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Abstract

Uncertainty surrounding cloud responses to changes in their environments contributes

majorly to uncertainty in the radiative effects of aerosol and predictions of future cli-

mates. Stratocumulus clouds exert a strong net cooling effect due to their high albedo

and large horizontal extent, yet their behaviour in the climate system is particularly

uncertain due to their high sensitivity to surroundings. High-resolution modelling is

crucial for studying stratocumulus behaviours, which are made up of many complex

interacting processes, on many scales from large-scale dynamics to the microphysical

responses to aerosol. However, many studies perturb cloud-controlling factors one at

a time, which makes it challenging to identify interactions with other factors and how

they jointly affect cloud properties. To understand the complex behaviour of marine

stratocumulus clouds, this thesis uses two statistical methods: perturbed parameter

ensembles and Gaussian process emulation. Perturbed parameter ensembles perturb

multiple factors simultaneously so that their joint effects can be analysed. Further-

more, these ensembles can be used as training data for Gaussian process emulation,

which is used to create statistical representations of the relationships between multi-

ple cloud-controlling factors and cloud properties of interest. The emulators are used

to generate the values of cloud properties for many new combinations of factor values,

which allows the joint effects of parameters to be analysed and parameter contributions

to the variances in the cloud properties to be quantified.

Firstly, two properties of the free troposphere are perturbed from simulations of a

homogeneous, nocturnal stratocumulus cloud to analyse cloud behaviour around the

break-up threshold for cloud-top entrainment instability. Dense sampling using emula-

tors of liquid water path and cloud fraction showed that there were non-linear interac-

tions between the two perturbed factors and two behavioural regimes. Additionally, a

method for approximating the natural variability of the cloud and accounting for it in

the emulator build was demonstrated. Secondly, the stratocumulus-to-cumulus tran-

sition was simulated to study the roles of aerosol and drizzle in the context of other

cloud-controlling factors. From the base simulation, one model parameter and five

cloud-controlling factors were perturbed across reasonable ranges. Analysis of the per-

turbed parameter ensemble showed that the fastest transitions occurred in low-aerosol
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environments combined with deep boundary layers, high autoconversion rates and dry

temperature inversions. When the ensemble was split into high- and low-drizzle environ-

ments, the inversion strength was found to have a strong control on transition time, via

entrainment, in low-drizzle environments. Thirdly, the ensemble of stratocumulus-to-

cumulus transitions was used as training data for Gaussian process emulation, which

allowed the joint effects of parameters in transition properties to be fully visualised

and quantified. Emulation revealed that there was a low-aerosol regime, where aerosol

concentration strongly controlled the transition time, but outside that regime, the tran-

sition time was largely dependent on the inversion strength. The transition time was

found to be a complex process that was influenced by multiple interacting parameters,

whereas the rain water path is controlled by individual parameters.
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Chapter 1

Introduction

1.1 Clouds in the climate system

Covering approximately two thirds of the planet, primarily in convergence zones and

areas of frequent storm tracks, clouds act in the radiation budget to reflect incident

solar radiation (shortwave energy) and retain outgoing thermal radiation (longwave

energy) (Stubenrauch et al., 2013; Boucher et al., 2014). Of the incoming 340 W m−2

of shortwave energy, clouds and the surrounding atmosphere reflect 75 W m−2. For

longwave energy, clouds approximately behave as a blackbody (a perfect absorber and

emitter of radiation) because water droplets strongly absorb thermal radiation, so long-

wave is re-emitted to space at the temperature of the cloud’s upper surfaces (Pincus

and Baker, 1994). Of the 398 W m−2 of upwelling longwave radiating from the surface,

only 28 W m−2 is retained by clouds, which is known as the cloud greenhouse effect.

With the removal of clouds from the climate system there would be 47 W m−2 less

shortwave and 28 W m−2 more longwave transmitted to space, giving a net difference

due to clouds (net cloud radiative effect) of -19 W m−2 (Wild et al., 2019). This means

that clouds have a global net cooling effect (Stephens et al., 2012).

The net cloud radiative effect varies regionally depending on location, altitude,

cloud properties and the albedo of the surface below the clouds. Polar clouds exert

a net warming effect for most of the year due to the high albedo of land and sea

ice beneath them and the lack of shortwave radiation during the polar night (Curry,

Schramm, and Ebert, 1993). Low, shallow clouds over marine environments have a net

cooling effect because the ocean surface has a lower albedo and they are low in the

atmosphere so longwave radiation is re-emitted from the cloud top at approximately

the same temperature as the surface (Klein and Hartmann, 1993).

Human activity since the pre-industrial period has rapidly increased the concen-

trations of greenhouse gases in the atmosphere, preventing longwave radiation from

2
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leaving the Earth system and causing an imbalance in the radiation budget that leads

to planetary warming (Forster et al., 2021). Changes to the radiation budget at the top

of the atmosphere by anthropogenic agents (e.g., the burning of fossil fuels) are quanti-

fied as “radiative forcings”. Radiative forcing is defined as the change in net downward

radiative flux at the tropopause after stratospheric temperatures have readjusted to

radiative equilibrium, while other temperatures and state variables are held fixed at

unperturbed values (Myhre et al., 2013). The total radiative forcing is the effective

radiative forcing, which can be split into the immediate response and the subsequent

adjustments, excluding responses to changes in temperature. There is huge interest

in quantifying the effective radiative forcing induced by human activity since 1750

(the “pre-industrial period”) to aid the accurate prediction of future climate changes

(Hansen, Sato, and Ruedy, 1997; Hansen et al., 2005; Myhre et al., 2013; Forster et al.,

2016; Bellouin et al., 2020; Smith et al., 2020).

The emission of aerosols since the pre-industrial period has caused a net increase

in the outgoing radiation at the top of the atmosphere (a negative radiative forcing)

through direct interactions with radiation and through interactions with clouds, which

then affect the radiation (Bellouin et al., 2020). Aerosols are solid, liquid or gas particles

suspended in the air and they provide a surface for water to condense onto to form cloud

droplets, so cloud properties are sensitive to changes in aerosol concentration. The

most recent Intergovernmental Panel on Climate Change (IPCC) report, Forster et al.

(2021), has estimated the total effective radiative forcing from aerosol as –1.3 [–2.0 to

–0.6] W m−2 for the period between 1750 and 2014. This number can be broken down

into the forcing from aerosol-radiation interactions of –0.3 ± 0.3 W m−2 and that from

aerosol-cloud interactions as –1.0 ± 0.7 W m−2. This radiative forcing is a significant

energy reduction in the Earth system. It partially offsets the effective radiative forcing

from carbon dioxide of 2.16 [1.90 to 2.41] W m−2 and other forcing agents, resulting in

a total anthropogenic forcing of 2.72 [1.96 to 3.48] W m−2. The largest portion of the

uncertainty associated with the total forcing comes from the uncertainty in the aerosol

forcing and reducing this uncertainty is crucial to more accurately quantify the total

effective radiative forcing (Carslaw et al., 2013; Reddington et al., 2017; Regayre et al.,

2018; Mülmenstädt and Feingold, 2018; Douglas and L’Ecuyer, 2020; Watson-Parris

et al., 2020).

The responses to the temperature increase caused by radiative forcing are called

“climate feedbacks” and they either amplify (positive feedback) or reduce (negative

feedback) the warming (Forster et al., 2021). The known feedbacks can be divided into

four terms relating to: increased emission of longwave radiation; increased atmospheric

water vapour and change in lapse rate; changes in albedo, primarily due to loss of land

and sea ice; and cloud feedback from changes to cloud amounts, altitude and radiative

properties. The longwave feedback (known as the Planck response) is strongly negative
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and compensates for the warming, whilst the other three feedbacks are positive and

amplify the warming. The signs of each of these feedbacks have been determined with

high certainty, however, the magnitude of the cloud feedback is largely uncertain in

comparison to the others and this uncertainty propagates through to the magnitude of

the net negative feedback (Soden and Held, 2006; Ringer et al., 2006; Vial, Dufresne,

and Bony, 2013).

Cloud feedbacks can be positive or negative depending on the balance between

changes to the longwave and shortwave effects (Ceppi et al., 2017; Forster et al., 2021).

Negative feedbacks come from a reduction in the extent of tropical anvil clouds (more

longwave radiated to space) and the replacement of ice crystals with liquid droplets in

extratropical clouds which increases the albedo of the clouds (more shortwave reflected

to space). The positive feedbacks come from an increase in cloud-top height which

enhances the cloud greenhouse effect; an increase in Arctic low-cloud amount (from

increased exposure to open water) and consequently their net warming effect; and

reductions in cloud amount, primarily over land in the mid-latitudes, and in marine

low clouds in the subtropics (reduction in the net-negative cloud radiative effect).

Estimates of radiative forcing and climate feedback are primarily derived from gen-

eral circulation model simulations, often of future climate scenarios such as a doubling

(or quadrupling) of CO2 emissions or a 2 K increase in sea surface temperature (Cess

et al., 1990; Ringer et al., 2006; Zhang et al., 2012; Zelinka et al., 2020). Since many

cloud processes operate on small temporal and spatial scales, approximations called

“parameterisations” have to be made to represent them on larger scales to make the

simulations feasible. However there are usually several possible ways to represent a

process and they often contain uncertain parameters, which results in a large spread of

predictions between models.

1.2 Stratocumulus clouds

The focus of this thesis is on low, shallow clouds called “stratocumulus”, which are

often only a few hundred metres thick and typically reside within the lower 2 km of

the atmosphere in the region, known as the boundary layer. Stratocumulus clouds are

generally characterised as sheets of cumulus cloud cells surrounded by cloud-free rings,

each cell on the order of 2 to 10 km, that can stretch homogeneously for many hundreds

of kilometres. Table 1.1 gives typical values for marine stratocumulus.

With 80% of stratocumulus occurring over the ocean, they exert a strong net cooling

effect on the climate system (Stephens and Greenwald, 1991; Hartmann, Ockert-Bell,

and Michelsen, 1992; Wood, 2012). According to Randall et al. (1984), a 4% increase in

low-level stratus clouds would offset a 2-3 K rise in global temperature. Much research

focuses on marine stratocumulus since small changes in their behaviour can have large
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Table 1.1: Typical properties for marine stratocumulus, adapted from Lohmann, Lüönd, and
Mahrt (2016), Wood (2012), and Wood (2015).

Parameter Typical value Typical range

Cloud droplet number concentration (cm−3) 75 10 to 300
Cloud droplet radius (µm) 7 2 to 12.5
Liquid water path (g m−2) 70 40 to 150
Vertical velocity (m s−1) - 0.1 to 1
Vertical extent (km) 0.5 0.2 to 0.7

impacts on the radiation budget, but there are large uncertainties surrounding how

stratocumulus respond to climate changes. These uncertainties persist because stra-

tocumulus clouds are particularly sensitive to microphysical processes (order of µm)

and eddies (up to around 1 km) that cannot be resolved in general circulation models,

which have a typical horizontal grid box of tens of km. Thus, parameterisations of stra-

tocumulus processes, including the response to aerosol, contribute largely to the overall

uncertainty in radiative forcing and climate feedback estimates (Bony and Dufresne,

2005; Teixeira et al., 2011; Vial, Dufresne, and Bony, 2013).

Clouds are primarily formed when air parcels rise through the atmosphere, adia-

batically cool and become saturated such that the water vapour in them condenses

(Carslaw, 2022). In the presence of aerosols, droplets form at a relative humidity of

very close to 100%, but without aerosols a relative humidity of around 300% would be

required (Quaas and Gryspeerdt, 2022). Air parcels may rise due to convection from

surface heating, ascent over orography, weather fronts where warm air is pushed up

over cold air, or turbulence from wind and air circulations. Marine stratocumulus form

where warm air overlies cold ocean surfaces, creating a stable boundary layer capped

by a temperature inversion, where the temperature can increase by up to 20 K within

tens metres (Wood, 2012). Much of the marine stratocumulus occurs in the subtropics

where inversions are caused by subsiding air from large vertical circulations that are

driven by deep convection from tropical ocean temperatures. At the inversion, the

overlying warm air begins to cool at the boundary allowing cloud droplets to form.

Stratocumulus clouds follow a diurnal cycle where incident solar radiation may cause

them to break up in the afternoon, however they can persist for several days if radiative

cooling allows sufficient recovery through the night. Unlike cumulus clouds where tur-

bulence is predominantly driven by surface fluxes (latent and sensible heating), which

create updrafts, stratocumulus are largely driven by longwave radiative cooling at the

top of the cloud (Lilly, 1968). Water droplets absorb and emit longwave radiation very

efficiently and the majority of longwave radiation is absorbed rather than scattered

(Nicholls, 1984; Moeng et al., 1996; Wood, 2012). Due to their low altitude, stra-

tocumulus absorb and re-emit longwave radiation at temperatures close to the surface

temperature, and therefore have only a small effect on outgoing longwave radiation.
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However, the downwelling longwave at cloud top is much smaller than the upwelling,

especially since these clouds often lie below a dry free troposphere (Nicholls, 1984).

This subjects the top few metres of the cloud to a cooling effect, whilst further into

the cloud the downwelling longwave balances with the upwelling longwave from absorp-

tion, scattering and emission (Wood, 2012). As well as strengthening the temperature

inversion above the cloud creating large horizontal expansion (Siems, Lenschow, and

Bretherton, 1993), this cloud-top cooling creates a thermal instability that cools air

parcels into downdrafts and drives convective overturning of the air in the cloud.

The longevity of a cloud requires mixing of air to continually bring in water vapour

and aerosol as cloud droplets are evaporated and mixed away or fall out of the cloud.

Air is entrained into stratocumulus clouds at their tops, mixing cloudy air with clear air.

The rate of entrainment depends on thermodynamic processes, like longwave cooling

and evaporation of droplets, as well as dynamical processes like wind shear (Duynkerke,

1993; Mellado, 2017). Entrainment of unsaturated air into the top of the cloud cools and

moistens it due to droplet evaporation, which reduces its buoyant energy and the overall

buoyancy in the cloud-top region (Lilly, 1968; Randall, 1980). Thus, entrainment

generates more turbulence, which sustains the cloud by providing new aerosol and

moisture, whilst also increasing droplet evaporation from mixing in dry air. Buoyancy

reversal occurs when evaporative cooling is large enough to create negatively buoyant air

parcels, which in turn can feed back to increase entrainment (evaporation-entrainment

feedback) (Deardorff, 1980; Randall, 1980). This was thought to cause a runaway

feedback (called cloud-top entrainment instability) that could dissipate the cloud in

tens of minutes. However, it has since been found that such an instability does not

exist without other factors counteracting it (Siems et al., 1990; Mellado, 2017). The

factors that affect cloud-top entrainment instability are explored in Chapter 3.

In many cases, a marine stratocumulus-topped boundary layer is a “well-mixed”

layer, which means the length of the vertical mixing is large enough that the largest

eddies reach from the surface to the cloud top, and profiles of potential temperature and

total water mixing ratio are constant (Nicholls, 1984). In these cases, the stratocumulus

is sustained by longwave cooling driving the convection, with access to the moist surface

layer (the ocean) as a source of water vapour that is mixed throughout the layer (Wood,

2012). If the boundary layer becomes too deep, longwave cooling is no longer sufficient

to drive such large eddies and the boundary layer becomes “decoupled” from the surface

(Nicholls, 1984; Klein, Hartmann, and Norris, 1995; Bretherton and Wyant, 1997;

Wyant et al., 1997; Wood, 2012). This results in a well-mixed cloud layer that is

separated from the subcloud layer by a shallow stable layer, which the mixing does

not cross. The subcloud layer is still coupled to the ocean as a moisture source and,

without mixing driven by cloud-top longwave cooling, it becomes driven by surface

latent and sensible heat fluxes, which may produce cumulus clouds. Although the
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cumulus clouds may provide enhanced updrafts and temporarily provide moisture to

the upper cloud layer, eventually the upper cloud layer will dissipate due to mixing

with free-tropospheric air. Decoupling often varies diurnally, with the stratocumulus

cloud recovering during the night when longwave cooling increases due to the lack of

incident solar energy.

Low-level stratocumulus are warm clouds in that their precipitation is all liquid

phase. A drizzle droplet has a radius on the order of 0.1 mm, whilst a rain droplet has

a radius around 1 mm (a cloud droplet is around 7 µm, see Table 1.1) (Lohmann, Lüönd,

and Mahrt, 2016). When drizzle droplets reach a large enough radius to overcome the

updraft velocity they fall through the cloud removing moisture and aerosol from the

cloud layer. Stratocumulus clouds generally produce light drizzle, if any, rather than

very heavy precipitation because they have weak updrafts, around 0.01 m s−1, com-

pared with deeper, surface-driven cumulus clouds of up to 10 m s−1 (Lohmann, Lüönd,

and Mahrt, 2016). Below cloud base, drizzle droplets encounter a relative humidity of

less than 100% so they begin to evaporate causing cooling and moistening in the sub-

cloud layer, which stabilises the boundary layer and inhibits deep mixing (Stevens et al.,

1998). Cloud droplets also experience gravitational settling (sedimentation). The re-

moval of moisture from the cloud top region, by sedimentation or precipitation, reduces

the moisture available for evaporative cooling and thus the kinetic energy available for

entrainment (Nicholls, 1984; Ackerman et al., 2004). Precipitation generally leads

to thinning of stratocumulus clouds, sometimes resulting in cloud breakup, through

reductions in liquid water content and mixing. Sedimentation without below-cloud

precipitation can lead to increased liquid water content since entrainment is reduced

but the water remains in the cloud (Ackerman et al., 2004; Bretherton, Blossey, and

Uchida, 2007).

Stratocumulus clouds are sensitive to their surroundings because they are thin so

they are easily diminished or dissipated by processes that promote evaporation of cloud

droplets. Additionally, albedo sensitivity to changes in droplet concentration is largest

for the range of liquid water paths (vertically integrated liquid water content) between

50 to 200 g m−2, which includes most stratocumulus (Wood, 2012). This means that

small changes in the environment can have a large effect on the local cloud radiative

effect. For example, depletion of moisture from the cloud layer by drizzle and the

resulting convection can generate pockets of open cells, where cells of cloud-free air

are lined by cloud, rather than the closed cells previously described (Stevens et al.,

2005b). Of particular interest in this thesis is the transition from stratocumulus to

cumulus clouds, which can more than halve the fraction of the surface covered by cloud

and consequently the albedo of the area (Albrecht et al., 1995; Sandu, Stevens, and

Pincus, 2010; Zhou, Kollias, and Lewis, 2015; Albrecht et al., 2019). Many kilometres

of stratocumulus decks break up in this way as cloudy air is advected over warmer
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sea surface temperatures towards the equator, yet there are still questions about what

changes these transitions are sensitive to. This transition is explored in Chapters 4 and

5.

The responses of marine low-cloud amount to global warming result from the com-

bined effects of increasing sea surface temperature, large-scale circulation changes, and

changes in the free troposphere (Zhang et al., 2013; Bretherton and Blossey, 2014;

Bretherton, 2015; Nuijens and Siebesma, 2019; Zelinka et al., 2020). There is a pre-

dicted weakening in large atmospheric circulations, which would decrease subsidence

and hence the strength of temperature inversions. Weakened subsidence results in

increased cloud-top entrainment, the raising of cloud tops and the thickening of stra-

tocumulus clouds (negative feedback). Additionally, with the change in lapse rate

(Forster et al., 2021), the free troposphere warms faster than the ocean surface, which

increases the inversion strength thereby lowering both cloud top and base, and also

thickening the cloud (negative feedback). However, the net positive response is de-

termined by two compensating positive feedbacks from reductions in cloud amount.

First, a “thermodynamic” mechanism follows the increase in sea surface temperature,

which increases surface fluxes, convection and hence entrainment at cloud top. Sec-

ond, a “radiative” effect from the increased water vapour in the atmosphere increases

the downwelling longwave radiative. This reduces cloud-top cooling and subsequently,

entrainment which lowers the cloud top.

1.3 Aerosol-cloud interactions

Sources of aerosols can be natural, such as volcanic ash and salt particles from sea spray

(Carslaw et al., 2010), or anthropogenic, such as black carbon and other particulate

matter from vehicle and agriculture emissions (Klimont et al., 2017). Aerosols directly

affect the radiative budget through absorption and scattering of shortwave radiation,

with the sign and magnitude of the local forcing depending on the aerosol composition

and the albedo of the surface which it overlays. Scattering aerosols increase local

albedo but will have a much larger effect overlying dark parts of the planet rather than

bright areas that already have a high albedo (Bellouin et al., 2020). Absorbing aerosols

appear dark and so they have the opposite effect. These albedo effects are termed the

“instantaneous” radiative forcing, but the effective aerosol-radiation interactions also

include adjustments to the instantaneous forcing. In low, shallow clouds absorbing

aerosol lying below the cloud heats the boundary layer which may increase decoupling

and decrease cloud amount. Conversely, absorbing aerosol lying above the cloud heats

the free troposphere and strengthens the capping inversion which may increase cloud

amount (Johnson, Shine, and Forster, 2004; Hill and Dobbie, 2008; Yamaguchi et al.,

2015; Carslaw, 2022). Diamond et al. (2022) discussed how the specifics of the aerosol-

radiative effect and the following adjustments are still rather uncertain.
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Most of the aerosol forcing comes from aerosol-cloud interactions through the role

of aerosol as nuclei for cloud droplets (Carslaw, 2022). As air parcels rise and approach

saturation, water vapour condenses and moistens a subset of aerosol particles that act

as cloud condensation nuclei. As the humidity continues to increase, these nuclei grow

in size through further condensation until the air becomes supersaturated and they

reach a critical diameter, at which they are “activated” as cloud droplets. Beyond this

point, the droplets continue to grow despite supersaturation beginning to decrease. If

the available liquid water content in a cloud is constant, increasing the concentration of

aerosol particles provides more cloud condensation nuclei and so the liquid water gets

distributed between more droplets. The increase in droplet number concentration in-

creases the droplet surface area and consequently the cloud’s optical depth and albedo.

This instantaneous effect is known as the Twomey effect (Twomey, 1974).

Following an increase in droplet number concentration and reduction in droplet

radii, several cloud adjustments can occur. Processes that increase turbulent mixing

and bring moisture into the cloud (or prevent it leaving) act to increase the liquid water

path and cloud lifetime:

1. The formation of drizzle or rain droplets is strongly dependent on the size of

the cloud droplets so a reduction in droplet radii may suppress precipitation and

retain moisture and aerosol in the cloud layer (Albrecht, 1989).

2. Increasing the droplet surface area can cause an increase in condensation rate and

latent heating, which drives vertical expansion of the cloud, in what is known as

cloud invigoration (Pincus and Baker, 1994; Christensen and Stephens, 2011;

Douglas and L’Ecuyer, 2021).

Conversely, processes that increase evaporation and entrainment tend to dry the cloud

layer leading to a decrease in liquid water path and possibly cloud thinning:

1. With smaller cloud droplets there is less gravitational settling within the cloud, so

moisture remains near the cloud top and has more evaporation potential, which

increases turbulent mixing and entrainment (Ackerman et al., 2004).

2. Smaller droplets are evaporated more efficiently so this also increases entrainment,

and can create an evaporation-entrainment feedback (Ackerman et al., 2004).

3. In Arctic stratocumulus, Williams and Igel (2021) have recently found that the

increase in entrainment with the addition of aerosol is actually from an increase

in longwave cooling which also drives entrainment.

Generally it is found that in precipitating clouds, the suppression of precipitation acts

to increase the liquid water path, whereas in non-precipitating clouds the increased

entrainment rates decrease the liquid water path (Gryspeerdt et al., 2019).
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1.4 Cloud-controlling factors in low, shallow clouds

Cloud properties depend on the environment in which they exist so changes in the

environment can lead to changes in cloud properties. The environment is made up of

all the cloud-controlling factors including surface properties (orography, temperature,

convection, moisture sources), meteorological factors (pressure, temperature, humidity,

winds), large-scale dynamics (subsidence), radiation, and aerosol concentrations.

Some of the key effects of environmental changes are as follows. For marine stra-

tocumulus, the ocean is a moisture and aerosol source. So surface temperatures affect

convection and turbulence, through sensible and latent heating, but also determine

how much evaporation occurs. Additionally, wind whips up sea spray adding sea salt

particles, which are aerosols, to the air. The relative humidity, which controls droplet

formation, is determined by pressure, temperature and available water vapour. Cloud

dissipation by entrainment depends largely on the temperature and humidity of the

above-cloud air (van der Dussen, de Roode, and Siebesma, 2014). Subsidence, the rate

of air descending through the troposphere, affects the depth of the boundary layer and

entrainment rate. The diurnal cycle creates a cycle in the strength of longwave cooling.

Aerosol effects have already been discussed, but the outcome of adding aerosol can

largely depend on the rest of the environment. For example, the effect on precipita-

tion of adding aerosols into a cloud can depend on the initial cloud droplet number

concentration (Ackerman et al., 2004).

It can be difficult to untangle aerosol-cloud interactions in observations because

factors interact with each other and a change can initiate several different processes

that may counteract each other (Stevens and Feingold, 2009). For example, low relative

humidity in the free troposphere enhances longwave cooling, which generally increases

cloud amount, but it also increases drying through entrainment, which can reduce cloud

amount. Possner et al. (2020) found that the longwave effect had a larger impact on

liquid water path and the cloud was thickened. Another example is the cloud lifetime

effect discussed above. Wood (2007) discusses how cloud thickening depends on the

balance between moistening and cooling from precipitation suppression and drying and

warming from increased entrainment. The entrainment is increased through additional

turbulence since the suppression of precipitation also suppresses the stabilising effect

of precipitation evaporation in the boundary layer (Pincus and Baker, 1994).

1.4.1 Satellite analysis

Satellite observations used in conjunction with reanalysis data along cloudy trajectories

have provided insight into the meteorological factors controlling cloud transitions into

new cloud states. This technique was first established by Pincus, Baker, and Bretherton

(1997), partly motivated by the fact that stratocumulus are not only impacted by
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their current environmental conditions, but also by previous conditions. For example,

Mauger and Norris (2010) found that subtropical cloud cover responds most strongly

to surface divergence on timescales of 12 hours or less and beyond that it becomes

more sensitive to lower-tropospheric stability and sea surface temperatures. Sandu,

Stevens, and Pincus (2010) characterised the stratocumulus-to-cumulus transition in

ocean basins across the world by compositing thousands of trajectories into climatology

cases, one climatological case will be simulated in Chapter 4. More recently, Eastman,

McCoy, and Wood (2022) found that closed-cell stratocumulus appears to break up

into open-cell stratocumulus following strong winds and large moisture fluxes, whereas

following increases in sea surface temperature and excess entrainment it breaks up into

a disorganised (cumulus-like) regime.

