
Journal Pre-proof

Extracting Multi-objective Multigraph Features for the Shortest Path Cost Prediction:
Statistics-based or Learning-based?

Songwei Liu, Xinwei Wang, Michal Weiszer, Jun Chen

PII: S2773-1537(23)00065-8

DOI: https://doi.org/10.1016/j.geits.2023.100129

Reference: GEITS 100129

To appear in: Green Energy and Intelligent Transportation

Received Date: 29 April 2023

Revised Date: 30 August 2023

Accepted Date: 31 August 2023

Please cite this article as: Liu S, Wang X, Weiszer M, Chen J, Extracting Multi-objective Multigraph
Features for the Shortest Path Cost Prediction: Statistics-based or Learning-based?, Green Energy and
Intelligent Transportation, https://doi.org/10.1016/j.geits.2023.100129.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier Ltd on behalf of Beijing Institute of Technology Press Co., Ltd.

https://doi.org/10.1016/j.geits.2023.100129
https://doi.org/10.1016/j.geits.2023.100129

Extracting Multi-objective Multigraph Features for

the Shortest Path Cost Prediction: Statistics-based or

Learning-based?

Songwei Liu, Xinwei Wang, Michal Weiszer, Jun Chen1

School of Engineering and Materials Science

Queen Mary, University of London, Mile End Road, London E1 4NS, UK

Email: {songwei.liu | xinwei.wang | m.weiszer | jun.chen}@qmul.ac.uk

CRediT Authorship Contribution Statement

Songwei Liu: Conceptualization, Methodology, Software, Formal analysis, Investigation, Writing - Original Draft,

Visualization. Xinwei Wang: Software, Resources, Writing - Review & Editing. Michal Weiszer: Conceptualization, Writing -

Review & Editing. Jun Chen: Conceptualization, Methodology, Writing - Review & Editing, Supervision, Project administration,

Funding acquisition.

Data Availability

The data and materials used to support the findings of this study are available from the corresponding author upon reasonable

request.

Acknowledgements

This work was supported by the UK Engineering and Physical Sciences Research Council (grant no. EP/N029496/1,

EP/N029496/2, EP/N029356/1, EP/N029577/1, and EP/N029577/2) and the joint scholarship of the China Scholarship Council

and Queen Mary, University of London (grant no. 202006830015).

Declaration of Generative AI and AI-assisted Technologies in the Writing Process

During the preparation of this work the authors used ChatGPT (24 May 2023 Version) in order to improve readability. After

using this tool/service, the authors reviewed and edited the content as needed and take full responsibility for the content of the

publication.

1 Corresponding author

Jo
urn

al
Pre-

pro
of

Jo
urn

al
Pre-

pro
of

Abstract—Efficient airport airside ground movement (AAGM) is key to successful operations of urban air mobility. Recent

studies have introduced the use of multi-objective multigraphs (MOMGs) as the conceptual prototype to formulate AAGM. Swift

calculation of the shortest path costs is crucial for the algorithmic heuristic search on MOMGs, however, previous work chiefly

focused on single-objective simple graphs (SOSGs), treated cost enquires as search problems, and failed to keep a low level of

computational time and storage complexity. This paper concentrates on the conceptual prototype MOMG, and investigates its

node feature extraction, which lays the foundation for efficient prediction of shortest path costs. Two extraction methods are

implemented and compared: a statistics-based method that summarises 22 node physical patterns from graph theory principles,

and a learning-based method that employs node embedding technique to encode graph structures into a discriminative vector

space. The former method can effectively evaluate the node physical patterns and reveals their individual importance for distance

prediction, while the latter provides novel practices on processing multigraphs for node embedding algorithms that can merely

handle SOSGs. Three regression models are applied to predict the shortest path costs to demonstrate the performance of each.

Our experiments on randomly generated benchmark MOMGs show that (i) the statistics-based method underperforms on

characterising small distance values due to severe overestimation, (ii) a subset of essential physical patterns can achieve

comparable or slightly better prediction accuracy than that based on a complete set of patterns, and (iii) the learning-based method

consistently outperforms the statistics-based method, while maintaining a competitive level of computational complexity.

Keywords—multi-objective multigraph, feature extraction, shortest path cost prediction, node patterns, node embeddings,

regression

1. Introduction

Urban air mobility aims to revolutionize urban transportation by incorporating advanced air traffic systems. Emerging

concepts, such as air taxis, on-demand aircraft, and large unmanned aerial vehicles, are gradually becoming integral to daily life.

To ensure the long-term sustainability of the civil aviation industry, most of these novel operations need to seamlessly integrate

with existing conventional airport infrastructures. Consequently, in future airport environments characterised by complex mixed

traffic modalities, the harmonisation of airside ground movement with the well-established safety culture developed over decades

in aviation becomes an imperative. A promising way to achieve this is to adopt taxiing operations based on four-dimensional-

trajectories (4DTs, latitude/longitude/altitude/time) [1, 2], which facilitates the coordinated management of taxiing traffic,

ensuring precise positioning at designated locations and predetermined times. The resulting benefits include savings in energy

consumption, along with heightened operational safety and efficiency [3].

The introduction of 4DTs into airport airside ground movement (AAGM) formulates airport taxiways into a multi-objective

multigraph (MOMG) [1, 4]. Within this modelling framework, multiple objectives necessitate trade-offs, including minimising

taxiing time, fuel consumption and pollution emissions. Moreover, parallel edges between two adjacent nodes in MOMG

correspond to multiple 4DTs assigned to each taxiway segment. The management of AAGM then becomes to determine the

optimal traversal order of 4DTs over the taxiway layout to find the “shortest” paths with Pareto-front costs for both manned and

unmanned aircraft. However, the MOMG shortest path search is NP-hard [5], posing considerable challenges to search algorithms

that support efficient operations. Note that in this paper, our focus is entirely on the conceptual prototype MOMG. To provide

generalised analyses, we utilise randomly generated benchmark MOMGs instead of specific real-world AAGM cases.

Among algorithms for solving the MOMG search problem, heuristic A* methods have been shown capable of achieving high

optimality without overloading computing power [6], inclusive of airport multi-objective A* (AMOA*) [4] and multi-objective

multigraph A* (MOMGA*) [6]. This advanced capability is attributed to the guidance of the algorithms’ cost function 𝑓(∙) =

𝑔(∙) + ℎ(∙), where 𝑔(∙) represents the exact cost of reaching the current node and ℎ(∙), heuristic information, represents the

estimated cost toward the destination. Powered by the prior knowledge of cost attributes in ℎ(∙), the algorithms can discard some

nodes and edges that do not belong to the optimal paths, thus saving running time [7]. On multi-objective graphs, ℎ(∙) is defined

as the combination of the shortest distances for each objective between the residing node and the destination [8], however, these

minimum values are not readily available and there has been a paucity of relevant research conducted on multigraphs.

Jo
urn

al
Pre-

pro
of

 1

The approaches to obtaining ℎ(∙), 𝑖. 𝑒., calculating the shortest distances on single-objective simple graphs (SOSGs), include

exact search methods, and approximation methods mainly composed of landmark-based and learning-based categories. Exact

search methods deliver not only costs but also detailed traversal plans. However, the traversal plan is not necessary as heuristic

information. Furthermore, exact search is of expensive computation costs and excessive memory requirements [6], 𝑒. 𝑔., both

Dijkstra’s algorithm [9] and single-objective A* [10] have a time complexity of 𝑂(|𝑉|log|𝑉| + |𝐸|), the time complexity of the

Floyd-Warshall algorithm [11] is 𝑂(|𝑉|3), and these three algorithms all require 𝑂(|𝑉|2) for storage space [12], where |𝑉| and

|𝐸| denote the number of nodes and edges in the graph respectively. Landmark-based approximation methods [13-15] select 𝑘

nodes as landmarks (𝑘 ≪ |𝑉|) and other nodes hold the shortest distances to the landmarks as labels. When the shortest path costs

are enquired, the labels of two investigated nodes are scanned, distances to the same landmarks are summed up and the minimum

is the approximation. Despite turning the time and storage complexity down to 𝑂(𝑘) and 𝑂(𝑘|𝑉|) respectively, landmark-based

methods lack theoretical guarantees on the solution quality, and this quality heavily depends on the landmark selection, which is

NP-hard [16]. Learning-based approximation methods [12, 17-19] predict the shortest path costs via machine learning, which is

more assured to hit a good accuracy compared to landmark-based methods [20]. Besides, due to the low computational and

storage complexity of learning-based methods, combing heuristic information derived from them with A* search is well-suited

for online implementation. The feature-based calculation of learning-based methods is relatively effortless, node features to be

stored are linearly related with the number of nodes, and predictive model parameters are independent of the graph size. 𝐸. 𝑔.,

feedforward neural network takes 𝑂(1) time and 𝑂(𝑑|𝑉|) memory space, in which 𝑑 represents the feature dimension. Although

learning-based approximation on SOSGs has overestimation and/or underestimation because of the nature of regression, it has

been proven empirically that the heuristic information generated by them performs well in MOMG shortest path search [6].

Motivated by the merits of learning-based shortest path cost approximation methods, we aim to further investigate their

applications in MOMGs, and tackle the primary challenge for the learning model exploitation, namely feature engineering to

characterise graph nodes. To the best of our knowledge, the learning-based shortest path cost approximation has exclusively

relied on learning-based node feature extraction methods, which are inspired by an emerging node characterising technique called

node embedding [21]. Node embedding automatically learns to encode non-Euclidean graph particulars into low-dimensional

discriminative node vectors [22], and three approaches, GraRep [23], node2vec [24] and ProNE [25], have been illustrated to

effectively preserve distance-relevant information within embeddings [12, 19, 6]. Since almost all embedding approaches

primarily rely on graph adjacency information and are typically applied to SOSGs [22], they are not suitable for handling

adjacency data of node pairs in MOMG, which is in matrix format rather than single values. Then a problem arises how to describe

MOMG by SOSG(s), with the aim of facilitating the applicability of node embedding algorithms on MOMGs. As the sole related

practice, [6] directly simplifies a MOMG into several SOSGs by splitting objectives and pruning parallel edges except the edge

with the minimum cost between two connected nodes. Exploring alternative methods for (i) extracting node features and (ii)

expressing adjacency information in MOMGs might yield improvements in prediction performance and should be considered.

In view of these discussions, to broaden the frontier of feature-based prediction for multigraph shortest path costs, this paper

firstly proposes a statistics-based node feature extraction method for comparison with the learning-based extraction. We present

a novel summary of 22 node physical patterns and employ the principal component analysis (PCA) [26] to select the vital ones.

Secondly, new simplification of MOMG is devised to eliminate the multigraph nature, by duplicating nodes and maintaining their

original connection relationships. We adopt the graph adjacency information obtained via this new simplification method, as well

as that obtained through the method in [6] mentioned above, to generate embeddings that further offer insights into the impact of

simplification methods on prediction. Thirdly, three regression models, multi-layer perceptron (MLP) [27], polynomial regression

(PR) [28] and gradient boosted regression trees (GBRT) [29], are tested to show their abilities. Finally, experiments are performed

on randomly generated benchmark instances, which can serve as templates for any real-life MOMG-based applications.

The main contributions are three-fold. (i) A collection of node physical patterns in benchmark multigraphs for predicting the

shortest path costs is presented, which to our knowledge has not been done before. The most salient 16 patterns are identified,

Jo
urn

al
Pre-

pro
of

 2

and these important patterns are found to offer similar or slightly improved prediction results compared to the full set of patterns.

