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Abstract— This paper studies the general decay pro-

jective synchronization (GDPS) of a class of drive-

response reaction-diffusion memristive neural networks

(RDMNNs). Firstly, a suitable controller is designed,

which does not ask for any knowledge about the

activation functions. Then we investigate the GDPS

of drive-response RDMNNs by constructing a suitable

Lyapunov functional, and an adequate condition for

guaranteeing the GDPS of this type of network is in-

ferred. Lastly, the validity of the result is demonstrated

by one numerical example with simulation results.

I. INTRODUCTION

How to simulate synapses in the human brain and

make artificial neural networks (NNs) more similar

to the human brain in information processing has

always been a hot topic in the research of artificial

NNs. The emergence of memristive neural networks

(MNNs) based on memristor with the same functional

components provides a good solution to the above

problem. In practical terms,the memristor has the ad-

vantages of high integration, low power consumption

as well as synaptic plasticity. As a consequence, a

large number of papers have been published in recent

years to witness the development of MNNs [1-4].

MNNs based on memristors have gradually become

a hot spot for scientists. In [5], the authors proposed

a physical layer security strategy of space division

multiplex orthogonal frequency division multiplexing

system based on MNNs.

As is well known, incomplete uniform electromag-

netic field can bring about the diffusion phenomena of

electrons in circuit simulation experiments of MNNs.

In this situation, the state trajectory of electrons needs

to be represented by partial differential equations

with respect to time and space variables. In recent
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years, synchronization has always been a frequently

discussed topic on drive-response reaction-diffusion

memristive neural networks (RDMNNs). Wu et al.

[6] studied the pinning synchronization of stochas-

tic neutral RDMNNs by designing an appropriat-

ing Lyapunov-Krasovskii functional. Cao et al. [7]

discussed the global exponential anti-synchronization

issue for an array of delayed MNNs with reaction-

diffusion terms and leakage term.

By and large, the types of synchronization can be

divided into generalized synchronization, impulsive

synchronization, lag synchronization, complete syn-

chronization and projective synchronization [8-12].

Due to the unpredictability of scaling constants, pro-

jection synchronization has outstanding advantages

over other types of synchronization, which can extra

promote communication security. The article [13]

investigated the combinatorial projection synchro-

nization issue of fractional order complex dynamic

networks with external interference and time-varying

delay coupling. By making use of a suitable con-

troller, He et al. [14] explored the projection scaling

factor to a general constant matrix and researched

the global matrix projection synchronization for the

delayed fractional-order NNs. In view of the different

synchronization speeds and times, it was difficult

to gain the convergence rate or time of the NNs.

for some realities. Fortunately, the general decay

projective synchronization (GDPS) can get over this

issue. The GDPS of a class of memristive competitive

NNs with time delay was discussed in [15]. However,

according to our knowledge, there is no result on the

GDPS of drive-response RDMNNs. With inspiration

from above, this work explores the GDPS of drive-

response RDMNNs.

The rest of this paper is outlined as follows. Some

notations, several relevant definitions and essential

lemmas are introduced in Section II. Section III is

devoted to establishing the GDPS criterion of the

considered derive response RDMNNs. In Section IV,

a numerical example is given to verify the feasibility

of the derived synchronization result. We end this
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paper in Section V with summary of our work.

II. PRELIMINARIES

A. Notations

R = (−∞,+∞) delegates the set of real numbers.

R
n is the n-dimensional Euclidean space, Rn×n de-

notes the n × n dimensional real matrix space. We

define Ω = {s = (s1, s2, · · · , s j)
T
∣

∣|sh| < αh, h =
1, 2, · · · , j} ⊂ R

j is an open bounded domain with

smooth boundary ∂Ω.

B. Lemma and definition

Lemma 1. Let Ω = {s = (s1, s2, · · · , s j)
T
∣

∣|sh| <
αh, h = 1, 2, · · · , j} ⊂ R

j be a cube and ξ (s) ∈
C1(Ω) be a real valued function satisfying ξ (s)|∂Ω =

0, then:
∫

Ω ξ 2(s)ds 6 α2
h

∫

Ω

(

∂ξ
∂sh

)2

ds.

