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Abstract—The objective of augmented reality (AR) is to add
digital content to natural images and videos to create an
interactive experience between the user and the environment.
Scene analysis and object recognition play a crucial role in
AR, as they must be performed quickly and accurately. In this
study, a new approach is proposed that involves using oriented
bounding boxes with a detection and recognition deep network
to improve performance and processing time. The approach is
evaluated using two datasets: a real image dataset (DOTA dataset)
commonly used for computer vision tasks, and a synthetic dataset
that simulates different environmental, lighting, and acquisition
conditions. The focus of the evaluation is on small objects, which
are difficult to detect and recognise. The results indicate that the
proposed approach tends to produce better Average Precision
and greater accuracy for small objects in most of the tested
conditions.

Index Terms—artificial intelligence, augmented reality,
oriented-bounding boxes, synthetic dataset

I. INTRODUCTION

By projecting digital material, such as text, images, videos,
or 3D models [4] over actual environments in real-time util-
ising the camera view, augmented reality (AR) apps enable
users to engage with their surroundings. [26] The experience
of the real world is so improved. The need for human-digital
interaction via Mixed Reality (XR) headsets and new 3D
interactive displays has surged as a result of developments
in computer systems, high-speed connectivity, and computer
vision technologies. The quick advancement of AR technol-
ogy has made it possible for it to be used in a variety of
fields, including restoration, education, behaviour and motion
analysis [2], [3], [5], [6], archaeology, art, tourism, commerce,
healthcare, etc. [14], [29]

It is essential for immersive technologies to analyse the
environment around them in order to extract pertinent infor-
mation. Scene analysis and comprehension, for instance, are

crucial for autonomous vehicle decision-making and end-to-
end vision control [20], comprising tasks like vehicle iden-
tification, traffic sign and light recognition, and pedestrian
detection. Once this data has been rendered, the augmented
environment can be seen visually on the vehicle’s display. The
process of extracting this information may be improved by
the use of oriented bounding boxes. Furthermore, the scene
analysis would benefit from the synthetic dataset created to
represent particular environmental conditions.

The development of more effective object identification
techniques as a result of recent developments in computer
vision has increased computational efficiency and decreased
processing time [31], which is crucial for the object detection
task [25]. Complex computer vision algorithms are used by
object recognition-based AR technology to recognise and track
items in the real environment. These include the You Only
Look Once (YOLO) model [1], homomorphic filtering and
Haar markers [12], and the Single Shot Detector [9]. Faster
and more precise object recognition has been achieved by
the combination of Convolutional Neural Networks (CNNs)
and Deep Learning (DL) [30]. The object detection process
can still face difficulties due to small or distant objects or
insufficient camera quality, which can also have an impact on
the overall AR experience.

The goal of this work was to suggest a novel method that
improves item recognition and prediction by using oriented
bounding boxes instead of traditional axis-aligned bounding
boxes. The network’s YOLO series architecture was used in
its construction with the goal of enhancing performance while
lowering computational expense. The study’s main accom-
plishments included: a) a method to deal with the problem
of strong deviation angle loss and a quicker method for multi-
scale feature fusion; b) a thorough comparison of performance



under different environmental conditions that affect AR de-
vices; and c) the development of a new dataset containing
synthetic objects under various conditions, which was used
to evaluate performance impartially across various sensor and
environmental parameters.

When the suggested method is compared to the standard
two-stage and single-stage procedures, the results consistently
show a positive trend, suggesting improved performance.
Furthermore, during a more in-depth fine-tuning process, the
model produced even better results across the majority of the
experiments performed. This shows that the new method has
the ability to successfully solve the shortcomings of prior
approaches while also providing more accurate and reliable
item identification and recognition in a variety of applications.
The model’s capacity to adapt to varied settings and tackle
complicated tasks accounts for the improved performance,
making it a potential alternative for future research and real-
world applications.

The paper is structured as follows: In section 1, the problem
and relevant technologies are introduced. Section 2 provides a
review of related research. The proposed end-to-end architec-
ture is detailed in section 3. Section 4 showcases the results
using both a real image dataset (DOTA) and a new synthetic
image dataset. An ablation study is described in section 5.
Finally, the conclusion is presented in section 6.