Aerosol relationships with cloud properties can also be assessed from retrievals of

droplet number and aerosol optical depth. Also shiptracks cam be used as a “natural

laboratory” to understand how aerosol plumes alter cloud properties with a natural con-

trol in the neighbouring unaffected cloud. Christensen and Stephens (2011) observed

cloud top heights to increase in the presence of shiptracks, but found much larger

changes in regions of open cell stratocumulus (generally more moist and unstable) than

closed cell stratocumulus (generally more dry and stable). Gryspeerdt et al. (2019)

showed the nonlinear relationship between droplet number concentration (Nd) and liq-

uid water path. At low Nd where precipitation is expected, increasing Nd increases

liquid water path through precipitation suppression, but at high Nd, liquid water path

decreases, most likely due to the decreased sedimentation, increased evaporation and

entrainment of smaller droplets. Possner et al. (2020) found the same positive relation-

ship in precipitating clouds, but also split their data into boundary layer depth regimes

and found cloud adjustments to Nd were greater in deeper boundary layers.

1.4.2 High-resolution modelling

The availability of satellite data in such vast quantities (and the computing power to

process them) is a rather recent development, whereas high-resolution cloud models

have been a key tool for many decades and have provided much of the current under-

standing of stratocumulus clouds. The use of three-dimensional fluid dynamics models,

called large-eddy simulation (LES) models, in boundary layer studies began with work

by Deardorff (1974) and Moeng (1984). LES models have been widely used since those

initial simulations, which began to explore the sensitivity of turbulence structure to

entrainment and were just 40 grid points along a 5 km horizontal domain for a single

day. Since then computational power has improved greatly. Yamaguchi, Feingold, and

Kazil (2017) simulated a 3-day cloud transition with 480 grid points along a 24 km hor-

izontal domain. Furthermore, in the last few years groups have suggested embedding

LES models within global climate models to more accurately simulate turbulence for
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low-level clouds (Schneider et al., 2017).

LES models have been used to study the effect of different environmental condi-

tions on stratocumulus-topped boundary layers. Unlike satellite observations, specific

cloud-controlling factors can be isolated and studied using idealised LES. Xu and Xue

(2015) found that cooler and moister air above the boundary layer gradually cools and

moistens the boundary layer too, creating lower cloud bases and higher cloud tops.

Bellon and Geoffroy (2016) found that low sea surface temperatures could produce

very different boundary layer states depending on the initial conditions, with initially

deep boundary layers producing a stratocumulus regime and initially shallow bound-

ary layers producing a clear sky regime. van der Dussen, de Roode, and Siebesma

(2016) found that a weakening of subsidence caused a higher liquid water path and

extended the cloud lifetime (similar to Sandu and Stevens, 2011). Zheng, Zhang, and

Li (2021) found that the increase in surface latent heat flux plays a crucial role in

sustaining decoupling during the transition from stratocumulus to cumulus clouds, but

the decoupling is initiated by entrainment of warm air from above.

LES have also been used increasingly to assess aerosol-cloud interactions, either

through cloud droplet number or an aerosol representation in the microphysics scheme.

Zhou, Heus, and Kollias (2017) found that precipitation has a nonlinear relationship

with cloud amount but below a threshold of Nd = 15 cm−3, precipitation causes a sud-

den decrease in cloudiness. Yamaguchi, Feingold, and Kazil (2017) found a particularly

fast cloud break up at low aerosol when drizzle from cumulus below stratocumulus was

uplifted to the stratocumulus layer and initiated heavy depletion of aerosol and mois-

ture. Goren et al. (2019) showed that adding aerosol delays cloud break up, but the

nature of the delay is determined by how the wider meteorology affects the liquid wa-

ter path. Wyant et al. (2022) found that small aerosol particles (known as the Aitken

mode) can increase cloud droplet numbers when the largest of them are activated,

which can increase cloud lifetime in regions of low aerosol concentrations.

Yet even within LES models, the subgrid, microphysical and radiation processes

need to be parameterised, and model intercomparison projects have been used to un-

derstand the differences between models caused by different approaches. Following

observational campaigns, researchers challenged LES models to recreate observed con-

ditions and compared the model results (Moeng et al., 1996; de Roode and Duynkerke,

1996; Stevens et al., 1998; Bretherton et al., 1999b; Bretherton et al., 1999a; Stevens

et al., 2003; Stevens et al., 2005a). Bretherton et al. (1999a) found that the vertical

resolution at cloud top needs to be around 5 m to get reliable entrainment rates. van

der Dussen et al. (2013) found large discrepancies between liquid water paths in the

stratocumulus-to-cumulus transition due to the precipitation parameterisations. The

launch of the CGILS (CFMIP-GASS Intercomparison of LES and SCM models) project

produced many studies using the same technique but for various climate forcings, such
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as a 2 K sea surface temperature increase and, more recently, a quadrupling of CO2

(Teixeira et al., 2011; Zhang et al., 2012; Zhang et al., 2013; Blossey et al., 2013; Blossey

et al., 2016). These studies focused on three cases of low, shallow clouds across the

stratocumulus-to-cumulus transition. They found strong agreement in the models on

the thermodynamic and dynamic responses, but the degree of each effect, and therefore

the net effect, depended on the individual model.

With many of these studies, it is difficult to build a complete picture of the main

causes of uncertainty because the problems are only sparsely sampled. Whether it

is assessing the differences between models, trying to understand the main drivers in

a process, or the different end states produced by different environmental conditions.

Each problem has some number of variable inputs to it and usually only a few values

for each factor are considered. The reality is that each factor present in the process,

or parameterisation, has a range of values it could take and many (very different)

combinations of factors are feasible, which is a property known as “equifinality”. In

the case of the most recent CGILS project, the perturbations are simulated on 6 models.

There are numerous differences in the parameterisations between the models creating

a high-dimensional parameter uncertainty space, but each model is only one point in

that space. In many process-level studies, one-at-a-time perturbations are made for

only a couple of values per factor.

1.5 Statistical methods to understand cloud behaviour

The dependency of cloud responses on different cloud-controlling factors could be thor-

oughly explored using Gaussian process emulation via “perturbed parameter ensem-

bles” (O’Hagan, 2006). Perturbed parameter ensembles (PPEs) are created by perturb-

ing multiple parameters simultaneously, rather than the usual one-at-a-time method.

In a 2-parameter ensemble, every simulation would have different values of each pa-

rameter and the ranges they are perturbed over form the dimensions of a “parameter

space” (left in Figure 1.1). PPEs can inform us about the joint effects between parame-

ters and they can be used as training data for Gaussian process emulation. Knowledge

about the joint effects of parameters is particularly useful for the nonlinear and chaotic

nature of clouds.

Gaussian process emulation is a machine learning technique that approximates the

function between a set of inputs (the parameters) and an output of interest to create a

surrogate model, which can be densely sampled for a fraction of the computational cost

of running the actual model. The dense sampling is crucial to extend our knowledge

of the parameter space, which has only been sparsely sampled by the PPE due to the

computational expense of running the actual model. This sampling allows quantifica-

tion of the output sensitivity to each parameter and visualisation of the relationships,
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Figure 1.1: Creating a response surface from a PPE. Left shows the distribution of parameter
values in a 2-dimensional parameter space; middle shows the model values at those points;
and right shows the emulator predictions filling parameter space as a response surface. The
triangle shows the values of the base simulation, from which the parameters have been perturbed
(circles).

which can give insight into the joint effects of parameters. Figure 1.1 shows how the

relationship between two parameters and the liquid water path can be visualised, first

using the PPE data alone and then by sampling parameter space with the emulator

and creating a “response surface” (discussed in Chapter 3).

These methods are often used to quantify and reduce uncertainty in the model,

where the perturbed “parameters” are uncertain coefficients in model parameterisa-

tions. But they can also be used to further process-level understanding where the

“parameters” are initial or boundary conditions, such as the cloud-controlling factors

we consider here. In these cases, the emulator is an approximation of the relationship

between a set of cloud-controlling factors and some cloud property that we are inter-

ested in. The emulator can be used to visualise this relationship and sensitivity analysis

can be used to identify the major drivers behind processes.

Gaussian process emulation was pioneered in aerosol model studies through sensi-

tivity analysis of cloud condensation nuclei to uncertain parameters in a global aerosol

model (Saltelli, Chan, and Scott, 2000; Johnson et al., 2015; Regayre et al., 2014; Re-

gayre et al., 2015; Regayre et al., 2018; Lee et al., 2011; Lee et al., 2013). With this

method, the output variance can be decomposed into the effect from each uncertain

parameter and also the joint effect of that parameter and its interactions with other

uncertain parameters. Lee et al. (2011) perturbed eight model parameters and found

that in polluted environments the uncertainty in sulphur emissions is responsible for

the majority of output uncertainty, but in remote regions, parameter interaction effects

become more important than any individual parameter. This work was extended to 28

parameters in Lee et al. (2013).

From the dense sampling of emulators, response surfaces can be produced which

enable visualisation of the combined effects of the uncertain parameters and the output

of interest (Figure 1.1, right). For up to 3 parameters, it is possible to visualise the
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whole response surface as done in Marshall et al. (2019) and Marshall et al. (2021)

for volcano eruptions. Glassmeier et al. (2019) perturbed a 6-dimensional parameter

space but emulated and visualised it by transforming it to a 2-dimensional state space,

showing how liquid water path and droplet number affect the cloud radiative effect.

One-dimensional relationships between each parameter and the output of interest can

also be viewed clearly and this highlights the parameters which cause the most variance

(Lee et al., 2011).

The uncertain parameter ranges can be constrained using observations of the output

of interest or linked quantities (Johnson et al., 2018; Regayre et al., 2018; Regayre et

al., 2020). Implausible regions of the parameter space can be ruled out by assessing

the output values produced across the parameter space by the emulator and comparing

them against observations. This removes some model variants (realisations of the model

produced by different combinations of parameters) and can reduce the uncertainty

ranges elicited for each parameter, which moves the possible parameter values to a more

appropriate range. For multiple model outputs that have common causes of uncertainty,

observations of one model output can constrain another, harder-to-observe output.

The PPE and emulator techniques have been successfully extended to understand

cloud processes, initially by Johnson et al., 2015 in convective clouds, but later through

several studies on marine stratocumulus (Glassmeier et al., 2019), deep convection and

hail (Wellmann et al., 2018; Wellmann et al., 2020), and sea breeze extent and aerosol

distribution, which affect the formation of clouds (Igel, van den Heever, and Johnson,

2018; Park et al., 2020). These studies perturbed initial meteorological conditions and

cloud-controlling factors to learn about their joint effects on different cloud and aerosol

properties. Additionally, Johnson et al. (2015) identified distinct cloud behaviours (or

regimes) in the precipitation response to perturbing aerosol concentrations: at low

concentrations the accumulated precipitation was stable, but at high concentrations,

the precipitation decreased sharply with increasing aerosol. Sensitivity analysis revealed

that the main factors affecting the cloud properties differed considerably between the

four regimes. The identification of such regimes would not have been feasible without

emulation.

In Gaussian process emulation, there is a fundamental assumption that the model

output is a smooth, continuous function of its inputs (O’Hagan, 2006). But the complex

behaviour of clouds in atmospheric modelling does not guarantee a smooth dependence

of cloud properties on cloud-controlling factors, and often erratic behaviour is observed.

The rapid development of pockets of open cells in stratocumulus clouds under a certain

set of environmental conditions is a good example of sharp changes in cloud properties

(Stevens et al., 2005b). Generating a statistical representation of non-stationary output

is an active area of research (Gramacy and Lee, 2008; Montagna and Tokdar, 2013;

Volodina and Williamson, 2018; Mohammadi et al., 2019; Pope et al., 2021). Pope
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et al. (2021) used data from Johnson et al. (2015) on convective clouds that were

found to display discontinuous behaviour between cloud regimes. They partitioned the

parameter space into Voronoi tessellations (Green and Sibson, 1978) and applied the

Gaussian process to each partition. They also allowed the joining of regions to create

more complex shapes around discontinuities. In both of our case studies, we attempt

to identify sharp changes in parameter space between regimes.

Gaussian process emulation creates a surrogate model of the complex model. The

surrogate is “naive” in that it is not trained with any physical knowledge of the system

in the real world, rather it only statistically approximates the relationship between the

input values and the outputs of interest. As such, the surrogate’s interpretation of the

training data is subject to any structural errors from the complex model, limited to

the perturbed parameter ranges, and cannot produce more realistic results than the

complex model itself. The method does allow parameter spaces to be densely sampled

in a way that is unfeasible with the complex model itself, which allows a broad analysis

of the complex model’s behaviour and identification of relationships that may otherwise

go unnoticed.

1.6 Research approach

The largest causes of uncertainty in estimates of radiative forcing and climate feedbacks

relate to aerosol-cloud interactions and cloud-climate feedbacks. A significant portion

of these uncertainties are due to difficulties in simulating low, shallow clouds and their

responses to changes in environmental conditions, including aerosols. These clouds

have a large cooling effect on the planet so a small change in their extent or physical

properties can offset or amplify a significant amount of CO2-induced warming, which

is why we are concerned with reducing this uncertainty to more accurately understand

our past and predict our future climate.

Three challenges shape the approach taken in this thesis. 1) High-resolution sim-

ulations of clouds are required to fully understand cloud responses to changes in their

environment and identify mechanisms that cause large changes in cloud cover and

thickness. 2) Cloud mechanisms are complex and driven by many interacting cloud-

controlling factors. It can be hard to distinguish between different drivers in observa-

tions and in simulations that only perturb one factor at a time. 3) Parameterisations in

global climate models are unable to resolve the small-scale processes that these clouds

are very sensitive to, so are unable to accurately capture cloud behaviours producing

large uncertainties in climate predictions. Exploring these aspects thoroughly requires

advanced statistical techniques to efficiently use high-resolution model output to further

process-level understanding of clouds.

This project uses PPEs and statistical emulation to improve our understanding of
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stratocumulus cloud responses to changes in cloud-controlling factors. In Chapter 3,

the free-tropospheric specific humidity and temperature are perturbed relative to a

simulation of homogeneous and temporally stable stratocumulus. That chapter aims

to demonstrate the application of PPEs and the interpretation of response surfaces. It

also explores how natural variability can be incorporated into the emulator technique

to create response surfaces that represent deterministic cloud behaviour rather than the

quasistochastic nature of the model. Chapter 4 simulates a stratocumulus-to-cumulus

transition and explores the effects of 6 parameters: 5 cloud-controlling factors and 1

model parameter. This ensemble is analysed to assess whether low-aerosol environments

cause faster transitions through a drizzle-depletion effect. Chapter 5 uses the same PPE

as training data for Gaussian process emulators of the transition properties which are

densely sampled thousands of times. These dense samplings are used to understand

the joint effects and quantify the sensitivity of the transition properties to each factor.

The questions to be answered are as follows.

Chapter 3:

1. Is there a cloud-breakup threshold separating two cloud regimes?

2. How well can we characterise the spatial change in cloud behaviour across pa-

rameter space using statistical emulation? Is there a discontinuity or a shallow

gradient between the regimes?

3. How can we account for the cloud’s natural variability in the emulators so that the

response surfaces represent deterministic cloud behaviour rather than stochastic

realisations of the model?

Chapter 4:

1. Do the fastest transitions from stratocumulus to cumulus occur in the regions of

low aerosol concentration?

2. What other cloud-controlling factors determine the time taken to transition? How

important is one of the autoconversion rate parameters compared to the cloud-

controlling factors?

3. Under what conditions does drizzle play an important role in the transition?

Chapter 5:

1. Using Gaussian process emulation, which factors is the time taken to transition

most sensitive to?

2. To understand the drivers of drizzle, which factors is the rain water path most

sensitive to?
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3. What additional information do we gain from using emulator predictions for thou-

sands of new parameter values that we did not have from the PPE analysis in

Chapter 4



Chapter 2

Models and methods

2.1 Models

2.1.1 Large-eddy simulation

This work uses a large-eddy simulation (LES) model called the UK Met Office/Natural

Environment Research Council (NERC) Cloud (MONC) model (Gray et al., 2001;

Brown et al., 2020). MONC uses the same underlying science as the UK Met Office’s

original large-eddy model (the LEM), which was developed in the late 1980s, but it

was written as a new model throughout the 2010s to make it suitable for use on mod-

ern high-performance computers. For example, the LEM could only be run on up to

512 cores, whereas ARCHER2 (the UK’s national supercomputing service, which came

into use in 2021) has over 700,000 cores available. The LEM was a primary tool in de-

veloping parameterisations for the Unified Model and contributed simulations to many

LES model intercomparisons that tested model abilities for reproducing observations of

shallow, low clouds (Moeng et al., 1996; Bretherton et al., 1999a; Pier Siebesma et al.,

2003; Stevens et al., 2005a; van der Dussen et al., 2013) and the CGILS cloud-climate

feedback intercomparisons (Teixeira et al., 2011; Zhang et al., 2013; Dal Gesso et al.,

2015; Blossey et al., 2016).

The MONC model solves a Boussinesq-style approximation of the Navier-Stokes

equations of motion, assuming that differences in density are negligible (Gray et al.,

2001). It solves equations for momentum conservation, mass continuity and thermody-

namics using a reference state defined by density, temperature and pressure from which

perturbations are assumed to be small. It can be used for an incompressible system,

where the reference state is constant with height, or for an anelastic system, where

the reference state is a function of height. The incompressible assumption is suitable

for most shallow cloud applications, but the anelastic case is appropriate for deeper

simulations. In MONC, the user sets the reference potential temperature and then the

19
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reference density and pressure are calculated from the ideal gas law and the hydrostatic

equation, given the surface pressure as a boundary condition.

“Large-eddy” simulations are so called because they explicitly resolve large-scale

turbulent eddies, which contain the majority of the energy of motion and filter small-

scale turbulence into a subgrid turbulence approximation, which also deals with unre-

solved diffusion and viscosity. In the MONC model, the subgrid calculations are based

on the Smagorinsky (1963) model for eddy viscosity and diffusivity, with the addition

of the effect of buoyancy on energy production from Lilly (1962). The size of the hor-

izontal grid boxes is constant but the size of the vertical layers can vary through the

domain. MONC is capable of resolving down to just a few meters. We used horizontal

grid box sizes between 30 to 50 m and vertical layers between 5 to 20 m in the boundary

layer stretching up to 100 m near the top of the vertical domain. The first domain used

here was 7.5 by 7.5 by 1.5 km3 and the second domain was 12.75 by 12.72 by 3.1 km3

The boundary conditions in the MONC model are periodic in the horizontal for all

prognostic variables. The top and bottom are rigid lids with the vertical velocity being

zero at each surface. The bottom surface can interact with variables through frictional

stresses and surface sensible and latent heat fluxes. Having the top surface as a rigid lid

can lead to gravity waves being reflected, which is generally not realistic, so a damping

layer of a specified size is added at the domain top above which the prognostic variables

are relaxed to their horizontal mean values.

The architecture of the MONC model uses a “plug and play” approach to the vari-

ous components around the model core. This approach allows easy switching between

different schemes, for example between a “simple cloud” microphysics approximation

and a bulk two-moment microphysics scheme. There is also a choice of two advec-

tion schemes, either Piacsek and Williams (1970) or the total variance diminishing

scheme from Leonard, MacVean, and Lock (1993). To maintain numerical stability, an

adjustable timestep is used based on the “CFL” number of Courant, Friedrichs, and

Lewy (1928). This calculates the CFL number and ensures the timestep remains below

the set criteria.

The MONC model can be coupled to a microphysics model and a radiation model.

Although some of the processes within these models are now very well understood, such

as aerosol activation, they are still very complex to fully resolve and so these models

use parameterisations and look-up tables.

2.1.2 Microphysics scheme

The microphysics scheme used is the Cloud AeroSol Interacting Microphysics (CASIM)

model, which was developed to be used in both the UK Met Office Unified Model and

in the LEM (Shipway and Hill, 2012; Grosvenor et al., 2017). It has been used in the
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MONC model for several warm-cloud studies including assessing warm-rain parame-

terisation (Hill, Shipway, and Boutle, 2015), droplet sedimentation in clouds over West

Africa (Dearden et al., 2018), and aerosol activation in fog simulations (Poku et al.,

2021). Field et al. (2023) details CASIM parameterisations and implementations in the

Unified Model and includes details on its implementation in the MONC model.

CASIM can simulate up to five hydrometeor species when ice processes are included.

However, this work is only concerned with warm-cloud processes. Here, the cloud

prognostic variables are cloud liquid and rain droplets. The particle size distributions

are represented using gamma distributions,

N(r) = N0r
µe−γr, (2.1)

where r is a measure of size, N0 is the distribution intercept parameter, µ is the shape

parameter and γ is the slope parameter (Shipway and Hill, 2012). The kth moment is

then defined by,

Mk =

∫
rkN(r)dr. (2.2)

CASIM can use up to three moments to define prognostics and here we use two: number

concentration and mass mixing ratio. The number concentration is the zeroth moment,

M0 = N0, and the mass mixing ratio is the third moment, e.g., for a log-normal distri-

bution M3 = 4
3πr

3N0exp(
9
2 ln

2σ).

CASIM can be used without aerosol, where the user defines a fixed cloud droplet

number concentration, or with aerosol and with varying degrees of in-cloud processing.

When aerosol is included, it is also represented by number concentration and mass

mixing ratio prognostics, and these are configured as initial profiles of Aitken, accu-

mulation and coarse modes. Insoluble aerosol can be included, but here we have only

used soluble aerosol. At saturation, the number of aerosol particles activated into cloud

droplets is calculated using the scheme of Abdul-Razzak and Ghan (2000), which in-

tegrates over distributions of aerosol number and updraft velocity, and these activated

aerosol are represented using a separate in-cloud mass mixing ratio prognostic.

Condensation and evaporation are calculated by a saturation adjustment scheme,

where at saturation any surplus water vapour in the grid box condenses onto the number

of cloud droplets and any deficit evaporates droplets and returns aerosol to interstitial

aerosol modes (Field et al., 2023). This scheme keeps the relative humidity within the

cloud at 100%, i.e., supersaturation does not occur, and each grid box has either a

cloud fraction of 1 or 0 depending on whether it is saturated or not. Condensation

of water vapour onto rain cannot occur because supersaturation is not possible. Rain
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evaporates in the cloud-free (sub-saturated) grid boxes, but aerosol is not returned to

the size modes through this process. Sedimentation advects cloud and rain droplets

downwards through the boundary layer according to their fall velocities. Mixing of

new air from above the cloud into the cloud layer is homogeneous, which means new

air is mixed in with the cloudy air before the evaporation calculation takes place so all

droplets are evaporated equally until saturation is reached. This means that there is a

reduction in cloud droplet radius, but cloud droplet number is not affected.

The microphysical collection processes follow the Khairoutdinov and Kogan (2000)

parameterisation, though MONC can now use the parameter values from Kogan (2013)

(more suited to cumulus) (Field et al., 2023). “Autoconversion” is the self-collection of

cloud droplets to form rain droplets and its rate is defined by,

Praut = 1350q2.47w

(nwρ

106

)1.79
, (2.3)

where qw is cloud water mass mixing ratio, nw is cloud water number concentration and

ρ is the air density. Autoconversion results in a decrease in cloud droplet number and

mass and an increase in rain droplet number and mass. “Accretion” is the collection

of cloud water by rain and its rate is defined by,

Pracw = 67(qwqr)
1.15, (2.4)

where qr is the rain water mass mixing ratio. Accretion results in a decrease in cloud

droplet number and mass, and an increase in rain mass but not droplet number.

The aerosol can be processed to different degrees: aerosol activation only; activa-

tion plus transferal to the in-cloud activated prognostic; or activation, transferal and

mechanical growth of particles. The growth occurs with the aggregation of droplets,

which increases the aerosol mass per particle and decreases the number. On evapo-

ration, one aerosol particle per hydrometeor is returned to the appropriate interstitial

aerosol mode according to their radius (Miltenberger et al., 2018).

2.1.3 Radiation

Where a diurnal cycle is not required, the MONC model can be used with only a pa-

rameterisation for longwave cooling and warming rates at cloud top and base. The

cooling rates are calculated from liquid water content using an exponential decay func-

tion, which is based on the calculation for radiatively active smoke used in Bretherton

et al. (1999a).

The radiation model used for diurnal simulations is the Suite of Community RA-

diative Transfer codes based on Edwards and Slingo (1996) (SOCRATES) and it was
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also designed to be used in the Unified Model (Manners et al., 2015) and was adapted

for coupling to the MONC model. It uses a two-stream approximation, where radiation

is considered to propagate along two discrete directions, upwards and downwards, in

the longwave and shortwave regions of the spectrum. The scheme reads in files that

break down atmospheric radiation into spectral bands, which can then be considered

to have uniform radiative properties. These files also contain information such as the

physical nature of atmospheric gases and aerosols, the fraction of the solar spectrum

in each band, the list of gaseous absorbers in each band, and absorption coefficients.

2.2 Perturbed parameter ensembles and statistical emu-

lation

A perturbed parameter ensemble (PPE) is a set of simulations in which multiple pa-

rameters have been changed simultaneously. The parameters in this work are mostly

cloud-controlling factors, though one uncertain model parameter from the autoconver-

sion parameterisation is added in Chapter 4. Each parameter is assigned a range of

likely values to be perturbed across. For the cloud-controlling factors, we have used

ranges that are typical values that might be found for stratocumulus clouds in the re-

gion. For the uncertain autoconversion parameter, the range is chosen to give a realistic

set of autoconversion rates.