(ii) Two MOMG simplification methods to enable the MOMG handleability of node embedding algorithms are put forward and

compared. And (iii) for the first time, we compare the prediction accuracy of shortest distances using the statistics-based and

learning-based node feature extraction methods, and the results can potentially aid in the design of MOMG heuristic search

algorithms.

The rest of the paper is organised as follows: Section 2 reviews learning-based node feature extraction methods for SOSGs,

and their applications in the shortest path cost estimation. Section 3 sorts out node physical patterns and the feature importance

selection method. Section 4 presents the two established MOMG simplification methods and outlines the utilised node embedding

approach. Section 5 describes three regression models, which are then tested alongside the two proposed node feature extraction

methods on benchmark MOMGs in Section 6. Lastly, the article ends with conclusions in Section 7.

2. Literature Review

Learning-based node feature extraction methods for predicting shortest distances in SOSGs draw inspiration from node

embedding technique. These methods either utilise node embedding algorithms directly [12, 19], or exploit customised

backpropagation learning methods that resemble node embedding to extract feature vectors in a supervised manner [17, 18].

When applied to a SOSG with a node set 𝑉 and an edge set 𝐸, node embedding always employs graph adjacency information

to map each node onto a vector 𝜓 ∈ ℝ𝑑 that recapitulates the node’s structural position, where 𝑑 denotes the dimensionality of

the embedding space and 𝑑 ≪ |𝑉|. The key components of node embedding include (i) a pairwise similarity function 𝑠𝐺, which

is defined over graph and quantifies the similarity between two nodes, (ii) an encoder function 𝐸𝑁𝐶 that generates embeddings,

(iii) a decoder function 𝐷𝐸𝐶, which reconstructs pairwise similarity based on the embeddings provided by 𝐸𝑁𝐶, and (iv) a loss

function ℓ that assesses the difference between the similarity values obtained from 𝑠𝐺 and 𝐷𝐸𝐶 [22], according to which the 𝐸𝑁𝐶

performance is optimised.

Table I Binary operators for node embedding vectors 𝝍𝝔 and 𝝍𝝈

Operator Symbol Definition

Addition † ⨁ 𝜓𝜚 + 𝜓𝜎

Concatenation ◨ [𝜓𝜚, 𝜓𝜎]

Hadamard ⊙ 𝜓𝜚 ∙ 𝜓𝜎

Subtraction ⊖ 𝜓𝜚 − 𝜓𝜎

† In [12], “Addition” is defined as (𝜓𝜚 + 𝜓𝜎) ∙ 0.5.

The paper [12] pioneered the prediction of shortest path costs based on node embeddings. It innovatively adopted node2vec

[24] and a hierarchical structure representation method Poincaré [30] to effectively incorporate distance-related information into

node representations. Embedding dimensions of 32 and 128 were tested, with the latter outperforming in the majority of cases.

The embedding vectors of an origin and destination pair (𝑎. 𝑘. 𝑎., O.D. pair) on the predicted path are integrated together via

binary operators listed in Table 1. In the end, MLP networks estimate the shortest distances based on the integrated feature vector,

and two metrics, mean absolute error (MAE) and the mean of relative error (MRE), measure the predictive performance. Results

indicate that (i) binary operators have obvious but various impacts on different datasets and (ii) node2vec exhibits better predictive

accuracy than Poincaré. Although comprehensively displaying a feasible framework for predicting shortest distances using node

embeddings for the first time, there is an issue with the datasets, which consist of four social media user databases. The shortest

path cost to be predicted refers to the minimum number of users that need to pass through to establish a connection between two

unfamiliar users. The path length falls largely into the range of 2 to 4, with the longest distance being only 8 for one database and

6 for other databases. The prediction is more like a classification task where O.D. pairs are to be labelled with category numbers

rather than a regression task, which renders the framework performance uncertain for long-distance-value regression. [19] further

employed other two embedding approaches, GraRep [23] and ProNE [25], and verified their capability on the large-scale road

networks of four metropolitan cities.

Jo
urn

al
Pre-

pro
of

 3

Compared to node embedding algorithms, customised backpropagation learning methods [17, 18] disregard the information

contained within the original graph, as evidenced by their absence of pairwise similarity, encoder, and decoder functions. Though

these customised methods obtain a |𝑉| × 𝑑 node representation matrix like node embedding does, what they exactly do is

translate shortest distances to uninterpretable vectors of node pairs. In [17], the node representation matrix is initialised randomly,

and the two corresponding row vectors of an O.D. pair are integrated in a “concatenation” way as Table 1 shows. The integrated

vector is then fed to a MLP network, and the two rows in the matrix are gradually optimised backward based on the mean square

error (MSE) between the actual and estimated distances. Evaluated on city road networks with thousands of nodes, this bespoke

method reduces prediction errors compared to node2vec. Building upon the framework of [17], [18] enhanced the configuration

of the backpropagation neural network and received the improved predictive accuracy. Nonetheless, an underlying reason for the

inferior performance of node embedding algorithms compared to the customised backpropagation learning methods is the usage

of default embedding parameters. Some of these embedding parameters control the node sampling scale, but the default values

are considerably smaller than the diameter of city road networks, leading to undersampling, the inability to adequately capture

node location properties, and the incapability of preserving distance-relevant information. Moreover, the customised backpropa-

gation requires a large volume of training data. Node embedding algorithm encodes graph structural information, enabling the

predictive model to establish correlations between prediction outcomes and the inputs with similar representations. However, in

contrast, the customised backpropagation learning methods optimise representation vectors independently, necessitating a high

amount of training data to enhance their discriminative power. Both studies [17] and [18] entail the complete set of node pairs.

Although [18] claims that it reduces the data amount demand, by selecting some nodes as landmarks and using only node pairs

consisting of landmarks and non-landmarks, the complete set of node pairs is still necessary for the first training epoch.

In addition, [19] also proposed the utilisation of graph neural networks (GNNs) [31] for generating node features. Even though

the features obtained by GNNs offered competitive predictive results than the employed node embedding algorithms node2vec,

GraRep and ProNE, it is important to note that the success of this GNN-based method for benchmark instances cannot be

guaranteed. This research converts two-dimensional coordinates (latitude and longitude) into 𝑑-dimensional (𝑑 = 32 or 128)

feature vectors via GNNs, however, benchmark instances may not be expressible in terms of coordinates. Besides, since real-life

road networks were employed as test scenarios, and in this case the coordinates themselves can be used straightforward to

calculate approximate shortest distances, the GNN-based conversion does not make intense sense. Considering the divergent

working principle of this GNN-based method, it is presented separately from the aforementioned two categories.

Given above descriptions, while we can reason intuitively that the customised backpropagation learning is practicable for

MOMGs, there is still a gap in processing multigraph format to fulfill the requirement of node embedding algorithms. Therefore,

one of our focuses is to develop the MOMG processing method and then extract MOMG features via node embedding technique.

3. Statistics-based Feature Extraction

3.1 Node physical patterns

The lack of inherent node and edge attributes in the benchmark MOMG poses a challenge for feature-based shortest distance

prediction. Graph adjacency information is the only available data in our MOMGs. This section provides a summary of existing

node physical patterns that can be derived from graph adjacency information.

In Appendix, the table displays the collection of 22 node physical patterns that are applicable to multigraphs. To minimise

the required storage space, only individual node patterns are enumerated, while the patterns of node pairs are neglected. The

patterns are divided into ten groups, each serving a distinct purpose. The five groups, “centrality”, “connectivity”, “link analysis”,

“structural holes”, and “vitality”, explore the interactions between nodes. The group “clique” identifies complete subgraphs

known as cliques, wherein all nodes are mutually adjacent [49]. The group “clustering” quantifies the tendency of nodes in a

graph to cluster together [50, 51]. The group “communities” computes and evaluates community structures. The group “distance

measure” demonstrates properties such as graph diameter, radius, and eccentricity [41]. Finally, the group “dominating sets”

Jo
urn

al
Pre-

pro
of

 4

distinguishes a clique of nodes, where all nodes outside the clique have at least one neighbour within the clique [44]. Additionally,

the Appendix table includes 13 patterns labelled with asterisks, where the corresponding pattern values differ depending on

whether edge weights are included or not. In total, 35 physical patterns are taken into account for each node.

It is worth noting that certain physical patterns are associated with noticeable computational complexity. For instance, the

calculation of “(5) closeness centrality” requires determining the shortest path distances from a target node to all other nodes in

the graph. Similarly, “(8) load centrality” measures the number of shortest paths that pass through the investigated node.

Furthermore, “(17) eccentricity” represents the longest path from the target node to any other nodes, and “(22) closeness vitality”

reflects the change in path distances when the investigated node is removed from the graph. In addition to computational

complexity, some physical patterns exhibit high correlations, 𝑒. 𝑔., “(1) degree” and “(14) node connectivity”, which are identical

in unweighted graphs. As a consequence, identifying the importance of features is necessary to optimise computational resources

and reduce coupling.

As stated earlier, heuristic information for multi-objective A* search is obtained by simply combining the shortest path cost

of each objective [8]. In this section, the preprocessing of a MOMG involves partitioning the graph into several single-objective

multigraphs, from which corresponding pattern values are derived. Afterward, the feature vectors of O.D. pairs are integrated

using four binary operators listed in Table 1 for the subsequent feature selection and cost prediction.

3.2 Feature importance

To avoid any potentially confounding effects of the predictive model, this study adopts PCA [26] as the feature importance

measure, which is a standalone technique operating independently of the predictive model. In contrast, numerous frequently used

feature selection methods, such as permutation importance [52] and SHapley [53], perceive feature contributions in terms of

predictive model outcomes, thereby relying to some extent on the performance of specific machine learning predictive models.

It is widely recognised that PCA is a popular transformation method to convert samples into a low-dimensional space and

capture the most variable data components [54]. While the paper [26] introduced a new possibility, namely feature selection, for

the application of PCA. The basic concept behind PCA-based feature selection is to assess the importance of features based on

their weights (or, coefficients) on eigenvectors/components. Let us suppose that 𝑥 is an eigenvector of the covariance matrix

obtained by PCA, then its corresponding principal component can be expressed in Eq.(1).

𝑎𝑇𝑥 =∑ 𝑎𝑖𝑥𝑖
𝑑

𝑖=1
(1)

where 𝑎 denotes an arbitrary sample vector, 𝑎 = [𝑎1, ⋯ , 𝑎𝑑]
𝑇, 𝑥 = [𝑥1, ⋯ , 𝑥𝑑]

𝑇, and 𝑑 is the feature dimensionality.

Obviously, the absolute value of 𝑥𝑖, where 𝑖 ∈ [1, 𝑑], can be used to statistically evaluate the contribution of the 𝑖-th feature in

constructing this principal component. The smaller the absolute value, the less the contribution of the 𝑖-th feature. Specifically,

if the absolute value is extremely small, eliminating 𝑎𝑖𝑥𝑖 from ∑ 𝑎𝑖𝑥𝑖
𝑑
𝑖=1 will not influence the representational ability of this

principal component. By extension, when a feature is not important for composing the principal component, we can speculate

that this feature can be ignored in the original data space as well.

There are four steps to execute PCA feature selection. (i) Calculate the PCA covariance matrix using the training samples

from original data. Compute all the necessary eigenvectors and eigenvalues (note that the number of eigenvectors/eigenvalues

represent the number of principal components). (ii) Select 𝑚 eigenvectors, denoted by 𝑥1, ⋯ , 𝑥𝑚, with the top largest eigenvalues.