II. LITERATURE REVIEW

An AR app identifies objects in the real world using
machine learning and computer vision techniques with the goal
of overlaying virtual objects in real-time. In recent years, the
use of deep CNNs [15] has greatly enhanced the performance
and accuracy of object detection and recognition in computer
vision. In 2014, Girishick et al. introduced the Regions with
CNN features (RCNN) method for object detection [11].
This approach involved first identifying potential object boxes
through selective search and then rescaling each box to a fixed-
size image for input into a CNN model trained on AlexNet
[27] for feature extraction. The object was then detected using
a linear SVM classifier, resulting in a significant improvement
in mean Average Precision compared to previous methods, but
also had a significant drawback of slow detection speed.

He et. al. introduced the Spatial Pyramid Pooling Network
(SPPNet) to resolve the slow detection speed problem [13].
The network uses a Spatial Pyramid Pooling (SPP) layer
to generate a fixed-length representation that is invariant to
image size and scale, which reduces overfitting and allows
the network to handle images of varying sizes during training.
With object detection, the feature maps are calculated only
once for the entire image, and then the features in sub-regions
are pooled to generate fixed-length representations for detector
training. During testing, this method is 24-102 times faster
than the RCNN approach.

In 2015, Girishick improved the previous two architectures
with Fast RCNN [10]. This network trains both a detector
and a bounding box regression simultaneously with the same
configuration. However, the speed limitation persisted. The

Fig. 1. An abstract of the FRRCNN architecture.

same year, Ren et al. introduced the Faster RCNN detector
[24], which was the first deep learning detector to almost
achieve real-time detection through end-to-end training. This
architecture employed the Region Proposal Network (RPN)
to speed up the detection process, and several variants have
been proposed since then to reduce computational redundancy
[8], [16], [17]. In particular, Cao et al. (2020) [7] introduced
the D2Det method based on the Faster R-CNN framework,
which processes Region of Interest (ROI) features through
two stages: high-density local regression and discriminant
ROI pooling. The method replaces the Faster RCNN offset
regression with a local dense regression block.

The above methods were classified as two-stage detectors
because of their two-step procedure: first generating regions of
interest (ROIs) and then performing detection and recognition.
In 2016, Joseph et al. proposed a one-stage detector named
You Only Look Once (YOLO) [21]. This method uses a
single network that processes the entire image in one step,
resulting in faster processing times. The image is divided
into regions and the network predicts bounding boxes for
each region simultaneously. In the following years, YOLO v2
and v3 [22], [23] were proposed with the goal of improving
prediction accuracy. While YOLO was faster than the two-
stage methods, it resulted in lower localisation accuracy. To
address this, Liu et al. introduced the Single Shot MultiBox
Detector (SSD) [19], which utilized multi-reference and multi-



Fig. 2. An abstract of the YOLOv3 architecture.

resolution detection methods to detect objects at different
scales across different network layers. In 2018, Lin et al.
improved upon this by presenting RetinaNet [18], which added
a new loss function called ”focal loss.” This modification to
the standard cross-entropy loss caused the detector to be more
attentive to misclassified examples during training, leading to
improved accuracy compared to one-stage methods.

In this study, we propose a novel method for detecting
and recognising small objects in augmented reality settings.
Our approach involves modifying the YOLO architecture
by incorporating oriented bounding boxes. This modification
enhances the accuracy of detecting objects located at large
distances and at odd angles from the camera sensor of AR
glasses, while maintaining low processing time for real-time
application.

The DOTA dataset [28] is a collection of satellite images
produced by Google Earth, GF-2, JL-1, and CycloMedia. The
images represent distant objects position at random locations
and arbitrary rotation. Further, the dataset is annotated in a
specific format containing information about all four vertices
of a bounding box making it suitable for oriented-bounding
box prediction unlike more common format of a corner
position accompanied by width and height. The dataset mainly
consisted of RGB images with categories such as helicopter,
small vehicle, large vehicle, etc.

