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Sharkey, Kiss and others developed a dynamical approach to modelling epidemic disease on 
a contact graph by generating systems of first-order ordinary differential equations expressing 
the model dynamics [1,2], which are solved to yield exact and deterministic modelling results. 
However, they left algorithmic generation (and solving) of systems and runtime assessment of the 
approach as an open question. To address this, we give an open source implementation that takes 
both a compartmental model and a contact graph as input and then generates and solves a system 
of equations exactly describing the dynamics of the system. Our implementation uses a moment 
closure result on single-vertex cutsets in the contact graph to reduce the number of equations 
required. In runtime experiments, we find that the implementation of the dynamical approach is 
almost always slower than a comparable Monte Carlo simulation in finding the expected state of 
the modelling system at a specified time. To complement our runtime evaluations, we give results 
and bounds on the number of equations required to describe a system as a function of the size 
of the compartmental model and input graph. We show that a natural extension of the moment 
closure result on single-vertex cutsets to larger cutsets is only possible for restricted projections of 
the model states on the cutset. We conclude that the dynamical approach is unlikely to be suitable 
unless exact, deterministic (rather than simulated) results are essential.

1. Introduction

Compartmental models have enjoyed broad popularity in modelling diseases since their introduction [3]. Recent applications 
have particular relevance to the COVID-19 pandemic, such as the evaluation of models of pandemic evolution [4] and development 
of vaccination strategies [5]. However, traditional compartmental models implicitly assume homogeneous populations, where results 
relate to the portions of the population in each model state at given time-steps [6]. To extend compartmental modelling frameworks 
to heterogeneous contact processes, we can use contact graphs (networks) to represent population structures, e.g. [7–9].

In this paper, we evaluate and improve on a dynamical approach to compartmental models on contact graphs, first presented 
in [1] and developed in [2,10–13]. This approach uses exact, deterministic systems of equations to describe the dynamics of 𝑆𝐼𝑅

models on contact graphs.
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1.1. Contribution

Our main contributions are as follows. In section 3.1, we obtain an upper bound on the number of equations in a system describing 
an 𝑆𝐼𝑅 model on a contact graph showing that such systems scale at most exponentially in the number of vertices in the contact 
graph. Therefore in general this dynamical approach is unlikely to be practical. However, in section 3.2, expanding on a result on 
paths using moment closures in [2], we show that for an 𝑆𝐼𝑅 model on a tree on 𝑛 vertices, the size of the system scales linearly in 
𝑛 (and is in fact exactly 5𝑛 − 3). In section 3.3, we consider a more complex compartmental model than the 𝑆𝐼𝑅 example on trees to 
understand how systems scale not only with number of vertices in the contact graph but also with complexity of the compartmental 
model. In particular, we use the upper bound in section 3.2 to show that system size scales polynomially in the worst case in model 
complexity. In section 3.4 we generalise an existing exact moment closures result in [2] on single cut-vertices to larger cutsets but 
show that this only holds under restricted projections of the model states.

The authors of a key improvement of the dynamical approach [2] noted that “generating and implementing the equations needed 
for an exact description is prone to error and we highly recommend the development of an algorithmic approach” (italics our own). We 
have addressed this in Section 4 by providing an implementation that generates, with or without the moment closure result in Sec-

tion 2.2.3, and solves these equations (our implementation can be accessed at https://github .com /Ethan -CS /DynamicalGraphModel). 
We perform runtime measurements using this implementation for models on random graphs with two aims. In section 4.2 we compare 
the performances of our implementation and a Monte Carlo method on the same parameters, finding that a Monte Carlo simulation 
almost always finds the expected state of the modelling system at a specified time faster than generating and solving equations. In 
section 4.3 we find that the use of moment closures expands the range of densities of graph for which the dynamical approach is 
practical.

2. Background

In this section, we provide an overview of the dynamical approach that we build on in subsequent sections. We define compart-

mental models and in particular the classical 𝑆𝐼𝑅 model before explaining how the 𝑆𝐼𝑅 framework can be used to model disease on 
contact graphs. We then demonstrate an exact moment closure result from [2] that reduces the size of dynamical systems involved 
in modelling 𝑆𝐼𝑅 models on certain graph classes.

2.1. Preliminaries

Due to the interdisciplinary nature of our work, we note some standard graph theory definitions that are used throughout. A 
digraph (or directed graph) 𝐺 = (𝑉 , 𝐸) is a pair composed of a finite set 𝑉 called the vertices and an irreflexive binary relation on 
𝑉 called an adjacency relation represented as a set 𝐸 of ordered pairs of vertices {(𝑣𝑖, 𝑣𝑗 ) | 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 } ⊆ 𝑉 × 𝑉 called the edges. An 
undirected graph 𝐺 = (𝑉 , 𝐸) is a digraph in which the adjacency relation is symmetric i.e., 𝐸 = 𝐸−1. Unless otherwise stated, we use 
undirected graphs and refer to them simply as “graphs.” While we define the following notions on graphs, we could analogously 
define them on digraphs.

A weighted graph (𝐺, 𝑤) is pair composed of a graph 𝐺 = (𝑉 , 𝐸) and a weight function 𝑤 ∶ 𝐸 → ℝ, where 𝑤(𝑒) is the weight of 
edge 𝑒 ∈ 𝐸. For a graph 𝐺 = (𝑉 , 𝐸), a subgraph 𝐻 = (𝑉𝐻 , 𝐸𝐻 ), denoted 𝐻 ⊆ 𝐺, is a graph on a vertex-set 𝑉𝐻 ⊆ 𝑉 and edge-set 
𝐸𝐻 = {{𝑣𝑖, 𝑣𝑗} | 𝑣𝑖, 𝑣𝑗 ∈ 𝑉𝐻} ⊆ 𝐸. An induced subgraph is a graph on a vertex-set 𝑉𝐻 ⊆ 𝑉 and an edge-set consisting of all edges 
{𝑣𝑖, 𝑣𝑗} ∈ 𝐸 for 𝑣𝑖, 𝑣𝑗 ∈ 𝑉𝐻 . The subgraph of 𝐺 induced by 𝑉𝐻 is denoted 𝐺[𝑉𝐻 ]. A component of a graph 𝐺 is an induced subgraph 
𝐺[𝑉𝐻 ] ⊆ 𝐺 such that the graphs 𝐺[𝑉𝐻 ] and 𝐺 ⧵𝐺[𝑉𝐻 ] are disconnected i.e., for any vertices 𝑣𝑖 and 𝑣𝑗 in 𝐺 and 𝐺[𝑉𝐻 ] respectively, 
there is no sequence of pairwise connected vertices (𝑣𝑖, 𝑣𝑖+1, … , 𝑣𝑗 ). A component 𝐶 ⊆ 𝐺 is a maximal connected induced subgraph of 
𝐺.

