMK_CAN_187 187 19993 2 continuous

1010 IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 3, MAY/JUNE 2023



treated as the baseline methods. CSO and BBPSO-ACJ are
algorithms specifically proposed for large-scale feature
selection problems recently. VLPSO-LS [25] and HFS-C-P
[29], both of which are representative and very new algo-
rithms in the second category, use the correlation to get
information on the importance of features and then focus
on features with higher importance to narrow the search
space. The parameter settings of the compared algorithms
are the same as those in their corresponding papers. Since
the swarm size N of each algorithm is different, we limited
the maximum number of fitness evaluations (MAX_FE) for
all algorithms to 5000.

For classification problems, we chose the k-nearest neigh-
bor (k-NN) method as the classifier because k-NN has a sta-
ble classification performance on different datasets [50]. The
parameter k of k-NN was set to be 5 in the experiments.
First, 70% of samples in each dataset are randomly selected
as the training dataset and the remaining 30% of samples
are reserved as the test dataset. Then the classification accu-
racy obtained by k-NN with 5-fold cross-validation on the
training dataset was adopted as the evaluation function for
all algorithms in the training process. After training, the
best feature subset found by each algorithm will be tested
on the test dataset with the k-NN classifier to get its classifi-
cation accuracy. Each algorithm was run 20 times on each
dataset independently with different random seeds to
reduce random statistical errors in the results. To verify the
significant difference between different algorithms, we
employ the Wilcoxon rank sum test [51] on the experimental
results with a significance level of 0:05. Three symbols are
used to indicate the Wilcoxon rank sum test results: symbols
“þ” and “–” indicate that our proposed algorithm is signifi-
cantly superior to and inferior to the compared algorithm,
respectively, while symbol “¼” indicates that there is no sig-
nificant difference between our algorithm and the compared
algorithm.

All algorithms were implemented in Cþþ with an open-
source library named Feature Selection Toolbox 3 [52]. In
terms of the hardware environment, experiments were car-
ried out on a platform with an Intel Core i7-10700F CPU
@2.90GHz and a total memory of 8 GB.

4.3 Comparison Results and Discussion

The average classification accuracy, number of selected fea-
tures, and running time obtained by the seven algorithms
over 20 independent runs on the 12 datasets are compared
in Tables 3, 4, and 5, respectively, where the value in bold
represents the best result among all algorithms.

Compared with BPSO, BVDPSO, CSO, and BBPSO-ACJ,
our BBPSO-ACJ-BDFF performs better on most datasets,
obtaining a higher or similar classification accuracy but a
much smaller subset of selected features. The classification
accuracy of BBPSO-ACJ-BDFF is superior to or similar to
those of the four algorithms on all datasets except datasets
TOX_171 and Brain_Tumor_1. In terms of the number of
selected features, BBPSO-ACJ-BDFF has a significantly better
performance than BPSO, BVDPSO, and BBPSO-ACJ on most
datasets. On 6 of the 12 datasets, BBPSO-ACJ-BDFF requires
fewer features than CSO while achieving better or similar
accuracy. In addition, the average running time of BBPSO-
ACJ-BDFF is less than BPSO, BVDPSO, CSO, and BBPSO-ACJ
on most datasets. Not only the feature fixation strategy but
also the smaller feature subsets found by BDFF help BBPSO-
ACJ-BDFF spend less time searching for the best solution.

Compared with VLPSO-LS, BBPSO-ACJ-BDFF obtains a
higher classification accuracy on 3 datasets and a similar clas-
sification accuracy on 8 datasets. Considering all datasets,
BBPSO-ACJ-BDFF with a rank sum of 38 outperforms
VLPSO-LS with a rank sum of 45 on the classification accu-
racy. Though VLPSO-LS can find a smaller feature subset on
some datasets, it always spends much more time searching
for solutions than BBPSO-ACJ-BDFF, as shown in Table 5.
This is because the local search strategy of VLPSO-LS requires
the correlation result between each pair of features, which is
time-consuming especially on datasets with a large number of
features and samples. On the contrary, BBPSO-ACJ-BDFF
only requires the correlation result between each feature and
the class label, so it spends less time thanVLPSO-LS.