Further assessment was carried out using the Synthetic
dataset comprised of low-resolution images of various vehicles
in diverse environments and weather conditions. This dataset
consisted of images of different types of vehicles captured
in various environments and weather conditions. The images
were generated using a 3D rendering engine and organised
into four categories to evaluate the model’s specific properties,
including camera, light, weather, and sensor.

METHODOLOGY

This section provides an in-depth examination of the
methodology behind the proposed model, which integrates
the oriented bounding box feature to bolster its object de-
tection capabilities. The conversation centers on the YOLOv5

Fig. 3. An abstract of the YOLOv3 architecture.

model’s architecture, accentuating crucial distinctions between
YOLOv3 and YOLOv5. These differences include the adop-
tion of CSPDarknet53 as the backbone, the enhanced neck
utilizing the Path Aggregation Network (PANet), and the
inclusion of the oriented bounding boxes module to boost the
model’s overall performance.

The YOLO (You Only Look Once) models are a type
of computer vision model that are designed to detect and
classify objects within an image. They are built upon a custom
backbone architecture that is based on GoogLeNet, a popular
convolutional neural network (CNN) architecture. YOLO pro-
posed its own backbone network as a faster alternative to the
VGG-16 classifier. While VGG-16 is known for its accuracy
in object classification, it requires a significant amount of
computational power. Specifically, VGG-16 requires 30.69
billion floating point operations, making it slower when com-
pared to YOLO classifier. The YOLO alternative is Darknet-
19, which requires only 8.52 billion operations. Despite its
lower computational cost, Darknet-19 is still able to achieve
relatively high accuracy. Another important aspect, the YOLO
architecture was designed to infer information straight from
pixels to features in contrast to its competitor which utilised
the sliding window technique for the object detection task.

Darknet-53 is an improvement upon Darknet-19 that inte-
grates residual connections. Residual connections are a type
of shortcut that allow information to bypass certain layers of a
neural network. By integrating these connections, Darknet-53
is able to improve its performance on complex object detection
tasks. Overall, YOLO models are a promising approach to
object detection that balance accuracy and speed, and their
custom backbone architecture allows for flexibility in adapting
to different use cases. The advanced version of the single-
stage object detection model, You Only Look Once (YOLO),
employs a more sophisticated backbone known as CSPDark-
net53. This innovative backbone is built on the foundation of
the CSPNet strategy, which works by partitioning the feature
map of the base layer into separate components. Following



TABLE I
RESULTS OF THE MODEL ON THE SYNTHETIC DATASET.

category air (10 epochs) air (100 epochs) ground (10 epochs) ground (100 epochs)
camera 28.13 74.35 76.06 88.12

light 82.00 89.25 81.85 82.84
sensor 60.73 71.92 51.88 83.66

weather 23.57 44.11 26.21 20.37

TABLE II
RESULTS OF THE MODEL ON THE REAL DATASET.

category 10 epochs 100 epochs
real 70.28 76.51

Fig. 4. An abstract of the YOLOv5 with Oriented Bounding Boxes (OBB)
architecture.

this division, the parts are combined through a cross-stage
hierarchical process, enabling more efficient feature extraction.

In addition to the improved backbone, YOLO incorporates
the Path Aggregation Network (PANet) as its ”neck.” In our
case, the ”neck” is an intermediate component connecting the
backbone and the detection head. While the backbone extracts
feature maps from input images, the detection head carries
out object detection and classification. The neck acts as a
bridge, aggregating and fusing features from the backbone

before forwarding them to the detection head. In the context
of YOLO, the Path Aggregation Network (PANet) functions
as the model’s ”neck”.

This network serves as a Feature Pyramid Network (FPN)
containing a series of bottom-up and top-down layers that con-
tribute to more effective object detection. The PANet’s primary
function is to aggregate and fuse features at various scales,
which significantly enhances the model’s overall performance.
The architecture of this enhanced YOLO model establishes
a streamlined pipeline where CSPDarknet53 is responsible
for extracting feature maps, PANet performs feature fusion
across multiple scales, and the final layer typically handles
the prediction. This pipeline arrangement ensures a more
efficient and accurate object detection process. To further boost
performance and adapt the model to detect distant objects more
effectively, an oriented bounding box module has been inte-
grated. This specialized module allows the model to estimate
the orientation of objects in the scene, providing additional
context and improving detection accuracy for objects situated
far away or partially occluded.