2.1.1. Compartmental models

We now define the preliminaries of compartmental models, including transition digraphs and interaction functions which will 
allow us to define how individuals progress through disease states during the evolution of models.

Definition 2.1 (Interaction function). Let 𝑋 be a set of model states and let 𝐴 and 𝐵 be subsets of 𝑋 × 𝑋. An interaction function 
is a function inter ∶ 𝐴 → 𝐵 such that, for (𝑎𝑖, 𝑎𝑗 ) ∈ 𝐴 and (𝑏𝑘, 𝑏𝑙) ∈ 𝐵, inter(𝑎𝑖, 𝑎𝑗 ) = (𝑏𝑘, 𝑏𝑙) indicates that interaction between 
individuals in states 𝑎𝑖 and 𝑎𝑗 can lead to state transitions 𝑎𝑖 ↦ 𝑏𝑘 and 𝑎𝑗 ↦ 𝑏𝑙 .

For example, in Section 2.2.1 we show the interaction function for the 𝑆𝐼𝑅 model, which defines a single interaction: a susceptible 
and an infected individual coming into contact can lead to the susceptible individual becoming infected.

Definition 2.2 (Transition digraph). A transition digraph (𝑇 = (𝑋, 𝐸), 𝑤) is a weighted digraph on a set of model states 𝑋 where the 
directed edge set 𝐸 defines how individuals progress through disease states for a particular disease and where the weight function 𝑤
gives the rates at which these transitions occur.

As an example, Fig. 1 shows the transition digraph for the 𝑆𝐼𝑅 model, which we define in Section 2.2. Note that we use interaction 
2

functions in combination with transition digraphs to define models, meaning that the rate of infection 𝛽 in Fig. 1 is not fixed.

https://github.com/Ethan-CS/DynamicalGraphModel
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Fig. 1. Transition digraph for the 𝑆𝐼𝑅 compartmental model, in which individuals are initially susceptible 𝑆 and move to infected 𝐼 with rate 𝛽 before moving to 
recovered 𝑅 with rate 𝛾 .

Definition 2.3 (Compartmental model). A compartmental model 𝑀((𝑇 , 𝑤), inter, 𝑁) is a triple composed of a transition digraph 𝑇
with weight function 𝑤, an interaction function inter and a population of integer size 𝑁 > 0.

The dynamics of compartmental models are given by a system of differential equations describing the rates at which members of 
the population transition between the states of the transition digraph.

We now present an important example of a compartmental model and an extension to graph-based population structures.

2.2. The 𝑆𝐼𝑅 model

The 𝑆𝐼𝑅 Model is a compartmental model defined on the transition digraph shown in Fig. 1 with population size 𝑁 . Individuals 
are divided into three populations as follows:

• susceptible: these individuals do not currently have the infection, but could contract it, and are said to be in state 𝑆;

• infected: these individuals have the disease, are infectious and are said to be in state 𝐼 ; and

• recovered: these individuals have recovered from the disease, now have immunity from it and are said to be in state 𝑅.

This model is used throughout this paper, so we now define it formally.

2.2.1. The classical model

Let 𝑇 = ((𝑋, 𝐸), 𝑤) be the transition digraph with function 𝑤 depicted in Fig. 1 on states 𝑋 = {𝑆, 𝐼, 𝑅}, let inter ∶ 𝐴 → 𝐵 be an 
interaction function on 𝐴, 𝐵 ⊆ 𝑋 ×𝑋 that defines a single interaction (𝑆, 𝐼) ↦ (𝐼, 𝐼) and let 𝑁 be a positive integer. Then, an 𝑆𝐼𝑅

model is the triple 𝑀((𝑇 , 𝑤), inter, 𝑁). To write differential equations for the dynamics of 𝑀 , let 𝑆(𝑡), 𝐼(𝑡) and 𝑅(𝑡) be the numbers 
of susceptible, infected and recovered individuals respectively at time 𝑡. We require that, at any time 𝑡, 𝑆(𝑡) + 𝐼(𝑡) +𝑅(𝑡) =𝑁 when vital 
dynamics (births and deaths) are not considered. Let 𝛽 be the average number of contacts per person multiplied by the probability 
of transmission and let 𝛾 be the reciprocal of the average length of time that an infected individual remains infected. Then, the 
dynamics of the model 𝑀 are given by the following system of first-order ODEs [3]:

𝑑𝑆

𝑑𝑡
= −𝛽

𝑆𝐼

𝑁
(1)

𝑑𝐼

𝑑𝑡
= 𝛽

𝑆𝐼

𝑁
− 𝛾𝐼 (2)

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 (3)

2.2.2. Graph-based model

Traditional compartmental models such as the 𝑆𝐼𝑅 model as defined by equations (1)-(3) implicitly assume a well-mixed popula-

tion i.e., homogeneous mixing of a homogeneous population [6]. This means that traditional models return unrealistic results when 
the rate at which individuals come into contact with one another varies significantly across the population, which is closer to reality 
for many modelling use cases. Contact graphs can be informed by techniques and results from Social Network Analysis to provide 
more realistic representations of populations [14].

Definition 2.4 (Contact graph). A contact graph (𝐺 = (𝑉 , 𝐸), 𝑤) is a weighted graph in which each vertex 𝑣 ∈ 𝑉 represents an 
individual member of a population and an edge {𝑣𝑖, 𝑣𝑗} ∈ 𝐸 is a ‘potentially transmitting contact’ through which disease can be 
transmitted between 𝑣𝑖 and 𝑣𝑗 , and 𝑤({𝑣𝑖, 𝑣𝑗}) gives the probability per timestep of transmission for the edge.

Generally, models of disease using contact graphs obtain modelling results by averaging the results of many stochastic simulations 
from a single set of initial conditions - this is called a Monte Carlo approach [15]. In contrast, the dynamical approach from [1]

yields a system of differential equations, which are exact descriptions of the model dynamics and not specific to any one set of 
initial conditions. These equations can be solved to understand the time-evolution of subsystem probabilities from particular initial 
conditions.