(iii) Calculate the 𝑖-th feature’s contribution to the selected eigenvectors/components as: 𝑐𝑖 = ∑ |𝑥𝜂𝑖|
𝑚
𝜂=1 , where 𝑥𝜂𝑖 stands for the

𝑖-th element/weight/coefficient of eigenvector 𝑥𝜂, 𝑖 ∈ [1, 𝑑], 𝜂 ∈ [1,𝑚], and |𝑥𝜂𝑖| means the absolute value of 𝑥𝜂𝑖. And (iv) sort

𝑐𝑖 in the descending order and the descending feature importance is obtained.

In the implementation of this paper, there are two questions worth thinking about: (i) how to determine the number of principal

components (𝑖. 𝑒., the second step of PCA feature selection), and (ii) how to summarise the set of important features when facing

potential disturbances caused by the binary operators and graphs, particularly the bi-objectives that may also produce varying

Jo
urn

al
Pre-

pro
of

 5

results. Regarding the first question, we compare the feature selection results obtained from taking only the first principal

component and from exploiting multiple components, please see detailed experiments in Section 6.2. With regard to the second

question, we initially select a relatively large number of features, and then take the intersection of the results obtained via different

operators and graphs.

4. Learning-based Feature Extraction

This section describes the process of extracting features from multigraph nodes based on node embedding. Due to the limita-

tion that most embedding approaches can only deal with SOSGs [22], where the entire graph adjacency relations can be expressed

in matrix format, a problem arises how to describe MOMG by SOSG(s), as MOMG adjacency information is difficult to directly

represent in the same format. Thus, two MOMG simplification methods are proposed in Section 4.1 to represent MOMG adjacent

data by SOSGs. And Section 4.2 presents node2vec [24] as an example of the node embedding approach adopted in this paper.

In later narratives, we denote an undirected weighted MOMG as 𝑀𝑂𝑀𝐺 = (𝑉𝑀𝑂𝑀𝐺 , 𝐸𝑀𝑂𝑀𝐺), where |𝑉𝑀𝑂𝑀𝐺| is the number

of nodes and |𝐸𝑀𝑂𝑀𝐺| is the number of edges. In the graph, there are at most ∆ parallel edges existing between two adjacent

nodes and the objective number is Ω.

4.1 Multi-objective multigraph simplification

The general idea of simplifying a MOMG involves two steps: first, splitting objectives, and second, eliminating parallel edges.

The anticipated outcomes of the simplification process are several adjacency matrices, equal in number to the objectives Ω. We

propose two methods for eliminating parallel edges: duplicating nodes and trimming edges.

4.1.1 Duplicating nodes

Algorithm I. Multi-objective Multigraph Simplification via Duplicating Nodes

 /* EDGE SUPPLEMENT */

1 for 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑒𝑑𝑔𝑒 𝑠𝑒𝑡𝑠 𝐸𝑚,𝑛 𝑜𝑓 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒 𝑝𝑎𝑖𝑟𝑠 do

2 if 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑒𝑑𝑔𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑚 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑛𝑜𝑡 ∆ then

3 Add edge(s) to the node pair (𝑚, 𝑛) to make the number of parallel edges be equal to ∆;

4 Assign cost vector(s) randomly selected from the existing edge(s) between 𝑚 and 𝑛 to the new added edge(s);

5 endif

6 endfor

 /* NODE DUPLICATION */

7 for 𝐴𝑙𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐼𝐷𝑠 𝑗 do

 CREATE:

8 one zero matrix 𝐴 with the dimensionality ∆|𝑉𝑀𝑂𝑀𝐺| × ∆|𝑉𝑀𝑂𝑀𝐺|;
 /* Both the rows and columns of 𝐴 are indexed from 0. */

9 for 𝐴𝑙𝑙 𝑟𝑜𝑤 𝐼𝐷𝑠 𝑢 𝑖𝑛 𝐴 do

10 for 𝐴𝑙𝑙 𝑐𝑜𝑙𝑢𝑚𝑛 𝐼𝐷𝑠 𝑣 𝑖𝑛 𝐴 do

11 𝐴(𝑢, 𝑣) ← 𝐶𝑂𝑆𝑇_𝑒𝑥𝑑𝑢//∆,𝑣//∆
(𝑣%∆+𝑢%∆)%∆,𝑗

;

12 endfor

13 endfor

 OUTPUT:

14 𝐴, to represent the adjacency matrix of the simplified graph with respect to objective 𝑗;
15 endfor

Algorithm I outlines the pseudocode for eliminating parallel edges via node duplication. A single node in the MOMG is

duplicated into ∆ new nodes, with the adjacent relationships of the newly generated nodes being consistent with those of the

original node in the graph. In case where the number of parallel edges between a node pair is less than the maximum number ∆,

new edges are added before the nodes are duplicated, and the costs of the newly added edges are determined by randomly selecting

the existing costs of this node pair.

Each of the newly generated nodes holds the equal status as the original node, which means that in the weighted graph, each

duplicated node should contain the same weighted adjacency information as the original node. Line 11 of Algorithm I achieves

this by using the mapping calculation 𝐴(𝑢, 𝑣) ← 𝐶𝑂𝑆𝑇_𝑒𝑥𝑑𝑢//∆,𝑣//∆
(𝑣%∆+𝑢%∆)%∆,𝑗

 to assign the original complete adjacency data to every

new node. Here, 𝐴(𝑢, 𝑣) denotes the element in the 𝑢-th row and 𝑣-th column in the adjacent matrix of the simplified graph with

dimension ∆|𝑉𝑀𝑂𝑀𝐺| × ∆|𝑉𝑀𝑂𝑀𝐺| , 𝐶𝑂𝑆𝑇_𝑒𝑥𝑑𝑢//∆,𝑣//∆
(𝑣%∆+𝑢%∆)%∆,𝑗

 denotes the weight assigned to the 𝑗 -th objective of the

[(𝑣%∆ + 𝑢%∆)%∆]-th parallel edge between nodes, whose IDs are (𝑢//∆) and (𝑣//∆) , and this weight is picked from the

Jo
urn

al
Pre-

pro
of

 6

extended costs 𝐶𝑂𝑆𝑇_𝑒𝑥𝑑 obtained via the “edge supplement” process of Algorithm I. The operator symbolised by “%”

represents taking the reminder after division and “//” represents taking the quotient after division.

In more detail, as for the parallel edge ID mapping (𝑣%∆ + 𝑢%∆)%∆, let us illustrate by the following example. Supposing

the original node IDs are 0 and 1, ∆= 3, and the edge costs are [𝑐𝑜𝑠𝑡0, 𝑐𝑜𝑠𝑡1, 𝑐𝑜𝑠𝑡2]. Then the newly generated nodes should

have IDs [0,1,2] and [3,4,5], which correspond to the original node IDs 0 and 1, respectively. The expected adjacent matrix after

duplicating nodes is shown in Eq.(2). Parallel edge ID, and row and column in the adjacent matrix are all indexed from 0.

𝐴 = [

𝑐𝑜𝑠𝑡0 𝑐𝑜𝑠𝑡1 𝑐𝑜𝑠𝑡2
𝑐𝑜𝑠𝑡1 𝑐𝑜𝑠𝑡2 𝑐𝑜𝑠𝑡0
𝑐𝑜𝑠𝑡2 𝑐𝑜𝑠𝑡0 𝑐𝑜𝑠𝑡1

] (2)

When assigning value to the element 𝐴(0,1), 𝑣%∆= 1%3 = 1 already locates the second parallel edge with cost 𝑐𝑜𝑠𝑡1. For

𝐴(1,1), 𝑢%∆= 1 should be added to 𝑣%∆= 1 to locate the third edge with 𝑐𝑜𝑠𝑡2. As for 𝐴(2,2), 𝑣%∆ + 𝑢%∆= 4, which is

beyond the edge index range. Therefore, this value needs to be taken as the reminder of its division by ∆, to locate the second

edge cost. Fig.1 exemplifies this process of node duplication and cost assignment.

Figure 1 Example of node duplication and cost assignment for an undirected weighted node pair with three parallel edges. The costs of

the edges are indicated by different colours, each representing a different advantage. After duplication, every individual node is equipped

with edges that have all three colours, preserving the original adjacent relationships within the node pair.

4.1.2 Trimming edges

The pseudocode in Algorithm II for trimming edges is a more detailed version of the method introduced in [6]. After splitting

objectives, this method prunes parallel edges between two nodes, only retaining the edge with the minimum cost.

Algorithm II. Multi-objective Multigraph Simplification via Trimming Edges

 /* EDGE ELIMINATION */

1 for 𝐴𝑙𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐼𝐷𝑠 𝑗 do

 CREATE:

2 one zero matrix 𝐴 with the dimensionality |𝑉𝑀𝑂𝑀𝐺| × |𝑉𝑀𝑂𝑀𝐺|;
 /* Both the rows and columns of 𝐴 are indexed from 0. */

3 for 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑒𝑑𝑔𝑒 𝑠𝑒𝑡𝑠 𝐸𝑚,𝑛 𝑜𝑓 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒 𝑝𝑎𝑖𝑟𝑠 do

4 Identify the minimum weight 𝑐𝑜𝑠𝑡𝑚𝑖𝑛 among parallel edges between nodes 𝑚 and 𝑛 with respect to objective 𝑗;
5 𝐴(𝑚, 𝑛) ← 𝑐𝑜𝑠𝑡𝑚𝑖𝑛;

6 endfor

 OUTPUT:

7 𝐴, to represent the adjacency matrix of the simplified graph with respect to objective 𝑗;
8 endfor

4.2 Node embedding approach node2vec

Node2vec is a random-walk-based node embedding approach, which is inspired by the word2vec [55] developed for learning

sentence-based word representations. Node2vec learns embeddings by predicting nearby nodes that co-occur in random walks,

using an encoder called SkipGram [55]. In the context of the SOSG, node2vec treats each node as a “word” in a language

modelling problem, and then generates a random walk for the node, resulting in a sampled node sequence analogous to a “sentence”

in nature language processing. Eq.(3) describes the possibility to travel between two nodes, where 𝑟𝑡 denotes the 𝑡-th sampled

node on the random walk, 𝜋𝑖𝑗 denotes the unnormalised transition probability between nodes 𝑛𝑖 and 𝑛𝑗, and 𝑍 is a normalising

constant [24].

𝑝(𝑟𝑡 = 𝑛𝑗|𝑟𝑡−1 = 𝑛𝑖) = {

𝜋𝑖𝑗

𝑍
, 𝑖𝑓 𝑛𝑖 𝑎𝑛𝑑 𝑛𝑗 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(3)

Jo
urn

al
Pre-

pro
of

 7

Especially, node2vec utilises a biased way to sample both local and global information in the graph. The walking direction is

guided by two hyperparameters 𝑝 and 𝑞, where 𝑝 is the return parameter that indicates the probability of returning to a previously

visited node, and 𝑞 is the in-out parameter that indicates the probability of passing through an unseen part of the graph. These

two hyperparameters allow the walk to interpolate between a pure breadth-first-search (BFS) that models structural equivalence

by visiting a node’s immediate neighbours and a pure depth-first-search (DFS) that reflects homophily by exploring nodes far

away. The unnormalised transition probability 𝜋 mentioned in Eq.(3) is calculated as Eq.(4), which employs a bias factor 𝛼𝑝𝑞 in

conjunction with edge costs.

𝜋𝑖𝛿 = 𝛼𝑝𝑞(𝑛𝑖−1, 𝑛𝛿) ∙ 𝑐𝑜𝑠𝑡𝑖𝛿 , where 𝛼𝑝𝑞(𝑛𝑖−1, 𝑛𝛿) =

{

1

𝑝
, 𝑖𝑓 𝐻𝑜𝑝(𝑛𝑖−1, 𝑛𝛿) = 0,

1, 𝑖𝑓 𝐻𝑜𝑝(𝑛𝑖−1, 𝑛𝛿) = 1,
1

𝑞
, 𝑖𝑓 𝐻𝑜𝑝(𝑛𝑖−1, 𝑛𝛿) = 2.