Comparedwith HFS-C-P, BBPSO-ACJ-BDFF has a signifi-
cantly better classification accuracy on 3 datasets and a simi-
lar accuracy on 8 datasets. BBPSO-ACJ-BDFF also obtains a
smaller feature subset on 6 datasets than HFS-C-P. Overall,
BBPSO-ACJ-BDFF has a more consistent performance than
HFS-C-P on different datasets. For example, HFS-C-P
achieves the highest accuracy on datasets WarpAR10P and
9_Tumor, while it gets the lowest accuracy on datasets Leu-
kemia_1 and Arcene. A possible reason to explain the poor
performance of HFS-C-P on some datasets is that it relies
much on the correlation to filter irrelevant features and clus-
ter relevant features, which greatly affects the final result.
When sometimes the correlation measures cannot indicate
the importance of features accurately, particles may be mis-
led by such information and finally find poor solutions. On
the contrary, the proposed BDFF framework reduces the
search space according to the feature fixation mechanism
instead of correlationmeasures, so it ismore adaptable to dif-
ferent datasets.

4.4 Further Analysis of BDFF

In this subsection, we give a further discussion on BDFF and
try to figure out how much search space the feature fixation
mechanism can reduce.

TABLE 2
Parameter Settings of Algorithms

Algorithm Parameter Settings

BPSO [37] N ¼ 20, v 2 ½�6; 6�, c1 ¼ c2 ¼ 2.01, w ¼ 1.
BVDPSO [39] N ¼ 20, w 2 ½0:4; 0:9�, c1 ¼ c2 ¼ 2, selected

threshold a ¼ 0.5.
CSO [23] N ¼ 100, control factor f ¼ 0:1, selected

threshold � ¼ 0.5.
BBPSO-ACJ [22] N ¼ 20, selected threshold � ¼ 0.5.
VLPSO-LS [25] N ¼min{features/20, 300}, c ¼ 1.49445, w 2

½0:4; 0:9�, selected threshold � ¼ 0.6, max
iterations to renew exemplar: 7, number of
divisions: 12, max iterations for length changing:
9, local search tries: 100, local search flipping rate:
0.25.

HFS-C-P [29] N ¼ 20.
BBPSO-ACJ-BDFF N ¼ 20, T ¼ 3,W ¼ 10.
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First, we introduce an indicator named feature fixation
rate (FFR) for further analysis, which can be calculated by:

FFR ¼ DF

DH
(12)

where DF is the total fixed dimensions that have been
ignored in the update phase so far and DH is the total
dimensions that have been handled (including being
ignored and being updated) in the update phase so far. The
higher the value of FFR is, the more the search space is
reduced. Therefore, the value of DAU mentioned in Sec-
tion 3.6 is equal to ð1 � FFRÞ � D.

As BDFF is a general framework and can be applied to
other PSO variants except BBPSO-ACJ, we also adopted the
update mechanism of BPSO, BVDPSO, and CSO in the
BDFF and used the same parameters as BBPSO-ACJ-BDFF
so that the analysis can be more generalized and convinc-
ing. For the four PSO-based algorithms with BDFF, i.e.,
BPSO-BDFF, BVDPSO-BDFF, CSO-BDFF, and BBPSO-ACJ-

BDFF, we recorded the total FFR values of all particles dur-
ing the search and drew the change curves for further analy-
sis, as shown in Fig. 4.

In the beginning, the four PSOs with BDFF have similar
FFR values which are about 1/23 because the parameter T
of each algorithm is set to be 3. If a particle is guided by the
same search direction and keeps updating its historical opti-
mal position, it can usually fix more features, so its FFR
value then increases. Among all algorithms, CSO-BDFF gets
the highest FFR value on 10 datasets. The FFR value of
CSO-BDFF is always over 50% and is over 70% on datasets
Colon and Arcene. BBPSO-ACJ-BDFF ranks second among
all algorithms and also achieves an FFR value of over 40%
on all datasets except GLIOMA. On datasets WarpAR10P,
Nci9, and CLL_SUB_111, the FFR value of BBPSO-ACJ-
BDFF is over 60%. Though BPSO-BDFF and BVDPSO-BDFF
often have lower FFR values than the other two algorithms,
they still ignore over 20% of the dimensions in their search
to narrow their search space. Noting that the FFR value of
BPSO-BDFF and BVDPSO-BDFF does not always increase

