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a b s t r a c t 

Time-varying parameter (TVP) models often assume that the TVPs evolve according to 

a random walk. This assumption, however, might be questionable since it implies that 

coefficients change smoothly and in an unbounded manner. This assumption is relaxed 

by proposing a flexible law of motion for the TVPs in large-scale vector autoregressions 

(VARs). Instead of imposing a restrictive random walk evolution of the latent states, hierar- 

chical mixture priors on the coefficients in the state equation are carefully designed. These 

priors effectively allow for discriminating between periods in which coefficients evolve ac- 

cording to a random walk and times where the TVPs are better characterized by a station- 

ary stochastic process. Moreover, this approach is capable of introducing dynamic sparsity 

by pushing small parameter changes towards zero if necessary. The merits of the model 

are illustrated by means of two applications. Using synthetic data these flexible modeling 

techniques yield precise parameter estimates. When applied to US data, the model reveals 

interesting patterns of low-frequency dynamics in coefficients and forecasts well relative 

to a wide range of competing models. 

© 2021 The Author(s). Published by Elsevier B.V. on behalf of EcoSta Econometrics and 

Statistics. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

1. Introduction 

A growing number of papers introduces time-varying parameters (TVP) in econometric models for capturing structural 

breaks in relations across macroeconomic fundamentals (see, for example, Cogley and Sargent, 2005; Primiceri, 2005; Sims 

and Zha, 2006; Korobilis, 2013; Eickmeier et al., 2015; Mumtaz and Theodoridis, 2018; Czudaj, 2019; Paul, 2020 ) and to

achieve more accurate macroeconomic forecasts (see, for instance, Koop and Korobilis, 2012; 2013; D’Agostino et al., 2013; 

Groen et al., 2013; Bauwens et al., 2015; Hauzenberger et al., 2019; Huber et al., 2020a; 2020b ). 

In this paper, we focus on estimating TVP vector autoregressive (VAR) models featuring a large number of endogenous 

variables. Due to severe overfitting issues in large TVP-VARs, special emphasis is paid to important modeling decisions, 

such as whether coefficients evolve gradually, change abruptly or remain constant for subset of periods. In macroeconomic 

applications, it is common to assume that coefficients evolve according to a random walk, implying that parameters change 
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smoothly over time. As noted by the recent literature (see, for example, Lopes et al., 2018; Hauzenberger et al., 2019 ),

however, this assumption may be overly simplistic and lead to model mis-specification. 

In large TVP-VARs it is often reasonable to assume that most parameters remain constant over time, while only few 

vary. To capture this behavior, the Bayesian literature frequently uses shrinkage priors on the state innovation variances to 

sufficiently push them towards zero ( Frühwirth-Schnatter and Wagner, 2010; Belmonte et al., 2014 ). A severe drawback of

this strategy is that it only accounts for the case that a given coefficient is constant for all points in time (labeled static

sparsity). 

Another common situation faced by researchers is that coefficients change only at certain points in time (this is referred 

to as dynamic sparsity). Using a mixture distribution on the innovation variances, for example, allows to push small pa- 

rameter changes towards zero (see, inter alia, McCulloch and Tsay, 1993; Gerlach et al., 20 0 0; Giordani and Kohn, 2008;

Koop et al., 2009; Huber et al., 2019 ). Alternatively, Hauzenberger et al. (2019) introduce a more flexible law of motion by

assuming a conjugate hierarchical location mixture prior directly on the time-varying part of the coefficients. This location 

mixture allows for dynamically adjusting the prior mean on the TVPs to capture situations with a low, moderate or even

large number of structural breaks in the coefficients. Both techniques come with drawbacks. For instance, the mixture in- 

novation model of Huber et al. (2019) , equipped with a latent threshold mechanism, discriminates between a high and a

low innovation variance state. However, the authors do not discard the random walk law of motion, which might be too

restrictive. Hauzenberger et al. (2019) use either a conjugate g-prior ( Zellner, 1986 ) or a conjugate Minnesota prior ( Doan

et al., 1984; Litterman, 1986 ), potentially lacking flexibility to truly disentangle abrupt from gradual changes. 

In this paper, we carefully design suitable mixture priors for the state equation. In a first variant, a mixture prior is not

only introduced on the state innovations, but also on the autoregressive coefficients in the state equation to obtain sufficient 

flexibility. To achieve parsimony in large models, a latent binary indicator determines the law of motion for the TVPs and

detect periods in which coefficients evolve according to a random walk and times in which the TVPs are better characterized

by a stationary stochastic process. Combined with a mixture on the innovation volatilities and suitable shrinkage priors, this 

approach is capable of automatically capturing a wide range of typical parameter changes. In a second variant, the sparse 

finite location mixture model of Hauzenberger et al. (2019) is extended by considering non-conjugate shrinkage priors and 

by replacing the location with a location-scale mixture. Here, similar to mixture innovation models, an additional mixture 

on the state variances reflects the notion that structural breaks in coefficients happen infrequently (with potentially large 

TVP innovations), while most of the time coefficients are constant (with TVP innovations pushed towards zero). 

In the previous paragraphs we repeatedly stated that our techniques are well suited to handle overfitting issues in large 

TVP-VARs. But large TVP models also raise the question of computational feasibility. In this contribution, computational 

complexity is reduced by using recent advances in estimating large-scale TVP regression (see Chan and Jeliazkov, 2009; 

McCausland et al., 2011; Hauzenberger et al., 2020 ). These are based on rewriting the TVP model in its static regression form.

In this representation, the TVP model is treated as a very big regression model and the techniques proposed in Bhattacharya

et al. (2016) can be used. Since these algorithms are designed for single equation models, we consider the VAR model in its

structural representation and estimate a set of unrelated equation-specific TVP regressions. 

Based on two applications we investigate the merits of the techniques developed in the paper. First, in an application

using synthetic data we illustrate that the proposed methods work well in detecting small and large structural breaks in 

coefficients. Second, we employ a large US macroeconomic dataset for an empirical application. Our proposed methods 

reveal interesting patterns in the low-frequency relationship between unemployment and inflation. Moreover, to evaluate 

predictive performance of our approach, we perform a comprehensive forecasting exercise. This forecasting horse race shows 

that the proposed framework works well relative to a wide range of competing models. Even for large TVP-VARs introducing 

flexible mixture priors in the state equation tends to improve forecast accuracy. 

The remainder of the paper is structured as follows. Section 2 introduces a TVP regression model with flexible mixture 

priors and sketches the main contributions of the paper. Section 3 outlines inference in these models, while Section 4 dis-

cusses the posterior sampling algorithm of Bhattacharya et al. (2016) , when applied to non-centered TVP regressions. 

Section 5 and Section 6 show the results for artificial data and US data, respectively. Finally, Section 7 summarizes and

concludes. 

2. Econometric Framework 

2.1. A TVP Regression 

Let y t denote a scalar time series and x t refer to a K-dimensional vector of predictors, then the observation equation for

a TVP regression can be written as: 

y t = x ′ t αt + ε t , ε t ∼ N (0 , σ 2 
t ) . (1) 

Here, αt is a K-dimensional vector of TVPs that relates x t to the quantity of interest and ε t denotes the measurement

error with mean zero and time-varying variance σ 2 
t . For the state equation of σ 2 

t , we assume a stochastic volatility (SV)

specification and refer to Appendix A.1 for details. 

Typically, αt is assumed to evolve according to a random walk. In this paper, interest centers on relaxing this assump- 

tion. In the following, to achieve both sufficient flexibility and model parsimony, we use two different hierarchical mixture 
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specifications for αt . In the first variant, we assume that coefficients evolve according to a mixture of a random walk and

a white noise process. In the second variant, interest centers on extending the methods proposed in Hauzenberger et al.

(2019) . 

2.2. A Hierarchical Mixture between a Random Walk and a White Noise Process 

For a mixture between a random walk and white noise process we assume that the evolution of αt is given by: 

αt = α0 + φt ( αt−1 − α0 ) + ς t , ς t ∼ N ( 0 , �t ) , (2) 

with α0 denoting a K-dimensional intercept vector, φt being a K-dimensional diagonal autoregressive coefficient matrix 

and ς t denoting a K-dimensional vector of state innovations, which are centered on zero and feature a K × K-dimensional 

variance-covariance matrix �t . Moreover, we assume φt and �t to evolve according to a regime-switching process: 

φt = S t , (3) 

and 

�t = S t �̄1 + ( I K − S t ) ̄�0 . (4) 

Here, S t = diag (s 1 t , . . . , s Kt ) denotes a binary indicator matrix with { s it } K i =1 
being either zero or one, I K is a K-dimensional

identity matrix, and �̄1 = diag ( ψ̄ 11 , . . . , ψ̄ K1 ) as well as �̄0 = diag ( ψ̄ 10 , . . . , ψ̄ K0 ) denote K-dimensional diagonal matrices.

Equation 3 assumes that coefficients evolve according to a mixture of a random walk and a white noise process, while

Equation 4 ensures sufficient flexibility of the state innovations. For example, if the covariate-specific indicator s it = 1 in the

t th period, the i th covariate follows a random walk with state innovation variance ψ it = ψ̄ i 1 , while if s it = 0 in the t th period,

it follows a stochastic process with variance ψ it = ψ̄ i 0 . 

This specification (henceforth labeled as TVP-MIX ) nests a wide variety of popular TVP models, such as standard ran- 

dom walk state equations and mixture innovation models. A standard random walk evolution is trivially obtained by setting 

S t = I K . A so-called mixture innovation model assumes S t = I K and specifies �t similar to Equation 4 ( Gerlach et al., 20 0 0;

Giordani and Kohn, 2008; Koop et al., 2009; Huber et al., 2019 ). Additionally, mixture innovation specifications restrict 

�̄0 = κ ˆ �0 with κ being a small value close to zero and 

ˆ �0 being a diagonal matrix collecting variable specific scaling pa- 

rameters. Related to the literature on variable selection ( George and McCulloch, 1993; 1997 ), here �̄1 is commonly referred

to as slab component and �̄0 as spike component. Depending on the hierarchical modeling assumptions on S t and �t other 

dynamic sparsification techniques could be recovered as well. These approaches include different forms of dynamic shrink- 

age processes (see, inter alia, Kalli and Griffin, 2014; Uribe and Lopes, 2017; Kowal et al., 2019; Hauzenberger et al., 2020;

Rockova and McAlinn, 2021 ), latent threshold models ( Nakajima and West, 2013 ) or dynamic model selection techniques

( Chan et al., 2012; Koop and Korobilis, 2013 ). 

Apart from discussing the relation to other popular TVP models, it is also worth highlighting additional features of the 

model proposed in (2) to (4) . If a parameter is almost constant, but also features larger abrupt changes for some periods,

we would expect that ψ̄ i 0 > ψ̄ i 1 . This case is of particular interest, when compared to a standard mixture innovation model

with random walk state equation. Conversely, if a coefficient features large, more persistent swings, but also some periods 

of parameter stability, we would expect ψ̄ i 0 < ψ̄ i 1 . Intuitively, the relative proportions of ψ̄ i 0 and ψ̄ i 1 depend mainly on the 

nature of coefficient changes. If the i th coefficient is constant or negligible (static sparsity), this can be achieved with ψ̄ i 1 

and/or ψ̄ i 0 close to zero ( Lopes et al., 2018 ). Note that in the special case of constant coefficients, the proposed specification

is not identified. We address this issue in the context of interpreting the state indicators S t . 

2.3. A Hierarchical Pooling Specification 

For a hierarchical pooling specification, we follow Hauzenberger et al. (2019) and assume that the time-varying part of 

αt follows a sparse finite mixture in the spirit of Malsiner-Walli et al. (2016) . 

The specification of the state equation αt (labeled as TVP-POOL ) reads as: 

αt = α0 + γ t . (5) 

Here, α0 denotes a K-dimensional constant coefficient vector and γ t is assumed to be a K-dimensional vector of random 

coefficients featuring a specific structure. That is, conditional on latent group indicators θt that takes an integer value n ∈
{ 1 , . . . , N} , γ t follows a multivariate Gaussian distribution: 

γ t = μn + ς t , ς t ∼ N ( 0 , �t ) , if θt = n, (6) 

where μn refers to the group-specific mean and �t denotes the variance-covariance matrix. It is also worth noting that θt 

serves as group indicator for γ t . The probability that γ t is assigned to cluster n is defined as P (θt = n ) = ω n . 

This structure is closely related to the set-up of Hauzenberger et al. (2019) . In the following, we extend their location

mixture prior to a location-scale mixture prior by introducing a regime-switching specification on �t , similar to Equation 4 .

That is: 

�t = S t �̄1 + ( I K − S t ) ̄�0 , (7) 
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with both �̄0 and �̄1 being diagonal matrices and S t denoting a binary indicator matrix. Similar to standard mixture in- 

novation models one component serves to detect larger breaks, while a second component handles dynamic sparsity. We 

therefore discard the conjugate prior assumption of Hauzenberger et al. (2019) and instead assume non-conjugate shrinkage 

priors on both state innovation variances (described in more detail in Sub- section 3.1 ). 