In regression-based methods for object detection, various
representations of oriented bounding boxes can be employed.
One such representation uses a (x, y, w, h, θ) format, where
x, y denote the center of a prediction, (w, h) represent the
width and height, and (θ) is an angle that falls within the
range 0 ≤ (θ) ≤ 90. Another similar format also utilizes
(x, y, w, h, θ), but in this case, (θ) is an angle in the range
0 ≤ (θ) ≤ 180. A more distinct representation employs an
eight-parameter format, (x0, y0, x1, y1, x2, y2, x3, y3). In this
format, each pair of coordinates, xn, yn, corresponds to a
corner of the oriented bounding box, with n ranging from
0 to 3, such that 0 ≤ (θ) ≤ 3. This alternative representation
offers a different way to define oriented bounding boxes in the
context of regression-based object detection methods.

In the proposed architecture, the model has been modified
to approach the prediction of oriented bounding boxes as a
classification problem rather than employing the conventional
regression methods discussed earlier. To facilitate easier inte-
gration, this mechanism has been implemented as a standalone
module. By representing each angle of object rotation as a
distinct class or category, the model is able to treat the problem
as a classification task. However, when using the (x, y, w, h, θ)



format, where (θ) falls within the range 0 ≤ (θ) ≤ 90, the
categories corresponding to the edge angles (1 and 90 degrees)
tend to converge their losses, which is undesirable from a de-
tection standpoint. To address this issue and incorporate angle-
aware context into the regular classification loss, the Circular
Smooth Label (CSL) technique is employed. This approach
provides essential information for the model, enhancing the
accuracy of angle predictions and ultimately improving the
overall performance of the oriented bounding box detection.

The oriented bounding box module was incorporated into
the detector as an additional classification branch to improve
object detection, particularly for distant objects. To effectively
incorporate the context of angles into the training process, a
specialized loss function called Circular Smooth Label (CSL)
loss was introduced. The Circular Smooth Label loss function
is designed to tackle the challenges of angle estimation during
the training process. In conventional object detection models,
angle estimation can be problematic due to the periodic nature
of angles, where the difference between two angle values
might not be accurately represented using a linear scale.
The CSL loss function overcomes this issue by employing
a circular representation of angles, which preserves the true
angular difference between predictions and ground truth labels.

The CSL loss function not only enables better angle estima-
tion but also helps in mitigating the problem of abrupt changes
in gradient updates. The smoothness of the loss function
ensures that the model receives continuous gradient updates
during backpropagation, leading to a more stable and efficient
learning process. This, in turn, results in improved detection
accuracy for objects with varying orientations, especially those
situated at a distance or partially occluded. Generally, the
integration of the oriented bounding box module as an ad-
ditional classification branch and the implementation of the
Circular Smooth Label loss function significantly enhance the
model’s ability to account for object orientations. By providing
a better representation of angles and ensuring smooth gradient
updates, the CSL loss function contributes to a more robust
and accurate object detection process.

The model was fine-tuned running 10 epochs with a batch
size of 3 on a real data as well as synthetic data under four
different categories in the fist run, and 100 epochs with the
same batch size and under the same four different categories
in the second run. For detector component, learning rate was
set to 0.0032 with the SGD (Stochastic Gradient Descent)
optimisation.

The model was subjected to a fine-tuning process, which
involved training on both real and synthetic data to ensure
robust performance. This fine-tuning process was conducted in
two separate runs, each with a distinct number of epochs and
under four different categories to diversify the training data
and improve generalisation. In the first run, the model was
trained for a relatively short duration, encompassing only 10
epochs with a batch size of 3. This initial training phase aimed
to test the model with the real and synthetic data, allowing it
to learn basic patterns and features across the four categories.
The limited number of epochs in the first run ensured that the

model would not overfit to the training data, providing a solid
foundation for further fine-tuning.

