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A B S T R A C T

As part of the fourth industrial revolution, logistics processes are augmented with connected information
systems to improve their reliability and sustainability. Above all, customers can analyse process data obtained
from the networked logistics operations to reduce costs and increase margins. The logistics of managing liquid
goods is particularly challenging due to the strict transport temperature requirements involving monitoring
via sensors attached to containers. However, these sensors transmit much redundant information that, at
times, does not provide additional value to the customer, while consuming the limited energy stored in the
sensor batteries. This paper aims to explore and study alternative approaches for location tracking and state
monitoring in the context of liquid goods logistics. This problem is addressed by using a combination of
data-driven sensing and agent-based modelling techniques. The simulation results show that the longest life
span of batteries is achieved when most sensors are put into sleep mode yielding an increase of ×21.7 and
×3.7 for two typical routing scenarios. However, to allow for situations in which high quality sensor data is
required to make decisions, agents need to be made aware of the life cycle phase of individual containers.
Key contributions include (1) an agent-based approach for modelling the dynamics of liquid goods logistics to
enable monitoring and detect inefficiencies (2) the development and analysis of three sensor usage strategies
for reducing the energy consumption, and (3) an evaluation of the trade-offs between energy consumption and
location tracking precision for timely decision making in resource constrained monitoring systems.
1. Introduction

The fourth industrial revolution has transformed enterprises. Emerg-
ing digital technologies are used to integrate business and manufactur-
ing processes in order to cope with rapid changes in customer demand
and production alterations (Rojko, 2017). While the majority of digital-
isation endeavours focus on manufacturing, it is crucial to also augment
logistics processes with connected information systems to enhance their
reliability and sustainability (Kayikci, 2018). In particular, companies
can analyse data from interconnected logistics operations to provide
customers with an efficient and transparent service delivery, reduce
costs and increase margins. A key driver for such logistics processes
is the Internet of Things (IoT), which enables the cooperation and col-
laboration among actors along the value chain of the enterprise (Atzori
et al., 2010).

An industrial application of such an augmented logistics process is
for the monitoring of liquid goods. In this case, sensors are attached
to intermediate bulk containers (IBCs). The objective is to use this
information to improve customer service and rapidly react to disrup-
tions that occur during transport. However, in situations where IBCs
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are stored or moved in bulk the sensors transmit much redundant
information that does not provide any additional value to the customer.
Likewise, there is a need to reduce the energy consumption of sensors
to extend the battery life span and decrease the maintenance costs of
the system.

To address this issue, a variety of possible control and coordination
approaches can be used, most of them fall somewhere on a spectrum
between centralised and distributed (Morstyn et al., 2018). Ad-hoc sensor
networks, where the sensor location is unknown a priori, are generally
supervised by a centralised control strategy (Cardei and Wu, 2006).
The energy consumption of sensors is reduced by scheduling the node
activity and minimising the sensing and communication range while
meeting the overall sensing objective. In contrast, agents enable an
inherently distributed control. Agents are computing elements capable
of interacting with one another (Wooldridge and Jennings, 1995).
Besides the cooperation, coordination and negotiation with others,
agents are capable of acting autonomously. That is, they can make
decisions independent from external interventions and are able to work
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proactively to meet the system goals. While ad-hoc sensor networks
typically rely on global scheduling rules, agents have a narrow view
of the network and decisions are made in a distributed manner.

The main objective of this paper is to explore different strategies
for an energy-efficient collection of relevant logistics monitoring data
of liquid goods. In essence, this paper is concerned with the value of
information for this particular use case and aims to determine how to
minimise the information needed. Therefore, to distinguish between
relevant and redundant data, the sensing needs to be data-driven,
and to meet the characteristics of the considered logistics monitoring
application, a distributed agent-based approach is suitable. We review
alternative approaches that are able to model the system characteris-
tics, investigate strategies that can be adopted to improve the energy
inefficiencies of the system and analyse the effect of agents on the
capability to make decisions by evaluating the energy savings and infor-
mation loss for two typical routing scenarios. Additionally, we validate
the results by simulating three cases of disruptions that typically occur
during transportation. The key contributions of this paper include (1)
an agent-based approach for modelling the dynamics of liquid goods
logistics to enable monitoring and detect inefficiencies, (2) the iden-
tification, implementation and systematic analysis of three strategies
for reducing the energy consumption of tracking sensors for liquid
goods logistics, and (3) an evaluation of the trade-offs between energy
consumption and location tracking precision for timely decision making
in resource constrained liquid good logistics monitoring systems.

The paper is structured as follows. In Section 2, we review studies
presented in the literature that are focused on energy-efficient sensor
networks and agent-based approaches for monitoring, and perform a
critical analysis of their feasibility for the IBC monitoring application.
In Section 3 we introduce the industrial monitoring application that
serves as a basis for this study. Section 4 proposes the agent model
including main algorithms and metrics to compare and evaluate the dif-
ferent energy efficiency strategies. Section 5 describes the assumptions
and implementation of the simulation conducted in this study. Then,
Section 6 evaluates the agent strategies and presents three cases of
disruptions to validate the evaluation results. In Section 7, we describe
the limitations of this study and discuss lessons learnt of applying the
agent model to the industrial use case. Finally, conclusions are drawn.

2. Related work

Sensor networks have been deployed in a variety of industrial ap-
plications, including logistics, manufacturing and telecommunication.
Much work has been done on reducing the energy consumption of
sensors through route optimisation and developing control algorithms
for an efficient message dissemination. However, one of the limitations
of existing approaches includes the need for analysing the capabili-
ties of agents to reduce the energy consumption of sensor networks
in logistics, and the need for studying the trade-off between energy
consumption and decision-making capabilities as a result from missing
information in resource constraint environments. In this section we
outline research gaps in the study of agent-based control for monitoring
containers and describe the focus of this study. We begin by present-
ing existing approaches for increasing the energy efficiency of sensor
networks, which is followed by an overview of agent-based and IoT-
enabled monitoring applications. Apart from that, we discuss studies
on the value of monitoring information for manufacturing and logistics.
Finally, we perform a critical analysis of the feasibility of existing
energy efficiency approaches presented in the literature to be applied
to the considered IBC monitoring application.

2.1. Energy efficiency for sensor networks

The sensors in an ad-hoc sensor network are typically resource
constrained and are characterised by a dynamic network topology,
an event-driven or on-demand type of interaction, and an improved
2

positioning and fault tolerance since usually more sensors are deployed
than required (Cardei and Wu, 2006). There are a number of ap-
proaches that deal with minimising the energy consumption in such
networks: first, both Slijepcevic and Potkonjak (2001) and Oh et al.
(2005) rely on a centralised control mechanism. The former divides
sensors into mutually exclusive sets, where one set is active at any
time for a fixed interval. The latter forms sensor clusters and assigns a
manager node for each cluster, which transmits data collected from the
clustered sensors via the shortest node path. On the other hand, Tian
and Georganas (2002) propose a distributed control approach, in which
the sensor node activity is scheduled based on varying sensing ranges.
Furthermore, Intanagonwiwat et al. (2003) study directed diffusion for
wireless sensor networks (WSNs). A subset of paths between sink and
source is reinforced to transmit data in a shorter interval. Fissaoui et al.
(2017) employ mobile agents that migrate between different clusters of
sensor nodes and gather data. To increase energy efficiency, the agents
only travel to and gather data from the cluster heads. Finally, Din et al.
(2019) present a multi-layer clustering approach to select a forwarding
sensor node. Each cluster head node includes a routing table, which is
used to switch roles among sensor nodes in the cluster.