Before proceeding, it is also worth sketching the general idea of this random coefficient specification. This model can be 

seen as a stochastic variant of multiple break point specifications ( Koop and Potter, 2007 ), which is capable of capturing

situations with a low, moderate or even large number of structural breaks. To estimate the number of regimes, we follow

Malsiner-Walli et al. (2016) and Hauzenberger et al. (2019) and specify an “overfitting” model by setting N to a large integer

(i.e., consider many regimes a priori). To achieve parsimony, we come up with an estimate for the number of clusters
ˆ N (usually ˆ N < N) by specifying a shrinkage prior on both the mixture weights and the component means. Thus, overall 

shrinkage is determined between two interacting objectives: we aim at eliminating irrelevant clusters, while at the same 

time avoiding highly overlapping component means. 

At this stage one might ask, why we do not assume N different state innovation variances (i.e., using the group indicators

θt for both γ t and �t )? Here, it is worth discussing two important considerations. First, N denotes a large integer and 

might lead to overfitting issues without assuming additional hierarchical shrinkage/pooling priors on the state innovation 

variances. Second, covariate-specific binary indicators ( S t ) for the scales already render the model highly flexible and it 

allows to introduce shrinkage on the state innovation variances in a simpler way. Moreover, the two-state mixture on the 

state variances (see Equation 7 ) is designed to foster inference about the locations γn , for n = { 1 , . . . , N} . We expect that

many elements in { γ t } T t=1 cluster around zero (i.e., coefficients are constant with �t close to zero), while occasionally there

are structural breaks in some coefficients (requires relatively large values in �t ). We aim to correctly detect in particular

those two extremes (changes/no changes in αt ) with γ t . 

2.4. The Latent State Indicator Matrix 

Sofar we remained silent on the evolution of S t . There are many different possibilities how the binary indicators s it , for

i = { 1 , . . . , K} , evolve over time. In the following, we assume two laws of motion: 

1. Pooled Markov-switching process: When assuming a first-order Markov process for each s it independently, sampling 

the state indicators can be computationally cumbersome, especially if K is large. Since one has to rely on forward 

filtering backward sampling algorithms, computation time quickly adds up. Therefore, we replace S t with s t I K . In the 

following, s t is assumed to be common to all K covariates in period t and governed by a joint Markov process. This

process is driven by a transition probability matrix given by: 

P = 

(
p 00 1 − p 11 

1 − p 00 p 11 

)
, 

with transition probabilities from state k to l denoted by p kl and following a Beta distribution p kk ∼ B(c 0 k , c 1 k ) , for

k = { 0 , 1 } , see Uribe and Lopes (2017) . 

2. Independent over time and covariate-specific indicators: The assumption that a joint indicator governs the evolu- 

tion of large number of coefficients might be too inflexible in certain cases. For this reason, we also specify covariate-

specific indicators, coupled with independent mixture priors (see Lopes et al., 2018 ). In contrast to covariate-specific 

Markov processes, mixture priors are assumed to be independent over time and thus do not involve computation- 

ally demanding forward filtering backward sampling algorithms. In the following, s it is assumed to be independent 

Bernoulli distributed with P (s it = 1) = p i and p i being Beta distributed: p i ∼ B(c i, 0 , c i, 1 ) . 

Moreover, it should be noted that the prior choice on the binary indicators is quite influential. For the random walk/white

noise mixture ( TVP-MIX ), the hyperparameters are chosen in such a way that a priori gradual changes have a higher (un-

conditional) expected duration (with s t = 1) than abrupt changes (with s t = 0 ). In the empirical application, we therefore

set c 00 = 0 . 3 , c 01 = 30 , c 10 = 30 , c 11 = 0 . 3 for the Markov-switching process and c i, 0 = 0 . 3 , c i, 1 = 30 , i = { 1 , . . . , K} , for the

independent mixture distribution. For the location-scale mixture ( TVP-POOL with S t solely governing the state innovation 

variances, we take a more agnostic approach by assuming c 00 = c 11 = c i, 0 = 0 . 3 and c 01 = c 10 = c i, 1 = 3 . 

3. Bayesian Inference 

To discuss inference for both variants outlined in Section 2 , we introduce a very general state equation for αt : 

αt = α0 + γ t + φt ( αt−1 − α0 ) + ς t , ς t ∼ N ( 0 , �t ) . (8) 

Equation 8 nests both approaches with the first variant ( TVP-MIX ) being obtained by setting γ t = 0 K×1 , while the second

approach ( TVP-POOL ) is derived by defining φt = 0 K×K and γ t = μn , if θt = n . 
90 
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3.1. The Non-Centered Parameterization 

In this sub-section we exploit the non-centered parameterization to write �̄0 and �̄1 as part of the observation equation, 

enabling shrinkage on the regime-switching state innovation volatilities ( Frühwirth-Schnatter and Wagner, 2010 ). 

We therefore recast the model as follows: 

y t = x ′ t ( α0 + 

√ 

�t ̃  αt ) ︸ ︷︷ ︸ 
αt 

+ σt εt , εt ∼ N (0 , 1) , and 

˜ αt = 

˜ γ t + φt ̃  αt−1 + ηt , ηt ∼ N ( 0 , I K ) , ˜ α0 = 0 , φ1 = I K . 

(9) 

Here, ˜ αt is a K-dimensional vector of normalized states, defined as ˜ αt = ( 
√ 

�t ) 
−1 ( αt − α0 ) and 

˜ γ t = ( 
√ 

�t ) 
−1 γ t with√ 

�t = diag ( 
√ 

ψ 1 t , . . . , 
√ 

ψ Kt ) denoting the (matrix) square-root of �t . Using the definition of �t in Equation 4 (or Equa-

tion 7 ) the observation equation in Equation 9 can be rewritten as: 

y t = x ′ t 
(
α0 + S t 

√ 

�̄1 ̃  αt + ( I K − S t ) 
√ 

�̄0 ̃  αt 

)
+ σt εt , 

and, more compactly, as a standard regression model: 

y t = 

ˆ x 
′ 
t ̂  α + σt εt . 

Here, ˆ x t = ( x ′ t , ( S t x t � ˜ αt ) 
′ , (( I K − S t ) x t � ˜ αt ) 

′ ) ′ denotes a 3 K-dimensional covariate vector with � referring to component-

wise multiplication and 

ˆ α = ( α′ 
0 , 

√ 

ψ̄ 11 , . . . , 
√ 

ψ̄ K1 , 
√ 

ψ̄ 10 , . . . , 
√ 

ψ̄ K0 ) 
′ being a 3 K-dimensional coefficient vector. 

On the time-invariant ˆ α we use a hierarchical global-local shrinkage prior (see Polson and Scott, 2010 ): 

ˆ α j ∼ N (0 , τ j ) , τ j | λ ∼ f, λ ∼ g, for j = 1 , . . . 3 K, 

where ˆ α j refers to the j th element in 

ˆ α, τ j induces local shrinkage with mixing density f and λ denotes a global shrinkage

parameter with density g. In the empirical application, we focus on the Normal-Gamma ( Griffin and Brown, 2010 ) shrinkage

prior and choose f and g accordingly. This shrinkage prior has been proven to be successful in macroeconomic and financial 

application (see, for example, Huber and Feldkircher, 2019 ) and is quite common in the literature. The exact prior specifica-

tion is outlined in Appendix A.2 . Still, it is worth noting that any global-local shrinkage prior might be used. Other popular

choices are the SSVS prior ( George and McCulloch, 1993; 1997 ), the Horseshoe prior ( Carvalho et al., 2010 ), the Bayesian

Lasso ( Park and Casella, 2008 ) or the Triple-Gamma prior ( Cadonna et al., 2020 ). For thorough studies of global-local shrink-

age priors in macroeconomic applications, see Follett and Yu (2019) , Cross et al. (2020) , Huber et al. (2020a) , and Kastner

and Huber (2020) . 

3.2. The Static Representation 

If interest centers on estimating the latent states { ̃  αt } T t=1 
, we can straightforwardly recast Equation 9 in a static regression

form by conditioning on α0 , the state innovation volatilities { √ 

�t } T t=1 
and the stochastic volatilities in � = diag (σ1 , . . . , σT ) .

We define y as a T -dimensional vector, X as a T × K-dimensional matrix and ε as a T -dimensional vector with y t , x 
′ 
t and εt 

on the t th position, respectively. Then, the static form of Equation 9 is: 

y = X α0 + W 

˜ α + �ε, ε ∼ N ( 0 , I T ) , and 


 ˜ α = 

˜ γ + η, η ∼ N ( 0 , I ν ) . 

Here, ˜ α = ( ̃  α′ 
1 , . . . , ̃  α′ 

T ) 
′ is a ν (= T K) -dimensional latent state vector, ˜ γ = ( ̃  γ ′ 

1 , . . . , ̃  γ ′ 
T ) 

′ is a ν-dimensional intercept vector

and η is a ν-dimensional shock vector. After defining ˜ x ′ t = x ′ t 
√ 

�t , the precise structure of W and 
 is given by: 

W = 

⎛ 

⎜ ⎜ ⎝ 

x ′ 1 0 

′ 
K×1 . . . 0 

′ 
K×1 

0 

′ 
K×1 ˜ x 

′ 
2 . . . 0 

′ 
K×1 

. . . 
. . . 

. . . 
. . . 

0 

′ 
K×1 0 

′ 
K×1 . . . x ′ T 

⎞ 

⎟ ⎟ ⎠ 

, and 
 = 

⎛ 

⎜ ⎜ ⎝ 

I K 0 K×K . . . 0 K×K 0 K×K 

−φ2 I K . . . 0 K×K 0 K×K 

. . . 
. . . 

. . . 
. . . 

. . . 
0 K×K 0 K×K . . . −φT I K 

⎞ 

⎟ ⎟ ⎠ 

, 

with 0 K×K denoting a K × K-dimensional zero matrix. Solving for ˜ α yields: 

˜ α = 
−1 ( ̃  γ + η) , 

implying that ˜ α ∼ N ( a 0 , �0 ) with prior mean a 0 = 
−1 ˜ γ and prior variance-covariance matrix �0 = ( 
′ 
) −1 of ˜ α (see, 

for instance, Chan and Jeliazkov, 2009; Chan and Strachan, 2020 ). In the special case of φt = 0 K×K , for all t , 
 (and thus

�0 ) reduces to an identity matrix, while φt � = 0 K×K , for any t , induces a (specific) banded lower-triangular (block diagonal)

structure of 
 ( �0 ). Note that φt = 0 K×K , for t = { 1 , . . . , T } , is always true for the TVP-POOL model, but not ruled out for

the TVP-MIX specification. The precise structure of the prior variance-covariance matrix �0 thus solely depends on state 

indicators S t . 

Moreover, the prior mean a 0 also depends on the structure of 
 and 

˜ γ . The simplest thing is to set a 0 to a zero vector,

which we implicitly assume for the TVP-MIX variants. For the TVP-POOL approach we use a hierarchical mixture prior on 

a , described in detail next. 
0 
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3.3. A Hierarchical Prior Mean 

The model outlined in (5) to (7) denotes a sparse finite location-scale mixture. After recasting the model in the non-

centered parameterization, we are able to replace the location-scale mixture prior on αt (outlined in Equation 6 ) with a

location mixture prior on the normalized latent states ˜ αt , since the scales of Equation 7 ( ̄�0 and �̄1 ) are now part of the

observation equation. That is: 

˜ αt | θt = n ∼ N ( ̃  μn , I K ) , (10) 

with group-specific mean 

˜ μn , for n = { 1 , . . . , N} and variance-covariance matrix I K . In the following, the prior mean is de-

fined as a 0 = ( a 

′ 
01 

, . . . , a 

′ 
0 T 

) ′ with a 0 t = 

˜ μn if θt = n . 

The sparse finite location mixture in Equation 10 allows us to use a similar prior set-up as proposed in Malsiner-Walli

et al. (2016) and Hauzenberger et al. (2019) . To ensure model parsimony we use a Dirichlet prior on ω = (ω 1 , . . . , ω N ) 
′ : 

ω | ξ ∼ Dir (ξ , . . . , ξ ) , 

with ξ referring to an intensity parameter. The prior on the intensity parameter is specified as: 

ξ ∼ G(d 0 , d 0 N) , 

with d 0 = 10 in the empirical application. Here, we closely follow Malsiner-Walli et al. (2016) , who show that this prior

choice is successful in detecting superfluous components and obtaining a parsimonious mixture representation. 

Moreover, on the group means we specify the following shrinkage prior: 

˜ μn | ̃  α ∼ N ( 0 , 
0 ) , 

with 

˜ μn being centered on zero and prior variance-covariance matrix 
0 = L R L . Here, L = diag ( 
√ 

l 1 , . . . , 
√ 

l K ) and R =
diag (r 2 

1 
, . . . , r 2 

K 
) with r i denoting the range of ˜ αi = ( ̃  αi 1 , . . . , ˜ αiT ) 

′ . Moreover, we specify a Gamma prior on the elements in

L : 

l i ∼ G(e 0 , e 1 ) . 

Following Yau and Holmes (2011) and Malsiner-Walli et al. (2016) , we define e 0 = e 1 = 0 . 6 to push the group-specific prior

means towards zero. 

4. Posterior computation 

In this sub-section, we outline the MCMC sampling step for ˜ α. We stress that drawing ˆ α is computationally fast, also for

relatively large K, but sampling the ν-dimensional vector ˜ α is demanding on time ( Hauzenberger et al., 2020 ). Thus for ˆ α
(and the remaining parameters) we use standard MCMC techniques with sampling steps and conditional posteriors outlined 

in Appendix A.3 . 

