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BACKGROUND: Parabens, found in everyday items from personal care products to foods, are chemicals with endocrine-disrupting activity, which has
been shown to influence reproductive function.
OBJECTIVES: This study investigated whether urinary concentrations of methylparaben, propylparaben, or butylparaben were associated with the uri-
nary metabolome during the periconceptional period, a critical window for female reproductive function. Changes to the periconceptional urinary
metabolome could provide insights into the mechanisms by which parabens could impact fertility.

METHODS: Urinary paraben concentrations were measured in paired pre- and postconception urine samples from 42 participants in the Early
Pregnancy Study, a prospective cohort of 221 women attempting to conceive. We performed untargeted and targeted metabolomics analyses using
ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry. We used principal component analysis, orthogonal partial
least-squares discriminant analysis, and permutation testing, coupled with univariate statistical analyses, to find metabolites associated with paraben
concentration at the two time points. Potential confounders were identified with a directed acyclic graph and used to adjust results with multivariable
linear regression. Metabolites were identified using fragmentation data.
RESULTS: Seven metabolites were associated with paraben concentration (variable importance to projection score >1, false discovery rate–corrected
q-value<0:1). We identified four diet-related metabolites to the Metabolomics Standards Initiative (MSI) certainty of identification level 2, including
metabolites from smoke flavoring, grapes, and olive oil. One metabolite was identified to the class level only (MSI level 3). Two metabolites were un-
identified (MSI level 4). After adjustment, three metabolites remained associated with methylparaben and propylparaben, two of which were diet-
related. No metabolomic markers of endocrine disruption were associated with paraben concentrations.
DISCUSSION: This study identified novel relationships between urinary paraben concentrations and diet-related metabolites but not with metabolites on
endocrine-disrupting pathways, as hypothesized. It demonstrates the feasibility of integrating untargeted metabolomics data with environmental expo-
sure information and epidemiological adjustment for confounders. The findings underscore a potentially important connection between diet and para-
ben exposure, with applications to nutritional epidemiology and dietary exposure assessment. https://doi.org/10.1289/EHP12125

Introduction
Parabens are common antimicrobial preservatives used in perso-
nal care products, cosmetics, foods, and medications since the
1930s.1–4 Exposure typically occurs through ingestion of foods
and medications and dermal application of personal care prod-
ucts, with detectable urinary concentrations present in popula-
tions worldwide.5–14 In vitro and in vivo studies suggest parabens
are endocrine-disrupting chemicals (EDCs) that can influence
reproductive function through estrogenic mechanisms,1 including
via drug metabolizing enzymes (DMEs), which are critical to
both detoxification processes and hormone metabolism (Figure
S1).15–17 Parabens can bind to peroxisome proliferator–activated
receptors (PPARs), a group of nuclear receptors that play a role
in mediating the expression of DMEs.18–20 When DME function
impacts hormone metabolism, shifts in the bioavailability of en-
dogenous hormones and metabolite levels can be reflected in

changes to the metabolome.21 Although there are only limited ep-
idemiological studies of paraben exposure and human female
reproductive function, they suggest reduced fecundability associ-
ated with methylparaben exposure,22 decreased menstrual cycle
length with butylparaben exposure,23 and diminished ovarian
reserve in a fertility treatment population with propylparaben ex-
posure.24 Another study reported no association between paraben
exposure and in vitro fertilization (IVF) treatment outcomes.25

Because subfertility can have major physical, emotional, and fi-
nancial consequences, the identification of reproductive toxicants
is needed.26

Metabolomics is a sensitive tool for characterizing metabolite
changes in response to environmental exposures, with the potential
to illuminate mechanisms of toxicity and biological responses to
exposures.21 To our knowledge, three studies have examined asso-
ciations between human paraben exposure and the urinary27,28 and
serum metabolomes.29 These studies suggest that paraben expo-
sure may influence nuclear receptor pathways, energy metabolism,
and the urea pathway.27–29 None of these studies focused on the
periconceptional period, a critical window for female reproductive
function.26,30,31

To better understand the potential reproductive effects of para-
ben exposure, we used untargeted and targetedmetabolomics anal-
yses to examine associations between periconceptional exposure
to methylparaben, propylparaben, and butylparaben and the uri-
nary metabolome in a cohort of women attempting natural concep-
tion. Because parabens could modulate currently unidentified
metabolic pathways, we used a hypothesis-generating, untargeted
approach to evaluate the effects of paraben exposure, paired with
targeted analysis for metabolite identification. We also conducted
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a targeted assessment of phase II endogenous metabolites previ-
ously identified as sensitive to endocrine disruptor exposure, along
with other metabolites specifically identified in relation to paraben
exposure.32

Methods

Study Population
Weused urine samples from 42 participants in the Early Pregnancy
Study (EPS), a prospective cohort study of 221 women in North
Carolina attempting pregnancy who had no known fertility prob-
lems.33,34 In brief, from 1982 to 1986, participants were enrolled
when they stopped using contraception. They collected daily first
morning urine samples for 6 months if they did not conceive or for
8 wk after the last menstrual period if they became pregnant.
Participants were interviewed on enrollment, and they kept daily
logs of menstrual bleeding and sexual intercourse.33 For this study,
we selected 42 of the 221 participants who were 27–31 y old, had a
bodymass index (BMI; kg=m2) <25, wereWhite, andwhose preg-
nancies ended with a singleton live birth (22 male, 20 female).
These inclusion criteria aimed to create a homogeneous population
tominimize the interindividual variability of metabolomic profiles.
Sample selection was carried out by first identifying the subset of
all EPS participants meeting our inclusion criteria with sufficient
sample volume available for analysis (>0:5 mL). Then, in order of
study enrollment, we selected samples from the first 22 pregnan-
cies resulting in a male baby and the first 20 pregnancies resulting
in a female baby. The sample size was chosen to enable metabolo-
mic analysis on a single 96-well plate to minimize potential inter-
batch variability. The Yale University institutional review board
determined the analyses for this study were not human subjects
research (ID 2000022845).

Urine Specimen Collection, Storage, and Pooling
Daily urine specimens were collected in preservative-free polypro-
pylene jars, stored in home freezers for up to 2 wk, and transported
on ice to a central freezer at the National Institute of Environmental
Health Sciences (NIEHS). Specimens were stored at −20�C until
initial study analyses were complete and kept at −80�C for long-
term storage.35 As part of a previous research study, urine speci-
mens from each menstrual cycle were pooled within individual
women and analyzed for multiple environmental biomarkers of
exposures, including parabens.35 The pooling strategy combined
equal aliquots from three specimens collected ∼ 1wk apart on con-
secutive Mondays, if available, across a menstrual cycle beginning
after the end of menstrual bleeding. Most daily specimens used for
pooling were collected on a Monday (n=173=252, 69%), but if a
Monday sample was unavailable, the nearest available day was
used (Table S1).35 Because parabens are rapidly metabolized, with
a half-life of 20–90min and high intraindividual variability, pooled
rather than single urine samples were analyzed to better represent
exposure across amenstrual cycle.5,36–41

Conception Cycle and Early Pregnancy Samples
We analyzed a total of 84 paired conception cycle and early preg-
nancy pooled samples from 42 participants. “Conception cycle”
samples contain three specimens from the menstrual cycle in
which conception occurred, including two collected after the end
of menstrual bleeding and before ovulation, and a third collected
after ovulation/conception but before implantation (typically
about a week after ovulation). The exact date of ovulation (and
by inference, conception) was previously determined by an algo-
rithm using the ratio of estrone-3-glucuronide and pregnanediol-
3-glucuronide measured in unpooled, daily urine specimens from

across each participant’s conception cycle.42,43 Pregnancy was
defined as a human chorionic gonadotropin (hCG) level of
>0:025 ng=mL for ≥3 consecutive days, also using daily urine
specimens.34 After identification of pregnancy, the day of im-
plantation was defined as the first day of the pregnancy where
hCG was ≥0:01 ng=mL.44 “Early pregnancy” pooled samples
include three postimplantation specimens collected ∼ 1 wk apart,
and covering the time period of 4–6 wk after the last menstrual
period, or the first 3 wk of in utero development.

