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a b s t r a c t 

In this paper, we investigate the effectiveness of conventional and unconventional mon- 

etary policy measures by the European Central Bank (ECB) conditional on the prevail- 

ing level of uncertainty. To obtain exogenous variation in central bank policy, we rely 

on high-frequency surprises in financial market data for the euro area (EA) around pol- 

icy announcement dates. We trace the dynamic effects of shocks to the short-term policy 

rate, forward guidance and quantitative easing on several key macroeconomic and financial 

quantities alongside survey-based measures of expectations. For this purpose, we propose 

a Bayesian smooth-transition vector autoregression (ST-VAR), using a measure of economic 

policy uncertainty as signal variable. Our results suggest that transmission channels are 

impaired when uncertainty is elevated. While conventional monetary policy and forward 

guidance can be less effective during such periods, quantitative easing measures seem to 

work comparatively well in uncertain times. 
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1. Introduction 

Conventional and unconventional monetary policies are widely used tools in central banks to stimulate slacking 

economies and counteract disinflationary pressures stemming from recessionary episodes and economic uncertainty. 1 Re- 

search measuring the effects and identifying transmission channels of monetary policy to the real and financial sectors has 

produced a voluminous body of literature (see, among many others, Kashyap and Stein, 20 0 0; Kuttner, 20 01; Bernanke et al.,

2005; Gürkaynak et al., 2005; Sims and Zha, 2006; Tenreyro and Thwaites, 2016; Altavilla et al., 2019; Jaroci ́nski and Karadi,

2020 ). In this paper, we contribute to this line of work by assessing non-linear features in monetary policy transmission

for the euro area (EA). We consider economic uncertainty as a key determinant of the effectiveness of policy measures 

enacted by the European Central Bank (ECB), and discuss factors that may render policy interventions in uncertain times 

less effective. A change in the monetary policy stance can be a direct reaction of the central bank to worsened economic

conditions due to increases in uncertainty (e.g., lower or delayed investment and hirings when facing uncertainty shocks, 

see, for instance, Bloom, 2009 ) via changes in the policy (target) rate, or more direct and long-term market interventions
∗ Corresponding author. 
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1 For a discussion of the relationship between uncertainty and conventional demand shocks that are typically counteracted by monetary policy, see 

Leduc and Liu (2016) . 
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like quantitative easing (QE). It is worth mentioning that not only domestic uncertainty, but also uncertainty-spillovers from 

important globalized economies may play a role in this context (see, e.g., Davidson et al., 2020 ). 

Monetary policy can also have more subtle effects when central banks communicate their decisions and actions to the 

public, a phenomenon the recent literature has also referred to as so-called information effects ( Nakamura and Steinsson, 

2018; Bauer and Swanson, 2020; Jaroci ́nski and Karadi, 2020 ). 2 By transparently communicating the future path of policies

and the decision makers’ intentions, known as forward guidance (FG), central banks not only can reduce uncertainty about 

their future policy, they can also manage expectations of economic actors ( Woodford, 2005 ). Thereby, they ensure a more

effective transmission of monetary policy. Hutchinson and Smets (2017) point out how crucial the ECB’s clear communication 

of its policy reaction function to the public was in order to improve financial and economic conditions after a period of high

uncertainty in the context of the European debt crisis. Bekaert et al. (2013) also find that a looser monetary policy stance

can reduce risk aversion and uncertainty. 

It is however not clear a priori whether monetary policy works differently in times of high uncertainty when compared

to low uncertainty environments. Some authors have investigated asymmetric effects of conventional monetary policy dur- 

ing expansions and recessions, mostly focusing on the United States (US, for examples, see Bech et al., 2014; Tenreyro and

Thwaites, 2016; Dahlhaus, 2017; Angrist et al., 2018; Jannsen et al., 2019 ), while others examine the efficacy of QE during

times of financial crises (see Kuttner, 2018; Cui and Sterk, 2019 ). 3 While high uncertainty levels and recessions often coin-

cide, it is important to make a distinction between the two in the discussion of monetary policy transmission. Uncertainty 

can be elevated due to endogenous responses to the state of the business cycle (see Ludvigson et al., 2020 ). In addition, ex-

ogenous uncertainty shocks (such as the 9/11 terror attacks or, abstracting from mandatory lockdown measures, the COVID- 

19 pandemic) may themselves cause drops in economic activity. 4 However, it is worth reiterating that uncertainty, as well 

as sluggish macroeconomic and financial dynamics, can also occur without the realization of a recession. 

Different circumstances surrounding an economic recession might dampen the effectiveness of monetary policy, for sev- 

eral reasons. First, monetary policy transmission can be impaired because financial and credit markets are dysfunctional 

or distressed (see Alessandri and Mumtaz, 2019 ). Second, persistently low short-term interest rates as a remnant of the 

policy reactions to previous economic recessions can lead to smaller effects of changes in interest rates on aggregate de- 

mand and output due to the presence of economic headwinds and inherent non-linearities (see Borio and Hofmann, 2017 ).

Third, economic agents may be more hesitant to make investment or hiring decisions in times of increased uncertainty, 

hoping that more precise information might be available at a later point in time in order to decide on longer-term actions

( Bloom, 2009 ). This risk aversion implies that economic agents and financial markets may be less responsive to changes

in economic conditions, such as interest rates. Such conditions may be closely related to the respective level of economic 

uncertainty regardless of whether the economy is in expansion or recession. 

This paper contributes to the existing literature on monetary policy transmission under uncertainty as follows. We em- 

pirically investigate the transmission of monetary policy conditional on the prevailing level of uncertainty in the EA. There 

are some studies for the case of the US (see Aastveit et al., 2017; Caggiano et al., 2017 ), however, to our knowledge there is

no such analysis for the EA. We extend the preceding literature by including both conventional (CMP) and unconventional 

(UMP) monetary policy measures in our analysis (that is, we assess the effects of shocks to the policy rate, forward guid-

ance and quantitative easing). We achieve identification by extracting exogenous variation in policies via the high-frequency 

instruments developed in Altavilla et al. (2019) . UMP measures in particular have gained increased importance during and 

since the Great Recession. A key difference between our approach and the related literature on time-varying effects of mon- 

etary policy ( Bech et al., 2014; Tenreyro and Thwaites, 2016; Dahlhaus, 2017; Angrist et al., 2018; Jannsen et al., 2019 ) is

that by focusing on variation in uncertainty rather than a binary classification into economic recessions or expansions, we 

can observe nuanced differences in transmission channels irrespective of the fact whether an economy experienced a crisis. 

From an econometric perspective, we propose a Bayesian smooth-transition vector autoregression (ST-VAR, see also 

Auerbach and Gorodnichenko, 2012; Granger and Terasvirta, 1993 ), combined with a highly flexible hierarchical shrinkage 

prior to obtain precise empirical inference. The econometric framework is designed to trace non-linear features of mon- 

etary policy transmission, with structural breaks in transmission channels governed by uncertainty as signal variable for 

determining regimes. In our empirical work, we use the economic policy uncertainty (EPU) index of Baker et al. (2016) as

our measure of uncertainty. This index is constructed based on the occurrence of uncertainty-related keywords in news- 

papers, and designed according to a broad definition of uncertainty. To investigate different channels of monetary policy 
2 By revealing otherwise concealed information (for instance, internal staff projections by the central bank regarding the economic outlook) to consumers 

and financial market participants, the central bank affects and causes updates to public expectations through policy announcements. 
3 Note that empirical papers on non-linear effects of monetary policy shocks almost exclusively focus on structural breaks in transmission channels 

(see, e.g., Cogley and Sargent, 2005; Primiceri, 2005; Sims and Zha, 2006 ). Impulse response functions from VARs or local projections (see, e.g., Jordà, 

2005; Ramey and Zubairy, 2018; Plagborg-Møller and Wolf, 2021 ) are symmetric by construction with respect to whether they are scaled to represent an 

expansionary or contractionary shock, and asymmetries/non-linearities arise with respect to time-varying dynamics in the conditional mean or conditional 

variance. A notable exception is Angrist et al. (2018) , who identify asymmetric effects of positive/negative monetary policy shocks, but disregard time- 

varying transmission channels. In this paper, we focus on symmetric but time-varying dynamics to expansionary monetary policy shocks (determined by 

economic uncertainty), and leave time-varying and asymmetric dynamics for future research. 
4 Arellano et al. (2019) and Caldara et al. (2016) find contractionary effects of uncertainty shocks to be particularly large in light of tight financial 

conditions. 
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transmission, we include a set of key financial and macroeconomic variables in our model, alongside survey-based measures 

of expectations. 

Our results suggest that conventional transmission channels are often dysfunctional in times of uncertainty. We observe 

time-variation governed by the uncertainty indicator in direct transmission to key interest rates, spreads and a stock market 

index. Similarly, both the real economy and expectations show different responses in low versus high uncertainty periods. 

The prevailing level of uncertainty also affects the persistence of the shocks. These findings may be explained by the fact

that information effects of monetary policy play a more important role during uncertain episodes. Moreover, elevated un- 

certainty affects the formation of expectations of economic actors, thereby reducing the effectiveness of expectation-related 

transmission channels. 

The remainder of the paper is organized as follows. Section 2 introduces the econometric framework used to evaluate 

the effectiveness of monetary policy in times of high and low uncertainty. Section 3 explains how we measure uncertainty,

exogenous variation in monetary policy and provides details on the dataset. Our empirical findings are discussed and con- 

trasted with the previous literature in Section 4 . Section 5 offers closing remarks. Appendix A to Appendix D contain details

on our estimation algorithm, the data and additional results. A supplementary Online Appendix presents empirical evidence 

on the robustness of our baseline results. 

2. Econometric framework 

2.1. Bayesian smooth-transition vector autoregressions 

Let y t denote an M × 1 -vector containing the series of interest at time t = 1 , . . . , T . We assume a ST-VAR model of the

form: 

y t = (A 11 y t−1 + . . . + A 1 P y t−P + c 1 + δ1 s x st ) × S t (u t−1 ) (1) 

+ (A 01 y t−1 + . . . + A 0 P y t−P + c 0 + δ0 s x st ) × ( 1 − S t (u t−1 ) ) + εt , 

where A ip are M × M-coefficient matrices for state i ∈ { 0 , 1 } and lag p = 1 , . . . , P , and c i is an M × 1 -vector of intercepts. The

state indicators S t (u t−1 ) ∈ [0 , 1] transition smoothly between regimes and depend on a signal variable u t−1 (in our case, a

measure of uncertainty). They are bounded between zero and one and discussed in more detail below. εt ∼ N (0 , �) is a

Gaussian error term with zero mean and M × M-covariance matrix �. 5 

We include CMP and UMP shocks (indexed s ∈ { TG , FG , QE } , with target/policy rate, TG; forward guidance, FG; and quan-

tiative easing, QE) one at a time as scalar exogenous instrument x st (for details how these instruments are constructed, see

Section 3.2 ). The M × 1 -vector δis measures the contemporaneous responses of the endogenous variables to the shock s , and

is thus the state-specific impact vector that can be used for structural inference (for details, see Paul, 2020 ). 