For ˜ α, irrespectively of the structure of a 0 and �0 , we obtain standard conditional Gaussian posterior quantities with 

˜ y = �−1 ( y − X α0 ) and 

˜ W = �−1 W : 

˜ α| ̃ y , ˜ W , a 0 , �0 ∼ N ( a 1 , �1 ) with 

�−1 
1 = ( ˜ W 

′ ˜ W + �−1 
0 ) ︸ ︷︷ ︸ 

ν×ν

and a 1 = �1 ( ˜ W 

′ 
˜ y + �−1 

0 a 0 ) . 

The main issue, however, is that the inversion of �−1 
1 is computationally costly, since it is ν × ν-dimensional matrix with 

ν = T K and { T , K} being potentially large integers. 

Thus, to avoid high-dimensional full matrix inversions and Cholesky decompositions for drawing the normalized latent 

states ˜ α, we rely on the algorithms proposed in Bhattacharya et al. (2016) , applied to TVP models in Hauzenberger et al.

(2020) . This method involves the following steps: 

1. Draw a ν-dimensional vector u ∼ N ( 0 , I ν ) . 

2. Sample a T -dimensional vector v ∼ N ( 0 , I T ) . 

3. Define q = a 0 + 
−1 u , with 
−1 denoting the lower Cholesky factor of �0 , and r = 

˜ W q + v . 
4. Compute ˜ �1 = ( I T + 

˜ W �0 
˜ W 

′ 
) −1 . 

5. Set f = 

˜ �1 ( ̃ y − r ) . 

6. Obtain a draw with 

˜ α = ( �0 
˜ W 

′ 
f ) + q . 

Using the static representation for a TVP regression the involved matrices are sparse, which can be exploited to achieve

additional computational gains (see Chan and Jeliazkov, 2009; Hauzenberger et al., 2019; 2020 ). Depending on the structure 

of 
 there are two extreme cases as briefly discussed in Sub- section 3.2 . Computationally, the most expensive case is a

random walk state equation ( φt = I K , ∀ t), while having no autoregressive structure in the state equation ( φt = 0 K×K , ∀ t)

it is computationally less demanding (see Hauzenberger et al. (2020) for a comparison between the two extremes). Recall, 

the former 
 has a specific lower triangular structure (rendering � block diagonal) and in the latter both 
 and � are 
0 0 
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diagonal. Thus, even for a random walk state equation (the most dense case), using sparse algorithms pays off in terms of

computation. Moreover, if φt = S t , we have to account for an intermediate computational burden lying between the two 

extremes that eventually depends on the exact structure of 
 ( �0 ). 

4.1. Equation-wise estimation for a TVP-VAR 

The methods outlined in the previous sub-section are designed for single equation models. To use these algorithms also 

for posterior inference in TVP-VARs, we rewrite the multivariate model as a set of unrelated TVP regressions (see, e.g., 

Carriero et al., 2019; Chan, 2019; Huber et al., 2019 ). 

This can be achieved by using the structural form of the TVP-VAR: 

Y t = B 0 t Y t + 

p ∑ 

� =1 

B �t Y t−� + C t + ε t , ε t ∼ N ( 0 , �t ) . (11) 

Here, Y t = (Y 1 t , . . . , Y mt ) 
′ denotes an m -dimensional vector of endogenous variables with B 0 t being an m × m -dimensional

strictly lower-triangular matrix (with zero main diagonal) defining contemporaneous relationships between the elements 

of Y t . Moreover, B �t , for � = 1 , . . . , p, denotes an m × m -dimensional time-varying coefficient matrix, C t is an m -dimensional

intercept vector and ε t refers to an m -dimensional Gaussian distributed error vector, centered on zero and with time-varying 

m -dimensional diagonal variance-covariance matrix �t = diag (σ 2 
1 t 

, . . . , σ 2 
mt ) . Before proceeding, it is convenient to define 

B t = ( B 1 t , . . . , B pt ) . 

In the following, for i = 2 , . . . , m , the i th equation of Y t is given by: 

y it = x ′ it ( αi 0 + 

˜ αit ) ︸ ︷︷ ︸ 
αit 

+ ε it , ε it ∼ N (0 , σ 2 
it ) , 

with x it denoting a K i (= mp + i ) -dimensional covariate vector with x it = ({ y jt } i −1 
j=1 

, Y ′ t−1 , . . . , Y 
′ 
t−p , 1) ′ and αit =

({ b i j, 0 t } i −1 
j=1 

, B i •,t , c it ) 
′ a K i -dimensional vector of time-varying coefficients. Here b i j, 0 t refers to the (i, j) th element of B 0 t ,

B i •,t denotes the i th row of B t and c it the i th element of C t . Moreover, for the first equation ( i = 1 ) we have x 1 t =
( Y ′ t−1 , . . . , Y 

′ 
t−p , 1) ′ and α1 t = ( B 1 •,t , c 1 t ) 

′ . 

5. Simulation study 

In this section we use synthetic data to illustrate the features of the proposed mixture variants. For the data generating

process (DGP) we assume that the number of observations is T = 100 and the number of covariates is given by K = 5 .

The covariates are simulated with X j ∼ N ( 0 , I T ) for j = 1 , . . . , (K − 1) and X K = ιT with ιT being a T -dimensional vector of

ones. For the error variance σ 2 
t , we assume an SV specification with log (σ 2 

t ) = h t following a random walk process. That is,

h t = h t−1 + ϑ t with ϑ t ∼ N (0 , 0 . 1) and h 0 = log (0 . 1) . For the time-varying parameters αt we introduce quite specific laws of

motion. We define α0 = (−4 , 3 , −2 , 2 , 0) ′ as initial level and assume that both regime-switching autoregressive parameters

and regime-switching variances in the state equation are governed by a joint Markov process s t . Here, we let S t = s t I K ,

φt = S t , �t = S t �̄1 + ( I K − S t ) ̄�0 with �̄0 = diag (10 −10 , 0 . 5 , 0 . 1 , 10 −10 , 1) and �̄1 = diag (1 , 0 . 1 , 0 . 5 , 10 −10 , 10 −10 ) . The joint

indicator s t is simulated with transition probabilities p 00 = 0 . 6 and p 11 = 0 . 95 , effectively leading to a higher unconditional

probability that αt follows a random walk evolution. 

In particular, the first coefficient features larger, more persistent parameter changes (with ψ 11 = 1 ), while for a small

number of periods α1 t is basically constant (achieved through the white noise state equation with ψ 10 close to zero). The

second parameter features small gradual changes over time ( ψ 21 = 0 . 1 ), but also larger abrupt breaks ( ψ 20 = 0 . 5 ). The third

parameter is similar to the first coefficient, but assumes ψ 30 > ψ 10 . The fourth coefficient is assumed to be constant over

time (with ψ 40 and ψ 41 being both close to zero) and, finally, the fifth parameter features a few extremely large breaks

(with ψ 50 = 1 ), while it is otherwise assumed to be constant (here achieved through the random walk state equation with

ψ 51 close to zero). 

To assess the flexibility of our approaches we compare them to models assuming a standard random walk evolution 

of coefficients and to those assuming constant coefficients. Moreover, we consider a typical mixture innovation model as 

an important benchmark. For each model we use a Normal-Gamma ( Griffin and Brown, 2010 ) prior on the constant part

and allow for SV in the measurement error variance. Furthermore, each TVP model features a Normal-Gamma prior on the 

square root of the state innovation variances, which are potentially regime-switching (see Equation 9 ). 

Panels (a) to (c) in Figure 1 depict the evolution of regression parameters estimated with our proposed methods, while 

panel (d) shows estimates with a typical mixture innovation model. The red solid lines denote the true coefficients, the blue

solid lines the posterior median, the blue shaded areas represent the 68% posterior credible interval, the gray shaded area 

represent the respective credible set of a standard TVP model with random walk state equation, and the black-dotted lines 

indicate the 16 th , 50 th , and 84 th percentiles of a constant coefficient model. 

The results with artificial data reveal at least three important features. First, all TVP models yield reasonable estimates for 

constant coefficients, which is highly crucial for forecasting applications. Focusing on the the fourth parameter, considering 

a more flexible model pays off to produce less biased and more precise estimates, especially when compared to the constant 
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Fig. 1. The blue-shaded areas denote the 68% posterior credible intervals of the proposed methods with the blue solid lines denoting the posterior medians. 

The gray shaded areas refer to the 68% credible sets of a standard TVP regression with random walk state equation. The black dotted lines indicate the 

16 th , 50 th , and 84 th percentiles of a constant coefficient model. Moreover, the red lines denote the true coefficients of αt . 

Table 1 

Overview of main specifications. 

TVP-MIX φt = S t �t = S t = Related to: 

FLEX MS S t ̄�1 + ( I K − S t ) ̄�0 s t I K 
FLEX MIX S t ̄�1 + ( I K − S t ) ̄�0 diag (s 1 t , . . . , s Kt ) 

SINGLE �̄

SSVS MIX S t ̄�1 + κ( I K − S t ) ̂ �0 diag (s 1 t , . . . , s Kt ) Chan et al. (2012) 

TVP-POOL φt = 0 K×K 

FLEX MS S t ̄�1 + ( I K − S t ) ̄�0 s t I K 
FLEX MIX S t ̄�1 + ( I K − S t ) ̄�0 diag (s 1 t , . . . , s Kt ) 

SINGLE �̄ Hauzenberger et al. (2019) 

SSVS MIX S t ̄�1 + κ( I K − S t ) ̂ �0 diag (s 1 t , . . . , s Kt ) 

TVP-RW φt = I K 

FLEX MS S t ̄�1 + ( I K − S t ) ̄�0 s t I K 
FLEX MIX S t ̄�1 + ( I K − S t ) ̄�0 diag (s 1 t , . . . , s Kt ) 

SINGLE �̄ Primiceri (2005) 

SSVS MIX S t ̄�1 + κ( I K − S t ) ̂ �0 diag (s 1 t , . . . , s Kt ) e.g., Huber et al. (2019) 

 

 

 

 

coefficient model. Second, the TVP-MIX specifications are capable in capturing both rapid shifts and smooth adjustments 

in the regression coefficients. Our methods in panel (a) and (b) tend to quickly adjust when facing high frequency changes,

rendering the methods even more flexible when compared to a typical mixture innovation specification in panel (d). Third, 

the TVP-POOL model in panel (c) tends to detect sudden changes in the parameters quite well, but is less capable in

capturing low frequency movements. This feature differs from a standard random walk evolution assumption on the TVPs. 

Assuming a standard random walk implies smoothly evolving coefficients renders capturing high frequency changes difficult. 

Interestingly, the time-varying intercept (the fifth coefficients) tends to soak up movements of other parameters. Models that 

do not truly detect the large breaks of the third coefficient are particularly prone to this issue ( TVP-POOL but also standard

random walk, TVP-RW , specifications). 

6. Empirical application 

Structural analysis and forecasting key macroeconomic indicators is of great relevance for policy makers. In the empirical 

work, we focus on output growth, inflation, unemployment, and the interest rate. Focusing on these variables we investigate 

the merits of our approach by using the popular quarterly US data described in McCracken and Ng (2016) . The data set

includes 165 macroeconomic and financial variables and ranges from 1959:Q1 to 2019:Q4. In the empirical application, we 

start with 1962:Q1 and use the first observations for transformations. 
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Table 2 

Overview of the best performing models, indicated by bold numbers in Table 3 and Table 4 . 

Variable 1-quarter-ahead 1-year-ahead 2-years-ahead 

Size Class Subclass Size Class Subclass Size Class Subclass 

Point forecasts 

RMSE ratios 

TOT L-VAR TVP-POOL SINGLE L-VAR TVP-POOL SINGLE FA-VAR TVP-POOL SINGLE 
GDPC1 L-VAR TVP-POOL FLEX MIX FA-VAR TVP-POOL FLEX MS FA-VAR TVP-MIX FLEX MIX 
CPIAUCSL S-VAR TVP-MIX FLEX MIX S-VAR TVP-RW Primiceri (2005) S-VAR TVP-RW Primiceri (2005) 

UNRATE L-VAR TVP-POOL SSVS MIX L-VAR TVP-POOL SINGLE FA-VAR TVP-POOL SSVS MIX 
FEDFUNDS FA-VAR TVP-RW SSVS MIX FA-VAR TVP-RW SSVS MIX FA-VAR TVP-POOL SINGLE 

Density forecasts 

LPBFs 

TOT L-VAR TVP-POOL FLEX MIX L-VAR TVP-POOL SSVS MIX L-VAR const (NG.) 
GDPC1 L-VAR TVP-POOL FLEX MS FA-VAR TVP-POOL SSVS MIX FA-VAR TVP-POOL SINGLE 
CPIAUCSL S-VAR TVP-MIX SSVS MIX L-VAR const. (NG) L-VAR const. (NG) 
UNRATE L-VAR TVP-POOL SSVS MIX L-VAR TVP-POOL SSVS MIX L-VAR TVP-MIX SSVS MIX 
FEDFUNDS L-VAR TVP-POOL SSVS MIX FA-VAR TVP-RW FLEX MIX FA-VAR const. 

(Min) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Sub- section 6.1 we show some stylized in-sample features of our methods for a small-scale model. By including the

four target variables in a small-scale VAR (henceforth S-VAR ) we present posterior probabilities of the state indicator ma- 

trix S t and estimate the low-frequency relationship between unemployment and inflation (Phillips Curve). For instance, the 

recent literature highlights the existence of potential non-linear dynamics in both the inflation persistence and the relation- 

ship of the Phillips Curve in the US (for a thorough discussion, see Cogley et al., 2010; Ball and Mazumder, 2011; Watson,

2014; Coibion and Gorodnichenko, 2015; Del Negro et al., 2020 ). 