The specific values that are used within each parameter’s range are chosen using

a space-filling design so that it samples the multi-dimensional parameter space as ef-

fectively as possible. Since some parameters will be more influential than others in a

high-dimensional parameter space, regular grid designs are avoided such that replica-

tion of design points does not occur on projection to lower dimensions. The effect of

this can be seen in Figure 2.1. If Parameter 1 alters the output only a small amount

compared to Parameter 2 (i.e., the dimension of Parameter 1 “collapses”), then the

four perturbations across the range of Parameter 1 are just repeating information from

other simulations.

The “maximin” Latin hypercube design by McKay, Beckman, and Conover (1979)

uses a simulated annealing approach to finding a design that maximises the minimum

distance between the design points. Jones and Johnson (2009) found this algorithm to

give the best results for Gaussian process emulation, with the recommended number of

design points being 10 times the number of perturbed parameters, d (Loeppky, Sacks,

and Welch, 2009). The algorithm works by splitting each parameter’s range into 10×d

segments and selecting a random value from within each segment. Each parameter’s

values are randomly matched with the other parameter’s values without overlapping

segments. Figure 2.1 shows that if one dimension collapses each simulation point is

still giving information about the remaining dimensions.
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Figure 2.1: Examples of two space-filling designs and how they collapse down into lower
dimensions. The grid design appears to fill the 2-dimensional space well, but when the second
input becomes much less important than the first, design points are replicated. With the Latin
hypercube design, all the design points are valuable and give new information, even if it collapses
to one dimension.

The statistical emulation method used in this work is Gaussian process emula-

tion. It is a Bayesian statistical approach that generates a mapping between a multi-

dimensional input space (the parameter values) and an output of interest (O’Hagan,

2006). It requires a set of training data consisting of the perturbed parameter values

and the corresponding output data. The approach is initiated with a prior Gaussian

specification for the mapping, which is updated using information from the training

data to produce a posterior specification. This is the emulator and it is a surrogate

model which approximates the function between the perturbed parameters and the out-

put of interest. The emulator is a continuous function that can be used to predict the

model’s output for any new combination of parameter values at a considerably reduced

computational cost over running the cloud model itself.

Mathematically, from Johnson et al. (2015), for d uncertain input parameters X =

X1, X2, ..., Xd is the set of input parameters that make up a d-dimensional parameter

uncertainty space. Then for a model output of interest Y , there is some relationship in

the model, g(·), for which Y = g(X). Gaussian process emulation is used to construct

an approximation of the function g(·) so that Y can be predicted. The Gaussian process

is made up of a mean function and a covariance structure. Letting x = x1, x2, ..., xd be

a given realisation of X, the prior representation of the model behaviour is given by,

g(x) ∼ GP [m(x), V (x, x′)], (2.5)

where m(x) is the mean function and V (x, x′) is the covariance structure. These are
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chosen to incorporate any prior knowledge of the model. Here, we have used a linear

mean function and the Matérn covariance structure. The Matérn covariance structure

has been found to work well for cloud models where the outputs may be nonlinear. The

covariance structure provides an approximation of the uncertainty surrounding each

mean output value, assuming a Gaussian error structure. All emulation processes were

calculated using the “km” function of the DiceKriging package (Roustant, Ginsbourger,

and Deville, 2012) in R (R Core Team, 2018).

In the first case study in Chapter 3, we create a 2-dimensional PPE made up of 20

simulations. We also generate a separate set of 8 simulations to use as validation data,

to check the emulator’s predictions against the actual model values. In the second case

study in Chapter 4, we create a 6-dimensional PPE initially made up of 84 simulations

(60 for training and 24 for validation), however, this is augmented with a further 12

simulations.

2.2.1 Sensitivity analysis

The Gaussian process emulators are used for variance-based sensitivity analysis to

apportion the variation in the output of interest to the different perturbed parameters

(Saltelli, Tarantola, and Chan, 1999). This analysis quantifies the contributions from

each parameter in terms of the percentage of the output’s variance.

The variance-based sensitivity analysis (Saltelli, Chan, and Scott, 2000) used here

is the Fourier Amplitude Sensitivity Test (FAST) from the R package “sensitivity”

(fast99 method) (Saltelli, Tarantola, and Chan, 1999; Iooss, Janon, and Pujol, 2023).

This method assumes that the expected value of the model output can be represented

as a linear combination of sine and cosine functions of varying frequencies. Using the

properties of Fourier series, an approximation of the variance in the model output can

then be estimated using a set of Fourier coefficients. A transformation function is

evaluated at many different phases and frequencies (which relate to parameter values,

we use 1000 combinations) to understand sensitivity to the parameters across phase

space and compute the Fourier coefficients for each parameter.

The Fourier coefficients can be used to calculate sensitivity indices that quantify the

contributions from each parameter, or from combinations of parameters, to the variance

in model output (Saltelli, Chan, and Scott, 2000). The first-order index is calculated

from a specific frequency and its higher harmonics and this defines the “main effect”,

which is the variance due to the individual effect of a parameter. The higher-order

indices are calculated from a different set of frequencies which contain information

about the residual variance that is not accounted for in the first-order indices, this

defines the “total effect”, which is the variance due to each parameter plus interactions

with other parameters. In Chapter 3, the sensitivity analysis was robust to different
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emulator builds. However, in Chapter 5 the values of each contribution were slightly

variable depending on the exact emulator build. We created 100 emulator builds for

each transition property and did the sensitivity analysis on each build to average the

results. Replicating the analysis in this way gives us much greater confidence in the

results presented.
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Visualisation of the deterministic

response of stratocumulus cloud

properties to free-tropospheric

controls using statistical

emulation

3.1 Abstract

Large uncertainties persist in modelling shallow, low clouds because there are many

interacting nonlinear processes and multiple cloud-controlling environmental factors.

In addition, under some conditions, a sharp change in behaviour can occur. Model

studies that follow a traditional approach of exploring one factor at a time are unable

to fully capture the relationships between the interacting factors and the simulated

cloud properties. Here, we simulate a stratocumulus cloud based on the observations

of the Second Dynamics and Chemistry of Marine Stratocumulus field study using a

large-eddy simulation model coupled with a two-moment cloud microphysics scheme.

Gaussian process emulation is used to visualise and assess the relationships between two

cloud-controlling factors and the simulated cloud properties. Only 29 model simulations

were required to build the emulators, which then enabled predictions of mean cloud

properties to be made at thousands of combinations of the two factors within the ranges

sampled by the simulations. The emulator predictions form a response surface that can

be used to visually inspect the relationship between the cloud-controlling factors and

any mean model output. Response surfaces of cloud liquid water path and cloud fraction

show two cloud behavioural regimes of thin and patchy yet steady stratocumulus and

27
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thick, growing stratocumulus with cloud fraction near 1. A particular focus of this study

is to explore how to incorporate natural cloud variability (initial condition uncertainty)

into the emulators, and how it affects interpretation of the cloud response surfaces.

Failure to account for the variability creates unrealistic “bumpy” response surfaces. We

show that it is possible to characterise the variability by measuring the scatter of a small

number of initial-condition ensemble simulations around the emulated surface, thereby

allowing a smoother, deterministic response surface to be constructed. Accounting for

variability leads to the firm conclusion that there is a smooth but steep change in cloud

behaviour between cloud regimes, but not a sharp transition.

3.2 Introduction

Shallow, low clouds cover a larger area of the Earth than any other cloud type, with

stratocumulus clouds alone covering one-fifth of the surface. They increase Earth’s

albedo in most regions because they reflect more solar radiation than the underlying

surfaces (Wood, 2012), while having only a small effect on emission of terrestrial ra-

diation. Therefore, globally, they have a net cooling effect (Hartmann, Ockert-Bell,

and Michelsen, 1992). These clouds are important for the global radiation budget

and how it changes over time in response to warming (cloud feedback: Ceppi et al.,

2017; Schneider, Kaul, and Pressel, 2019; Bretherton, 2015; Shen et al., 2022) and

changes in aerosols (radiative forcing: Bellouin et al., 2020; Smith et al., 2020; Douglas

and L’Ecuyer, 2020; Malavelle et al., 2017). However, the responses of shallow, low

clouds to changes in aerosols and the thermodynamic environment (cloud-controlling

factors) are very uncertain (Myhre et al., 2013). Consequently, the behaviour of shal-

low, low clouds in a warming climate and the corresponding feedbacks are not well

understood (Bony and Dufresne, 2005; Zhang et al., 2013; Blossey et al., 2016; Nui-

jens and Siebesma, 2019), and this significantly contributes to the uncertainties that

persist in climate change projections (Dufresne and Bony, 2008). It is crucial that we

efficiently use the modelling tools available to narrow this uncertainty in the outcomes

of perturbations and climate feedbacks.

Much of the uncertainty in simulating clouds comes from the large number of in-

teracting cloud-controlling factors. Key factors that affect the state and evolution

of shallow clouds are local meteorology, large-scale forcings, radiative feedbacks and

aerosols. Some of these factors, such as thermodynamic properties, can change on short

timescales (hours) and these shallow clouds respond quickly because internal changes in

cloud microphysics and precipitation work on similar timescales. Such cloud-controlling

factors can have a dramatic effect on cloud properties, such as the rapid change from

closed- to open-cell cloud structures (Stechmann and Hottovy, 2016). Other factors,

such as large-scale divergence, work on longer timescales and it can take 2 to 5 days

for the cloud to adjust (Bellon and Stevens, 2013). Many of these factors covary and
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have joint effects on cloud processes, some of which may counteract others creating a

“buffered system” (Stevens and Feingold, 2009). In such a complex, interacting system,

changing one factor at a time in the traditional testing of cloud responses to various

drivers cannot capture the joint effects and interactions of the processes that make up

these systems.

Extensive simulations of cloudy boundary layers with high-resolution cloud mod-

els (Stevens et al., 1998; Stevens, 2000; Stevens et al., 2001; Ackerman et al., 2004;

Feingold, Jiang, and Harrington, 2005; Bretherton, Blossey, and Uchida, 2007; Hill,

Feingold, and Jiang, 2009; Jones, Bretherton, and Blossey, 2014; Yamaguchi and Fein-

gold, 2015; Kazil, Yamaguchi, and Feingold, 2017; Wyant et al., 2022) and model

intercomparison projects (Moeng et al., 1996; Bretherton et al., 1999a; Pier Siebesma

et al., 2003; Stevens et al., 2005a; Ackerman et al., 2009; Teixeira et al., 2011) have

greatly advanced our understanding of cloud processes and highlighted areas of uncer-

tain knowledge. Much of this valuable work was carried out under the Global Energy

and Water Experiment Cloud System Study (GCSS) to assess and improve the real-

ism of parameterisations in large-scale models (GEWEX Cloud System Science Team,

1993). By simulating the same case study with different models, it is possible to identify

consistent deviations from observations and to explore why particular models capture

observed cloud properties better than others. Here we take a different approach and

explore the combined effect of cloud-controlling factors in one model.

Our study has a similar focus to Dal Gesso et al. (2015), a model intercomparison

that explored how stratocumulus cloud properties depend on two cloud-controlling

factors (henceforth, used interchangeable with “parameters”): the temperature and

humidity differences between the surface and the free troposphere. The initial profiles

of these factors were perturbed over a range of values at discrete Cartesian grid points

across the 2-dimensional parameter space to study the effect on model outputs such

as cloud cover and liquid water content. This array of discrete model outputs across

the parameter space allowed the model response to be gauged. However, generally this

grid-point method restricts the information available due to computational limitations,

and the number of simulations required to explore n factors also rises with the power

of n. Additionally, as shown in Feingold et al. (2016), such a design of simulations

may misrepresent the joint effects of factors. Crucially, here we perturb both factors

simultaneously because these factors may interact with each other and this could be

missed in one-at-a-time perturbations.

To overcome the limitations of one-at-a-time sensitivity testing and to understand

the joint effects of factors, we can use Gaussian process emulation to generate “response

surfaces” that describe how cloud properties respond to multiple cloud-controlling fac-

tors. Gaussian process emulation is a method of machine learning that approximates the

relationship between a set of model input parameters and a model output (O’Hagan,
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2006). Unlike many other machine learning methods, this requires only a relatively

small number of well-designed model simulations as training data. The emulator func-

tion (the approximated relationship) can then be sampled effectively millions of times

at a fraction of the computational cost of running the simulations. From this dense

sampling, we can produce a response surface with an associated uncertainty at any

point in the parameter space. The power of emulation is in the ability to study the

joint parameter effects on the output of interest and also to visualise all combinations

of parameters within their realistic ranges at comparatively low computational cost. In

previous emulation work, the parameters were often related to uncertain processes in

the model, but here the parameters are cloud-controlling factors.

Gaussian emulation has been widely applied in aerosol and aerosol-cloud science.

Firstly, response surfaces are an effective tool for visualising the joint effects of the

uncertain input parameters and an output of interest, such as in Marshall et al. (2019)

and Marshall et al. (2021) for volcanic eruptions. Transformations from parameter

space to state space (Glassmeier et al., 2019; Hoffmann et al., 2020) or selection of

two or three key parameters at a time allow higher dimensions to be visualised (Lee

et al., 2011). Secondly, variance-based sensitivity analysis is used to understand which

parameters contribute most to the variance in the output of interest (Saltelli, Chan, and

Scott, 2000; Johnson et al., 2015; Regayre et al., 2014; Regayre et al., 2015; Regayre et

al., 2018; Lee et al., 2011; Lee et al., 2013). Thirdly, the uncertain parameter ranges can

be constrained using observations of the model outputs (Johnson et al., 2018; Regayre

et al., 2018; Regayre et al., 2020; Marshall et al., 2021), which can lead to constraint

of additional outputs.

The first cloud emulation study was Johnson et al. (2015), where they perturbed

initial aerosol concentrations and nine microphysical model parameters in a deep con-

vective cloud. Sensitivity analysis showed that all the cloud properties considered

were most sensitive to aerosol concentrations and the collection efficiency of droplets

by graupel. This demonstrated the insight that can be gained from emulating cloud

models, where buffering in clouds can obscure relationships between input parameters

and cloud responses. Perturbing multiple input parameters together reveals how they

jointly affect an output and under what conditions certain parameters have a larger

effect. Following this work, emulation has been used for sensitivity analyses to initial

meteorological conditions in deep convective clouds and hail (Wellmann et al., 2018;

Wellmann et al., 2020) and in sea breeze convection (Igel, van den Heever, and Johnson,

2018; Park et al., 2020). Additionally, Glassmeier et al. (2019) and Hoffmann et al.

(2020) have used emulation of state variables to explore cloud-process understanding

in stratocumulus. Here we consider the joint effects of initial meteorological condi-

tions in stratocumulus for the first time and we identify regimes of cloud behaviour in

parameter space, as in Johnson et al. (2015) and Park et al. (2020).
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Shallow clouds may have sharp changes in behaviour (a steep gradient in the output)

between regimes, which can make emulation challenging. Feingold et al. (2016) found

a steep gradient in a study of nocturnal marine stratocumulus clouds in which six

parameters were perturbed. This dataset was used in Pope et al. (2021) for non-

stationary emulation, where Voronoi tessellations were used to define regions of the

6-dimensional parameter space where they could apply separate, stationary emulators,

with an assumption of smoothness. The aerosol concentration was found to be the main

parameter controlling the discontinuity, but the high dimensionality of the parameter

space made visualising the discontinuity difficult. Here, we have visualised a steep

gradient in two dimensions and used adaptive sampling to explore it, but we found

that it emulates reasonably so non-stationary methods were not necessary here.

Another challenge in visualising cloud behaviour as a response surface is that cloud

models exhibit a high degree of natural variability, which may obscure the deterministic

behaviour that an emulator is designed to represent. In a purely deterministic model,

the emulator function can interpolate exactly through all the training data. However,

because clouds are quasi-stochastic, the simulated cloud properties at each point in

parameter space also depend on the initial conditions. Such variability (or noise) is

normally averaged out by running initial-condition ensembles and then using the en-

semble mean as the training data at each point in parameter space (Johnson, Gosling,

and Kennedy, 2011; Oyebamiji et al., 2017; Henderson et al., 2009). For global climate

models, which are resource intensive, this variability is usually estimated using max-

imum likelihood methods (Williamson and Blaker, 2014; Pope et al., 2021), although

in reality the variability is often chosen to be very small to have minimal effect on the

predicted function. Here, we show the natural variability of our cloud model can be

approximated based on a small number of initial-condition ensembles.

In this study, we assess the ability of statistical emulation to capture the transition

between two regimes of shallow cloud behaviour as initial profiles of 2 parameters are

varied. We also explore a method to quantify natural variability and account for it dur-

ing construction of the emulator. We start from a homogeneous stratocumulus-topped

boundary layer that has steady cloud properties despite lying in a region of parameter

space that is prone to breaking up, as hypothesised by Lilly (1968), Randall (1980)

and Deardorff (1980). Two parameters are perturbed to identify where cloud breakup

occurs across the parameter space. We will answer the following questions. First, does

the hypothetical cloud-breakup threshold separate two cloud regimes? Second, how

well can we characterise the change in cloud behaviour using statistical emulation? Is

there a discontinuity or a smooth change? Third, how can we account for the model’s

natural variability in the emulators so that the response surfaces represent deterministic

cloud behaviour rather than noise?

The remainder of this paper is laid out as follows. Section 3.3 gives context to the
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cloud-breakup region and section 3.4 describes the model simulation setup, the initial

simulation and the parameter perturbations. Section 3.5 discusses the cloud behaviour

displayed across the perturbed parameter ensemble and exploring the model’s behaviour

around the cloud-breakup threshold. The model’s natural variability will be quantified

and included in the emulation method in section 3.6. The results are discussed further

in section 3.7 and conclusions are given in section 3.8.

3.3 Theoretical context

The stratocumulus simulations are based on the conditions observed in the first research

flight (RF01) of the Second Dynamics and Chemistry of Marine Stratocumulus field

study (DYCOMS-II) (Stevens et al., 2003). The campaign took place off the west

coast of California in July 2001. Flight RF01 observed a homogeneous, non-drizzling

stratocumulus cloud deck over nine hours through the night. Dropsonde data measured

a well-mixed boundary layer above the sea surface at 850 m, meaning that temperature

and moisture profiles were nearly constant to this depth. Over the flight time, the

boundary layer and cloud depth deepened by 50 m, resulting in a 250 m thick cloud.

The well-mixed stratocumulus-topped boundary layer was capped by a temperature

inversion, where the potential temperature, θ, increased by 8.5 K and the total water

mass mixing ratio, qt, decreased by 7.5 g kg−1 within a few tens of metres of cloud top.

Stevens et al. (2005a) conducted a large-eddy simulation (LES) model intercompar-

ison study based on RF01 to compare ten models, including the Met Office large-eddy

model, which is an earlier version of the model we use here. A few models simulated

a cloud like the one observed, but the majority simulated a more broken cloud with

lower cloud fraction and lower liquid water path (the vertically integrated liquid water

content). Most models simulated a deepening boundary layer, a thinning cloud and a

rising cloud base, but some simulated a decoupling of the boundary layer, which was not

observed. A decoupled boundary layer is no longer well-mixed and tends to decrease

the cloud water content because the cloud layer is cut off from the ocean’s moisture

supply. The differences between the models were mostly attributed to the different

resolutions and mixing schemes used, but the temperature and humidity change across

the inversion made the simulations particularly sensitive to a cloud-dissipating mecha-

nism that we discuss here. Other LES studies that have simulated DYCOMS-II RF01

generally fall within the multi-model range of the intercomparison study (Yamaguchi

and Randall, 2008; Xiao, Wu, and Mechoso, 2011; Ghonima et al., 2015; Pressel et al.,

2017).

The stratocumulus-topped marine boundary layer can persist as a uniform cloud

field for days before breaking up (sometimes entirely) within a couple of hours. The

mechanism behind this rapid change was originally proposed by Lilly (1968) based on
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a simplified theoretical model. For specific combinations of temperature and humidity

at the inversion, the mixing of warm, dry air into the cloud from above (entrainment)

leads to evaporative cooling and enhanced mixing, creating a positive feedback that can

rapidly dissipate the cloud. However, as with DYCOMS-II, many observations and LES

studies have found stratocumulus clouds persisting within this region of temperature-

humidity parameter space (Kuo and Schubert, 1988; Siems et al., 1990; Moeng, 2000;

Stevens et al., 2005a). Mellado (2017) summarised recent studies that found that the

feedback is generally not strong enough under realistic conditions to dissipate marine

stratocumulus clouds, especially alongside other confounding factors.

Randall (1980) and Deardorff (1980) derived an inversion instability parameter, κ,

with a threshold beyond which the cloud-dissipating feedback occurs,

κ = 1 +
cp
Lv

∆θl
∆qt

, (3.1)

where cp is the specific heat of air, Lv is the latent heat of vaporisation, ∆θl is the change

in potential temperature for liquid water at the inversion, and ∆qt is the change in total

water mass mixing ratio at the inversion. Several studies since have made alternative

derivations and attempted to map out the dependence of κ on these two parameters,

∆θl and ∆qt, using one-at-a-time model sensitivity simulations (Kuo and Schubert,

1988; MacVean and Mason, 1990; Siems et al., 1990; Yamaguchi and Randall, 2008;

Xiao, Wu, and Mechoso, 2011; van der Dussen, de Roode, and Siebesma, 2014; Dal

Gesso et al., 2015).

Here we simulate DYCOMS-II RF01 and perturb ∆θ and ∆qt across a range of

values to fully explore the parameter space and map out the cloud behaviour in terms

of breakup or growth.

3.4 Experiment design

3.4.1 Model Description

The LES cloud model used here is the UK Met Office/Natural Environment Research

Council (NERC) Cloud (MONC) model (Brown et al., 2020). We ran a nocturnal

simulation and used a parameterisation to calculate longwave cooling rates at cloud top

and base from liquid water content using an exponential decay function (Bretherton

et al., 1999a). The horizontal resolution was 30 m and the vertical resolution varied

between 7.5 m around the inversion and 10 to 20 m elsewhere in the boundary layer.

The domain size was 250 by 250 grid boxes with 110 layers vertically up to 1500 m. The

subgrid mixing scheme for unresolved turbulence, diffusion and viscosity is an extension

of the Smagorinsky-Lilly model (detailed in Brown, Derbyshire, and Mason, 1994).
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The microphysics scheme used is the Cloud AeroSol Interacting Microphysics (CASIM)

model, which is a bulk scheme that can use up to three moments for each hydrometeor

(Shipway and Hill, 2012; Hill, Shipway, and Boutle, 2015; Dearden et al., 2018; Field

et al., 2023). Here CASIM defines cloud liquid and rain droplets by two moments:

number concentration and mass mixing ratio.

We used fixed cloud droplet number concentrations. The results shown in the main

body of this study used cloud droplet number concentration equal to 50 cm−3, but

cloud droplet number concentration equal to 150 cm−3 was investigated separately and

the results are included in Appendix A.1. Condensation and evaporation were calcu-

lated by a saturation adjustment scheme, where any surplus water vapour in the cloud

condenses onto the fixed number of cloud droplets and any deficit evaporates from the

droplets, keeping the relative humidity within the cloud at 100%. Cloud droplets can

be autoconverted and collected into rain droplets, and rain droplets can precipitate

and either reach the surface or evaporate in sub-saturated air below the cloud base.

Condensation of water vapour onto rain cannot occur due to the saturation adjustment

scheme, as in the old LEM (Gray et al., 2001). Sedimentation was switched on for both

cloud droplets and rain, which advects water mass downwards through the boundary

layer. Autoconversion and collection are dependent on cloud water mass mixing ratio,

rain water mass mixing ratio and droplet number concentration (Khairoutdinov and

Kogan, 2000). Mixing of new air from above the cloud into the cloud layer is homo-

geneous mixing, that is new air is mixed in with the cloudy air before the evaporation

calculation takes place so all droplets are evaporated equally until saturation is reached.

This means that there is a reduction in cloud droplet radius, but cloud droplet number

is not affected.

3.4.2 Perturbed parameter ensemble

A base case simulation was initialised to match the DYCOMS-II RF01 setup in Stevens

et al. (2005a). The simulation was run for eight hours nocturnally with initial surface

sensible and latent heat fluxes of 15 W m−2 and 115 W m−2. The initial profiles of θ

and qt are shown in Figure 3.1.

We perturbed ∆θ and ∆qt to explore the joint effect of these two parameters,

creating a perturbed parameter ensemble (PPE) in the 2-dimensional parameter space

(Figure 3.1). The initial profiles were kept the same up to the inversion at 840 m, where

the jump size was varied for both. The ranges for these parameters were chosen based

on the ranges outlined in van der Dussen, de Roode, and Siebesma (2014):
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Figure 3.1: The initial profiles for all simulations. The model configuration profiles for a)
potential temperature and b) total water mass-mixing ratio. The profiles after model spin up
has completed for c) potential temperature and d) total water mass-mixing ratio. The solid lines
show the base simulation values taken from the DYCOMS-II observational campaign, research
flight RF01, while the grey lines show the profiles for the ensemble members perturbed from
the base simulation.

2 K ≤ ∆θ ≤ 20 K (3.2)

−9 g kg−1 ≤ ∆qt ≤ 0 g kg−1. (3.3)

Theoretically, cloud thickening occurs for conditions below the κ threshold which is in

the region of parameter space where ∆θ → 20 K and ∆qt → 0 g kg−1. Cloud thinning

occurs above the κ threshold where ∆θ → 2 K and ∆qt → -9 g kg−1. For a cloud

fraction≈1, cloud thickening is roughly analogous to an increasing liquid water path

throughout the simulation - a positive liquid water path tendency.

The PPE simulation data were used as training data for statistical emulation (de-

scribed below). The combinations of values of ∆θ and ∆qt were defined using a “max-

imin” Latin hypercube algorithm comprised of 20 simulations, which has been shown

to be sufficient to create an emulator over a two-dimensional parameter space (Morris

and Mitchell, 1995; Loeppky, Sacks, and Welch, 2009; Lee et al., 2011). The Latin

hypercube (Figure 3.2) is a space-filling design that samples the parameter space ef-

ficiently to provide as much information as possible about the model to an emulator.

In comparison, regular grid (Cartesian) designs are an inefficient way of sampling a
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Figure 3.2: The Latin hypercube design for the PPE. The solid circle markers are training
points and the solid square markers are validation points. The faded markers show the distri-
bution along each dimension. The triangle marker is the base simulation based on DYCOMS-II
RF01.

high-dimensional space. This becomes crucial if the sensitivity to some parameter per-

turbations is greater than for others. When this type of design is projected to lower

dimensions, as in Figure 3.2, design points are not replicated.