The ST-VAR has several attractive properties when contrasted with related econometric approaches. Compared to de- 

terministic regime classifications, threshold or Markov switching (MS) models, with potentially only a small number of 

observations in one of the regimes, the ST-VAR informs its parameter estimates based on a continuum of regimes with the

support of each regime being bounded between zero and one (loosely related to probabilities). This sharpens inference, 

and pushes the model towards a linear specification. When compared to conventional time-varying parameter (TVP) models 

with gradually evolving coefficients (that is, with a random walk state equation), using our specification with a pre-defined 

(exogenous) signal variable u t−1 allows to link time-variation to observed factors. 6 

A crucial modeling decision for the ST-VAR is both the choice of the signal variable u t−1 and the transition function for

S t (u t−1 ) . In our empirical work, we use the economic policy uncertainty index of Baker et al. (2016) as u t−1 , and discuss

this indicator in more detail in Sections 3 and 4 . For selecting the transition function, we follow the related literature (see,

e.g., Auerbach and Gorodnichenko, 2012; Caggiano et al., 2014 ) and choose: 

S t (u t−1 ) = 

1 

1 + exp ( −φ(u t−1 − γ ) ) 
, 

a first-order logistic function, with u t−1 denoting the first lag of our measure of uncertainty. We include the signal variable as 

first lag to avoid any contemporaneous feedback from policy actions depending on whether we are in a low/high uncertainty 

regime. Moreover, we standardize u t−1 to have zero mean and unit variance prior to estimation, to render the parameter φ
scale-invariant (see also Gefang and Strachan, 2009 ). 
5 Earlier research on the EA has shown that evidence for time-variation in the volatility of key series is muted (see, for instance, Jaroci ́nski and 

Lenza, 2018 ). Such features are mainly required for data from the United States, when jointly modeling distinct periods such as the Great Inflation (approx- 

imately 1965–1982) versus the Great Moderation (around 1985–2007), see, e.g., Clark (2011) . Accordingly, we follow the recent literature on EA monetary 

policy analysis using a homoscedastic specification, see for instance, Burriel and Galesi (2018) or Jaroci ́nski and Karadi (2020) . For these reasons, we refrain 

from introducing regime-switching covariance matrices. Moreover, it is worth noting that our identification approach is independent of the covariance 

matrix (different to Auerbach and Gorodnichenko, 2012 or Caggiano et al., 2014 ), which implies that even though we rule out time-varying volatilities, the 

impacts of the shocks feature time-variation. 
6 Recent papers overcome this shortcoming of conventional TVP models by augmenting the state equations of the TVPs by latent or observed factors 

( Chan et al., 2020; Fischer et al., 2021 ). This allows for addressing why specific parameters change over time, similar to our interpretation of the signal 

variable driving changes in the parameters, and thus, impulse responses. 
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The parameter φ > 0 governs the speed of adjustment, while γ marks a threshold value that separates the two regimes. 

Naturally, depending on the actual evolution of the signal variable u t−1 , the parameter γ determines the split at which

observations are allocated more to either state zero or one. The parameter φ governs how smoothly the economy transitions 

between states. In the limiting case with φ → ∞ , the state indicator S t (u t−1 ) switches between zero and one (marking

clearly separated regimes), closely related to conventional threshold VARs (see, e.g., Alessandri and Mumtaz, 2019; Huber 

and Zörner, 2019 ). For the case of φ → 0 , the logistic function turns constant, with S t (u t−1 ) = 0 . 5 effectively resulting in a

linear VAR specification. 

2.2. Prior setup 

2.2.1. Priors for the state-specific VAR coefficients 

Our proposed prior setup for the autoregressive coefficients is similar to Hauzenberger et al. (2021) who use a MS vector

error correction model. While MS models produce a strictly binary regime allocation — S t (u t−1 ) would either be zero or one

at time t — our setup implies that the coefficient matrices are weighted averages across the two states. We design our prior

to be centered on the corresponding linear specification of our model and pool coefficients across regimes. 

To achieve this, we collect the regime specific coefficients in A i = (A i 1 , . . . , A iP , c i , δi ) for states i ∈ { 0 , 1 } , and construct

a i = vec (A i ) of size J = (M (M P + 2)) × 1 . The prior variances are collected in 

˜ V i = diag ({ ̃ v i j } J j=1 
) and V = diag ({ v j } J j=1 

)

with 

˜ v i j = ̃

 λ2 
i 

˜ ψ 

2 
i j 

and v j = λ2 ψ 

2 
j 
. We propose a hierarchical global-local shrinkage setup based on the horseshoe (HS, 

Carvalho et al., 2010 ) prior: 7 

a i ∼ N ( ̃  a , ˜ V i ) , ˜ λi ∼ C + (0 , 1) , ˜ ψ i j ∼ C + (0 , 1) , (2) 

˜ a ∼ N (a , V ) , λ ∼ C + (0 , 1) , ψ j ∼ C + (0 , 1) , (3) 

for i ∈ { 0 , 1 } and j = 1 , . . . , J. The symbol C + denotes the half-Cauchy distribution. Equation (2) states that the regime-specific

coefficients arise from a Gaussian distribution with mean 

˜ a , and shrinkage is governed by two regime-specific shrinkage 

parameters collected in 

˜ V i . 

The first is a global shrinkage parameter, ˜ λi , which pushes all coefficients in a i towards ˜ a , and thus, a linear model

specification. The second type are local scaling parameters, ˜ ψ i j , that allow for variable-specific deviations from linearity 

in each regime. Rather than choosing specific values for ˜ a , we assign a Gaussian prior centered on a and estimate these

coefficients, see Eq. (3) . We choose a prior mean of 0.95 for all first-order autoregressive coefficients in a if the respective

series is transformed as log-levels, and set it to zero in all other cases, mimicking a Minnesota-type prior ( Doan et al., 1984;

Litterman, 1986 ). Choosing 0.95 rather than unity implies that our prior is centered on a stationary multivariate model. We

introduce another hierarchy of shrinkage on the common mean via V to regularize the high-dimensional parameter space. 

Again, we rely on the HS prior and consider a global shrinkage parameter λ alongside local scalings ψ j . 

Intuitively, our setup implies that we impose conventional shrinkage towards a stylized prior model on the linear speci- 

fication’s parameters in 

˜ a . In a second step, we impose regime-specific shrinkage of the non-linear coefficients towards the 

linear model. Our setup differs from Hauzenberger et al. (2021) based on our choice of the respective shrinkage prior. In-

troducing additional global shrinkage parameters by regime implies that our model is capable of detecting a regime-specific 

degree of shrinkage, which is particularly useful if observations are unevenly distributed across states. 

2.2.2. Priors for the variance-covariance matrix 

Our model has a potentially huge-dimensional parameter space, which quickly becomes computationally prohibitive to 

sample in one block when the number of endogenous variables ( M) or the lag order ( P ) increases. To alleviate the computa-

tional burden, we rely on triangularizing the model to allow for equation-by-equation estimation (see Carriero et al., 2019 ).

Appendix A shows how to write the multivariate system of equations as a set of M independent regressions. 

To establish our prior, we decompose the covariance matrix of the error εt in Eq. (1) as � = H �H 

′ with H denoting the

normalized lower Cholesky factor of � and � = diag ({ σ 2 
m 

} M 

m =1 ) is an M × M matrix with equation-specific variances σ 2 
m 

, for

m = 1 , . . . , M, on its diagonal. 

We collect the free elements (those below the diagonal) of the matrix H in an R = (M(M − 1) / 2) × 1 -vector h and index

its elements by h r with r = 1 , . . . , R . Here, we define an R × R -matrix ˆ V = diag ({ ̂ v r } R r=1 ) with 

ˆ v r = ̂

 λ2 ˆ ψ 

2 
r and impose a HS

prior: 

h ∼ N (0 , ˆ V ) , ˆ λ ∼ C + (0 , 1) , ˆ ψ r ∼ C + (0 , 1) . (4) 

Again, the global parameter ˆ λ imposes shrinkage towards zero for all free elements of the matrix H, while the local param-

eters ˆ ψ r allow for deviations of the rth coefficient. 

On the diagonal elements of �, we impose a set of M weakly informative independent inverse Gamma priors: 

2 −1 
σm 

∼ G (3 , 0 . 3) , for m = 1 , . . . , M. 

7 We choose the horseshoe prior due to its excellent shrinkage properties and the lack of a prior tuning hyperparameter. Note that any prior from the 

class of global-local shrinkage priors (see, e.g., Cadonna et al., 2020 ) can be used. 
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2.2.3. Priors for the state transition function 

In our empirical application, we standardize the signal variable u t−1 such that it has mean zero and unit variance. We

construct the prior for the threshold parameter γ such that it is bounded between the minimum and maximum values of 

u t−1 and center it on zero: 8 

γ ∼ T N 

(
0 , σ 2 

γ , min ( u t−1 ) , max ( u t−1 ) 
)
. 

We choose σ 2 
γ = 0 . 01 implying an informative prior. This prior information is needed to impose a sensible regime-allocation

in our model. It is worth mentioning that while the prior pushes the parameter towards zero, likelihood information may 

still overrule the tightness of the prior, different to using hard-coded restrictions as in Auerbach and Gorodnichenko (2012) .

The speed of adjustment parameter follows a Gamma distribution: 

φ ∼ G(a 2 /b, a/b) . 

The hyperparameters are chosen such that a denotes the mean of the prior and b its variance. We set a = 2 with variance

b = 0 . 01 . This implies that the economy spends about 25% of the time in the high-uncertainty regime. A similar reasoning

for introducing substantial prior information as for γ applies here. Calibrating the prior in this manner imposes a sensible 

regime-allocation in our model, yet we still obtain a posterior distribution for the parameter and deviations from the prior 

are possible if likelihood information prevails in the respective posterior. 

This completes our prior setup. Combining the priors with the likelihood of the model results in a set of mostly standard

conditional posterior distributions that can be used for Gibbs sampling. For the parameters of the state transition function, 

we rely on a Metropolis-within-Gibbs step. These can be used for designing a Markov chain Monte Carlo (MCMC) algorithm 

to obtain posterior inference. Details on the resulting posterior distributions and the sampling algorithm are provided in 

Appendix B . 