(4)

where the random walk is assumed to have arrived at node 𝑛𝑖 from previously visited node 𝑛𝑖−1 and be deciding which nodes 𝑛𝛿

to visit, 𝜋𝑖𝛿 denotes the unnormalised transition probability from 𝑛𝑖 to 𝑛𝛿, 𝑐𝑜𝑠𝑡𝑖𝛿 denotes the cost/weight of edge (𝑛𝑖 , 𝑛𝛿), and

𝐻𝑜𝑝(𝑛𝑖−1, 𝑛𝛿) represents the minimum number of edges that need to be traversed from 𝑛𝑖−1 to 𝑛𝛿. This biased random walk

schema is shown in Fig.2, in which 𝑛𝛿 may be one of four nodes 𝑛𝑖+1
𝑎 , 𝑛𝑖+1

𝑏 , 𝑛𝑖+1
𝑐 and 𝑛𝑖−1.

Figure 2 Biased random walk schema of node2vec. The BFS cares more about the surrounding nodes (𝑛𝑖−1, 𝑛𝑖+1
𝑎 , 𝑛𝑖+1

𝑏 , and 𝑛𝑖+1
𝑐) of the

currently residing node 𝑛𝑖, while the DFS enables the expansion of node 𝑛𝑘 which has similar structure role as node 𝑛𝑖.

5 Predictive Models and Benchmark Instance Generation

5.1 Regression predictive models

The model selection can impact the predictive accuracy. In this paper, three regression models are exploited, including MLP,

PR and GBRT. Table 2 demonstrates the general comparison among these three models.

Table 2 Regression model comparison

Models Parameter/coefficient interpretability Handling non-linearity
Handling interactions

between features

MLP

Low. Often regarded as black boxes due to the complex structure. It can be

challenging to interpret the learned weights and biases and understand the

underlying relationships between the input features and output variable.

Yes, by employing activation

functions that introduce non-

linear transformations to inputs.

Yes, via hidden layers that

allow for learning complex

feature representations.

PR

High. The relationship between the input features and the target variable is

expressed through polynomial terms with explicit coefficients. The

coefficients represent the impact of each input feature on the target variable.

Yes, by introducing higher-

degree polynomial terms, the

model fits non-linear patterns.

Yes, by including interaction

terms that multiply the input

features together.

GBRT

Low. The ensemble of decision trees makes it challenging to interpret the

overall model. However, feature importance measures can be derived to

understand the relative importance of different input features.

Yes, by combining multiple

decision trees.

Yes, by constructing a series

of decision trees.

5.1.1 Multi-layer perceptron

Artificial neural networks (ANNs) are brain inspired models that enable a machine learning from available data [56]. MLP is

a class of feedforward ANNs, consisting of at least three neuron layers, namely an input layer, one or several hidden layer(s), and

Jo
urn

al
Pre-

pro
of

 8

an output layer. Neurons are connected between each pair of adjacent layers with different weights. Except for the input layer,

each neuron has a nonlinear activation function. A three-layer MLP network can be expressed as Eq.(5).

�̂� = (𝑋𝑊ℎ + 𝑏ℎ)𝑊0 + 𝑏0 (5)

where �̂� is the predicted value, 𝑋 represents the input vector, 𝑊ℎ and 𝑏ℎ are the weights and biases of the hidden layer

respectively, and 𝑊0 and 𝑏0 represent the weights and biases of the output layer.

5.1.2 Polynomial regression

PR is a statistical technique used in regression analysis to model relationships between a dependent variable and one or more

independent variables by fitting a polynomial function of a specified degree to the data. Linear regression is a special case of PR,

where the polynomial order is one. PR is useful for modelling curvilinear relationships, but it is susceptible to overfitting. Thus,

it is important to select the appropriate degree of polynomial. The model with the 𝑁-th degree polynomial regression is:

�̂� = 𝛽 +∑ 𝛼𝑖𝑋
𝑖

𝑁

𝑖=1
(6)

where 𝛽 is the regression coefficient, 𝛼𝑖 is the corresponding coefficient vector to the 𝑖-th polynomial degree, and 𝑋𝑖 is the 𝑖-th

polynomial input features.

5.1.3 Gradient boosting regression tree

GBRT is a flexible non-parametric learning method for regression. It builds the model in a stage-wise fashion and allows

optimisation of an arbitrary differentiable cost function [29]. Similar to other boosting techniques, gradient boosting combines

weak leaners into a strong learner through an iterative process. At each stage 𝑠, a current predictive model 𝐹𝑠 is updated by adding

a new estimator 𝐻𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟. The improved model 𝐹𝑠+1 in the next stage can be constructed as 𝐹𝑠+1(𝑋) = 𝐹𝑠(𝑋) + 𝐻𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟.

5.1.4 Performance metrics

Four metrics are provided to evaluate and compare prediction performance obtained by different feature extraction methods

and predictive models. In the following equations, 𝑦 denotes the actual value and �̂� denotes the predicted value.

The coefficient of determination 𝑅2. This metric indicates the dependent variable’s fluctuations that can be explained by the

independent variables. 𝑅2 ≤ 1, where 1 represents the best possible accuracy case. When the value is negative, the predictive

model is attempting to fit nonlinear functions to the sampled data.

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 −
1
𝑛
∑ 𝑦𝑖
𝑛
𝑖=1)

2
𝑛
𝑖=1

(7)

MAE. This metric measures the average absolute deviations between the predicted and actual shortest path costs.

MAE =
∑ |𝑦𝑖 − �̂�𝑖|
𝑛
𝑖=1

𝑛
(8)

Root mean squared error (RMSE). This metric is like MAE but assigns a greater weight to data points with larger errors.

RMSE = √
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

𝑛
(9)

MRE. As reported in [12], this metric is extensively used in the study of shortest path evaluation.

MRE =
∑ |

𝑦𝑖 − �̂�𝑖
𝑦𝑖

|𝑛
𝑖=1

𝑛
(10)

The closer the last three metrics are to zero, the higher accuracy the embedding method or predictive model shows.

5.2 Benchmark instance generation

Six undirected weighted MOMGs are generated as benchmark instances. Node self-loops are not considered with the aim of

conforming to the patterns observed in real-world airport taxiways. Each instance is a bi-objective search task, with up to 10

parallel edges for a pair of connected nodes (the node pairs have randomly different numbers of parallel edges). The six instances

Jo
urn

al
Pre-

pro
of

 9

can be grouped according to the number of nodes: 500 nodes, 750 nodes, and 1000 nodes. Although two graphs in the same group

have the same number of nodes, the way their nodes are connected and how their objectives are correlated is varied.

The objective correlation means that, for bi-objective costs in a set of parallel edges, objectives are positively correlated if the

values of one objective vary positively with the other objective across all parallel edges, and vice versa for the negatively

correlated. As for two graphs belonging to the same group in our case, one graph has objectives of positive correlation while the

other graph has the negatively correlated objectives.

Benchmark instances are produced in two steps. First, an unweighted simple graph is generated using the “WAXMAN” graph

tool of the Python module “networkX” [41], given the number of nodes. Second, a cost matrix is assigned to the edges of the

unweighted simple graph, representing the weights of parallel edges connecting two nodes. Each row of this cost matrix

corresponds to a parallel edge and has nondominated 1 costs compared to other rows. To generate costs for a row vector

(𝑐𝑜𝑠𝑡1, 𝑐𝑜𝑠𝑡2) with positive correlation, 𝑐𝑜𝑠𝑡1 is randomly selected from a uniform distribution of the range [𝑐𝑜𝑠𝑡min, 𝑐𝑜𝑠𝑡max],

and 𝑐𝑜𝑠𝑡2 is computed using Eq.(11), which is a convex combination of 𝑐𝑜𝑠𝑡1 and a randomly selected value 𝑐𝑜𝑠𝑡2
∗ from the

same distribution, where 𝜌 ∈ [0,1] is a correlation multiplier.

𝑐𝑜𝑠𝑡2 = 𝜌𝑐𝑜𝑠𝑡1 + (1 − 𝜌)𝑐𝑜𝑠𝑡2
∗ (11)

Eq.(12) is used to calculate the 𝑐𝑜𝑠𝑡2 value that is negatively correlated with 𝑐𝑜𝑠𝑡1.

𝑐𝑜𝑠𝑡2 = 𝑐𝑜𝑠𝑡min + 𝑐𝑜𝑠𝑡max − [𝜌𝑐𝑜𝑠𝑡1 + (1 − 𝜌)𝑐𝑜𝑠𝑡2
∗] (12)

The origin and destination nodes are designated as the two endpoints of the longest hop-count in the graph, in order to cover

more potentially interesting cases. Between two nodes, the hop-count is the minimal number of edges that have to be traversed.

6 Experiments and Discussion

In this section, the complete results of predicting shortest path costs based on node physical patterns are presented in Section

6.1. In Section 6.2, we ran PCA on two benchmark instances as examples of feature selection, and then the effectiveness of the

selected important features is presented on all the six benchmark instances. Section 6.3 shows the prediction performance

comparison of two MOMG simplification methods.

We conducted experiments on a macOS 13 laptop with an Apple M2 chip and 16 GB of RAM. The codes were programmed

in Python 3.8. Physical pattern values were computed via the “networkX” module [41]. We designed MLP as a network with two

hidden layers, with the configurations suggested in [6]. The numbers of neurons in the hidden layers are 1024 and 64 respectively.

The activation function of hidden layers is the rectified linear unit [57] that returns 𝑓(𝑥) = max(0, 𝑥), and the output layer uses

the “SoftPlus” [58] as its activation function that returns 𝑓(𝑥) = log(exp(𝑥) + 1). The loss function employs MSE, and the

solver is a stochastic gradient-based optimiser ADAM [59]. For PR, we set the polynomial degree to 2 and kept the remaining

hyperparameters as the default values in the Python module “sklearn” [60]. For GBRT, the default hyperparameters in the “sklearn”

module were used. 70% of all O.D. pairs are used for training, other 20% for validation and the remaining 10% for testing.

As a reminder, two feature vectors of an O.D. pair were first integrated by the binary operators shown in Table 1 before being

used for the shortest path cost prediction.

6.1 Predicting based on node physical patterns

In the four graphs with 750 nodes and 1000 nodes, the calculation result of pattern “closeness vitality” contains infinite values,

indicating that removing certain nodes causes the sum of the shortest distances between all other nodes to become excessively

large. Since infinite values are not usable for regression, only the two graphs with 500 nodes include the “closeness vitality”.

Table 3 shows the overall prediction results using all node physical patterns. Among the four binary operators, “addition” and

“concatenation” consistently produce better performance. Additionally, we can observe that when using these two operators, the

1 For two 𝑑 -dimensional cost vectors 𝑐𝑜𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ and 𝑐𝑜𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ′ , 𝑐𝑜𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ is said to dominate 𝑐𝑜𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ′ , denoted as 𝑐𝑜𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ≺ 𝑐𝑜𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ′ , when ∀ 𝑐𝑜𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑐𝑜𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ′ ∈

ℝ𝑑 𝑐𝑜𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ≺ 𝑐𝑜𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ′ ⟺ ∀ 𝑗 𝑐𝑜𝑠𝑡𝑗 ≤ 𝑐𝑜𝑠𝑡𝑗
′ ∧ 𝑐𝑜𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ≠ 𝑐𝑜𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ′, where 𝑐𝑜𝑠𝑡𝑗 denotes the 𝑗-th element of 𝑐𝑜𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . By extension, a cost vector 𝑐𝑜𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ is

nondominated in set 𝛶 when ∄𝑐𝑜𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ′ ∈ 𝛶 𝑐𝑜𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ′ ≺ 𝑐𝑜𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ .

Jo
urn

al
Pre-

pro
of

 10

results obtained via the three predictive models do not exhibit much significant differences. Some negative 𝑅2 values reflect that

model fits nonlinear functions, in which cases we primarily evaluate the performance based on the other three metrics.

Table 3 Complete results for predicting shortest path costs based on all node physical patterns. The results of the best performing binary

operators are underlined, and the results of the best performing predictive models are both underlined and bolded.

Graph

nodes

Obj. cor

relation

Obj.

ID
Opr.

MLP PR GBRT

R2 MAE RMSE MRE R2 MAE RMSE MRE R2 MAE RMSE MRE

500 Positive

0

⨁ 0.422 27.07 35.22 0.193 0.406 27.41 35.48 0.196 0.382 27.42 35.53 0.197

◨ 0.494 29.63 38.11 0.201 0.420 27.38 35.31 0.195 0.405 27.32 35.30 0.196

⊙ 0.386 27.39 35.49 0.197 0.290 28.69 37.10 0.204 0.380 27.46 35.51 0.197

⊖ 0.219 30.81 39.60 0.217 -0.247 33.51 43.26 0.234 -0.631 33.48 43.10 0.234

1

⨁ -0.908 32.00 41.35 0.192 -1.15 31.78 41.07 0.191 -1.33 31.89 41.24 0.192

◨ -1.57 32.63 41.75 0.194 -1.06 31.85 41.12 0.191 -1.35 31.95 41.39 0.193

⊙ -1.37 32.35 41.63 0.194 -0.935 32.53 42.20 0.196 -1.38 32.02 41.47 0.193

⊖ -1.49 33.21 42.75 0.198 -2.16 33.73 43.45 0.201 -4.47 34.42 44.24 0.206

500 Negative

0

⨁ 0.039 27.49 35.67 0.209 0.097 27.46 35.53 0.208 0.071 27.46 35.59 0.208

◨ 0.131 31.28 39.94 0.221 0.111 27.57 35.58 0.208 0.093 27.45 35.48 0.208

⊙ -0.069 28.07 36.05 0.211 0.046 27.91 36.06 0.210 0.070 27.59 35.69 0.209

⊖ -0.135 30.90 39.76 0.226 -0.947 32.32 41.63 0.239 -1.81 32.97 42.21 0.243

1

⨁ -0.209 37.25 48.18 0.189 -0.484 36.79 47.31 0.187 -0.565 36.85 47.43 0.188

◨ -0.302 40.49 52.16 0.203 -0.467 37.03 47.50 0.188 -0.539 36.99 47.55 0.189

⊙ -0.414 36.90 47.83 0.190 -0.398 37.81 48.66 0.192 -0.574 37.03 47.67 0.189

⊖ -0.784 39.26 50.52 0.199 -1.55 40.43 51.75 0.204 -3.23 41.67 53.03 0.210

750 Positive

0

⨁ 0.682 35.61 46.45 0.180 0.660 35.80 46.76 0.182 0.644 36.15 47.37 0.184

◨ 0.643 39.57 51.04 0.191 0.677 35.32 45.95 0.180 0.671 35.34 46.03 0.180

⊙ 0.673 36.69 47.92 0.185 0.612 37.34 48.88 0.187 0.649 36.09 47.18 0.183

⊖ 0.503 44.36 57.61 0.217 0.068 49.46 64.56 0.240 -0.071 49.05 63.86 0.236

1

⨁ -0.106 53.90 68.87 0.173 -0.115 53.50 69.12 0.175 -0.182 53.53 69.20 0.176

◨ 0.080 58.21 75.89 0.189 -0.084 53.18 68.63 0.174 -0.165 53.57 69.29 0.177

⊙ -0.087 54.70 70.75 0.178 -0.172 53.81 69.63 0.177 -0.180 53.69 69.44 0.177

⊖ -0.390 58.03 74.23 0.187 -1.14 61.31 78.76 0.198 -1.80 61.05 78.34 0.198

750 Negative

0

⨁ 0.317 23.89 30.86 0.187 0.413 23.51 30.66 0.186 0.398 23.50 30.71 0.186

◨ 0.401 24.89 32.43 0.194 0.436 23.34 30.38 0.185 0.430 23.27 30.32 0.185

⊙ 0.400 24.11 30.75 0.185 0.359 24.07 31.59 0.189 0.409 23.45 30.62 0.186

⊖ 0.176 27.01 35.00 0.208 -0.448 29.98 39.01 0.228 -0.666 29.58 38.43 0.225

1

⨁ -0.553 31.64 40.98 0.178 -0.711 31.46 40.81 0.178 -0.787 31.47 40.86 0.179

◨ -0.602 33.40 43.44 0.187 -0.684 31.50 40.84 0.178 -0.755 31.50 40.90 0.179

⊙ -0.657 31.32 41.31 0.181 -0.778 31.59 41.01 0.179 -0.777 31.50 40.91 0.179

⊖ -0.939 34.68 44.68 0.193 -2.46 35.12 45.26 0.196 -3.98 35.18 45.26 0.197

1000 Positive

0

⨁ 0.778 36.21 46.94 0.171 0.769 36.65 48.28 0.174 0.745 37.14 49.50 0.175

◨ 0.778 36.84 48.26 0.176 0.790 35.58 46.41 0.171 0.791 35.20 46.04 0.170

⊙ 0.789 35.92 47.51 0.173 0.678 39.99 55.24 0.183 0.770 36.42 47.93 0.173

⊖ 0.678 42.39 55.14 0.194 0.336 54.54 72.90 0.245 0.276 50.91 68.94 0.227

1
⨁ 0.558 36.95 48.34 0.162 0.486 37.11 48.21 0.162 0.472 37.11 48.22 0.163

◨ 0.498 38.46 50.17 0.167 0.497 36.86 47.79 0.161 0.478 37.06 48.17 0.163

Jo
urn

al
Pre-

pro
of

 11

Table 3 Continued

Graph

nodes

Obj. cor

relation

Obj.

ID
Opr.

MLP PR GBRT

R2 MAE RMSE MRE R2 MAE RMSE MRE R2 MAE RMSE MRE

1000

Positive 1
⊙ 0.517 36.77 48.43 0.163 0.409 40.18 52.87 0.175 0.473 37.17 48.32 0.163

⊖ 0.402 40.02 51.20 0.171 0.151 43.47 56.29 0.187 0.022 42.95 55.61 0.185

Negative

0

⨁ 0.707 34.62 45.28 0.169 0.677 34.99 45.97 0.172 0.663 35.19 46.32 0.172

◨ 0.677 35.88 46.80 0.172 0.697 34.20 44.75 0.169 0.692 34.25 44.92 0.169

⊙ 0.696 34.26 45.33 0.170 0.607 38.20 50.74 0.183 0.672 34.99 45.93 0.172

⊖ 0.560 41.00 54.00 0.197 0.005 50.19 65.80 0.233 -0.114 48.89 64.60 0.226

1

⨁ 0.515 26.68 34.64 0.164 0.436 26.96 35.01 0.167 0.416 26.90 34.90 0.167

◨ 0.468 27.59 36.01 0.169 0.454 26.66 34.48 0.165 0.434 26.79 34.72 0.167

⊙ 0.445 26.83 34.89 0.167 0.349 27.85 36.61 0.171 0.425 26.91 34.90 0.167

⊖ 0.273 28.82 37.28 0.177 0.035 31.33 40.56 0.190 -0.114 31.08 40.32 0.189

6.2 Node physical pattern selection

According to Table 3, only the data generated via the operators “addition” and “concatenation” were selected to reveal the

importance of the integrated features. For the sake of reducing workload, we randomly chose the graph with 500 nodes and

negatively correlated objectives (denoted as 500_Nega) and the graph with 750 nodes and positively correlated objectives

(denoted as 750_Posi) to operate PCA.

Figure 3 Percentage of variance explained by each component of PCA: an example in the benchmark MOMG with 500 nodes and

negatively correlated objectives. Node physical patterns of O.D. pairs integrated via “addition” and “concatenation” operators are

evaluated, and twelve components are selected. The bars demonstrate the percentage of variance explained by each selected component while

the lines show the cumulative percentage of explained variance at each component.

Fig. 3 presents the PCA-explained variance against different number of components on graph 500_Nega. The contributions

mainly come from the first 4 components, where explained variance is more than 5% out of the whole data.

Table 4 demonstrates the prediction performance of features roughly selected via three methods of combining components.

As discussed in the end of Section 3.2, a challenge in PCA-based feature selection is determining the number of components. In

Table 4, we compare the prediction results obtained from considering only the first component versus using multiple components.

Note that, to avoid interference from less important components, we only take components with explained variance larger than

5% into account. Results show that features selected via considering multiple components predict better than single component.

Jo
urn

al
Pre-

pro
of

 12

Table 4 MLP prediction results for roughly selected features of two example graphs. “First component” means that the features are

selected based on their coefficients on the first component, “components added equally" denotes that the components with an explained

variance larger than 5% are added equally to obtain the final feature coefficients for further selection, and “components added with

weights” indicates that the feature coefficients on the components with explained variance larger than 5% are added with weights (weights

are the explained variance of components). The results of the best performing component combination are underlined. The percentage

values below the underlined values show the performance differences compared to the initial prediction performance generated by using all

physical patterns in Table 3.

Graph

nodes

Obj. cor

relation

Obj.

ID
Opr.

First component Components added equally Components added with weights

R2 MAE RMSE MRE R2 MAE RMSE MRE R2 MAE RMSE MRE

500 Negative

0

⨁ 0.041 27.77 36.02 0.210 0.0165
27.41

0.291%↑

36.08

1.15%↓

0.213

1.91%↓

-1.67 34.12 43.60 0.251

◨
-

0.266
30.01 38.34 0.223 -0.124 29.76 37.76 0.218 -0.038

28.65

8.41%↑

36.83

7.79%↑

0.214

3.17%↑

1

⨁ -1.17 37.78 48.71 0.194 -0.739
37.52

0.725%↓

47.93

0.519%↑

0.190

0.529%↓

-1.17 37.78 48.71 0.194

◨ -1.45 40.57 51.45 0.202 -0.692
37.65

7.01%↑

48.47

7.07%↑

0.193

4.93%↑

-0.866 37.78 48.62 0.194

750 Positive

0

⨁ 0.643 36.92 47.85 0.184 0.668
35.98

1.04%↓

47.49

2.24%↓

0.184

2.22%↓

0.0539 49.79 63.79 0.240

◨ 0.644 38.34 49.03 0.189 0.675
35.14

11.2%↑

46.18

9.52%↑

0.181

5.24%↑

0.675 35.14 46.18 0.181

1

⨁
-

0.173
53.97 69.87 0.178 -0.332

53.61

0.538%↑

69.27

0.581%↓

0.177

2.31%↓

-0.173 53.97 69.87 0.178

◨
-

0.095
54.21 70.44 0.179 -0.058 54.19 70.05 0.178 -0.044

53.39

8.28%↑

69.43

8.51%↑

0.176

6.88%↑

During tests, we noticed that different objectives and graphs yielded varying results in feature selection. Therefore, Table 4

represents the first selection step to produce rough results, where the top 20 important features were selected when using the

operator “addition”, while the top 40 were selected regarding the operator “concatenation”. Table 5 displays the interactions

among the features that were roughly selected in Table 4. There are the 12 most important features finally selected when using

the operator “addition” and the 30 most important features regarding the “concatenation”. It is worth focusing that some selected

features in Table 5 are of high computational complexity, such as “closeness centrality”, “load centrality” and “eccentricity”.