3.4.3 Gaussian process emulation

Gaussian process emulation is a Bayesian statistical approach that generates a mapping

between a multi-dimensional input space (the parameters) and an output of interest

(O’Hagan, 2006). This mapping is used to predict the model’s output for many thou-

sands of parameter input combinations at a considerably reduced computational cost.

It requires a set of training data, consisting of the input settings and corresponding

output data from multiple model simulations over the perturbed parameter ranges.

Under the Bayesian paradigm, the approach is initiated with a prior Gaussian process

specification for this mapping, which encapsulates any prior knowledge about the model

output. The prior is updated using the training data to create a better estimation of

the function representing the model output response (also of Gaussian form) to the

perturbed inputs. This better estimation is a posterior Gaussian process specification,

and is our emulator. The emulator enables the model response to the inputs to be

thoroughly sampled to produce a response surface at a significantly cheaper compu-

tational cost than via running the cloud model itself. The uncertainty surrounding

each emulator-predicted output value is also calculated, assuming a Gaussian error

structure and based on how close a point is to the training data. A second smaller

set of simulations is used to validate the emulator to ensure that it is producing a

reasonable representation of the model’s behaviour. The emulation in this work has

been conducted in R using the DiceKriging package (R Core Team, 2018; Roustant,

Ginsbourger, and Deville, 2012).
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3.4.4 Joint effects of parameters

The response surfaces created in this chapter and in Chapter 5 allow us to visualise

the joint effects between parameters on the output of interest. The terminology that

we use for this is illustrated in Figure 3.3. A parameter (factor) may have a linear or

a nonlinear effect on the output. A linear joint effect of two parameters is when their

effects are additive in their impact on the output, we also refer to this as a “combined

effect”. These two parameters may be linear or nonlinear, but their joint effect is linear

if the relationship of each parameter and the output does not vary with the second

parameter. A nonlinear joint effect is indicated on a 2-dimensional response surface by

curvature, which shows that how the output depends on one parameter varies with the

other parameter. We also refer to this as an “interaction”, since some process relating

to the second parameter must be occurring to dampen or amplify the effect of the first

parameter. Later when we consider how the variance of each parameter contributes

to the variance in the output, the individual effects sum up to exactly account for the

variance in the output in a linear joint effect. However in nonlinear joint effects, the

sum might not exactly account for the variance in the output, i.e., there may be some

residual variance that is unexplained. In this case, the variance in the interactions

between parameters also contributes to the variance in the output.

3.5 Results

We will focus on the response of in-cloud liquid water path and cloud fraction to the

perturbations. The cloud fraction is the fraction of columns with liquid water content

greater than 0.01 g m−3. The output values (training data) for liquid water path and

cloud fraction are taken as the mean over the final two hours of the simulation. The

tendencies of both are the rate of change over the course of the simulation after a

spin-up period of two hours.

3.5.1 Base case simulation

The base case is shown in Figure 3.4, along with the rest of the ensemble. After spin up,

the mean liquid water path, L = 38 g m−2 (dashed line in Figure 3.4a), which is in good

agreement with the multi-model mean in Stevens et al. (2005a) of 40 g m−2. The top-

down liquid water path snapshots in Figure 3.4c (inset) show that the base simulation

cloud initialises as homogeneous stratocumulus and the cells grow and thicken slightly

over eight hours. The cloud base is around 600 m and cloud top is at the inversion

at 840 m and these stay nearly constant during the simulation. The liquid water path

gradually increases through the simulation up to 56 g m−2 in the final timestep, so the

liquid water path tendency is 2.2 g m−2 hr−1, whereas it is slightly negative in Stevens

et al. (2005a). After spin-up, cloud fraction, fc = 0.87 (dashed line in Figure 3.4c) and
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Figure 3.3: Definitions of joint effects. A factor may have a linear or nonlinear effect on an
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in the output is explained entirely by their individual contributions it is a linear joint effect,
or a combined effect. Where the contributions from a combination of factors does not entirely
account for the variance in the output the factors have a nonlinear joint effect, or an interaction.
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Figure 3.4: Liquid water path and cloud fraction model output for the whole ensemble. a)
Liquid water path and c) cloud fraction timeseries post-spinup to the end of the simulation.
The last two hours (shaded area) are taken as an average for the training data. The base
simulation is shown by the darker line and the point-ensemble simulations show the range of
the ensemble as an envelope. The inset in c shows top-down snapshots of the liquid water path
for the base simulation. b) Liquid water path and d) cloud fraction training data values plotted
in parameter space, ∆θ vs ∆qt. The κ line is the theoretical threshold for the κ parameter
described in section 3.3, which splits the regions into A and B (see section 3.5.3).

this decreases to 0.72 over the course of the simulation giving a cloud fraction tendency

of -0.02 hr−1. The initial cloud fraction is in the lowest quartile of the multi-model

range in Stevens et al. (2005a). The ensemble mean cloud fraction begins near 1 and

decreases to approximately 0.8, with the majority following similar behaviour, but a

small number of models simulated a decrease to around 0.2.

3.5.2 Perturbed cloud behaviour

The timeseries of liquid water path and cloud fraction in Figures 3.4a and c show the

spread across the PPE. Two simulations do not spin up any substantial stratocumulus,

with L < 25 g m−2 and fc < 0.5 throughout the simulation. Four simulations spin up

a very thin stratocumulus with 25 < L < 50 g m−2 and initial fc > 0.7. These clouds

thicken slightly through the simulation with liquid water path values increasing up to
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65 g m−2 and cloud fraction decreasing by 0.1-0.2 as the cloud water aggregates. This

set of simulations make up all but one of the data in the region marked A in parameter

space, above the κ parameter threshold. For the simulations in region B, plus the point

at coordinates ∆θ = 5 K and ∆qt = -4 g kg−1, the liquid water path timeseries spins

up in the range of 50 to 80 g m−2 and increases by 30 to 120 g m−2. These clouds all

have initial stratocumulus with fc > 0.9 and most remain in that region or decrease to

0.8.

The mean liquid water path over the last two hours of the simulation is shown in

Figure 3.4b. For a low ∆θ (a weak temperature inversion) mean liquid water path is

generally low, down to about 21 g m−2 at ∆θ = 2.5 K. With a stronger inversion, liquid

water path also generally increases up to about 160 g m−2 at ∆θ = 20 K. For a high

∆qt (a moist free troposphere) the liquid water path is high, up to 185 g m−2 for ∆qt =

0 g kg−1. With a reduction in free-tropospheric humidity, liquid water path generally

decreases down to about 20 g m−2 for ∆qt = -8.7 g kg−1. The two parameters have a

combined effect such that liquid water path is lowest for weak inversions with a dry free

troposphere and highest for strong inversions with humidity similar to the boundary

layer.

The mean cloud fraction over the last two hours of the simulation is shown in Figure

3.4d. For low ∆θ cloud fraction is generally low, down to about 0.3 at ∆θ = 2.5 K.

As the inversion gets stronger, cloud fraction generally increases up to 0.9 at ∆θ =

20 K. For a free troposphere that is as moist as the boundary layer, cloud fraction

approaches 1 for ∆qt = 0 g kg−1. As the free troposphere gets drier, cloud fraction

generally decreases down to about 0.5 for ∆qt = -8.7 g kg−1. As with liquid water path,

the two parameters have a combined effect such that cloud fraction is lowest for weak

inversions with a dry free troposphere and highest for strong inversions with humidity

similar to the boundary layer.

The spatial distribution of liquid water path is shown in Figure 3.5 for the last

timestep in each simulation. These are arranged approximately in order of the location

in parameter space. The two simulations that do not form stratocumulus can be seen

to the lower left of the figure as small cumulus clouds. Moving towards higher ∆qt and

∆θ, the plots show stratocumulus with a higher cloud fraction than the cumulus, and

at the top and right of the figure in particular, this becomes quite thick.

None of the simulations are drizzling significantly, but all the simulations in region

A, except the point at ∆θ = 5 K and ∆qt = -4 g kg−1 previously picked out, drizzle

two to three orders of magnitude less than those in region B (see Appendix A.2).

In summary, the PPE simulations show that cloud behaviour across parameter space

falls into two behavioural regimes that roughly aligns with the theoretical κ parameter

threshold. Above the κ threshold, in region A, the simulations generally spin up to
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Figure 3.5: Top-down views of liquid water path for each of the 20 training simulations in the
last time step. Plots are ordered approximately by location in parameter space. The dark blue
shows the areas with liquid cloud droplet mass mixing ratio < 0.01 g kg−1 at all levels.
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Figure 3.6: Validation plots for the four cloud property emulators (response surfaces in Figure
3.7). a) liquid water path (g m−2), b) liquid water path tendency (g m−2 hr−1), c) cloud fraction
and d) cloud fraction tendency (hr−1). The MONC output values for each point are on the x
axis and the emulator predicted values are on the y axis. The black line shows the line of equality
and the error bars indicate the 95% confidence bounds on the emulator mean predictions.

very thin stratocumulus cloud or just small cumulus, that show little to no growth

throughout the simulation. Below the κ threshold, in region B, the simulations spin

up to stratocumulus cloud with a high cloud fraction and a medium liquid water path

that increases throughout the simulation. Simulations in region B have two to three

orders of magnitude more drizzle than those in region A. There is one point in region

A at ∆θ = 5 K and ∆qt = -4 g kg−1 that behaves more like the simulations in region

B.

3.5.3 Response surface analysis

We used the set of simulations to build Gaussian process emulators of liquid water path,

cloud fraction, liquid water path tendency and cloud fraction tendency over the final

two hours of the simulations. To validate the emulators, we used the eight validation

simulations that were part of the Latin hypercube design, but not used to train the

emulators. We compare the emulator predictions at those points of parameter space

with the model output in Figure 3.6. For all the emulators, the model values are within

the emulator prediction 95% uncertainty range. For the liquid water path and liquid

water path tendency (Figure 3.6a and b) the predicted mean value is close to the line of

equality, whereas the cloud fraction and cloud fraction tendency emulators have some

predicted mean values that are quite far from the line of equality (Figure 3.6c and d),

but the large uncertainty means the model value is still within the range. The liquid

water path and cloud fraction uncertainty ranges cover around ±10% on average of

the mean values, whereas the tendency ranges cover around ±100% on average. So
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Figure 3.7: Response surfaces produced from emulator mean predictions. a) liquid water
path, b) liquid water path tendency, c) cloud fraction and d) cloud fraction tendency. The base
simulation is shown by the inverse white triangle, the training data by the black circles, the
validation data by the black squares, and the extra simulation points by the black triangles. The
dashed white line is the κ threshold, where equation (3.1) equals 0.23, and divides parameter
space into region A and B.
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although the ranges include the model values, the uncertainties can be quite large.

Emulator response surfaces for the mean liquid water path and cloud fraction over

the last two hours, and their tendencies, are shown in Figure 3.7. Originally 20 sim-

ulations were run as training data for the emulators (black circles). However we ran

six additional simulations to fill in the gaps near to the κ threshold and in regions of

parameter space with more extreme model output values and here we show the 26-

point training set. The RMSE values in the validation plots (Figure 3.6) show that the

liquid water path and the cloud fraction tendency emulators are more confident with

the additional points, and the other two emulators are marginally less confident. The

general shapes across parameter space are not much different between the training sets.

The liquid water path response surface follows the behaviour described previously

by the training data, with low liquid water path for low ∆qt, low ∆θ (dry, cool free

troposphere) and high liquid water path for high ∆qt, high ∆θ (moist, warm free

troposphere). But we can clearly see now that ∆qt has a larger effect on liquid water

path, and for high ∆qt the liquid water path becomes invariant to ∆θ. We can also

see a local maximum at ∆θ = 15 K and ∆qt = -4.5 g kg−1, which we will discuss

in section 3.6. The liquid water path tendency follows a similar pattern to the liquid

water path. Where the liquid water path is high, the tendency is most positive, i.e.,

there is most growth. Where the liquid water path is low, the tendency is very close

to zero. It also follows the higher dependency on ∆qt and has a local maximum in a

similar location. Additionally, the emulator predicts some slightly negative values in

the corner of parameter space with low liquid water path, however the emulator has

limited information and therefore large uncertainties at extremities.

The cloud fraction response surface also follows the behaviour described previously,

with low cloud fraction for low ∆qt, low ∆θ (dry, cool free troposphere) and high cloud

fraction for high ∆qt, high ∆θ (moist, warm free troposphere). As with the liquid

water path, ∆qt has a larger effect than ∆θ, but it is not as stark as in the liquid water

path. The cloud fraction tendency is mostly negative across the parameter space, with

only a slightly positive region at low values of ∆qt and ∆θ. This is because there are

only small cumulus clouds at start of the simulation (Figure 3.5) and these are mostly

unchanging throughout the simulations, but increase in cloud cover slightly. Where

cloud fraction is approximately 1, the cloud fraction tendency is close to zero and just

slightly negative. The rest of the cloud fraction tendency surface is very uneven (noisy)

since there are only small changes in cloud fraction throughout the simulations (Figure

3.4c). Some of the validation points (black squares) are close in value to the predicted

surface, but a few points are quite contrasting.

Some of the response surfaces in Figure 3.7 suggest that there are nonlinear joint

effects (interactions) between the parameters due to the slight curvature. The strength
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Figure 3.8: Sensitivity analysis for each emulator. a) liquid water path, b) liquid water
path tendency, c) cloud fraction and d) cloud fraction tendency. Bars show the percentage
contribution from each factor to the variance of the transition time. The black section shows
the main effect, i.e. the individual parameter effect, and the white section shows the contribution
from interactions with other parameters.

of the inversion will affect how much vapour is transported between the boundary layer

and the free troposphere, which in turns affects the jump in specific humidity. Addi-

tionally, the specific humidity in the free troposphere affects the strength of longwave

cooling, which can strengthen the inversion or weaken it.

Variance-based sensitivity analysis (described in Chapter 2.2.1) shows that ∆qt

contributes the most to the variance in the output for all emulators (Figure 3.8), in

particular for the mean liquid water path (a) and the cloud fraction tendency (d).

This analysis also shows that the interactions between parameters do not contribute a

significant amount to the variance in the outputs.

The κ threshold separating regions A and B approximately follows the contours on

the liquid water path emulators, other than for the cloud fraction tendency (Figure

3.7d). The surfaces show a smooth gradient between these regions of parameter space,

rather than a discontinuity. In the cloud behaviour analysis in section 3.5.2, there was

a single point in region A at ∆θ = 5 K and ∆qt = -4 g kg−1 that did not fit with the

rest in terms of behaviour. We can now see in liquid water path and liquid water path

tendency that the contour lines curve round in this part of parameter space. If the κ

function followed the contours at this point, it would be closer to splitting the parameter

space by cloud behaviour into very thin stratocumulus cloud or small cumulus plumes,

with little growth, in region A and stratocumulus cloud with a high cloud fraction and

a medium liquid water path that grows throughout the simulation in region B.



46
Chapter 3: Visualisation of the deterministic response of stratocumulus cloud

properties to free-tropospheric controls using statistical emulation

3.6 Natural variability

Here we explore cloud natural variability and how to account for it when building

emulators. Cloud properties are sensitive to any small variation in initial conditions,

not just the parameter values we have discussed so far but also slight differences in

turbulence structure. Each training data point represents only one possible cloud state

for those particular parameter settings – i.e., it is effectively a random draw from an

unquantified distribution representing natural variability. The effect of this variability

is to create ‘bumpiness’ in the response surface as the emulator interpolates through

each training point, instead of allowing for the range of possible values at that point

(see Figure 3.9a). Additionally, in attempting to fit to the training data, the emulator

may create additional extrema that are far from the training points and not based on

the model’s actual behaviour. An example of this is the maximum around ∆θ = 15 and

∆qt = -4.5 in Figure 3.7a. The bumps from training points and the additional extrema

do not allow the emulator to accurately represent the deterministic cloud behaviour

that we are aiming to capture with the response surface.

A much smoother response surface could be created by running an initial-condition

ensemble at each point in parameter space and building an emulator of the ensemble

mean (with the ensemble created by randomising the small temperature perturbations

that are imposed at the beginning of each simulation, which initiate turbulence and

cloud formation in the boundary layer). However, such an initial-condition ensemble

would become very computationally expensive for a large number of parameters. Here,

we therefore explore how we can use a small number of initial-condition ensembles to

estimate natural variability and produce smooth, deterministic emulator surfaces by

exploiting a hyperparameter within the emulator called a “nugget term”.

In the posterior Gaussian process, the covariance function estimates the prediction

uncertainty for any point dependent on that point’s distance from the training data.

In this study, the covariance between any two points is,

V (xj , xk) = σ2K(xj , xk), (3.4)

where σ2 is the variance of the Gaussian process and in this case K(xj , xk) represents

the Matérn class of covariance functions. These functions are stationary since the

covariance of the two points depends only on the distance between them. The covariance

function can be extended to include the nugget term, σ2
N ,

V (xj , xk) = σ2K(xj , xk) + σ2
Nδj,k, (3.5)

where δ.,. is the Kronecker delta function, which is equal to 1 for j = k and equal
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Figure 3.9: Diagram showing the effect of adding a nugget term on the smoothness of the
response surface. a) The purple response surface interpolates exactly through the blue and green
training points so the emulator residuals are zero. b) The response surface is smooth after a
nugget term has been added, where the surface no longer interpolates exactly but through a
prescribed buffer around the blue and green training points. Initial-condition model ensembles
have been run at a selection of points (orange). The nugget term is appropriately large when
the distribution of emulator residuals matches the distribution of model residuals.

to 0 otherwise. The nugget term is often included to alleviate numerical issues in

deterministic models, although there are several other additional benefits for adding

one (Andrianakis and Challenor, 2012; Gramacy and Lee, 2012). Notably, that a nugget

term may help the posterior distribution to be less influenced by inaccuracies in the

assumed prior functions. Practically, the nugget term is a variance that is added at

each training point. From this variance, a new output value at the training point is

predicted that is within the variability at this point, but no longer interpolated exactly.

We hypothesise that the variance represented by the nugget term should be equal to

the variance representing natural variability for the response surface to more accurately

represent the underlying deterministic behaviour. In Figure 3.9a, the emulator mean

function interpolates through the blue and green training points, resulting in a bumpy

response surface. In this exact interpolation, the “emulator” residual between the

emulator mean function (the response surface) and any training point is zero. However,

each of these points is just one in a distribution of possible values, which is shown by the

orange initial-condition ensembles in Figure 3.9b. The aim, by adding a nugget term,

is to create a smoother surface such that the emulator residuals form a distribution

that has similar spread to that of the ensemble, or “model”, residuals that account for

the natural variability. In doing so, we can achieve a smooth response surface because

it no longer has to interpolate the points exactly (Figure 3.9b).

We use the variance of the model residuals to estimate an appropriate nugget term,

as follows. For each of the training points, Zi, in the training data set Z1, ..., Zl, run-

ning initial-condition ensembles gives a set of estimates, (Z
(1)
i , ..., Z

(k)
i ), for k ensemble

members at Zi. The liquid water path values averaged over the last two hours in Figure

3.10a show that the variance increases with the mean value. The ensemble means are

calculated as
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Figure 3.10: Initial-condition “model” ensemble variances. The nine ensemble mean values
against a) the 5-member ensemble model values b) the residual values, and c) the residual values
normalised by each of the ensemble means.
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Z̄i =
1

k

k∑
j=1

Z
(j)
i . (3.6)

The variances of the model residuals, σ2
i , between the ensemble members and the

ensemble mean also increase with the mean liquid water path (Figure 3.10b). To

combine these into one distribution we normalise the model residuals and assume that

the normalised variance is constant across the response surface. Note that other data

may require a different normalisation process, or may already be normal. Here we can

normalise by dividing by the model residual means to obtain the normalised model

residuals as:

r
(j)
i =

Z
(j)
i − Z̄i

Z̄i
, (3.7)

as shown in Figure 3.10c. We can then assume that each normalised residual is drawn

from a normal distribution, R, with mean µ (=0) and standard deviation σ,

R ∼ N (µ, σ2
R).

Our hypothesis is that using the residual distribution’s variance, σ2
R, is an appropri-

ate substitute for using the variance for each initial-condition ensemble, σ2
i , which we

could only know by running ensembles at every training point. We can use the variance

of the sample of model residuals to estimate the population variance

σ2
R =

∑
(r − µ)2

NR
, (3.8)

for the number, NR, of residuals, r, in the distribution. However, since we normalised

the residuals by the ensemble means, we need to multiply by a factor on the same order

magnitude as Z̄2
i to use this estimate in the emulation process (see Appendices A.5 and

A.6).

We ran 5-member ensembles at nine training points to estimate the natural vari-

ability captured in the model. The timeseries evolution of the ensembles is shown in

Figure 3.4 and the intra-ensemble differences in the simulated final cloud fields are

shown in Figure 3.11. We explored how the estimated variance depends on the num-

ber and location of initial-condition ensemble points in parameter space. We found

that a similar result could be achieved from initial-condition ensembles at just three

well-spaced points, rather than the full nine (Appendix A.6).

The nugget term is applied as a noise vector, V = (v1, ..., vl), where vi is an estimate
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Figure 3.11: Top-down views of the in-cloud liquid water path in the final timestep for each
five-member ensemble simulation.

for the variance, σ2
i , that should be applied at each Zi. We trialled multiplying our

estimate of σ2
R by three different squared factors: the value of the cloud property

variable at each training point (proportional); the mean value over all training points

in the PPE; and the maximum output value from the PPE over the whole parameter

space. Two additional noise vectors were tested where we used arbitrary numbers of

the maximum value ×10 and ×100.

Figure 3.12 shows that the distribution of emulator residuals compares best with the

residual distribution from the model ensembles when we use the max or ×10 multipliers.

The largest overlap of the two distributions (0.78) comes from the maximum multiplier

in column d. We used the Kolmogorov-Smirnov (KS) two-sample test to test whether

these distributions are statistically likely to be from the same distribution. For those

with a KS p-value less than 0.05 we must reject the null hypothesis that the samples are

drawn from the same distribution, so only the maximum multiplier and the ×10 nugget

(columns d and e) fulfil this criteria. The ×100 nugget term (column f) shows that at

some point the nugget term is too large and the emulator loses all information from the

training data points and defaults to the underlying prior linear function. This appears

as a smooth linearly increasing surface across parameter space and does not fit well with

the training data. For smaller nugget variances (columns a, b, c) the distribution of the

surface residuals is narrower than the distribution of the initial-condition ensembles,

showing that the emulator surface is forced to pass too closely to the individual training

points.

Figure 3.13 shows the validation of each cloud property emulator with a nugget

term added (Figure 3.12d for the liquid water path, the other three cloud property
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Figure 3.12: The mean liquid water path emulator with different nugget terms applied. a) No
nugget term, b) multiplying factor proportional to the training point value, c) mean PPE value
multiplying factor, d) maximum PPE value multiplying factor, e) maximum factor ×10, f)
maximum factor ×100. Top row: emulator predicted response surfaces. Middle row: a transect
through the pink line shown in top row showing mean emulator function and upper and lower
95% confidence bounds. Bottom row: comparison of the histograms of surface residuals and the
initial-condition ensemble residuals (Figure 3.9). The RMSE, Kolmogorov-Smirnov p-values,
and overlap values are given for each nugget term. The overlap value is computed as the fraction
of histogram bars that overlap between the datasets.
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Figure 3.13: Validation plots for the four cloud property emulators with a nugget term
included (response surfaces in Figure 3.14). a) liquid water path (g m−2), b) liquid water path
tendency (g m−2 hr−1), c) cloud fraction and d) cloud fraction tendency (hr−1). The MONC
output values for each point are on the x axis and the emulator predicted values are on the y
axis. The black line shows the line of equality and the error bars indicate the 95% confidence
bounds on the emulator mean predictions.
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Figure 3.14: The cloud property emulators with and without a nugget term applied. a)
liquid water path tendency, b) cloud fraction and c) cloud fraction tendency. Top row: the
response surface produced from the emulator predictions. Middle row: a transect through the
pink line shown on the response surface with the mean emulator function and the upper and
lower 95% confidence bounds. Bottom row: comparison of the histograms of surface residuals
and the point-ensemble residuals (Figure 3.9). The RMSE, Kolmogorov-Smirnov p-values, and
overlap values are given for each nugget term. The overlap value is computed as the fraction
of histogram bars that overlap between the datasets.

nuggets are discussed shortly in reference to Figure 3.14). This figure shows that the

95% confidence bounds have increased in size, as is expected, and in most cases the

RMSE has increased, but the predictions are still within the 95% confidence bounds.

The cloud fraction tendency RMSE has decreased because this dataset has a very high

variability.

In Figure 3.14 we show how adding an appropriately sized nugget term to the

remaining emulators removes some of the bumpy behaviour created by the natural

variability of the model. We found the procedure for calculating the nugget depended

on the output of interest. The residuals from both tendencies could be combined

without normalisation, whereas the liquid water path and cloud fraction both required

that the residuals were normalised by dividing by the mean. For the liquid water

path tendency, we found that using all nine points or some combinations of only three

points gave an appropriate nugget. For the cloud fraction and cloud fraction tendency,

we found that only the nugget that includes all nine points was appropriate. These

required more points because three points that cover a range of behaviour in one cloud

property do not necessarily cover the full range of behaviour in another cloud property.

For all of these response surfaces with the nugget added, the behaviour across parameter

space remains approximately as described in section 3.5.2, but it is now smoother and

represents the model’s general behaviour better.
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3.7 Discussion

In the parameter space we explored, we found there are two distinct behavioural cloud

regimes with a smooth transition between them, rather than a discontinuity. As such,

we do not find that there is a distinct point beyond which the cloud rapidly breaks

up. However the κ parameter hypothesised by Randall (1980) and Deardorff (1980)

does approximately mark a change in behaviour between region A (figure 3.7), where

there is thin stratocumulus cloud (or small cumulus) and very little growth, and region

B, where there is a high cloud fraction of stratocumulus cloud with a moderate liquid

water path that grows throughout the simulation. Emulation allowed us to densely

sample the parameter space to map out cloud behaviour based on model output and

identify interactions between the parameters, and the addition of the nugget term more

smoothly captures the underlying deterministic behaviour. Thus, a firm conclusion was

drawn about the nature of the transition across parameter space.