Apart from that, several studies focus on optimising routing in WSNs
to reduce their energy consumption. For example, Logambigai et al.
(2018) propose an energy-efficient grid-based routing algorithm, which
is based on fuzzy rules to reduce the number of hops and find the
optimal route. Selvi et al. (2021) propose a hierarchical clustering
algorithm based on gravitational force. This approach uses the concept
of force attraction, which allows each node to move depending on its
distance and direction. If two nodes come closer, they from a cluster. To
reduce energy consumption, routing is performed through the cluster
heads, which are determined via fuzzy logic and relevant metrics, such
as distance and residual energy.

Additionally, there are two key challenges in WSNs that have an
indirect effect on its energy efficiency, namely ensuring a full coverage
of the sensing area, and enabling a reliable and fast message dissem-
ination. There are several studies which address these two issues. For
example, Cao et al. (2020) propose a robust distance-based relay node
selection in vehicular networks. The relay node is selected by max-
imising the average speed of the message dissemination for different
vehicle densities. Kumar et al. (2021) propose to reduce redundant data
dissemination through a combination of k-means and unequal fuzzy
clustering. Apart from that, Wang et al. (2018) address the coverage
control problem in WSNs through a particle swarm optimisation. The
control algorithm partitions the network into grids, and adjusts the
sensing radius of the nodes based on the coverage rate and energy
consumption of each grid.

2.2. Agent-based approaches for monitoring

Agents have been adopted in a wide variety of monitoring appli-
cations. In the domain of logistics, Jedermann et al. (2006) leverage
wireless sensors in combination with mobile software agents, which
preprocess the data and transmit only relevant information, in order to
track the changes of good quality along the supply chain. Chow et al.
(2007) use agents and RFID to monitor the process status of warehouse
operations, Hribernik et al. (2010) rely on agents to control and super-
vise the material flow in transport logistics. For manufacturing, Rocha
et al. (2015) propose an agent-based architecture that is able to adapt
to changes in the network topology. Each manufacturing resource is
monitored by an agent that transfers data to cloud agents for analysis.
In the context of environmental monitoring, Athanasiadis and Mitkas
(2004) suggest to utilise agents for tracking and validating air-quality
measurements from sensor arrays.

Agents can also be embedded into nodes of ad-hoc sensor networks
to enhance their capabilities. Qi et al. (2001) use mobile agents to
overcome network latency. They propose to improve the infrastructure
to integrate relevant data into nodes of the sensor network. Apart from
that, Wu et al. (2010) develop agents for a WSN of a structural health
monitoring application. The authors show that agents are resilient to

disturbances and reduce the amount of data sent.
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Fig. 1. The three phases of a closed IBC life cycle. At the customer, empty IBCs (white) are replaced with filled containers (grey).
2.3. IoT-enabled monitoring of containers

Along with the rise of the IoT, monitoring systems have emerged
that harness the implicit connectivity of devices, specifically for moni-
toring containers in logistics processes. However, not many applications
can be found as the increasing number of distributed embedded sys-
tems has led to an exponential growth of communication load on
devices (Muhuri et al., 2019), thus yielding a challenging development
of resource constrained systems. Arumugam et al. (2018) employ IoT
technologies in conjunction with smart contracts to supervise assets in
the supply chain, which includes monitoring containers transported via
trucks. Moreover, Salah et al. (2020) propose a hardware and software
system architecture for shipping containers for condition monitoring
and location tracking.

2.4. The value of monitoring information

The analysis conducted in this study is further related to the re-
search on the value of information, which aims to quantify the effect of
information availability to make decisions (Russell and Norvig, 1995).
A number of studies focus on quantifying the value of information for
monitoring and tracking applications. Kelepouris et al. (2012) evaluate
how the accuracy and timeliness of product location information across
a supply chain affects decision effectiveness. Furthermore, Wong and
McFarlane (2007) investigate the role of readily available product in-
formation in enhancing shelf replenishment performance. In the context
of manufacturing, Parlikad and McFarlane (2007) study the impact of
available product information on product recovery decisions.

2.5. Feasibility of existing energy efficiency approaches for liquid goods
logistics

This study is concerned with modelling the dynamics of liquid goods
logistics to detect inefficiencies and enable timely decision making. The
sensors attached to the IBCs form a large-scale highly distributed net-
work, whereby the state and location information of IBCs (i.e. nodes)
change readily. Generally, there exist no approaches in the literature
that consider the different situations the network nodes may encounter.
For example, the end user may require different sensor information
depending on the location of IBCs. Apart from that, centralised control
approaches are likely to be ill-suited for the considered distributed
monitoring application, since they may yield a performance bottleneck
for a large number of IBCs. In this section we analyse the feasibility of
existing energy-efficient WSN approaches to meet the characteristics of
the IBC monitoring application. Table 1 provides an overview of the
feasibility analysis.

Centralised control approaches (Slijepcevic and Potkonjak, 2001;
Oh et al., 2005; Selvi et al., 2021; Wang et al., 2018) are likely to be
ill-suited for the considered monitoring application, as they may yield
a performance bottleneck for a large number of IBCs. In contrast to
the control approaches proposed by Slijepcevic and Potkonjak (2001)
as well as Oh et al. (2005), ensuring full coverage of the sensing
area is unnecessary for the monitoring of IBCs, since each container is
equipped with an individual sensor. The centralised gravitational force
based clustering algorithm proposed by Selvi et al. (2021) may become
3

a bottleneck for a large number of sensor nodes. The approach proposed
by Wang et al. (2018) is not feasible for the considered use case, since
the IBC sensor nodes are not static and using fixed-sized grids is less
efficient than a distance-based clustering algorithm for the dynamic
topology of IBCs. Specifically, in case where multiple IBCs are trans-
ported in bulk, the majority of sensors can be put into sleep mode, since
the containers undergo similar environmental conditions, and thus,
these IBCs can be clustered. A fixed-sized grid may cause a separation
of such clusters, which results in more sensors remaining active and
therefore a higher energy consumption. Moreover, the sensing range of
IBC sensors cannot be altered. For the multi-layer clustering approach
proposed by Din et al. (2019), the data gathering from IBC sensors
within a cluster is not required in most situations and therefore results
in unwanted energy wastage. Finally, to select appropriate relay nodes
for an efficient message dissemination as suggested by Cao et al. (2020),
there is not enough data available for the considered monitoring ap-
plication to enable an evaluation and comparison of different message
dissemination speeds for the wide range of IBC routing patterns.

On the other hand, distributed control approaches (Tian and Geor-
ganas, 2002; Intanagonwiwat et al., 2003; Fissaoui et al., 2017; Logam-
bigai et al., 2018; Kumar et al., 2021) are more likely to satisfy the
requirements of the IBC monitoring application. However, not all of
them yield energy savings upon adoption. For example, the coverage-
preserving node scheduling approach proposed by Tian and Georganas
(2002) is not feasible since enhancing the coverage of the sensing
area is unnecessary for the considered use case. Furthermore, for
the directed diffusion approach proposed by Intanagonwiwat et al.
(2003), the shortest path computation is not energy-efficient for dy-
namic topologies, since the location of nodes change readily and thus
needs to be queried more often than for static topologies. The energy-
aware data aggregation approach introduced by Fissaoui et al. (2017)
is not feasible as well, since the itineraries of IBCs are determined based
on customer orders and cannot be changed by the control algorithm.
Similar to Wang et al. (2018), the use of fixed-sized grids for clustering
is also suggested by Logambigai et al. (2018), which is less efficient
than a distance-based clustering for the considered IBC monitoring
application. Finally, the clustering algorithms and energy efficiency
strategies proposed by Kumar et al. (2021) are similar to those chosen
in this study and are therefore likely to yield the same results. However,
these strategies are not capable of detecting the different situations IBCs
encounter and they are not able to provide specific information for the
end user depending on these situations.