Paraben Exposure Assessment
Quantification of parabens in urine.Methylparaben, propylpara-
ben, and butylparaben concentrations (ng/mL) were measured at
the U.S. Centers for Disease Control and Prevention (U.S. CDC)
in 2010 in pooled urine samples using the high-performance
liquid chromatography–isotope-dilution tandem mass spectrome-
try method reported in Ye et al. (2005).45 The specific gravity of
each sample was measured with an Atago PAL-10S refractometer
and used to adjust paraben concentrations to account for varying
urinary dilution across samples, as previously described.46 Paraben
measurements for this study were approved by the NIEHS institu-
tional review board, and the analysis of de-identified specimens at
the U.S. CDC laboratory was determined not to constitute human
subjects research.

Quality control. Ten random individual (nonpooled) quality
control (QC) samples were assessed for evidence of contamination
by measuring the free and total concentrations of each paraben.
Because parabens are generally excreted as urinary conjugates, rel-
atively high percentages of unconjugated or free parabens may
indicate contamination during collection, handling, or storage.38

Contamination is unlikely when the free paraben concentration is
<20% of the total amount detected.38 In all samples, the percentage
of free biomarkers was <20% or below the limit of detection
(LOD), suggesting systematic contamination was not evident. The
methylparaben concentration of one pooled sample was missing
due to other quality control issues during quantification and was
excluded from analyses.

Concentrations below the LOD.Many butylparaben concentra-
tions were nondetectable [LODbutylparaben = 0:2 ng=mL, n=46=84
(55%)], but we did not impute values <LOD.47 Instead, we a priori
planned to use a categorical structure tomodel butylparaben, with the
lowest concentration category comprising concentrations <LOD.
Methylparaben and propylparaben concentrations were treated con-
tinuously in statistical models used to adjust for confounding. For
these models, we imputed the concentration of one propylparaben
sample that was <LOD [LODpropylparaben = 0:2 ng=mL, n=1=84
(1.2%)], with a single imputation using a maximum likelihood proce-
dure assuming a log-normal distribution based on the distribution of
phenol measurements >LOD.47 No methylparaben samples were
<LOD (LODmethylparaben = 1:0 ng=mL), and because no metabolites
were associated with butylparaben concentrations, no adjusted mod-
els including butylparabenwere constructed.

Paraben exposure categories. The multivariate statistical
techniques we used required treating paraben concentrations
categorically. Because EDCs can exhibit nonmonotonic dose–
response relationships, we included three concentration catego-
ries with a stable reference group and maximum contrast between
categories.48,49 For methylparaben and propylparaben, the low
concentration category was defined as below the median concen-
tration; the medium concentration category as median to 75th
percentile concentration; and the high concentration category as
>75th percentile concentration (Table 1). For butylparaben, con-
centrations <LOD were classified as the low category; LOD to
the median as the medium category; and >median concentration
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as the high category, where the median refers to the median among
concentrations >LOD.

Untargeted Metabolomics Analysis
Details of sample preparation and metabolomics analysis for this
study have been previously published.46 In brief, samples were pre-
pared using a water extraction process for hydrophilic interaction
chromatography–mass spectrometry (HILIC-MS, negative mode,
polar metabolites) and a methanol extraction for reversed-phased
liquid chromatography-mass spectrometry (RPLC-MS, positive
mode, nonpolar metabolites). AQCbased on pooling together equal
aliquots from each of the 84 samples was also prepared according to
both methods. All samples were analyzed by untargeted ultrahigh-
performance liquid chromatography (UHPLC) quadrupole time-of-
flight (QToF) mass spectrometry (Xevo-G2-XS-QToFMS; Waters
Corporation), with run order randomized.

Untargeted Metabolomics Data Processing
Initial untargeted data processing used ProteoWizard (version
3.0.10158) to convert .raw files to .mzML files (see Supplemental
Material, ProteoWizard settings).50 XCMS (version 3.8)51 running
onR (version 3.4; RDevelopment Core Team)was used for decon-
volution and peak alignment, with aK-nearest neighbor imputation
of missing values. A total of 18,822 HILIC mode features and
12,794 RPLCmode features were detected. Adjustment for analyt-
ical variability was carried out using the MetCleaning R package
(version 1.0.0; X. Shen and Z. Zhu) with support vector regression,
and metabolite features were specific gravity–adjusted to account
for differences in urinary dilution.52 Data were assessed for nor-
mality using the Shapiro-Wilk test, along with the performance of
multiple data transformations (log2, log10, Glog); as all transforma-
tions applied still left 20%–30% of features with a nonnormal distri-
bution, we decided to use nonparametric statistical techniques. All
features with a relative standard deviation (RSD; standard deviation
of the peak area divided by the mean peak area across QC samples)
>0:3 were excluded to maximize feature reproducibility, resulting
in the retention of 81% (15,158/18,822) of HILIC mode features
and 94% (12,023/12,794) of RPLC mode features.53–56 Finally,
all metabolite features were mean-centered and Pareto-scaled
(divided by the square root of the feature standard deviation).57,58

Targeted Metabolomics Analysis
Metabolite identification. We gathered fragmentation data from
the QC sample ∼ 2:5 y after the initial untargeted analysis. Where
available, we used commercial standards to check putative metab-
olite identifications. Standards purchased included 3-(4-hydroxy-

3-methoxyphenyl)propionic acid (Sigma-Aldrich, CAS 1135-23-
5; putative identification for metabolite 1), ethyl 2,4-dihydroxy-6-
methylbenzoate (Sigma-Aldrich, CAS 2524-37-0; putative identi-
fication for metabolite 1), argininosuccinic acid disodium salt
hydrate (Sigma-Aldrich, CAS 918149-29-8 anhydrous; putative
identification for metabolite 2), bergenin (Chromadex, CAS 477-
90-7; putative identification for metabolite 2), and lignoceric acid
(Sigma-Aldrich, CAS 557-59-5; putative identification for metab-
olite 3). Fragmentation data were gathered for each of the seven
metabolites associated with paraben exposure and for a standard if
it was detected using the same liquid chromatography–mass spec-
trometry (LC-MS) methods and instrument as in the untargeted
analysis, with ramping from 10 to 40 eV (see Supplemental Excel
File for fragmentation data). Fragmentation patterns were com-
pared with those of commercial standards and data in public libra-
ries using the SIRIUS and CFM-ID (Competitive Fragmentation
Modeling-Identification) software.59–61

Drug metabolizing enzyme metabolites. We also ran addi-
tional standards based on our hypothesis that paraben exposure
could alter DME function via nuclear receptor pathways. Because
phase II metabolism increases the production of sulfated metabo-
lites in the urine, we examined whether select compounds previ-
ously found to be associated with methylparaben exposure in
Sprague-Dawley rats were altered in our cohort, including aro-
matic sulfate conjugates (o-aminophenol sulfate; Santa Cruz
Biotechnology, CAS 67845-79-8; catechol sulfate, CAS 4918-96-
1; quinol sulfate, CAS 17438-29-8) and sulfonated steroids (preg-
nenolone sulfate; Sigma-Aldrich, CAS 1247-64-9; 17-hydroxy-
pregnenolone sulfate, Cayman Chemicals, CAS 28901-70-4).32

Standards were unavailable for catechol sulfate and quinol sulfate,
so these compounds were assessed by evaluating MSe data from
theQC sample using SIRIUS software.59

Statistical Analyses
All statistical analyses were carried out in R (version 4.04; R
Development Core Team). (Please contact the authors with inqui-
ries regarding data availability.)

Paraben distribution. We calculated medians and interquar-
tile ranges (IQRs) of urinary paraben concentrations (ng/mL, spe-
cific gravity–adjusted) across the cohort (Table 2), stratified by
conception cycle or early pregnancy time point and participant
characteristics, and compared the EPS cohort paraben concentra-
tions with those of other cohorts of women of reproductive age.
We also calculated Spearman correlations between the parabens.

Multivariate analysis. We used principal component analysis
(PCA) and orthogonal partial least-squares discriminant analysis

Table 1. Paraben concentration (ng/mL, specific gravity–adjusted) categories stratified by conception cycle or early pregnancy status for 42 participants in the
Early Pregnancy Study.