In Sub- section 6.2 , this variable set forms the basis for evaluating the predictive performance of our methods in a com-

prehensive forecast exercise. For the forecasting exercise, we consider two additional information sets. In our largest spec- 

ification ( L-VAR ) we pick 20 macroeconomic indicators, which are commonly considered by the recent literature for fore- 

casting (see, for example, Huber et al., 2020a ). In particular, we include financial market indicators that carry important

information about the future stance of the economy (see Ba ́nbura et al., 2010 ). In Appendix Appendix C we provide fur-

ther details on the specific variable set, included in the largest specification, and the transformation applied. Moreover, we 

consider a factor-augmented VAR ( FA-VAR ). Here, we augment the target variables with six principal components compro- 

mising information of the remaining variables in the data set, effectively leading to VAR with ten endogenous variables. The 

number of principal components is motivated by the specification in Stock and Watson (2012) , who also consider six factors.

In such larger scale-models our methods are capable of handling less frequent (but important) parameter instabilities in a 

genuine way. 

Especially forecasting these important macroeconomic aggregates remains a challenging task, since (at least) two issues 

arise. First, we have to decide on a set of variables, which we want to include in our econometric model. The recent liter-

ature on constant parameter VARs highlights that exploiting large information sets yields forecast gains (see, for example, 

Ba ́nbura et al., 2010; Koop, 2013 ). Second, it is well documented that important economic indicators feature instabilities

in structural parameters and innovation volatilities. In this context, for example, Stock and Watson (2012) , Ng and Wright

(2013) and Aastveit et al. (2017) put a special emphasis on the recent financial crisis. In the literature there is strong agree-

ment that SV is important in macroeconomic applications (see Clark, 2011 ). There is also strong empirical support for shift-

ing parameters in small-scale models (see D’Agostino et al., 2013 ). However, there is less consensus for time-varying param-

eters in larger-scale models. With increasing amount of information overall time-variation in parameters tends to reduce. 

Recent contributions dealing with large-scale TVP-VARs argue that in smaller models the TVP part controls for an omitted 

variable bias (see Feldkircher et al., 2017; Huber et al., 2020b ). Since estimating TVP models with typical MCMC methods

remains computationally demanding, several studies take this argument as a reason to opt for approximating the TVP part 

or rely on dimension reduction techniques, yielding fast inference by accepting a certain risk of mis-specification (see, inter 

alia, Korobilis, 2019; Chan et al., 2020; Hauzenberger et al., 2020; Huber et al., 2020b; Korobilis and Koop, 2020 ). 

In the following empirical application, note that we consider two lags for every model and allow for SV. 

6.1. In-sample evidence 

Before proceeding, we briefly elaborate on a potential identification problem when interpreting the state indicators S t 
(see Frühwirth-Schnatter, 2001 ). For the TVP-MIX models, identification is ensured by construction (if coefficients indeed 

feature time variation). Assuming φt = S t (see Equation 3 ) automatically imposes inequality constraints on the autoregressive 

coefficients in the state equation. However, non-identifiability can occur when coefficients are constant. In such a case, 

elements in S t are hard to interpret, since a no change evolution is supported by both a random walk and a white noise

process. Interpreting S t for the TVP-POOL specification is an even more challenging task, since in these models S t solely 

controls the evolution of state innovations. Here, inference about the state indicator matrix is only useful in combination 

with inference about the size of state innovation variances �̄0 and �̄1 and with imposing an inequality restriction ex-post 

(e.g., ψ̄ < ψ̄ ). 
i 0 i 1 

95 



N
.
 H

a
u

zen
b

erg
er
 

E
co

n
o

m
etrics

 a
n

d
 Sta

tistics
 2

0
 (2

0
2

1
)
 8

7
–

10
8
 

Table 3 

Point forecast performance (RMSE ratios) relative to the benchmark ( const (Min.) ). The red shaded row denotes the benchmark (and its RMSE values). Asterisks indicate statistical significance for 

each model relative to const (Min.) at the 1 ( ∗∗∗), 5 ( ∗∗) and 10 ( ∗) percent significance levels. 

Specification 1-quarter-ahead 1-year-ahead 2-years-ahead 

Class Subclass TOT GDPC1 CPIAUCSL UNRATE FEDFUNDS TOT GDPC1 CPIAUCSL UNRATE FEDFUNDS TOT GDPC1 CPIAUCSL UNRATE FEDFUNDS 

FA-VAR 

const. (Min.) 0.91 ∗ 0.87 0.94 0.79 1.22 0.92 ∗∗ 0.84 ∗ 1.03 0.80 1.11 0.93 ∗ 1.00 1.04 0.86 0.78 ∗∗∗

const. (NG) 0.88 ∗∗ 0.81 ∗ 0.95 0.80 1.14 0.90 ∗∗ 0.84 ∗∗ 0.99 0.81 1.02 0.92 1.00 1.01 0.87 0.75 ∗∗

TVP-MIX FLEX MIX 0.89 ∗∗ 0.80 ∗ 0.97 0.81 0.91 0.94 ∗ 0.92 0.98 0.88 0.98 1.01 0.86 1.10 ∗ 1.08 0.95 

FLEX MS 0.91 ∗∗ 0.83 0.98 0.77 0.89 0.91 0.89 1.00 0.80 0.83 ∗ 0.94 0.96 1.00 0.92 0.89 

SINGLE 0.92 ∗ 0.82 1.01 0.79 0.85 ∗∗ 0.91 ∗ 0.87 1.00 0.81 0.86 ∗ 0.97 0.93 1.12 0.94 0.87 

SSVS MIX 0.89 ∗∗ 0.83 0.96 0.79 0.95 0.92 ∗ 0.89 0.98 0.83 0.98 0.95 0.93 1.09 0.88 0.92 

TVP-POOL FLEX MIX 0.88 ∗∗ 0.79 ∗ 0.95 0.77 1.06 0.88 ∗∗ 0.80 ∗∗ 0.99 0.77 0.96 0.89 0.95 1.01 0.82 0.73 ∗

FLEX MS 0.88 ∗∗∗ 0.79 ∗ 0.96 0.76 1.05 0.87 ∗∗ 0.80 ∗∗ 0.98 0.77 0.97 0.89 0.96 ∗ 1.00 0.82 0.73 ∗

SINGLE 0.87 ∗∗∗ 0.79 ∗ 0.95 0.77 1.05 0.87 ∗∗ 0.81 ∗∗ 0.98 0.77 0.95 0.88 0.94 ∗∗ 1.00 0.82 0.73 ∗

SSVS MIX 0.89 ∗∗ 0.81 ∗ 0.96 0.76 1.06 0.88 ∗∗ 0.81 ∗∗ 1.00 0.77 0.98 0.89 0.98 1.01 0.82 0.73 ∗

TVP-RW FLEX MIX 0.89 ∗∗ 0.83 0.95 0.77 0.89 ∗∗ 0.88 ∗ 0.86 0.97 0.76 0.81 ∗∗ 0.93 1.00 1.00 0.88 0.79 

FLEX MS 0.89 ∗∗ 0.80 0.96 0.80 0.91 0.90 ∗ 0.88 0.99 0.79 0.87 0.95 1.00 1.00 0.93 0.83 

SINGLE 0.91 ∗ 0.83 0.99 0.81 0.92 1.04 0.99 1.07 1.02 1.23 1.20 0.90 1.24 1.30 ∗ 1.36 

SSVS MIX 0.92 ∗ 0.84 0.99 0.79 0.83 ∗∗ 0.90 ∗ 0.90 0.96 0.83 0.80 ∗ 0.96 0.99 1.02 0.94 0.83 

L-VAR 

const. (Min.) 1.02 0.99 1.05 0.72 1.52 0.92 ∗∗ 0.93 0.95 ∗ 0.79 1.00 0.97 ∗∗ 1.02 0.98 0.95 0.88 ∗∗

const. (NG) 0.91 ∗∗ 0.85 0.96 0.71 1.10 0.88 ∗∗∗ 0.89 ∗ 0.92 ∗∗ 0.74 0.98 0.92 ∗∗ 1.00 0.97 0.89 0.79 ∗∗

TVP-MIX FLEX MIX 1.04 0.90 1.14 0.71 2.19 0.91 ∗ 0.82 1.02 0.81 1.09 0.92 0.93 0.99 0.89 0.90 

FLEX MS 1.06 0.92 1.17 0.72 1.51 0.90 ∗ 0.86 0.95 0.79 1.08 1.22 1.56 1.30 0.90 1.13 

SINGLE 0.92 ∗ 0.86 0.98 0.74 0.90 ∗∗ 0.87 ∗ 0.82 ∗ 0.94 0.83 0.87 ∗ 0.92 0.94 0.97 0.91 0.86 

SSVS MIX 0.96 0.98 0.94 0.72 1.20 0.90 0.86 0.98 0.78 1.00 0.95 0.96 1.06 0.91 0.89 

TVP-POOL FLEX MIX 0.88 ∗∗∗ 0.79 ∗∗ 0.96 0.68 0.86 ∗∗∗ 0.87 ∗∗ 0.87 0.94 0.74 0.89 ∗∗ 0.91 0.99 1.01 0.84 0.79 ∗∗

FLEX MS 0.88 ∗∗∗ 0.82 ∗ 0.94 0.67 0.87 ∗∗∗ 0.86 ∗∗ 0.85 ∗ 0.94 0.72 0.90 ∗∗ 0.90 0.99 0.99 0.83 0.77 ∗∗

SINGLE 0.87 ∗∗∗ 0.79 ∗∗ 0.95 0.68 ∗ 0.88 ∗∗∗ 0.86 ∗∗ 0.86 ∗ 0.93 0.71 0.88 ∗∗ 0.91 0.99 0.99 0.84 0.78 ∗∗

SSVS MIX 0.88 ∗∗∗ 0.81 ∗ 0.95 0.67 ∗ 0.89 ∗∗∗ 0.86 ∗∗ 0.85 ∗ 0.94 0.72 0.88 ∗∗ 0.90 0.98 1.01 0.83 0.78 ∗∗

TVP-RW FLEX MIX 0.96 0.97 0.97 0.71 1.09 0.88 ∗ 0.85 0.94 0.80 0.93 ∗ 0.95 1.00 0.97 0.94 0.87 

FLEX MS 0.98 0.97 0.99 0.73 0.93 ∗∗ 0.86 ∗ 0.81 ∗ 0.92 0.84 0.96 0.96 0.97 0.96 0.96 0.93 

SINGLE 1.24 1.09 1.37 0.75 1.75 0.93 0.88 0.97 ∗∗∗ 0.84 1.23 0.94 0.91 0.93 0.96 0.95 

SSVS MIX 0.94 0.93 0.95 0.73 1.17 0.88 ∗ 0.85 0.93 0.82 0.97 0.96 0.95 0.98 0.95 0.95 

S-VAR 

const. (Min.) 0.60 0.83 0.85 0.15 0.11 0.76 1.00 0.87 0.62 0.41 0.91 0.93 0.85 1.10 0.73 

const. (NG) 0.99 ∗∗ 0.99 ∗ 0.99 1.00 1.01 0.96 ∗∗ 0.94 ∗ 0.98 0.98 ∗ 0.98 0.97 0.99 0.98 0.97 ∗∗ 0.95 

TVP-MIX FLEX MIX 0.93 ∗∗ 0.94 ∗ 0.92 0.92 0.91 ∗∗∗ 0.89 0.84 0.94 0.92 0.93 0.93 0.89 1.01 0.93 0.92 

FLEX MS 0.96 0.96 0.96 0.91 0.87 0.93 0.92 0.95 0.91 0.96 0.96 0.97 1.01 0.92 0.95 

SINGLE 0.97 0.97 0.96 0.97 0.85 ∗ 0.93 0.91 0.95 0.95 0.97 0.95 0.96 0.99 0.94 0.93 

SSVS MIX 0.95 ∗∗ 0.96 0.94 ∗∗ 0.98 0.94 ∗∗∗ 0.91 ∗ 0.86 0.94 0.93 0.92 0.95 0.94 1.00 0.94 0.92 

TVP-POOL FLEX MIX 0.98 ∗∗∗ 0.97 ∗∗ 0.99 0.95 0.98 0.95 ∗∗ 0.93 ∗ 0.98 0.94 0.94 0.95 0.99 0.96 0.93 0.90 

FLEX MS 0.98 ∗∗ 0.98 ∗ 0.98 0.94 ∗∗ 0.98 ∗ 0.95 ∗∗ 0.94 ∗ 0.98 0.94 0.94 0.95 0.99 0.97 0.93 0.90 ∗

SINGLE 0.98 ∗∗ 0.98 ∗ 0.99 0.94 0.98 0.95 ∗∗ 0.93 ∗ 0.99 0.94 0.94 0.95 0.99 0.97 0.93 0.90 

SSVS MIX 0.98 ∗∗ 0.98 ∗ 0.99 0.95 0.97 ∗ 0.95 ∗∗ 0.93 ∗ 0.98 ∗ 0.95 0.94 0.94 0.98 0.97 0.92 0.91 

TVP-RW FLEX MIX 0.96 ∗∗ 0.96 0.95 0.97 0.92 ∗∗ 0.93 ∗ 0.94 0.91 0.95 0.94 0.96 0.98 0.96 0.95 0.94 

FLEX MS 0.98 0.99 0.97 0.98 0.88 ∗ 0.93 0.91 0.93 0.96 0.98 0.95 0.94 0.99 0.95 0.94 

SINGLE 0.96 0.92 1.00 0.92 0.86 ∗∗∗ 0.89 0.82 0.95 0.94 0.90 0.93 0.88 1.00 0.96 0.85 

SSVS MIX 0.98 1.00 0.96 0.98 0.89 ∗ 0.94 0.92 0.93 0.99 0.97 0.97 0.96 0.97 0.97 0.95 

Primiceri (2005) 0.96 1.00 0.93 0.99 0.96 0.89 ∗∗ 0.88 0.87 0.96 0.87 0.93 0.92 0.92 0.97 0.85 
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Table 4 

Density forecast performance (LPBFs) relative to the benchmark ( const (Min.) ). The red shaded row denotes the benchmark (and its LPS values). Asterisks indicate statistical significance for each 

model relative to const (Min.) at the 1 ( ∗∗∗), 5 ( ∗∗) and 10 ( ∗) percent significance levels. 