TABLE 3
Average Classification Accuracies Obtained by Algorithms on the 12 Datasets

Dataset BBPSO-ACJ-BDFF BPSO BVDPSO CSO BBPSO-ACJ VLPSO-LS HFS-C-P

Colon 0.889 0.861(þ) 0.853(þ) 0.866(=) 0.858(=) 0.858(þ) 0.855(þ)
WarpAR10P 0.583 0.444(þ) 0.441(þ) 0.498(þ) 0.453(þ) 0.546(þ) 0.621(–)
GLIOMA 0.731 0.733(=) 0.731(=) 0.708(=) 0.736(=) 0.750(=) 0.719(=)
Leukemia_1 0.867 0.876(=) 0.857(=) 0.878(=) 0.872(=) 0.841(=) 0.841(=)
9_Tumor 0.532 0.534(=) 0.520(=) 0.534(=) 0.527(=) 0.516(=) 0.561(=)
TOX_171 0.618 0.631(=) 0.647(–) 0.638(=) 0.650(–) 0.628(=) 0.590(=)
Brain_Tumor_1 0.805 0.814(=) 0.820(–) 0.802(=) 0.807(=) 0.791(=) 0.816(=)
Nci9 0.370 0.305(þ) 0.295(þ) 0.345(=) 0.309(þ) 0.475(–) 0.295(þ)
Arcene 0.784 0.770(þ) 0.769(=) 0.774(=) 0.780(=) 0.796(=) 0.769(=)
CLL_SUB_111 0.599 0.540(þ) 0.541(þ) 0.596(=) 0.571(þ) 0.617(=) 0.576(=)
Lung_Cancer 0.772 0.771(=) 0.780(=) 0.780(=) 0.780(=) 0.752(þ) 0.772(=)
SMK_CAN_187 0.692 0.673(þ) 0.663(þ) 0.678(=) 0.671(þ) 0.709(=) 0.676(þ)
þ/=/– NA 6/6/0 5/5/2 1/11/0 4/7/1 3/8/1 3/8/1

Rank Sum 38 51 60 40 44 45 56

“þ”, “=”, and “–” indicate that BBPSO-ACJ-BDFF is significantly superior to, similar to, and significantly inferior to the compared algorithm, respectively.

TABLE 4
Average Number of Selected Features Obtained by Algorithms on the 12 Datasets

Dataset BBPSO-ACJ-BDFF BPSO BVDPSO CSO BBPSO-ACJ VLPSO-LS HFS-C-P

Colon 420.8 1232.7(þ) 1179.3(þ) 538.5(=) 786.1(þ) 349.3(=) 170.4(–)
WarpAR10P 13.3 1450.0(þ) 1356.1(þ) 204.2(þ) 730.7(þ) 464.8(þ) 374.1(þ)
GLIOMA 1637.8 2603.5(þ) 2385.6(þ) 626.9(–) 1924.7(þ) 425.8(–) 674.7(–)
Leukemia_1 1436.9 3271.7(þ) 3125.4(þ) 1402.7(=) 2246.6(þ) 541.9(–) 203.8(–)
9_Tumor 2009.8 3533.7(þ) 3605.3(þ) 3607.4(þ) 2297.7(=) 420.6(–) 4008.0(þ)
TOX_171 1623.4 3560.3(þ) 3549.1(þ) 2997.0(þ) 2343.4(þ) 735.9(–) 197.9(–)
Brain_Tumor_1 922.5 3599.7(þ) 3385.9(þ) 1547.9(þ) 2224.6(þ) 350.9(–) 1484.6(þ)
Nci9 417.3 5853.3(þ) 5329.3(þ) 864.7(=) 3390.1(þ) 692.6(=) 4944.2(þ)
Arcene 1490.6 6176.4(þ) 6062.5(þ) 3013.6(þ) 3324.3(þ) 835.5(=) 581.4(–)
CLL_SUB_111 881.9 6993.1(þ) 6801.9(þ) 1342.3(=) 3907.5(þ) 627.6(=) 2931.9(þ)
Lung_Cancer 3569.0 7771.7(þ) 8065.9(þ) 6575.1(þ) 4755.5(þ) 1258.9(–) 903.3(–)
SMK_CAN_187 2315.4 12375.6(þ) 12187.1(þ) 2320.8(=) 7002.7(þ) 1401.7(–) 4889.7(þ)
þ/=/– NA 12/0/0 12/0/0 6/5/1 11/1/0 1/4/7 6/0/6

Rank Sum 30 80 72 44 55 21 34

“þ”, “=”, and “–” indicate that BBPSO-ACJ-BDFF is significantly superior to, similar to, and significantly inferior to the compared algorithm, respectively.
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with time. If the search direction of a particle is changed fre-
quently, the previously fixed dimensions will be shifted to
be flexible and can be updated, thus the FFR value will
probably decrease.