Conception cycle Early pregnancy

Concentration categorya Methylparabenb Propylparaben Butylparaben Methylparaben Propylparaben Butylparaben

Low
Samples (n) 21 21 22 22 20 22
Concentration 3.9–116.9 0.7–47.9 <LOD 4.9–57.9 0.1–13.9 <LOD
Medium
Samples (n) 10 10 10 10 12 10
Concentration 117.0–241.9 48.0–124.9 0.3–1.6 58.0–200.9 14.0–89.9 0.1–1.5
High
Samples (n) 10 11 10 10 10 10
Concentration 242.0–924.0 125.0–691.9 1.7–31.1 201.0–723.1 90.0–640.4 1.6–76.8

Note: LOD, limit of detection.
aFor methylparaben and propylparaben, the low concentration category includes concentrations <median; the medium category includes concentrations from the median to 75th per-
centile; and the high category includes concentrations >75th percentile. For butylparaben, the low concentration category is <LOD (LODbutylparaben = 0:2 ng=mL); the medium category
is below the median concentration of detectable samples; and the high category is above the median concentration of detectable samples.
bOne conception cycle methylparaben sample is missing due to quality control issues.
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Table 2. Urinary paraben concentrations (ng/mL, specific gravity–adjusted) stratified by participant characteristics for 42 participants in the Early Pregnancy
Study.

Methylparaben Propylparaben Butylparaben

Characteristic Participants (n)
Conception cycle
median (IQR)

Early pregnancy
median (IQR)

Conception cycle
median (IQR)

Early pregnancy
median (IQR)

Conception cycle
median (IQR)

Early pregnancy
median (IQR)

All participants 42 129.1 (25.0, 388.6) 53.2 (25.9, 198.3) 50.8 (9.3, 126.0) 18.5 (6.6, 88.2) <LOD (<LOD, 1.5) <LOD (<LOD, 1.0)
Acetaminophen
No 31 84.0 (25.0, 203.2) 50.8 (23.7, 128.1) 46.3 (8.9, 125.4) 13.9 (5.8, 87.1) <LOD (<LOD, 1.5) <LOD (<LOD, 1.5)
Yes 11 178.2 (42.0, 641.1) 108.2 (49.3, 301.6) 89.9 (10.9, 130.5) 22.9 (10.0, 84.9) 0.4 (<LOD, 1.5) 0.4 (<LOD, 0.8)
Aspirin
No 19 73.6 (20.2, 209.6) 41.2 (18.3, 196.7) 45.5 (7.6, 110.6) 11.0 (4.9, 80.5) <LOD (<LOD, 0.9) <LOD (<LOD, 0.6)
Yes 23 129.1 (49.7, 382.3) 86.3 (33.3, 201.5) 62.9 (25.4, 137.8) 35.9 (10.3, 88.1) 0.8 (<LOD, 3.4) <LOD (<LOD, 2.7)
Antibiotics
No 35 129.1 (22.7, 388.6) 52.6 (23.7, 202.4) 62.1 (9.6, 132.8) 20.7 (7.8, 94.7) <LOD (<LOD, 1.4) <LOD (<LOD, 0.9)
Yes 7 73.6 (63.9, 154.3) 53.9 (29.7, 106.3) 42.7 (17.3, 58.7) 8.2 (5.1, 57.7) <LOD (<LOD, 3.4) <LOD (<LOD, 7.1)
Vitamins
No 21 94.4 (47.8, 216.0) 53.9 (33.0, 250.0) 46.3 (11.9, 115.1) 20.7 (7.9, 89.4) 0.4 (<LOD, 3.3) 0.4 (<LOD, 3.2)
Yes 21 135.5 (21.1, 488.7) 50.8 (21.4, 129.8) 62.1 (9.1, 134.6) 16.3 (6.4, 75.2) <LOD (<LOD, 1.2) <LOD (<LOD, 0.9)
Age (y)
<27 9 327.0 (49.9, 639.1) 108.2 (33.5, 298.7) 114.0 (10.0, 146.0) 98.0 (16.3, 123.2) <LOD (<LOD, 1.6) <LOD (<LOD, 0.3)
27–31 22 105.6 (23.6, 177.2) 52.2 (20.3, 220.0) 44.9 (7.6, 95.3) 13.3 (6.8, 68.7) 0.4 (<LOD, 2.1) 0.3 (<LOD, 2.8)
>31 11 67.3 (32.4, 226.9) 46.1 (25.9, 90.3) 46.3 (18.4, 132.8) 20.7 (6.4, 56.5) <LOD (<LOD, 0.9) <LOD (<LOD, 1.4)

Body mass index (kg=m2)
Low, <18:5 5 73.6 (24.1, 174.4) 41.2 (27.0, 53.9) 42.7 (8.0, 124.0) 13.9 (5.2, 266.3) <LOD (<LOD, 1.6) 0.3 (<LOD, 4.7)
Normal, 18.5–24.9 37 129.1 (26.4, 290.3) 58.1 (25.9, 200.0) 54.5 (10.0, 131.0) 20.7 (7.7, 84.8) <LOD (<LOD, 1.5) <LOD (<LOD, 0.9)
Marijuana
No 39 105.6 (25.0, 388.6) 52.6 (23.7, 196.7) 54.5 (8.9, 128.8) 16.3 (7.1, 87.1) <LOD (<LOD, 1.5) <LOD (<LOD, 1.0)
Yes 3 160.6 (89.1, 167.5) 78.6 (52.3, 400.8) 45.5 (27.8, 84.8) 22.9 (13.9, 331.6) <LOD (<LOD, 3.9) <LOD (<LOD, 2.5)
Alcohol (drinks/month)
0 drinks 7 58.5 (23.2, 266.1) 33.0 (21.1, 163.7) 9.1 (8.0, 83.5) 12.9 (5.7, 123.5) 0.4 (<LOD, 1.3) <LOD (<LOD, 0.5)
1–16 drinks 22 157.5 (49.7, 476.5) 53.2 (26.2, 186.0) 67.4 (43.4, 123.8) 15.1 (5.0, 53.7) <LOD (<LOD, 1.2) <LOD (<LOD, 0.8)
≥17 drinks 13 69.3 (17.5, 169.8) 89.6 (33.5, 193.4) 31.0 (5.5, 124.0) 55.8 (8.8, 121.5) 0.8 (<LOD, 3.9) 0.9 (<LOD, 2.2)

Caffeine (mg/month)
≤1,920 mg 13 103.2 (23.6, 240.3) 33.5 (20.8, 293.8) 86.5 (8.1, 141.0) 35.9 (3.6, 109.7) 0.4 (<LOD, 1.6) <LOD (<LOD, 0.7)
1,921–5,999 mg 15 94.4 (42.2, 563.0) 50.8 (29.5, 98.9) 46.3 (18.4, 105.6) 13.8 (7.1, 29.2) 0.8 (<LOD, 2.6) 0.9 (<LOD, 3.3)
≥6,000 mg 14 129.1 (49.7, 174.9) 82.4 (38.3, 203.5) 50.0 (14.1, 108.8) 41.2 (9.6, 85.8) <LOD (<LOD, 0.3) <LOD (<LOD, <LOD)

Smoker
No 40 141.5 (26.0, 339.4) 56.0 (25.9, 201.2) 54.6 (9.8, 127.8) 21.8 (7.4, 89.9) 0.3 (<LOD, 1.6) <LOD (<LOD, 1.3)
Yes 2 66.9 (41.9, 91.8) 23.7 (18.8, 28.6) 27.6 (14.2, 41.1) 6.8 (5.8, 7.8) all <LOD all <LOD
Recent OC usea

No 25 141.5 (27.8, 212.8) 58.1 (25.9, 200.0) 62.1 (10.0, 131.0) 20.7 (5.3, 71.7) <LOD (<LOD, 1.5) <LOD (<LOD, 2.0)
Yes 17 105.6 (23.6, 451.7) 50.8 (21.4, 193.4) 47.1 (9.1, 114.0) 13.9 (7.7, 109.7) <LOD (<LOD, 1.6) <LOD (<LOD, 0.9)
Education (y)
Some college, <16 8 141.0 (25.3, 187.6) 39.4 (15.3, 109.0) 50.8 (9.3, 69.0) 11.0 (4.4, 35.1) <LOD (<LOD, 0.5) <LOD (<LOD, 0.4)
College, 16 14 69.3 (47.8, 148.0) 56.0 (42.4, 117.2) 34.6 (8.2, 129.8) 32.1 (9.6, 89.7) 0.6 (<LOD, 1.5) 0.2 (<LOD, 1.0)
Graduate school, >16 20 157.5 (20.6, 451.7) 70.9 (20.6, 221.9) 67.4 (25.7, 134.7) 18.5 (7.4, 91.5) 0.3 (<LOD, 2.3) <LOD (<LOD, 2.3)
Income (USD)
<$20,000 16 176.3 (50.8, 487.6) 88.0 (25.6, 212.5) 76.4 (22.1, 136.2) 46.8 (6.7, 107.4) 1.2 (<LOD, 3.3) 0.4 (<LOD, 2.0)
$20,000− $29,999 16 66.3 (17.3, 135.5) 56.0 (30.0, 196.2) 28.5 (6.9, 140.6) 17.9 (5.1, 91.5) <LOD (<LOD, 0.2) <LOD (<LOD, 0.2)
≥$30,000 10 144.8 (30.4, 369.6) 46.0 (25.9, 107.9) 59.1 (30.0, 94.5) 12.8 (8.6, 49.9) 0.8 (<LOD, 14.0) 0.5 (<LOD, 2.7)