Definition 1. If there exists a function ψ(ϖ) : R+ →
(0,+∞) which satisfies the following conditions:

(1) it is nondecreasing and differentiable;

(2) ψ(+∞) = +∞ and ψ(0) = 1;

(3) ψ(ϖ) := ψ̇(ϖ)
ψ(ϖ) is decreasing;

(4) for any u,v > 0, ψ(u+ v)6 ψ(u)ψ(v);
then the function ψ(ϖ) is ψ-type function.

III. GDPS OF DRIVE-RESPONSE RDMNNS

In this part, we will consider the network model

of RDMNN as below:

∂ξq(s,ϖ)

∂ϖ
=−cqξq(s,ϖ)+ Iq+ pq∆ξq(s,ϖ)

+
n

∑
b=1

eqb(ξq(s,ϖ))gb(ξb(s,ϖ)), (1)

where q = 1,2, · · · ,n, ξq(s,ϖ) is the state of the

qth neuron in space s and at time ϖ ; ∆ = ∑
j
h=1

∂2

∂s2
h

;

gb(ξb(s,ϖ)) stands for the activation function of the

bth neuron; Iq is the external input; cq > 0 is the

self-inhibition rate of neuron; pq > 0 is the diffusion

coefficient; (eqb(ξq(s,ϖ)))n×n denotes the connection

weight of memristor synapses, where eqb(ξq(s,ϖ)) is

defined as:

eqb(ξq(s,ϖ)) =
Fqb

Oq

× signqb,

signqb =

{

1, q 6= b,

−1, q = b,

where b,q = 1, 2, · · · , n, Fqb denotes the mem-

ductances of memristors Jqb, Jqb represents the

memristor between gb(·) and ξq(s,ϖ). Based on the

voltage-current features of memristor, and we define

the memristive connection weight as below:

eqb(ξq(s,ϖ)) =

{

êqb, |ξq(s,ϖ)|6 Vq,

ěqb, |ξq(s,ϖ)|>Vq,

where the switching jumps Vq > 0, êqb and ěqb are

constants, ẽqb =max{|ěqb|, |êqb|}, q, b= 1, 2, · · · , n.

For the system (1), ξq(s,0)= φq(s,ϖ), ξq(s,ϖ)= 0

if (s,ϖ)∈ ∂Ω× [0,+∞), where the function φq(s,ϖ)
is continuous and bounded on Ω.

We regard network (1) as the drive system, then

the corresponding response system is constructed as

∂ ξ̂q(s,ϖ)

∂ϖ
=−cqξ̂q(s,ϖ)+ Iq+ pq∆ξ̂q(s,ϖ)

+
n

∑
b=1

eqb(ξ̂q(s,ϖ))gb(ξ̂b(s,ϖ))+ lq(s,ϖ), (2)

where q= 1, 2, · · · , n, ξ̂q(s,ϖ) is the state of the q-th

node; lq(s,ϖ) denotes the controller to be designed;

cq, pq, △, Iq, eqb(·), gb(·) are defined similarly to the

network (1).

The initial condition and Dirichlet boundary condi-

tion of system (2) are: ξ̂q(s,0) = ϕq(s,ϖ), ξ̂q(s,ϖ) =
0 if (s,ϖ) ∈ ∂Ω × [0,+∞), where the function

ϕq(s,ϖ) is continuous and bounded on Ω.

Assumption 1. There are several positive numbers

χb and χ̃b, for b = 1, 2, · · · , n, such that: |gb(z1)−
gb(z2)|6 χb|z1 − z2|, |gb(z)|6 χ̃b, for ∀z, z1, z2 ∈ R.

Assumption 2. There is a positive constant κ and a

function r(ϖ) ∈C(R, R+) such that:

sup
ϖ∈[0,∞)

∫ ϖ

0
ψκ(s)r(s)ds< ∞,ψ(ϖ)6 1,

in which ψ(ϖ), ψ(ϖ) are given in Definition 1.