3. Data and model specification 

3.1. Uncertainty, real, financial and survey-based variables 

As our measure for EA wide uncertainty u t−1 , we use the economic policy uncertainty ( EPU ) index developed by

Baker et al. (2016) on the log-scale. 9 This newspaper-based index is chosen because it captures a broad definition of un-

certainty (as opposed to strictly focusing on either macroeconomic or financial uncertainty). A comparison of uncertainty 

indices for the EA and its countries is provided in Rossi and Sekhposyan (2017) or Azqueta-Gavaldón et al. (2020) . Since the

index shows upward trending behavior in its raw format, we detrend and standardize it prior to including it in our model

(that is, the resulting measure has zero mean and unit variance). We achieve this by regressing the series on a linear trend

term, and consider the residuals of this regression as our signal variable. When used without these adjustments, the index 

essentially splits our sample into pre- and post-sovereign debt crisis regimes. 

Our detrending procedure allows to capture deviations of uncertainty from a hypothetical long-run equilibrium, 

thereby accounting for the fact that economic agents may react endogenously to prolonged periods with high levels 

of uncertainty and specific uncertainty-related events. For related studies on endogenous movements of uncertainty, see 

Carriero et al. (2018) and Ludvigson et al. (2020) . By contrast, the detrended series marks increases/decreases of uncertainty

relative to a baseline level, providing a more adequate picture of uncertainty episodes. 

The vector of endogenous variables, y t , contains several macroeconomic and financial time series, alongside survey-based 

measures of expectations. In particular, we include the Euribor three-month rate ( E3M ) as our short-term target rate. To

trace the effects of FG and QE shocks, we also consider two-year ( GBY2 , targeted by the FG factor) and ten-year ( GBY10 ,
targeted by the QE factor) EA government bond yields. Our set of financial indicators is completed by the Euro Stoxx 50 stock

market index ( ES50 ), and the ICE BofA Euro high-yield index option-adjusted spread ( OAS ) to measure financial conditions.

As key macroeconomic indicators, we include the harmonized index of consumer prices ( HICP ), the unemployment rate 

( UNEMP ) and industrial production excluding construction ( IP) as a monthly indicator of economic activity. To gauge the

impact of monetary policy shocks on firms and household expectations, we refer to the following survey-based measures. 

We include industrial ( ISICI ) and consumer confidence ( CSCCI ) indicators, consumers’ unemployment expectations over 

the next twelve months ( CSU12 ), and consumer opinions on the future tendency of inflation ( CIE ). The baseline set of

variables also includes our aforementioned measure of uncertainty as endogenous variable. Details on data sources and a 

priori transformations are provided in Appendix C . The number of endogenous variables is M = 13 . We choose a lag length

of P = 4 . 

3.2. Measuring monetary policy shocks and identification 

We state in Eq. (1) that monetary policy shocks are included in our model as exogenous instruments x st . In this paper,

we assess both CMP and UMP shocks following the methodology set forth in Altavilla et al. (2019) , relying on the Euro Area
8 Centering the standardized signal variable on zero implies a prior centered on the mean of u t−1 in the scale of the non-transformed series. 
9 The series is available for download from policyuncertainty.com . 

826 

http://www.policyuncertainty.com


N. Hauzenberger, M. Pfarrhofer and A. Stelzer Journal of Economic Behavior and Organization 191 (2021) 822–845 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Monetary Policy Event-Study Database (EA-MPD). 10 Before discussing how the instruments are established, we provide a brief 

overview on ECB communication that can be exploited for high-frequency identification. 11 

ECB policy decisions are typically communicated to the public in a two-step process. First, there is a press release which

provides information on the policy decision (without discussing how the Governing Council came to this decision). Second, 

the press release is followed by a press conference 45 min later, where the President reads a prepared statement explaining

the previously announced policies (which takes about 15 min), and answers questions in a Q&A session afterwards (about 

45 min). The latter is often informative about the ECB’s outlook and the future path of monetary policy. In conjunction, these

two “monetary events” and precise time-stamps are employed to identify different policy surprises on financial markets and 

thus provide a measure of exogenous variation in monetary policy. 

The EA-MPD collects high-frequency market reactions in narrow windows (ten minutes before and after the event) 

around both monetary events, based on tick data for interest rates at different maturities and stock returns, among oth- 

ers. In essence, if monetary policy actions by the ECB were fully anticipated by market participants, we should observe no

reaction of asset prices during either the press release or the press conference. If, however, the ECB communicates unan- 

ticipated actions (that are thus orthogonal to the information set of the public), the market would quickly adjust and price

this new information. Altavilla et al. (2019) exploit these dynamics in a wide range of asset classes using an identified factor

model (subject to orthogonality restrictions), and pin down four different shocks: the target, timing, forward guidance and 

quantitative easing shock. 12 

In this paper, we rely on these factors to trace the transmission of both CMP and UMP shocks to the real and financial

economy in times of uncertainty. We select the target (TG), forward guidance (FG) and quantitative easing (QE) as our shocks

of interest and include them in our model as exogenous instruments: 13 

• Target (TG): The TG shock is derived from announcements during the press release. This factor does not load on surprises

during the press conference window, implying that the series captures mainly CMP. In terms of relevant instruments, the 

factor exhibits loadings on short-term yields, with a maximum loading on the one-month overnight index swap (OIS) 

rate. 
• Forward guidance (FG): The FG factor loads on series during the press conference window, and mostly affects the middle 

segment of the yield curve (with a peak effect at about two years of maturity and substantial loadings up to five years).

The FG factor captures revisions in market expectations about the future path of monetary policy that are orthogonal to 

the TG factor’s current policy surprise content. We interpret this shock series as the first measure of UMP. 
• Quantitative easing (QE): The QE shock is designed to dominate in the press conference window. This factor shows max- 

imum loadings for yields with ten-year maturity, reflecting the long end of the yield curve. It is worth mentioning that

based on the identifying restrictions of the factor model, QE is only present after 2014, consistent with the historical 

evolution of asset purchase programmes by the ECB. We interpret this shock as our second measure of UMP. 

The exogenous shocks x st for s ∈ { TG , FG , QE } are included one at a time in our model set forth in Eq. (1) , and the vectors

δi, TG , δi, FG and δi, QE measure the sensitivity of the endogenous variables in y t to these shocks in regime i ∈ { 0 , 1 } . Using the

identified contemporaneous responses, we can calculate higher-order impulse response functions by tracing the impacts 

through the dynamic multivariate system. This approach to identifying the dynamic impact of monetary policy shocks is 

similar to Gertler and Karadi (2015) and Paul (2020) . 

An important aspect of monetary policy analysis using high-frequency data are the aforementioned central bank infor- 

mation effects (see, for instance, Nakamura and Steinsson, 2018; Jaroci ́nski and Karadi, 2020 ). 14 In a nutshell, it is argued

that central bank announcements not only convey the respective policy decision, but also reveal information about the pro- 

jected economic outlook. Jaroci ́nski and Karadi (2020) investigate information effects in detail for the EA by assessing the 

high-frequency responses of three-month OIS rates in conjunction with Euro Stoxx 50 movements around announcement 

dates. They find that positive comovement in both surprises is indicative of an information shock, and impulse responses 

look substantially different when compared to those of a pure monetary policy shock (with negative comovement of the 

surprise series, in line with theory). 15 

Miranda-Agrippino and Ricco (2021) propose a procedure for pre-processing instruments, by purging them from pre- 

dictable components, to achieve clean identification of monetary policy shocks which yields similar results. By contrast, 

Bauer and Swanson (2020) find that what Nakamura and Steinsson (2018) call information shocks (capturing differences in 

public and private information on the economic outlook of the central bank) might actually be artefacts of economic agents 
10 Raw event-study data is available at ecb.europa.eu/pub/pdf/annex/Dataset _ EA-MPD.xlsx . The dataset is described in detail in Altavilla et al. (2019) . 
11 An early paper on high-frequency identification of monetary policy shocks using tick-frequency asset price data is Kuttner (2001) . Related methods 

have subsequently been used for monetary policy analysis, with some examples covering both the US and the EA given by Bernanke and Kuttner (2005) , 

Gürkaynak et al. (2005) , Brand et al. (2010) , Jaroci ́nski and Karadi (2020) , Andrade and Ferroni (2021) and Hauzenberger and Pfarrhofer (2021) . 
12 For details on identification, see also Gürkaynak et al. (2005) , Brand et al. (2010) and Swanson (2021) . 
13 The timing shock is very similar to the forward guidance shock, with the only difference being the time horizon for which forward guidance is 

applicable. To economize on space, we focus on the forward guidance instrument aimed at the two-year ahead horizon discussed below. 
14 Note that the derivation of the factors we use as instruments is unaffected by the presence of information shocks ( Altavilla et al., 2019 ). 
15 In this context, Campbell et al. (2012) and Andrade and Ferroni (2021) decompose observed monetary policy surprises into a Delphic and a Odyssean 

component with both being orthogonal to each other. While the former represents a pure information shock, the latter isolates the actual monetary policy 

component. 
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Fig. 1. Exogenous instruments (target/policy rate, TG; forward guidance, FG; quantitative easing, QE), signaling effects and interest rates at different ma- 

turities. The bars indicate the respective value of the factor per month. Bars in blue show months where at least one policy announcement resulted in 

positive comovements of high-frequency surprises in three-month OIS rates and the Euro Stoxx 50 stock index (information shock). Black bars show nega- 

tive comovements of these two high-frequency series (conventional monetary policy shock in line with theory), see also Jaroci ́nski and Karadi (2020) . The 

dashed lines mark one standard deviation of the shocks. The grey shaded areas indicate recessions dated by the CEPR Euro Area Business Cycle Dating 

Committee. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

and the central bank reacting to the same news shock. Given the close relationship between uncertainty and news shocks 

( Berger et al., 2020 ), this might be one of the channels why the effectiveness of monetary policy is affected during periods

of elevated uncertainty. 

While our econometric framework in principle allows for disentangling monetary policy from information shocks and 

tracing the impacts of both individually, 16 we refrain from doing so, for three reasons: 

1. We closely follow Altavilla et al. (2019) , who use the external instruments directly for identifying TG, FG and QE shocks

in their financial VAR analysis. Our two-regime model is equipped for endogenously selecting distinct regimes, similar to 

their sub-sample analysis where they detect the presence of potential information shocks. 