Health care job
No 30 151.0 (32.8, 476.5) 56.0 (25.9, 201.9) 63.2 (9.3, 129.9) 14.6 (6.8, 74.4) 0.4 (<LOD, 1.8) 0.3 (<LOD, 1.7)
Yes 12 58.5 (21.1, 151.2) 46.5 (30.1, 147.3) 46.7 (21.5, 68.8) 28.3 (11.3, 124.9) <LOD (<LOD, 1.3) <LOD (<LOD, 0.5)
Year of collectionb

1983 CC 39
EP 38

117.9 (22.7, 388.6) 68.3 (26.2, 203.5) 62.1 (8.9, 128.8) 24.7 (8.4, 90.8) <LOD (<LOD, 1.7) <LOD (<LOD, 1.8)

1984 CC 3
EP 4

116.7 (91.5, 138.7) 29.7 (22.9, 36.7) 45.5 (28.7, 50.0) 4.8 (4.5, 4.9) <LOD (<LOD, 0.6) <LOD (<LOD, 0.2)

Seasonb

Winter (Jan–Mar) CC 11
EP 7

116.7 (37.8, 324.8) 46.1 (29.7, 93.9) 45.5 (8.3, 142.1) 4.9 (4.8, 31.2) 0.4 (<LOD, 1.3) <LOD (<LOD, 0.3)

Spring (Apr–Jun) CC 13
EP 11

174.4 (55.6, 216.0) 91.1 (16.3, 271.9) 89.9 (46.3, 126.7) 75.2 (16.8, 126.9) 0.4 (<LOD, 2.4) 0.4 (<LOD, 0.9)

Summer (Jul–Sept) CC 12
EP 15

94.4 (40.8, 438.5) 52.6 (37.1, 196.7) 62.5 (25.7, 108.1) 13.8 (6.5, 74.5) <LOD (<LOD, 3.0) 0.9 (<LOD, 3.3)

Fall (Oct–Dec) CC 6
EP 9

38.1 (17.2, 66.6) 78.6 (20.1, 108.2) 9.1 (6.1, 22.4) 16.3 (8.2, 55.8) <LOD (<LOD, 1.5) <LOD (<LOD, <LOD)
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(OPLS-DA) to evaluate associations between paraben concentra-
tion categories and the high dimensional metabolomics data.
First, we used PCA to assess whether paraben concentration cate-
gory was associated with any of the principal components of the
metabolomics data.58 Conception cycle and early pregnancy data
were analyzed separately, given the major hormonal and physio-
logical changes accompanying pregnancy, as were data from dif-
ferent mass spectrometry analysis modes (HILIC-MS for polar
metabolites, and RPLC-MS for nonpolar metabolites), for a total
of four comparisons. Concentration categories for each paraben
were then overlayed onto PCA plots to determine whether they
corresponded to data clustering. PCA results were assessed using
scree plots (the number of principal components explaining
∼ 50% of the variance in the data), R2 (how much variance in the
data was explained by the model), and Q2 (the predictive ability
of the model).

Next, we used OPLS-DA to determine the variation associated
with concentration categories using R2X, R2Y,Q2, and the number
of features where the variable importance to projection or VIP
score was >1.62 A less conservative VIP score was chosen to
ensure we did not overlook metabolites potentially associated with
paraben concentration. Comparisons were stratified by conception
cycle or early pregnancy status, analysis mode, and concentration
category (low vs. medium, low vs. high, medium vs. high), for a
total of 18 comparisons. Because multigroup OPLS-DA can yield
ambiguous results, we chose to compare only two paraben concen-
tration categories at a time.63 Results of OPLS-DA were cross-
validated with a permutation test that randomly assigned concen-
tration category, correlating the Q2 and R2Y of the original data
with the distribution of Q2 and R2Y after 200 iterations of random
permutation by concentration category.64 Permutation models
with aQ2 intercept close to or below 0 indicate poorly fitting mod-
els when concentration category is randomly assigned; in turn, this
suggests that the original OPLS-DAmodel accurately assigns con-
centration category.

Univariate analysis. A Wilcoxon rank-sum test was used to
compare changes in peak area between concentration categories
using the same 18 comparison groups of the OPLS-DA models.
We used a Benjamini-Hochberg false discovery rate (FDR)-
corrected p-value (q-value) of q<0:1 to set the level of statistical
significance; as with the VIP score, a less conservative q-value
was chosen, given the discovery objectives of this analysis, to
ensure no true associations were excluded from results.65 We
then combined OPLS-DA and Wilcoxon rank-sum test results to
identify those features associated with paraben concentration cat-
egory, using the criteria of both VIP>1 and q<0:1, common cri-
teria applied to identify potential biomarkers.62

Adjustment for confounding. Potential confounding factors in
the relationship between paraben concentration and the urinary

metabolome were mapped with a directed acyclic graph (DAG;
Figure 1). We used the method outlined in Shrier and Platt (2008)
to select covariates for model inclusion and evaluate remaining
sources of bias using a DAG.66 Then, we used multivariable linear
regressionmodels to adjust paraben–metabolite relationships.67,68

Metabolite intensities (dependent variable) and paraben con-
centrations (ng/mL, specific gravity–adjusted, independent vari-
able) were natural log-transformed and treated continuously. To
determine how to represent other covariates, we looked at unad-
justed associationswithmetabolite intensity using clinicallymean-
ingful cut points and percentiles (quartiles, tertiles). Final forms
were determined using visual inspection and the lowest value of
the Akaike information criterion (AIC). Information on participant
characteristics was gathered during an intake interview at study
enrollment.We adjusted for age and alcohol use (reported as 12-oz
beers, 4-oz. glasses of wine, or shots of hard liquor per day, week,
and month, and combined into drinks per month) in three catego-
ries based on the 25th and 75th percentiles; BMI (based on self-
reported height and weight) using clinical cut points of low
(<18:5 kg=m2) or normal (18:5–24:9 kg=m2); caffeine (reported as
cups of caffeinated beverage per day, week, and month, and con-
verted to mg caffeine per month) in three categories using tertiles;
years of education (highest level and years reported) in three
categories (high school or some college, college graduate, and
graduate/professional school); and income (reported as total pretax
family income per year) in three categories using tertiles. Season
was defined by the median specimen aliquot date for pooled sam-
ples and was included because of seasonal trends in personal care
product use.69 Year of sample collection was included to account
for the fact that exposuresmay change over time, thoughmost sam-
ples (n=77=84, 92%) were from the same year. Although no die-
tary information was collected from participants, dietary patterns
can differ between weekends and weekdays.70 We therefore used
pooled samples with weekend collections (Table S1) as a diet
proxy variable to adjust for potential differences in diet between
weekends andweekdays. Therewere 8 (n=8=42, 19%) conception
cycle pooled samples and 15 (n=15=42, 36%) early pregnancy
pooled samples that contained weekend days. The diet proxy vari-
able had two categories: pooled samples containing weekdays only
(n=61=84, 73%) and pooled samples including at least 1 weekend
day (n=23=84, 27%). The remaining covariates were treated as di-
chotomous categorical variables (yes/no): health care occupation
(occupation on enrollment reported and categorized by industry),
smoker (current smoking status reported on enrollment), marijuana
use (reported as any use in the 3 months prior to enrollment), vita-
min use, aspirin use, acetaminophen use, antibiotic use, and oral
contraceptive use in the 90 d prior to study enrollment. All medica-
tions and supplements used in the 3 months prior to study enroll-
ment were reported by name, along with dose and frequency; these

Table 2. (Continued.)