2.6. Summary

Although there are various studies on controlling sensors in a mon-
itoring application, existing energy efficiency approaches are not fea-
sible for the considered large-scale highly distributed IBC monitoring
system. Specifically, two main issues have not been addressed yet: first,
while some studies have investigated the use of agents to support the
monitoring of logistics operations, there are no attempts to examine a
reduction of the energy consumption in sensor networks with dynamic
topologies through the use of agents. Investigating energy consumption
is important because it is a common issue of large-scale logistics and
supply chain processes. Second, there is a need for studying the trade-
off between energy consumption and location tracking precision of
monitoring systems in resource constrained environments and its effect
on the decision-making capabilities.
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Table 1
Analysis of the feasibility of related energy-efficient WSN approaches for the IBC monitoring application.

Approach Characteristics Feasibility

Slijepcevic and
Potkonjak (2001)

• Centralised control
• Selection of mutually exclusive sets, whose members fully cover
the sensing area
• Only one set is active at any time

• Ensuring full coverage of the sensing area is unnecessary for the
considered application
• Ill-suited for large-scale distributed applications

Oh et al. (2005) • Centralised control
• Division of sensing areas into clusters and selection of one
manager node for each cluster
• Transmission of data collected from the clustered sensors via the
shortest node path

• Ensuring full coverage of the sensing area is unnecessary for the
considered application
• Ill-suited for large-scale distributed applications

Tian and Georganas
(2002)

• Distributed control
• Assignment of clusters by comparing overlapping sensing areas of
nodes
• Scheduling of the sensor activity based on these clusters

• Ensuring full coverage of the sensing area is unnecessary for the
considered application

Intanagonwiwat
et al. (2003)

• Distributed data-centric control
• Reinforcement of a subset of paths between sink and source to
transmit data in a shorter interval

• The computation of the shortest path consumes much energy in
dynamic environments, since the location of nodes changes readily
and thus needs to be queried frequently

Fissaoui et al.
(2017)

• Distributed control
• Planning algorithm for mobile agents that migrate between sensor
clusters and gather data from cluster heads

• Not applicable to the considered use case, since the itineraries of
IBCs are determined based on customer orders

Din et al. (2019) • Multi-layer clustering approach that selects a sensor transmitting
the data of a cluster
• A table for intra- and inter-routing is used to switch the roles
among sensors in the cluster

• For the IBC monitoring application, gathering data from sensors
within a cluster is unnecessary in most situations and would
therefore yield unwanted energy wastage

Logambigai et al.
(2018)

• Distributed control
• The network is clustered into grids with a certain length with a
coordinator for each grid aggregating the data of the sensors in that
grid
• Fuzzy rules are used to the reduce the number of hops and find
the optimal route

• Equally sized grids are less efficient than clustering IBCs based on
the distance between them for the considered monitoring
application

Selvi et al. (2021) • Centralised control
• Gravitational force clustering, whereby the cluster heads are
determined through fuzzy logic and relevant metrics, such as
distance and residual energy
• Routing is performed through the cluster heads

• The clustering may limit the performance of the distributed
monitoring application when considering a large number of IBCs

Cao et al. (2020) • Relay nodes are selected by maximising the average speed of the
message dissemination for different vehicle densities

• There is not enough data available for the considered monitoring
application to evaluate the message dissemination for the wide
range of scenarios IBCs encounter

Kumar et al. (2021) • Distributed control
• Reduction of redundant data dissemination through a combination
of k-means and unequal fuzzy clustering

• The clustering algorithms are similar to those chosen in this study
and are thus likely to yield the same results
• However, the proposed strategies are not capable of detecting the
different situations IBCs encounter and providing specific
information for these situations

Wang et al. (2018) • Centralised control
• Partition of the WSN into grids of a fixed size
• A particle swam optimisation is performed to adjust each node’s
sensing radius according to the coverage rate and energy
consumption of each grid

• The sensor nodes are not static for the considered use case
• Using fixed-sized grids is less efficient than using a distance-based
clustering algorithm for the monitoring application
• The sensing range of IBC sensors cannot be altered
3. An industrial application for monitoring containers

This study revolves around a logistics process where liquid goods
are transported via intermediate bulk containers (IBCs) to various
original equipment manufacturers (OEM). To monitor the state of the
goods as well as the environmental conditions, a sensor is attached to
each IBC, which measures the fill level, temperature, acceleration and
tracks the global position of the container. The sensor transmits data to
the cloud following a configured approach. The main objective of this
monitoring application is to improve decision making and provide vis-
ibility to customers. For instance, vehicle tracking information enables
fast reactions to disruptions that may occur during transport, such as
rerouting a truck to avoid a traffic jam.

3.1. IBC life cycle

During its lifetime an IBC goes through three different phases which
are summarised in Fig. 1: first, the manufacturer receives a customer
4

order and fills IBCs accordingly. Then, the containers are transported
(usually via trucks) to the site of the customer. At the customer, the
IBCs are being emptied and stored until moved back to the manu-
facturer. While this outlines a closed life cycle, in some cases IBCs do
not return to the manufacturer. However, such open life cycles are not
considered in this study.

While travelling, IBCs may be combined into different groups on
different vehicles along the route towards their destinations. Two typ-
ical routing scenarios are depicted in Fig. 2: in the first scenario, a
number of IBCs are transported from the manufacturer to customer A.
They reside at the site of the customer while being emptied before they
return to the manufacturer. For the second scenario, a subset of IBCs
are located at customer B and C, which both require replenishment. A
truck ships a number of full IBCs from the manufacturer to customer B,
unloads the full IBCs and loads the empty containers prior to driving
to customer C. At customer C the empty IBCs are replaced with filled
containers before the truck returns to the manufacturer. Many other
possible routing scenarios also exist. The key issue is that the set of
IBCs on any one vehicle is often changing.
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Fig. 2. The map shows two typical routing scenarios.

.2. IBC sensor

The sensors attached to IBCs to track their location and state
e.g. temperature) can enter different modes. Active sensors transmit

data at a constant rate, for example, once per hour. When sensor enter
the sleep mode, no data is transmitted and the sensor can only be
activated via specific control commands or when the sensor measures a
change in acceleration. This feature is necessary to detect the life cycle
transitions. The sensors are off when the battery is empty.

Although IBCs go through multiple cycles before the battery of the
sensor is depleted, the sensors transmit much redundant information
that does not provide any additional value to the customer, especially
in cases where IBCs are stored or moved in bulk. Hence, there is an
opportunity to reduce the energy consumption of sensors through a
control algorithm that can extend their life span and decrease the
maintenance costs of the system. In particular, the problem we address
in this study is to optimise the overall sensor energy consumption while
maintaining acceptable quality of data for each phase of the process. The
quality of data is deemed to be acceptable if the information necessary
to make decisions is available.