We show how the 𝑆𝐼𝑅 modelling framework can be applied to contact graphs [1]. First, we define notation and terminology for 
the probability of an event and its time-derivative, beginning with a generalisation of Definition 2.3 to include contact graphs.

Definition 2.5 (Compartmental model on a contact graph). A compartmental model 𝑀 is a triple ((𝑇 , 𝑤), inter, 𝐺) composed of a 
3

weighted transition digraph (𝑇 , 𝑤), an interaction function inter and a contact graph 𝐺 = (𝑉 , 𝐸).
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The dynamics of compartmental models on contact graphs can be defined by systems of differential equations where each equation 
describes the rate of change of the probability of a set of contact graph vertices1 being in a set of model states, formally referred to 
as a moment.

Definition 2.6 (Moment). Let 𝑀 be a compartmental model with a transition digraph 𝑇 = (𝑋, 𝐸) on a contact graph 𝐺 = (𝑉 , 𝐸). Let 
𝜎 be a sequence

𝜎 = (𝜎𝑖1 )𝑗1 , (𝜎
𝑖2 )𝑗2 ,… , (𝜎𝑖𝑟 )𝑗𝑟

where, for 1 ≤ 𝑙 ≤ 𝑟, 𝜎𝑖𝑙 ∈𝑋 and 𝑗𝑙 ∈ 𝑉 . Then, ⟨𝜎⟩(𝑡) - denoting the probability that for each 1 ≤ 𝑙 ≤ 𝑟, each vertex 𝑗𝑙 is in the model 
state 𝜎𝑖𝑙 at time 𝑡 - is referred to as a moment of order 𝑟. The rate of change of ⟨𝜎⟩(𝑡) with respect to 𝑡 is denoted ̇⟨𝜎⟩(𝑡)

For example, consider a model 𝑀 and a graph 𝐺. Let 𝑟 = 3, let 𝑖1, 𝑖2, 𝑖3 be the vertices labelled 1, 2 and 3 and let 𝑗1, 𝑗2 and 𝑗3 be 
the model states 𝑆, 𝐼 and 𝑆. Then, ⟨𝜎⟩(𝑡) represents the probability that at time 𝑡, the vertices 1, 2 and 3 are in states 𝑆, 𝐼 and 𝑆
respectively i.e., ⟨𝑆1𝐼2𝑆3⟩.

An adjacency matrix 𝐴 for a contact graph on 𝑛 vertices is an [𝑛 × 𝑛] matrix where 𝐴𝑖𝑗 is the weight of the edge between 𝑣𝑖 and 
𝑣𝑗 i.e., the probability of infection between vertices 𝑣𝑖 and 𝑣𝑗 (which is zero if there is no edge between 𝑣𝑖 and 𝑣𝑗 ). We are rarely 
interested in self-infection so usually set 𝐴𝑖𝑖 to be zero for all vertices 𝑣𝑖.

Returning to a 𝑆𝐼𝑅 model example, for a fixed rate of recovery for all vertices 𝛾 , we can write the expressions for the time 
derivatives of the probabilities of each vertex 𝑣𝑖 being in each state 𝑆, 𝐼 and 𝑅 respectively as moments of order one as follows:

̇⟨𝑆𝑖⟩ = −
𝑁∑
𝑗=1

𝐴𝑖𝑗⟨𝑆𝑖𝐼𝑗⟩
̇⟨𝐼𝑖⟩ = 𝑁∑

𝑗=1
𝐴𝑖𝑗⟨𝑆𝑖𝐼𝑗⟩− 𝛾𝑖⟨𝐼⟩

̇⟨𝑅𝑖⟩ = 𝛾𝑖⟨𝐼⟩,
as given in [1]. These equations constitute the ‘singles-based model,’ which is an approximate representation of the system dynamics. 
An exact representation of the model dynamics requires equations for moments of order up to the number of vertices in the contact 
graph [1], as follows. Begin with equations for moments of order one and proceed recursively: derive an equation for the time 
derivative of each moment appearing in the equations previously derived until moments of order equal to the size of the contact 
graph are reached.

Each of these equations for particular subsystem states are derived from the master (Kolmogorov) equation from [1], for which 
we use the following shorthand notation for subsystem states on several vertices.

Notation 2.1 (Shorthand for subsystem states). From Definition 2.6, let  = 𝜎𝑖1
, 𝜎𝑖2

, … , 𝜎𝑖𝑟
and 𝑊 = 𝑗1, 𝑗2, … , 𝑗𝑟. Then, we write the 

sequence 𝜎 in Definition 2.6 as 𝑊  and moment ⟨𝜎⟩(𝑡) as ⟨𝑊 ⟩(𝑡).
For example, in an 𝑆𝐼𝑅 model on a contact graph with at least three vertices, if 𝑊 = (𝑣1, 𝑣2, 𝑣3) and  = (𝑆, 𝐼, 𝑆), then 𝑊  is the 

subsystem projection in which vertex 𝑣1 is in state 𝑆, vertex 𝑣2 is in state 𝐼 and 𝑣3 is in state 𝑆. The probability of this subsystem 
projection is denoted ⟨𝑊 ⟩ = ⟨𝑆1𝐼2𝑆3⟩.

Let 𝑀 be a compartmental graph model with transition digraph 𝑇 = (𝑋, 𝐸) on a contact graph 𝐺 = (𝑉 , 𝐸), and ,  be sequences 
of length |𝑉 | comprised of states in 𝑋. Let 𝜍 be the probability per timestep of transition from 𝑉  to 𝑉  and similarly let 𝜍 be 
the probability per timestep of transition from 𝑉  to 𝑉 . Then, the master equation (giving the rate of transition to the system state 
projection 𝑉 ) for the dynamical system describing the model 𝑀 is

̇⟨𝑉 ⟩ =∑


𝜍⟨𝑉 ⟩−∑


𝜍⟨𝑉 ⟩. (4)

An analogous equation can be derived for subsystem states [1].