Methylparaben Propylparaben Butylparaben

Characteristic Participants (n)
Conception cycle
median (IQR)

Early pregnancy
median (IQR)

Conception cycle
median (IQR)

Early pregnancy
median (IQR)

Conception cycle
median (IQR)

Early pregnancy
median (IQR)

Weekend specimensb,c

No CC 34
EP 27

141.5 (47.8, 437.8) 51.9 (21.1, 117.3) 50.8 (10.5, 126.0) 13.9 (5.8, 73.5) 0.3 (<LOD, 1.8) 0.3 (<LOD, 1.5)

Yes CC 8
EP 15

59.3 (17.5, 149.6) 89.6 (30.3, 236.6) 44.4 (6.9, 200.1) 37.7 (8.3, 115.6) <LOD (<LOD, 0.5) <LOD (<LOD, 0.9)

Note: Participant characteristics, including medication, vitamin, and other substance use, were reported at the study intake interview. Apr, April; CC, conception cycle; Dec, December;
EP, early pregnancy; IQR, interquartile range; Jan, January; Jul, July; Jun, June; LOD, limit of detection; Mar, March; OC, oral contraceptive; Oct, October; Sept, September; USD,
U.S. dollars.
aRecent oral contraceptive use was reported as occurring in the 90 d prior to study enrollment.
bThe number of participants with this characteristic differs between the conception cycle and early pregnancy. This is indicated with CC or EP next to the number of participants.
cWeekend specimens indicates whether there is ≥1 weekend day urine specimen included in the pooled sample. Most specimens were collected on a Monday, but if a Monday speci-
men was not available, the nearest day was included (see Table S1 for the days of the week represented in pooled samples).
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were then categorized into classes of medications for covariate
adjustment.

Regression models. We constructed 13 multivariable linear
regression models to adjust each paraben–metabolite relationship
whereVIP was>1 and q<0:1.Modelswere labeled bymetabolite
number (1–7) and letter (a–d) when multiple models were run for a
given metabolite (conception cycle, early pregnancy, methylpara-
ben, propylparaben). In addition to 11 single-pollutant models
with just one paraben, we also constructed two bipollutant models
including both methylparaben and propylparaben because for
twometabolites, bothmethylparaben and propylparaben independ-
ently were associated with metabolite intensity. Both parabens
were included in these models to determine whether associations
remained after mutual adjustment. Paraben regression coefficients
or estimates are the percent change inmetabolite intensity for every
1% change in paraben concentration. For interpretation, we also
calculated the estimated percent change in metabolite intensity
when the paraben concentration doubled. Residual plots were visu-
ally examined for normality for all models.

Drug metabolizing enzyme metabolites. We calculated me-
dian intensity and IQR across paraben concentration category
groups for those sulfated DME metabolites identified in our data,
catechol sulfate and pregnenolone sulfate. We also visually com-
pared intensities across concentration categories, stratified by
conception cycle or early pregnancy status, using box plots.

Metabolite Annotation
Metabolites associated with paraben concentration category (VIP>1
and q<0:1) before adjustment were selected for identification.
Initial screening of potential matches for metabolite identification
was carried out on theMETLINdatabase,71 with criteria including a
mass error [parts per million (ppm)] of Dppm<25, retention time
within 2 min to account for instrument differences, and a metabolite

match that was biologically plausible (endogenous human metabo-
lites ormetabolites frompotential external exposures) if information
was available (84 candidate matches were considered). Putative
matches with medications not reported in study intake interviews,
used only in experimental settings after the years of EPS specimen
collection, or receiving U.S. Food and Drug Administration (U.S.
FDA) approval after specimen collection were excluded (n=6),
leaving 78 potential matches. Based on these criteria, available
standards (n=5) were purchased (see “Targeted Metabolomics
Analysis”). Fragmentation data were used for metabolite identifica-
tion, first compared with fragmentation data from commercial
standards and public libraries and then analyzed using the SIRIUS
and CFM-ID tools.59,61 The certainty of a metabolite identification
was classified using the scoring system of the Metabolomics
Standards Initiative (MSI; see Table 4 notes for scoring system
description).72,73

Results

Paraben Urinary Concentration Distribution
For all parabens, conception cycle urinary concentrationswere higher
than early pregnancy concentrations (Table 2). Methylparaben and
propylparaben concentrations were higher for participants who
reported taking acetaminophen and aspirin, were younger, and were
nonsmokers, and concentrations were highest in the spring and low-
est in the fall (Table 2). Methylparaben and propylparaben concen-
trations were correlated during conception cycles (Spearman’s
r=0:8) and early pregnancy (r=0:8), whereas correlations
between butylparaben concentrations and the other parabens were
<0:5. Comparison of EPS paraben concentrations with those from
other cohorts of reproductive-age women (sample collection years
1997–2019) found paraben concentrations were variable across all
studies, without any trend over time.2,37,39,74–78 EPS concentrations

Figure 1. Directed acyclic graph showing potential confounders in the relationship between urinary paraben concentration and the urinary metabolome and
bias paths remaining after adjustment. Thin green lines connecting covariates indicate that associations on those paths are blocked, and potential confounding
is accounted for in regression models. Any remaining paths from urinary paraben concentration to the urinary metabolome—regardless of arrow direction—
indicate possible sources of bias and are represented by thick red lines with numbers corresponding to bias paths. Bias path 1 is via personal care product use,
and bias path 2 is via physical activity and personal care product use. Boxed variables are measured for study participants and included in regression models,
whereas unboxed variables are neither measured for study participants nor included in regression models.
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were within range of other cohorts, including more recent studies
with samples collected during the period 2010–2019.

Although metabolomic analysis of samples after long-term
storage can raise concerns about degradation, we did not observe
a systematic pattern of increasing or decreasing paraben concen-
trations within the EPS cohort across the years of sample collec-
tion (Table 2). Together, the careful storage and specimen
handling procedures, absence of sample contamination, and simi-
lar urinary concentrations in comparison with present-day cohorts
support the viability of these specimens for analysis even after
long-term storage.

Multivariate and Univariate Analyses
Results of PCA showed no separation of groups based on paraben
concentration categories (Figure S2). Although the R2 values of
the PCA models indicate that 25%–47% of the variance is
explained by the first two principal components, the predictive
ability (Q2) of the models is low: ≤0:3 in all cases (Table S2). For
RPLC data, the first three principal components explain 50% of the
variance of the data, whereas for HILIC data, more than five princi-
pal components are needed to explain 50% of the variance.

Results of the OPLS-DA models (Table 3) indicated that
the models did not accurately assign concentration categories.
Differences >0:3 between R2Y and Q2 indicate overfitting of a
model, and in all models, the difference was >0:3. The findings of
this analysis were validated using a permutation test (Table S3),
whereQ2 intercepts were all >0.

Using the results of the Wilcoxon rank-sum test, we found 11
discriminant features with q<0:1 (Tables 3 and 4). Although all
of these features also had a VIP>1, because of OPLS-DA model
overfitting, we consider the VIP score to be of lesser importance
in this instance. Two metabolites were associated with paraben

concentration in both conception cycle and early pregnancy sam-
ples and independently associated with methylparaben and pro-
pylparaben concentrations, for a total of 7 unique metabolites
across the 11 discriminant features. No metabolites were associ-
ated with butylparaben. Five metabolites were detected in HILIC
mode, which focuses on polar metabolites, including hydrophilic
conjugated and glucuronidated metabolites associated with detox-
ification, and two were detected in RPLC mode, which focuses
on nonpolar metabolites.

Multivariable Linear Regression Models
After adjustment for potential confounding factors, three metabo-
lites remained associated with paraben concentrations (Table 5
and Table S4; Figure 2): metabolites 2 and 5 detected in HILIC
mode and metabolite 3 detected in RPLC mode. Metabolites 2
and 5 were associated with methylparaben in both conception
cycles and early pregnancy (models 2a, 2d, 5a, and 5d). Across
these four models, a doubling of methylparaben concentration
was associated with a 59%–75% [95% confidence interval (CI):
33%, 111%; p≤ 0:00005 in all models] increase in metabolite
intensity. After adjustment, metabolites 2 and 5 were also associ-
ated with propylparaben, and a doubling of propylparaben con-
centration was associated with a 32% (95% CI: 0%, 73%; 2b,
p=0:05; 5b, p=0:02) increase in metabolite intensity for both.
Metabolite 3 was associated with methylparaben in the concep-
tion cycle, with a doubling of methylparaben concentration asso-
ciated with a −14% (95% CI: −26%, −1%, p=0:03) decline
in metabolite intensity. Across the 13 models, methylparaben
remained associated with metabolite intensity after adjustment in
all seven models that included methylparaben (Figure 2). In con-
trast, propylparaben remained associated with metabolite inten-
sity in only two of the eight models including propylparaben. Of

Table 3. Results of OPLS-DA showing variation associated with urinary paraben concentration category for 42 participants in the Early Pregnancy Study.