2. The informational content and role of information shocks in the context of FG and QE is less clear than when focusing

solely on TG shocks (see the discussion in Bauer and Swanson, 2020 ). Putting specific restrictions on reactions may in

fact bias estimates of the actual shocks. 

3. Our paper intends to shed light on the transmission of CMP and UMP in times of uncertainty. It seems a worthwhile

empirical exercise to study the transmission of the actual measures of our exogenous shocks to the real and financial

economy over time. And this transmission also includes the presence of information effects during policy announcements 

by the ECB. The information effects potentially impaired the effectiveness of policies during specific times, for instance, 

when uncertainty levels were elevated. We elaborate on this notion in the context of the discussion of our results below.

In fact, Bauer and Swanson (2020) argue that “ even though high-frequency monetary policy surprises may be correlated 

with macroeconomic data ex post , they still can be used, without adjustment, to estimate the effects of an exogenous change

in monetary policy [...].” To ensure that our factors are valid external instruments for our shocks of interest, we follow 

Miranda-Agrippino and Ricco (2021) and project out ex post correlation with the information set contained in the ST-VAR. 

We achieve this by regressing the instruments on its own P lags and the contemporaneous values of the variables in y t and

P of their lags, and use the residuals from this regression as the respective instrument. 

Figure 1 plots the exogenous instruments (TG, FG and QE) and corresponding interest rates (three-month Euribor, E3M; 

EA two-year government bond yields, GBY2; EA ten-year government bond yields, GBY10; see also next sub-section) on 

a monthly frequency. The figure is adjusted to indicate months where information effects may have played a role during 
16 One could, for instance, employ the approach referred to as poor man’s sign restrictions by Jaroci ́nski and Karadi (2020) . This implies that for months 

where high-frequency surprises move in the same direction, the factors would be set to zero. A major drawback of this strategy is that months are binarily 

classified as either pure monetary policy or information shocks, ruling out cases in between. 

828 



N. Hauzenberger, M. Pfarrhofer and A. Stelzer Journal of Economic Behavior and Organization 191 (2021) 822–845 

1.0

0.5

0.0

0.5

1.0

0.00

0.25

0.50

0.75

1.00

2003 2005 2007 2009 2011 2013 2015 2017 2019

Tr
an

sf
or

m
ed

 E
P

U

S
t

Fig. 2. Transformed uncertainty measure u t−1 and the posterior median of state allocation S t . The left axis shows our detrended and demeaned measure 

of uncertainty (economic policy uncertainty, EPU) on the log-scale (left axis, in solid black). The right axis refers to the state allocation S t ∈ [0 , 1] over time 

(right axis, in solid blue). Note that the posterior median of S t (u t−1 ) closely mirrors the series implied by the expected values of our priors on γ and φ, 

which is due to informativeness of our prior setup (see Section 2.2 ). The dashed horizontal lines mark the 5th, 50th and 95th percentile of the uncertainty 

index over time, which we subsequently label the low, medium and high uncertainty scenario in the context of our impulse response analysis. The grey 

shaded areas indicate recessions dated by the CEPR Euro Area Business Cycle Dating Committee. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

ECB policy announcements. The months with potential information shocks are marked in blue (based on at least one policy 

announcement during the respective month resulting in positive comovements of the three-month OIS rate and Euro Stoxx 

50 surprises). 

Several findings are worth noting. First, the largest movements in both the TG and FG factor are visible during the two

crisis episodes (the Great Recession and the subsequent European debt crisis). Second, while we observe positive comove- 

ment shocks throughout our sample, they occur most frequently during crisis episodes and after 2015. These crisis episodes 

are also often accompanied by elevated levels of uncertainty. While we discuss this aspect in more detail below in the

context of our structural results, we conjecture that this may be one of the reasons why monetary policy during uncertain

times appears to be less effective. Positive comovement shocks tend to cancel the effects of conventional monetary policy 

(see Jaroci ́nski and Karadi, 2020 ). Third, the QE factor is only active after 2014. Here, we observe information shocks par-

ticularly around 2015 and at the end of the sample. Fourth, one striking observation when considering the corresponding 

interest rates is that rate cuts do not necessarily result in surprises in the instrument of the same sign. Positive surprises,

for example, occur if financial markets expected larger cuts than realized. While the ECB intended to conduct expansionary 

policy, the less-than-expected cuts act like contractionary shocks. 

4. Empirical results 

4.1. Uncertainty indicator and state allocation 

Figure 2 shows the evolution of the transformed measure of uncertainty (solid black, left axis). The right axis refers to

the state allocation S t (u t−1 ) ∈ [0 , 1] over time (in solid blue). For this plot, we show the posterior median state allocation

of S t (u t−1 ) . Note that the posterior distribution closely mirrors the series implied by the expected values of our priors on γ
and φ, which is due to the previously discussed informativeness of our setup. 

We start with discussing the uncertainty index. Highest values are observed early in the sample, in the build-up to Gulf

War II starting in 2003. From 2005 until the onset of the Great Recession, a period of relatively low uncertainty emerges.

Just before and during the Great Recession we observe several peaks in economic policy uncertainty, related to several fiscal 

and monetary policy measures intended to calm financial markets and foster economic recovery. Between the two major 

recessions of our sample, the index first lowers around 2009, but suddenly increases again in early 2010. The elevated levels

in 2010 mark substantial increases in sovereign credit risk throughout Europe. These dynamics culminate during the most 

severe years of the European debt crisis between 2012 and 2013. While we observe a brief period of lower uncertainty after

2014, the index again increases around the Brexit referendum in mid-2016 in the United Kingdom. After 2017, the index 

fluctuates around its unconditional mean. Note that in line with our previous reasoning, elevated uncertainty and economic 

recessions often coincide, but higher uncertainty levels are not confined to recessionary episodes. 

Turning to S t (u t−1 ) , we find that the main features of the uncertainty index translate closely to our bounded indicator.

It is worth mentioning that several periods appear to be more persistent when compared to the measure of uncertainty. 

While peaks and troughs in the EPU index often yield values of S t (u t−1 ) close to one and zero respectively, a substantial

period is characterized by values in between. Using the bounded indicator rather than interacting the endogenous variables 

of the VAR directly with uncertainty allows for estimating clearly separated low/high uncertainty regimes. While this may 
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also be achieved via MS models, our approach has the advantage that we also take into account “normal” times where we

neither observe particularly high nor low levels of uncertainty. We thereby combine the two advantages of both interacted 

and MS-VAR models in our framework. This implies that conditional on the respective level of uncertainty, we can estimate 

time-varying effects of CMP and UMP. 

4.2. Conventional and unconventional monetary policy under uncertainty 

Our econometric framework allows to calculate impulse response functions at each point in time. This implies that both 

impact reactions and transmission dynamics governed by the transitioning VAR coefficients may differ over time, condi- 

tional on the uncertainty indicator. It is worth mentioning that Altavilla et al. (2019) find that EA financial market par-

ticipants do not perceive monetary policy effects to be asymmetric regarding positive/negative surprises in terms of asset 

prices responses. This implies that our regime-allocation and responses will not be driven by monetary policy shocks being 

predominantly positive/negative in times of varying levels of uncertainty. 

To obtain relative impulse responses to the shocks indexed s ∈ { TG , FG , QE } , we let ς s denote the standard error of x st .

Moreover, let M i denote the M P × M P companion matrix for regime i ∈ { 0 , 1 } based on the VAR in Eq. (1) , 17 and define the

companion-form impact vector ˜ δis = (ς s δ′ 
is 
, 0 1 ×[(M−1) P] ) 

′ . By multiplying δis with ς s we obtain responses reflecting a one

standard deviation shock to the instrument. 

The framework allows for two different variants of impulse responses for shock s at horizon h (for h ≥ 0 ). Denote by u τ
the τ th unconditional percentile of the uncertainty indicator u t−1 over time. Let τ ∈ { 0 . 05 , 0 . 5 , 0 . 95 } , with 0.05, 0.5 and 0.95

referring to low, medium and high uncertainty levels. The impulse response function can be computed as 

IRF s 0 ,τ = J ̃  δτ s = J 

(
S t (u τ ) ̃  δ1 s + (1 − S t (u τ )) ̃  δ0 s 

)
, 

IRF sh,τ = J ( M 1 × S t (u τ ) + M 0 × (1 − S t (u τ )) ) 
h ˜ δτ s , for h > 0 . 

These results are shown in the following sub-sections in the form of boxplots. 

Our framework also allows to compute impulse response functions at time t , conditional on the actual level of uncer- 

tainty u t−1 : 

IRF s 0 ,t = J ̃  δts = J 

(
S t (u t−1 ) ̃  δ1 s + (1 − S t (u t−1 )) ̃  δ0 s 

)
, 

IRF sh,t = J ( M 1 × S t (u t−1 ) + M 0 × (1 − S t (u t−1 )) ) 
h ˜ δts , for h > 0 . 

where J is an M × MP -dimensional matrix that selects the first M rows of a vector of dimension MP × 1 . These and addi-

tional empirical results (impulse response functions over time and alternative horizons, as well as several robustness checks 

involving alternative measures of uncertainty and an alternative prior setup), can be found in the supplementary Online 

Appendix. Note that all results are qualitatively robust. Alternative uncertainty measures sometimes yield significant results 

when our benchmark index does not, providing evidence for the validity of our results as a lower bound of the effects of

monetary policy under uncertainty. These differences may arise from variations in the definition of the respective index, 

e.g., whether it targets policy or financial uncertainty. In all figures, we distinguish shocks by the respective colors of the

impulse response functions. TG shocks are in shades of blue, FG shocks in red and QE shocks in green. 

4.2.1. The target/policy rate shock 

The first set of results shows the responses to a CMP shock in Fig. 3 , captured by the target factor in the form of boxplots.

This figure (as do those for the FG and QE shock) collect the responses of variables in a low (L), medium (M) or high

(H) uncertainty state, as well as the difference (D) in responses between the low and high uncertainty state. The L, M, H

scenarios are based on the τ ∈ { 0 . 05 , 0 . 5 , 0 . 95 } unconditional percentile of the uncertainty indicator over the full sample.

The rectangle refers to the 25th and 75th percentile of the posterior distribution (interquartile range), the posterior median 

is indicated as solid line and the whiskers mark the 68% posterior credible set. The left-hand side panels (a) show responses

on impact, the right-hand side panels (b) show responses at the one-year ahead horizon. For numerical values of the impulse

response functions in a table, see Appendix D . 

To assess direct effects of monetary policy shocks on financial quantities, consider the first column of panel (a) in Fig. 3 .