Specification 1-quarter-ahead 1-year-ahead 2-years-ahead 

Class Subclass TOT GDPC1 CPIAUCSL UNRATE FEDFUNDS TOT GDPC1 CPIAUCSL UNRATE FEDFUNDS TOT GDPC1 CPIAUCSL UNRATE FEDFUNDS 

FA-VAR 

const. (Min.) 11.35 12.01 ∗∗ 2.23 8.56 -4.19 14.59 8.30 ∗∗ 2.02 14.03 8.69 37.98 ∗∗ 2.12 5.63 12.49 30.86 ∗∗∗

const. (NG) 18.88 13.48 ∗∗∗ 4.19 8.66 0.46 25.90 ∗∗∗ 9.01 ∗∗∗ 2.34 14.21 10.93 40.82 ∗∗∗ 3.08 7.01 12.22 28.66 ∗∗∗

TVP-MIX FLEX MIX 23.23 12.71 ∗∗ 2.78 11.15 12.95 ∗∗∗ 39.12 ∗∗ 7.60 2.33 26.49 16.00 50.99 3.80 3.97 23.44 13.09 

FLEX MS 29.37 11.74 ∗∗ 5.32 13.84 9.59 ∗ 49.54 ∗∗ 7.49 2.32 27.51 17.64 41.96 0.10 3.65 22.67 13.22 

SINGLE 24.87 11.07 ∗∗ 2.24 10.12 17.01 ∗∗∗ 52.21 ∗∗ 6.25 0.25 25.16 24.39 55.19 0.70 3.17 22.70 18.79 

SSVS MIX 25.93 13.23 ∗∗ 2.59 10.60 6.38 ∗ 40.29 ∗ 7.92 ∗ 1.90 23.53 10.64 40.57 3.38 1.82 25.83 7.45 

TVP-POOL FLEX MIX 26.23 13.49 ∗∗∗ 3.44 10.51 7.28 ∗∗∗ 39.69 ∗∗∗ 10.63 ∗∗ 2.06 19.71 15.86 53.01 ∗∗ 3.61 6.18 22.98 28.67 ∗

FLEX MS 28.06 14.49 ∗∗∗ 3.98 ∗ 10.24 7.62 ∗∗∗ 34.75 ∗∗ 10.85 ∗∗∗ 2.71 17.29 14.71 52.55 ∗∗ 4.07 6.27 21.13 28.34 ∗

SINGLE 25.63 14.42 ∗∗∗ 2.98 10.61 6.20 ∗∗∗ 34.67 ∗∗ 10.54 ∗∗∗ 2.21 18.32 16.06 46.04 ∗∗ 4.36 6.22 19.52 26.47 

SSVS MIX 25.54 14.08 ∗∗∗ 3.17 ∗ 10.06 6.84 ∗∗∗ 35.28 ∗∗ 11.02 ∗∗∗ 1.59 18.01 15.29 50.57 ∗∗ 4.04 6.74 23.07 28.09 

TVP-RW FLEX MIX 37.26 11.40 ∗∗ 7.35 ∗∗ 12.30 17.50 ∗∗∗ 63.22 ∗∗ 7.80 1.93 29.72 27.66 69.42 ∗ -1.76 5.94 27.99 29.14 

FLEX MS 26.44 11.88 ∗∗∗ 5.01 11.44 11.10 ∗∗ 53.18 ∗∗ 7.23 0.70 24.70 20.65 38.45 -0.47 4.42 21.35 18.47 

SINGLE 20.52 11.81 ∗∗ -2.21 11.01 13.10 ∗∗∗ 46.68 ∗∗ 4.46 2.24 19.20 17.68 45.86 -1.09 -0.24 13.83 16.93 

SSVS MIX 38.78 11.12 ∗∗ 6.46 9.69 16.94 ∗∗∗ 47.25 ∗∗∗ 6.07 0.96 21.05 27.08 47.06 ∗ -1.64 5.28 17.38 25.21 

L-VAR 

const. (Min.) 15.05 13.32 ∗ -0.29 12.15 -3.68 ∗∗∗ 56.73 ∗∗ 2.78 3.22 ∗∗∗ 32.41 11.78 ∗∗∗ 61.59 ∗∗∗ -3.86 3.18 15.52 18.28 ∗∗

const. (NG) 28.70 15.97 ∗∗∗ 1.06 14.87 2.34 70.27 ∗∗∗ 7.40 ∗∗ 6.76 ∗∗∗ 36.48 16.42 ∗ 73.50 ∗∗∗ 0.33 8.80 ∗ 17.46 ∗∗ 21.68 ∗∗∗

TVP-MIX FLEX MIX 21.50 13.39 ∗∗ -3.42 14.97 6.06 57.99 ∗ 7.63 -0.49 36.44 6.38 50.44 -3.40 -0.52 27.14 -1.18 

FLEX MS 13.65 ∗ 10.32 ∗ -0.35 13.39 7.88 46.02 6.19 -0.16 32.55 7.15 44.48 -6.69 -0.73 28.69 0.75 

SINGLE 28.03 12.75 ∗∗ 1.04 13.65 12.62 60.71 ∗ 8.02 2.15 32.82 12.23 60.21 -3.28 1.74 28.66 7.41 

SSVS MIX 16.40 ∗ 11.52 ∗∗ 1.00 12.90 11.67 55.25 ∗ 8.09 -0.77 34.05 9.97 41.64 -0.87 1.23 31.10 1.53 

TVP-POOL FLEX MIX 54.32 16.63 ∗∗∗ 0.86 16.78 22.62 ∗∗∗ 71.86 ∗∗∗ 8.08 ∗ 3.09 35.86 24.24 63.16 ∗∗∗ 0.27 2.73 22.08 21.52 ∗∗

FLEX MS 50.88 17.28 ∗∗∗ 1.72 16.95 21.29 ∗∗∗ 70.43 ∗∗ 8.02 ∗∗ 2.27 36.55 24.52 65.07 ∗∗∗ -0.06 2.43 20.10 22.50 ∗∗

SINGLE 51.15 16.22 ∗∗∗ 1.44 16.75 22.24 ∗∗∗ 72.35 ∗∗∗ 8.14 ∗ 2.47 36.30 24.31 60.97 ∗∗∗ -0.50 2.74 24.76 20.51 

SSVS MIX 49.90 16.39 ∗∗∗ -0.50 17.15 23.32 ∗∗∗ 73.08 ∗∗ 6.80 ∗ 2.06 36.87 25.34 63.73 ∗∗∗ -1.29 2.69 19.82 22.33 ∗

TVP-RW FLEX MIX 29.38 10.54 ∗∗ 1.22 11.09 12.63 54.24 3.78 1.28 27.88 17.50 59.54 -7.53 -0.86 28.15 15.32 

FLEX MS 15.46 9.99 ∗∗ -8.43 11.68 13.28 55.15 ∗ 5.85 1.40 28.01 13.82 41.09 -5.25 -0.64 25.89 6.06 

SINGLE 12.39 12.04 ∗∗ -1.38 12.34 7.23 41.96 4.35 0.38 28.51 -2.50 28.63 -9.08 ∗ 0.76 20.03 -6.91 

SSVS MIX 18.47 9.93 ∗ 0.81 11.50 13.63 55.11 4.67 2.12 27.41 13.44 46.83 -3.83 1.76 23.01 6.32 

S-VAR 

const. (Min.) -22.11 -82.64 -80.74 45.02 86.64 -256.48 -97.26 -83.70 -69.04 -29.94 -383.84 -92.27 -89.84 -125.53 -87.85 

const. (NG) 4.55 1.97 ∗ 0.71 0.62 ∗ 1.39 ∗∗∗ 4.97 2.64 ∗ 1.95 ∗ 0.03 2.30 9.15 0.58 3.07 2.99 1.37 

TVP-MIX FLEX MIX 24.41 3.97 ∗ 5.52 2.90 12.18 ∗∗∗ 15.60 9.64 ∗∗ 3.98 8.50 5.03 -3.76 3.00 3.74 -0.02 -7.71 

FLEX MS 18.00 2.66 3.57 6.42 5.86 ∗∗ 9.48 5.25 ∗ -0.44 12.27 -0.22 0.77 -1.60 0.83 10.35 -11.26 

SINGLE 7.18 ∗∗ 2.45 -1.98 0.85 13.26 ∗∗∗ 12.51 5.42 3.33 6.38 7.12 ∗ -0.80 -2.74 1.19 2.14 -5.03 

SSVS MIX 23.21 3.44 ∗ 8.67 ∗∗ 2.67 7.84 ∗∗∗ 22.03 6.18 1.77 10.22 5.15 15.68 1.32 6.23 14.46 -3.63 

TVP-POOL FLEX MIX 16.39 2.47 ∗∗∗ 2.63 ∗∗ 1.29 6.18 ∗∗∗ 9.34 3.10 ∗ 1.70 3.87 ∗ 5.15 14.86 0.07 3.60 ∗ 6.37 0.56 

FLEX MS 14.35 2.30 ∗∗ 1.26 ∗ 1.66 7.91 ∗∗∗ 11.74 3.65 ∗∗∗ 2.04 ∗∗ 7.55 ∗ 6.02 14.99 -0.16 4.04 ∗∗ 8.28 1.86 

SINGLE 16.46 2.68 ∗∗∗ 2.61 ∗ 1.84 6.99 ∗∗∗ 5.61 3.52 ∗∗ 1.73 3.43 5.59 14.77 0.21 3.13 10.10 -0.22 

SSVS MIX 18.75 2.40 ∗∗ 2.84 ∗ 1.84 7.03 ∗∗∗ 11.67 3.66 ∗∗ 2.70 ∗∗∗ 4.44 ∗∗ 5.74 12.63 0.51 3.68 ∗∗ 7.64 0.59 

TVP-RW FLEX MIX 22.15 2.35 5.20 ∗∗∗ 2.14 11.56 ∗∗∗ 31.13 ∗ 4.67 6.61 ∗ 10.96 9.42 23.66 -2.07 7.42 11.93 2.23 

FLEX MS 17.02 1.76 2.62 1.98 8.41 ∗∗ 10.37 4.80 1.87 8.30 2.86 7.89 -2.64 4.15 3.79 -7.05 

SINGLE 13.68 6.02 ∗∗ -3.98 1.79 12.17 ∗∗∗ 6.72 8.60 1.15 1.63 13.13 -11.49 2.34 0.87 -7.78 3.09 

SSVS MIX 20.25 1.26 5.76 ∗ 0.31 12.10 ∗∗∗ 28.93 ∗ 5.73 5.24 6.34 9.14 16.00 -2.42 6.40 4.74 -2.84 

Primiceri (2005) 0.56 2.73 2.02 5.58 -10.87 ∗∗∗ 10.79 4.76 -1.76 10.58 -2.41 ∗∗∗ 2.45 -0.53 2.58 6.58 2.67 
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Fig. 2. Posterior distribution of s it , for i = { 1 , . . . , K} , for two small-scale TVP-MIX models. Here, G denotes output growth (GDPC1), C the inflation (CPI- 

AUCSL), U the unemployment rate (UNRATE), F refers to the interest rate (FEDFUNDS) and ic to an intercept. Moreover, the structural form in Equation 

11 implies that some parameters are not part of the i th equation (denoted by grey shaded areas), due to the strictly lower triangular structure of B 0 t . 

 

 

 

 

 

 

 

 

Therefore, we solely focus on two variants of a TVP-MIX model to illustrate the switching behavior. Figure 2 depicts

the posterior median of the diagonal elements in S t . Panel (a) shows a TVP-MIX model with S t = s t I K and s t following

a first-order Markov process ( MS ). Panel (b) depicts a specification with elements in S t following an independent mixture

distribution ( MIX ). A comparison between both approaches highlights that a joint indicator evidently leads to a different

posterior median of S t than covariate-specific indicators. By restricting S t = s t I K , all covariates are driven solely by a single

indicator that pushes all covariates towards either a random walk or white noise state equation in period t . Conversely, 

with covariate-specific indicators, we see more dispersion across covariates. However, both approaches agree on a white 

noise state equation in times of turmoil, suggesting a need for abruptly adjusting parameters in these periods. This model 

feature is in line with the discussion in Primiceri (2005) , who suggests that an economically stable period favours more

gradual changes (which are more consistent with a random walk state equation) in the coefficients, while shifts in policy 

rules require quickly adjusting coefficients (which is better captured by using a white noise state equation). 