By letting µq(s,ϖ) = ξ̂q(s,ϖ)−mqξq(s,ϖ) be the

error vector, mq is a proportional constant, then we

get

∂ µq(s,ϖ)

∂ϖ
=

n

∑
b=1

eqb(ξ̂q(s,ϖ)) fb(µb(s,ϖ))+Rq

+ lq(s,ϖ)+ pq∆µq(s,ϖ)− cqµq(s,ϖ), (3)

where fb(µq(s,ϖ)) = gb(ξ̂b(s,ϖ))−gb(mqξb(s,ϖ)),

Rq = (1− mq)Iq +∑n
b=1[eqb(ξ̂q(s,ϖ))gb(mqξb(s,ϖ))

−mqeqb(ξq(s,ϖ))gb(ξb(s,ϖ))].
The controller lq(s,ϖ) is designed:

lq(s,ϖ) = −ηq

||µ(·,ϖ)||2µq(s,ϖ)

||µ(·,ϖ)||2 + r(ϖ)

−ςqsign(µq(s,ϖ)), (4)
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where q = 1, 2, · · · , n, R ∋ ηq > 0, R ∋ ςq > 0, and

sign(µq(s,ϖ)) =

{

1, µq(s,ϖ)> 0,

−1, µq(s,ϖ)< 0.

For convenience, we define η = max
16q6n

{ηq}.

Definition 2. If there is a real positive number κ ,

such that:

limsup
ϖ→∞

log||µ(·,ϖ)||
logψ(ϖ)

6−κ ,

where µ(s,ϖ)= (µ1(s,ϖ), µ2(s,ϖ), · · · , µn(s,ϖ))T ,

ψ(ϖ) is a ψ-type function, then the error system (3)

is ψ-type stable, or the corresponding drive-response

systems (1) and (2) achieve GDPS, in which κ is the

convergence rate when µ(s,ϖ)→ 0.

Lemma 2. Under the condition of Assumption 2, if

there are two constants 0 < γ1 ∈ R, 0 < γ2 ∈ R and

a differential function V (ϖ ,µq(ϖ)) : R+×R
n →R

+,

then:

(γ1||µq(ϖ)||)2
6V (ϖ ,µq(ϖ)),

V̇ (ϖ ,µq(ϖ))|(3)+κV (ϖ ,µq(ϖ))6 γ2r(ϖ),

where κ and r(ϖ) are defined in Assumption 2, and

µq(ϖ) is a solution of the error network (3), then

the system (3) is ψ-type stable, which means that the

drive-response systems (1) and (2) achieve GDPS.

Besides, κ
2

is the rate of convergence.

Theorem 1. If Assumptions 1, 2 and the following

conditions hold:

Ξ
(q)
1 =

1

2

n

∑
b=1

(ẽ2
qb+χ2

b )−
j

∑
h=1

pq

α2
h

+
κ

2
−(ηq+cq)<0, (5)

Ξ
(q)
2 =

n

∑
b=1

ẽqbχ̃b(1+ |mq|)−ςq+|1−mq|Iq ≤ 0, (6)

where q = 1,2, · · · ,n, then, under the action of con-

troller (4), the system (3) is ψ-type stable. Moreover,

the drive-response systems (1) and (2) match up to

GDPS when the rate of convergence is κ
2

.

Proof. Define the following Lyapunov functional for

network (3):

V (ϖ) =
1

2

∫

u2
q(s,ϖ)ds. (7)

Taking the derivative of V (ϖ), we obtain

V̇ (ϖ) =
n

∑
q=1

∫

Ω
µq(s,ϖ)

∂ µq(s,ϖ)

∂ϖ
ds

=
n

∑
q=1

∫

Ω
µq(s,ϖ){pq∆µq(s,ϖ)− cqµq(s,ϖ)

+
n

∑
b=1

eqb(ξ̂q(s,ϖ)) fb(µb(s,ϖ))+(1−mq)Iq

+
n

∑
b=1

[eqb(ξ̂q(s,ϖ))gb(mqξb(s,ϖ))

−mqeqb(ξq(s,ϖ))gb(ξb(s,ϖ))]

−ηq

||µ(·,ϖ)||2µq(s,ϖ)

||µ(·,ϖ)||2 + r(ϖ)
− ςqsign(µq(s,ϖ))}ds

+
n

∑
q=1

ηq

∫

Ω
µ2

q (s,ϖ)ds−
n

∑
q=1

ηq

∫

Ω
µ2

q (s,ϖ)ds

=
n

∑
q=1

∫

Ω
µq(s,ϖ){pq∆µq(s,ϖ)− cqµq(s,ϖ)