Recall that the responses are scaled to reflect a one standard deviation shock to the instrument. An expansionary CMP shock

results in a contemporaneous decrease of the main policy rate E3M, irrespective of the level of uncertainty. In times of lower

uncertainty, a one standard deviation TG shock results in a decrease of 1.4 basis points (BPs) of the targeted interest rate.

Contrary, when uncertainty is higher, E3M decreases by 0.8 BPs. The difference between the high and low uncertainty state 

is small, but positive. For the responses of E3M at the one-year horizon, refer to the first column of panel (b) in Fig. 3 . We

observe an increase of the short term interest rate for all uncertainty-scenarios. However, they are not significantly different 

from zero, and the difference between high and low uncertainty levels is insignificant as well. 
17 That is, the first M rows of this matrix are the VAR coefficients in A i and the remaining rows yield an identity. 
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Fig. 3. Boxplots of the impulse response functions to the target/policy rate shock for different levels of uncertainty on impact and one-year ahead. Impulse 

response functions are summarized in form of a boxplot. The rectangle marks the 25th and 75th percentile of the posterior distribution (interquartile 

range), the posterior median is indicated as solid line; the whiskers of the plot refer to the 68% posterior credible set. Panel (a) shows responses on 

impact, panel (b) at the 12 month horizon. We display responses in the low (L), medium (M) or high (H) uncertainty state, as well as the difference (D) 

in responses between L and H. The L, M, H scenarios are based on the { 0 . 05 , 0 . 5 , 0 . 95 } unconditional quantile of the uncertainty indicator over time. A 

description of the variables and transformations is provided in Appendix C . 

 

 

 

 

Two-year yields (GBY2) show increases on impact for all considered levels of uncertainty. While two-year yields react 

more strongly when uncertainty is lower, with a median response of a 1.7 BPs versus 1.3 BPs increase respectively, the

difference in responses in times of higher uncertainty is again not statistically significantly different from zero. A comparable 

dynamic can be observed for ten-year government bond yields (GBY10). In particular, we find that positive impact reactions 

for longer-maturity yields are again stronger during periods of low uncertainty. However, contrary to the medium-maturity 

yields, the results show that the difference in responses between low and high levels of uncertainty has substantial posterior 

mass on values below zero. For both two-year and ten-year yields, the effects of an expansionary TG shock seem to be

rather short lived, since at the one-year horizon, responses of these rates revert back to zero. However, as a general trend,

at the one-year horizon, some posterior mass is shifted to positive values in times of low and medium levels of uncertainty,

indicating that responses in more uncertain times are less persistent. 
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Turning to OAS, our measure capturing the tightness of financial conditions, we observe several interesting findings. 

While the impulse response for this variable is significantly negative for periods of low uncertainty, it is muted and even

insignificant during times of higher uncertainty. While expansionary shocks decrease spreads (which is in line with theory), 

this channel appears to be impaired under uncertain economic conditions. Our final financial variable is the Euro Stoxx 50 

index (ES50), where the scale is in percent. Again, we detect variation in the impact response. In periods where uncertainty

is lower, we observe slightly positive effects and a 1.2% increase, in line with the related literature. During high-uncertainty 

periods, where spreads also show muted reactions, we detect even a slightly negative effect of expansionary policy on 

stock prices, resulting in a significant negative difference in responses between high and low uncertainty. While this may 

seem puzzling, we conjecture that this finding relates to information effects occurring particularly under uncertainty. As 

suggested by Jaroci ́nski and Karadi (2020) , information shocks may reverse the responses of CMP shocks, thereby muting or

even producing wrong-sided responses. We argue that this is one of the reasons why conventional monetary policy appears 

to be less effective when uncertainty is elevated. Similar to the preceding discussion of interest rates, the responses of both

OAS and ES50 revert to zero around the one-year horizon. 

Following our discussion of direct effects measured with financial variables, we proceed with investigating the effects on 

several key macroeconomic quantities in the second column of the left- and right-hand side panel of Fig. 3 . The impaired

transmission of CMP shocks on financial quantities during times of higher uncertainty carries over to these real economic 

indicators. While all our responses are in line with economic theory, the magnitude of the responses differs substantially 

conditional on the prevailing level of uncertainty. 

We find that inflation and economic activity (measured by industrial production) increase on impact after an expansion- 

ary shock during low-uncertainty episodes as expected. However, when uncertainty is high, we often measure insignificant 

effects. For both inflation and economic activity, this yields significant negative differences in responses between the high 

and low uncertainty scenario. The same is true for the unemployment rate, albeit with reversed sign, reflecting that expan- 

sionary shocks translate to decreases in unemployment. We detect this in the case of responses for low uncertainty levels. 

When uncertainty is elevated, CMP appears to be less effective, and we find that unemployment does not react significantly 

to changes in the policy rate. The uncertainty measure, on the other hand, does not react contemporaneously to CMP in a

significant manner regardless of the prevailing level of uncertainty. For all macroeconomic variables we again observe that 

an expansionary target shock does not result in persistent responses, as all variables show insignificant responses at the 

one-year horizon. 

These findings are roughly in line with Aastveit et al. (2017) , who evaluate US monetary policy shocks in times of high

and low uncertainty. Within their framework, they also find that effects of monetary policy tend to be much smaller when

uncertainty is high. Indeed, they find that monetary policy effects on real economic activity are approximately halved when 

their measure of uncertainty is in its upper decile as compared to it being in this bottom decile, and the difference is sta-

tistically significant. Similarly, Caggiano et al. (2017) find that the stabilizing effects of monetary policy after an uncertainty 

shock seem to be greater in times of expansion, rather than contraction. This indicates that our results on the effects of

CMP for the case of the EA, conditional on different levels of uncertainty, are in line with the existing literature on the US. 

Our final set of results for survey-based expectations in response to the TG shock are displayed in the third column of

panels (a) and (b) in Fig. 3 . We detect substantial variation in impact responses conditional on the uncertainty indicator. Re-

sponses for most variables are again muted and mostly insignificant under higher uncertainty. This points towards impaired 

transmission channels of monetary policy during these episodes. Industrial, unemployment and inflation expectations show 

insignificant responses during uncertain times, while impacts are substantial when uncertainty is low. Industrial confidence 

and inflation expectations increase after an expansionary TG shock, while unemployment expectations decrease. This find- 

ing may be linked to Coibion et al., 2018 , who find that expectation formation is often based on imperfect information. We

conjecture that it is harder to update expectations in light of high levels of uncertainty, resulting in insignificant results for

the high-uncertainty scenario. The difference in impact responses between low and high uncertainty levels is significantly 

different from zero for all these survey-based expectations. 

A puzzling result appears for consumer expectations. Here, we find that during uncertain episodes, confidence increases 

in response to expansionary shocks as expected. During more certain times, however, consumer confidence appears to de- 

crease after such a shock on impact. It is worth noting that results for the three-month and six-month time horizon (pro-

vided in Appendix D ) show that consumer confidence seems to react with some delay, increasing at the 3-month horizon

and reaching its peak at the six-month horizon. While most responses of expectations peter out around the one-year ahead 

horizon, inflation expectations show more persistent effects in times of low or medium uncertainty. This relates to the 

survey-based findings for a randomized-controlled trial by Coibion et al. (2019) , who identify substantial cross-sectional dis- 

persion of inflation expectations. This suggests that while some consumers can correctly identify monetary policy actions, 

others cannot, and this translates to persistent effects of the shocks. 

Summarizing, we find that an expansionary CMP shock results in comparable decreases in interest rates for different 

levels of uncertainty, but translates to looser financial conditions more efficiently in times of low uncertainty. Stock returns 

even show negative effects in times of elevated uncertainty. These results carry over to indicators of the real economy. 

Episodes of low uncertainty show textbook reactions of real variables like inflation, economic activity and unemployment 

to an expansionary CMP shock. By contrast, in times of higher uncertainty, we often find insignificant effects. As for our

variables of survey-based expectations, again, CMP seems to affect expectations less in times of high uncertainty. All these 

findings point to the conclusion that CMP is a relevant and efficient tool in times of low or medium uncertainty. However,
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its transmission to financial markets, real economic activity and expectations is impaired when uncertainty is higher. Trans- 

mission via investment or consumption channels, such as the direct interest rate channel, the intertemporal substitution 

effect or wealth effects ( Mishkin, 1996; Boivin et al., 2010 ), are likely sources of these differentials. Our results suggest that

one reason for this is that consumers do not change their inflation expectations after a CMP shock hits the economy when

uncertainty is high. As the real interest rate rather than the nominal interest rate determines asset prices and spending, it is

possible that changed dynamics in the formation of inflation expectations in times of high uncertainty also lead to different 

or even diverging dynamics between real and nominal interest rates, resulting in hindered transmission of CMP. Overall, 

all these findings are in line with existing literature that suggest that real option effects from theory may exist and that

elevated uncertainty leads economic agents to form expectations not rationally or perfectly informed, and perhaps, even to 

postpone decision making until uncertainty decreases. 

4.2.2. The forward guidance shock 

Turning to our first set of results capturing the effects of UMP, we discuss our results for the FG shock based on the

results displayed in Fig. 4 . Again, we imposean expansionary one standard deviation shock to the instrument. Note that in

this case, the policy relevant variable is the two-year government bond yield (GBY2), since the underlying factor is designed 

to load strongly on this maturity. Indeed, we find the strongest reaction to the shock for the two-year government bond

yield, which decreases by about one BP on impact in times of low uncertainty and by about 1.6 BPs when uncertainty high.

Similar to the CMP shock discussed above, we detect only muted variation conditional on the prevailing level of uncertainty 

in the short-term rate and the two-year yield. While all three interest rates react negatively on impact (a key difference

when compared to the TG shock), the ten-year government bond yields do so more strongly in times of elevated uncertainty.

Interestingly, and also different to the CMP shock, the spreads do not show significant reactions at any horizon we consider.

While overall dynamics appear to be similar for stock prices, we detect negative responses of equities under uncertainty and 

positive responses in certain times, resulting in a significant difference between the two. This finding again points to the 

notion of information effects playing a role in impairing the transmission of monetary policy during times of uncertainty. 

In line with the forward looking character of this UMP instrument, we detect more persistent effects of the FG shock,

particularly for interest rates. Especially responses for medium levels of uncertainty exhibit significant negative effects even 

at the three-year ahead horizon (available in the paper’s Online Appendix). Interestingly, variation for higher-order impulse 

responses in the case of the short-term rate and two-year yields is muted, different to the CMP shock. 