To further illustrate the proposed methods, we estimate the low-frequency relationship between unemployment and 

inflation. This low-frequency measure corresponds to a long-run coefficient of distributed-lag regression models ( Whiteman, 

1984 ) and disentangles systematic co-movements from short-run fluctuations. Sargent and Surico (2011) and Kliem et al. 

(2016) suggest that a TVP-VAR framework, additionally, allows to account for changes in the transmission channels (time- 

varying coefficients) and changes in the error volatilities (SV). Further details can be found in Appendix A.4 . 

Panel (a) to (c) in Figure 3 depict the obtained low-frequency component with our proposed approaches and panel (d) 

shows estimates with a standard TVP model assuming a standard random evolution assumption. Starting with a comparison 

between the random walk/white noise mixture ( TVP-MIX ) and a classic random walk TVP model, we observe a similar

pattern for both approaches during tranquil periods. However, during recessions, the approaches significantly differ. Both 

TVP-MIX models are capable of detecting a major structural break in the low-frequency relationship after the oil crisis in 

the 1970s and strongly support a long-lasting stagflation period (i.e., positive relationship between unemployment and infla- 

tion). While TVP-MIX methods are designed to quickly capture these large abrupt breaks in parameters, a standard random 

walk state equation translates into a low-frequency component that gradually adapts over time. However, the TVP-MIX 
model with covariate-specific indicators MIX is slightly more sensitive with respect to abrupt changes in parameters than 

the TVP-MIX MS model. 

Panel (c) shows the sparse scale-location mixture ( TVP-POOL ) approach with covariate-specific indicators ( MIX ). We 

observe that this method almost resembles a constant coefficient specification with SV. In the mid 1980s and in the financial

crisis movement in the low-frequency relationship is slightly more erratic compared to other periods, but it stays mostly 

constant and significant. 

Overall, considering TVP-MIX methods seem to improve the economic interpretability of the low-frequency component, 

while a TVP-POOL model aggressively pushes coefficients towards a constant evolution, which could pay off for forecasting. 

6.2. Forecasting evidence 

In the forecast exercise we consider a wide range of models varying along the evolution assumption of parameters and 

the information set considered. 
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Fig. 3. Low-frequency relationship between the unemployment rate and the inflation. The blue line refers to the posterior median, while the blue-shaded 

area indicates the 68% posterior credible set. The red line indicates zero. 

 

 

 

 

With respect to the evolution of parameters, it proves convenient to summarize the different specifications (see 

Table 1 ). The models differ along three dimensions: the autoregressive parameters φt , the innovation variances �t and 

the state indicator matrix S t . First, our main specifications vary between a model that assumes a binary indicator matrix on

the autoregressive parameter with φt = S t (labeled as TVP-MIX ) and a model that introduces a hierarchical prior on the 

TVP-part ( TVP-POOL ). For the latter we implicitly assume that φt = 0 K×K , for all t , in Equation 5 . Regarding the autoregres-

sive parameter, a natural competing model is a standard random walk assumption with φt = I K , for all t ( TVP-RW ). Second,

the models differ in the treatment of the state innovation variances. The most flexible innovation variance specification 

does not restrict �̄ and �̄ (labeled as FLEX ), a second specification assumes �̄ = κ ˆ � ( SSVS ), while the most restrictive
0 1 0 0 
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specification fixes �t = �̄, for all t , to a a single variance state ( SINGLE ) with 

ˆ α collapsing to a 2 K-dimensional vector (see

Bitto and Frühwirth-Schnatter, 2019 ). In the empirical exercise, we set κ = 0 . 1 6 and 

ˆ �0 = diag ( ˆ ψ 1 , . . . , 
ˆ ψ K ) with 

ˆ ψ i , for,

i = { 1 , . . . , K} , denoting ordinary least square (OLS) variances obtained from an AR( p) model (see Huber et al., 2019 ). Third,

with regards to the state indicator matrix S t , we discriminate between a joint Markov-switching indicator (labeled as MS ) 
and covariate-specific indicators following an independent mixture distribution ( MIX ). Recall, that for the TVP-MIX models 

S t adjusts both the autoregressive parameters and the state innovation variances, while for the TVP-POOL and TVP-RW 
models S t only controls the state innovations. In the following, we define TVP-MIX , TVP-POOL and TVP-RW as the Class 
of the TVP model and the combination of the acronyms for the innovation variances and indicator matrix as the Subclass
of the specification. A single model is identified by a combination of all three acronyms. For example, a TVP-MIX FLEX
MIX specification denotes a model with a random walk/white noise mixture for the state equation, with unrestricted two- 

state variances and with the elements in S t following an independent mixture distribution. 

All these TVP models feature a Normal-Gamma ( Griffin and Brown, 2010 ) on 

ˆ α. We compare our methods to two constant

parameter specifications and a traditional small-scale TVP-VAR model, where we use exactly the same prior set-up as in 

Primiceri (2005) . A constant coefficient model can be obtained by either offsetting ˜ α = 0 ν×1 or setting { �t } T t=1 
≈ 0 K×K . One

variant features a Normal-Gamma ( const.(NG) ) prior, while the second variant assumes a Minnesota ( const.(MIN) ) 
prior. We consider a non-conjugate Minnesota prior, capturing the notion that own lags are more important than lags from 

other variables ( Doan et al., 1984; Litterman, 1986 ). We estimate this set of models for three information sets ( FA-VAR ,
L-VAR and S-VAR ) with each featuring a different number of endogenous variables. The Primiceri (2005) TVP-VAR is an

alternative variant of the TVP-RW SINGLE model. In brief, this specification can be obtained by using pre-specified priors 

that are calibrated with OLS estimates on an initial training sample of ten years (instead of automatic shrinkage processes), 

assuming a full state innovation variance-covariance matrix �̄ (instead of diagonal �̄) and considering random walk SV 

(instead of AR(1)-SV). This model is considered exclusively for the small information set, since in larger scale specifications 

the proposed prior set-up would either lead to severe overfitting issues or involve a substantial amount of tuning. Similar 

to Primiceri (2005) and D’Agostino et al. (2013) , every considered specification features two lags and SV. 

To assess one-quarter-, one-year- and two-years-ahead predictions, we treat observations ranging from 1962:Q1 to 

1999:Q4 as an initial sample and the periods from 20 0 0:Q1 to 2019:Q4 as a hold-out sample. The initial sample is then

recursively expanded until the penultimate quarter (2019:Q3) is reached. For each forecast comparison, a small-scale Min- 

nesota VAR with constant parameters ( S-VAR const.(MIN) ) serves as our benchmark. In the following, Table 2 shows the

best performing models for point and density forecasts, effectively being a tractable summary of Table 3 and Table 4 . Table

3 depicts root-mean squared error ratios (RMSEs) as point forecast measures and Table 4 the log predictive Bayes factors

(LPBFs) as density forecast metrics. In Table B.5 we provide additional results on continuous rank probability score (CRPS) 

ratios. This alternative density forecast measure is more robust to outliers than log predictive scores ( Gneiting and Raftery, 

2007 ). In each table the best performing models within each column are indicated by bold numbers. With three different

measures at three different horizons we obtain a comprehensive picture to evaluate our methods jointly and marginally 

along the four target variables. 

Table 2 summarizes the main findings of our forecast exercise. First , larger-scale models ( FA-VAR , L-VAR ) generally

outperform the small-scale specifications across horizon-variable combinations, indicating that an increasing amount of in- 

formation pays off for forecasting (see Ba ́nbura et al., 2010 ). One exception is inflation. For inflation, S-VAR s featuring

TVPs yield more accurate forecasts than FA-VAR s and L-VAR s across all horizons for point forecasts and the one-quarter-

ahead horizon for density forecasts. Comparing FA-VAR s with L-VAR s, the results are mixed. One pattern worth noting is

that L-VAR s tend to outperform FA-VAR s for the one-quarter-ahead horizon while the picture reverses for higher-order 

forecasts. Second, with respect to parameter changes we see that the TVP-POOL specifications forecast particularly well 

across all horizons and target variables. These models substantially improve upon a wide range of benchmarks. Overall, 

Table 2 shows that all TVP classes that provide accurate point predictions generally also perform well in terms of density

forecasts. 

When examining Table 3 and Table 4 in greater detail, note that a large number of models shown in the tables outper-

form the Minnesota benchmark in terms of RMSEs (indicated by ratios below one) and in terms of LPBFs (indicated by values

above zero). However, the benchmark is a tough competitor when predicting inflation and for higher-order point forecasts. 

In particular, the result that inflation is hard to predict is a well-known fact in the literature ( Stock and Watson, 2007 ).

Commonly, it is found here that more sophisticated models with large information sets are outperformed by rather small- 

sized and comparatively simpler models (see, for example, Giannone et al., 2015) . In particular, the small-scale Primiceri 

(2005) VAR produces sensible point forecasts for inflation. This finding is much in line with D’Agostino et al. (2013) , who

provide a thorough study on forecasting with small-scale TVP-VARs. 

When focusing on the differences occurring through the varying treatment of parameter evolutions, our proposed meth- 

ods, the TVP-POOL and TVP-MIX specifications, show that their good performance is mainly driven by improved forecast 

accuracy for output growth and unemployment. In terms of the innovation variance assumption for these specifications, 

we observe that additional flexibility tends to improve density forecasts performance and yields accurate point forecasts. 

For the TVP-POOL models this higher degree of flexibility generally pays off across variables and model sizes. For flexible 

TVP-MIX specifications, forecast ability tends to improve for S-VAR s and FA-VARs and is competitive for the L-VAR s. 

Especially the TVP-MIX SSVS MIX and TVP-MIX FLEX MIX models using a small information set yield quite accurate 
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Fig. 4. Evolution of one-quarter-ahead total cumulative LPBFs relative to the benchmark. The gray dashed lines refer to the maximum/minimum Bayes 

factor over the full hold-out sample. The light gray shaded areas indicate the NBER recessions in the US. 

 

inflation forecasts, being the best performing models for the one-quarter-ahead horizon. Across variables, a notable excep- 

tions is the interest rate for TVP-MIX models. Here, a TVP-MIX SINGLE specification is superior to models assuming a 

mixture on innovation volatilities. 

When assessing random walk state equation ( TVP-RW ) specifications across the information sets, two things are worth 

noting. First, a standard TVP model with random walk assumption TVP-RW SINGLE is mostly competitive for one-year- 

and two-years-ahead forecasts and otherwise forecasts poorly. For the Primiceri (2005) VAR, as an alternative small-scale 

variant of the TVP-RW SINGLE model, we observe a quite similar pattern, although a few differences in performance are 

notable. The Primiceri (2005) VAR produces more sensible forecasts for inflation. Apart from that, we find that this model 

tends to be outperformed for both point and density forecasts by the (main) small-scale TVP-RW SINGLE variant with 

shrinkage priors (especially at the one-quarter-ahead horizon). We conjecture that these differences in performance may 

originate from the fact that the Primiceri (2005) model assumes non-adaptive priors and a full state innovation variance- 

covariance matrix. While for the TVP-RW SINGLE specification the diagonal elements in 

√ 

�̄ are pushed towards zero 

with a Normal-Gamma shrinkage prior, the Primiceri (2005) VAR uses an Inverse-Wishart prior on �̄, effectively leading to 

a dense state innovation variance-covariance matrix. 

Second, more flexible TVP-RW variants produce quite accurate forecasts for FA-VAR s. Constant parameter models with 

a Normal-Gamma prior show reasonable forecasts for L-VAR s (especially for inflation), but lack flexibility in smaller-scale 

models. This observation is in line with the fact that in larger-scale model, time-variation in coefficients vanishes (see Huber

et al., 2020b ). However, few parameter instabilities might still be present since, apart from some exceptions, our methods 

provide improvements when compared to constant coefficient models. 

To illustrate the forecast performance over time, Figure 4 depicts the evolution of cumulated joint LPBFs relative to 

our benchmark. Overall we find that for all four target variable jointly our proposed methods never forecast poorly. Both 

TVP-MIX (black lines) and TVP-POOL (green lines) methods outperform a standard TVP model with random walk state 
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equation ( TVP-RW SINGLE denoted by the red solid line) across information sets (one exception is the TVP-MIX SINGLE 
model for the S-VAR ). Moreover, allowing for occasional parameter changes during and in the aftermath of financial crisis 

tends to increase predictive ability. 

A few points are worth discussing in greater detail. First, at the beginning of the hold-out sample is characterized by the

early 20 0 0s recession. Although this was a quite short crisis, it already leads to a quite diverse model performance across

information sets. During this episode and its consecutive three years, L-VAR s strictly dominate the other two information 

sets ( FA-VAR s and S-VAR s). This implies, that for any TVP evolution assumption, the large-scale model outperforms its

smaller-scale counterparts. Moreover, during the financial crisis, we observe a substantial increase in LPBFs for a wide range 

of FA-VAR s and L-VAR s, while for S-VAR s we see similar improvements solely for some TVP-VARs. This feature might

indicate that TVPs are capable of mitigating a potential omitted variable bias ( Huber et al., 2020b ). 