For the second run, the training process was extended to
100 epochs, with the batch size maintained at 3 with regards to
the hardware constraints. This longer training period allowed
the model to delve deeper into the nuances of the real and
synthetic data, learning more complex features and relation-
ships across the four categories. The extended duration of the
second run enabled the model to refine its predictions, thereby
enhancing its overall performance and accuracy. Regarding the
detector component, a learning rate of 0.0032 was chosen
to strike a balance between the speed of convergence and
the stability of the training process. To optimise the model’s
weights, the Stochastic Gradient Descent (SGD) algorithm
was employed, a popular optimisation technique known for
its effectiveness in deep learning applications. By using SGD,
the model was able to navigate the complex optimisation
landscape efficiently, ultimately converging to a solution that
achieved a high degree of detection accuracy.

RESULTS

In this work, a novel approach was proposed to tackle the
task of object recognition and scene analysis. The effectiveness
of this method was evaluated through a comparison with state-
of-the-art approaches using the DOTA dataset [28] and a
synthetic dataset that encompasses a range of environmental
conditions affecting image quality. These images depict distant
objects positioned at random locations and rotations. Addition-
ally, the DOTA dataset is annotated in a unique format that
includes information about all four vertices of a bounding box,
making it ideal for oriented-bounding box prediction, unlike
more common formats that only provide corner positions along
with width and height. The dataset is composed primarily
of RGB images and features categories such as helicopters,
small vehicles, and large vehicles, among others. The mean
Average Precision was introduced in 2014 from Lin at al. [35]
to describe the performance of the object detection based on
a user-defined set of criteria. It was defined as the mean value
of the average precision of the individual class

mAP =
1

n

n∑
k=1

APk

where AP is the Average Precision of the class k and n is
the number of classes.

Table II presents the results of the model on the Real dataset,
comparing the performance after 10 epochs and 100 epochs
of training. The table highlights the improvement in detection
accuracy as a result of the extended training duration. For
the Real dataset, the model achieved a detection accuracy of
70.28% after 10 epochs of training. This initial result indicates
that the model was able to learn basic patterns and features
within the data during the first run of the fine-tuning process.
However, when the training was extended to 100 epochs,
the model’s detection accuracy increased to 76.51%. This
improvement demonstrates the benefits of the longer training



TABLE III
RESULTS WITH AND WITHOUT WEATHER RAIN IN THE SYNTHETIC DATASET USING MODELS TRAINED FOR 10 & 100 EPOCHS.

Epochs Subset rain no rain
10 Air 48.84% 58.11%
100 Air 80.72% 77.77%
10 Ground 56.28% 43.73%
100 Ground 85.97% 85.33%

TABLE IV
RESULTS FOR FOUR DIFFERENT CAMERA DISTANCES IN THE AIR SYNTHETIC DATASET USING MODELS TRAINED FOR 10 & 100 EPOCHS.

Epochs 70m 163m 256m 350m
10 36.82% 35.98% 48.39% 22.81%
100 86.35% 81.45% 81.55% 81.87%

TABLE V
RESULTS FOR FOUR DIFFERENT CAMERA DISTANCES IN THE GROUND SYNTHETIC DATASET USING MODELS TRAINED FOR 10 & 100 EPOCHS.

Epochs 15m 35m 55m 75m
10 31.36% 66.26% 82.19% 73.84%
100 97.49% 92.17% 87.57% 83.65%

period, as the model was able to learn more complex features
and relationships across the dataset. The result also suggests
that the fine-tuning process was successful in enhancing the
model’s performance on the Real dataset.

Further evaluation had been carried out using the Synthetic
dataset. This dataset consisted out of images of various ve-
hicles in different environments and weather conditions. The
dataset was generated with a 3D rendering engine. Subsets
of images were selected from the main dataset obtaining four
different categories organised in a way to evaluate the model
on specific properties: a) Camera, b) Light, c) Weather d)
Sensor. The “Camera” category represented images generated
with different camera angles and distances from the objects.
The “Light” category contained images generated using vari-
able balanced lighting parameters. The “Weather” category
represented images generated using different balanced weather
parameters, including varying rain and wind conditions. The
“Sensor” category defined different night and thermal vision.
The performances of the proposed framework in terms of mAP
are shown in Table 3 and Figure 7 for all the four categories.