The second column of both panels in Fig. 4 displays the responses of the macroeconomic variables to the FG shock on

impact and at the one-year horizon. In this context, we obtain several puzzling results. While we again find significant ef-

fects of the policy shock for inflation mainly during comparatively certain times, they exhibit the wrong sign on impact. For

times of higher uncertainty, we find considerable posterior mass on a positive response, resulting in a significant difference 

between certain and uncertain times. Assessing the three to six-month horizon (see Appendix D ), we observe that the sign

of the HICP response reverses for both certain and uncertain times. The difference in responses between a certain and a

more uncertain state remains significantly different from zero up until the one-year horizon. The responses for industrial 

production have the correct sign, but are insignificant to a muted degree of variation across uncertainty scenarios. Different 

to CMP, we observe significant impact effects of FG on our uncertainty measure. While expansive forward guidance lowers 

uncertainty in low uncertainty periods, it appears to increase uncertainty during episodes of elevated uncertainty. In terms 

of persistence of the shocks, we observe only a brief half-life of FG on macroeconomic quantities (with the exception of

the aforementioned more persistent effects on HICP), with most shocks being either insignificant on impact, or petering out 

quickly between the one-quarter and one-year ahead horizon. 

In our final set of results for the survey-based measures, we again detect several puzzling effects in the third column of

panels (a) and (b) in Fig. 4 . We measure negative effects in industry and inflation expectations as response to an expan-

sive shock, albeit they are small in size and barely significant. It is worth mentioning that impact responses for industry,

unemployment and inflation expectations are the same irrespective of the level of uncertainty. Consumer confidence dif- 

fers substantially, with negative responses during elevated periods of uncertainty, and positive estimates when uncertainty 

is low. This finding is in line with the argument that FG conveys information about the future stance of the economy to

households and consumers. The puzzling effects tend to fade away for higher-order responses, with industry, consumer in- 

flation and unemployment expectations exhibiting the expected sign at the three-month ahead horizon in times of lower 

uncertainty. For all variables measuring expectations, we can observe a certain degree of variation with respect to the level 

of uncertainty up until the one-year horizon when all responses turn insignificant. It is worth pointing out that consumer 

inflation expectations react negatively to an expansive FG shock in more uncertain times until the six month horizon. Again, 

we note that consumer expectations are subject to substantial cross-sectional dispersion ( Coibion et al., 2019 ), and this

response may be an artefact of a substantial number of households being unable to update their expectations accurately. 

4.2.3. The quantitative easing shock 

Our final set of results is concerned with an expansionary QE shock. The impulse response functions are again scaled 

to reflect a one standard deviation increase of the instrument. Since the respective QE factor is only active after 2014, we

restrict our sample to the period where this policy measure is relevant. The results are shown in Fig. 5 . 

Starting again with financial quantities, we observe that by construction of the instrument, impact reactions of the short- 

term rate are muted and increase with longer maturities. We detect the largest effects for ten-year yields during periods of
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Fig. 4. Boxplots of the impulse response functions to the forward guidance shock for different levels of uncertainty on impact and one-year ahead. Impulse 

response functions are summarized in form of a boxplot. The rectangle marks the 25th and 75th percentile of the posterior distribution (interquartile 

range), the posterior median is indicated as solid line; the whiskers of the plot refer to the 68% posterior credible set. Panel (a) shows responses on 

impact, panel (b) at the 12 month horizon. We display responses in the low (L), medium (M) or high (H) uncertainty state, as well as the difference (D) 

in responses between L and H. The L, M, H scenarios are based on the { 0 . 05 , 0 . 5 , 0 . 95 } unconditional quantile of the uncertainty indicator over time. A 

description of the variables and transformations is provided in Appendix C . 

 

 

 

 

low uncertainty, with GBY10 decreasing by about three BPs. Similar to the FG shock and in contrast to TG, we observe in-

significant reactions of OAS, our variable measuring financial conditions. In line with the literature (see, e.g., Swanson, 2021 ),

effects on the stock market are also muted. In terms of higher-order responses, we observe that all variables that do not

show significant impact reactions do not turn significant at any horizon or any uncertainty level. It is worth mentioning

that the shocks are more short-lived when compared to FG, with two-year yield decreases turning insignificant after one 

quarter, and ten-year yields returning to the baseline after about six months. 
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Fig. 5. Boxplots of the impulse response functions to the quantitative easing shock for different levels of uncertainty on impact and one-year ahead. Im- 

pulse response functions are summarized in form of a boxplot. The rectangle marks the 25th and 75th percentile of the posterior distribution (interquartile 

range), the posterior median is indicated as solid line; the whiskers of the plot refer to the 68% posterior credible set. Panel (a) shows responses on im- 

pact, panel (b) at the 12 month horizon. We display responses in the low (L), medium (M) or high (H) uncertainty state, as well as the difference (D) 

in responses between L and H. The L, M, H scenarios are based on the { 0 . 05 , 0 . 5 , 0 . 95 } unconditional quantile of the uncertainty indicator over time. A 

description of the variables and transformations is provided in Appendix C . 

 
The results for our set of macroeconomic variables are displayed in the second column of both panels in Fig. 5 . We detect

minor differences in the responses conditional on the level of uncertainty for all series we consider. Interestingly, we find 

that estimated effects are somewhat larger if uncertainty is high. During times of elevated uncertainty, an expansionary 

shock translates to a modest increase of inflation (albeit insignificant) and substantial decreases of unemployment. When 

uncertainty is at a low or medium level, however, we observe insignificant responses for these variables. Economic activity 

measured by industrial production tends to increase if uncertainty is low. The uncertainty index does not exhibit significant 

responses across impulse horizons and over time. One minor puzzling result of negative industrial production responses 

when uncertainty is high reverses for one-quarter ahead impulses. Unemployment effects are comparatively persistent in 
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times of higher uncertainty, with effects with considerable posterior mass on negative values for up to the six-month ahead 

horizon. 

Our discussion of the empirical results is completed by investigating the responses of the survey-based expectation mea- 

sures in Fig. 5 . Similar to the macroeconomic variables, we find that for variables where we detect significant effects, they

are larger in magnitude during periods of elevated uncertainty. An expansionary QE shock results in increases particularly 

for industry confidence when uncertainty is elevated, but decreases industry confidence when there is less uncertainty in 

the economy. Impact reactions for consumer confidence are insignificant, but turn significant for the one-quarter ahead 

horizon. Again, when uncertainty is low, the expansionary QE shock lowers consumer confidence, but when there is high 

uncertainty, it actually increases the confidence measure, resulting in a significant difference between the two uncertainty 

states. The timing of the response is also interesting for unemployment expectations. While impact reactions are stronger 

during low-uncertainty periods and insignificant for high uncertainty, this changes at the one-quarter ahead horizon with 

substantially larger effects in times of uncertainty. The difference in responses between high and low uncertainty, however, 

is only significantly different from zero on impact. Similar as in the context of the FG shock, we detect a puzzle for con-

sumer inflation expectations, with negative effects on impact, independent of the level of uncertainty, that peter out after 

six to twelve months. It is worth mentioning that the QE shock results in impulse responses with only little persistence,

with all effects turning insignificant at the latest after one year. 

Summarizing our results on UMP, we find that both FG and QE shocks exhibit expected effects on interest rates of

different maturity. While the effects of the FG shock seem to be less affected by the prevailing level of uncertainty, effects

of QE are more efficiently transmitted to interest rates in episodes of higher uncertainty. Similarly, QE effects on the real

economy and expectations seem to be larger when uncertainty is elevated. Here, both the portfolio rebalancing channel 

as well as the policy signalling channel may play a role in the transmission of QE (see Hutchinson and Smets, 2017 ). Our

results imply that this instrument appears to be particularly suited for periods characterized by high levels of uncertainty, 

which is in line with conclusions drawn in the previous literature (see, for example Kuttner, 2018; Cui and Sterk, 2019 ). 

5. Closing remarks 

In this paper, we assess the effectiveness of several conventional and unconventional monetary policy measures by the 

ECB conditional on the prevailing level of uncertainty. We measure effects of target, forward guidance and quantitative eas- 

ing shocks over time with a smooth-transition vector autoregressive model using uncertainty as a signal variable. This allows 

for obtaining non-linear impulse response functions of a set of financial, macroeconomic and survey-based expectation vari- 

ables to the shocks. 

Our results suggest that transmission channels are impaired in times of uncertainty, especially for conventional monetary 

policy. We conjecture that this is due to two major reasons. First, high levels of uncertainty change the impact effects of the

shocks by changing direct transmission to key financial variables such as spreads. We argue that this phenomenon may be 

related to the presence of central bank information effects during these periods that accompany monetary policy announce- 

ments. Second, we find that the prevailing level of uncertainty at the time of the shock affects the persistence of the effects.

The persistence of the shocks is dependent on the specific instrument, but is also variable specific. Our results suggest that

especially the effectiveness of transmission channels related to industrial and consumer expectations are affected in times 

of uncertainty. 

The effectiveness of policy measures also depends crucially on the respective tool invoked by the central bank. Con- 

ventional policy measures appear to be affected particularly negatively by high uncertainty. By contrast, unconventional 

measures such as large-scale asset purchases appear to work comparatively better in times of high uncertainty. For both 

UMP measures, our analysis suggests that there might be beneficial complementarities between TG, FG and QE. On the one 

hand, FG might be useful in combination with a CMP instrument, making its effects more persistent and more robust with

respect to different uncertainty levels. On the other hand, a QE shock in combination with CMP might not only add to the

effects of a change in the target rate via the portfolio rebalancing and signaling channel, but it might also make up for

deficiencies in the transmission of CMP in times of elevated uncertainty. 
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Appendix A. Equation-by-equation estimation 

In this Appendix we outline the estimation of our smooth transition VAR model in Eq. (1) . For notational simplicity, we

first collect the respective coefficient matrices in an M × K-matrix, where K = 2(MP + 2) , and the regressors (i.e., lagged

dependent variables and the exogenous instrument) in a K × 1 -vector: 

A = (A 11 , . . . , A 1 P , c 1 , δ1 , A 01 , . . . , A 0 P , c 0 , δ0 ) , 

z t = 

(
(y ′ t−1 , . . . y 

′ 
t−P , 1 , x st ) × S t (u t−1 ) , (y ′ t−1 , . . . y 

′ 
t−P , 1 , x st ) × (1 − S t (u t−1 )) 

)′ 
. 

We rewrite Eq. (1) more compactly as follows: 

y t = Az t + Hηt , ηt ∼ N (0 , �) , 

with ηt denoting structural errors. Note that the relation between reduced-form errors εt and structural errors ηt is given 

by εt = Hηt . 