HILIC data RPLC data

Sample time point
Paraben concentration

comparison (n) R2X R2Y Q2 Discriminant features (n)a R2X R2Y Q2 Q2

Conception cycle Methylparaben — — — — — — — —
L (21)–M (10) 0.23 0.98 −0:026 0 0.42 0.95 0.32 1
L (21)–H (10) 0.24 0.98 0.14 2 0.38 0.96 −0:084 0
M (10)–H (10) 0.19 0.99 −0:16 0 0.44 0.96 −0:16 0
Propylparaben — — — — — — — —
L (21)–M (10) 0.24 0.97 −0:27 0 0.41 0.96 −0:053 0
L (21)–H (11) 0.25 0.98 0.24 5 0.41 0.95 0.21 0
M (10)–H (11) 0.27 0.99 −0:21 0 0.43 0.96 −0:36 0
Butylparaben — — — — — — — —
L (22)–M (10) 0.22 0.97 −0:072 0 0.42 0.95 −0:023 0
L (22)–H (10) 0.22 0.99 −0:16 0 0.41 0.93 −0:39 0
M (10)–H (10) 0.25 0.99 −0:50 0 0.43 0.99 −0:35 0

Early pregnancy Methylparaben — — — — — — — —
L (22)–M (10) 0.23 0.97 −0:087 0 0.40 0.95 −0:16 0
L (22)–H (10) 0.26 0.95 −0:24 2 0.42 0.92 −0:43 0
M (10)–H (10) 0.26 0.99 −0:052 0 0.43 0.99 −0:017 0
Propylparaben — — — — — — — —
L (20)–M (12) 0.20 0.98 −0:073 0 0.39 0.96 −0:39 0
L (20)–H (10) 0.27 0.95 −0:087 0 0.42 0.95 −0:22 0
M (12)–H (10) 0.25 0.99 0.22 0 0.44 0.99 0.32 1
Butylparaben — — — — — — — —
L (22)–M (10) 0.22 0.96 0.12 0 0.41 0.95 −0:028 0
L (22)–H (10) 0.21 0.99 −0:016 0 0.42 0.94 −0:092 0
M (10)–H (10) 0.27 0.99 0.061 0 0.42 0.97 −0:0080 0

Note: Only features with a relative standard deviation <0:3 were included in this analysis: 15,158/18,822 features from HILIC data, and 12,023/12,794 features from RPLC data. R2X
represents the variation in the data related to concentration category; R2Y indicates group separation by concentration category; and Q2 indicates predictive performance of the model.
If the difference between R2Y and Q2 is >0:3, this suggests overfitting of the model. Paraben concentration categories of low, medium, and high are defined in Table 1. —, no data; H,
high concentration category; HILIC, hydrophilic interaction chromatography; L, low concentration category; M, medium concentration category; OPLS-DA, orthogonal partial least-
squares discriminant analysis; RPLC, reversed-phase liquid chromatography; VIP, variable importance to projection score.
aDiscriminant features are those with VIP>1 based on OPLS-DA analysis, and q<0:1 based on the Wilcoxon rank-sum test comparing changes in peak area between paraben concen-
tration categories. The q-value is a Benjamini-Hochberg false discovery rate–corrected p-value.
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the 11 models including just a single paraben, 10 were associated
with increased metabolite intensities.

We also constructed two bipollutant models (models 2c and
5c) with both methylparaben and propylparaben (Figure 2). In

these models, after adjustment methylparaben remained associ-
ated with metabolite intensity [2c, 1.02 (95% CI: 0.58, 1.46),
p=0:0002; 5c, 0.78 (95% CI: 0.34, 1.22), p=0:002], whereas
the association between metabolite intensity and propylparaben

Table 5. Change in metabolite intensity associated with urinary paraben concentration (ng/mL, specific gravity–adjusted) after adjusting for confounding using
multivariable linear regression in 42 participants in the Early Pregnancy Study.

Metabolite number
(model)a Sample time point Paraben

Intensity change when paraben
concentration doubles (95% CI) Adjusted R2

1 (a) Conception cycle Propylparaben 28% (−4%, 71%) −0:02
2 (a) Conception cycle Methylparaben 75% (45%, 111%) 0.69
2 (b) Conception cycle Propylparaben 32% (0%, 73%) 0.19
2 (c)b Conception cycle Methylparaben 103% (49%, 175%) 0.70

Propylparaben −15% (−35%, 12%)
2 (d) Early pregnancy Methylparaben 62% (38%, 90%) 0.60
3 (a) Conception cycle Methylparaben −14% (−26%, −1%) 0.27
4 (a) Conception cycle Propylparaben 15% (−7%, 41%) 0.16
5 (a) Conception cycle Methylparaben 59% (33%, 89%) 0.59
5 (b) Conception cycle Propylparaben 32% (5%, 66%) 0.21
5 (c)b Conception cycle Methylparaben 72% (27%, 133%) 0.58

Propylparaben −8% (−30%, 20%)
5 (d) Early pregnancy Methylparaben 69% (49%, 93%) 0.70
6 (a) Conception cycle Propylparaben 15% (−5%, 39%) −0:09
7 (a) Early pregnancy Propylparaben 2% (−9%, 13%) 0.01

Note: The adjusted R2 is for the full model, and full regression results are included in supplementary materials (Table S4). The full model includes paraben concentration; acetamino-
phen, aspirin, antibiotic, and vitamin use; age; BMI; marijuana use; alcohol consumption; caffeine intake; smoking status; recent oral contraceptive use; education; income; health care
occupation; year of specimen collection; season of specimen collection; and whether a pooled sample includes weekend days. BMI, body mass index; CI, confidence interval.
aMetabolite numbers (1–7) correspond to the metabolites described in Table 4, and model letters (a–d) differentiate models run for the same metabolite.
bBipollutant model, including both methylparaben and propylparaben.

Figure 2. Percent change in metabolite intensity associated with a doubling of urinary paraben concentration (ng/mL, specific gravity–adjusted) after adjustment
for confounding using multivariable linear regression in 42 participants in the Early Pregnancy Study. Error bars represent 95% confidence intervals. Metabolite
numbers (1–7) correspond to the metabolites described in Table 4, and model letters (a–d) correspond to adjusted models summarized in Table 5, with full model
results found in Table S4. Covariates used for adjustment can be visualized in Figure 1 and are also listed in Table 2. Data for this figure are from Table 5.
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was attenuated [2c, −0:23 (95% CI: −0:62, 0.16), p=0:22; 5c,
−0:12 (95% CI: −0:51, 0.26), p=0:51].

Metabolite Annotation
We putatively identified 5 of the sevenmetabolites associated with
paraben concentration, at varying levels of certainty (Table 4).
Fragmentation data are available in the Supplemental Excel File.
Four of themetaboliteswere identified atMSI level 2 as food or fla-
voring compounds: acetosyringone (metabolite 1), an acetophe-
none found in hardwood smoke, smoked foods, and smoke
flavorings; fertaric acid (metabolite 2), a hydroxycinnamic acid
found in grapes and wheat; methyl tricosanoate (metabolite 3), a
fatty acid methyl ester found in olives and olive oil; and catechin
30,5-diglucoside (metabolite 6), a flavonoid o-glycoside found in
certain plant-based foods. For each of these compounds, we
matched our fragmentation data with that available in SIRIUS and
CFM-ID because no standards were available, which would have
allowed confirmation of identification to MSI level 1. In addition,
resolving flavonoids (metabolite 6) and similar structures is limited
in untargeted metabolomics methods; thus, although there is high
confidence in the substructure of the metabolite, there is more am-
biguity in the substitutions and stereochemistry of the metabolite.
Identifications at MSI level 3 included a glycerolipid without any
information about source or function (metabolite 5). Finally, two
compounds (metabolites 4 and 7) remained unidentified at MSI
level 4, without any matching fragmentation data in public tandem
mass spectrometry (MS/MS) spectral libraries. After adjustment
for confounding, fertaric acid, methyl tricosanoate, and the glycer-
olipid remained strongly associated with paraben concentrations,
whereas associations with acetosyringone, catechin 30,5-digluco-
side, and the unidentifiedmetabolites were attenuated.