3.3. Tracking-influenced decisions

A high quality of available IBC data is paramount to improve cus-
tomer service and rapidly react to disruptions that occur during trans-
port. There are two main decisions that are affected by the monitoring
and tracking information:

(1) Carrier: in many cases trucks require a temperature control unit
to transport sensitive products because the temperature has an
effect on the functionality of the product. Furthermore, spillages
may be caused by unexpected high impacts, for example, due to
a truck accident. Using the tracking and monitoring information,
the manufacturer needs to decide if a truck requires rerouting
to proactively prevent irreversible damage to the product and
guarantee that the containers arrive in time.

(2) Customer: customers typically do not keep track of the fill
level of individual IBCs, which can cause delays in processes
at the customer. Based on the fill level data of IBC sensors, the
manufacturer needs to schedule replenishment routes to reduce the
downtime of processes at the customer. The location data can be
utilised in cases where sites have a dedicated shipping area that
5

store empty containers.
In the following section we present the agent model that is used
to supervise and reduce the energy consumption of sensors while
maintaining an acceptable quality of data throughout the different life
cycle phases of an IBC.

4. Agent-based energy-efficient monitoring

In this study we propose an agent-based approach to manage and
reduce the energy consumption of IBC sensors. The rationale behind
using agents is twofold: first, the position of IBCs is dynamic. Depending
on the life cycle phase, IBCs are moved from the manufacturer to
the customer and vice versa, yielding new sets of clustered IBCs for
each movement. Second, the IBCs have some level of autonomy. In
particular, the sensor data on each IBC can be transmitted at certain
rates, sudden changes in acceleration trigger the activation of sensors,
and notifications are sent if the battery level falls below a threshold.
The aim is to induce collaboration among IBC sensors, such that they
are able to dynamically adapt to specific situations. These situations
require the sensing to be data-driven, since the activity of IBC sensors
is controlled based on the data they perceive. An agent-based model
enables a representation of these dynamics and capabilities. In the short
term agents are able to recreate IBC characteristics in a model and
simplify the implementation of sensor control functions at an individual
IBC level and in the long term they can track the changes individual
IBCs encounter throughout their life cycle.

4.1. Agent model

Agent models represent the individual agents, their interactions, and
the environment (Herrera et al., 2020). The proposed agent model,
as shown in Fig. 3, abstracts each IBC sensor by an agent. The agent
gathers data from the sensor and controls it through actions. Due to
the agents’ autonomy and ability to interact with each other, various
cooperative and coordinated control algorithms can be implemented. In
order to increase the energy efficiency of the sensors, the agents operate
on the cloud and relevant process information is sent to a dashboard
application for visualisation. This study concentrates on modelling the
dynamics of the positions of IBCs throughout their life cycle.

4.2. Clustering and life cycle detection

There are three main coordination functions that are executed at
each agent step, which are illustrated in Figs. 4(a) to 4(c). Initially, all
sensors are set to be active and will transmit data at a constant rate. The
first function clusters the agents based on the global position of IBCs
provided by the sensors. There are a number of clustering algorithms
that can be adopted for this scenario: for example, k-means (Arthur and
Vassilvitskii, 2007) aims to identify clusters by minimising the average
squared distance between observations within the same cluster. The
number of clusters can be estimated by grouping agents based on the
location differences. As a nonparametric algorithm, Mean Shift (Co-
maniciu and Meer, 2002) locates clusters by maximising a density
function. DBSCAN (Ester et al., 1996) distinguishes between dense
and thin population areas by specifying points that can be reached
within a predefined neighbourhood distance. Based on the determined
clusters, the second function of the agent-based sensor management
selects a cluster leader, a sensor which remains active and continues
to transmit data, while the other sensors are put into sleep mode.
The agents establish this cluster leader based on the battery levels of
clustered sensors. That is, the sensor with the highest battery level is
elected to be the cluster leader for the next coordination step, which
guarantees that the energy is consumed evenly. If an agent cannot
be assigned to a cluster, its sensor remains active. Finally, the third
function determines the life cycle phase for each IBC by computing
the difference between its current and previous position as well as

the distance to the fixed locations of the sites of the customers and
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Fig. 3. The proposed agent model.
Fig. 4. Agent-based sensor management: (a) The sensor clustering algorithms detects groups of IBC agents. (b) The sensor cluster leader selection determines one active sensor
hich continues to transmit data, while others are put into sleep mode. (c) The life cycle detection identifies the life cycle phase for each IBC agent based on their current and
revious position.
Fig. 5. The main coordination approaches of an agent-based sensor management system following the (a) Naïve, (b) Oblivious, or (c) Aware energy efficiency strategy.
manufacturer. The three functions are described by Algorithm 1. The
time complexity of Algorithm 1 mainly depends on the two loops and
the clustering algorithm chosen. K-means, Mean Shift and DBSCAN
have well-known complexities based on the parameters used by each
6

𝑂

algorithm. Assuming 𝑆 are the factors driving the complexity of the
clustering algorithm chosen and 𝑂(𝑆) is its complexity, then the com-
plexity of Algorithm 1 is between 𝑂(𝑁2), when 𝑂(𝑆) ≤ 𝑂(𝑁), and
(𝑁 × 𝑆) for 𝑂(𝑆) > 𝑂(𝑁).
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Algorithm 1 Clustering and life cycle detection at each model step 𝑥 for
𝑁 agents for the Oblivious and Aware strategy. For the Naïve approach,
these functions are not executed because the agents do not schedule the
sensor activity.
𝑃 ← getAgentsPositions(𝑥) ⊳ Get the positions 𝑃 of agents at step 𝑥
𝐵 ← getAgentsBatteryLevels(𝑥)
Choose an energy-efficiency strategy 𝑠
for 𝑎 = 1 to 𝑁 do

𝐶 ← doClustering(𝑃 ) ⊳ Determine the clusters 𝐶 for all agents
𝑐 ← getAgentCluster(𝐶, 𝑎) ⊳ Select cluster 𝑐 that includes agent 𝑎
if |𝑐| > 1 then ⊳ If the cluster includes more than one agent

𝐵𝑚𝑎𝑥 ← 0
for 𝑎𝑐 in 𝑐 do

if 𝐵(𝑥, 𝑎𝑐 ) > 𝐵𝑚𝑎𝑥 then ⊳ Check the battery level 𝐵
𝑎𝑙𝑒𝑎𝑑𝑒𝑟 ← 𝑎𝑐 ⊳ Select the new cluster leader 𝑎𝑙𝑒𝑎𝑑𝑒𝑟

end if
end for

end if
if 𝑠 is Aware then

if |𝑃 (𝑥, 𝑎) − 𝑃 (𝑥−1, 𝑎)| > 𝜖 then ⊳ If the agent position has
changed

𝐿𝐶 (𝑥, 𝑎) ← 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 ⊳ Update life cycle phase 𝐿𝐶
else if |𝑃 (𝑥, 𝑎) − 𝑃𝑀 | < 𝜖 then ⊳ If the agent is near the

manufacturer
𝐿𝐶 (𝑥, 𝑎) ← 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟

else if |𝑃 (𝑥, 𝑎) − 𝑃𝐶 | < 𝜖 then ⊳ If the agent is close to the
customer

𝐿𝐶 (𝑥, 𝑎) ← 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟
end if

end if
end for

4.3. Energy efficiency strategies

Multi-agent systems can employ various strategies to achieve a sys-
tem goal, which can be implemented through a set of rules each agent
has to follow. For the industrial application provided in this study, we
propose three agent strategies to regulate the energy consumption of
sensors. Figs. 5(a) to 5(c) depict the main control flows of a given agent
that follows one of the suggested coordination strategies:

• Naïve Coordination. For the Naïve strategy, agents merely mon-
itor the relevant IBC sensors without scheduling their activity. All
sensors remain active and transmit data to the cloud at a constant
rate. This strategy serves as a baseline for the following two
approaches by estimating the base consumption of the monitoring
application.