For example, consider an 𝑆𝐼𝑅 model (as previously defined) on the lollipop graph 𝐿 = (𝑉 , 𝐸) shown in Fig. 2. For a full description 
of this model, by following the procedure outlined in [1] and using equation (4), we require 35 equations [2] for the following 
moments (the full equations have been provided in Appendix A.1):

Order 1: ⟨𝑆1⟩, ⟨𝐼1⟩, ⟨𝑆2⟩, ⟨𝐼2⟩, ⟨𝑆3⟩, ⟨𝐼3⟩, ⟨𝑆4⟩, ⟨𝐼4⟩
Order 2: ⟨𝑆1𝐼2⟩, ⟨𝑆1𝐼3⟩, ⟨𝑆1𝐼4⟩, ⟨𝐼1𝑆2⟩, ⟨𝐼1𝑆3⟩, ⟨𝑆3𝐼4⟩, ⟨𝐼3𝑆4⟩, ⟨𝐼1𝑆4⟩
Order 3: ⟨𝑆1𝑆3𝐼4⟩, ⟨𝑆1𝐼2𝐼3⟩, ⟨𝑆1𝐼3𝐼4⟩, ⟨𝑆1𝐼2𝐼4⟩, ⟨𝑆1𝐼3𝑆4⟩, ⟨𝑆1𝑆2𝐼3⟩,
4

1 We refer to contact graph vertices and individuals interchangeably.
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Fig. 2. The lollipop graph.

⟨𝑆1𝑆2𝐼4⟩, ⟨𝐼1𝑆3𝐼4⟩, ⟨𝑆1𝐼2𝑆3⟩, ⟨𝐼1𝑆3𝑆4⟩, ⟨𝐼1𝐼3𝑆4⟩, ⟨𝑆1𝐼2𝑆4⟩
Order 4: ⟨𝑆1𝐼2𝑆3𝐼4⟩, ⟨𝑆1𝐼2𝐼3𝐼4⟩, ⟨𝑆1𝐼2𝐼3𝑆4⟩, ⟨𝑆1𝑆2𝐼3𝐼4⟩,⟨𝑆1𝑆2𝑆3𝐼4⟩, ⟨𝑆1𝑆2𝐼3𝑆4⟩, ⟨𝑆1𝐼2𝑆3𝑆4⟩

We refer to this method of equation generation as a bottom-up approach. We could instead write down equations for all possible 
terms in a top-down fashion, which would lead a lot more equations.

Having shown how the equations in a dynamical system describing an 𝑆𝐼𝑅 model on a contact graph are generated, we now 
introduce a result that can reduce the size of this system.

2.2.3. Exact moment closures

In a dynamical system, equations for higher-order moments contain terms for (and thus depend upon) lower-order moments; 
introducing moment closures allows us to select a moment for which all higher-order moments are no longer in the system. This 
may be because higher-order terms are ignored, leading to an approximate system, or because they are written in terms of existing, 
lower-order terms, which may preserve the exact system dynamics. A system of equations without moment closures is referred to as 
a full system; a system in which moment closures are used is referred to as a closed system. Note that closures in our context are exact 
for graphs containing cycles only if cycles in the graph are preserved under closures [2] - we ensure this is the case by first identifying 
cut vertices in graphs, then introducing closures for terms referencing these vertices case-by-case, meaning cycle structures are not 
broken.

As we show in Section 3.2, the size of the system of equations scales at worst exponentially in the size of the contact graph. To 
reduce this scaling in systems describing 𝑆𝐼𝑅 models on graphs of certain classes, we can use the main result from [2]. This result 
exploits cut vertices to reduce the number of equations required to describe a compartmental model on a graph. The main idea is to 
write higher-order moments in the full system that reference cut-vertices as products of other, lower-order moments.

Theorem 2.1. [2] Let 𝐺 = (𝑉 , 𝐸) be a graph. Consider a connected subset of vertices 𝐹 ⊆ 𝑉 and assume that 𝐹 contains a cut-vertex 𝑣𝑖∗

such that 𝐹 ⧵ {𝑣𝑖∗ } can be separated into two non-empty vertex sets 𝐹1 and 𝐹2, where the subgraphs induced by 𝐹1 and 𝐹2 are each composed 
of at least one distinct component and there are no edges from 𝐹1 to 𝐹2. Then, for any sets of states  and  of lengths |𝐹1| and |𝐹2|
respectively, the following holds:

⟨𝐹

1 𝑆𝑣𝑖∗
𝐹



2 ⟩(𝑡) = ⟨𝐹

1 𝑆𝑣𝑖∗
⟩⟨𝑆𝑣𝑖∗

𝐹


2 ⟩(𝑡)⟨𝑆𝑣𝑖∗
⟩(𝑡) .

Moment closures can be approximations for the full system dynamics if we are simply discarding moments over a given order 
[16]. However, it is shown in [2] that Theorem 2.1 defines exact moment closures.

Returning to the lollipop graph example in Fig. 2, observe that vertex 2 is a cut-vertex. The closure result from Theorem 2.1

allows us to close moments that reference this cut-vertex. For example, the moment ⟨𝑆1𝑆2𝐼3⟩ can be closed:

⟨𝑆1𝑆2𝐼3⟩ = ⟨𝑆1𝑆2⟩⟨𝑆2𝐼3⟩⟨𝑆2⟩ .

This moment contains a term that we did not require in the system before closures - ⟨𝑆1𝑆2⟩. In the 𝑆𝐼𝑅 model, all-susceptible 
terms are not dynamically relevant as they do not lead to a change of state. However, as this term appears in a term that arises by 
application of the expression in 2.1, an exact description of the system dynamics therefore requires an equation for this term. For the 
𝑆𝐼𝑅 model on a contact graph 𝐺 = (𝑉 , 𝐸), such terms are only those in all-susceptible subsystem state projections, which lead to an 
increase of at most |𝐸| equations in the system [2].