+
n

∑
b=1

eqb(ξ̂q(s,ϖ)) fb(µb(s,ϖ))+(1−mq)Iq

+
n

∑
b=1

[eqb(ξ̂q(s,ϖ))gb(mqξb(s,ϖ))

−mqeqb(ξq(s,ϖ))gb(ξb(s,ϖ))]

−ηqµq(s,ϖ)−ηq

r(ϖ)µq(s,ϖ)

||µ(·,ϖ)||2 + r(ϖ)

−ςqsign(µq(s,ϖ))}ds

6

n

∑
q=1

∫

Ω
µq(s,ϖ){pq∆µq(s,ϖ)− cqµq(s,ϖ)

+
n

∑
b=1

eqb(ξ̂q(s,ϖ)) fb(µb(s,ϖ))+(1−mq)Iq

+
n

∑
b=1

[eqb(ξ̂q(s,ϖ))gb(mqξb(s,ϖ))

−mqeqb(ξq(s,ϖ))gb(ξb(s,ϖ))]−ηqµq(s,ϖ)}ds

−
n

∑
q=1

ςq

∫

Ω
|µq(s,ϖ)|ds+η

||µ(·,ϖ)||2r(ϖ)

||µ(·,ϖ)||2 + r(ϖ)
.(8)

In view of Green formula and boundary conditions,

we know

n

∑
q=1

∫

Ω
µq(s,ϖ)pq∆µq(s,ϖ)ds

= −
n

∑
q=1

j

∑
h=1

pq

∫

Ω

(

∂ µq(s,ϖ)

∂ sh

)2

ds

6 −
n

∑
q=1

j

∑
h=1

pq

α2
h

∫

Ω
µ2

q (s,ϖ)ds. (9)
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According to Assumption 1 and the inequality |ℓ−
h̄|6 |ℓ|+ |h̄|, we can obtain

n

∑
q=1

n

∑
b=1

∫

Ω
[eqb(ξ̂q(s,ϖ))gb(mqξb(s,ϖ))

−mqeqb(ξq(s,ϖ))gb(ξb(s,ϖ))]µq(s,ϖ)ds

6

n

∑
q=1

n

∑
b=1

∫

Ω
(ẽqbχ̃b + |mq|ẽqbχ̃b)|µq(s,ϖ)|ds

=
n

∑
q=1

n

∑
b=1

∫

Ω
ẽqbχ̃b(1+ |mq|)|µq(s,ϖ)|ds. (10)

By using Assumption 1, we know

n

∑
q=1

n

∑
b=1

∫

Ω
µq(s,ϖ)eqb(ξ̂q(s,ϖ)) fb(µb(s,ϖ))

6

n

∑
q=1

n

∑
b=1

∫

Ω
|µq(s,ϖ)|ẽqb| fb(µb(s,ϖ))|ds

6
1

2

n

∑
q=1

n

∑
b=1

∫

Ω
(µ2

q (s,ϖ)ẽ2
qb+χ2

b µ2
b (s,ϖ))ds

=
1

2

n

∑
q=1

n

∑
b=1

∫

Ω
µq(s,ϖ)ẽ2

qbµq(s,ϖ)ds

+
1

2

n

∑
b=1

∫

Ω
µb(s,ϖ)χ2

b µb(s,ϖ)ds. (11)

Substituting (9)-(11) into (8), one gets

V̇ (ϖ) 6
n

∑
q=1

∫

Ω
µq(s,ϖ)[−ηqµq(s,ϖ)− cqµq(s,ϖ)]ds

+η
||µ(·,ϖ)||2r(ϖ)

||µ(·,ϖ)||2 + r(ϖ)
+

n

∑
q=1

n

∑
b=1

∫

Ω
[ẽqbχ̃b(1

+|mq|)− ςq + |1−mq|Iq]|µq(s,ϖ)|ds

+
1

2

n

∑
q=1

n

∑
b=1

∫

Ω
µq(s,ϖ)ẽ2

qbµq(s,ϖ)ds

+
1

2

n

∑
b=1

∫

Ω
µb(s,ϖ)χ2

b µb(s,ϖ)ds

−
n

∑
q=1

j

∑
h=1

pq

α2
h

∫

Ω
µ2

q (s,ϖ)ds

6

n

∑
q=1

∫

Ω
µq(s,ϖ)[

1

2

n

∑
b=1

(ẽ2
qb+χ2

b )−
j

∑
i=h

pq

α2
h

−(ηq + cq)]µq(s,ϖ)ds+
n

∑
q=1

n

∑
b=1

∫

Ω
[ẽqbχ̃b(1

+|mq|)− ςq + |1−mq|Iq]|µq(s,ϖ)|ds

+ηr(ϖ). (12)