• Oblivious Coordination. This strategy applies the clustering al-
gorithm and selects a leading sensor for each cluster. Instead of
gathering the data of all IBC sensors in the cluster, the leading
IBC sensor merely sends information about its own state while
the others are put into sleep mode (i.e. it assumes all other IBC
sensors are identical). Using this approach agents disregard the
life cycle transitions of IBCs.

• Aware Coordination. Besides being clustered and electing a
leading sensor for a given cluster, agents detect the life cycle
phase of IBCs and schedule the sensor activity accordingly. Based
on the information required to make decisions described in Sec-
tion 3.3, the sensors at the customer remain active to monitor the
individual fill level alterations, while containers in transit and at
the manufacturer follow the Oblivious strategy.

.4. Evaluation metrics

To compare and evaluate the three energy efficiency strategies, we
efine two metrics: the energy savings 𝑆 is used to assess the effect
7

𝐸

f the different agent strategies on the energy consumption. The infor-
ation loss 𝐿𝐼 captures the impact of the sensor management on the

vailable information. These metrics quantify the trade-off between the
nergy consumption reduction and available (necessary) information of
he monitoring system to make decisions.

The energy savings metric captures the relative difference of the bat-
ery levels between a given strategy and the Naïve approach averaged
ver all agents for a fixed interval:

𝐸 = 1
𝑁

𝑁
∑

𝑎=0

∫𝐾
𝐵(𝑥, 𝑎) 𝑑𝑥 − ∫𝐾

𝐵𝑛𝑎𝚤𝑣𝑒(𝑥, 𝑎) 𝑑𝑥

∫𝐾
𝐵(𝑥, 𝑎) 𝑑𝑥

, (1)

where 𝐾 is the number of simulation steps of the agent model, 𝐵(𝑥, 𝑎) is
the battery level at step 𝑥 obtained from the sensors modelled by agent
𝑎, and 𝑁 is the total number of agents of the model.

As scheduling the node activity potentially yields several inactive
sensors which are not transmitting data, there is less information avail-
able to track the state of all containers. The information loss measures
this lack of information by computing the percentage of active sensors
with a sufficiently high battery level to transmit data:

𝐿𝐼 = 1
𝐾

𝐾
∑

𝑥=0
𝐿𝐼 (𝑥)

= 1
𝐾

𝐾
∑

𝑥=0
1 − 1

𝑁
card({𝑎 ∶ 𝑀(𝑥, 𝑎) is 𝑎𝑐𝑡𝑖𝑣𝑒} ∩ {𝑎 ∶ 𝐵(𝑥, 𝑎) > 0}) , (2)

where 𝐾 is the number of steps of the agent model, 𝑀(𝑥, 𝑎) is the mode
f an agent 𝑎 at a given step 𝑥, 𝐵(𝑥, 𝑎) is the battery level obtained from
specific sensor at a given step, and 𝑁 is the total number of agents.

As the information loss strictly increases with the number of inactive
ensors, we argue to weight the information loss by its necessity. In
ituations where information is necessary to make decisions, it is crucial
hat the lack of it (due to the energy efficiency strategies) does not
ffect the capability of the manufacturer or customer to make decisions:

𝐼,𝑤 = 1
𝐾

𝐾
∑

𝑥=0
𝑤(𝑥)𝐿𝐼 (𝑥) . (3)

We focus on the weighted information loss 𝐿𝐼,𝑤 in this study be-
cause this metric is of higher relevance for the manufacturer to assess
the quality of data when using the different coordination strategies. The
(unweighted) information loss 𝐿𝐼 metric merely serves as a reference
for 𝐿𝐼,𝑤.

Based on the decisions described in Section 3.3, the agent strategies
are subject to two constraints: (a) at least one sensor needs to be active
at the manufacturer and during transport to track the movement, and
(b) at the customer all sensors need to be active to monitor the fill
level changes of individual IBCs. These constraints form the basis for
the weights 𝑤, which capture the percentage of sensors that need to
be active and transmit information for each cluster depending on the
current life cycle phase of an IBC. At each step, the weight compares
the number of active sensors needed for a current life cycle phase with
the number of active sensors given at each identified cluster:

𝑤(𝑥) = 1
𝑁𝑐 (𝑥)

𝑁𝑐 (𝑥)
∑

𝑖=0
1 −

𝑔(𝑥) − 𝑛(𝑥)
𝑁

, (4)

where 𝑁 is the total number of agents in the model, 𝑁𝑐 if the number
of IBC clusters at step 𝑥, and

𝑔(𝑥) = card({𝑎𝑐 ∶ 𝑀(𝑥, 𝑎𝑐 ) is 𝑎𝑐𝑡𝑖𝑣𝑒}) (5)

represents the number of active sensors 𝑎𝑐 given in a cluster 𝑐 at step 𝑥,
and
𝑛(𝑥) = max(card({𝑎𝑐 ∶ 𝐿𝐶 (𝑥, 𝑎𝑐 ) is 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟}), 1) (6)



Engineering Applications of Artificial Intelligence 127 (2024) 107198J. Kaiser et al.

𝐿
c
t

5

a
t
i
i
f
e
n
t
a
s
m
t

t
i

5

d
t
a
d
p
t
t

𝑃

p
d
t

s
T
t

𝑡

y

s
o
f
f

3

is the number of active sensors needed in a cluster 𝑐 at step 𝑥, where
𝐶 (𝑥, 𝑎𝑐 ) describes the current life cycle phase of an IBC agent 𝑎𝑐 in a
luster. If more sensors are active than needed, the weight decreases
he information loss, otherwise, the information loss increases.

. Simulation study

To show the effect of different agent-based sensor management
pproaches on the energy consumption throughout the IBC life cycle,
his paper conducts a simulation of the two routing scenarios described
n Fig. 2. While for the first scenario the IBCs remain in a single cluster,
n the second scenario the containers are split up between the manu-
acturer and the two customers. At the customers, the same number of
mpty containers are replaced with filled IBCs such that the absolute
umber of containers at both customers does not change. Consequently,
he two scenarios can be repeated several times to analyse the effect of
gents on the energy consumption in the long term. The simulation is
topped once the first sensor reaches a battery level of 0 because the
onitoring systems becomes unreliable when agents are no longer able

o coordinate and fetch data from the sensors.
In the following two sections, we describe the simulation assump-

ions for the energy consumption of IBC sensors, and outline the
mplementation of the simulation conducted in this study.