In conclusion, the results presented in Table II show that
the model’s performance on the Real dataset improved con-
siderably with the extended training duration. The increase
in detection accuracy from 70.28% to 76.51% highlights the
effectiveness of the fine-tuning process in refining the model’s
predictions and overall performance.

Table I presents the results of the model on the Synthetic
dataset, showcasing the performance after 10 epochs and 100
epochs of training for both air and ground categories. The
table highlights the improvement in detection accuracy for
most categories as a result of the extended training duration.

For the air category, the model demonstrated significant
improvements in detection accuracy across all subcategories
when comparing the results after 10 epochs and 100 epochs
of training. The detection accuracy for the camera subcategory

increased from 28.13% to 74.35%, for the light subcategory
from 82.00% to 89.25%, for the sensor subcategory from
60.73% to 71.92%, and for the weather subcategory from
23.57% to 44.11%. These improvements indicate that the
model was able to learn more intricate features and relation-
ships within the Synthetic dataset during the extended training
period, enhancing its overall performance.

Similarly, in the ground category, the model exhibited im-
proved detection accuracy for three out of four subcategories
after 100 epochs of training. The detection accuracy for the
camera subcategory increased from 76.06% to 88.12%, for
the light subcategory from 81.85% to 82.84%, and for the
sensor subcategory from 51.88% to 83.66%. However, the
weather subcategory experienced a slight decrease in detection
accuracy, dropping from 26.21% after 10 epochs to 20.37%
after 100 epochs. This decline might indicate overfitting or the
presence of challenging samples in the weather subcategory.

The results presented in Table I demonstrate that the model’s
performance on the Synthetic dataset improved considerably
for most subcategories with the extended training duration.
While the weather subcategory in the ground category exhib-
ited a decline in detection accuracy, the overall trend suggests
that the fine-tuning process was successful in refining the
model’s predictions and enhancing its performance across the
Synthetic dataset. As could be grasped from the aforemen-
tioned results, the Ground dataset didn’t produce a dramatic
increase in performance when comparing to the Air dataset.
However, the Ground dataset had higher results in the initial
training. The reason could be the original dataset used during
the training which would commonly be biased towards cars.

As depicted in the table I and II, the new method presents
some performance improvement, in comparison with the
previous state-of-the-art solutions. Furthermore, overall trend
points out that even after further fine-tuning the model still
kept improving and outperformed itself in the most of the



experiments.

ABLATION STUDY

Table III presents the results of an ablation study performed
on the Synthetic dataset, comparing the model’s performance
when trained for 10 and 100 epochs under two different
conditions: rain and no rain. The table illustrates the impact
of weather conditions on the model’s detection accuracy for
both air and ground subsets.

In the air subset, the model’s detection accuracy was higher
in the presence of rain compared to no rain for both 10 and
100 epochs of training with an exception of the top row, Table
III. Where after 10 epochs, the detection accuracy was 48.84%
with rain and 58.11% without rain. However, after 100 epochs,
the model exhibited improved performance and the trend has
flipped, with the detection accuracy increasing to 80.72% with
rain and 77.77% without rain. This suggests that the extended
training duration allowed the model to better adapt to the chal-
lenges posed by the rain condition. Similarly, for the ground
subset, the model showed higher detection accuracy with rain
(56.28%) compared to without rain (43.73%) after 10 epochs
of training. After 100 epochs, the detection accuracy improved
substantially, reaching 85.97% with rain and 85.33% without
rain. This indicates that the model was able to learn more
complex features related to weather conditions and achieve
better performance in the presence of rain after extended
training. Moreover, the rain and no rain results seemed to reach
a near parity.