By exploiting the fact that ηt = H 

−1 εt , and the lower triangular structure of H 

−1 , we estimate the system equation-by-

equation as a set of unrelated regressions, see Carriero et al. (2019) . The first equation in Eq. (1) is: 

y 1 t = A 1 •z t + η1 t , η1 t ∼ N (0 , σ 2 
1 ) , 

where A 1 • refers to the first row in A . The m th (for m = 2 , . . . , M) equation of Eq. (1) is: 

y mt = A m •z t −
m −1 ∑ 

i =1 

h 

−1 
mi 

εit + ηmt , ηmt ∼ N (0 , σ 2 
m 

) , 

where A m • refers to the m th row in A and h −1 
mi 

to the (m, i ) th element in H 

−1 . To simplify the m th equation, we define the

K m 

× 1 -vectors αm 

= (A 

′ 
m •, { h −1 

mi 
} m −1 

i =1 
) ′ and 

˜ z mt = (z ′ t , { εit } m −1 
i =1 

) ′ and write 

y mt = α′ 
m ̃

 z mt + ηmt , ηmt ∼ N (0 , σ 2 
m 

) . (A.1) 

Note that, if m = 1 , α1 = A 1 • and 

˜ z 1 t = z t . To define the Eq. (A.1) in terms of full data matrices, let y m 

be a T × 1 -vector, ˜ Z m 

a T × K m 

matrix and ηm 

a T × 1 -vector, collecting y mt , ˜ z ′ mt and ηmt on the tth position, respectively. The following equation,

conditional on S t (u t−1 ) , denotes a standard linear regression model: 

y m 

= 

˜ Z m 

αm 

+ ηm 

, ηm 

∼ N (0 , σ 2 
m 

I T ) . 

Appendix B. Posterior distributions and sampling algorithm 

In this Appendix we briefly summarize the main steps involved for posterior inference. Given the model likelihood and 

prior assumptions we can derive a standard Markov Chain Monte Carlo (MCMC) algorithm, which iterates through condi- 

tional posterior distributions. The symbol � indicates that we condition on all other parameters of the model (including the 

state indicator S t (u t−1 ) ). 

1. We draw αm 

, for m = 1 , . . . , M, from a multivariate Normal distribution: 

αm 

| � = N ( ̄αm 

, �̄m 

) , 

with ᾱm 

denoting the posterior mean and �̄m 

refering to the posterior variance-covariance matrix. Both quantities are 

of well-known form an given by: 

αm 

= �m 

(˜ Z 

’ 
m 

y m 

/σ 2 
m 

+ �−1 
m 

αm 

)
, 

�m 

= 

(˜ Z 

’ 
m ̃

 Z m 

/σ 2 
m 

+ �−1 
m 

)−1 
, 

with the K m 

× 1 -vector αm 

being a prior mean and the K m 

× K m 

-matrix �m 

a diagonal prior variance covariance matrix. 

In the following, the prior quantities collect the equation-specific elements defined by the hierarchical prior. That is, αm 

collects the respective elements of ˜ a , defined in Eq. (3) , elements of the lower Cholesky factor are centered on zero from

Eq. (4) , �m 

collects the respective elements of { ̃ v 1 j } J j=1 
, { ̃ v 0 j } J j=1 

and { ̂ v 0 j } J j=1 
. 18 

2. We sample the structural error variances { σ 2 
m 

} M 

m =1 from an inverse Gamma distribution: 

σm 

| � ∼ G −1 (d m 

, D m 

) , 

with d m 

= (T / 2 + 3) denoting the posterior degrees of freedom and D m 

= (η′ 
m 

ηm 

/ 2 + 0 . 3) refering to the posterior scaling

parameter. 
18 In particular, for the m th equation, αm = ({ ̃ a j } j∈ S m , { ̃ a j } j∈ S m , 0 ′ m −1 ) 
′ , where ˜ a j denotes the jth element in ˜ a and 0 m −1 refers to (m − 1) × 1 -vector of 

zeros, while �m = diag ({ ̃ v 1 s } s ∈ ̃ S m 
, { ̃ v 0 s } s ∈ ̃ S m 

, { ̂ v q } q ∈ Q m ) . Here, ˜ S m = { k (m − 1) + 1 , . . . , km } is a set of indicators of cardinality k = (MP + 2) that serves to select 

the equation-specific coefficients and the set Q m of cardinality (m − 1) selects the prior indicators corresponding to equation-specific elements of the lower 

Cholesky factor. 
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3. To update the hierarchical priors we rely on steps outlined next. First, note that that Eqs. (2) and (3) can be written as a

random coefficient specification for each parameter. That is, 

a i j = 

˜ a j + ˜ νi j , ˜ νi j ∼ N (0 , ̃  v i j ) 

˜ a j = a j + ν j , ν j ∼ N (0 , v j ) . 

with i ∈ { 0 , 1 } and j = 1 , . . . , J. 

The (hyper)parameters of the hierarchical shrinkage prior are sampled from the following conditional posterior distribu- 

tions: 
• The HS scaling parameters of the lowest hierarchy (i.e., ˜ v j = ̃

 λ2 
i 

˜ ψ 

2 
i j 

) are obtained by using the methods outlined in

Makalic and Schmidt (2015) . That is, for i ∈ { 0 , 1 } and j = 1 , . . . , J, sampling the local ˜ ψ 

2 
i j 

and the global shrinkage pa-

rameter ˜ λ2 
i 

involves producing draws from four independent inverse Gamma distributions. For the ˜ ψ 

2 
i j 

the distribution 

is given by: 

˜ ψ 

2 
i j | � ∼ G −1 

(
1 , 

1 

˜ ζi j 

+ 

(a i j − ˜ a j ) 
2 

2 ̃

 λ2 
i 

)
, 

the global shrinkage parameter is sample from: 

˜ λ2 
i | � ∼ G −1 

( 

J + 1 

2 

, 
1 

˜ ξi 

+ 

J ∑ 

j=1 

(a i j − ˜ a j ) 
2 

2 

˜ ψ 

2 
i j 

) 

, 

while the two auxiliary variables ˜ ζi j and 

˜ ξi are drawn from: 

˜ ζi j | � ∼ G −1 (1 , 1 + 1 / ˜ ψ 

2 
i j ) , 

˜ ξi | � ∼ G −1 (1 , 1 + 1 / ̃ λ2 
i ) . 

• Similar to the lowest hierarchy we also defined a HS prior on the top one. To sample the scaling parameters ψ 

2 
j 

(local

scaling) and λ2 (global scaling), we therefore rely on exactly the same steps outlined in the four equations above. This 

can be done by replacing (a i j − ˜ a j ) 
2 with ( ̃  a j − a j ) 

2 , ˜ λi with λ and 

˜ ζi j with ζ j in the respective equations. 
• In a next step, we update the hierarchical (common) prior mean 

˜ a element-wise from a Gaussian distribution: 

˜ a j | � ∼ N ( a j , v j ) , 

for j = 1 , . . . , J. The posterior mean a j and variance v j are given by: 

v j = 

((
1 

˜ v 1 j 
+ 

1 

˜ v 0 j 

)
+ 

1 

v j 

)−1 

, 

a j = v j 

((
a 1 j 

˜ v 1 j 
+ 

a 0 j 

˜ v 0 j 

)
+ 

a j 

v j 

)
. 

4. The HS hyperparameters of elements associated with the covariances are sampled from: 

ˆ ψ 

2 
r | � ∼ G −1 

(
1 , 

1 

ˆ ζr 

+ 

h 

2 
r 

2 ̂

 λ2 

)
, 

the global shrinkage parameter is sampled from: 

ˆ λ2 | � ∼ G −1 

( 

R + 1 

2 

, 
1 

ˆ ξ
+ 

R ∑ 

r=1 

h 

2 
r 

2 

ˆ ψ 

2 
r 

) 

, 

while the two auxiliary variables are drawn from: 

ˆ ζr | � ∼ G −1 (1 , 1 + 1 / ˆ ψ 

2 
r ) , 

ˆ ξ | � ∼ G −1 (1 , 1 + 1 / ̂ λ2 ) . 

5. Finally, following Alessandri and Mumtaz (2019) (see their Appendix for the ST-VAR), we sample the threshold parame- 

ters in one block using a random walk Metropolis Hastings step. We therefore use two independent Gaussian proposal 

densities to sample candidate values for γ and φ: 

γ (∗) ∼ N (γ (s ) , c γ ) , φ(∗) ∼ N (φ(s ) , c φ ) . 

Here, γ (∗) refers to the candidate value and γ (s ) to the last accepted draw of γ , while φ(∗) denotes the proposed value

and φ(s ) the last accepted draw of φ. In the following, the acceptance probability ω is given by the ratio of the posterior
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likelihood of the proposed values ( γ (∗) , φ(∗) ) and the posterior likelihood of the last accepted values ( γ (s ) , φ(s ) ), since

both proposal are symmetric. That is, 

ω = min 

(
1 , 

L (γ (∗) , φ(∗) | � ) p(γ (∗) ) p(φ(∗) ) 
L (γ (s ) , φ(s ) | � ) p(γ (s ) ) p(φ(s ) ) 

)
, 

with L denoting the conditional data likelihood. Note that the prior of γ is defined as a truncated Gaussian distri- 

bution implying that the acceptance probability of the hyperparameter pair ( γ (∗) , φ(∗) ) is zero, if γ (∗) < min (z t ) or

γ (∗) > max (z t ) as these values obtain zero support per construction. In the empirical application, we choose c γ and

c φ in such a way to obtain an acceptance rate between 25 to 40%. 

We repeat these steps 32,0 0 0 times and discard the initial 2,0 0 0 draws as a burn-in. We consider each 10th of the

retained draws, resulting in a set of 3,0 0 0 independent draws from the posterior for inference. 

Appendix C. Data sources and transformations 

Table C1 

Dataset. 

Variable Description Source Trans. 

Financial variables 

E3M Euribor 3-month rate, monthly percentage SDW 

GBY2 EA 2-year government bond yield, monthly percentage SDW 

GBY10 EA 10-year government bond yield, monthly percentage SDW 

ES50 Euro Stoxx 50, price index, monthly SDW 100 ·log (x ) 

OAS ICE BofA Euro high yield index FRED 

option-adjusted spread (OAS), monthly percentage 

Macroeconomic variables 

HICP Harmonised index of consumer prices SDW 100 ·log (x ) , yoy 

monthly index, w.d.a, s.a. 

UNEMP Harmonized Unemployment Rate FRED 

monthly, s.a. 

IP Industrial production, excl. construction SDW 100 ·log (x ) , yoy 

monthly, w.d.a, s.a. 