Table 5 Selected important features. Features are sorted by their ID order, consistent with Table 2. The features selected both by

operators ⨁ and ◨ are underlined and bolded. Note that when integrating feature vectors of a node pair via ◨, the node with the larger ID

is placed at the tail.

Operator ⨁ Operator ◨

No. Pattern name No. Pattern name No. Pattern name

2 Average neighbour degree †* 1 Degree (O.†*, D.†) 9 Second order centrality (O., D.)

3 Degree centrality 3 Degree centrality (O., D.) 10 Harmonic centrality (O.†, D.†)

5 Closeness centrality †* 4 Eigenvector centrality (O.†, D.†*) 14 Node connectivity (D.)

6 Current-flow closeness centrality † 5 Closeness centrality (O.†*, D.†) 19 Page rank (O.†*, D.†*)

9 Second order centrality
6

Current-flow closeness centrality

(O.†*, D.†)

20 Constraint (D.†)

10 Harmonic centrality † 21 Effective size (O.†*, D.*)

16 Periphery
7

Current-flow betweenness centrality

(O.†, D.†)
/ 17 Eccentricity

19 Page rank †* 8 Load centrality (O.†)

The physical patterns marked with “†” and “*” are the ones that can process edge weights. “†” marks the pattern for which the value computed without edge

weights is selected, while “*” marks the pattern for which the value computed with edge weights is selected.

“O.” and “D.” denote the origin and the destination of a node pair, respectively.

Jo
urn

al
Pre-

pro
of

 13

Using the finally selected features in Table 5 for prediction, the results generated by MLP are listed in Table 6. Compared to

the initial prediction performance shown in Table 3, the selected features can achieve nearly equivalent or even slightly better

accuracy levels.

Table 6 MLP prediction results of finally selected features. Those percentage values in the second lines in MAE, RMSE and MRE are the

performance differences compared to the initial prediction performance generated by using all physical patterns in Table 3.

Graph

nodes

Objective

Correlation
Obj. ID

Operator ⨁ Operator ◨

R2 MAE RMSE MRE R2 MAE RMSE MRE

500

Positive

0 0.4194
27.89

3.029% ↓

36.34

3.180% ↓

0.2000

3.627% ↓

0.3034
29.02

2.059% ↑

37.30

2.125% ↑

0.2051

2.040% ↓

1 -1.248
32.01

0.0313% ↓

41.85

1.209% ↓

0.1951

1.615% ↓

-2.668
33.81

3.616% ↓

43.44

4.048% ↓

0.2028

4.536% ↓

Negative

0 0.05075
27.61

0.4365% ↓

36.17

1.402% ↓

0.2119

1.388% ↓
-0.009177

29.31

6.298% ↑

37.29

6.635% ↑

0.2151

2.670% ↑

1 -0.6245
37.57

0.8591% ↓

47.98

0.4151% ↑

0.1898

4.233% ↓

-0.7861
37.73

6.816% ↑

48.88

6.288% ↑

0.1949

3.990% ↑

750

Positive

0 0.6299
36.81

3.370% ↓

48.04

3.423% ↓

0.1855

3.05% ↓

0.6291
36.76

7.101% ↑

47.84

6.270% ↑

0.1862

2.513% ↑

1 0.00722
53.75

0.2783% ↑

70.57

2.468% ↓

0.1791

3.526% ↓

-0.2418
54.16

6.958% ↑

70.57

7.010% ↑

0.1800

4.762% ↑

Negative

0 0.4637
23.58

1.298% ↑

31.12

0.8425% ↓

0.1872

0.1070% ↓

0.3515
24.60

1.165% ↑

31.75

2.097% ↑

0.1922

0.9278% ↑

1 -0.6378
31.33

0.9798% ↑

41.04

0.1464% ↓

0.1795

0.8427% ↓

-0.7757
32.13

3.802% ↑

41.78

3.821% ↑

0.1823

2.513% ↑

1000

Positive

0 0.7454
37.12

2.513% ↓

48.88

4.133% ↓

0.1750

2.339% ↓

0.7640
37.09

0.6786% ↓

48.41

0.3108% ↓

0.1775

0.8523% ↓

1 0.4862
38.09

3.085% ↓

48.73

0.8068% ↓

0.1637

1.049% ↓

0.4508
37.41

2.730% ↑

49.07

2.193% ↑

0.1666

0.2395% ↑

Negative

0 0.6721
35.25

1.820% ↓

46.66

3.048% ↓

0.1735

2.663% ↓

0.6716
36.32

1.226% ↓

46.73

0.1496% ↑

0.1737

0.9884% ↓

1 0.3807
27.40

2.699% ↓

35.35

2.050% ↓

0.1687

2.866% ↓

0.4703
27.68

0.3262% ↓

35.73

0.7776% ↑

0.1700

0.5917% ↓

6.3 Predicting based on node embeddings

Table 7 Results for predicting shortest path costs based on node embeddings using the MOMG simplification method trimming edges

Graph

nodes

Obj.

relation

Obj.

ID

MLP with the operator ⨁ PR with the operator ⨁ GBRT with the operator ⨁

R2 MAE RMSE MRE R2 MAE RMSE MRE R2 MAE RMSE MRE

500

Positive
0 0.7719 20.95 26.46 0.1215 0.5456 25.88 33.11 0.1716 -8.535 38.99 50.98 0.2688

1 0.5897 24.24 30.64 0.1226 0.2267 26.75 33.68 0.1459 -14.56 35.56 45.69 0.2110

Negative
0 0.7402 19.44 24.95 0.1213 0.3603 25.83 33.18 0.1817 -8.191 35.06 45.29 0.2589

1 0.6244 28.80 36.38 0.1233 0.2833 32.37 40.81 0.1525 -10.90 43.08 55.23 0.2164

750

Positive
0 0.8770 24.19 31.63 0.0991

Out of memory, killed by Python.

-8.227 60.11 82.59 0.2829

1 0.7536 36.07 45.80 0.1007 -9.114 65.33 84.89 0.2096

Negative
0 0.7838 17.68 22.54 0.1148 -10.30 34.30 45.28 0.2584

1 0.5915 24.88 31.43 0.1202 -26.53 37.60 48.35 0.2090

1000

Positive
0 0.9129 24.98 32.52 0.0992 -7.932 66.13 98.03 0.2843

1 0.8436 24.61 31.51 0.0923 -13.57 50.92 75.36 0.2101

Negative
0 0.8845 23.59 30.46 0.0949 -6.949 60.54 81.26 0.2748

1 0.8278 17.89 22.98 0.0930 -11.84 36.23 52.76 0.2122

Jo
urn

al
Pre-

pro
of

 14

Tables 7 and 8 show the results of predicting shortest path costs based on node embeddings using the proposed two MOMG

simplification methods. To obtain the best embeddings-based prediction performance, we followed the experiment settings

reported in [6], which involves not utilising edge weights for node2vec, setting node2vec hyperparameters 𝑝 = 0.3 and 𝑞 = 2,

and employing the operator “addition”. The results indicate that (i) the simplification method duplicating nodes results in better

predictive accuracy on all benchmark instances, and (ii) MLP always outperforms. And the comparison of Tables 6, 7, and 8

reveals that when using MLP, the node features extracted using the learning-based extraction method consistently yield better

prediction results than the statistics-based extraction method.

Table 8 Results for predicting shortest path costs based on node embeddings using the MOMG simplification method duplicating nodes

Graph

nodes

Obj.

relation

Obj.

ID

MLP with the operator ⨁ PR with the operator ⨁ GBRT with the operator ⨁

R2 MAE RMSE MRE R2 MAE RMSE MRE R2 MAE RMSE MRE

500

Positive
0 0.7940 19.63 25.04 0.1192 0.5606 25.65 32.74 0.1683 -7.445 38.82 50.97 0.2666

1 0.6579 22.05 27.67 0.1104 0.3560 25.15 31.78 0.1352 -18.99 35.90 46.04 0.2119

Negative
0 0.7573 18.86 24.14 0.1176 0.3954 25.46 32.48 0.1759 -9.064 35.40 45.78 0.2603

1 0.6853 26.08 32.90 0.1124 0.3745 30.88 38.98 0.1438 -11.94 43.08 55.24 0.2156

750

Positive
0 0.8932 23.01 29.51 0.0958

Out of memory, killed by Python.

-7.358 59.95 82.25 0.2823

1 0.7838 33.88 42.90 0.0947 -11.32 65.63 85.23 0.2098

Negative
0 0.7959 17.30 22.02 0.1124 -11.08 34.47 45.84 0.2597

1 0.6421 23.42 29.70 0.1111 -22.96 37.51 48.16 0.2080

1000

Positive
0 0.9142 24.32 31.58 0.0947 -7.251 66.39 97.83 0.2855

1 0.8596 23.56 30.12 0.0881 -14.17 51.61 75.64 0.2128

Negative
0 0.8993 22.64 29.07 0.0909 -7.345 61.09 82.12 0.2776

1 0.8453 16.85 21.51 0.0879 -12.85 36.38 53.05 0.2127

Figure 4 MLP-predicted shortest path costs against the actual values: an example in the benchmark MOMG with 1000 nodes and

positively correlated objectives. Subgraphs (a) and (b) depict the predicted results based on the finally selected important physical patterns,

Jo
urn

al
Pre-

pro
of

 15

while (c) and (d) depict the results based on the node embeddings using the MOMG simplification method that trims edges. Overestimation

happens severer in small-distance areas in subgraphs (a) and (b).

Fig. 4 takes the benchmark instance 1000_Posi as an example to illustrate the predicted shortest path costs plotted against the

actual costs. Note that, according to Table 6, the graph 1000_Posi provides the best 𝑅2 when using the MLP prediction based on

the finally selected physical patterns, where the linear relationship between the predicted and actual values is fitted the best.

However, even in this case, overestimation is obviously more pronounced in small distance values when using physical patterns

compared to using node embeddings. We observed that overestimation is much worse when predicting based on physical patterns

as for other benchmark instances.

7 Conclusions

This paper paid attention to the MOMG search problem, which serves as a conceptual prototype for AAGM. To efficiently

obtain single-objective shortest path costs for each objective in MOMG, which are heuristic information for MOMG heuristic

search algorithms, we proposed to predict the costs via regression models and investigated two node feature extraction methods:

statistics-based extraction and learning-based extraction. For the former extraction method, we provided a novel collection of

node physical patterns in benchmark multigraphs, and identified the top important patterns that are able to deliver the nearly

equivalent or slightly better predictive accuracy compared to the total set of patterns. For the latter extraction method, we proposed

two methods to simplify MOMGs to satisfy the requirements of node embedding technique, since almost all node embedding

algorithms can only deal with the adjacency information in the format of SOSGs.

Our experiment results suggest that the learning-based node feature extraction with the simplification method that trims edges

is the most appropriate approach, as it can reach a balance between predictive accuracy and computational complexity. Compared

to the finally selected important node physical patterns generated by the statistics-based extraction, the recommended approach

offers significantly outperforming prediction results, besides, it is noteworthy that some selected node physical patterns still have

undeniably high computational complexity. Compared to the simplification method that duplicates nodes, the distance prediction

results of the recommended approach are slightly worse. However, when the simplification method that trims edges is employed,

the number of nodes in the simplified graphs remains the same as the original MOMG. This characteristic is advantageous for

the efficient processing of node embedding algorithms, particularly in scenarios where the maximum number of parallel edges in

MOMG is extremely large.