4.5 From the Perspective of Feature Subset Size

We recorded the average number of selected features of the
global best particle in the swarm throughout the search pro-
cess and drew the change curves of four PSOs and four
PSOs with BDFF to describe how they vary with the
increase in evaluation times, as shown in Fig. 5.

The number of features contained in the best particle of
all algorithms at the beginning is about half of the total
number of features because they adopt the same initializa-
tion method in Eq. (6). However, the change curves of PSOs
with BDFF are different from the original PSOs and finally
can achieve a smaller number of selected features. It can be
known from the results in Tables 3 and 4 that solutions with
the highest accuracy can be obtained with the number of
features less than half on all datasets. BPSO and BVDPSO
can improve their accuracy as the number of evaluations
increases, but the number of their features cannot be effec-
tively reduced. From the perspective of the number of
selected features, BPSO and BVDPSO probably insist on
searching in the wrong direction, so the accuracy they

achieve finally is usually inferior to other algorithms. After
being combined with the BDFF framework, BPSO-BDFF
and BVDPSO-BDFF can search in the correct direction and
finally achieve a higher classification accuracy with fewer
features. CSO and BBPSO-ACJ can reduce the features of
the best particle while improving the accuracy in most data-
sets with the increase in evaluation times. However, they
cannot exploit the search space with fewer features and usu-
ally find a solution with more features than CSO-BDFF and
BBPSO-ACJ-BDFF finally. Therefore, the BDFF framework
can help particles explore and exploit more efficiently not
only from the perspective of the fitness but also from the
perspective of the number of selected features, and finally
guide them to approach the global optimal solution in terms
of the number of selected features.

4.6 Influence of Correlation Information

To investigate the effect of correlation information used in
BDFF, we removed the feature sorting step via SU and then
recorded the comparison results between BBPSO-ACJ-
BDFF and its variant in Table 6. The BBPSO-ACJ-BDFF-w/
o-SU has similar performances on the classification accuracy
and the size of the feature subset to BBPSO-ACJ-BDFF and
there is no significant difference between the two algo-
rithms on most datasets. Without the help of correlation

TABLE 5
Average Running Time (minute) of the Algorithms on the 12 Datasets

Dataset BBPSO-ACJ-BDFF BPSO BVDPSO CSO BBPSO-ACJ VLPSO-LS HFS-C-P

Colon 0.22 0.45(þ) 0.43(þ) 0.33(þ) 0.34(þ) 0.25( ¼ ) 0.12(–)
WarpAR10P 0.58 1.56(þ) 1.48(þ) 0.87(þ) 1.11(þ) 13.95(þ) 0.75(þ)
GLIOMA 0.95 1.52(þ) 1.34(þ) 0.90(–) 1.23(þ) 6.88(þ) 0.67(–)
Leukemia_1 1.32 2.48(þ) 2.38(þ) 1.90(þ) 1.94(þ) 6.14(þ) 0.45(–)
9_Tumor 1.80 2.53(þ) 2.61(þ) 3.36(þ) 2.05(þ) 15.98(þ) 3.43(þ)
TOX_171 3.35 5.67(þ) 5.73(þ) 5.52(þ) 4.43(þ) 142.53(þ) 0.73(–)
Brain_Tumor_1 1.46 3.22(þ) 3.09(þ) 2.87(þ) 2.46(þ) 41.31(þ) 1.59(þ)
Nci9 1.61 6.64(þ) 6.26(þ) 3.72(þ) 4.93(þ) 5.78(þ) 6.76(þ)
Arcene 6.80 14.56(þ) 15.21(þ) 11.78(þ) 10.56(þ) 432.93(þ) 4.73(–)
CLL_SUB_111 3.04 11.02(þ) 10.85(þ) 4.41(þ) 8.21(þ) 232.74(þ) 6.03(þ)
Lung_Cancer 11.66 19.31(þ) 20.65(þ) 18.66(þ) 15.69(þ) 724.54(þ) 3.62(–)
SMK_CAN_187 15.69 45.32(þ) 43.91(þ) 37.46(þ) 33.91(þ) 1967.77(þ) 22.25(þ)
þ/¼/– NA 12/0/0 12/0/0 11/0/1 12/0/0 11/1/0 6/0/6