Drug Metabolizing Enzyme Metabolites
We detected pregnenolone sulfate (MSI level 1) and catechol sul-
fate (MSI level 2) using the LC-MS methods but did not observe
systematic differences in peak area across paraben concentration
categories based on visual assessment of boxplots (Table S5;
Figure S3).

Discussion
In this study, we investigated associations between urinary con-
centrations of three widely used parabens and the urinary metabo-
lome during the periconceptional period, a critical window for
fertility. This study provides the first results related to paraben
exposure and the metabolome during this critical window.22–25
We found seven metabolites were associated with urinary para-
ben concentrations, four of which we identified as diet-related
metabolites or flavoring compounds, and none of which were
associated with endocrine-disrupting pathways.

Three studies have investigated associations between paraben
exposure and the humanmetabolome. Zhao et al. examined associ-
ations between methylparaben, propylparaben, and ethylparaben
and the urinary metabolome in 88 pregnant Chinese women at 10–
15 wk gestation.27 Using UHPLC coupled with triple quadrupole
mass spectrometry (positive mode), they identified 60 differen-
tially expressed metabolites in spot urine samples using Mann-
Whitney U tests and Spearman correlations, without adjusting for
multiple comparisons or confounders. Differential metabolites
were from energy metabolism pathways, including the purine me-
tabolism pathway and the urea cycle.27 Lee et al. assessed associa-
tions between paraben concentrations in spot urine samples and
aeroallergen sensitization in South Korean children.28 Using
gas chromatography time-of-flight mass spectrometry methods, they
found propylparaben was associated with 15 differential metabolites,

including from serine and glycine metabolism, branched-chain
amino acidmetabolism, and ammonia recycling.28Bessonneau et al.
used nontargeted liquid chromatography coupled to high-resolution
mass spectrometry (negative mode) to examine spot serum samples
from California women firefighters and office workers.29 In office
workers only, butylparaben was associated with inflammation,
potentially through bile acids, which are signaling molecules with
hormonal actions that can regulate energy metabolism through nu-
clear receptor activation, including PPARa.29

Our study, which used pooled samples for more representa-
tive estimates of urinary paraben concentration and detailed con-
trol of potential confounding factors, was unable to confirm any
of the differential metabolites associated with paraben concentra-
tions in previous studies. In contrast to these other studies, we
identified novel relationships between urinary paraben concentra-
tion and diet-related metabolites. Diet is a known route of expo-
sure to parabens, which have been added as antimicrobial and
antifungal agents to prevent spoilage since the 1930s.4,40,79

Parabens are heat-resistant, odorless and tasteless, often used in
combination, and can be combined with other preservatives, mak-
ing them useful in food processing contexts.79 Recent studies of
parabens in foods in the United States and China found detectable
levels in 90%–99% of samples, with methylparaben and propyl-
paraben more common than butylparaben.80,81 Although there
are no studies of the prevalence of parabens in foods in the 1980s
during the EPS sampling years, parabens are classified as “gener-
ally recognized as safe” ingredients by the FDA, meaning they
have an extensive history of use in food prior to 1958, and are
limited to a maximum concentration of 0.1% in food products.4,79

We found four diet-related metabolites to be associated with
paraben concentration before adjustment. Acetosyringone (metab-
olite 1) is a plant metabolite and component of wood smoke82 that
contributes to the smoky aroma of naturally smoked foods and is a
component of smoke flavorings added to foods.83 Foods that are
smoked or smoke-flavored could also contain paraben preserva-
tives. Fertaric acid (metabolite 2) is an antioxidant found in grapes,
grape juice and wine, and bread wheat.84–87 A study of parabens in
foods from the United States foundmethylparaben in 85% and pro-
pylparaben in 45% of fruit samples, which included raisins and
grapes among the fruits sampled.80 The same study detected meth-
ylparaben in 67% and propylparaben in 21% of beverages sampled
including wine, and methylparaben in 98% and propylparaben in
82% of grains sampled. Fruits had the lowest mean concentration
of parabens and grains had the highest.80 Methyl tricosanoate
(metabolite 3) is a metabolite of the olive plant, Olea europaea,
and we detected an in-source ammonium adduct of the compound.
A common source of methyl tricosanoate is olive oil.88 Studies of
parabens in food cooking oils and fats found methylparaben in
40% of samples from the United States, and 100% of samples from
China.80,81 Catechin 305-diglucoside (metabolite 6) is found in
many plant-based foods, especially green and black teas, grapes
andwines, fruits, cocoa, barley, and lentils.89

After adjustment, two of the three metabolites strongly associ-
atedwith paraben concentrationwere diet-related (fertaric acid and
methyl tricosanoate), along with a third unidentified glycerolipid
(metabolite 5). Associations between paraben concentrations
and acetosyringone and catechin 305-diglucoside were somewhat
attenuated, with wider CIs including but centered well above 1
(Figure 2). Our observation of a negative association between
methylparaben concentration and methyl tricosanoate metabolite
intensity could help explain why the metabolite discriminated
between low-medium but not low-high concentration categories:
reduced methyl tricosanoate intensity at high concentrations could
make it difficult to discriminate between the two categories.
Although these results underscore the general importance of diet to
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paraben concentrations, the metabolites we identified should not
be interpreted as particularly paraben-rich exposure sources; future
research could examine the relative source contributions of differ-
ent food products to paraben exposure and how parabens enter the
food supply.

Our findings emphasize the importance of including dietary
data in metabolomic studies of paraben exposure. Because no di-
etary information was available for the EPS cohort, we developed
a proxy variable for regression models that indicated whether a
pooled urine sample included any weekend days, since diet tends
to differ on weekends in comparison with diets on weekdays.70 In
adjusted models, this variable was strongly associated with ferta-
ric acid intensity, and for all four dietary metabolites the direction
of association was consistent, with higher metabolite intensities
in samples containing weekend days (Table S4). Results of the
full regression models (Table S4) also showed consistent direc-
tional trends in changes in metabolite intensity associated with
other covariates, including medication use, age, and BMI; the
presence of these trends is reassuring, given that we expected
these factors to impact the metabolome. In these models, the
covariates most strongly associated with metabolite intensity
were acetaminophen use, vitamin use, age, marijuana use, health
care job, season, and weekend days in sample. The participant
characteristics showing the largest differences in paraben concen-
trations were acetaminophen use, aspirin use, age, smoking sta-
tus, and season (see Table 2). Taken together, these findings
suggest that medication use, age, and season may be some of
the most important confounding factors, information that could
benefit the design of future studies of paraben exposure and the
metabolome.

Studies of parabens in foods have estimated the daily dietary
intake of methylparaben to be 4–5.5 times that of propylpara-
ben,80,81 and in the EPS cohort, median methylparaben concentra-
tions were ∼ 2:5 times higher than propylparaben concentrations
(Table 2). We also observed more consistent and stronger associa-
tions between methylparaben and metabolite intensity (Table 5,
Figure 2): in single-pollutant adjusted models, a doubling of meth-
ylparaben concentration increased metabolite intensities 59%–
75% (95% CI: 33%, 111%), whereas a doubling of propylparaben
concentration increased metabolite intensity 32% (95% CI: 0%,
73%). In the bipollutant models, after mutual adjustment methyl-
paraben remained associated with metabolite intensity whereas
propylparaben did not, likely reflecting the cohort’s higher methyl-
paraben concentrations. Although it is also possible that methyl-
paraben may confound propylparaben exposure; because they are
found in similar foods and products, are often used in combination,
and have correlated concentrations within the cohort, it is difficult
to hypothesizewhat specific paths of exposuremight underlie these
results. Together, our findings may reflect that the higher concen-
trations of methylparaben in the EPS cohort more strongly influ-
ence the metabolome in comparison with the lower concentrations
of propylparaben.

Previous research has shown that parabens—especially those
with longer linear alkyl side-chains like propylparaben and
butylparaben—can activate PPARa and PPARc nuclear
receptors.18–20 PPAR nuclear receptors, among others, mediate the
expression of DMEs such as cytochrome P450s (CYPs), UDP-
glucuronosyltransferases (UGTs), and sulfotransferases (SULTs),
which play key roles in detoxification processes and hormone me-
tabolism and bioavailability underlying normal reproductive func-
tion.18 Although it is possible that further research could link this
study’s unidentified metabolites to hormone metabolism, we did
not observe metabolites in steroid hormone classes to be impacted.
The two sulfonated steroids previously associated with methylpar-
aben exposure in rats32 that we were able to identify using targeted

analysis in our samples, catechol sulfate and pregnenolone sulfate,
were not associated with paraben concentrations (Table S5; Figure
S3). Instead, our findings emphasize the contribution of diet to uri-
nary paraben concentrations, reflecting markers of paraben expo-
sure rather than the biological effects of paraben exposure.