For the future work, these directions deserve more focuses: (i) the exploration of additional node physical patterns. (ii) the

development of mechanism to handle the overestimation of small distances when using node physical patterns to predict shortest

path costs. (iii) the fine-tuning of hyperparameters for PR and GBRT. (iv) the conduct of further research and experimentation

on more regression models to evaluate their performance of predicting shortest path costs. (v) the investigation of the node2vec

hyperparameter that controls the number of random walks generated for each node, particularly in relation to the simplification

method that duplicates nodes. Even though the duplicated nodes have the same adjacent status as the initial nodes in the graph

and do not cause undersampling, increasing the number of walks may help node2vec capture the location property of duplicated

nodes more accurately. And (vi) the application of the proposed methods to real-world AAGM cases, incorporating techniques

to handle constraints encountered in actual operations, such as the time-varying availability of airport taxiways.

Jo
urn

al
Pre-

pro
of

 16

Appendix

Table Node physical patterns

Category No. Pattern name Description

Centrality

1 Degree *
Unweighted node degree is the number of edges adjacent to this node. Weighted node degree is the

sum of the edge weights for edges incident to this node.

2
Average neighbour

degree *

In an unweighted graph, average neighbour degree of node 𝑖 is defined as:
1

|𝑁(𝑖)|
∑ 𝑘𝑗𝑗∈𝑁(𝑖) , where

𝑁(𝑖) are node 𝑖’s neighbours and 𝑘𝑗 is node 𝑗’s degree. While in a weighted graph [32], that for node

𝑖 is defined as:
1

𝑠𝑖
∑ 𝑤𝑖𝑗𝑘𝑗𝑗∈𝑁(𝑖) , where 𝑠𝑖 denotes the weighted degree of node 𝑖 and 𝑤𝑖𝑗 is the weight

of edge connecting nodes 𝑖 and 𝑗.

3 Degree centrality The degree centrality for a node is the fraction of nodes it is connected to.

Centrality

4 Eigenvector centrality *

Eigenvector centrality [33] computes the centrality for a node based on the centrality of its

neighbours. The eigenvector centrality for node 𝑖 is the 𝑖-th element of the vector 𝑥, which is defined

as 𝐴𝑥 = 𝜆𝑥, where 𝐴 is the adjacency matrix of the graph with eigenvalue 𝜆.

5 Closeness centrality *

Closeness centrality [34] of a node 𝑖 is the reciprocal of the average shortest path distance to 𝑖 over

all 𝑛 − 1 reachable nodes, defined as:
𝑛−1

∑ 𝑑𝑖𝑠𝑡(𝑖,𝑗)𝑛−1
𝑗=1

 , where 𝑑𝑖𝑠𝑡(𝑖, 𝑗) is the shortest-path distance

between 𝑖 and 𝑗, and 𝑛 − 1 is the number of nodes reachable from 𝑖. The higher values of closeness

indicate higher centrality.

6
Current-flow closeness

centrality *

Current-flow closeness centrality is variant of closeness centrality based on effective resistance

between nodes in a network [35]. This metric is also known as information centrality [36].

7
Current flow between-

ness centrality *

Also known as random-walk betweenness centrality [37]. This metric uses an electrical current

model [38] for information spreading in contrast to betweenness centrality which uses shortest paths.

8 Load centrality * The load centrality of a node is the fraction of all shortest paths that pass through it [38].

9 Second order centrality The standard deviation of the return times to a node of a perpetual random walk on graph [39].

10 Harmonic centrality *
For node 𝑖, harmonic centrality [40] is the sum of the reciprocal of the shortest-path distances from

all other nodes, defined as ∑
1

𝑑𝑖𝑠𝑡(𝑖,𝑗)𝑖≠𝑗 , where 𝑑𝑖𝑠𝑡(𝑖, 𝑗) is the shortest distance between 𝑖 and 𝑗.

Clique 11 Node clique number The size of the largest maximal clique containing each node [41].

Clustering 12 Square clustering

For node 𝑗 , this metric [42] returns the fraction of possible squares that exist at the node,

∑ ∑ 𝑞𝑗(𝑖,𝑘)
𝑑𝑒𝑔(𝑗)
𝑘=𝑖+1

𝑑𝑒𝑔(𝑗)
𝑖=1

∑ ∑ [𝑎𝑗(𝑖,𝑘)+𝑞𝑗(𝑖,𝑘)]
𝑑𝑒𝑔(𝑗)
𝑘=𝑖+1

𝑑𝑒𝑔(𝑗)
𝑖=1

, where 𝑑𝑒𝑔(𝑗) is the degree of node 𝑗, 𝑞𝑗(𝑖, 𝑘) is the number of common

neighbours of 𝑖 and 𝑘 other than 𝑗 (𝑖. 𝑒. , squares), 𝑎𝑗(𝑖, 𝑘) = (𝑑𝑒𝑔(𝑖) − (1 + 𝑞𝑗(𝑖, 𝑘) + 𝜃𝑖𝑗)) +

(𝑑𝑒𝑔(𝑘) − (1 + 𝑞𝑗(𝑖, 𝑘) + 𝜃𝑖𝑘)), and 𝜃𝑖𝑘 = 1 if 𝑖 and 𝑘 are connected and 0 otherwise.

Communities 13
Kernighan-Lin

bisection *

A graph is partitioned into two blocks using the Kernighan-Lin algorithm [43]. Nodes in one section

are labelled 0, and 1 if they are in the other section.

Connectivity 14 Node connectivity
The minimum number of nodes that need to be removed to disconnect all paths to the investigated

node [44].

Distance measures

15 Centre
The centre is the set of nodes with eccentricity equal to radius [41]. Here, nodes in the set are labelled

1, or 0 otherwise.

16 Periphery
The periphery is the set of nodes with eccentricity equal to the diameter [41]. Here, nodes in the set

are labelled 1, or 0 otherwise.

17 Eccentricity The eccentricity of a node is the maximum distance from it to all other nodes [41].

Dominating sets 18 Dominating set
A dominating set for a graph with node set 𝑉 is a subset 𝐷 of 𝑉 such that every node not in 𝐷 is

adjacent to at least one member of 𝐷 [44]. Here, nodes in the set are labelled 1, or 0 otherwise.

Link analysis 19 Page rank *
This metric computes a ranking of nodes based on the structure of the incoming links. It was

originally designed as an algorithm to rank web pages [45].

Structural holes

20 Constraint *

This metric quantifies the extent that node 𝑖 is invested in the nodes [46], which are themselves

invested in the neighbours of 𝑖. The constraint on node 𝑖 is defined as: ∑ ℓ𝑜𝑐(𝑖, 𝑗)𝑗∈𝑁(𝑖)\{𝑖} , where

𝑁(𝑖) is the subset of the neighbours of 𝑖 that are either predecessors or successors of 𝑖 and ℓ𝑜𝑐(𝑖, 𝑗)
is the local constraint [46] on 𝑖 with respect to 𝑗.

21 Effective size *

The effective size of a node’s ego network is based on the concept of redundancy. A person’s ego

network has redundancy to the extent that her/his contacts are connected to each other as well. The

nonredundant part of a person’s relationships is the effective size of her/his ego network [47]. Then,

the effective size of node 𝑖 is defined as: ∑ (1 − ∑ 𝑝𝑖𝑘𝑚𝑗𝑘𝑘∈𝑁(𝑗))𝑗∈𝑁(𝑖)\{𝑖} , where 𝑁(𝑖) is the set of

neighbours of 𝑖, 𝑝𝑖𝑘 is the normalised mutual weight of 𝑖 and 𝑘 by 𝑖 highest mutual weight with any

of its neighbours, and 𝑚𝑗𝑘 is the mutual weight of 𝑗 and 𝑘. The mutual weight of two nodes is the

sum of the weights of edges joining them.

Vitality 22 Closeness vitality *
The closeness vitality of a node is the change in the sum of distances between all node pairs when

excluding that node [48].

* In calculation, edge weights can be used or not, 𝑖. 𝑒., these asterisked metrics have two potential values: one computed with weights while the other not.

Jo
urn

al
Pre-

pro
of

 17

References

[1] J. Chen, M. Weiszer, P. Stewart, et al., “Towards a more realistic, cost effective, and greener ground movement through active routing:
part 1 - Optimal speed profile generation,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 5, pp. 1196-1209, 2016. DOI:
10.1109/TITS.2015.2477350

[2] J. Chen, M. Weiszer, P. Stewart, et al., “Towards a more realistic, cost-effective, and greener ground movement through active routing:
part 2 - A multi-objective shortest path approach,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 12, pp. 3524-3540, 2016. DOI:
10.1109/TITS.2016.2587619

[3] X. Wang, A. E. I. Brownlee, M. Weiszer, et al, “An interval type-2 fuzzy logic-based map matching algorithm for airport ground
movements,” IEEE Trans. Fuzzy Syst., vol. 31, no. 2, pp. 582-595, 2023. DOI: 10.1109/TFUZZ.2022.3221793

[4] M. Weiszer, E. K. Burke, J. Chen, “Multi-objective routing and scheduling for airport ground movement,” Transp. Res. C: Emerg.
Technol., vol. 119, pp. 102734-102756, 2020. DOI: 10.1016/j.trc.2020.102734

[5] P. Serafini, “Some considerations about computational complexity for multi-objective combinatorial problems,” in Proc. Int. Conf. on
Vector Optimisation, Aug. 1986, pp. 222-232. DOI: 10.1007/978-3-642-46618-2_15

[6] S. Liu, J. Chen, M. Weiszer, “Multi-objective multigraph A* search with learning heuristics based on node metrics and graph
embedding,” in Proc. IEEE 11th Int. Conf. Intell. Syst., Oct. 2022, pp. 186-193. DOI: 10.1109/IS57118.2022.10019653

[7] L. Fu, D. Sun, L. R. Rilett, “Heuristic shortest path algorithms for transportation applications: State of the art,” Comput. Oper. Res., vol.
33, pp. 3324-3343, 2006. DOI: 10.1016/j.cor.2005.03.027

[8] C. T. Tung, K. L. Chew, “A multicriteria pareto-optimal path algorithm,” Eur. J. Oper. Res., vol. 62, no. 2, pp. 203-209, 1992. DOI:
10.1016/0377-2217(92)90248-8

[9] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik, vol. 1, no. 1, pp. 269-271, 1959. DOI:
10.1007/BF01386390

[10] P. E. Hart, N. J. Nilsson, B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE Trans. Syst. Sci.
Cybern., vol. 4, no. 2, pp. 100-107, 1968. DOI: 10.1109/TSSC.1968.300136

[11] R. W. Floyd, “Algorithm 97: shortest path,” Commun. ACM, vol. 5, no. 6, pp. 345, 1962. DOI: 10.1145/367766.368168

[12] F. S. Rizi, J. Schloetterer, M. Granitzer, “Shortest path distance approximation using deep learning techniques,” in 2018 IEEE/ACM Int.
Conf. Adv. Soc. Netw. Anal. and Min. (ASONAM), Aug. 2018, pp. 1007-1014. DOI: 10.1109/ASONAM.2018.8508763

[13] S. Chechik, “Approximate distance oracles with improved bounds,” in Proc. 47th Annu. ACM Symp. Theory Computing, Jun. 2015, pp.
1-10. DOI: 10.1145/2746539.2746562

[14] J. Sankaranarayanan, H. Samet, “Distance oracles for spatial networks,” in IEEE 25th Int. Conf. Data Engineering, Mar. 2009, pp. 652-
663. DOI: 10.1109/ICDE.2009.53

[15] M. Thorup, U. Zwick, “Approximate distance oracles,” J. ACM, vol. 52, no. 1, pp. 1-24, 2005. DOI: 10.1145/1044731.1044732

[16] M. Potamias, F. Bonchi, C. Castillo, et al.,“Fast shortest path distance estimation in large networks,” in Proc. 18th ACM Conf. Info.
Knowl. Mgmt., Nov. 2009, pp. 867-876. DOI: 10.1145/1645953.1646063

[17] J. Qi, W. Wang, R. Zhang, et al., “A Learning Based Approach to Predict Shortest-Path Distances,” in Proc. Int. Conf. Extd. Database
Technol., 2020, pp. 367-370.