Without including aerosol processes in the simulation some aspects of the cloud

breakup may not be accounted for, such as rain-depletion feedbacks (Goren et al.,

2019). Our base simulation differed from the observed case because we had a lower

fixed droplet number concentration, however we tried the same set of simulations with a

higher fixed droplet number concentration and found a similar pattern across parameter

space. The lack of rapid cloud breakup fits with the conclusion in Mellado (2017) that

the feedback mechanism is too weak to cause the cloud to break up by itself.

We have demonstrated the use of a nugget term in building an emulator that

accounts for cloud natural variability. Although previous studies have run initial-

condition ensembles and used the mean as training data (Johnson, Gosling, and Kennedy,

2011) this has not been done with cloud or climate models due to the expense of run-

ning the ensembles. In our method to estimate the variance of the model residuals,

we found that information from three well-spaced ensemble points often produced a

similar result to the whole nine ensembles. In a higher dimensional parameter space

it is harder to judge whether the points are spaced well, but even a small number of

point ensembles would take one closer to an approximate estimate. When emulating

a stochastic (or quasi-stochastic) model, the inclusion of a nugget term that is large

enough to account for natural variability helps to produce a deterministic view of the

behaviour across parameter space.

One unexpected benefit of creating a PPE and emulating to produce a response

surface was the ability to immediately spot outliers in the data. Against the backdrop

of the PPE and the emulated surface these simulations clearly stand out, allowing us

to further investigate why they do not fit with the rest of the data. In some cases, this

could identify an interesting region of parameter space in the real world,or a natural

variability extremity that could be investigated with a small ensemble, or perhaps a
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collection of parameter settings for which the model is unstable. If none of those are

true and it is simply a bad datapoint, perhaps a corrupted value in the model, it has

been caught and can be discarded with minimal confusion.

As computing capabilities increase and climate models get more complex, machine

learning techniques are becoming a vital tool for sifting through data and making

sense of the results. The number of simulations required to fully explore uncertainties

and certain aspects of models is already infeasible, particularly with the non-linear

behaviour of clouds. Statistical emulation has proven to be an immensely useful tool

for sensitivity analysis of model parameters in climate studies, but here we have shown

it in a different capacity by perturbing the initial profiles of cloud-controlling factors,

which has only recently begun to be explored. We believe it is an essential tool for

exploring cloud processes as we expand to include changes in aerosol concentrations,

parameterisation coefficients and more meteorological parameters.

We have shown that at low dimensions the visual mapping between relationships is

very informative, and finding a way to display this in a higher number of dimensions

would be instrumental in further studies. Glassmeier et al. (2019) and Hoffmann et

al. (2020) have already demonstrated one solution by mapping a six-dimensional input

parameter space into a two-dimensional state space creating graphics that concisely give

a huge amount of information about the relationships of interest. However, the systems

cloud modellers are studying have possibly hundreds of uncertain parameters, and

statistical emulation has already been used with up to around 50. Expanding to higher

dimensions has increased problems of sparsity due to the “curse of dimensionality”, but

the saving in terms of computational resources is undeniable. In our two-dimensional

case here, each simulation took 8 to 10 hours to run on a high-performance computer,

yet to emulate and sample the rest of parameter space took only a few seconds on a

standard laptop.

3.8 Conclusions

We have used Gaussian process emulation to analyse and visualise the dependence of

stratocumulus clouds on the initial profiles of two cloud-controlling factors and their in-

teractions. This method is particularly useful for low, shallow clouds and understanding

the covariance between the factors involved in different processes. We have found that

the parameter space we explored can approximately be split into two cloud behavioural

regimes, with a smooth, yet steep, gradient between them. However, we did not find a

point of rapid cloud breakup, rather there is a small corner of parameter space, where

the free troposphere is dry and cool, where stratocumulus clouds were not produced.

Below the threshold, in the moist, warm free-tropospheric conditions, there is generally

high liquid water path and high cloud fraction, with cloud thickening (increasing liquid
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water path) and aggregation (clustering in the cloud fraction). Above the threshold, in

the dry, cool free-tropospheric conditions, there is low liquid water path, and medium

cloud fraction, that is fairly stable or marginally thickening. We used a nugget term

to account for cloud natural variability that is captured in the model and in doing so

have represented deterministic behaviour across parameter space, instead of individual

model realisations. This also allowed us to smooth out extrema that were artefacts of

the emulator fitting. We used initial-condition ensembles to estimate the appropriate

size of nugget and found that taking the normalised residual variance and multiplying

by the maximum value in the PPE gave the best fit.

Using an emulator in this way helps to visualise the relationships between param-

eters of interest and the model output at a much-reduced computational cost. This is

sorely needed in the study of shallow clouds and their behaviours. Our future work

will go on to expand the PPE to consider many more parameters, crucially aerosol

concentrations, so that we may delve into the heart of understanding these complex

systems and all the factors that make up the whole without breaking it down to its

parts.
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4.1 Abstract

The transition from stratocumulus to cumulus clouds in marine capped boundary layers

leads to a halving in cloud fraction and a large change in the cloud radiative effect on

climate. In the subtropics, the transition occurs when cloudy air is advected over in-

creasingly warmer sea-surface temperatures. Many environmental or ’cloud-controlling’

factors affect the transition, with lower-tropospheric stability being a dominant factor.

Previous studies have explored some of these factors, such as large-scale divergence and

cloud droplet number concentration, and found that drizzle has only a small role in

the transition mechanism. However, very few of these studies have used a microphysics

scheme that includes aerosol processing, and even fewer have considered aerosol with

the wider environmental conditions. Here, a 97-member perturbed parameter ensemble

of a large-eddy simulation model is used to assess how 5 atmospheric initial conditions

and 1 microphysical model parameter affect the transition in the Northeast Pacific. A

stratocumulus-to-cumulus transition is produced in 34 of these simulations, which gives

a huge range of environmental conditions to explore. The results show that aerosol con-

centration and boundary layer moisture have the strongest correlations with transition

time across the perturbed ranges. The ensemble shows the joint effects that factors

57
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have on the transition time. The fastest transitions (under 40 hours) correspond to

simulations with low aerosol combined with deep boundary layers, high autoconversion

rates and a dry temperature inversion. The amount of drizzle is largely controlled

by the boundary layer depth, but the drizzle does not solely determine the transition

time. The aerosol has an even stronger relationship with transition time in high drizzle

environments and the inversion strength has a larger impact than most of the other

factors, via its control of entrainment rate, in low-drizzle environments.

4.2 Introduction

Stratocumulus-to-cumulus transitions occur on the eastern sides of major ocean basins

when stratocumulus decks are advected towards the equator across increasingly warmer

sea-surface temperatures (SST) (Klein and Hartmann, 1993; Albrecht et al., 1995).

There is a large decrease in cloud fraction (and consequently albedo and radiative forc-

ing) as the cloud type transitions to cumulus. Understanding the drivers behind cloud

transitions is key to predicting how these cloud regimes will change in the future cli-

mate. The stratocumulus-to-cumulus transition is governed by many cloud-controlling

factors, whose contributions are still an area of active research. This uncertainty leads

to poor parameterisations in global climate models so transitions are not captured well,

which creates large uncertainties in simulated cloud properties and their responses to

the warming climate (Bony and Dufresne, 2005; Teixeira et al., 2011; Eastman et al.,

2021). Low clouds in the subtropics have a cooling effect on the planet, so future de-

creases in cloud fraction reduce that cooling effect, amplify warming, and contribute

to a positive cloud feedback effect (Bretherton, 2015; Ceppi et al., 2017; Nuijens and

Siebesma, 2019). Further process understanding of cloud transitions can improve their

representation in global climate models and reduce the uncertainty surrounding cloud

adjustments and feedbacks.

The typical transition mechanism, termed deepening-warming decoupling, has been

determined through observational studies (Paluch and Lenschow, 1991; Bretherton and

Pincus, 1995; Bretherton, Austin, and Siems, 1995; Martin et al., 1995; Wang and

Lenschow, 1995; Klein, Hartmann, and Norris, 1995; de Roode and Duynkerke, 1996;

Pincus, Baker, and Bretherton, 1997) and high-resolution modelling (Krueger, McLean,

and Qiang Fu, 1995; Wyant et al., 1997; Bretherton and Wyant, 1997; Svensson, Tjern-

ström, and Koračin, 2000). It describes how the increasing SSTs cause the boundary

layer turbulence to be increasingly driven by surface fluxes that deepen the boundary

layer. As the boundary layer deepens, mixing throughout the full layer can no longer

be sustained and the layer decouples into a stratocumulus cloud layer, and a surface-

coupled subcloud layer. Once decoupled, the stratocumulus layer is cut off from the

ocean as a moisture source, but the subcloud layer becomes more turbulent, warmer

and moist from surface evaporation until cumulus plumes develop. In this cumulus-
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under-stratocumulus stage, the plumes at first provide moisture and turbulence to the

stratocumulus layer, but more-energetic plumes overshoot and the vigorous mixing

eventually dissipates the stratocumulus cloud resulting in a field of cumulus.

The role of drizzle in the transition remains unclear and inconsistent between stud-

ies (Miller and Albrecht, 1995; Wang, 1993; Pincus, Baker, and Bretherton, 1997;

Svensson, Tjernström, and Koračin, 2000). Several modelling studies have found that

drizzle has a small effect on the transition compared to other cloud-controlling fac-

tors (Sandu and Stevens, 2011; McGibbon and Bretherton, 2017; Blossey, Bretherton,

and Mohrmann, 2021). Sandu and Stevens (2011) used large-eddy simulation (LES)

of a composite case derived from thousands of trajectories in the North East Pacific

in Sandu, Stevens, and Pincus (2010) as a basis from which they perturbed cloud-

controlling factors. They reduced the cloud droplet number concentration from 100 to

33 cm−3 to allow precipitation to form earlier and this limited the boundary layer re-

covery from decoupling through the day by moistening and cooling the subcloud layer,

and depleting the cloud layer of water. The increased precipitation caused the cloud to

break up sooner, but it is suggested here that initial strength of the temperature inver-

sion capping the boundary layer has the strongest control on the timing of the breakup.

This and many other LES studies used a fixed droplet number. Yamaguchi, Feingold,

and Kazil (2017) suggested that using a fixed droplet number does not allow for rain

feedback mechanisms, which require representation of aerosol in collision-coalescence

processes for appropriate droplet depletion.

Including aerosol in LES cloud simulations ensures that there is a feedback between

the reduction of droplets as they collide and the reduction in aerosol number concen-

tration, which then further reduces cloud droplet number. Yamaguchi, Feingold, and

Kazil (2017) used a bin-emulating bulk microphysics scheme that included aerosol pro-

cessing in an LES model. They found evidence of a fast transition mechanism initiated

by drizzle that develops at the cumulus-under-stratocumulus stage, in a low aerosol en-

vironment. In the proposed mechanism, the drizzle droplets are formed in the cumulus

plumes and strong updrafts carry them to the stratocumulus layer where they enhance

drizzle production because they are larger than the stratocumulus cloud droplets, and

therefore more efficient collectors. Through collision-coalescence and wet scavenging,

the droplet number and aerosol concentrations are reduced leading to even heavier

drizzle, more reduction and a runaway feedback. Using the same model for a different

case, Diamond et al. (2022) found also a rapid reduction in cloud fraction through

drizzle depletion in low aerosol conditions. However they suggested that the end state

was more of an open-cellular organisation rather than a cumulus state. Erfani et al.

(2022) considered the two trajectories simulated in Blossey, Bretherton, and Mohrmann

(2021), but included a single-mode bulk aerosol scheme with aerosol processing within

cloud droplets, and also found precipitation to be a driver of the transition. These
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studies do not fully consider the effect of aerosol concentration in the context of other

cloud-controlling factors: Diamond et al. (2022) perturbs some large-scale forcings but

with a focus on smoke effects and the two trajectories in Erfani et al. (2022) have very

different initial conditions but these cover only two extreme cases.

Observations from ships and satellites, along with reanalysis data, provide the wider

context of the meteorological conditions (e.g. Mauger and Norris, 2010), but they have

not shown clear evidence of a rapid transition to cumulus by a drizzle-depletion mecha-

nism (Pincus, Baker, and Bretherton, 1997; Zhou, Kollias, and Lewis, 2015; Brendecke

et al., 2021). Eastman and Wood (2016) conducted a large analysis of Lagrangian tra-

jectories from satellite data and in particular focused on the effect of boundary layer

depth, the inversion strength and precipitation on cloud evolution. They found that

deep boundary layers and weak inversions tend more towards cloud breakup, but pre-

cipitation effects were less clear: in shallow boundary layers, precipitation sustained the

cloud longer whereas in deep boundary layers it tended to cause the cloud to break up.

Despite finding that aerosol on average increased cloud fraction, Christensen, Jones,

and Stier (2020) also did not find precipitation or low aerosol to be a strong driver of

cloud breakup. Eastman, McCoy, and Wood (2022) assessed the difference between

closed-cell stratocumulus that does transition and that which does not. They find

heavy precipitation is linked closely with a transition to open-cell stratocumulus, but

the transition to a cumulus state is more likely caused by excess entrainment at cloud

top.

There are no studies on the role of drizzle in the stratocumulus-to-cumulus transition

that combine the wider meteorological context with high-resolution cloud modelling.

Several LES studies have made large one-at-a-time perturbations to wider meteorolog-

ical conditions, such as subsidence, droplet number, radiation and latent heat fluxes

(Sandu and Stevens, 2011; van der Dussen, de Roode, and Siebesma, 2016; Zheng,

Zhang, and Li, 2021). There have been LES model intercomparisons of the transition

that, when compared with observations, highlight which structural differences create

the largest disparities in replicating observed transitions (Bretherton et al., 1999b; van

der Dussen et al., 2013; de Roode et al., 2016). Other studies have made small per-

turbations to initial conditions to represent different stages of the transition (Chung,

Matheou, and Teixeira, 2012; Tsai and Wu, 2016; Bellon and Geoffroy, 2016). Addi-

tionally, several groups have simulated specific observed or calculated trajectories that

have completely different sets of initial conditions and very different characteristics of

transition (Goren et al., 2019; Blossey, Bretherton, and Mohrmann, 2021; Erfani et al.,

2022). Within these studies, precipitation is found to have no effect or slightly hasten

the transition but it is not found to be a key driver. Yet all of these studies are limited

to one-at-a-time perturbations or only consider a couple of possible trajectories when

there are a very wide range of cloud-controlling factors. In doing so, they barely sam-
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ple the parameter space and may miss the covariance of meteorological factors in this

complex process (Feingold et al., 2016).

In this study we have used an LES model to create an ensemble of stratocumulus-

to-cumulus transitions initiated with a wide range of meteorological conditions covering

key cloud-controlling factors. We define “transition” as the time (in hours) taken to

transition from the initial stratocumulus state to a cumulus state. Given the potential

importance of drizzle formation, the ensemble also samples a range of rates of auto-

conversion of cloud droplets to rain droplets. Each of these perturbed factors has the

potential to affect the characteristics of the transition. In perturbing them together in

a perturbed parameter ensemble (PPE) we can learn how these factors jointly affect

the transition.

We address the following questions. Do the fastest transitions occur in low aerosol

environments? Are the fast transitions limited by other cloud-controlling factors or

the autoconversion rate? Under what conditions does drizzle play an important role in

the transition? Section 4.3 describes the model setup and ensemble design before the

results are shown in section 4.4 and discussed in greater detail in section 4.5.

4.3 Simulation and ensemble design

4.3.1 Model configuration

The ensemble of simulations generated in this study is based on the composite case

created for the NE Pacific Ocean basin in Sandu and Stevens (2011). Sandu, Stevens,

and Pincus (2010) calculated thousands of forward and backward air parcel trajecto-

ries from areas of extensive cloud cover, over six days of advection, and retrieved the

boundary layer properties for this period from satellite data and meteorological reanal-

ysis. The averaged datasets were found to be representative of individual trajectories,

so they used a subset to build a reference case for the three days where the majority of

the transition takes place (see Sandu and Stevens, 2011). This meteorological state in

this reference case is a good starting point for simulating a typical transition, which can

then be perturbed to explore cloud behaviour over a wider range of cloud-controlling

factors.

The ensemble was simulated using the LES model from the UK Met Office and Na-

tional Environmental Research Council (NERC), called the MONC (Met Office/NERC

Cloud) model (Dearden et al., 2018; Poku et al., 2021; Böing et al., 2019). The MONC

model solves a set of Boussinesq-type equations and here we have used the anelas-

tic approximation, which is based on a reference potential temperature profile that

depends only on height. The subgrid turbulence parameterization is an extension of

the Smagorinsky-Lilly model and is based on that described in Brown, Derbyshire,
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and Mason (1994). Here, MONC was coupled to the 2-moment Cloud AeroSol In-

teraction Microphysics scheme (CASIM) (Shipway and Hill, 2012; Hill, Shipway, and

Boutle, 2015) and the Suite of Radiation Transfer Codes based on Edwards and Slingo

(SOCRATES) (Edwards and Slingo, 1996).

Stratocumulus-to-cumulus transitions are often simulated in a Lagrangian style,

where the domain moves with the advection of the cloudy air (Krueger, McLean, and

Qiang Fu, 1995; Sandu and Stevens, 2011; de Roode et al., 2016). Here, although

our model domain is advected along a typical airmass trajectory, we retained wind

profiles to ensure there was appropriate ocean surface evaporation, but the model has

periodic boundary conditions so the domain was always focused on the same cloud cell.

As in other studies, we simulated the advection towards the equator by forcing the

SSTs to increase over the course of the simulation. The simulations were run for 3-4

days and the SST is increased by nearly 1.5 K per day, following Sandu and Stevens

(2011), Bretherton and Blossey (2014) and Yamaguchi, Feingold, and Kazil (2017).

The domain was 12.8 by 12.8 by 3.1 km3. The horizontal resolution was 50 m, and the

vertical resolution varied from 20 m near the surface, to 5 m around the temperature

inversion, and gradually increased above that.

CASIM is a 2-moment bulk microphysics scheme that represents hydrometeors using

gamma distributions for mass and number (Grosvenor et al., 2017). In this study, we

used only warm-cloud processes (cloud liquid and rain) since ice processes are not part

of the stratocumulus-to-cumulus transition in the NE Pacific. The simulations are

initiated with soluble aerosol, also represented by mass and number prognostics, in

the Aitken and accumulation modes. The Aitken mode distribution has a standard

deviation of 1.25 and a mean radius of 25 nm. The accumulation mode distribution

has a standard deviation of 1.5 and a mean radius of 100 nm. The density of all aerosol

particles is assumed to be 1500 km m−3. At saturation, the number of aerosol particles

activated into cloud droplets is calculated using the scheme of Abdul-Razzak and Ghan

(2000), and these activated aerosol are represented using a separate in-cloud prognostic.

The aerosol contained within droplets grows through droplet collision and coalescence

with the assumption that one aerosol particle is present in each droplet, and is returned

to the appropriate aerosol size mode on evaporation of the cloud droplets (including

the coarse mode). Accretion and autoconversion are represented by the Khairoutdinov

and Kogan (2000) parameterization. Rain evaporates in the subsaturated grid boxes,

but aerosol is not returned to the size modes through this process.

4.3.2 Perturbed parameter ensemble

We used a PPE in this study because it is a valuable tool for learning about the covary-

ing effects of parameters on model output. This is especially true for cloud systems,

where a shift in some cloud property in response to an environmental change may
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Table 4.1: Parameter descriptions, symbols and ranges in parameter space.

Parameter description Symbol Range

BL vapour mass mixing ratio BL qv 7 to 11 g kg−1

BL depth BL z 500 to 1300 m
Inversion jump in potential temperature ∆θ 2 to 21 K

Inversion jump in vapour mass mixing ratio ∆qv -7 to -1 g kg−1

BL aerosol concentration BL Na 10 to 500 cm−3

Autoconversion rate parameter baut -2.3 to -1.3

be buffered by another change that has occurred. Perturbing multiple environmental

conditions simultaneously and in a well-designed way allows us to understand more

about the combinations of parameters that affect certain outputs of the model. We

perturbed five cloud-controlling factors, which relate to features of the initial thermo-

dynamic vertical profiles, and a sixth factor that determines the autoconversion rate,

which is a model process-related parameter in the CASIM code (see Table 4.1). All

factors were perturbed over a range that has the base simulation (Sandu and Stevens,

2011) well within it. The initial vertical profiles evolve a small amount during model

spinup, therefore in our exploration of their joint effects we analysed dependencies of

cloud properties on the initialised factors and their post-spinup values (see Appendix

B.1).

Boundary layer vapour mass mixing ratio

We perturbed the boundary layer vapour mass mixing ratio (specific humidity) since

this directly determines at what point saturation is reached and how much moisture

is available for cloud droplets to form. It also determines how much drizzle will be

evaporated below cloud base.

Inversion properties

We perturbed three properties of the inversion; the jumps in potential temperature and

specific humidity across the inversion, and boundary layer depth. The dissipation of

the stratocumulus cloud is a defining part of the transition and is largely caused by

the entrainment of warm, dry air from above the inversion, via overshooting cumulus

plumes. Thus, the rapidity of this dissipation is related to the strength of the inversion

and the humidity in the free troposphere (Wood et al., 2018), which can be perturbed

with the changes in temperature and moisture across the inversion (the jump in poten-

tial temperature will be used interchangeably with inversion strength). Additionally,

the humidity in the free troposphere determines the rate of longwave cooling which

relates to entrainment and evaporation (Siems, Lenschow, and Bretherton, 1993). The

boundary layer depth was perturbed since it determines how well mixed the boundary

layer can be, and consequently how well supplied with surface-evaporated moisture the
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stratocumulus cloud layer is. Eastman and Wood (2016) showed that precipitation

may have opposite effects on stratocumulus cloud transitions depending on whether

it is occurring in deep layers, leading to break up, or shallow layers, leading to cloud

persistence.

Boundary layer aerosol

We perturbed the initial boundary layer concentration of accumulation mode aerosol.

Most aerosol that activates into cloud droplets (cloud condensation nuclei) is from the

accumulation mode. The free-tropospheric aerosol can also be a source of cloud con-

densation nuclei and could be important in simulations with low aerosol concentrations

in the boundary layer (Wyant et al., 2022). However, the effect of this source is beyond

the scope of this paper so we kept the free-tropospheric concentrations constant across

the ensemble.

Autoconversion rate parameter

The autoconversion rate determines how readily cloud droplets form rain droplets in a

parameterisation of the collision-coalescence process. In the Khairoutdinov and Kogan

(2000) parameterisation, the autoconversion rate is given by

(
δqr
δt

)
auto

= 1350q2.47c N−1.79
c ,

where qr is the rain mass-mixing ratio, qc is the cloud liquid mass-mixing ratio (both

in kg kg−1), and Nc is the cloud droplet number concentration (cm−3). We have

perturbed the exponent of cloud droplet number concentration from its value of -1.79.

The parameter values in this approximation have been estimated by reducing the mean

squared error between this function and an explicit microphysics model, and as such,

there is a large uncertainty for each of these values. There has been some progress on

refining parameterisations of autoconversion (Kogan, 2013). Here, we want to compare

the sensitivity of cloud properties to environmental conditions with the effect of this

key uncertain model parameter.

Perturbation method

The six parameters were simultaneously perturbed using a Latin hypercube to design

which combinations of parameter values within the chosen ranges to use. We used a

“maximin” Latin hypercube approach that maximises the minimum distance between

points to ensure that values are well-spaced across a multi-dimensional parameter space

and each 1-dimensional axis (Morris and Mitchell, 1995). Figure 4.1 shows the design in

the 6-dimensional parameter space. The values for the autoconversion parameter have
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been transformed using the inverse log since it is the exponent of Nc. This means that

the resulting autoconversion rates were approximately uniformly distributed, rather

than the values for the parameter.

We ran 85 simulations initially, but found that 31 did not form stratocumulus

because the boundary layer was too shallow and dry (see Appendix B.2). Out of those

simulations that had stratocumulus, 26 did not transition to a cumulus state before

the end of the simulation. We expected that not all the simulations would produce

transitions since we have broadly perturbed initial conditions to sample a wide range

of model behaviour. The remaining 28 simulations that transitioned to cumulus were

topped up by 6 transitioning simulations, out of 12 points that were augmented to the

original design. These additional 12 were augmented based on our new understanding

of the regions of parameter space that would not produce stratocumulus and were

unlikely to transition within simulation time.

The ranges for each parameter were chosen to span the breadth of the studies

on stratocumulus-to-cumulus transitions in the subtropics. Often case studies are de-

signed for LES simulation from observations of particularly fast or slow transitions, so

a broad range of behaviours were included in the parameter space by spanning these

reported cases (Sandu and Stevens, 2011; de Roode et al., 2016; Blossey, Bretherton,

and Mohrmann, 2021). Since many LES studies have not focused on the aerosol effect,

the range for the accumulation mode concentrations was informed by the Cloud Sys-

tem Evolution in the Trades (CSET) and Marine ARM GPCI Investigation of Clouds

(MAGIC) campaigns (Bretherton et al., 2019; Painemal, Minnis, and Nordeen, 2015).

Note that we have not included extremely polluted cases, such as the biomass burning

region off the western coast of Africa. There is much work surrounding the aerosol

semi-direct effect on the stratocumulus-to-cumulus transition in the Atlantic ocean,

with some contradicting results (Yamaguchi et al., 2015; Zhou et al., 2017; Diamond

et al., 2022). Further understanding of transition mechanisms will help to untangle

these joint effects.

The perturbed values were used in idealised initial profiles to configure the model

Figure 4.2. The jumps at the temperature inversion were applied over a vertical dis-

tance of 30 m, and the lapse rates in the free troposphere were consistent across all

simulations. The initial boundary layer potential temperature was set at 290.70 K for

all simulations. Although not perturbed, the initial Aitken mode concentration was set

as 150 cm−3 in the boundary layer and 200 cm−3 in the free troposphere. The initial

free-tropospheric accumulation mode concentration was set as 100 cm−3 and perturbed

in the boundary layer (Figure 4.2). To account for adjustments to the initial values

after the model has completed the spin up period, we recalculated the values of the

parameters after spinup and used the adjusted values as our Latin hypercube design

(Figure 4.1, see Appendix B.1 for adjustments).
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Figure 4.2: The initial profiles used to configure the model. The thick black lines shows
the profiles for the base simulation and the orange and purple lines show the range across
the PPE members. Purple lines have a high autoconversion rate and orange lines have a low
autoconversion rate.