By applying moment closures, the closed - but still full and exact - system of equations required to describe an 𝑆𝐼𝑅 model on the 
lollipop graph is given by the following moments (and equations given in Appendix A.2):

⟨𝑆1⟩, ⟨𝐼1⟩, ⟨𝑆2⟩, ⟨𝐼2⟩, ⟨𝑆3⟩, ⟨𝐼3⟩, ⟨𝑆4⟩, ⟨𝐼4⟩⟨𝑆1𝐼2⟩, ⟨𝑆1𝐼3⟩, ⟨𝑆1𝐼4⟩, ⟨𝐼1𝑆2⟩, ⟨𝐼1𝑆3⟩, ⟨𝑆3𝐼4⟩, ⟨𝐼3𝑆4⟩, ⟨𝐼1𝑆4⟩, ⟨𝑆1𝑆2⟩, ⟨𝑆1𝑆3⟩, ⟨𝑆1𝑆4⟩⟨𝑆1𝑆3𝐼4⟩, ⟨𝑆1𝐼3𝐼4⟩, ⟨𝑆1𝐼3𝑆4⟩, ⟨𝐼1𝑆3𝐼4⟩, ⟨𝐼1𝑆3𝑆4⟩, ⟨𝐼1𝐼3𝑆4⟩, ⟨𝑆1𝑆3𝑆4⟩
The numbers of equations required to describe an 𝑆𝐼𝑅 model with and without closures on the lollipop graph and some other 
5

common small graphs (including the bowtie and bowtie-with-bridge graphs - see Fig. 3) are given in Table 1, to illustrate the 
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Table 1

Numbers of equations required for full descriptions of an 𝑆𝐼𝑅 model on different 
graphs with and without exact moment closures on single cut-vertices.

Graph Full Closed Reduction

Path on 3 vertices 13 12 7.7%

Path on 30 vertices 1336 685 48.7%

Lollipop 35 26 25.0%

Bowtie 89 40 55.0%

Bowtie with Bridge 119 73 38.7%

Fig. 3. The Bowtie and Bowtie-with-Bridge Graphs.

extent to which closures can reduce the numbers of equations. These values have been obtained using our dynamical approach 
implementation.

3. Bounds and results on system sizes

We investigate the theoretical advantages offered by moment closures by first deriving an upper bound on system size for an 𝑆𝐼𝑅

model on a general graph. We then derive results for system sizes with and without moment closures for three specific graph classes 
and give a result for a more complex compartmental model on a tree. We provide runtime experiment results to demonstrate the 
practical impact of the theoretical results regarding moment closures obtained.

3.1. Upper bound on system size

Notation 3.1. Let 𝑀 be a compartmental model. We denote by 𝑁𝑒𝑞(𝑀, 𝐺) the size of the full system of equations describing the 
dynamics of 𝑀 on a contact graph 𝐺. Similarly, we denote by 𝑁 ′

𝑒𝑞
(𝑀, 𝐺) the size of the closed system.

Let 𝑀((𝑇 , 𝑤), inter, 𝐺) be a compartmental graph model on a set of model states 𝑋 and a vertex set 𝑉 . We derive an initial 
upper bound on 𝑁𝑒𝑞(𝑀, 𝐺) by observing that the number of equations for moments of order 𝑖 is bounded above by 

(|𝑉 |
𝑖

)|𝑋|𝑖, since 
there are |𝑋|𝑖 ways to arrange |𝑋| states on 𝑖 vertices and 

(|𝑉 |
𝑖

)
ways to combine 𝑖 vertices. Hence, as ∑|𝑉 |

𝑖=0
(|𝑉 |

𝑖

)
𝑎|𝑉 |−𝑖𝑏𝑖 = (𝑎 + 𝑏)|𝑉 |,

𝑁𝑒𝑞(𝑀,𝐺) ≤
|𝑉 |∑
𝑖=1

(|𝑉 |
𝑖

)|𝑋|𝑖 = (|𝑋|+ 1)|𝑉 | − 1 (5)

Therefore, in the worst case 𝑁𝑒𝑞(𝑀, 𝐺) scales exponentially in |𝑉 |. Therefore, in general the dynamical modelling approach is tractable 
only for graphs on small numbers of vertices. To address this, we discuss results for system sizes on restricted graph classes, with 
special attention paid to graphs to which we can apply moment closures on cut vertices.

3.2. System sizes for specific graph classes

We note the following encouraging bound for the size of systems describing 𝑆𝐼𝑅 models on tree-like graphs.

Result 3.1. [2] Let 𝐺 be a graph on 𝑛 vertices and 𝑒 edges with 𝑡 cycles on three vertices and no cycles on more than three vertices and let 
𝑀((𝑇 , 𝑤), inter, 𝐺) be an 𝑆𝐼𝑅 model. Then,

𝑁 ′
𝑒𝑞
(𝑀,𝐺) ≤ 2𝑛+ 3𝑒+ 7𝑡 ≤ 10𝑛

Hence, the size of closed systems for 𝑆𝐼𝑅 models on this restricted graph class scales linearly with the number of graph vertices. 
For a contact graph 𝐺 = (𝑉 , 𝐸), we can use a depth-first search to identify cut-vertices in 𝑂(|𝑉 | + |𝐸|) time [17], thus, the entire 
procedure to generate a closed system of equations on such tree-like graphs will take time that is linear in the number of vertices and 
edges in the contact graph. This only relates to generation of equations - we later discuss the complexity of solving these equations, 
6

for which a standard numerical method takes 𝑂(𝑛3) time to solve 𝑛 equations.
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Fig. 4. Comparison of time taken to generate and solve full and closed systems for 𝑆𝐼𝑅 models on path graphs up to 25 vertices, where five models were solved for 
each length of path. The timeout of 150 seconds is indicated by a dashed red line. (For interpretation of the colours in the figure(s), the reader is referred to the web 
version of this article.)

3.2.1. 𝑆𝐼𝑅 model on trees
We first consider the subclass of graphs considered in Result 3.1 in which 𝑡 = 0 i.e., trees. Note that the results in this section 

are specific to the restricted graph class of trees precisely because the structure of trees allows us to exploit as far as possible 
closures on cut-vertices, since every vertex of degree greater than one in a tree is a cut-vertex. In better-connected graphs than trees, 
using closures on cut-vertices becomes decreasingly fruitful - we illustrate this with the example of cycle graphs, which contains no 
cut-vertices although each vertex is of low degree (two).

Definition 3.1 (Tree). A tree is an undirected, connected graph with no cycles.

The first class of tree we consider is the path graph.

Definition 3.2 (Path Graph). A path graph 𝑃𝑛 = (𝑉 , 𝐸) is a graph on a vertex set 𝑉 = 𝑣1, 𝑣2,… , 𝑣𝑛 and edge set 𝐸 = {{𝑣𝑖, 𝑣𝑖+1} | 𝑖 =
1, 2, … , 𝑛 − 1}.

In [2], the following result for path graphs is presented without proof.