Rank Sum 19 67 63 41 41 77 28

“þ”, “¼”, and “–” indicate that BBPSO-ACJ-BDFF is significantly superior to, similar to, and significantly inferior to the compared algorithm, respectively.

Fig. 4. The change curve of average FFR of PSO-based algorithms with BDFF from evaluation times 0 to 5000 on 12 datasets.
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information, BBPSO-ACJ-BDFF-w/o-SU also finds a solu-
tion with high accuracy and a small number of features.
However, BBPSO-ACJ-BDFF can perform slightly better

and find a solution with higher accuracy and fewer features
on some datasets after using the SU measure for feature
sorting.

An important reason why BDFF can work well without
using correlation information is that it only ranks features
and discards none of the features according to the correla-
tion information. Though the features in the same feature
neighborhood are no longer strongly correlated without fea-
ture sorting, they can be reserved and still have the opportu-
nity to be selected. Moreover, the small size of the feature
neighborhood also reduces the correlation requirement for
features in the same neighborhood because the feature fixa-
tion operation is fine-grained. However, some redundant
features will be mixed in the same feature neighborhood
when the feature sorting is missing, which makes it a bit
more difficult to select a better feature subset with fewer
features.

4.7 Influence of the Size of Feature Neighborhood

The parameter T represents that there are T features in a fea-
ture neighborhood. To investigate the influence of T, var-
iants of BBPSO-ACJ-BDFF with different values of T are
compared and the results are presented in Table 7. The per-
formance of the accuracy is the best when T is 3 among all

TABLE 6
Comparison Results Between BDFF and BDFF Without SU

Dataset
BBPSO-ACJ-BDFF BBPSO-ACJ-BDFF-w/o-SU

Accuracy Features Accuracy Features

Colon 0.889 420.8 0.845(þ) 514.6(=)
WarpAR10P 0.583 13.3 0.599(=) 16.7(þ)
GLIOMA 0.731 1637.8 0.719(=) 1689.9(=)
Leukemia_1 0.867 1436.9 0.870(=) 1329.9(=)

9_Tumor 0.532 2009.8 0.534(=) 1922.0(=)

TOX_171 0.618 1623.4 0.625(=) 1795.7(=)
Brain_Tumor_1 0.805 922.5 0.811(=) 1117.6(=)
Nci9 0.370 417.3 0.361(=) 303.7(=)

Arcene 0.784 1490.6 0.780(=) 1027.9(=)

CLL_SUB_111 0.599 881.9 0.596(=) 475.6(=)

Lung_Cancer 0.772 3569.0 0.767(=) 2685.7(=)
SMK_CAN_187 0.692 2315.4 0.683(=) 2509.7(=)

þ/=/– NA NA 1/11/0 1/11/0

“þ”, “=”, and “–” indicate that BBPSO-ACJ-BDFF is significantly superior
to, similar to, and significantly inferior to BBPSO-ACJ-BDFF-w/o-SU,
respectively.

TABLE 7
Average Results Among BBPSO-ACJ-BDFF Variants with Different Size T of Feature Neighborhood