.1. Energy consumption of sensors

The energy consumption of IBC sensors is estimated based on a
eterministic model developed by Dusza et al. (2012), which differen-
iates between different power states of a device. The model provides
n empirically derived representation of the power consumption of
ata transmitted via user equipment. User equipment, such as smart-
hones, is comparable to the IBC sensors used in this study, because
hey include similar hardware components and firmware. The emitted
ransmission power is approximated by two linear functions:

̄ (𝑃𝑇𝑥) =

{

𝛼𝐿 𝑃𝑇𝑥 + 𝛽𝐿 for 𝑃𝑇𝑥 ≤ 𝛾
𝛼𝐻 𝑃𝑇𝑥 + 𝛽𝐻 for 𝑃𝑇𝑥 > 𝛾

(7)

with device specific parameters 𝛼, 𝛽 and 𝛾 and the uplink transmis-
sion power 𝑃𝑇𝑥. The downlink reception can be estimated by the 𝛽𝐿
arameter. As the typical routing scenarios of IBCs are subject to large
istances between customer and manufacturer, we assume that the data
ransfer requires the maximum power transmission allowed of 23 dB.1

To determine how long the device remains in a particular power
tate, we need to specify the time it takes to transmit the sensor data.
he time to transmit the data 𝑡𝑇𝑥 is based on the package size 𝐷 and
he achievable throughout 𝑇 :

𝑇𝑥 = 𝐷
𝑇

(8)

The achievable throughput 𝑇 is dependent on the signal-to-noise
ratio (SNR) at the base station. The SNR reduces with an increasing
distance 𝑑 between node and base station because the transmission
power is limited and cannot compensate for the growing path loss.
For large distances 𝑑 > 3 km, we assume an SNR of 13 dB, which
ields a throughput of 𝑇 = 5Mbit/s (Dusza et al., 2014). For specifying

the package size we only consider the required payload and disregard
other parts of the message, such as preamble and header, as these
vary across protocols. The IBC sensors capture GPS coordinates, fill
level, temperature, acceleration in X, Y and Z, battery level, and signal
strength. Each parameter is augmented with a timestamp, an ID, a
name, a serial number of the sensor and a field specifying the unit.

1 HTC Velocity 4G with 𝛼𝐻 = 68mW/dBm, 𝛽𝐻 = 0.79W, 𝛽𝐿 = 1.6W and
𝑃𝑖𝑑𝑙𝑒 = 40mW with a carrier frequency LTE Band 7 @800 MHz (Dusza et al.,
2012).
8

Using a 64 bit floating-point arithmetic, the package size is 𝐷 = (7+6+
6 + 8 + 6 + 6) × 64 bit = 2496 bit.

Based on the power consumption during the different power states
and the time to transmit the data, the energy consumption 𝐸 is deter-
mined depending on the rate of data transmissions 𝑓 . For active and
sleeping sensors the energy consumption of one cycle is computed as
follows:

𝐸𝑎𝑐𝑡𝑖𝑣𝑒(𝑓 ) = 𝑃𝑚𝑎𝑥 𝑡𝑇𝑥 + 𝑃𝑙𝑜𝑤 ( 1
𝑓

− 𝑡𝑇𝑥) , (9)

𝐸𝑠𝑙𝑒𝑒𝑝(𝑓 ) = 𝑃𝑖𝑑𝑙𝑒
1
𝑓
, (10)

where 𝑃𝑚𝑎𝑥 = 𝑃 (23 dB) = 2.35W is the required power for the data
transmission, 𝑃𝑙𝑜𝑤 = 𝛽𝐿 is the receiving power state that an active
ensor enters once the data has been transmitted and 𝑃𝑖𝑑𝑙𝑒 is the amount
f power consumed when there are no data transmissions. For example,
or a data transmission rate of once per hour, the energy consumption
or one cycle is 𝐸𝑎𝑐𝑡𝑖𝑣𝑒 = 5760.000374 J and 𝐸𝑠𝑙𝑒𝑒𝑝 = 144 J.

5.2. Implementation

The agents initialise the sensors with a random value for the battery
level. The data transmission rate is set to once per hour, and thus,
one simulation step corresponds to one hour passed. Based on the adopted
power consumption model, the battery level reduces by 2.339% if the
sensors remain active and transmit data, and decreases by 0.059% if
the sensor is ‘‘sleeping’’.2 The routing scenarios are implemented using
the Open Source Routing Machine (OSRM),3 while the temperature is
determined using the resulting OSRM GPS coordinates of individual
IBCs and Meteostat.4

6. Analysis of results

To address the information redundancies and energy inefficiencies
in a location tracking and state monitoring application, an agent-
based model has been proposed and simulated for two typical routing
scenarios. Three different sensor usage strategies have been developed
and evaluated. The simulation results show that the longest network life
span is achieved when the majority of sensors are put into sleep mode.
However, in situations where high quality sensor data is required to
make decisions, the sensors need to be made aware of the life cycle
phase of IBCs. In this section we analyse the results of the simulation
in terms of energy savings and information loss. To validate these
results we then discuss three cases of disruptions that typically occur
during the transport of IBCs and assess the effect of agent-based sensor
management on the ability to handle those disruptions.

6.1. Energy savings and battery life span

To identify a suitable agent strategy for the given industrial ap-
plication, we evaluate the three proposed strategies quantitatively by
analysing the resulting battery life span and measuring the energy
savings, which describe the relative battery level difference between
a given strategy and the Naïve approach. For the two IBC routing
scenarios chosen here, the energy savings 𝑆𝐸 for each of the three
proposed strategies averaged over the simulation runs are shown in
Table 2.

Regarding the energy savings, the Naïve strategy does not actively
schedule the sensor activity and thus no energy is saved. If the IBC
sensors are scheduled, however, the simulation shows that agents are
capable of reducing the energy consumption. For the first routing

2 Battery cell: Li-SoCl2 TekCell ER34615J-S with a nominal voltage 𝑈 =
.6V and a nominal capacity 𝐶 = 19 000mAh.

3 http://project-osrm.org/.
4
 https://meteostat.net/en/.

http://project-osrm.org/
https://meteostat.net/en/


Engineering Applications of Artificial Intelligence 127 (2024) 107198J. Kaiser et al.

e
s

Fig. 6. Overall energy consumption for the (a) first and (b) second routing scenario based on the three energy efficiency strategies averaged over 10, 20 and 40 agents for 7
simulation runs. One simulation step corresponds to one hour past. Each line represents the average of 10, 20, and 40 sensor battery levels.
Table 2
Energy savings 𝑆𝐸 and (weighted) information loss 𝐿𝐼 and 𝐿𝐼,𝑤 for the three energy
fficiency strategies based on a different number of simulated agents for the two routing
cenarios averaged over 7 simulation runs.

Strategy Scenario 1 Scenario 2

𝑁 𝑁

10 20 40 10 20 40

𝑆𝐸

Naïve 0 0 0 0 0 0
Oblivious 0.873 0.926 0.951 0.463 0.708 0.841
Aware 0.664 0.702 0.720 0.279 0.318 0.327

𝐿𝐼

Naïve 0.003 0.003 0.003 0.003 0.003 0.003
Oblivious 0.718 0.759 0.780 0.490 0.660 0.750
Aware 0.543 0.584 0.590 0.245 0.316 0.351

𝐿𝐼,𝑤

Naïve – – – – – –
Oblivious 0.879 0.938 0.969 0.519 0.715 0.821
Aware 0.543 0.584 0.590 0.243 0.313 0.348

scenario, as the strategy with the largest percentage of sleeping sensors,
the Oblivious strategy saves the most energy from 87%, for 10 agents,
to 95%, for 40 agents. For the second scenario, less energy is saved
because there are more clusters and the number of active sensors at
each step is therefore higher. When agents are aware of the life cycle
phase and the sensors remain active when residing at the customer, the
energy is consumed at an accelerated rate, because the total number
of active sensors of the monitoring system is larger compared to the
Oblivious strategy. Similar to the Oblivious approach, less energy is
saved for the second routing scenario. Additionally, the total number of
monitored IBCs has an effect on the energy savings. As more IBCs can
be clustered, an increasing number of sensors are put into sleep mode,
leaving a single sensor active to represent the whole cluster. Therefore,
the more IBCs are clustered, the more energy is saved.