[18] X. Chen, S. Wang, H. Li, et al., “Ndist2vec: node with landmark and new distance to vector method for predicting shortest path distance
along road networks,” ISPRS Int. J. Geo-Inf., 11, 514, pp. 1-12, 2022. DOI: 10.3390/ijgi11100514

[19] D. Brunner, “Distance preserving graph embedding,” B.S. thesis, ETH Zürich, Zurich, 2021. [Online]. Available:
https://pub.tik.ee.ethz.ch/students/2021-FS/BA-2021-17.pdf

[20] L. H. S. Lelis, R. T. Stern, A. Felner, et al., “Predicting optimal solution cost with conditional probabilities,” Ann. Math. Artif. Intell.,
vol. 72, pp. 267-295, 2014. DOI: 10.1007/s10472-014-9432-8

[21] P. Goyal, E. Ferrara, “Graph embedding techniques, applications, and performance: a survey,” Knowl. Based Syst., vol. 151, pp. 78-94,
2018. DOI: 10.1016/j.knosys.2018.03.022

[22] W. L. Hamilton, R. Ying, J. Leskovec, “Representation learning on graphs: methods and applications,” ArXiv abs/1709.05584, 2017, n.
pag. DOI: /10.48550/arXiv.1709.05584

[23] S. Cao, W. Lu, Q. Xu, “GraRep: learning graph representations with global structural information,” in Proc. 24th ACM Int. Conf. Info.
Knowl. Mgmt., Oct. 2015, pp. 891-900. DOI: 10.1145/2806416.2806512

[24] A. Grover, J. Leskovec, “Node2vec: Scalable feature learning for networks,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data
Min., Aug. 2016, pp. 855-864. DOI: 10.1145/2939672.2939754

[25] J. Zhang, Y. Dong, Y. Wang, et al., “ProNE: fast and scalable network representation learning,” in Proc. 28th Int. Joint Conf. Artif.
Intell., 2019, pp. 4278-4284. DOI: 10.24963/ijcai.2019/594

[26] F. Song, Z. Guo, D. Mei, “Feature selection using principal component analysis,” in Proc. Int. Conf. Syst. Sci., Eng. Design Manuf.
Informatisation, Nov. 2010, pp. 27-30. DOI: 10.1109/ICSEM.2010.14

[27] S. Haykin, Neural Networks: A Comprehensive Foundation. Hoboken, New Jersey: Prentice Hall PTR, 1994. Accessed: Mar. 30, 2023.
[Online]. Available: https://dl.acm.org/doi/abs/10.5555/521706

[28] X. Wang, A. E. I. Brownlee, J. R. Woodward, et al., “Aircraft taxi time prediction: feature importance and their implications,” Transp.
Res. C: Emerg. Technol., vol. 124, pp. 102892-102914, 2021. DOI: 10.1016/j.trc.2020.102892

[29] J. H. Friedman, “Stochastic gradient boosting,” Compt. Stat. Data Anal., vol. 38, no. 4, pp.367-378, 2002. DOI: 10.1016/S0167-
9473(01)00065-2

[30] M. Nickel, D. Kiela, “Poincaré embeddings for learning hierachical representations,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst.,
Dec. 2017, pp. 6341-6350. DOI: 10.48550/arXiv.1705.08039

[31] J. Zhou, G. Cui, S. Hu, et al., “Graph neural networks: a review of methods and applications,” AI Open, vol. 1, pp. 57-81, 2020. DOI:
10.1016/j.aiopen.2021.01.001

[32] A. Barrat, M. Barthélemy, R. Pastor-Satorras, et al., “The architecture of complex weighted netwroks,” PNAS, vol. 101, no. 11, pp. 3747-
3752, 2004. DOI: 10.1073/pnas.0400087101

[33] P. Bonacich, “Power and centrality: a family of measures,” Am. J. Sociol., vol. 92, no. 5, pp. 1170–1182, 1986.

[34] L. C. Freeman, “Centrality in social networks conceptual clarification,” Soc. Netw., vol. 1, no. 3, pp. 215-239, 1979. DOI: 10.1016/0378-
8733(78)90021-7

[35] U. Brandes, D. Fleischer, “Centrality measures based on current flow,” in Proc. Ann. Symp. Theor. Aspects Comput. Sci., 2005, pp. 533-
544. DOI: 10.1007/978-3-540-31856-9_44

[36] K. Stephenson, M. Zelen, “Rethinking centrality: methods and examples,” Soc. Netw., vol. 11, no. 1, pp. 1-37, 1989. DOI: 10.1016/0378-
8733(89)90016-6

Jo
urn

al
Pre-

pro
of

 18

[37] M. E. J. Newman, “A measure of betweenness centrality based on random walks,” Soc. Netw., vol. 27, no. 1, pp. 39-54, 2005. DOI:
10.1016/j.socnet.2004.11.009

[38] K.-I. Goh, B. Kahng, D. Kim, “Universal behaviour of load distribution in scale-free networks,” Phys. Rev. Lett., vol. 87, no. 27, pp. 1-
4, 2001. DOI: 10.1103/PhysRevLett.87.278701

[39] A.-M. Kermarrec, E. L. Merrer, B. Sericola, et al., “Second order centrality: distributed assessment of nodes criticity in complex
networks,” Comput. Commun., vol. 34, no. 5, pp. 619-628, 2011. DOI: 10.1016/j.comcom.2010.06.007

[40] P. Boldi, S. Vigna, “Axioms for centrality,” Internet Math., vol. 10, no. 3-4, pp. 222-262, 2014. DOI: 10.1080/15427951.2013.865686

[41] A. Hagberg, D. Schult, P. Swart, “Exploring network structure, dynamics, and function using NetworkX,” in Proc. 7th Python Sci. Conf.,
2008, pp. 11-16.

[42] P. Zhang, J. Wang, X. Li, et al., “Clustering coefficient and community structure of bipartite networks,” Phys. A: Stat. Mech. Appl., vol.
387, no. 27, pp. 6869-6875, 2008. DOI: 10.1016/j.physa.2008.09.006

[43] B. W. Kernighan, S. Lin, “An efficient heuristic procedure for partitioning graphs,” Bell Syst. Tech. J., vol. 49, no. 2, pp. 291-307, 1970.
DOI: 10.1002/j.1538-7305.1970.tb01770.x

[44] A.-H. Esfahanian, “Connectivity algorithms.” cse.msu.edu. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
(accessed Apr. 6, 2023).

[45] A. N. Langville, C. D. Meyer, “A survey of eigenvector methods for web information retrieval,” SIAM Rev., vol. 47, no. 1, pp. 135-161,
2005. DOI: 10.1137/S0036144503424786

[46] R. S. Burt, “Structural holes and good ideas,” Am. J. Sociol., vol. 110, no. 2, pp. 349-399, 2004. DOI: 10.1086/421787

[47] R. S. Burt, Structural Holes: The Social Structure of Competition. Cambridge: Harvard University Press, 1995.

[48] U. Brandes, Network Analysis: Methodological Foundations. New York: Springer, 2005. Accessed: Apr. 6, 2023. [Online]. Available:
http://books.google.com/books?id=TTNhSm7HYrIC

[49] R. D. Luce, A. D. Perry, “A method of matrix analysis of group structure,” Psychometrika, vol. 14, no. 2, pp. 95–116, 1949.
DOI:10.1007/BF02289146

[50] P. W. Holland, S. Leinhardt, “Transitivity in structural models of small groups,” Comparative Group Studies, vol. 2, no. 2, pp. 107–124,
1971. DOI: 10.1177/104649647100200201

[51] D. J. Watts, S. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998. DOI:
10.1038/30918

[52] A. Altmann, L. Toloşi, O. Sander, et al., “Permutation importance: a corrected feature importance measure,” Bioinformatics, vol. 26, no.
10, pp. 1340-1347, 2010. DOI: 10.1093/bioinformatics/btq134

[53] S. M. Lundberg, S. Lee, “A unified approach to interpretin model predictions,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst., Dec.
2017, pp. 4768-4777. DOI: 10.48550/arXiv.1705.07874

[54] Y. Xu, D. Zhang, J. Y. Yang, “A feature extraction method for use with bimodal biometrics,” Pattern Recognit., vol. 43, no. 3, pp. 1106-
1115, 2010. DOI: 10.1016/j.patcog.2009.09.013

[55] T. Mikolov, K. Chen, G. Corrado, et al., “Efficient estimation of word representations in vector sapce,” arXiv preprint, 2013. DOI:
10.48550/arXiv.1301.3781

[56] M. Kubat, “Neural networks: a comprehensive foundation by Simon Haykin, Macmillan, 1994,” Knowl. Eng. Rev., vol. 13, no. 4, pp.
409-412, 1995. DOI: 10.1017/s0269888998214044

[57] V. Nair, G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in Proc. 27th Int. Conf. Mach. Learn. (ICML-
10), 2010, pp. 807–814.

[58] X. Glorot, A. Bordes, Y. Bengio, “Deep sparse rectifier neural networks,” in Proc. 14th Int. Conf. Artif. Intell. Stats., 2011, pp. 315–323.
DOI: 10.1.1.208.6449

[59] D. P. Kingma, J. L. Ba, “Adam: a method for stochastic optimisation,” CoRR abs/1412.6980, 2014, n. pag. DOI:
10.48550/arXiv.1412.6980

[60] F. Pedregosa, G. Varoquaux, A. Gramfort, et al, “Scikit-learn: machine learning in Python,” arXiv preprint, 2012. DOI:
10.48550/arXiv.1201.0490 Jo

urn
al

Pre-
pro

of

Jo
urn

al
Pre-

pro
of

Jo
urn

al
Pre-

pro
of

Highlights (for review)

• Node physical patterns are offered for multigraph shortest path cost prediction

• Important node physical patterns are identified

• Multigraph simplification methods are proposed for node embedding algorithm usability

• Trimming parallel edges is the most recommended method to simplify multigraphs

• Simplifying by duplicating multigraph nodes produces embeddings that predict the best

Jo
urn

al
Pre-

pro
of

CONFLICT OF INTEREST
For Green Energy and Intelligent Transportation

Manuscript title:
Extracting Multi-objective Multigraph Features for the Shortest Path Cost
Prediction: Statistics-based or Learning-based?

The authors whose names are listed immediately below certify that they have NO affiliations with or
involvement in any organization or entity with any financial interest (such as honoraria; educational
grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership,
or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial
interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject
matter or materials discussed in this manuscript.

Songwei Liu

Xinwei Wang

Michal Weiszer

Jun Chen

This statement is signed by all the authors to indicate agreement that the above information is true and

correct:

Author’s name (typed) Author’s signature
Date

Songwei Liu

25 Apr 2023

Xinwei Wang
26 Apr 2023

Michal Weiszer

26 Apr 2023

Jun Chen

26 Apr 2023

Jo
urn

al
Pre-

pro
of