Overall, Table III demonstrates that the model’s perfor-
mance on the Synthetic dataset is affected by weather con-
ditions, particularly rain. Furthermore, absence of rain doesn’t
always guarantee better performance because there are cases
where the model performs better with the rain condition. The
results show that extending the training duration from 10
to 100 epochs led to a significant improvement in detection
accuracy for both air and ground subsets under both rain and
no rain conditions. This suggests that the fine-tuning process
was successful in enabling the model to adapt to varying
conditions, ultimately enhancing its overall performance.

Continuing to the Synthetic dataset, Table IV presents the
results of an ablation study performed on the Air Synthetic
dataset, comparing the model’s performance when trained for
10 and 100 epochs at four different camera distances: 70m,
163m, 256m, and 350m. The table illustrates the impact of
camera distance on the model’s detection accuracy.

After 10 epochs of training, the model’s detection accuracy
varied across the different camera distances. The highest
detection accuracy was observed at a camera distance of
256m (48.39%), while the lowest was at 350m (22.81%).
The detection accuracy for camera distances of 70m and
163m was 36.82% and 35.98%, respectively. These results
indicate that the model’s initial performance is affected by
the camera distance, naturally, with the model struggling to
achieve consistent detection accuracy across all the distances.
However, after 100 epochs of training, the model exhibited a
substantial improvement in detection accuracy for all camera

distances. The detection accuracy increased to 86.35% for
70m, 81.45% for 163m, 81.55% for 256m, and 81.87% for
350m. This demonstrates that the extended training duration
allowed the model to learn more complex features related
to camera distance and achieve better performance across
all tested distances. In addition, the detection performance
became more stable hence more predictable.

Generally, Table IV shows that the model’s performance on
the Air Synthetic dataset is influenced by camera distance.
Extending the training duration from 10 to 100 epochs led to
significant improvements in detection accuracy at all camera
distances, suggesting that the fine-tuning process was success-
ful in enabling the model to adapt to varying camera distances
and enhance its overall performance.

Next, Table V presents the results of an ablation study
performed on the Ground Synthetic dataset, comparing the
model’s performance when trained for 10 and 100 epochs at
four different camera distances: 15m, 35m, 55m, and 75m.
The table illustrates the impact of camera distance on the
model’s detection accuracy.

After 10 epochs of training, the model’s detection accuracy
varied across the different camera distances. The highest
detection accuracy was observed at a camera distance of
55m (82.19%), while the lowest was at 15m (31.36%). The
detection accuracy for camera distances of 35m and 75m
was 66.26% and 73.84%, respectively. These results indicate
that the model’s initial performance is affected by the camera
distance, with the model showing better performance at larger
distances. However, after 100 epochs of training, the model
exhibited a substantial improvement in detection accuracy
for all camera distances. The detection accuracy increased
to 97.49% for 15m, 92.17% for 35m, 87.57% for 55m, and
83.65% for 75m. This demonstrates that the extended training
duration allowed the model to learn more complex features
related to camera distance and achieve better performance
across all tested distances.

Table V shows that the model’s performance on the Ground
Synthetic dataset is influenced by camera distance. Extending
the training duration from 10 to 100 epochs led to significant
improvements in detection accuracy at all camera distances,
suggesting that the fine-tuning process was successful in
enabling the model to adapt to varying camera distances and
enhance its overall performance. However, in comparison to
the Air subset, the results are less stable and follow a more
”natural” trend because it is commonly expected for the model
to drop performance with increasing distance.

CONCLUSION

This paper explores scene analysis techniques in Augmented
Reality (AR) and proposes a modified YOLO architecture with
oriented bounding boxes for object detection and recognition.
The solution detects objects at large distances and odd angles
while maintaining low processing times, suitable for real-time
AR applications.

Existing methods are categorised into two-stage and single-
stage detectors, with the proposed model evaluated using real



and synthetic datasets. The evaluation results show that the
proposed solution improves object detection and recognition,
particularly for distant objects, compared to state-of-the-art
approaches.

In conclusion, this work offers a comprehensive analysis of
AR scene analysis and object detection methods, proposing a
novel solution that addresses existing limitations and demon-
strates potential for real-world AR applications.
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Silva, Geraldo Braz Jr, João Dallyson Sousa de Almeida, Antônio Sérgio
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