Result 3.2. [2] For an 𝑆𝐼𝑅 model 𝑀 on a path graph 𝑃𝑛,

𝑁𝑒𝑞(𝑀,𝑃𝑛) = (3𝑛2 − 𝑛+ 2)∕2, and

𝑁 ′
𝑒𝑞
(𝑀,𝑃𝑛) = 5𝑛− 3.

When generating a closed system of equations, the implementation identifies cut-vertices in the contact graph and for any 
moment of order three or more in which a cut-vertex appears, the code instead adds the relevant product of lower-order moments 
by application of the expression in Theorem 2.1. Fig. 4 shows a comparison of runtimes for our implementation of the dynamical 
approach to obtain results for full and closed systems defining the dynamics of an 𝑆𝐼𝑅 model on path graphs with up to 25 vertices.

Existing algorithms for numerically solving dynamical systems run in time that is at worst cubic in system size [18], so reducing 
the input size for the solver using moment closures significantly decreases the time taken to solve these systems. For reference, using 
our implementation the average time taken to generate and solve the system of equations for an 𝑆𝐼𝑅 model on 𝑃50 without closures 
(3,726 equations) was 4.58 seconds and with closures (247 equations) was 0.67 seconds, a runtime decrease of 85.4%.

In Appendix C, for completeness we prove the expression from Result 3.2 for the size of the full system. Rather than prove the 
7

result for the closed system size, we instead prove a generalisation to trees. For this, we use a corollary of Theorem 2.1.
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Result 3.3. [2] For an 𝑆𝐼𝑅 model on a tree 𝑇𝑛 with 𝑛 ≥ 3 vertices, the following moment closures hold for all vertices 𝑣𝑖, 𝑣𝑗 and 𝑣𝑘 inducing 
in 𝑇𝑛 a connected subgraph in which 𝑣𝑗 is a cut-vertex:

⟨𝑆𝑖𝑆𝑗𝐼𝑘⟩ = ⟨𝑆𝑖𝑆𝑗⟩⟨𝑆𝑗𝐼𝑘⟩⟨𝑆𝑗⟩ and ⟨𝐼𝑖𝑆𝑗𝐼𝑘⟩ = ⟨𝐼𝑖𝑆𝑗⟩⟨𝑆𝑗𝐼𝑘⟩⟨𝑆𝑗⟩ .

This follows from the observation that all vertices in a tree with degree greater than 1 are cut-vertices. From Result 3.1, since for 
a tree 𝑡 = 0 and the number of edges (𝑒) is (𝑛 − 1), the number of equations in the reduced system is at most 5𝑛 − 3. In Theorem 3.1, 
we strengthen this result to equality:

Theorem 3.1. Let 𝑀 be an 𝑆𝐼𝑅 model. Then, for a tree 𝑇𝑛 on 𝑛 vertices,

𝑁 ′
𝑒𝑞
(𝑀,𝑇𝑛) = 5𝑛− 3.

Proof. We require 2𝑛 moments of order one: for each 𝑣𝑖 ∈ 𝑉 , they are equations for ̇⟨𝑆𝑖⟩ and ̇⟨𝐼𝑖⟩. Since the number of edges in 
𝑇𝑛 is 𝑛 − 1, we require 3(𝑛 − 1) moments of order two, which from Result 3.3 are the equations for ̇⟨𝑆𝑖𝐼𝑗⟩, ̇⟨𝐼𝑖𝑆𝑗⟩ and ̇⟨𝑆𝑖𝑆𝑗⟩. Using 
Result 3.3, the reduced system contains moments of order at most two. Therefore, the number of equations in the reduced system 
describing an 𝑆𝐼𝑅 model on 𝑇𝑛 is 2𝑛 + 3(𝑛 − 1) = 5𝑛 − 3. ■

3.2.2. 𝑆𝐼𝑅 model on cycle graphs

Inspired by Theorem 3.1, we derive an expression for the number of equations required to describe an 𝑆𝐼𝑅 model on a cycle 
graph on 𝑛 vertices defined as follows:

Definition 3.3 (Cycle Graph). A cycle graph 𝐶𝑛 = (𝑉 , 𝐸) is a graph with vertex set 𝑉 = 𝑣1, 𝑣2, … , 𝑣𝑛 and edge set 𝐸 =
{{𝑣𝑖 mod 𝑛, 𝑣(𝑖+1) mod 𝑛} | 𝑖 = 1, 2, … , 𝑛}.

To prove a result on the number of equations in an 𝑆𝐼𝑅 system on a cycle on 𝑛 vertices, we require the following lemma.

Lemma 3.2. There are 𝑛 paths of length 0 < 𝑙 < 𝑛 in a cycle graph 𝐶𝑛.

Proof. The proof of this result is obvious: consider each path of length 𝑙 with lowest-indexed vertex 𝑣𝑖 for 1 ≤ 𝑖 < 𝑛. ■

In Theorem 3.3, we consider the number of equations required to describe the dynamics of an 𝑆𝐼𝑅 model on a cycle graph. Note 
that cycle graphs do not contain any single cut-vertices, so system size cannot be reduced using single cut-vertex moment closures.

Theorem 3.3. Let 𝑀 be an 𝑆𝐼𝑅 model. For a cycle graph 𝐶𝑛 with 𝑛 ≥ 3,

𝑁𝑒𝑞(𝑀,𝐶𝑛) =𝑁 ′
𝑒𝑞
(𝑀,𝐶𝑛) = 3𝑛2 − 3𝑛.

Proof. First, consider the number of equations for moments of order one. For an 𝑆𝐼𝑅 model, for each vertex 𝑣𝑖 we require one 
equation for the susceptible case ⟨𝑆𝑖⟩ and one for the infected case ⟨𝐼𝑖⟩, so there are 2𝑛 equations for single vertex states in total, two 
for each of the 𝑛 vertices.

For moments of order two, there are 𝑛 pairs of adjacent vertices {𝑣𝑖, 𝑣𝑗} in a cycle and two dynamically interesting states, ⟨𝑆𝑖𝐼𝑗⟩
and ⟨𝐼𝑖𝑆𝑗⟩ as these are the only two state combinations for a connected pair of vertices that could lead to a change of state, so we 
require 2𝑛 equations for moments of order two.