The average energy consumption and battery life span for the
two scenarios over the simulation time for the three strategies are
depicted in Figs. 6(a) and 6(b). In contrast to the Naïve and Oblivious
strategy, whose average battery level decreases linearly, the Aware
approach results in discontinuities in the energy consumption, because
its node activity changes dynamically based on the current life cycle.
While for the Naïve and Oblivious approach the number of active and
sleeping sensors rarely changes, agents that are aware of the life cycle
activate sensors when the containers reside at the customer, leading
to a higher energy consumption. Similar to the energy savings, the
Oblivious strategy results in the longest battery life span of 760h and
158h for 40 agents for the first and second scenario, respectively,
which is an increase of ×21.7 and ×4.5 compared to the baseline. In
contrast, as more agents are active for the Aware strategy, the life
9

span is only extended by ×3.7 and ×1.2. Equivalent to the energy
savings, the life span also increases with the number IBCs in a single
cluster for both the Oblivious and Aware strategy. However, for the
latter only small increases in the life span and energy savings can be
observed, because, for the routing scenarios chosen, the IBCs are at the
customer for large periods of time, which negatively affects the energy
consumption. It is noteworthy to mention that the average battery level
is significantly different for both scenarios when the stopping criterion
of the simulation is met, which is due to the fact that the IBCs have
a different movement pattern for both scenarios. For the first route,
IBC remain in a single cluster for the whole duration of the simulation,
while for the second scenario the containers split up and recombine
along the route. This yields smaller clusters which in turn leads to an
increased energy consumption.

Generally, the main factors that affect the energy savings and the
battery life span for the scenarios in this study include the number
of clustered IBCs and the chosen agent strategy. The energy consump-
tion decreases with the number of clustered containers because more
sensors can be allocated to the same cluster, put into sleep mode and
are therefore not required to transmit data. Further, the agent strategy
plays an important role in reducing the overall energy consumption as
it dictates how many sensors remain active. Additionally, the design
and implementation of the monitoring system has an effect on the
energy efficiency as well, in particular, resource demanding algorithms
running on the edge ought to be avoided.

6.2. Information loss

As a subset of sensors are deliberately put into sleep mode to
increase the overall energy efficiency, the available sensor information
at a given step is reduced. It is crucial to analyse this loss of information
with respect to the energy saved in order to evaluate the effect of
the proposed strategies on the decision making in specific situations.
However, as the lack of information strictly increases with the number
of inactive sensors, we weight the information loss by its necessity. For
two routing scenarios in this study, the average (weighted) information
loss 𝐿𝐼 and 𝐿𝐼,𝑤 for each energy efficiency strategy is shown in
Table 2, whereas the relationship between the energy savings and the
information loss is depicted in Figs. 7(a) and 7(b).

The loss of available IBC information linearly increases with the
number of sleeping sensors and therefore with the energy saved. Con-
sequently, the highest information loss is achieved by the Oblivious
strategy. For the Aware strategy, the loss of information is lower
due to the sensors being active when IBCs are at the customer. The
Naïve strategy has an information loss marginally above zero, since the
simulation stops once the first battery is empty which yields a single

inactive sensor at the last step.
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Fig. 7. The relationship between the energy savings 𝑆𝐸 and the (weighted) information loss 𝐿𝐼 and 𝐿𝐼,𝑤 for the (a) first and (b) second routing scenario based on the three
energy efficiency strategies averaged over 10, 20 and 40 agents for 7 simulation runs.
As a metric, the information loss is unable to distinguish between
important and negligible data. In particular, it does not cover the spe-
cific situations IBC face during different life cycle phases. For instance,
when transported on a truck, IBCs are likely to undergo the same
environmental conditions, and thus the majority of sensors would send
redundant information. Therefore, we weight the information loss by its
necessity in order to analyse the effect of the energy efficiency strategies
on the capability to make decisions in specific situations. The weighted
information loss can only be evaluated for the Oblivious and Aware
strategy, since for the Naïve approach, no clustering is performed and
thus the metric cannot be applied.

As the Oblivious strategy enforces to put sensors into sleep mode
regardless of the individual IBC life cycle phase, it does not satisfy
the second constraint, which requires all sensors to be active when
containers are at the customer. Therefore, the weights increase the
information loss on average by 19.0% for the first and 7.3% for the
second scenario. On the other hand, the weighted information loss for
the Aware strategy differs for both IBC routing scenarios. For the first
scenario, all IBC remain in a single cluster throughout the duration
of the simulation, which satisfies both constraints imposed by the
decisions described in Section 3.3. This strategy ensures that for the
manufacturer and carrier life cycle at least one sensor is active, while
at the customer all sensors transmit data. Therefore the weights do not
change the information loss. In contrast, the second scenario divides
the IBCs into multiple clusters during different phases of their life cycle.
During the simulation, the clusters are recombined at the customer and
manufacturer performing loading and unloading operations. In those
situations more sensors are active than needed, which decreases the
information loss on average by 0.9% for different numbers of agents.

Similar to the energy savings, the main factors that affect the
information loss is the chosen agent strategy. Although the Oblivious
strategy yields the highest energy savings, it puts sensors into sleep
mode in situations in which a high quality of data is crucial to make
decisions. In contrast, the Aware strategy compensates for this by
activating more sensors in those situations. This effect is emphasised
by weighting the loss of information.

6.3. Exceptional cases

To validate the results of weighting the information loss and to
demonstrate the effect of the agent strategies on the decision making,
we conduct additional experiments with the proposed agent-based
model. In particular we simulate and discuss three cases of disruptions
that typically occur during the transport of IBCs and assess the effect of
the different energy efficiency strategies on the capability of handling
those disruptions: (1) the temperature control unit of a truck carrying
10

sensitive goods fails, (2) the customer has an unexpected early demand
for replenishment, and (3) a traffic jam delays the transport of IBCs.
The second case is further separated into customers who do not move
the containers once they are empty, and those which have a dedicated
shipping area. In the following we discuss the results of simulating the
three disruption cases for the first routing scenario.

Case 1 - Temperature control unit malfunction. The temperature control
unit malfunction on a truck carrying sensitive goods is illustrated in
Fig. 8(a), which compares the temperature measurements of 10 sensors
managed by agents following different energy efficiency strategies. The
malfunction occurs at the eighth step and it is assumed that by the
next step the temperature inside the truck has reached the ambient
temperature. While all three energy efficiency strategies are capable of
detecting the change in temperature, there are significant differences
among the individual agents in terms of the way they coordinate. In
contrast to the Naïve approach, for which all agents are able to observe
the change in temperature, the Oblivious and Aware strategies only
have a single sensor active at any given step during the transport, which
yield high inaccuracies when the disruption occurs and might delay its
detection. However, when the containers are at the customer between
step 11 and 15, the aware agents activate all sensors until the empty
containers are loaded onto the truck to return to the manufacturer,
which results in fewer errors compared to the Oblivious approach.