Dataset
Accuracy Features

T ¼ 1 T ¼ 2 T ¼ 3 T ¼ 4 T ¼ 5 T ¼ 1 T ¼ 2 T ¼ 3 T ¼ 4 T ¼ 5

Colon 0.829(þ) 0.882(=) 0.889 0.855(þ) 0.863(=) 26.7(–) 121.1(–) 420.8 646.5(þ) 699.6(þ)
WarpAR10P 0.544(þ) 0.545(=) 0.583 0.578(=) 0.529(=) 5.3(–) 9.5(=) 13.3 90.0(þ) 262.1(þ)
GLIOMA 0.728(=) 0.722(=) 0.731 0.739(=) 0.733(=) 220.6(–) 933.7(–) 1637.8 1911.5(þ) 2018.1(þ)
Leukemia_1 0.839(=) 0.865(=) 0.867 0.883(=) 0.870(=) 499.2(–) 914.7(–) 1436.9 1475.4(=) 2107.2(þ)
9_Tumor 0.484(þ) 0.525(=) 0.532 0.523(=) 0.525(=) 583.9(–) 1539.1(=) 2009.8 2280.8(=) 2206.1(=)
TOX_171 0.630(=) 0.619(=) 0.618 0.638(=) 0.642(=) 928.5(–) 1185.9(–) 1623.4 1760.4(=) 2165.0(þ)
Brain_Tumor_1 0.800(=) 0.800(=) 0.805 0.813(=) 0.813(=) 164.7(–) 391.8(–) 922.5 1630.1(þ) 1858.1(þ)
Nci9 0.386(=) 0.386(=) 0.370 0.332(þ) 0.332(þ) 60.9(–) 147.0(–) 417.3 1054.2(þ) 1856.0(þ)
Arcene 0.772(=) 0.783(=) 0.784 0.779(=) 0.780(=) 192.0(–) 600.9(–) 1490.6 2449.9(þ) 2299.4(þ)
CLL_SUB_111 0.577(=) 0.587(=) 0.599 0.574(=) 0.567(þ) 80.1(–) 173.8(–) 881.9 1218.7(þ) 2818.2(þ)
Lung_Cancer 0.763(=) 0.777(=) 0.772 0.778(=) 0.778(=) 2525.9(–) 2143.4(–) 3569.0 4152.5(=) 3794.0(=)
SMK_CAN_187 0.681(=) 0.686(=) 0.692 0.671(=) 0.682(=) 119.6(–) 958.9(–) 2315.4 3154.5(=) 4915.6(þ)
þ/=/– 3/9/0 0/12/0 NA 2/10/0 2/10/0 0/0/12 0/2/10 NA 7/5/0 10/2/0

Rank Sum 49 34 27 33 36 13 23 36 51 57

“þ”, “=”, and “–” mean that BBPSO-ACJ-BDFF with T=3 is significantly superior to, similar to, and significantly inferior to the compared variant,
respectively.

Fig. 5. The change curve of the average number of features contained in the global best particle from evaluation times 0 to 5000 on 12 datasets.
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variants. As the value of T increases, the number of features
also increases in most cases. A small T makes it easy to fix
features and reduce most of the search space, so the particle
is likely to find a small feature subset but miss the optimal
solution. On the contrary, a large T makes it hard to fix fea-
tures and can retain the optimal solution in the search space,
but it also increases the difficulty to find the optimal solu-
tion because the search space is too large. Therefore, the
value of T is usually recommended to be 3.

5 CONCLUSION

This paper proposes the BDFF framework for PSO to solve
large-scale feature selection problems. In the BDFF frame-
work, each particle owns a search direction and searches for
solutions with different numbers of features. According to its
search direction, eachparticle canfix some features and ignore
them in the update stage with the feature fixation mechanism,
thus narrowing its search space. BDFF also adopts the repre-
sentation of the feature neighborhood, dividing all features
into small neighborhoods. Then it uses the feature neighbor-
hood as the basic unit to fix features and refine the granularity
of operations. Moreover, BDFF designs the SADC strategy to
change the search direction of particles adaptively, making a
trade-off between exploration and exploitation in different
search processes. Experimental results on 12 public feature
selection datasets show that the proposed BDFF framework
can help particles approach the optimal solution from the per-
spective of the fitness value and the number of features. Com-
paredwith the correlation-based algorithms, BDFF can reduce
the search space effectively without over-relying on the corre-
lation information and have a consistent performance onmost
classification problems. Besides, BDFF can be treated as a gen-
eral framework and be combined with PSO-based feature
selection algorithms to further improve their performances.

For future work, there still exist some challenges to be
overcome for PSO-based feature selection algorithms, such
as reducing the time of evaluation and dealing with some
complicated real-world problems. Therefore, some promis-
ing techniques designed for expensive optimization, such
as the data-driven method [53], [54], the scale-adaptive fit-
ness evaluation method [55], [56], and parallel/distributed
computing methods [57], [58], [59], [60], can be combined to
further improve the performance of BDFF.
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