4.4 Results

We begin by evaluating the cloud properties in the base simulation, which is central

to our PPE design. We then discuss the cloud fraction timeseries across the ensemble,

before using the PPE to identify combinations of factors that control the transition

time. Finally we assess the controls on drizzle and its relation to the transition time.

4.4.1 Cloud properties in the base simulation

The stratocumulus-to-cumulus transition in the base simulation is similar to that of

previous LES studies based on the Sandu and Stevens (2011) composite case (Brether-

ton and Blossey, 2014; Yamaguchi, Feingold, and Kazil, 2017). Figure 4.3 shows three

snapshots of liquid water content from the beginning, middle and end of the simula-

tion, and their associated cloud fraction. The cloud fraction is defined as the fraction

of cloudy columns with a cloud liquid mass-mixing ratio greater than 0.01 g kg−1. Col-

umn a is from around 12 hours into the simulation and shows a uniform stratocumulus

cloud with a cloud fraction of 0.99. The inversion height, and cloud top, are around

1000 m with a cloud layer thickness of about 300 m. Column b is from a day later and

shows a slightly more broken cloud but still a high cloud fraction of 0.94. The cross

section shows that the boundary layer deepened and the cloud top rose by a couple

of hundred metres during the intervening day. The lowest cloud base remains around

700 m, but now the base marks the bottom of cumulus-like plumes that feed into the

higher stratocumulus cloud base, around 100 m above. Since the first day, the liquid

water path has decreased towards the edges of the cloud as the stratocumulus layer

thinned. Column c is from the last two hours of simulation, at the end of the third day,

and shows a much more broken cloud that is representative of a cumulus cell, with a

cloud fraction of 0.53. At this stage the boundary layer is around another 100 m deeper

and the cloud top has risen with it.

Changes in cloud properties during the simulation are shown in Figure 4.4. The
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Figure 4.3: Snapshots of liquid water throughout the base simulation. The top row shows
the top-down view of liquid water path and the bottom row shows a vertical cross section of
liquid water mass-mixing ratio at the x location of the green dotted line in the top row. a) was
taken near the beginning of the simulation at around 12 hours, b) near the middle at around
34 hours, and c) at the end at around 72 hours.

cloud fraction (a) remains near one through the first day and night, and the liquid

water path (LWP: b) follows a diurnal cycle with a peak at the beginning of the second

day. There is a small amount of drizzle, shown by the rain water path (RWP: b, mass

mixing ratio: l) at the end of the first night and beginning of the second day. During

the second day, the boundary layer begins to decouple (i), from the increase in SST and

also solar surface heating, and the cloud fraction falls to around 0.9 towards the end of

the second day as the boundary layer deepens and mixing is not well sustained. The

cloud water recovers a little bit (LWP ≈ 100 g m−2) at the start of the second night,

through longwave cooling-enhanced convection (Wyant et al., 1997), before the drizzle

increases (RWP ≈ 20 g m−2) and the liquid water path recovery becomes limited by

the drizzle and depth of the boundary layer. The cloud fraction begins to decline in the

early hours of the third morning to below 0.6 midway through the day. There is a sharp

drop in cloud fraction at this time where much of the remaining stratocumulus suddenly

dissipates. This coincides with a sharp drop in the inversion strength (c) to around

7 K, and a decrease in the specific humidity jump (d), which is a combination of cloud

evaporation (causing latent cooling and an increase in moisture) and the transport of

moisture to the inversion by overshooting cumulus plumes. The boundary layer (k and

l) continues to deepen to the end of the simulation, but the cloud base (k and l) remains

steady. The cloud shows some recovery (cloud fraction and LWP) at the start of the

third night before declining again towards the fourth day. The drizzle is less during

the third night compared with the second. This shows a characteristic stratocumulus-
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Figure 4.4: Base simulation timeseries data. a) Cloud fraction b) liquid and rain water
paths c) jump in potential temperature at the inversion d) jump in vapour mass mixing ratio
at the inversion e) surface heat fluxes f) droplet number concentrations g) entrainment h)
upwelling shortwave radiation i) decoupling parameter - difference in total water mass mixing
ratio between the bottom and top 25% of the boundary layer (Jones, Bretherton, and Leon,
2011) j) mean updraft velocity k) mean cloud liquid water mass mixing ratio (MMR) l) mean
rain MMR. The blue dotted lines in k) and l) show the mean cloud base and top.
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to-cumulus transition that is mostly driven by deepening-warming decoupling (Wyant

et al., 1997), with a minor role from drizzle that further limits the recovery of the cloud.

Compared to other simulations of this composite case, we found that the boundary

layer did not deepen to the same degree and there was less drizzle. Previous LES

studies of this case resulted in a boundary layer depth between 1.5 to 2.5 km, whereas

our simulation has a maximum depth of 1.4 km at the end (Sandu and Stevens, 2011;

Bretherton and Blossey, 2014; de Roode et al., 2016; Yamaguchi, Feingold, and Kazil,

2017). This could be due to the different radiation schemes and mixing processes in the

models, or to the stretching of the vertical layers in the top of the domain. The RWP in

our simulation peaks at about 25 g m−2 at the beginning of the third day, which aligns

roughly with the sensitivity tests in Yamaguchi, Feingold, and Kazil (2017) where they

used the Khairoutdinov and Kogan (2000) parameterisation in a similar domain size.

However it is much less than the peak of 150 g m−2 for the same domain size using

their bin-emulating bulk microphysics scheme. The transitions in our simulations may

be slower than those in the previous studies since the boundary layer decoupling could

be limited by the shallower boundary layer and the lower RWP may limit the potential

for a drizzle-depletion mechanism.

4.4.2 PPE cloud fraction analysis

In this study we have focused on the time that each simulated cloud takes to transition

from a stratocumulus regime to a cumulus regime, henceforth called the transition time.

Figure 4.5 shows two examples of how this was calculated for all the ensemble members

based on the cloud fraction. We class the cloud as stratocumulus for a cloud fraction

above 0.9 and cumulus for a cloud fraction below 0.55. Figure 4.5a shows the base

simulation, which has stratocumulus from the start of the simulation (T0) so T1 is

set equal to T0 although realistically T1 could be earlier. The cloud fraction decreases

below the cumulus threshold just after 50 hours, but it recovers until the final time step

when it reaches the threshold again, T2. We find that this member has a transition

time of about 68 hours. Of course the cloud could recover again were the simulation

to be run for longer. We repeated the following analysis with the criteria that clouds

had to remain as cumulus for 12 hours before the simulation end and found the overall

results were the same but with fewer data points so appeared noisier (Appendix B.3).

Figure 4.5b shows a simulation that takes about 12 hours to build up stratocumulus,

which is why we have not calculated transition time based on simulation length. Hence

subtracting the time when cumulus forms, T2, from the start time of stratocumulus,

T1, gives a transition time of about 32 hours.

Across the ensemble, the range of initial cloud fractions produced is large, as shown

in Figure 4.6a. We expect a wide range of cloud behaviour because we have perturbed

several initial conditions over a large range of environmental conditions. We have 34
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the mean of the ensemble without the members with stratocumulus start SST above 296 K.
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simulations that produce a transition from a stratocumulus state to a cumulus state

within the three day simulation. Those that do not form stratocumulus throughout the

three days are removed in Figure 4.6b (31 simulations), and those that form stratocu-

mulus but do not transition to cumulus are removed in Figure 4.6c (30 simulations).

Figure 4.6c (34 simulations) shows the subset of transitioning simulations with the sub-

set mean. The subset mean is a similar shape to the base simulations, but the rest of the

PPE members show a wide range of behaviours. On average, the cloud fraction stays

near one through the first day and night, before dipping in the second day to a cloud

fraction ≈ 0.75 and on the third day it crosses the cumulus threshold and stays below.

A diurnal cycle can be seen in many of the members with some members dipping to

as much as cloud fraction ≈ 0.4 and still recovering in the second night. Additionally

some members keep a cloud fraction ≈ 1 until the third day and then transition rapidly.

While many of the simulations that transitioned formed stratocumulus within the

first day, there were three simulations that only formed stratocumulus beyond the end

of the second day when the SST had increased and the boundary layer became humid

enough to support the cloud layer. These three simulations have an SST at least 1 K

higher than the others at the start of stratocumulus and they transitioned very quickly.

The subset of transitioning simulations are “epoch aligned” in Figure 4.6d by aligning

time = 0 as the formation of stratocumulus for each member, and the high SST members

are highlighted. This fast transition occurs despite being in areas of parameter space

where you might not expect it, for example in a very shallow boundary layer with a low

autoconversion rate. This subset of simulations shows that warmer initial SSTs may

act to considerably speed up the transition, above meteorological conditions, which has

implications for the future warmer climate. However, here these simulations have been

removed from this analysis since the difference in SST at initial stratocumulus is akin

to perturbing a seventh parameter, but one that was not initially accounted for in our

experimental design, so the data points are not well spaced across parameter space.

4.4.3 Transition time analysis

Transition times plotted against each parameter (Figure 4.7) show that the boundary

layer aerosol concentration, BL Na, has the strongest relationship based on correlation

coefficients of marginal relationships. Note that each point in these plots has a different

value of the 5 other parameters so we expect marginal relationships to be generally low.

Transitions faster than 40 hours (fastest 25%) only occur in aerosol concentrations,

10baut , less than 250 cm−3 (bottom half of perturbed range). The boundary layer

specific humidity, BL qv, has the next strongest relationship and shows that transitions

slower than 68 hours (slowest 25%) only occur in simulations with specific humidity

greater than 9 g kg−1 (top half of perturbed range), which is most likely because these

clouds are thicker initially.
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Figure 4.7: One-dimensional scatter plots against transition time for each parameter. The
scatter points show the 34 simulations that transitioned within the simulation time. A line of
best fit is drawn and the correlation coefficient is given in each case.

The other parameters are described in order of decreasing correlation with transition

time. Deeper boundary layers, high BL z, are associated with faster transitions, in

line with Eastman and Wood (2016), where decoupling occurs more easily because

the boundary layer is less well mixed. Larger jumps in specific humidity, ∆qv, are

associated with slower transitions. A more humid free troposphere reduces the drying

from entraining above-cloud air (which would act to prolong cloud) and the rate of

longwave cooling (which would lead to less cloud recovery through the night). Since

we see slower transitions for a more humid free troposphere, the decrease in drying air

has a larger effect than the decrease in longwave cooling. The inversion strength, ∆θ,

shows a very weak positive relationship for a weak inversion (small ∆θ), as in Sandu and

Stevens (2011), but shows no clear relationship for strong inversions (high ∆θ). The

transition time has a slightly negative relationship with 10baut , with slow transitions

occurring for low parameter values (converts to low autoconversion rates) and fast

transitions for high values (autoconversion rates), which indicates higher drizzle rates

deplete cloud water and hasten transitions. These are only marginal relationships, but

by analysing the joint effects between factors we can understand the complexity in the

drivers of transitions.

Figure 4.8 shows the transition time for all 2-dimensional parameter combinations,

which allows us to build up the wider environmental conditions behind fast and slow

transition times. The fastest transitions are those with low BL Na (Figure 4.7), but they

are also generally combined with deep boundary layers (panel h), high autoconversion

rates (panel o) and dry inversions (panel j). The slowest transitions occur in very moist

boundary layers (high specific humidity) under strong temperature inversions (panel

b).

Figure 4.8 also shows the regions of parameter space that did not produce stratocu-

mulus or did not transition to cumulus by the end of the simulation (marked with small

grey dots). The majority of simulations that did not produce stratocumulus started

from a dry, shallow boundary layer (low BL qv and BL z; panel 1). Additionally, sim-

ulations with the weakest inversions also did not produce stratocumulus (bottom edge
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Figure 4.9: The rain water path across the ensemble. a) The domain-averaged rain water
path timeseries for each member split by temporal mean rain water path greater than 7 g m−2

(blue) or less than (red). b) The cloud fraction timeseries as in Figure 4.6c but coloured by
mean RWP. The means over each subset (high or low mean RWP) are shown in bold. c) The
number of data points used in calculating the mean of each subset at each timestep in b). d)
As in b) but aligned to the start of stratocumulus. e) As in c) but for d). f) A scatter of the
mean RWP for each member against the transition time, with a line of best fit.

of second row and left edge of the third column). Many of these simulations produced

low cloud fractions around 0.2 to 0.4.

4.4.4 Rain water path analysis

We analysed the RWP in the PPE to determine whether the drivers of the transition

might have acted through a drizzle depletion mechanism. The RWP across the PPE is

summarised in Figure 4.9, with the domain-averaged timeseries for each member shown

in panel a. In this plot the PPE is split into “low” and “high” RWP by a temporal mean

threshold of 7 g m−2 (approximately half of the highest member). The cloud fraction

for the transitioning simulations (simulation time aligned in panel b and epoch aligned

in panel d) has also been coloured low and high for RWP, with corresponding subset

means. The histograms in panels c and e show the number of points being averaged

over at a given time in each subset, which varies because of the different stratocumulus

formation times (Section 4.4.2 and Figure 4.6).

We find that the simulations with higher RWP transitioned approximately 22 hours

ahead of those with lower RWP (Figure 4.9d). Figure 4.9a shows that those with higher

mean RWP produced drizzle much more in the first and second day, whereas in those

with lower RWP the drizzle builds up during the simulation. In Figure 4.9b, where the

timeseries are lined up with the diurnal cycle, the high RWP subset mean recovers more

than the low RWP mean during the nights. This might suggest that the simulations
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Figure 4.10: One-dimensional scatter plots against mean RWP for each parameter. The
scatter points show the 34 simulations that transitioned within the simulation time. A line of
best fit is drawn and the correlation coefficient is given in each case.
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Figure 4.11: One-dimensional scatter plots against transition time for each parameter. The
scatter points show the 34 simulations that transitioned within the simulation time and are
coloured by high mean RWP (blue circles) or low mean RWP (red triangles). Lines of best fit
are drawn and the correlation coefficients are given for each case.

with more initial rain transition to a state like open-cell stratocumulus rather than

cumulus, which would enable more recovery through the night. In Diamond et al.

(2022), they found that drizzle depletion caused the stratocumulus to transition to

open-cell behaviour rather than cumulus, but did not determine which factors would

cause one transition over the other.

Figure 4.9f shows that although the fastest transitions do have a higher mean RWP,

the RWP is clearly not the only important factor determining the transition time.

Rather, other factors are impacting the characteristics of the transition, such as the

degree of decoupling and the ability to recover through the night.

Figure 4.10 shows that the mean RWP is most dependent on BL z and to a lesser

extent, 10baut . High mean RWP results from deep boundary layers and from high

autoconversion rates, as is expected. Generally, moister air above the inversion also

results in a higher mean RWP (∆qv). There is a weak negative relationship with BL

Na, with high aerosol tending towards low RWP. This suggests that although the fastest

transitions have high mean RWP and low aerosol concentrations, it is the combination

with deep boundary layers that is causing any drizzle depletion.

BL Na has a much stronger relationship with the transition time if we consider only

the simulations that have high mean RWP in Figure 4.11. In stronger precipitating

cases, BL Na has a bigger effect on the transition time than in weaker precipitating
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cases. ∆qv also has a stronger relationship with transition time in high mean RWP

simulations (more vapour available allows a faster transition). We also find that ∆θ

is much better correlated with transition time for the low RWP simulations, which is

most likely due to its control on the entrainment rate, which also correlates better for

low RWP simulations (see Appendix B.4).

These results show that multiple factors determine the transition time with the

dominant factor depending on the wider environmental conditions. The boundary layer

depth and autoconversion rate most strongly determine the amount of drizzle. Aerosol

concentration controls the transition time in high-drizzle environments, whereas the

inversion strength, via the entrainment rate, controls the transition time in low-drizzle

environment.

4.5 Discussion

Our results show that the fastest transitions in our ensemble do occur in low aerosol

environments, but the aerosol primarily has this effect when combined with deep bound-

ary layers, high autoconversion rate and a dry inversion. We find that the amount of

drizzle correlates best with the depth of the boundary layer. The simulations that have

high mean rain water path (deeper boundary layer) make an average transition around

22 hours ahead of those with low rain water path (shallower boundary layer), but gen-

erally drizzle does not strongly control the timing of the transition. Rather, in deep

boundary layers where there is more drizzle, the aerosol has a strong correlation with

transition time, and in shallow boundary layers where there is less drizzle, the inversion

strength becomes much more relevant through its strong control of entrainment rate.

The drizzle-depletion effect seen in Yamaguchi, Feingold, and Kazil (2017) could be

reduced in our simulations since we have considerably less drizzle, but also many of our

simulations form drizzle much earlier on, with peaks in the first or second day. This

is still likely to cause a drizzle-depletion effect by removing aerosol and moisture from

the cloud layer, but unlikely to be the cumulus-initiated rain that they find causes

a positive-depletion feedback, since they find the cumulus generally forms from the

second day onward. The cause of these differences in rain water path is most likely due

to the differences in domain size or the microphysics schemes. Yamaguchi, Feingold,

and Kazil (2017) did a sensitivity test with a smaller domain size (12 by 12 km2),

which is closer in size to ours than their main simulation domain (24 by 24 km2) and

also using the Khairoutdinov and Kogan (2000) microphysics scheme, rather than their

bin-emulating bulk scheme. The rain water path in this test is much closer to what we

see in our simulations (Figure 4.9 and their Figure 10c).

Yamaguchi, Feingold, and Kazil (2017) find that the Khairoutdinov and Kogan

(2000) microphysics scheme with fixed droplet number is not capable of producing a
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transition. The microphysics scheme that we use, CASIM, uses the Khairoutdinov and

Kogan (2000) parameterisations for autoconversion and accretion, however we do find

the transition takes place since we are using it with aerosol processing, where collision

and coalescence of cloud droplets reduces the concentration of aerosol. This supports

the conclusion in Yamaguchi, Feingold, and Kazil (2017) that those simulations do not

transition because using a fixed droplet number does not allow rain feedbacks, and

hence why previous studies have found drizzle to be only a minor effect (Sandu and

Stevens, 2011; Blossey, Bretherton, and Mohrmann, 2021), and the transition time to

be dominated by lower tropospheric stability and entrainment rate.

The boundary layer deepening is lower in our base simulation compared with other

simulations of the same case, and this could restrict circulation and also precipitation.

The maximum height of the boundary layer in our base is around 1400 m, whereas other

studies have deepening up to around 2500 m (Sandu and Stevens, 2011; Bretherton

and Blossey, 2014; de Roode et al., 2016; Yamaguchi, Feingold, and Kazil, 2017). The

previous version of the MONC model was used in the de Roode et al. (2016) model

intercomparison, and it does have the shallowest boundary layer with a maximum

height of about 1800 m for the reference case (our base case), which suggests that it

could be partly down to the model structure.

Where previous studies of the aerosol effect on the stratocumulus to cumulus tran-

sition have only included an accumulation mode in their simulations, we have also

included Aitken and coarse modes. The Aitken buffering hypothesis of McCoy et al.

(2021) has been supported by simulations in Wyant et al. (2022) that show Aitken-

sized aerosol can be transported to the boundary layer where the larger particles act as

cloud condensation nuclei. High concentrations of Aitken mode in the free troposphere

slowed the transition from stratocumulus to an ultraclean layer, which otherwise would

have occurred through aerosol removal and precipitation feedbacks. In our simulations,

the concentrations of Aitken mode do not show significant depletion throughout the

simulations, but this could be a small factor to consider. Additionally, we have not

included a source of aerosol through the simulation whereas in reality, sea spray is a

primary source of aerosol away from coastal environments. This source would have

acted to slow all transitions equally since we did not perturb controlling factors, such

as wind speed.

The transition time was determined using stratocumulus and cumulus thresholds for

cloud fraction, but this method was limited by the bounds of the simulation time. As

mentioned previously, some of the cumulus clouds may have recovered to stratocumulus

after the simulation ends. Similarly for the clouds that began with stratocumulus, there

is an unquantifiable amount of time before the simulation where the cloud may have

been formed. These limitations likely result in noise in the data which may obscure

some of the 1-dimensional relationships in this PPE analysis. A more robust adaptation
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would be to spin up a base cloud before making perturbations and to have a restriction

on how long the cloud must remain as cumulus before the end of the simulation. Two

alternative methods could be to study the time taken for the cloud to transition from

the end point of stratocumulus to the start of cumulus, or the gradients in the decline

from stratocumulus.

Using cloud fraction is a reliable way to measure a transition in cloud behaviour, but

it is hard to quantify whether the resulting cloud is in a cumulus state, especially in a

domain of this size. It would be easier to distinguish between an end state of mesoscale

cumulus organisation and open-cell stratocumulus with a larger domain. Diamond

et al. (2022) found open-cell stratocumulus in their study of the transition that used

a domain of a similar size, but they did not determine under which conditions the

stratocumulus transitioned to a cumulus state or an open-cell state. Despite the small

domain size, further analysis of the simulations in this ensemble could give insight into

this problem.

The autoconversion parameter has the strongest relationship with rain water path,

other than the boundary layer depth, but a weak relationship with transition time com-

pared with the cloud-controlling factors. In many of these simulations the drizzle is

only a minor part of the transition that is largely determined by other factors, however

in the high rain water path simulations the correlation of the autoconversion parame-

ter with transition time is comparable to that of the cloud-controlling factors. When

uncertainty in parameterisations such as this can have such a large influence on the

drizzle and timing of transition, modelling studies can produce vastly different results

depending on where in parameter space the model lies. Here we have perturbed only

one autoconversion parameter, but in the Khairoutdinov and Kogan (2000) parameter-

isation there are three uncertain parameters and there are uncertainties in the accretion

parameterisation too. Additionally, how sensitive a model is to a parameter value will

be affected by structural differences in models. The effects of structural differences on

these sensitivities could be evaluated if other modelling groups were to replicate this

work, creating a multi-model PPE.

We find that in simulations with high rain water path, the inversion strength has a

negligible effect on the transition time, whereas in the low rain water path simulations

it is the second strongest correlation (after boundary layer moisture). Previous studies

have found the lower tropospheric stability, which is quite closely linked to inversion

strength since it is the difference in potential temperature at 700 hPa and the surface,

to be a major control on the timing of the transition (Sandu and Stevens, 2011). Our

results suggest that this is true when drizzle is playing a minor role in the deepening-

warming-decoupling mechanism, but when drizzle depletion is driving the transition,

the inversion strength (and consequently the lower tropospheric stability) have less of

an effect.
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We may not be observing fast transitions by aerosol and drizzle in the real world

because quite rare conditions are required for them. We have found in this study

that particularly deep, pristine boundary layers are required to see a rain-hastened

transition. It is unlikely that campaigns, particularly in the NE Pacific Ocean off the

coast of North America, are going to observe such conditions and hence there are no

clear observations of a low-aerosol induced rain-hastened mechanism in this region.

4.6 Conclusions

In this study, we have created a perturbed parameter ensemble from an LES model to

interrogate the effect of aerosol and drizzle in the stratocumulus-to-cumulus transition.

This is a novel approach to understand the processes behind the transition, and, as

we show, it is essential to evaluate interactions between multiple factors to better

understand the complexity of the transition drivers.

We find that aerosol concentration has the strongest relationship with transition

time, where low aerosol environments produce transition times of under 40 hours. The

fastest transitions also occur in deep boundary layers, under dry inversions and with

high autoconversion rates. Simulations that have a high mean rain water path have

an average transition time around 22 hours faster than for low mean rain water path.

Deep boundary layers and autoconversion most strongly determine the mean rain water

path. For simulations that have a high mean rain water path (deep boundary layer)

the aerosol concentration has an even stronger relationship with the transition time,

whereas for simulations that have a low mean rain water path (shallow boundary layer)

the inversion strength has a stronger relationship with the transition time through its

control of entrainment rate.

Due to the dependence of the transition drivers on the wider environment, it would

be beneficial to do further analyses of a range of conditions rather than focusing on

binary fast and slow cases. There are multiple areas of parameter space that can give

the same transition time (equifinality), so analysing single cases could give only a small

part of the picture.
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Gaussian process emulation to

explore interaction of

cloud-controlling factors

5.1 Abstract

The stratocumulus-to-cumulus transitions are driven by a multitude of interacting

cloud-controlling factors. A deep understanding of these interactions is required to

accurately represent cloud responses to climate changes in global climate model pa-

rameterisations. In Chapter 4, a perturbed parameter ensemble (PPE) analysis found

the fastest transitions (under 40 hours) corresponded to low aerosol concentrations

combined with deep boundary layers, high autoconversion rates, and dry temperature

inversions. Here, the 6-dimensional PPE is used as training data for Gaussian process

emulation, which creates a statistical representation of the relationships between the

parameters and two properties of the transition: transition time and average rain water

path. Using the emulators, thousands of predictions are made for the transition prop-

erties, which allows visualisation of response surfaces and quantification of parameter

contributions to the outputs’ variances. In low-aerosol regimes (< 200 cm−3) the transi-

tion time is dominated by aerosol concentration, but outside the low-aerosol regime, the

inversion strength becomes more important. For the specified realistic ranges consid-

ered here, the aerosol concentration contributes 56% and inversion strength contributes

16% of the variance in the transition time. The total interaction effects from all pa-

rameters contribute 17% of the variance. The dependency of drizzle on the parameters

is studied using the average rain water path. The dependencies of rain water path

on the parameters are much more linear than for the transition time. The boundary

layer depth contributes 32%, aerosol concentration contributes 26%, and autoconver-

sion contributes 20% of the rain water path variance. The interacting (joint) effects of

81
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factors apparent in the emulators show the complexity of factors that determine the

transition time, whereas the rain water path is directly determined by single factors.