Case 2 - Unexpected early demand for replenishment. When a truck
arrives at a customer, the containers are typically being emptied at
different rates. It is helpful to detect when containers are empty such
that they can be replenished before they lead to significant downtimes
of processes at the customer. The second disruption covers an unex-
pected early demand for replenishment by the customer. We further
differentiate between cases where containers remain stationary and
solely the fill level measurements are available to detect the disruption,
which is depicted in Fig. 8(b), and situations in which empty IBCs are
moved to a dedicated shipping area, which is shown in Fig. 9(a) for
the Oblivious strategy. The fill level measurements can be compared
to the temperature observations performed by individual agents at the
customer: the Naïve and Aware strategy keep all sensors active during
the emptying of IBCs and thus all agents are capable of monitoring the
individual changes of fill level. When agents arrive at the customer at
step 9 using the Oblivious strategy, all sensors are activated for one
step. However, when the agents put most sensors back into sleep mode
from step 11, the agents are not capable to track the fill level alterations
of individual containers, thus resulting in more errors. On the other
hand, all three agent strategies are able to capture when the containers
are empty and relocated to a dedicated shipping area because for each
strategy movement induces the activation of sensors regardless of their

previous mode.
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Fig. 8. (a) Temperature measurements of individual agents for the different energy efficiency strategies as a result of simulating a temperature control unit malfunction for the
first routing scenario for 10 agents. (b) Fill level measurements of individual agents for the different energy efficiency strategies when simulating an unexpected early demand for
replenishment by the customer for the first routing scenario for 10 agents.
Fig. 9. Simulation of two typical disruptions when routing IBCs.
Case 3 - Traffic jam. The sensors can also serve as a tracker for the truck
itself. The transportation of IBCs is usually subcontracted to an external
freight forwarder, which for the most part only logs the start and arrival
time. In case of a traffic jam along the route, it is crucial to know the
exact position of the truck to determine a good estimate of the arrival
time at the customer before completing the route. Fig. 9(b) displays
this disruption for the Oblivious strategy, where the true location vastly
deviates from the expected position at a given step. Clearly, all three
energy efficiency strategies are able to capture the disruption in traffic,
because merely a single active sensor that serves as the cluster leader is
sufficient to track the location of the truck, whereas the Naïve approach
results in much unnecessary information being sent.

The three cases of disruptions validate the results of the information
loss analysis for the different agent strategies: while the Naïve strat-
egy is able to capture and track the disruptions for each individual
container, the Oblivious strategy is only able to spot the changes at
the cluster level. As a hybrid strategy, agents that are aware of the
individual life cycle phase perform similarly to those based on the
Naïve approach while simultaneously preserving more energy.

7. Discussion

In this section, we discuss the limitations of this study and de-
scribe the lessons learnt from applying an agent-based approach to
the location tracking and state monitoring system in the context of
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transport of liquid goods. We additionally outline implications for
future endeavours of using agent-based management in similar logistics
processes.

7.1. Limitations

This study is subject to the following limitations: first, the proposed
agent model is tailored towards the application of location tracking and
state monitoring in the context of transport of liquid goods. The charac-
teristics of this specific monitoring application include (a) a large-scale
highly distributed network, whereby the state and location of IBCs
(i.e. nodes) change readily, and (b) the data requirements for different
situations of the monitored goods vary. Such situations include the
three different life cycle phases of IBCs and the disruptions that may
occur during transit. As described in Section 2.5, applying existing
energy efficiency strategies for WSNs is therefore not feasible. Second,
the available data of this application is limited. While in this study two
typical routing scenarios have been considered, more data is required to
capture the whole range of IBC routing patterns. Therefore, reproducing
other more general energy-efficient tracking strategies for WSNs is
difficult. Third, while we have shown that an agent-based approach
is capable of identifying inefficiencies in the considered monitoring
application, there is a need for analysing if the proposed strategies are
most efficient in reducing the energy consumption of IBC sensors.



Engineering Applications of Artificial Intelligence 127 (2024) 107198J. Kaiser et al.
7.2. Lessons learnt

We finally discuss the lessons learnt from applying an agent-based
approach to the coordination of the monitoring system of containers
in transport and outline implications for future endeavours of using
agent-based management in logistics processes. While merely a subset
of aspects of the real system can be captured by the simulation, there
are a number of learnings that can be drawn from applying the agent
model to the simulated environment, which can be projected to the
physical instantiation of the monitoring system:

• Adjusting the system information for relevance reduces the per-
ceived loss of system information. To minimise the energy con-
sumption several sensors are put into sleep mode in specific
situations, which decreases the amount of available information
about the system state. However, not all information is relevant
for the end user and thus some data can be neglected without
compromising the capability of making decisions that depend on
this information.

• More computational power is required to run advanced machine
learning algorithms as the system is only optimised for energy
efficiency. Though, developers need to consider the trade-off
between the energy savings as a result from the agent model and
the increasing expenses in the computer infrastructure.

• There are no significant differences when testing the three clus-
tering detection algorithms, because the distance to neighbouring
clusters is large compared the distances of nodes within a cluster.
The algorithms k-means, Mean Shift and DBSCAN identify the
same clusters in the scenarios chosen for this study. The different
algorithmic runtimes are not critical for the system performance,
since the rate of data transmissions is typically not higher than
once per hour.

• We argue that the proposed agent model is unlikely to suffer from
visibility and scalability issues for this particular logistics application.
In terms of visibility, each agent has access to the information of
all other agents in the system (including the sensor battery level,
signal strength etc.), because the model runs in the cloud. As a
consequence of sleeping sensors, however, some information may
be outdated at query time. Regarding scalability, a cluster of IBCs
is unlikely to grow indefinitely, but its size has an upper limit due
to limitations of the underlying physical system. Specifically, IBCs
will eventually fill up a warehouse and remnants have to be stored
in another location, which would yield a new cluster.

Additional recommendations to increase the energy efficiency can
be deducted from the simulation of the agent model, particularly in
terms of warehousing IBCs as well as planning and scheduling their
routes:

• IBCs should be transported and stored in bulk whenever possible
such that the agent strategies can form clusters with a large
number of sleeping sensors to maximise the energy savings.

• Multiple battery cells should be stacked to increase the life span
of sensors, since the weight imposed by the additional cells is
negligible compared to the weight of the containers.

8. Conclusions and future work

In this study, we have applied the agent methodology to an indus-
trial monitoring application in logistics and demonstrated that agents
help to analyse energy inefficiencies of the application and are capable
of increasing the battery life span of networked sensors. To tackle the
energy inefficiencies of the system, three different agent strategies have
been proposed. When weighting the information loss by its necessity
to make decisions, the results show that agents that are aware of the
different life cycle phases of a container achieve the best performance
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in terms of energy savings and information loss. In contrast, the longest
life span of batteries is achieved when the majority of sensors are put
into sleep mode yielding an increase of ×21.7 and ×3.7 for two typical
routing scenarios. Additionally, we have validated the effect of the
agent strategies on the decision making by simulating three cases of
disruptions that typically occur during transportation.

There are numerous research directions that can be taken to en-
hance the monitoring application: first, advanced data analytics can
be incorporated when the agent model is implemented. For instance,
a data-driven approach can be developed which leverages the informa-
tion gathered by the IBC sensors. The trained model could then be used
to predict the life cycle of different types of IBCs or construct various
risk profiles based on the disruptions captured by agents. Second, there
is a need to implement more sophisticated agent strategies to further
reduce the energy consumption and compare those with global sensor
scheduling mechanisms presented in the literature. Third, the locali-
sation of containers via GPS is subject to noise, especially when IBCs
are stored in a warehouse. The agent model could be used to increase
the positional accuracy. Fourth, as indicated earlier, IBCs are being
emptied by the customer at different rates. There is need to study the fill
level dynamics of individual containers to improve the transportation
schedules. Fifth, in terms of the hardware power consumption, agents
could be used to further improve the energy efficiency by providing
controls for the power state transitions. In particular, once an active
sensor has transmitted the data, it could return into sleep mode instead
of remaining in a more power-hungry state. Finally, the monitoring
application discussed here can be analysed in terms of the value of
information. Specifically, the effect of the monitoring information on
the different types of actions and decisions can be studied.
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