Consider terms of length 3 ≤ 𝑙 < 𝑛. The sequences of vertices in moments of order 𝑙 are precisely the paths of length 𝑙 in the cycle 
because we only require equations for moments on vertices constituting connected subgraphs in the contact graph. This is because 
moments on more than one induced subgraph would be equivalent to the product of the moments on each of the subgraphs, as these 
events are independent. By similar reasoning, it is shown in [2] that moments including two adjacent infected vertices do not occur 
in the system of equations as no further pairwise transmission can occur through the edge. Hence, up to indexing there are precisely 
three dynamically relevant subsystem states for a set of vertices inducing a path of length 3 ≤ 𝑙 < 𝑛:

⟨𝑆𝑖 mod 𝑛𝑆(𝑖+1) mod 𝑛…𝑆(𝑖+𝑙−2) mod 𝑛𝐼(𝑖+𝑙−1) mod 𝑛⟩, (6)

⟨𝐼𝑖 mod 𝑛𝑆(𝑖+1) mod 𝑛…𝑆(𝑖+𝑙−2) mod 𝑛𝑆(𝑖+𝑙−1) mod 𝑛⟩, (7)

⟨𝐼𝑖 mod 𝑛𝑆(𝑖+1) mod 𝑛…𝑆(𝑖+𝑙−2) mod 𝑛𝐼(𝑖+𝑙−1) mod 𝑛⟩. (8)

By Lemma 3.2, there are 𝑛 paths of each length 3 ≤ 𝑙 < 𝑛 on a cycle. Hence, there are a total of 𝑛(𝑛 − 3) paths of lengths 3 ≤ 𝑙 < 𝑛 in a 
cycle. Given also that there are 3 moments of orders 3 ≤ 𝑙 < 𝑛 as in equations (6)-(8), there are 3𝑛(𝑛 −3) moments on 3 ≤ 𝑙 < 𝑛 vertices 
8

in the system of equations describing an 𝑆𝐼𝑅 model on a cycle.
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Fig. 5. Time taken to generate and solve systems of equations for 𝑆𝐼𝑅 models on cycle graph up to 20 vertices. Five models were solved for each cycle.

Fig. 6. Transition digraph of the 𝑆𝐸𝐼𝑄𝑅𝐷𝑉 compartmental model [19].

Finally, we consider terms on 𝑛 vertices. Notice that the subsystem of states shown in equations (6) and (7) on all 𝑛 vertices 
of the cycle overlap, so we need only consider one of these cases. Therefore, since there are 𝑛 paths on 𝑛 vertices in the cycle 
(𝑣𝑖 mod (𝑛), 𝑣(𝑖+1) mod (𝑛), … , 𝑣(𝑖+𝑛) mod (𝑛)), there are 2𝑛 equations for terms describing subsystem states of length 𝑛. Hence, in total we 
have 2𝑛 + 2𝑛 + 3𝑛(𝑛 − 3) + 2𝑛 = 3𝑛2 − 3𝑛 equations in the system describing the dynamics of an 𝑆𝐼𝑅 model on a cycle graph, as 
required. ■

Fig. 5 shows runtime results for our dynamical modelling implementation on cycles up to 20 vertices.

3.3. 𝑆𝐸𝐼𝑄𝑅𝐷𝑉 model on trees

While equation (5) implies that system sizes scale exponentially in the contact graph size in the worst case, it also implies that 
systems scale polynomially in the number of model states (even in the worst case). Hence, the dynamical approach may be useful 
when studying more complex compartmental models, although we are aware that in most cases the contact graph will be far larger 
than the model. We discuss the example of an 𝑆𝐸𝐼𝑄𝑅𝐷𝑉 model, used to model the impact of social distancing and vaccination 
measures on the spread of COVID-19 [19]. In the 𝑆𝐸𝐼𝑄𝑅𝐷𝑉 model, individuals can be in the following states:

• susceptible (𝑆): these individuals can contract the infection;

• exposed (𝐸): these individuals have been in contact with either an exposed or infected person and are not displaying clinical 
symptoms but can infect others;

• infected (𝐼): these individuals have the infection, are displaying symptoms and are infectious;

• quarantined (𝑄): these individuals have the infection but cannot infect;

• recovered (𝑅): these individuals have had the infection and are no longer infectious - they have decaying immunity and return 
to the susceptible state when this is zero;
9

• deceased (𝐷): these individuals have contracted the infection and died as a result; and
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• vaccinated (𝑉 ): these individuals have obtained a vaccine and are have decaying immunity, returning to susceptible when this 
is zero.

The transition digraph of this model is given in Fig. 6. We show in Theorem 3.4 that system size scales linearly in contact graph 
vertices for an 𝑆𝐸𝐼𝑄𝑅𝐷𝑉 model on a tree.

Theorem 3.4. Let 𝑀 be an 𝑆𝐸𝐼𝑄𝑅𝐷𝑉 model in which the susceptible state is not re-entered (i.e., no immunity decay). For a tree 𝑇𝑛 on 
𝑛 > 3 vertices,

𝑁 ′
𝑒𝑞
(𝑀,𝑇𝑛) = 19𝑛− 13.

Proof. The system of equations describing an 𝑆𝐸𝐼𝑄𝑅𝐷𝑉 model 𝑀 on a tree 𝑇𝑛 = (𝑉 , 𝐸) contains terms for each vertex 𝑣𝑖 ∈ 𝑉 being 
in state other than deceased (as moments for individual vertices in this state can be found through complements) of the transition 
digraph of the model, as in Fig. 6. These moments are ⟨𝑆𝑖⟩, ⟨𝐸𝑖⟩, ⟨𝐼𝑖⟩, ⟨𝑄𝑖⟩, ⟨𝑅𝑖⟩ and ⟨𝑉𝑖⟩. Hence, 6𝑛 equations for the derivatives of 
moments of order one are required.

The only state that is left through interaction with a neighbouring contact graph vertex in the model is 𝑆 (through interaction 
with states 𝐸 and 𝐼). Thus, higher-order moments are introduced to the system by appending to a lower-order moment an 𝑆 term 
or another term that can enter 𝑆 and a term that can induce a change of state for a neighbour in 𝑆 - other transitions do not lead 
to moments of increasing order. Since the contact graph is a tree, the system has no moments of order 3 or higher by analogous 
arguments to those of Result 3.1, so we need only consider moments of order up to 2. Hence, for each edge in the tree we require 
moments for the incident vertices being in states: 𝑆𝐸 and 𝐸𝑆, 𝑆𝐼 and 𝐼𝑆, 𝑉 𝐸 and 𝐸𝑉 , 𝑉 𝐼 and 𝐼𝑉 , 𝑅𝐸 and 𝐸𝑅, 𝑅𝐼 and 𝐼𝑅 and 
finally 𝑆𝑆. Thus, the system contains a total of 13|𝐸| = 13(𝑛 − 1) moments of order two, as 𝑇𝑛 has (𝑛 − 1). Hence,

𝑁 ′
𝑒𝑞
(𝑀,𝑇𝑛) = 6𝑛+ 13(𝑛− 1) = 19𝑛− 13. ■

3.4. Closures on larger cutsets

We considered a generalisation of Theorem 2.1 for cutsets larger than one vertex.