EPU Economic policy uncertainty, monthly BBD 100 ·log (x ) 

Expectations/survey-based variables 

ISICI Industrial confidence indicator, monthly percentage SDW 

CSCCI Consumer confidence indicator, monthly percentage SDW 

CSU12 Consumer unemployment expectations SDW 

over next 12 months, monthly, percentage 

CIE Consumer opinion future tendency of inflation FRED x/ 10 † 

monthly, s.a. 

Notes : Column Trans. indicates the transformation applied to the respective series x . † Transformed to correspond to the scale of HICP inflation. FRED indi-

cates the database maintained by the Federal Reserve Bank of St. Louis ( fred.stlouisfed.org ), SDW is the statistical data warehouse by the European Central

Bank (ECB, sdw.ecb.europa.eu ). The abbreviation s.a. is short for seasonally adjusted, w.d.a. means working-day adjusted (both only stated if applicable),

yoy refers to year-on-year differenced data. BBD is short for Baker et al. (2016) , who provide the economic policy uncertainty index on their webpage:

policyuncertainty.com . 
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Fig. D.1. Boxplots of the impulse response functions to the target/policy rate shock for different levels of uncertainty at one-quarter and six-months 

ahead. Impulse response functions are summarized in form of a boxplot. The rectangle marks the 25th and 75th percentile of the posterior distribution 

(interquartile range), the posterior median is indicated as solid line; the whiskers of the plot refer to the 68% posterior credible set. Panel (a) shows 

responses on impact, panel (b) at the 12 month horizon. We display responses in the low (L), medium (M) or high (H) uncertainty state, as well as the 

difference (D) in responses between L and H. The L, M, H scenarios are based on the { 0 . 05 , 0 . 5 , 0 . 95 } unconditional quantile of the uncertainty indicator 

over time. A description of the variables and transformations is provided in Appendix C . 
Appendix D. Additional empirical results 
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Table D.1 

Summary of the impulse response functions for low and high level of uncertainty on impact and one-year ahead. 

Variable h = 0 h = 12 

TG FG QE TG FG QE 

L H L H L H L H L H L H 

Financial 

E3M −1.437 −0.769 −0.321 −0.459 −0.026 0.494 1.844 0.440 −0.597 −1.201 −0.048 −0.549 

( −2 . 323 , −0.730) ( −1 . 135 , −0.417) ( −0 . 655 , −0.013) ( −0.914,0.010) ( −1.015,0.908) ( −1.157,2.104) ( −0.284,3.873) ( −1.062,1.832) ( −1.213,0.050) ( −2.849,0.558) ( −1.911,1.592) ( −6.307,5.230) 

GBY2 1.715 1.250 −1.073 −1.585 −1.769 1.993 2.236 0.240 −0.589 −1.032 −0.049 −0.141 

(0.025,3.337) (0.723,1.748) ( −1 . 527 , −0.717) ( −2 . 189 , −0.919) ( −3 . 063 , −0.505) ( −0.195,4.202) ( −0.118,4.608) ( −0.885,1.372) ( −1.347,0.076) ( −2.411,0.286) ( −1.954,1.949) ( −5.083,4.229) 

GBY10 2.061 0.173 −0.274 −1.635 −2.989 −0.045 1.025 0.061 −0.305 −1.008 −0.503 −0.454 

(0.330,3.689) ( −0.326,0.686) ( −0.711,0.163) ( −2 . 287 , −0.996) ( −4 . 225 , −1.830) ( −2.133,2.090) ( −1.216,3.431) ( −1.210,1.335) ( −1.003,0.380) ( −2.354,0.293) ( −2.528,1.249) ( −5.897,3.994) 

OAS −0.223 −0.011 0.013 −0.001 0.024 0.019 −0.025 −0.041 0.006 −0.017 0.024 0.104 

( −0 . 282 , −0.159) ( −0.029,0.007) ( −0.003,0.029) ( −0.025,0.023) ( −0.025,0.073) ( −0.062,0.103) ( −0.070,0.018) ( −0.106,0.015) ( −0.004,0.017) ( −0.092,0.054) ( −0.009,0.058) ( −0.143,0.367) 

ES50 1.226 −0.220 0.320 −0.554 −0.050 0.177 0.796 −0.002 0.097 −0.222 −0.116 −0.198 

(0.558,1.975) ( −0.555,0.104) (0.166,0.558) ( −0 . 972 , −0.149) ( −0.910,0.870) ( −1.238,1.641) ( −0.570,2.449) ( −0.697,0.642) ( −0.270,0.535) ( −1.005,0.493) ( −1.380,1.055) ( −3.007,2.269) 

Macroeconomic 

HICP 0.025 −0.002 −0.011 0.005 −0.006 0.016 0.014 0.006 0.001 −0.008 −0.004 0.013 

(0.004,0.045) ( −0.0 08,0.0 04) ( −0 . 016 , −0.005) ( −0.003,0.012) ( −0.021,0.010) ( −0.011,0.043) ( −0.015,0.043) ( −0.005,0.018) ( −0.006,0.010) ( −0.021,0.006) ( −0.028,0.020) ( −0.033,0.062) 

UNEMP −0.008 0.0 0 0 0.0 0 0 −0.001 −0.001 −0.023 −0.014 −0.006 0.002 −0.001 0.003 −0.014 

( −0.020,0.003) ( −0.0 03,0.0 04) ( −0.0 03,0.0 03) ( −0.0 05,0.0 04) ( −0.010,0.009) ( −0 . 039 , −0.006) ( −0.036,0.006) ( −0.016,0.003) ( −0.0 04,0.0 08) ( −0.011,0.010) ( −0.012,0.020) ( −0.054,0.027) 

IP 0.152 −0.028 0.003 0.034 0.139 −0.171 −0.033 0.045 0.009 −0.011 −0.045 −0.107 

(0.048,0.259) ( −0.057,0.005) ( −0.027,0.030) ( −0.009,0.074) (0.050,0.215) ( −0 . 307 , −0.029) ( −0.125,0.056) ( −0.0 08,0.10 0) ( −0.012,0.035) ( −0.074,0.046) ( −0.123,0.022) ( −0.329,0.101) 

EPU 0.558 0.003 −1.171 0.918 0.765 −0.775 0.325 −0.169 0.176 −0.212 −0.012 0.983 

( −1.589,2.628) ( −0.651,0.716) ( −1 . 747 , −0.586) (0.088,1.725) ( −0.956,2.440) ( −3.626,2.013) ( −1.076,1.711) ( −0.919,0.548) ( −0.178,0.543) ( −1.096,0.708) ( −1.065,1.085) ( −2.052,4.234) 

Expectations 

ISICI 0.291 −0.008 −0.022 −0.016 −0.093 0.336 0.041 0.072 −0.003 −0.007 −0.060 −0.058 

(0.193,0.384) ( −0.039,0.022) ( −0.046,0.003) ( −0.053,0.021) ( −0 . 170 , −0.005) (0.209,0.464) ( −0.093,0.183) ( −0.009,0.155) ( −0.035,0.035) ( −0.102,0.083) ( −0.182,0.041) ( −0.379,0.263) 

CSCCI −0.154 0.058 0.020 −0.028 −0.005 0.026 −0.045 0.027 0.006 0.021 −0.018 −0.035 

( −0 . 223 , −0.085) (0.037,0.079) (0.002,0.039) ( −0.055,0.0 0 0) ( −0.060,0.052) ( −0.072,0.120) ( −0.143,0.055) ( −0.006,0.060) ( −0.019,0.034) ( −0.015,0.058) ( −0.105,0.057) ( −0.173,0.104) 

CSU12 −0.246 −0.084 0.007 0.0 0 0 −0.320 0.145 −0.113 −0.105 0.010 −0.024 0.040 0.032 

( −0 . 436 , −0.059) ( −0 . 149 , −0.023) ( −0.050,0.057) ( −0.080,0.081) ( −0 . 487 , −0.158) ( −0.116,0.400) ( −0.341,0.092) ( −0 . 204 , −0.018) ( −0.047,0.062) ( −0.134,0.085) ( −0.137,0.229) ( −0.377,0.440) 

CIE 0.041 −0.006 −0.006 −0.007 −0.017 −0.033 0.032 0.002 −0.003 −0.004 −0.011 0.015 

(0.020,0.063) ( −0.013,0.0 0 0) ( −0.012,0.0 0 0) ( −0.015,0.002) ( −0 . 036 , −0.001) ( −0 . 063 , −0.003) (0.005,0.062) ( −0.007,0.013) ( −0.011,0.004) ( −0.016,0.007) ( −0.035,0.011) ( −0.025,0.057) 

Notes : The table shows median posterior responses at the given time horizons as well as the 75% posterior credible interval in parantheses. The low (L) and high (H) uncertainty scenarios are based on the 

{ 0 . 05 , 0 . 95 } unconditional quantile of the uncertainty indicator over time. A description of the variables and transformations is provided in Appendix C . 

8
4

1
 



N. Hauzenberger, M. Pfarrhofer and A. Stelzer Journal of Economic Behavior and Organization 191 (2021) 822–845 

Fig. D.2. Boxplots of the impulse response functions to the forward guidance shock for different levels of uncertainty at one-quarter and six-months 

ahead. Impulse response functions are summarized in form of a boxplot. The rectangle marks the 25th and 75th percentile of the posterior distribution 

(interquartile range), the posterior median is indicated as solid line; the whiskers of the plot refer to the 68% posterior credible set. Panel (a) shows 

responses on impact, panel (b) at the 12 month horizon. We display responses in the low (L), medium (M) or high (H) uncertainty state, as well as the 

difference (D) in responses between L and H. The L, M, H scenarios are based on the { 0 . 05 , 0 . 5 , 0 . 95 } unconditional quantile of the uncertainty indicator 

over time. A description of the variables and transformations is provided in Appendix C . 
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Fig. D.3. Boxplots of the impulse response functions to the quantitative easing shock for different levels of uncertainty at one-quarter and six-months 

ahead. Impulse response functions are summarized in form of a boxplot. The rectangle marks the 25th and 75th percentile of the posterior distribution 

(interquartile range), the posterior median is indicated as solid line; the whiskers of the plot refer to the 68% posterior credible set. Panel (a) shows 

responses on impact, panel (b) at the 12 month horizon. We display responses in the low (L), medium (M) or high (H) uncertainty state, as well as the 

difference (D) in responses between L and H. The L, M, H scenarios are based on the { 0 . 05 , 0 . 5 , 0 . 95 } unconditional quantile of the uncertainty indicator 

over time. A description of the variables and transformations is provided in Appendix C . 
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Supplementary material associated with this article can be found, in the online version, at 10.1016/j.jebo.2021.09.041 . 
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