Second, within each information set, performance across parameter evolution assumptions is mixed. Evidently, perfor- 

mance of the four L-VAR s featuring a TVP-POOL specification stands out (depicted by green lines). In more tranquil pe-

riods they show constant improvements and yield substantial predictive gains during the financial crisis. Especially in the 

aftermath of the Great Recession, the LPBFs steadily increase compared to other large TVP-VARs. This episode also includes 

a time characterized by a (sluggish) recovery of the US economy after the financial crisis and the interest rate hitting the

zero lower bound. With monetary policy shifting towards unconventional measures it might not only pay off to include 

financial market variables, such as longer-term yields, but also to allow for occasional changes in transmission channels in 

these variables. Moreover, it is worth noting that the four TVP-POOL variants tend to perform almost identical until 2010, 

while afterwards slight performance differences become evident. Hauzenberger et al. (2019) have made a similar observa- 

tion, when varying the hyperparameters on their conjugate prior of the state equation. 

Third, TVP-MIX methods generally forecast well for S-VARs and FA-VARs , while for L-VARs only the TVP-MIX 
SINGLE specification yields substantial gains. In particular for FA-VARs and S-VAR s, a flexible variance modelling 

( TVP-MIX FLEX MIX and TVP-MIX SSVS MIX ) generally pays off. For L-VAR s these two models also yield reason-

able forecast accuracy, while the TVP-MIX MS forfeits forecast accuracy. Thus, for a large-scale model, the assumption 

that a joint indicator governs the evolution of large number of coefficients might be less appropriate. Moreover, comparing 

TVP-MIX with TVP-RW specifications reveals that the random walk/white noise mixture yields gains in tranquil periods for 

larger-scale models ( FA-VAR s and L-VAR s) and does particularly well in recessions for the small information set ( S-VAR ).
Especially for small-scale VARs the TVP-MIX variants, featuring a mixture distribution on the state innovation volatilities, 

greatly improve predictive performance relative to the Primiceri (2005) TVP-VAR and all other TVP-RW models during the 

financial crisis. It is worth noting, nonetheless, that relative to constant parameter specifications the Primiceri (2005) model 

shows marginal gains in some episodes prior to as well as during the Great Recession, but exhibits a steady deterioration in

forecast performance in its aftermath. The TVP-RW SINGLE model forecasts poorly for larger-scale models ( FA-VAR s and 

L-VAR s) during tranquil periods previous to the financial crisis, while performance slightly recovers in the middle of the 

Great Recession. A plausible explanation for this pattern might be that spurious movements in coefficients lead to overfit- 

ting, widening the predictive density of the TVP-RW SINGLE model. This feature is harming predictive accuracy in stable 

times, while it is to some extent helpful in times of turmoil (periods characterized by large outliers). In contrast to the

TVP-RW SINGLE the other three flexible TVP-RW variants forecast particularly well, suggesting that flexible state inno- 

vation volatilities greatly increase precision for TVP coefficients. In particular for FA-VAR s these models show improved 

forecast accuracy after the Great Recession. 

7. Closing remarks 

It is empirically well documented that macroeconomic time series feature instabilities in the parameters and innovation 

volatilities. In the literature there is strong agreement that stochastic volatility is important, while, especially in larger-scale 

models, there is less consensus for time-varying coefficients. With increasing amount of information overall time-variation in 

parameters tends to reduce, but might be still present at few points in time for some parameters. Detecting such occasional

changes is challenging and requires highly flexible modeling techniques. To achieve such flexibility we introduce mixture 

priors on the time-varying part of the parameters. By additionally using hierarchical shrinkage priors on dynamic state 

variances, these methods are capable in imposing dynamic sparsity, as well as capturing a wide range of parameter changes. 

In a simulation study we show that our methods detect both sudden and gradual changes in parameters. In an empirical

exercise we find that some coefficients tend to change abruptly in times of turmoil. Moreover, all proposed approaches 

forecast well. Even for large VARs flexible mixture priors improve forecast accuracy upon a wide range of benchmarks, 

suggesting that capturing these infrequent instabilities pays off. 
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Appendix A. Technical appendix 

A1. Stochastic volatility specification 

A stochastic volatility specifications assumes that h t = log (σ 2 
t ) follows an AR(1)-process: 

h t = μh + φh (h t−1 − μh ) + ϑ t , ϑ t ∼ N (0 , ψ h ) . (A.1) 

Following Kastner and Frühwirth-Schnatter (2014) , we assume Gaussian priors on the initial state h 0 ∼ N 

(
μh , 

ψ h 

1 −φ2 
h 

)
and the 

unconditional mean μh ∼ N (0 , 100) , a Beta prior on the autoregressive parameter 
ψ h +1 

2 ∼ B(25 , 1 . 5) and a Gamma prior on

the state variance ψ h ∼ G(1 / 2 , 1 / 2) . This quite informative prior on ψ h pushes the specification towards a random walk. 

A2. The Normal-Gamma prior ( Griffin and Brown, 2010 ) 

Similar to Bitto and Frühwirth-Schnatter (2019) , we introduce class-specific global shrinkage parameters, differentiating 

between the constant part of the coefficients (labeled λa ) and regime-switching variances (labeled λψ 0 
and λψ 1 

, respec- 

tively). In the following, specify τ j | λ j ∼ G(� j , � j λ j / 2) and λ j ∼ G(ζ , ζ ) with λ j = λk and � j = � k if j ∈ P k for k = { a, ψ 0 , ψ 1 } .
P k denotes a classifier (i.e. defines the set of coefficients belonging to the k th group). In the following, 

P a = 

{
j : ˆ α j ∈ α0 

}
, P ψ 0 

= 

{
j : ˆ α j ∈ 

{ √ 

ψ̄ i 0 

} K 

i =1 

}
, and P ψ 1 

= 

{
j : ˆ α j ∈ 

{ √ 

ψ̄ i 1 

} K 

i =1 

}
. 

Moreover, we learn the hyperparameter � k in a fully Bayesian fashion and specify ζ = 0 . 01 . 

A3. Detailed MCMC algorithm 

In this section, we provide details on each sampling step of the MCMC algorithm and on the full conditional posterior

distributions. After defining appropriate starting values, we iterate through the following steps 20,0 0 0 times and discard the 

first 10,0 0 0 draws as burn-in: 

1. The sampling steps (and conditional posteriors) for ˆ αt , λk , τ j , for k = { a, ψ 0 , ψ 1 } and j = 1 , . . . , 3 K and � k are of

standard form ( Griffin and Brown, 2010 ): 

(a) Draw 

ˆ α from a multivariate Gaussian distribution: 

ˆ α| y , ˆ X , �, { τ j } 3 K j=1 ∼ N 

(
ˆ α1 , ˆ V 1 

)
. 

Here, ˆ X is a T × 3 K-dimensional matrix with 

ˆ x 
′ 
t on the t th position and: 

ˆ V 

−1 

1 = 

(
( �−1 ˆ X ) ′ ( �−1 ˆ X ) + diag (τ−1 

1 , . . . , τ−1 
3 K ) 

)
, 

ˆ α1 = ̂

 V 1 

(
( �−1 ˆ X ) ′ ( �−1 

y ) 
)
. 

(b) Sample the local shrinkage scalings { τ j } 3 K j=1 
from a generalized inverse Gaussian (GIG) distribution ( Griffin and 

Brown, 2010 ): 

τ j | ̂  α j , λ j , � j ∼ GIG 

(
� j −

1 

2 

, � j λ j , ˆ α
2 
j 

)
, for j = { 1 , . . . , 3 K} . 

Here, the GIG (a, b, c) is parameterized as p(x ) ∝ x a −1 exp {−(bx + c/x ) / 2 } , λ j = λk and � j = � k if j ∈ P k with k =
{ a, ψ 0 , ψ 1 } . 

(c) Sample the associated global shrinkage parameter λk , for k = { a, ψ 0 , ψ 1 } , from a Gamma distribution distribution: 

λk |{ τ j } j∈ P k , � k ∼ G 

( 

ζ + � k p k , ζ + 

� k 

2 

∑ 

j∈ P k 
τ j 

) 

with p k denoting the cardinality of the set P k (see Appendix A.2 ). 

(d) The hyperparameter � k , for k = { a, ψ 0 , ψ 1 } , are updated with a random walk Metropolis Hastings (MH) step. We

refer to Bitto and Frühwirth-Schnatter (2019) for details. 

2. Draw the normalized latent states ˜ α from a ν-dimensional Gaussian distribution by exploiting the static representa- 

tion (see Section 4 ). 

3. Draw time-varying volatilities � using the R package stochvol ( Kastner, 2016 ). 

4. Update binary indicators in S t , depending on its law of motion. We recast state equation back in the centered param-

eterization and evaluate the following regime-switching specification: 

αt = 

{
α0 + γ t + φ̄0 ( αt−1 − α0 ) + ς t , ς t ∼ N ( 0 , �̄0 ) if s t = 0 , 

α0 + γ t + φ̄1 ( αt−1 − α0 ) + ς t , ς t ∼ N ( 0 , �̄1 ) if s t = 1 , 
(A.2) 

with φ̄0 = 0 K×K , φ̄1 = I K and γ t = 0 K×1 for the TVP-MIX model. For the TVP-POOL model we set φ̄0 = φ̄1 = 0 K×K . 
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• s t follows a first-order MS process ( MS ): 
(a) Conditional on the other parameters in Equation A.2 , we follow Kim and Nelson (1999) and sample { s t } T t=1 

using standard algorithms. 

(b) Conditional on { s t } T t=1 
we update transition probabilities by sampling p 00 ∼ B(T 00 + c 00 , T 01 + c 10 ) and p 11 ∼

B(T 11 + c 01 , T 10 + c 11 ) both from a Beta distribution with T kl , denoting the number of transitions from the k th 

to the l th regime. 

• Covariate-specific indicators with { s it } K i =1 
independent over time ( MIX ): 

(a) Conditional on the other parameters in Equation A.2 we evaluate both regimes in Equation A.2 and sample 

s it for each period and covariate independently from a Bernoulli distribution. 

(b) Conditional on { s it } T t=1 
we are able to update the success probability for each covariate by sampling from a

Beta distribution p i ∼ B(T i, 0 + c i, 0 , T i, 1 + c i, 1 ) , for i = { 1 , . . . , K} , with T i,k denoting the number of periods in

the k th regime. 

5. For the specification with a hierarchical prior on 

˜ γ t and φ1 = φ0 = 0 K×K , we need five additional sampling steps 

(details can be found in Malsiner-Walli et al. (2016) and Hauzenberger et al. (2019) ): 

(a) Draw mixture weights ω from a Dirichlet distribution: 

ω | θ, ξ ∼ D ir (ξ1 , . . . , ξN ) , 

with θ = (θ1 , . . . , θT ) 
′ and ξn = ξ + T n , where T n denotes the number of periods assigned to group n . 

(b) Update the hyperparemter ξ with random walk Metropolis-Hastings step (for details, see Malsiner-Walli et al., 

2016 ). 

(c) Sample group indicators θt ∈ { 1 , . . . , N} for each 

˜ αt from a Multinomial distribution: 

P (θt = n | ω n , ˜ μn ) ∝ ω n f N ( ̃  αt | ̃  μn , I K ) , for n = { 1 , . . . , N} . 
(d) The full conditional posterior of ˜ μ = vec ( ̃  μ1 , . . . , ˜ μN ) follows a multivariate Gaussian distribution: 

˜ μ| 
0 , θ ∼ N ( c 1 , 
1 ) , 

with θ = (θ1 , . . . , θT ) 
′ and: 


1 = 

(
I K � �′ � + I N � 
−1 

0 

)−1 
, 

c 1 = 
1 

(
vec ( �′ ˜ A ) 

)
. 

Here, � denotes a T × N matrix with (t, n ) th element given by I(θt = n ) , where I(•) refers to the indicator

function and 

˜ A collects ˜ α in a T × K matrix. 

(e) Sample shrinkage parameters { l j } K j=1 
from a GIG distribution: 

l j | R , { ̃  μn } N n =1 ∼ GIG 

( 

e 0 − N 

2 

, 2 e 1 , 

∑ N 
n =1 ˜ μ2 

jn 

r j 

) 

. 

with ˜ μ jn , for n = { 1 , . . . , N} , denoting the j th element of ˜ μn . 

A4. The spectral decomposition 

To obtain a time-varying low-frequency measure between two endogenous variable, we follow Sargent and Surico 

(2011) and Kliem et al. (2016) . We therfore recast a TVP-VAR model in its companion form: 

Y t = J Z t 

Z t = F t Z t−1 + E t , E t ∼ N ( 0 , ϒt ) 

In the following, the spectral density of Y t at the very low frequency ρ = 0 is given by: 

�t (ρ = 0) = J 
(
I mp+1 − F t ) ϒt ( I mp+1 − F ′ t ) −1 

)
J ′ . 

For ρ = 0 the low-frequency relationship πi j,t between two variables (Y it , Y jt ) ∈ Y t can be derived with: 

πi j,t = 

�i j,t (ρ = 0) 

� j j,t (ρ = 0) 

with �i j,t denoting the (i, j) th element in �t . 
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Appendix B. Additional forecasting results 

Table B1 

Density forecast performance (CRPS ratios) relative to the benchmark ( const (Min.) ). The red shaded row denotes the benchmark (and its CRPS values). Asterisks indicate statistical significance for 

each model relative to const (Min.) at the 1 ( ∗∗∗), 5 ( ∗∗) and 10 ( ∗) percent significance levels. 