5.2 Introduction

Stratocumulus clouds are sensitive to changes in their environment, such as changes

in aerosol or temperature, which can drive them to transition into other cloud types

leading to a decrease in cloud cover (Albrecht et al., 1995; Stevens et al., 2005b; Albrecht

et al., 2019; Eastman, McCoy, and Wood, 2022). Cloud parameterisations in global

climate models poorly represent these transitions due to a lack of understanding of

the key drivers and the environments that cause different end states (Eastman et al.,

2021; Diamond et al., 2022). As such, there are large uncertainties in the responses

of stratocumulus to future climate change (Bony and Dufresne, 2005; Teixeira et al.,

2011). This is concerning because stratocumulus clouds have a strong cooling effect, so

reductions in their extent with warming could act to amplify the warming – a positive

cloud feedback (Gettelman and Sherwood, 2016; Ceppi et al., 2017). We need to be

assessing the environmental conditions surrounding these transitions to improve our

process-level understanding of stratocumulus clouds.

In Chapter 4, we analysed 34 simulations from a perturbed parameter ensemble

(PPE) of stratocumulus-to-cumulus transitions to investigate the roles of aerosol con-

centrations and drizzle in the transition. Several studies have found the occurrence of

drizzle speeds up the transition (Sandu and Stevens, 2011; Diamond et al., 2022; Erfani

et al., 2022), and Yamaguchi, Feingold, and Kazil (2017) found a “fast mechanism”, an

alternative to the deepening-warming decoupling transition, brought on by depletion

of cloud water by drizzle in low aerosol conditions. Our analysis of the PPE mem-

bers in Chapter 4 found aerosol concentration to have the strongest correlation with

transition time out of the 6 perturbed parameters, but drizzle was primarily controlled

by boundary layer depth and did not solely determine transition time. In high-drizzle

environments, the aerosol had an even stronger correlation with transition time and,

in low-drizzle environments, the inversion strength became more correlated than most

other factors. As well as quantifying parameter correlations with transition time we

analysed the parameter combinations that corresponded to fast transition times using

multiple visualisation methods but the ensemble data were very sparse (only 34 param-

eter combinations in the 6-dimensional space). In sparse data in multiple dimensions,

interpretations can be strongly influenced by single points. Statistical emulation is

designed to overcome this limitation.

Using Gaussian process emulation we can form a statistical representation of the

6-dimensional relationship between the perturbed parameters and transition proper-

ties. Gaussian process emulators allow us to make predictions for any combination of
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parameter values, which will fill all of the 6-dimensional space, and allow us to quantify

the contributions from each parameter to the variance in the model output. In Chapter

3, we emulated a 2-dimensional parameter space of perturbed free-tropospheric cloud-

controlling factors. We proposed and tested a method for incorporating the natural

variability of the system into the emulator build and used the resulting emulators to

create response surfaces to visualise the model outputs: liquid water path and cloud

fraction. The surfaces showed the interactions (non-linear joint effects) of the two pa-

rameters and that there were two distinct regimes in parameter space: one of thin and

patchy yet steady stratocumulus, and another of thick growing stratocumulus with high

cloud fraction. Analysing the stratocumulus-to-cumulus transition in the 6-dimensional

PPE (Chapter 4) has given us some insight into the transition behaviour across pa-

rameter space, but the interactions could not be robustly quantified because of the

relatively small number of simulations in the PPE. The 34-member PPE only gives

sparse coverage of the 6-dimensional parameter space.

In this chapter, we apply Gaussian process emulation to the PPE of stratocumulus-

to-cumulus transitions to create emulators of two characteristic properties of the tran-

sition: the transition time and average rain water path. The rain water path is used

to analyse how the cloud-controlling factors affect drizzle (see Chapter 4). We pro-

duce response surfaces for each property to analyse the parameter joint effects, and use

variance-based sensitivity analysis to quantify how these transition properties depend

on each parameter and their interactions. The analysis focuses on three questions: 1)

Which parameters are most important in determining the transition? 2) Which pa-

rameters are most important in determining the average rain water path? 3) What

additional information do we gain from using emulator predictions for thousands of

new parameter values that we did not have from the PPE analysis in Chapter 4?

Section 5.3 summarises some of the key information from Chapters 3 and 4, in-

cluding descriptions of the nugget term calculation, validation of the emulators, and

sensitivity analysis. In Section 5.4, the emulator response surfaces are used to discuss

the joint effects of factors and the sensitivity analysis results are shown. Finally, in

Section 5.5 these results will be synthesised and compared with those from Chapter 4.

5.3 Methods

The analysis in this chapter follows on from the PPE analysis in Chapter 4 and uses the

same model simulations. In that chapter, the MONCmodel was used to simulate 96 per-

turbations to a stratocumulus-to-cumulus transition composite case (Sandu, Stevens,

and Pincus, 2010; Sandu and Stevens, 2011). MONC was coupled to a bulk two-moment

microphysics scheme (CASIM, Field et al., 2023) that has prognostic aerosol modes and

collision-coalescence of droplets, and a two-stream radiation scheme (SOCRATES) that
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Table 5.1: Parameter descriptions, symbols and ranges in parameter space.

Parameter description Symbol Range

BL vapour mass mixing ratio BL qv 7 to 11 g kg−1

BL depth BL z 500 to 1300 m
Inversion jump in potential temperature ∆θ 2 to 21 K

Inversion jump in vapour mass mixing ratio ∆qv -7 to -1 g kg−1

BL aerosol concentration BL Na 10 to 500 cm−3

Autoconversion rate parameter baut -2.3 to -1.3

simulated a diurnal cycle (Manners et al., 2015; Edwards and Slingo, 1996). Full details

of the models can be found in Chapter 2, and the model setup, the perturbations and

the range of cloud behaviour during the simulations can be found in Chapter 4.3. The

table of parameters and perturbed ranges has been copied here for reference (Table

5.1). In this chapter, we also use Gaussian process emulation, as detailed in Chapters

2 and 3.

5.3.1 Nugget term

To calculate a nugget term for the emulators, additional simulations were made to

produce initial-condition ensembles, as in Chapter 3. Four points from the PPE were

chosen to cover a range of transition time output values at which to repeat the simu-

lations. These simulations all formed stratocumulus initially and transitioned by the

end of the simulation, with transition times of 19, 24, 40 and 71 hours. As in Chap-

ter 3, each simulation was repeated four times with the same initial profiles but with

a random set of potential temperature fluctuations (between 0 and 0.1 K at random

heights) at the start of the simulation (figure 5.1a). There is one exception where the

71-hour simulation was only repeated three times.

Following the method in Chapter 3, the initial-condition ensemble residuals (the

difference between member values and the ensemble mean), or “model” residuals, were

calculated for the transition time and average rain water path (e.g., figure 5.1b). For

each output, the residuals from all initial-condition ensembles were then combined into

sets with a total of 19 sample points (e.g., figure 5.1c, pink histogram). Our assumption

from Chapter 3 is that all these residuals are sampled from one distribution for the whole

parameter space so they can be combined in this way, see Figure 3.9.

The nugget terms were evaluated by comparing the model residuals against the

“emulator” residuals (the difference between model data and emulator predictions at

training points) in the same way as in Chapter 3 (Figure 5.1). The variance does in-

crease slightly with the mean for both transition properties, however, the variance of

the model residuals was found to be an appropriate nugget term for the emulator with-

out normalisation (which was required in Chapter 3). We did normalise by the mean
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Figure 5.1: Initial-condition ensemble residuals and nugget term evaluation. a-c) Transition
time and d-f) rain water path. a, d) Values of ensemble members for each ensemble mean b,
e) residuals for each ensemble, c, f) histograms of model and emulator residuals (see text for
definitions).

(not shown) and it also produced a suitable emulator, but we chose to use the unnor-

malised residuals to avoid the extra approximations incurred from finding a multiplier

(Chapter 3.6). Using these variances as nugget terms, the distributions of emulator

residuals are similar to the distributions of model residuals, as seen in Figure 5.1c and

f. The emulator residuals include the training points at which ensembles were created,

but at those points the original model outputs were replaced with the ensemble means

before the residuals were calculated.

Although the nugget terms required here are quite small in comparison to the data

(17% and 2% of the mean transition time and rain water path data), they do create

smoother, more deterministic surfaces. This difference is not as clear as in Chapter 3

because we are showing the averaged response surfaces, so some bumps are smoothed

in the averaging. However, the rain water path emulator average response surface is

particularly improved with a nugget term. See Appendix B.4 for an evaluation of the

emulators without nugget terms.

5.3.2 Emulator validation

The emulators of transition time and rain water path were validated using the leave-

one-out method, which allowed more data to be used to create the emulators than

if we used a separate validation subset. This was chosen because the set of planned

training data was already reduced by the number of simulations that failed to form
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stratocumulus and failed to transition to cumulus. The leave-one-out validation takes

the whole set of training data and creates an emulator from all but one of the data

points. That emulator is then used to predict the value for the left-out point. This is

repeated one by one for each point and the differences between the predicted values

and the actual values are used to gauge how reliably the emulator can reproduce model

output.

The leave-one-out validations in Figure 5.2 show that the training points were pre-

dicted within the 95% confidence intervals for 85% and 79% of the points for transition

time and rain water path. This is an acceptable degree of accuracy considering we only

have 34 points in a 6-dimensional space. We additionally validated the emulators by

calculating the ratio of the standard deviation of the mean values at the training data

(a measure of variation in emulated output) to the mean of the standard deviation of

those points (the uncertainty in emulated values). For both emulators, this ratio is

larger than 1, which tells us the function changes more than the underlying emulator

uncertainty. If the ratio was less than 1, the emulator uncertainty would be too large

compared to changes in the function, so it would not be a useful approximation of the

relationship.

The emulators were built again after validation to include all 34 of the points. Every

point included carries information about a new part of parameter space because we used

a Latin hypercube to design simulations. So including all the points ensures we have

as much model information as possible. The emulators could be improved with more

training data, but this validation shows that they predict model output with sufficient

accuracy for us to gain important insights into the processes that drive transitions.
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5.3.3 Sensitivity analysis

Variance-based sensitivity analysis was used to quantify the most “important” param-

eters by their contribution to the variance of the output. That is, variation in the

most important parameter causes the largest variation in the output of interest. This

analysis follows the method described in Chapter 2.2.1 and applied in Chapter 3.

5.4 Results

Here we discuss the response surface and sensitivity analyses of the transition time

model output followed by the rain water path model output. The emulators were

used to make predictions for a 1000-point Latin hypercube and a 1 million-point 6-

dimensional grid, and these are shown in pairwise plots like the PPE in Chapter 4.

The Latin hypercube predictions are denser in parameter space than the 34-member

PPE, but still sparse enough to allow the output variation to be seen through all 6

dimensions (even when projected onto two of the dimensions). It should be borne in

mind that when plotted as 2-dimensional projections in this way, each of the 1000

points has different parameter values in the other 4 dimensions. Using 1000 points here

is sufficient to fill the 2-dimensional plots. However, the 1 million-point grid gives us

enough points (10 values along each dimension) to create averaged response surfaces,

where we hold the other 4 hidden parameter values constant at their average values in

each 2-dimensional plot.

5.4.1 Transition time analysis

The transition time from stratocumulus to cumulus was calculated as the time between

when cloud fraction was 0.9 to when it fell below 0.55 and stayed below that threshold

until the end of the simulation, as in Chapter 4.

Latin hypercube predictions

The 1000-point Latin hypercube predictions for transition time, shown in Figure 5.3,

fill the plot giving far more information than the raw PPE data and immediately

begin to inform us about the subtleties in variation across parameter space. Some of

the 2-dimensional plots show a clear pattern, which means the transition time varies

consistently for those two parameters through the other dimensions not shown in that

panel (e.g., panels i and o). Other plots show less clear variations of the transition time

for the two parameters, which suggests there is no obvious dependence on these two

parameters, or the effects of the four hidden parameters are dominating (e.g., panels

a and d). There is a strong pattern in the boundary layer aerosol concentration, BL

Na, with low BL Na producing the fastest transitions (panels g-j and o). The inversion

strength (∆θ in panels b, c, f, i, m) and the autoconversion parameter (10baut in panels
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k-o) also show patterns, which are particularly clear in combination with BL Na (panels

i and o).

Average response surfaces

The strength of output dependencies on each parameter and the interactions between

parameters can be more easily interpreted in the averaged 1 million-point response

surfaces in Figure 5.4. This figure also shows the training data distribution and their

values. It is not expected that these data would fit the contoured surfaces very closely

since they are single points in 6 dimensions and the surfaces are averaged in the 4

hidden dimensions. However, where single points do correspond to values on the 2-

dimensional surface shows that those 2 parameters are important in determining the

output and the hidden parameters contribute little. We can also infer that the emulator

may be performing less well where the training data are sparse. For example, in the

lower values of the boundary layer specific humidity some of the simulations did not

form stratocumulus, or only did so for a high sea surface temperature, and were re-

moved. This could be why the emulator finds almost no dependency on the boundary

layer specific humidity, so the mean function relaxes back to the prior specification.

Significant interactions between parameters can be identified by the curved surfaces

(e.g., panels c, i and o), whereas surfaces that look linear (e.g., panels e and f) have

negligible interaction effects.

The transition time has the strongest dependencies on aerosol concentration, BL

Na, jump in potential temperature, ∆θ, and the autoconversion parameter, 10baut .

Most of the panels show at least linear joint effects and several show non-linear joint

effects (interactions, shown by the curvature) between parameters. Here we analyse

the dependencies seen in the response surfaces. We suggest mechanisms from relevant

studies since identifying specific mechanisms with 6 perturbed parameters would require

much greater analysis and many emulators for other diagnostics, such as entrainment

and decoupling.

Beginning with the boundary layer specific humidity, BL qv, on the left of the figure

(panels a, b, d, g, k), the transition time does not have a strong dependency on this

parameter. The transition time is nearly invariant to changes in BL qv, though there

is a weak control showing that more humidity in the boundary layer results in longer

transitions and vice versa. Moist boundary layers allow thicker clouds to form, which

would then take longer to dissipate through entrainment (Zhou and Bretherton, 2019).

Some weak interactions (curvature) can be seen with the boundary layer depth (BL z),

∆θ, and 10baut (panels a, b, k).

The boundary layer depth, BL z, shows that deep boundary layers transition faster

than shallow ones (panels a, c, e, h, l). This is a stronger control and is seen even
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each 2-dimensional combination of the six factors perturbed in the ensemble across the chosen
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more clearly where there are interactions with ∆θ, BL Na and 10baut (panels c, h, l).

Wood and Bretherton (2006) showed that deep boundary layers are more likely to be

decoupled, and since decoupling is part of the classic transition mechanism this stage

could be hastened when beginning in a deeper boundary layer. (Eastman and Wood,

2016) found that clouds in deep boundary layers are prone to break up, and they also

suggested it is through decoupling.

The inversion strength, ∆θ, shows a very strong control of faster transitions for weak

inversions (small ∆θ) and slower transitions for strong inversions (large ∆θ) (panels

b-c and f, i, m). There are clear interactions with BL z, BL Na and 10baut (panels c,

i, m). Several studies have found the inversion strength, or the closely related lower

tropospheric stability, to be a key control on the transition time (Mauger and Norris,

2010; Sandu and Stevens, 2011; Eastman and Wood, 2016). These studies showed

that clouds under weak inversions are prone to break up or that clouds under strong

inversions persist. A strong inversion traps moisture in the boundary layer and reduces

boundary layer deepening and decoupling, which is a key stage in the classic transition.

The jump in specific humidity, ∆qv, has a very weak control on transition time

showing faster transitions for drier air above the boundary layer (panels d-f, j and n).

Zhou, Kollias, and Lewis (2015) found that the entrainment of dry warm air at cloud

top was a major driver of decoupling through sudden drying of the boundary layer and

subsequent rising of the condensation point. Eastman, Wood, and Kuan Ting (2017)

also found this pattern but suggested that more vapour above the cloud increases the

downwelling longwave, which offsets some of the longwave cooling, reducing mixing and

boundary layer deepening. However, Sandu and Stevens (2011) found that transitions

were faster for increased downwelling longwave radiation, so our results suggest the

strong relationship that Zhou, Kollias, and Lewis (2015) and Eastman, Wood, and

Kuan Ting (2017) found could be buffered by this effect.

The aerosol concentration, BL Na, shows the strongest control with faster transi-

tions for lower BL Na (panels g-j, o). BL Na below 200 cm−3 are the only areas where

the transition time is predicted to be below 40 hours. There are clear interaction effects

in panels BL z, ∆θ, ∆qv and 10baut (panels h, i, j, o). Yamaguchi, Feingold, and Kazil

(2017) and Diamond et al. (2022) found that low aerosol environments caused drizzle

depletion of moisture and aerosol in the boundary layer. The deeper analysis in Ya-

maguchi, Feingold, and Kazil (2017) found that in their simulations it was specifically

cumulus drizzle being lifted to the stratocumulus layer and initiating a rapid depletion.

Erfani et al. (2022) found that adding aerosol into a clean case caused a delay in the

transition, but adding aerosol into a polluted case had little effect on the transition

time.

The autoconversion parameter, given as 10baut here to be uniformly spaced through
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the range (see Chapter 4), shows a pattern for faster transitions at higher values (which

converts to higher autoconversion rates) in panels k-o. There are interactions with BL

z, ∆θ and BL Na (panels l, m and o). Higher autoconversion rates would also incur a

drizzle-depletion effect as already discussed. In addition to the previously mentioned

studies, Eastman and Wood (2016) found a small, non-linear effect where precipitation

sustains cloud cover in shallow boundary layers but promotes cloud breakup in deep

boundary layers. The interaction with BL z in panel l agrees with their suggestion that

in the shallow case, precipitation creates stronger overturning circulation, but in the

deeper case it deprives the stratocumulus layer of moisture when it is also cut off from

the ocean source.

The response surface is visualised further in the three most important dimensions

in Figure 5.5: BL Na, ∆θ, and 10baut . The 10 slices at different BL Na values give

a 3-dimensional picture of how transition time varies with all three parameters. The

panels i, m and o are the same as in Figure 5.4. Panel m is the average of the 10 panels

and panels i and o give BL Na with ∆θ and BL Na with 10baut . For BL Na < 100, the

transition time is very low and almost invariant to the other two parameters. As BL

Na increases, there are interaction effects between ∆θ and 10baut . For BL Na > 300,

∆θ and 10baut have almost linear joint effects which become mostly invariant to BL

Na. This gives even more insight into the low-aerosol regime. For very low aerosol

concentrations, the aerosol dominates all effects so the drizzle-depletion occurs in a

wide range of conditions. As the aerosol increases, the transition time becomes more

dependent on the other two factors, so processes affected ∆θ begin to interact, such

as entrainment. At higher aerosol concentrations, the transition time becomes almost

entirely dependent on the linear combination of ∆θ and 10baut , which could reflect the

fact that adding aerosol into already polluted clouds has a smaller effect than in clean

clouds.

Sensitivity analysis

The transition time sensitivity analysis, shown in Figure 5.6, quantifies the effects de-

scribed above in terms of two numbers: the main effect and interaction effect. As

defined earlier, the main effect is how much of the variance in the transition time is due

to the variance in the individual parameter and the interaction effect is the portion of

the variance that cannot be explained by linear combinations of the individual param-

eters, and is attributed to the interactions between parameters. The BL Na main effect

has the largest contribution to the variance in the transition time of 56%. The ∆θ main

effect contributes 16%, baut contributes 13%, BL z contributes 6%, ∆qv contributes 1%

and BL qv contributes less than 1%. The interactions from each factor contribute a

total of around 8% of the variance, so the total interactions are more important than

several of the parameter main effects. The dependence on the interactions between pa-
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Figure 5.4: Transition time response surface sampled with a 1-million point 6-dimensional
grid and averaged across hidden dimensions. a-o) shows each 2-dimensional combination of the
six perturbed factors averaged in the four dimensions not shown. Coloured points show the
training data distribution and values.
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effect, i.e. the individual parameter effect, and the white section shows the contribution from
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rameters demonstrates the complexity of the transition time drivers that other, more

traditional, studies have overlooked.

Comparison with PPE analysis

The emulator results agree with those found in Chapter 4 that BL Na has the strongest

relationship with transition time, with baut also being important. However, here we

have found the transition time to be strongly dependent on ∆θ and only weakly depen-

dent on BL z. By mapping out parameter space with predictions to make a response

surface it has become clear that there is a low-aerosol regime which dominates control

of the transition time. In the high-aerosol regime, the aerosol impact on transition time

is less strong and there are larger interaction effects, with both the inversion strength

and the autoconversion parameter influencing the rate of transition.
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5.4.2 Rain water path analysis

The rain water path model output for the emulator is the rain water path averaged

over the transition time (Chapter 4.4.4).

Averaged response surfaces

The averaged response surfaces for the rain water path are shown in Figure 5.7. The

linear contours make it immediately clear that there are fewer interaction effects com-

pared with the transition time. BL z has the strongest control over rain water path

with high rain water paths in deep layers (panels a, c, e, h, l), which has been found in

many previous studies (Bretherton et al., 2010; Eastman and Wood, 2016; O, Wood,

and Bretherton, 2018). BL Na has a strong control with high aerosol producing less

rain through precipitation suppression (Albrecht, 1989) (panels g, h, i, j and o). Addi-

tionally, 10baut has a strong control as it is directly linked to the amount of precipitation

formed (panels k-o). For both specific humidity parameters, there is higher rain water

path for higher humidity since vapour is available for condensation (BL qv: panels a,

b, d, g, k and ∆qv: panels d, e, f, j, n). ∆θ shows slightly higher rain water paths

under weaker inversions (panels b, c, f, i, m), possibly because weaker inversions are

more likely to rise and create deeper boundary layers, which generally drizzle more.

Sensitivity analysis

Again, the sensitivity analysis of the rain water path emulator in Figure 5.8 quantifies

the effects described above and we find that the variance is more widely influenced by

all the parameters rather than being dominated by one, as with the transition time.

The main effect of BL z contributes the most (32%) to the variance in the rain water

path. This is followed by the main effects of BL Na that contributes 26%, baut that

contributes 20% and both specific humidity parameters at about 9%. The main effect

of ∆θ contributes less than 1%. The interactions contribute about 2% of the variance

in the rain water path, so they are of little importance in comparison to the three most

important parameters. This shows that the rain water path is determined more directly

by single factors, rather than interactions between them.

Comparison with PPE analysis

The emulator results for the rain water path broadly agree with the PPE analysis

in Chapter 4 with BL z being the most important factor, though here there is less

of a distinction between the dependency on it and aerosol. By densely sampling the

parameter space we have been able to more fully appreciate the relative importance of

parameter effects, rather than being directed by a few sparse points. The ∆θ has very

little effect on the rain water path, which also agrees with Chapter 4 where we found
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Figure 5.7: Average rain water path response surface sampled with a 1-million point 6-
dimensional grid and averaged across hidden dimensions. a-o) shows each 2-dimensional combi-
nation of the six perturbed factors averaged in the four dimensions not shown. Coloured points
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Figure 5.8: Sensitivity analysis for the rain water path. Bars show the percentage contribution
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it only affects the transition through entrainment, which only has a strong control in

environments that have a low rain water path.

5.5 Discussion and conclusions

We have used a PPE of stratocumulus-to-cumulus transition simulations as training

data for Gaussian process emulation of two model outputs: transition time and aver-

age rain water path. These emulators were used to determine which parameters, out

of the six perturbed, are most important in determining the output values, through

visualisation of response surfaces and variance-based sensitivity analysis.

We have gained a lot of information about the 6-dimensional parameter space from

creating emulators of the 34-member PPE. Firstly, we have been able to densely sample

the parameter space with up to 1 million points, from which we have created response

surfaces that we can visually inspect to understand the relationships between parame-

ters and the transition properties. These surfaces clearly show which parameters have

only individual effects and which have interactions with other parameters. Also, the

gradients of the surfaces intuitively inform us how strong the dependency of the output

is on each parameter compared with the others. Secondly, sensitivity analysis, which

samples the parameter space 1000 times per parameter, actually quantifies those de-

pendencies by calculating the percentage of the variance in the output attributed to

each parameter in their main effect and their interactions. Thirdly, through analysing

the response surfaces, we have been able to identify that there are regimes of cloud

behaviour (sensitivity to the controlling factors) that depend on specific combinations

of multiple parameter values.

A much deeper analysis of parameter space has been achieved through the dense

sampling with the emulator compared with the analysis in Chapter 4 of the raw PPE

data. In both chapters, the parameter with the strongest control on transition time was
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aerosol concentration and the parameter with the strongest control on the average rain

water path was boundary layer depth. For the transition time, the PPE analysis found

the boundary layer specific humidity, boundary layer depth and jump in specific humid-

ity had the next largest correlations, with inversion strength and the autoconversion

parameter having the smallest correlations. Here, however, we have found the opposite.

The inversion strength and the autoconversion parameter have much stronger controls

than the other three parameters. Additionally, we have identified that there are key

interactions between aerosol concentration, inversion strength, the autoconversion pa-

rameter, and boundary layer depth. For the rain water path, the PPE analysis found

the autoconversion parameter and jump in specific humidity to have the next largest

correlations, with only a small correlation with aerosol and negligible with boundary

layer specific humidity and inversion strength. Here, the emulator analysis has shown

the rain water path has stronger dependence on aerosol and the boundary layer specific

humidity.

The emulator results are a closer fit with the vast majority of stratocumulus-to-

cumulus studies, which have found the lower tropospheric stability (closely related to

the jump in potential temperature) to be the primary control on the transition time

(Sandu and Stevens, 2011; McGibbon and Bretherton, 2017; Bretherton et al., 2019).

We were able to identify that the jump in potential temperature was important for the

transition time using the PPE data, but only when we split the dataset by rain water

path. However, using the emulator to approximate aspects of the model output and

create thousands more points in parameter space, the jump in potential temperature

shows a clear relationship in the response surfaces and is found to be the second largest

main effect in the sensitivity analysis. Unlike other studies before, which have often

neglected aerosol, we have found that there is a strong interaction between jump in

potential temperature and aerosol concentration on transition time. In low-aerosol

regimes (below 200 cm−3) the aerosol concentration is most important for transition

time, but in high-aerosol regimes, the jump in potential temperature is most important.

The response surfaces were crucial for discovering this regime split as the sensitivity

analysis alone does not give such detailed information.