We detected more changes in the metabolome associated with
paraben concentration during conception cycles (six metabolites
across eight comparisons) than in the early pregnancy period (three
metabolites). This could reflect normal physiologic changes of
pregnancy, including pregnancy-associated changes to metabo-
lism. Although themechanisms are not fully understood, hormonal
changes in pregnancy influence DME expression, including CYP
and UGT enzymes.16,90,91 During pregnancy, the UGT enzymes
that metabolize parabens increase in activity; this can result in sub-
therapeutic levels of some medications and increased renal clear-
ance.90,91 Although it is unclear how early these shifts occur,
previous research in the EPS cohort reported a decline in creatinine
concentrations from before to after implantation, indicating that
pregnancy-related changes in kidney function may begin as early
as 3–6 wk gestation.52 We observed early pregnancy paraben con-
centrations were lower than conception cycle concentrations, even
after adjusting for urinary dilution (Table 2). This contrasts with
expectations based on increased renal clearance of medications
during pregnancy but could help explain why we observed fewer
metabolomic changes in the early pregnancy samples. It is unlikely
study participants made behavioral changes in response to preg-
nancy that modified their urinary paraben concentration profiles,
because early pregnancy samples were often collected before a
pregnancywas recognized and before the onset of nausea and vom-
iting of pregnancy, which typically begins at 6 wk after the last
menstrual period.

The strengths of our study include the use of pooled rather than
single spot urine samples to estimate paraben exposure. Spot sam-
ples, as used in the other metabolomics studies of paraben expo-
sure, may inaccurately estimate exposure given the short half-life
and high intraindividual variability of parabens.5,36–39 Within-
subject sample pooling helps address the potential measurement
error associated with chemicals like parabens, which can lead
to attenuation bias in estimates of exposure–outcome relation-
ships.92–94 The differences between the differential metabolites
identified in our study and in previous studies could relate to differ-
ent study populations (China, SouthKorea, United States; pregnant
women at 10–15wk gestation, children, officeworkers, preconcep-
tion and pregnant women at <6 wk gestation) and biofluids ana-
lyzed, their use of spot samples, and the different metabolomics
methods and analytical platforms employed in each study, leading
to coverage of different chemical spaces.27–29 Different paraben
exposure profiles across the studies may also contribute to differen-
ces in findings. Concentrations of methylparaben and propylpara-
ben were higher in EPS (median methylparaben conception cycle
129:1 ng=mL, early pregnancy 53:2 ng=mL; median propylparaben
conception cycle 50:8 ng=mL, early pregnancy 18:5 ng=mL) in
comparison with those reported in Zhao et al. [geometric mean
(GM) methylparaben 19:45 ng=mL, propylparaben 1:18 ng=mL] or
Lee et al. (median of third quintilemethylparaben 13:8 ng=mL).27,28

However, EPS butylparaben concentrations (median conception
cycle and early pregnancy <0:2 ng=mL) were similar to those in
Lee et al. (median of third quintile butylparaben 0:8 ng=mL).28

Bessonneau et al. did not report study participants’ paraben concen-
trations.29 It is also possible that themetabolites we found to be asso-
ciated with paraben concentrations are actually associated with
another chemical or exposure that is co-occurring or highly corre-
lated with parabens—including exposures unique to the 1980s—
which could contribute to differences between study findings. In
addition, these previous studies either did not control or minimally
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controlled for confounding factors. In contrast, we controlled for
numerous potential confounding factors, giving further confidence
in the associations we observed that persisted after adjustment. The
methods used in this study to combine untargeted and targeted
metabolomics analyses with epidemiological assessment of and
adjustment for confounding could be applied to larger cohorts. In the
context of metabolomics, a highly sensitive tool for assessing both
exposures and their effects, such adjustment for confounding is
essential. Our use of an agnostic, untargetedmetabolomics approach
also revealed novel associations that would have been overlooked
had we focused solely on our hypothesis that parabens are
endocrine-disruptors influencing DMEs, underscoring the value of
including untargeted analyses in environmental health research.

Our study has some weaknesses. Nearly half of butylparaben
concentrations were <LOD, which may have limited our capacity
to detect metabolomic changes associated with butylparaben. Our
study is limited by small sample size, with just 42 participants.
Although the participants in this study were not broadly represen-
tative at a population level, we leveraged selection criteria to
amplify the subcohort’s homogeneity so as to minimize interindi-
vidual metabolomic variability, increasing the potential to detect
paraben–metabolome associations despite the smaller sample
size. This approach, coupled with our use of pooled samples for
exposure assessment to decrease potential measurement errors,
increased the power of our study.92 Because the paraben concen-
trations within our cohort were similar to those in other cohorts,
our findings may have broader relevance.

We were unable to control for two important sources of bias
in our adjusted models: personal care product use and exercise/
physical activity (Figure 1). It is possible that including informa-
tion about personal care product use and exercise/physical activ-
ity could alter adjusted results. Because this study used first
morning urine samples, paraben concentrations likely reflect
exposures occurring on the evening prior to specimen collection.
Despite having a short half-life of <2 h, studies have found para-
bens to be detectable in urine for at least 48 h after dermal expo-
sure, and 24 h after ingestion, suggesting that first morning urine
samples could robustly reflect exposures from the previous eve-
ning and may even reflect exposures from the past 24–48 h,
depending on exposure route.40,41,95 Because personal care prod-
ucts are often used in the morning, the samples in this study
might be less likely to reflect parabens from personal care prod-
uct use and more likely to reflect dietary exposures, as evidenced
by the metabolites we were able to identify. Sampling time thus
could have influenced our findings and might help explain why
we did not find metabolites associated with personal care product
use despite this being a major route of paraben exposure. Results
of adjusted models also showed a seasonal trend in metabolite
intensities, with lower intensities in the winter rising to a peak in
the summer and fall (Table S4). Previous studies have observed
similar seasonal fluctuations in paraben concentrations, possibly
related to trends in personal care product use.69,96 These fluctua-
tions underscore the importance of gathering data on personal
care product use and exercise/physical activity.

We attempted to control for a third source of bias, diet, using
a proxy variable of whether weekend days were present in pooled
samples, because previous research has found weekend and
weekday dietary patterns differ.70 Although the collection of die-
tary information would improve accuracy and possibly influence
the results of adjusted models, the precision with which the
metabolomics data identified diet-related sources of paraben ex-
posure (smoke flavoring, grapes, olive oil) is unlikely to be repli-
cated using common dietary data collection tools like food
frequency questionnaires. However, more specific dietary data
could help explain the direction of specific metabolite–exposure

relationships, such as the negative association between methyl-
paraben and methyl tricosanoate. Although dietary patterns can
change with the onset of pregnancy, the early pregnancy samples
in this study are from prior to the typical onset of first trimester
nausea and vomiting and often from before a pregnancy was rec-
ognized. Integrating metabolomics data and nutritional bio-
markers with existing dietary data is an area of emerging
research in nutritional epidemiology, with the potential to inform
survey questions seeking to assess paraben and other environ-
mental exposures.97 Together, these sources of bias highlight the
importance of collecting a broad array of information from study
participants when trying to understand the metabolomic implica-
tions of environmental exposures.

Conclusions
We observed associations between urinary paraben concentrations
and the periconceptional urinary metabolome, with detailed control
for confounding. Four of the seven differential metabolites were
consistent with dietary sources of paraben exposure, and three
metabolites remained unidentified. We did not document associa-
tions between paraben concentrations and endocrine-disrupting
pathways and were unable to confirm the differential metabolites
associated with paraben concentrations in previous studies. This
study demonstrated the feasibility and value of integrating untar-
geted metabolomics data with environmental exposure information
and adjusting for confounding using epidemiological approaches;
our methods can be scaled up for larger cohorts. Our findings sup-
port further investigation of dietary exposure pathways in environ-
mental health and exposure studies, including the relative source
contributions of different food products to paraben exposure and
integration of metabolomics data into dietary exposure assessment,
and underscore the need for further research on the biological and
health implications of paraben exposure.
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