Specification 1-quarter-ahead 1-year-ahead 2-years-ahead 

Class Subclass TOT GDPC1 CPIAUCSL UNRATE FEDFUNDS TOT GDPC1 CPIAUCSL UNRATE FEDFUNDS TOT GDPC1 CPIAUCSL UNRATE FEDFUNDS 

FA-VAR 

const. (Min.) 0.92 0.85 0.97 0.89 1.10 0.90 ∗∗ 0.85 ∗∗ 1.02 0.81 0.94 0.88 ∗∗ 0.98 0.97 0.87 0.71 ∗∗∗

const. (NG) 0.90 ∗∗ 0.82 ∗∗ 0.97 0.89 1.04 0.89 ∗∗ 0.84 ∗∗ 1.00 0.82 0.89 0.88 ∗∗ 0.97 0.97 0.87 0.72 ∗∗

TVP-MIX FLEX MIX 0.89 ∗∗∗ 0.82 ∗∗ 0.96 0.89 0.85 ∗ 0.91 ∗∗ 0.89 0.98 0.86 0.88 0.97 0.95 1.03 0.99 0.89 

FLEX MS 0.90 ∗∗ 0.84 ∗ 0.97 0.85 0.88 0.91 ∗ 0.89 ∗ 1.02 0.82 0.85 0.95 1.00 1.00 0.94 0.87 

SINGLE 0.90 ∗∗ 0.84 ∗ 0.98 0.88 0.80 ∗∗ 0.90 ∗∗ 0.88 ∗∗ 1.01 0.83 0.79 ∗∗ 0.96 0.98 1.04 0.96 0.82 

SSVS MIX 0.89 ∗∗ 0.83 ∗ 0.97 0.88 0.92 0.91 ∗∗ 0.88 ∗∗ 1.01 0.83 0.88 0.95 0.97 1.05 0.90 0.89 

TVP-POOL FLEX MIX 0.88 ∗∗ 0.80 ∗∗ 0.97 0.86 0.95 0.87 ∗∗ 0.81 ∗∗ 1.00 0.79 0.85 0.86 ∗ 0.94 ∗ 0.97 0.82 0.70 ∗∗

FLEX MS 0.88 ∗∗∗ 0.80 ∗∗ 0.96 0.86 0.95 0.87 ∗∗ 0.81 ∗∗∗ 0.99 0.79 0.86 0.85 ∗ 0.94 ∗ 0.95 0.82 0.71 ∗∗

SINGLE 0.88 ∗∗∗ 0.80 ∗∗ 0.95 ∗ 0.86 0.95 0.87 ∗∗ 0.81 ∗∗∗ 1.00 0.79 0.85 0.85 ∗ 0.93 ∗∗ 0.96 0.81 0.70 ∗∗

SSVS MIX 0.89 ∗∗ 0.82 ∗∗ 0.97 0.86 0.95 0.87 ∗∗ 0.81 ∗∗ 0.99 0.79 0.87 0.86 ∗ 0.95 ∗ 0.96 0.82 0.70 ∗∗

TVP-RW FLEX MIX 0.89 ∗∗ 0.85 ∗ 0.95 0.85 0.82 ∗∗ 0.87 ∗ 0.87 ∗∗ 0.99 0.78 0.75 ∗∗ 0.92 1.04 0.97 0.90 0.74 

FLEX MS 0.89 ∗∗ 0.83 ∗∗ 0.96 0.88 0.85 0.90 ∗ 0.88 ∗ 1.01 0.82 0.81 ∗∗ 0.95 1.03 0.99 0.95 0.81 

SINGLE 0.91 ∗∗ 0.84 ∗ 1.00 0.89 0.87 0.97 0.94 1.02 0.95 0.98 1.06 1.00 1.09 1.16 ∗ 0.98 

SSVS MIX 0.90 ∗∗ 0.85 ∗ 0.97 0.88 0.79 ∗∗ 0.89 ∗ 0.90 0.98 0.85 0.75 ∗∗ 0.95 1.03 0.98 0.97 0.78 

L-VAR 

const. (Min.) 0.94 0.87 1.03 0.83 1.10 0.90 ∗∗ 0.95 ∗ 0.95 ∗∗∗ 0.79 0.87 0.94 ∗∗ 1.03 0.95 0.94 0.83 ∗∗∗

const. (NG) 0.89 ∗∗ 0.82 ∗∗∗ 0.97 0.81 0.99 0.85 ∗∗∗ 0.89 ∗∗ 0.90 ∗∗∗ 0.74 0.84 0.88 ∗∗ 0.99 0.91 0.87 0.76 ∗∗

TVP-MIX FLEX MIX 0.97 0.87 1.08 0.81 1.17 0.92 ∗ 0.89 1.04 0.79 0.95 1.00 1.06 1.09 0.91 0.95 

FLEX MS 0.97 0.88 1.07 0.84 1.10 0.96 0.95 1.06 0.81 1.00 1.44 1.75 1.79 1.05 1.24 

SINGLE 0.92 0.85 ∗∗ 1.02 0.83 0.88 0.90 ∗ 0.88 ∗ 1.00 0.81 0.86 ∗ 0.96 1.04 1.02 0.91 0.88 

SSVS MIX 0.91 0.88 0.97 0.82 0.92 0.90 ∗ 0.89 1.01 0.78 0.88 0.97 1.03 1.05 0.90 0.91 

TVP-POOL FLEX MIX 0.87 ∗∗∗ 0.80 ∗∗∗ 0.97 0.78 ∗ 0.79 ∗∗∗ 0.85 ∗∗ 0.88 ∗ 0.95 0.73 0.77 ∗∗ 0.89 1.00 0.98 0.83 0.75 ∗∗

FLEX MS 0.86 ∗∗∗ 0.80 ∗∗∗ 0.95 0.77 ∗ 0.83 ∗ 0.85 ∗∗ 0.87 ∗∗ 0.94 0.72 0.78 ∗∗ 0.88 0.99 0.98 0.82 0.74 ∗∗

SINGLE 0.87 ∗∗∗ 0.80 ∗∗∗ 0.96 0.77 ∗ 0.85 0.84 ∗∗ 0.86 ∗∗ 0.94 0.72 0.77 ∗∗∗ 0.88 ∗ 0.99 0.97 0.82 0.75 ∗∗

SSVS MIX 0.87 ∗∗∗ 0.81 ∗∗∗ 0.96 0.77 ∗ 0.85 0.84 ∗∗ 0.87 ∗∗ 0.94 0.72 0.76 ∗∗ 0.88 1.00 0.97 0.82 0.74 ∗∗

TVP-RW FLEX MIX 0.93 0.89 0.98 0.83 0.93 0.90 ∗ 0.91 0.97 0.82 0.85 ∗ 0.97 1.09 1.02 0.93 0.86 

FLEX MS 0.93 0.89 1.00 0.83 0.89 0.92 ∗ 0.90 0.99 0.84 0.92 0.99 1.07 1.02 0.95 0.94 

SINGLE 1.03 0.92 1.17 0.85 1.14 0.97 0.93 1.03 0.85 1.10 1.05 1.12 1.04 1.01 1.04 

SSVS MIX 0.92 0.89 0.97 0.84 0.95 0.91 ∗ 0.90 0.97 0.84 0.92 0.99 1.04 1.00 0.96 0.94 

S-VAR 

const. (Min.) 0.24 0.44 0.41 0.07 0.05 0.38 0.54 0.44 0.31 0.22 0.49 0.48 0.46 0.58 0.44 

const. (NG) 0.98 ∗∗ 0.98 ∗ 0.99 1.00 1.00 0.96 ∗∗ 0.94 ∗∗ 0.97 ∗∗ 0.96 ∗∗ 0.96 0.97 0.99 0.96 0.96 ∗∗ 0.95 

TVP-MIX FLEX MIX 0.92 ∗∗∗ 0.92 ∗∗ 0.91 ∗ 0.96 0.88 ∗∗∗ 0.90 0.84 ∗ 0.94 0.93 0.90 0.95 0.93 0.97 0.98 0.91 

FLEX MS 0.95 ∗ 0.96 0.96 0.94 0.92 ∗ 0.95 0.92 ∗ 0.98 0.93 0.98 0.98 1.01 1.00 0.95 0.97 

SINGLE 0.96 ∗ 0.96 0.96 0.99 0.85 ∗∗ 0.93 0.90 ∗ 0.95 0.97 0.93 0.98 1.00 0.99 0.99 0.92 

SSVS MIX 0.94 ∗∗∗ 0.95 0.92 ∗∗ 0.99 0.90 ∗∗∗ 0.91 ∗ 0.87 ∗ 0.95 0.93 0.90 0.96 0.98 0.98 0.96 0.91 

TVP-POOL FLEX MIX 0.97 ∗∗∗ 0.97 ∗∗ 0.98 0.98 0.95 ∗∗∗ 0.95 ∗∗ 0.94 ∗∗ 0.98 ∗ 0.94 0.92 ∗ 0.94 0.99 0.95 0.92 0.91 

FLEX MS 0.98 ∗∗∗ 0.97 ∗∗ 0.99 0.97 ∗ 0.95 ∗∗ 0.94 ∗∗ 0.94 ∗∗ 0.98 ∗∗ 0.93 0.92 ∗ 0.94 1.00 0.96 0.92 0.90 

SINGLE 0.97 ∗∗∗ 0.97 ∗∗ 0.98 0.97 0.95 ∗∗ 0.95 ∗∗ 0.93 ∗∗ 0.99 0.94 0.92 0.94 0.99 0.95 0.92 0.90 

SSVS MIX 0.97 ∗∗∗ 0.97 ∗ 0.98 0.97 ∗ 0.95 ∗∗∗ 0.95 ∗∗ 0.93 ∗∗ 0.98 ∗ 0.94 0.93 0.94 0.99 0.95 0.92 0.91 

TVP-RW FLEX MIX 0.96 ∗∗∗ 0.96 0.95 1.00 0.90 ∗∗∗ 0.93 ∗ 0.93 0.92 ∗ 0.97 0.91 0.96 1.01 0.93 0.98 0.92 

FLEX MS 0.97 0.98 0.97 0.99 0.89 ∗∗ 0.94 0.91 ∗ 0.95 0.98 0.96 2.26 3.86 2.30 1.62 1.31 

SINGLE 0.95 ∗ 0.91 ∗ 0.99 0.97 0.84 ∗∗∗ 0.91 0.82 ∗ 0.96 1.00 0.88 0.96 0.92 0.99 1.07 0.84 

SSVS MIX 0.97 0.99 0.95 1.01 0.88 ∗∗ 0.94 0.91 0.93 1.01 0.93 0.98 1.01 0.95 1.03 0.93 

Primiceri (2005) 0.96 0.98 0.94 0.97 1.04 0.90 ∗ 0.88 ∗ 0.89 ∗ 0.96 0.93 0.94 0.96 0.90 1.00 0.91 

1
0
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Fig. B.1. Evolution of one- and two-years-ahead total cumulative LPBFs relative to the benchmark. The gray dashed lines refer to the maximum/minimum 

Bayes factor over the full hold-out sample. The light gray shaded areas indicate the NBER recessions in the US. 

 

 

 

Appendix C. Data 

In this section we provide further details on the variable used for the large-scale VAR ( L-VAR ). Table C.1 lists the exact

description and provides further information on the transformation of the indicators. The gray shaded rows denote our 

target variables. 

For the factor-augmented VAR ( FA-VAR ) we consider the full data set, compromising 165 variables. For brevity we re-

fer to McCracken and Ng (2016) for a detailed description and transformation codes. All variables, serving as a basis for

the principal components, are transformed to stationarity as suggested in McCracken and Ng (2016) . Finally, we standard- 

ise the data by demeaning each variable and dividing through the standard deviation. Especially for principal components 

standardising is important due to the scale variance of the components. 
106 



N. Hauzenberger Econometrics and Statistics 20 (2021) 87–108 

Table C1 

Data for the US is obtained from the FRED data base of the Federal Reserve of St. Louis. The column Transformation shows the 

transformation applied to each variable. Following McCracken and Ng (2016) , (1) implies no transformation, (5) denotes growth rates, 

defined as log first differences log 
(

x t 
x t−1 

)
and (7) denotes differences in percentage changes with �

(
x t −x t−1 

x t−1 

)
. All variables are standardized 

by subtracting the mean and dividing by the standard deviation. 

FRED.Mnemonic Description Transformation 

GDPC1 Real Gross Domestic Product 5 

PCECC96 Real Personal Consumption Expenditures 5 

FPIx Real private fixed investment 5 

GCEC1 Real Government Consumption Expenditures and Gross Investment 5 

INDPRO IP:Total index Industrial Production Index (Index 2012 = 100) 5 

CE16OV Civilian Employment (Thousands of Persons) 5 

UNRATE Civilian Unemployment Rate (Percent) 1 

CES0600000007 Average Weekly Hours of Production and Nonsupervisory Employees: Goods-Producing 1 

HOUST Housing Starts: Total: New Privately Owned Housing Units Started 5 

PERMIT New Private Housing Units Authorized by Building Permits 5 

PCECTPI Personal Consumption Expenditures: Chain-type Price Index 5 

GDPCTPI Gross Domestic Product: Chain-type Price Index 5 

CPIAUCSL Consumer Price Index for All Urban Consumers: All Items 5 

CES0600000008 Average Hourly Earnings of Production and Nonsupervisory Employees 5 

FEDFUNDS Effective Federal Funds Rate (Percent) 1 

GS1 1-Year Treasury Constant Maturity Rate (Percent) 1 

GS10 10-Year Treasury Constant Maturity Rate (Percent) 1 

TOTRESNS Total Reserves of Depository Institutions 5 

NONBORRES Reserves Of Depository Institutions, Nonborrowed 7 

S.P.500 S & P’s Common Stock Price Index: Composite 5 
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