Therefore, it follows from (7) and (12) that

V̇ (ϖ)+κV(ϖ)6
n

∑
q=1

∫

Ω
µ(s,ϖ)[

1

2

n

∑
b=1

(ẽ2
qb+χ2

b )+
κ

2

−
j

∑
h=1

pq

α2
h

− (ηq + cq)]µ(s,ϖ)ds+
n

∑
q=1

n

∑
b=1

∫

Ω
[ẽqbχ̃b(1

+|mq|)− ςq + |1−mq|Iq]|µq(s,ϖ)|ds+ηr(ϖ).

Based on (5) and (6), we get the final inequality:

V̇ (ϖ)+κV (ϖ)6 ηr(ϖ). We let γ1 =
1√
2
, γ2 = η , it

follows that the system (3) is ψ-type stable under the

action of controller (4), which means that the relevant

drive-response systems (1) and (2) attain GDPS and

the rate of convergence is κ
2

in the meantime.

IV. EXAMPLES

In this section, our goal is to verify the effective-

ness of the GDPS criterion for the network under

consideration derived above by an example with

simulation results.

Example 1. Consider the following network model

of drive-response RDMNNs:


















∂ξq(s,ϖ)
∂ϖ =−cqξq(s,ϖ)+ Iq+ pq∆ξq(s,ϖ)

+∑2
b=1 eqb(ξq(s,ϖ))gb(ξb(s,ϖ)),

∂ ξ̂q(s,ϖ)
∂ϖ =−cqξ̂q(s,ϖ)+ Iq+ pq∆ξ̂q(s,ϖ)

+∑2
b=1 eqb(ξ̂q(s,ϖ))gb(ξ̂b(s,ϖ))+ lq(s,ϖ),

(13)

where q = 1, 2, I1 = I2 = 0, Ω = {s| − 1 < s <

1}, gb(h) =
|h+1|−|h−1|

8
, in which b = 1,2, c1 =

0.1, c2 = 0.2, p1 = 2.3, p2 = 2.4. Moreover, eqb(ε)
are chosen as following:

e11(ε) =

{

−0.21, |ε |6 1.5,

0.26, |ε |> 1.5,

e12(ε) =

{

−0.35, |ε |6 1.5,

−0.29, |ε |> 1.5,

e21(ε) =

{

−0.28, |ε |6 1.5,

−0.24, |ε |> 1.5,

e22(ε) =

{

0.22, |ε |6 1.5,

0.21, |ε |> 1.5,

Select the appropriate parameters for controller (4):

η1 = 2.6, η2 = 2.3, ς1 = 1.1, ς2 = 1.4. By computa-

tion, we take m1 =−2, m2 =−3, χb = χ̃b = 0.25.

Let κ = 0.3, so the convergence rate is κ
2
= 0.15.

We can get Ξ
(q)
1 = −9.4665 and Ξ

(q)
2 = −0.5575 by

virtue of exploiting the MATLAB.

According to Theorem 1, the drive-response system

(13) realize GDPS under the action of the controller

(4). The simulation result is displayed in Fig.1.
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Fig. 1. uq(s,ϖ), q = 1,2.

V. CONCLUSIONS

This study has concerned with the GDPS of drive-

response RDMNNs. After introducing the network

model of drive-response RDMNNs, the GDPS con-

cept based on ψ-type function and ψ-type stability

has been presented firstly. Then, a sufficient con-

dition for attaining GDPS of the considered drive-

response system has been inferred in view of a suit-

able Lyapunov function and an elaborate controller.

Eventually, a numerical example has been given to

demonstrate the validity of the obtained conclusion.
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