Our results tell us that the transition time is a complex property to understand, with

the interactions between different environmental factors being important. Not only is

this shown in the response surfaces, but also by the contribution of the interactions

to the variance, quantified with sensitivity analysis as 17%, which is larger than all

but the aerosol main effect. Many modelling studies have found differing results on

the major transition time controls when carrying out one-at-a-time sensitivity tests

(Sandu and Stevens, 2011; van der Dussen, de Roode, and Siebesma, 2016; Yamaguchi,

Feingold, and Kazil, 2017; Bretherton et al., 2019; Zheng, Zhang, and Li, 2021; Erfani

et al., 2022), and observational studies have struggled to untangle the meteorological
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controls (Eastman and Wood, 2016; Sarkar et al., 2020). Our results suggest that

the problem is too complex to understand with singular perturbations because the

interactions between parameters are too important to neglect. Conversely, the rain

water path shows only linear effects in the response surfaces and interaction effects

contribute less to the variance than most of the parameter main effects. This shows

that several parameters are important but their individual controls are additive.

Emulating with a nugget term absorbs noise from experiment limitations as well as

accounting for natural variability. The raw PPE data were potentially made harder to

interpret because the transition time data had some noise from including transitions

that occurred near the end of simulation time, where we could not guarantee that the

cloud remained in a cumulus state. On running the initial-condition ensemble simula-

tions, one of the extra simulations recovered for around 10 hours before transitioning to

cumulus, which gave a slightly larger variance in the residuals. In this case, the nugget

term absorbs not only the natural variability from the model but also some of the noise

incurred by the experiment design.

Choosing which single model output value to emulate from such a large and complex

process can influence the results. For example, there is no accepted definition of “tran-

sition time” that is appropriate for all conceivable cloud development histories. We

chose to define the start of the transition at the formation of stratocumulus. However,

we could have defined it from the start of the simulation. We chose this definition to be

able to compare more closely with studies that have followed a Lagrangian trajectory

approach starting from stratocumulus decks, but this choice had the consequence of

altering the “initial” profiles of the perturbed parameters. The emulator has no knowl-

edge of the model other than the training data, which is the set of perturbed inputs

and the corresponding values for an output of interest. Thus, it is crucial to remember

that the usefulness of the emulator is dependent on the definition of the output. With

appropriate definitions, we believe PPEs and emulation are incredibly useful tools with

an entirely unique approach to cloud process understanding, which we can learn from

in tandem with more classical approaches.



Chapter 6

Summary and concluding

remarks

This thesis has explored the use of perturbed parameter ensembles (PPEs) and Gaus-

sian process emulation for understanding stratocumulus cloud responses to changes in

cloud-controlling factors. These techniques are well suited for studying clouds, which

are complex systems of interacting processes where perturbing one factor at a time

may only tell part of the story. For example, take the effect on liquid water path from

adding aerosol to a cloud. Ackerman et al. (2004) found that the liquid water path only

increased with aerosol when the free-tropospheric air was very humid, or droplet con-

centrations very low, such that sufficient precipitation was reaching the surface. There

is a “joint effect” between aerosol and free-tropospheric humidity on the liquid water

path. Using a PPE we have been able to identify complexities such as this, which have

been missed in more traditional studies that only study factors in isolation.

In Chapter 3, we first used these techniques on simulations of a temporally stable,

nocturnal stratocumulus cloud from which we perturbed two properties of the free

troposphere to investigate cloud behaviour around the break-up threshold for cloud

top entrainment instability. In Chapter 4, we considered the stratocumulus-to-cumulus

transition and perturbed six cloud-controlling factors to assess how they jointly affected

two properties of the transition under different meteorological conditions and determine

whether a drizzle-depletion mechanism exists, as previously proposed. The behaviours

seen across the second ensemble were so extensive that we began by analysing the effects

of individual factors in the PPE data. Timeseries analysis of individual PPE simulations

was used to understand how best to define emulatable model outputs related to the

transition timescale. In Chapter 5, we used Gaussian process emulators to sample

the parameter space 1 million times to thoroughly understand interactions between

factors and how they jointly effect transition time and rain water path. All model
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data was produced using an LES model which provided high-resolution advection of

hydrometeors and aerosol populations, down to 5 m vertically and 30 m horizontally. A

summary of each chapter and the key findings is presented below, followed by concluding

remarks.

6.1 Summary of results

6.1.1 Visualisation of the deterministic response of stratocumulus

cloud properties to free-tropospheric controls using statistical

emulation

1. Densely sampling the 2-dimensional parameter space of the jumps in specific

humidity and potential temperature at the temperature inversion revealed two

behavioural regimes. In one regime, where the air above the inversion was dry and

cool, the clouds were thin, patchy, and did not grow throughout the simulations.

In the second regime, where the air above the inversion was warmer and drier,

the clouds were thick with cloud fraction near 1 and grew thicker throughout

the simulations. These results agree with more recent studies that cloud top

entrainment instability is not a strong enough process by itself to fully dissipate

clouds.

2. Unlike previous studies, however, we have mapped out how the liquid water path,

cloud fraction and their tendencies depend on these two parameters, which shows

the change in regime approximately aligns with the cloud breakup threshold.

The change in regime exhibits steep gradients in the liquid water path and its

tendency, but there are no discontinuities. The cloud fraction and cloud fraction

tendency response surfaces have very shallow gradients at the regime change

where the properties almost plateau. The response surfaces also show that the

two parameters have non-linear joint effects on the cloud properties.

3. The cloud’s natural variability was accounted for by applying a nugget term

to the emulator build, which produced response surfaces that more-realistically

represented the purely deterministic behaviour of the simulated cloud. A key

conclusion of this new approach is that a small sample of points is sufficient to

determine the appropriate magnitude of the nugget term, so long as they cover

the range of model output well. Thus, estimating a nugget using this method

requires only a few extra simulations yet it can greatly improve the statistical

representation of the relationship between the input parameters and the output

of interest. Response surfaces that are more representative of these relationships

will allow the joint effects to be more thoroughly understood in terms of the

physical processes.
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6.1.2 A perturbed parameter ensemble analysis of the roles of cloud-

controlling factors in the stratocumulus-to-cumulus transition

1. The 34-member PPE showed that aerosol concentration had the strongest corre-

lation with transition time with low aerosol concentrations producing the fastest

transitions (under 40 hours). This conclusion agrees with several studies that have

found a drizzle-depletion effect in simulations of the stratocumulus-to-cumulus

transition in low aerosol environments (Yamaguchi, Feingold, and Kazil, 2017;

Diamond et al., 2022; Erfani et al., 2022).

2. Visualising the 6-dimensional PPE in parameter space showed that the fastest

transitions (under 40 hours) corresponded to simulations with parameter com-

binations that also had deep boundary layers, high autoconversion rates and a

dry temperature inversion. Where previous studies have only considered aerosol,

or have been unable to determine a clear aerosol effect due to confounding pro-

cesses, we have been able to determine that aerosol has a strong effect on the

transition time relative to other cloud-controlling factors, with which there are

some joint effects. We included an uncertain parameter from the autoconversion

parameterisation in our PPE and found that it did not have a strong correlation

with transition time in the PPE data.

3. The rain water path (a measure of drizzle) correlated best with boundary layer

depth, but it did not solely control the transition time. When the PPE was split

by rain water path, aerosol concentration had a stronger relationship with transi-

tion time in high-drizzle environments, and inversion strength became one of the

strongest correlations in low-drizzle environments. Thus, we conclude from the

PPE analysis that drizzle-depletion transitions occur in environments that have

low aerosol, deep boundary layers and dry temperature inversions, but otherwise

the inversion strength (via entrainment) largely controls the transition time. The

fastest transitions may not be observed because these are rare conditions to find

off the West coast of major continents.

6.1.3 Gaussian process emulation to explore interaction of cloud-controlling

factors

1. Using Gaussian process emulation, the aerosol concentration was found to be the

strongest control on the transition time. The transition time also had a strong

dependence on inversion strength, autoconversion parameter and the boundary

layer depth. We suggest that these four parameters influence the following pro-

cesses: drizzle depletion of aerosol and moisture for low aerosol and high auto-

conversion rates, deep boundary layers being more likely to be decoupled; and

strong inversions trapping moisture in the boundary layer and reducing deepen-
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ing and decoupling. The 1-million point averaged response surfaces also showed

that there are strong interaction effects between these four parameters. Previous

studies have only been able to identify the individual controls of each parame-

ter, and there has not been a clear consensus on the order of importance. Using

sensitivity analysis we have quantified that interaction effects have a significant

contribution to the variance in the transition time, being second only to the main

effect of the aerosol concentration.

2. The rain water path was highest in deep boundary layers, low aerosol concentra-

tions and high autoconversion rates. Many studies have found that deep boundary

layers are more likely to precipitate. Aerosol most likely affects the rain water

path through drizzle depletion at low aerosol concentrations and the autocon-

version parameter directly controls the amount of precipitation produced. The

response surfaces showed only linear joint effects and sensitivity analysis quanti-

fied the contribution to the variance of rain water path as less than most of the

parameter main effects.

3. The key result agrees with Chapter 4, that the fastest transitions occur in low-

aerosol environments through a drizzle-depletion effect. However, with the use of

emulators in this chapter we have densely sampled the parameter space to identify

linear and non-linear parameter joint effects and quantified the contributions to

the variance of transition properties from each parameter. We determined that

there is a low-aerosol regime (under 200 cm−3) where the aerosol concentration

has the strongest control on transition time, but in the high-aerosol regime (200 to

500 cm−3) the inversion strength determines the transition time. Densely sampled

response surfaces were crucial for identifying these regimes and the interactions

between other parameters. The uncertainty in the autoconversion parameter was

found to have a significant contribution to the variance in both emulators. We

conclude that the transition time is a complex process determined by multiple

factors with non-linear joint effects, which we have been able to identify using

Gaussian process emulation.

6.2 Concluding remarks

The extent to which aerosol concentration influences the stratocumulus-to-cumulus

transition has been unclear, with some LES simulations reporting that it does (Yam-

aguchi, Feingold, and Kazil, 2017; Diamond et al., 2022; Erfani et al., 2022), in-situ

observations struggling to find a link (Bretherton et al., 2019), and satellite data show-

ing that the relationship is complex and non-linear (Eastman and Wood, 2016). If

we considered only the 1-dimensional relationships between the factors and transition

properties from the PPE analysis, aerosol would be the primary control on transition
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time. However, creating a PPE of transitions has allowed us to explore the effects of

aerosol as one of six cloud-controlling factors (many more could be studied) and to

identify their interactions using Gaussian process emulation. Unlike previous studies,

we can conclude that even considering the effects of other important cloud-controlling

factors, there is a low-aerosol regime where aerosol strongly influences transition time

through drizzle depletion. In the high-aerosol regime, the inversion strength is the

major control of transition time. Thus, we have found that aerosol has a non-linear

relationship with transition time and interactions with cloud-controlling factors need

to be considered.

This work follows several aerosol-cloud emulation studies where cloud-controlling

factors have been perturbed (Johnson et al., 2015; Wellmann et al., 2018; Glassmeier

et al., 2019; Wellmann et al., 2020), but it is the first to show parameter interactions

using response surfaces of cloud properties. We have also explored several challenges

of emulating cloud model output. Firstly, we accounted for natural variability in the

emulator build to produce response surfaces that more-realistically represented deter-

ministic cloud behaviour. Emulator nugget terms have not been derived from initial

condition ensembles in this way before. The approach developed here, using initial

condition ensembles at a few points in a PPE requires fewer simulations than previous

studies that have created an ensemble at every point (Johnson, Gosling, and Kennedy,

2011), which is not computationally feasible in climate models. Secondly, we assessed

how model spinup affected the perturbed parameter values and found that some evolved

during the first two hours of simulation. We were fortunate that the evolved values were

still well spaced along each dimension, which is a requirement for building a Gaussian

process emulator. Ideally, when using emulation to further process-level understanding,

perturbations should be made after spinning up to a steady cloud. Finally, due to the

high sensitivity of clouds to initial conditions and the likelihood of sharp transitions

in cloud behaviour based on small perturbations, we expected that there may be dis-

continuities in the parameter spaces we explored. Discontinuities can be a problem for

Gaussian process emulation and alternative, non-stationary methods would be required

in that case. However, we found that for both cases a stationary emulator approach

worked, with reasonably smooth gradients between regimes, so non-stationary methods

are still something to be explored.

Perturbed parameter ensembles are a hugely valuable tool, not just for process-level

understanding as used here, but also for quantifying and constraining model uncertainty

and identifying model structural deficiencies. In using them to understand cloud pro-

cesses, there is the temptation to treat them as a large set of simulations that can be

individually analysed in detail, but this is not where their strength lies. By their very

nature, there are so many differences between each simulation that this is not a feasible

approach. Rather, their strength comes from looking at the statistics of the whole
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ensemble and understanding the joint effects of parameters. So perturbed parameter

ensembles may not be suited to problems that require in-depth analysis of each simu-

lation. For example, it would be quite difficult here to identify whether the end state

of each transition was cumulus or open-cell stratocumulus. We have also found that it

can be challenging to define an emulatable output that gives enough detail required to

solve the problem at hand. Each emulator (in this method) requires that the output

from each simulation be a single value. This is much easier when only analysing a small

number of simulations, however with a PPE, defining one value that is meaningful for

all the behaviours produced from every parameter combination can be the largest part

of the challenge.

What has been gained and what could be gained from future emulation of the rela-

tionships between cloud-controlling factors and cloud properties? Through identifying

clearly defined regimes, as we did in Chapter 3, parameterisations can be defined with

different “modes” depending on the regime that the model is in. Creating these param-

eterisations requires good knowledge of the parameter values that define each regime,

but this could provide simpler parameterisations because they only need to account for

one type of cloud behaviour. From the work in Chapters 4 and 5, we have concurred

with previous studies that there is a low-aerosol regime in which fast transitions take

place via drizzle-depletion. This could improve cloud parameterisations by informing

the model when a faster switch to a lower cloud fraction is required.

The complexities of clouds and the interactions of cloud-controlling factors are the

defining challenges of cloud physics, but it is imperative that cloud responses to cli-

mate changes are represented more accurately. The statistical methods presented in

this thesis are ideally suited for exploring such complexities and the joint effects of

factors, which more traditional methods have struggled to untangle. As such, there

is scope to extend the use of these methods to other climate-related challenges where

interactions may be important, such as climate feedbacks and adjustments to aerosol

forcings. Future climate changes will affect any processes studied in the present-day cli-

mate, but currently these are often treated as a separate problem to understand. PPEs

allow climate changes to be added as perturbed parameters within the experiment and

emulation would provide the opportunity to explore the joint effects of these changes

with many drivers.
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Appendix A

A.1 Increased droplet number

The perturbed parameter ensemble (PPE) was repeated for a higher fixed droplet num-

ber of 150 cm−3 (ND150) and the results show a pattern in parameter space (Figure

A.1) that is similar to the pattern for droplet number = 50 cm−3 (ND50). The simu-

lations from region A in ND150 are very similar to region A in ND50. All spin up to a

liquid water path of 50 g m−2 or less and show little growth throughout the simulation.

However, most of the region A simulations have a higher cloud fraction for ND150,

with all but two spinning up to at least 0.8 and rather than decreasing, as in ND50,

all cloud fractions in the ND150 case increase through the simulation. In region B, the

simulations spin up to higher liquid water paths than in ND50 and cloud fractions very

close to 1.

Gaussian process emulation was used to densely sample the parameter space and

create response surfaces for the four cloud properties: liquid water path, liquid water

path tendency, cloud fraction and cloud fraction tendency. The validation plots in

Figure A.2 show that the emulator is a reasonable approximation of the model. The

response surfaces in Figure A.3 show that the behaviour in the liquid water path and

the liquid water path tendency are very similar to the ND50 case, but with larger

values. The curvature round into region A is present in this case too showing that

these interactions are not limited to the ND50 case. The cloud fraction is much more

saturated at cloud fraction = 1. Since most of these simulations had cloud fraction

remaining near 1 for the whole simulation the change over the simulation (tendency)

is very small. These emulators were produced without a nugget term, but the addition

of one would most likely smooth most of the cloud fraction tendency to 0 hr−1.

A.2 Precipitation

There was very little precipitation for the ND50 PPE, which is to be expected since this

was a non-drizzling case in Stevens et al. (2005a). However, there is a further difference

in behaviours across the regimes here since the simulations in regime A have rain water
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Figure A.1: Liquid water path and cloud fraction model output for the whole ensemble. a)
Liquid water path and c) cloud fraction timeseries post-spinup to the end of the simulation.
The last two hours (shaded area) are taken as an average for the training data. The base
simulation is shown by the darker line and the point-ensemble simulations show the range of
the ensemble as an envelope. The inset in c shows top-down snapshots of the liquid water path
for the base simulation. b) Liquid water path and d) cloud fraction training data values plotted
in parameter space, ∆θ vs ∆qt. The κ line is the theoretical threshold for the κ parameter
described in section 3.3, which splits the regions into A and B (see section 3.5.3).
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Figure A.2: Validation plots for the four cloud property emulators for ND150. a) liquid water
path (g m−2), b) liquid water path tendency (g m−2 hr−1), c) cloud fraction and d) cloud
fraction tendency (hr−1). The MONC output values for each point are on the x axis and the
emulator predicted values are on the y axis. The black line shows the line of equality and the
error bars indicate the 95% confidence bounds on the emulator mean predictions.

path ≈ 0 g m−2 and surface precipitation ≈ 0 mm hr−1, whereas the simulations in

regime B have very small amount of precipitation.

A.3 Emulation with 20-point PPE

The addition of 6 extra points in Figure 3.7 does not have a large effect on the behaviour

seen in the response surfaces compared with the original 20-point emulators (validation:

Figure A.5, and response surfaces: Figure A.6). This affirms that the standard method

of using 10 times the number of parameters in the PPE is sufficient training data for

Gaussian process emulation (Loeppky, Sacks, and Welch, 2009), even when the points

may be sparse around regions of interest.

A.4 Combining residuals without normalisation for the

nugget term

Figure A.8 shows the result of trying to combine the residuals without normalisation,

and although some of the histograms have large overlaps (e.g., [048] comb) none pass

the KS test. (p > 0.05).
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Figure A.3: Response surfaces produced from emulator mean predictions for ND150. a) liquid
water path, b) liquid water path tendency, c) cloud fraction and d) cloud fraction tendency.
The base simulation is shown by the inverse white triangle, the training data by the black
circles, the validation data by the black squares, and the extra simulation points by the black
triangles. The dashed black line is the κ threshold, where equation (3.1) = 0.23, and divides
parameter space into region A and B.
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Figure A.4: Average precipitation through the ND50 PPE. a) Average rain water path and
b) average hourly surface precipitation from post spinup to simulation end.
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Figure A.5: Validation plots for the four cloud property emulators for ND50 with only the
original 20 training data. a) liquid water path (g m−2), b) liquid water path tendency (g m−2

hr−1), c) cloud fraction and d) cloud fraction tendency (hr−1). The MONC output values for
each point are on the x axis and the emulator predicted values are on the y axis. The black
line shows the line of equality and the error bars indicate the 95% confidence bounds on the
emulator mean predictions.

A.5 Approximating variance

Because we normalised the residuals by the mean, a multiplying factor is required to

make the variance the correct order of magnitude before being used in the emulation

process. This is proven by simplifying the variance of the normalised residuals,
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Figure A.6: Response surfaces produced from emulator mean predictions for ND50 with only
the original 20 training data. a) liquid water path, b) liquid water path tendency, c) cloud
fraction and d) cloud fraction tendency. The base simulation is shown by the inverse white
triangle, the training data by the black circles, the validation data by the black squares, and
the extra simulation points by the black triangles. The dashed black line is the κ threshold,
where equation (3.1) = 0.23, and divides parameter space into region A and B.
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Figure A.7: The mean liquid water path emulator with different nugget term calculations
from the model residuals without normalisation. Extras: No nugget term applied, nugget
terms applied using the residuals from 1) All comb: all 9 ensembles, 2) [012] comb the smallest
3 liquid water path (L) points, 3) [048] comb: 3 well-spaced L points, 4) [678] comb: the
3 largest L points, 5-6) [048] behaviour and [048] Euclidean: 3 well-spaced L points 7) Two
regime: only two points, one from each regimes. 1-4) “comb” plots combine all the residuals
from the included points to calculate the variance and applied to all training data. 5-7) does not
combine residuals but takes the variance from each ensemble and applies it to groups of training
data 5) with similar L, 6) that are nearest neighbours and 7) in the same regime. Top row:
emulator predicted response surfaces. Middle row: a transect through the pink line shown in
top row showing mean emulator function and upper and lower 95% confidence bounds. Bottom
row: comparison of the histograms of model residuals and emulator residuals (Figure 3.9). The
RMSE, Kolmogorov-Smirnov p-values, and overlap values are given for each nugget term. The
overlap value is computed as the fraction of histogram bars that overlap between the datasets.
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where σ2
i is the variance of each ensemble, Zi, and Ni is the number of members in each

ensemble. Thus, from this normalisation process, the variance of the residuals needs

to be multiplied by a factor on the same order of magnitude as Z̄2
i to be used in the

emulation process. Note that we are not using a summation of the ensemble variances,

as equation A6 indicates, because we are simply estimating from a small sample. The

variance we are estimating is the lower bound, since any distribution is likely to be

wider than what we have sampled.

A.6 Trialling different multiplier types

The “proportional” multiplier, where the variance for each point is multiplied by the

L value at that point, does not pass the KS test for any tried combination of points

(Figure A.8). The “mean” multiplier, where the variance for each point is multiplied

by the PPE mean L, only passes the test for the All comb. nugget, which uses all

the points (Figure A.8). The “maximum” multiplier, where the variance for each

point is multiplied by the PPE maximum L passes for All comb., [048] comb., [678]

comb., and Two regime. Thus, the combination of only three points gives an emulator

build that is sufficient. Additionally, since only the larger nugget terms pass the KS

test, these results suggest that for the liquid water path the calculated variances are

underestimating the variance required.
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Figure A.8: The mean liquid water path emulator with different nugget term calculations
from the model residuals with normalisation and multiplied by a proportional multiplier.

Figure A.9: The mean liquid water path emulator with different nugget term calculations
from the model residuals with normalisation and multiplied by a mean multiplier.

Figure A.10: The mean liquid water path emulator with different nugget term calculations
from the model residuals with normalisation and multiplied by a maximum multiplier.



Appendix B

B.1 Evolution of parameter values through spin up

Figure B.1 shows that even though some of the parameter values evolved during spin

up, the post spinup values were still well-spaced along the dimensions. The post-spinup

values were appropriate to use for emulation so we chose to use these as they represent

the initial conditions of the cloud better than the pre-spinup values.

B.2 Sea surface temperature for start of stratocumulus

Figure B.2 shows that the stage at which stratocumulus was formed (along the increas-

ing SST gradient) was solely determined by the combined effects of the boundary layer

humidity and the boundary layer depth. This is likely because the humidity determines

how much vapour is available in the boundary layer for condensation and where the

boundary layer is too shallow, the condensation level may not be reached by updrafts.

B.3 12-hour criteria for transition

The PPE analysis was repeated but with the subset of 13 simulations that transitioned

more than 12 hours before the end of the simulation, we could be confident that they

remained in a cumulus state. These results have the same conclusions as for the main

PPE analysis, which shows the main analysis is robust even with the possibility that
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Figure B.1: Evolution of parameter values during spinup. Plots show the original Latin
hypercube design values against the parameter values calculated after the model has spun up
after 2 hours for each of the 6 perturbed parameters.
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Figure B.2: Pairwise plot showing a scatter plot of each parameter combination, coloured
by the sea surface temperature when stratocumulus was initially formed. Small, grey markers
show the locations of the simulations which did not form stratocumulus.
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Figure B.3: One-dimensional scatter plots against transition time for each parameter with
12 hour criteria (see text). The scatter points show the 34 simulations that transitioned within
the simulation time. A line of best fit is drawn and the correlation coefficient is given in each
case.

the stratocumulus clouds recover after the simulations end.

B.4 Entrainment at start of stratocumulus

The entrainment at the start of stratocumulus is strongly determined by the inversion

strength with a correlation coefficient of -0.80, which is much higher than for the other

parameters (Figure B.7). Additionally, Figure B.8 shows that when the PPE is split

by the mean rain water path, the entrainment rate correlates much more strongly with

the transition time for low-drizzle environments than for the whole PPE data. We

found that the inversion strength also only had a clear correlation with the transition

time when the PPE was split by the mean rain water path. The high correlation of

entrainment rate with inversion strength and their relationships with transition time

in low-drizzle environments shows that the inversion strength is a strong control of the

transition time in low-drizzle environments.
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Figure B.4: Pairwise plot showing a scatter plot of each parameter combination, coloured by
transition time with 12 hour criteria. Small, grey markers show the locations of the simulations
which did not form stratocumulus and transition.
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Appendix C

C.1 Nugget effect on averaged response surfaces

The effect of adding a nugget term to the transition time is very small. There are very

slight gradient changes for the transition time, but the only discernible difference in

Figure C.1 is the reduction of the maximum in panel o, around BL Na=400, 10baut=0.03.

A larger nugget term would most likely smooth some of the bumpiness in this panel.

For the rain water path, there is a clear improvement from adding the nugget term.

The jump in specific humidity panels in the no nugget term response surface (Figure

C.2, panels d, e, f, j, and n) have an undulation in them, which is a result of the emulator

interpolating the data exactly. With the nugget term, this undulation is removed to

show a surface that is much closer to the model’s deterministic behaviour. The nugget

term does incur a slight undulation for the autoconversion parameter (panels k-o), so

again this nugget could probably be improved upon with a slightly larger value as the

surface is still being forced too much by the data (in another part of parameter space).
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Figure C.1: Transition time response surfaces without a nugget term (left) and with a nugget
term (right). a-o) shows each 2-dimensional combination of the six perturbed factors averaged
in the four dimensions not shown. Coloured points show the training data distribution and
values.
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Figure C.2: Average rain water path response surfaces without a nugget term (left) and with
a nugget term (right). a-o) shows each 2-dimensional combination of the six perturbed factors
averaged in the four dimensions not shown. Coloured points show the training data distribution
and values.
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