Definition 3.4 (Cutset). Let 𝐺 = (𝑉 , 𝐸) be a connected graph. A cutset of 𝐺 is a vertex-set  ⊂ 𝑉 such that the graph 𝐺[𝑉 ⧵ ] is 
disconnected.

For an 𝑆𝐼𝑅 model in which the susceptible state cannot be re-entered, when sets of vertices are susceptible, no transmission 
has occurred through these vertices. In particular, if the vertices of a cutset are all susceptible, the states of the subgraphs that are 
disconnected by removal of the cutset remain independent. Where at least one cutset vertex is in a state other than susceptible, the 
probabilities of the components disconnected by cutset removal are dependent, which explains why the above proposition does not 
hold. We can expand this notion using the following definition.

Definition 3.5 (Outlet state). For a compartmental model 𝑀 on a set of states 𝑋, a state 𝑥 ∈𝑋 is called an outlet state if individuals 
in the model can only exit this state, not enter it from another state during the evolution of the model.

For the 𝑆𝐼𝑅 models considered in this paper, the susceptible state cannot be entered from any other state, making susceptible an 
outlet state.

The following generalisation to Theorem 2.1 is generalised not only to cutsets of more than one vertex but also to any static 
compartmental model, provided there exists at least one outlet state in the model. In an 𝑆𝐼𝑅 model, it is shown in [2] that cut-

vertices only ever appear in moments in the susceptible state, so Theorem 2.1 is a corollary of the following theorem when the size 
of the cutset is one.

Theorem 3.5. Let 𝑀((𝑇 , 𝑤), inter, 𝐺 = (𝑉 , 𝐸)) be a compartmental model. Consider a connected subset of vertices 𝐹 = {𝑣1, 𝑣2, … , 𝑣𝑘} ⊆ 𝑉

and assume that 𝐹 contains a cutset 𝐶 = {𝑣𝑙, 𝑣𝑙+1, … , 𝑣𝑙+𝑚} ⊂ 𝐹 such that 𝐹 ⧵ 𝐶 is partitioned into at least two disjoint components 𝐹1 =
{𝑣1, 𝑣2, … , 𝑣𝑙−1} and 𝐹2 = {𝑣𝑙+𝑚+1, 𝑣𝑙+𝑚+2, … , 𝑣𝑘}. Let  be a sequence of outlet model states and 1, 2 be sequences of model states. Then, 
the following is an exact moment closure result:

⟨𝐹1
1 𝐶𝐹

2
2 ⟩(𝑡) = ⟨𝐹1

1 𝐶⟩⟨𝐶𝐹
2
2 ⟩(𝑡)⟨𝐶⟩(𝑡) .

Proof. Note the subgraphs spanned by 𝐹1 and 𝐹2 are disjoint with no other links except via the cutset 𝐶 . As the vertices of 𝐶 are all 
in all-outlet states, transmission through the cutset has not occurred and the projections of the system state on 𝐹1 and 𝐹2 represent 
independent events. By the Kolmogorov definition of conditional probabilities [20],
10

⟨𝐹1
1 𝐶𝐹

2
2 ⟩ = ⟨𝐹1

1 𝐶𝐹
2
2 |𝐶⟩⟨𝐶⟩,



Theoretical Computer Science 980 (2023) 114247E. Hunter, J. Enright and A. Miller

which, using the independence of 𝐹1 and 𝐹2, can be written as

⟨𝐹1
1 𝐶𝐹

2
2 |𝐶⟩ = ⟨𝐹1

1 𝐶|𝐶⟩⟨𝐶𝐹
2
2 |𝐶⟩

Again, using the definition of conditional probabilities we have

⟨𝐹1
1 𝐶𝐹

2
2 ⟩⟨𝐶⟩ =

⟨𝐹1
1 𝐶⟩⟨𝐶𝐹

2
2 ⟩

⟨𝐶⟩2
i.e.,

⟨𝐹1
1 𝐶𝐹

2
2 ⟩ = ⟨𝐹1

1 𝐶⟩⟨𝐶𝐹
2
2 ⟩⟨𝐶⟩

as required. ■

When generating equations, cutsets of size two or more in terms are not guaranteed to be in outlet states, unlike single vertex 
cutsets (cut-vertices) which only appear in outlet states [2]. We prove the following proposition to show that terms referencing the 
cutset in states other than outlet states cannot be exactly closed. This means the reduction in system size for this moment closure 
result is in general less than that of Theorem 2.1.

Proposition 3.1. Let 𝐺 = (𝑉 , 𝐸) be a graph and consider a connected subset of vertices 𝐹 ⊆ 𝑉 . Assume that 𝐹 contains a cutset  = on 𝑙 < 𝑘

vertices such that the graph 𝐺[𝐹 ⧵ ] is partitioned into at least two non-empty vertex sets 𝐹1 and 𝐹2, where the graphs 𝐺[𝐹1] and 𝐺[𝐹2] are 
each composed of at least one distinct component and there are no edges between them. Then, for sequences of model states 1, 2 and 3, 
the following is not necessarily an exact moment closure:

⟨𝐹1
1 𝐶2𝐹

3
2 ⟩(𝑡) = ⟨𝐹1

1 𝐶2 ⟩⟨𝐶2𝐹
3
2 ⟩(𝑡)⟨𝐶2 ⟩(𝑡) . (9)

Proof. For a contradiction, let 𝑀 be a discrete-time 𝑆𝐼𝑅 model on a graph 𝐺 with a vertex set {𝑣1, 𝑣2, 𝑣3, 𝑣4} and edge set 
{{𝑣1, 𝑣2}, {𝑣1, 𝑣3}, {𝑣2, 𝑣3}, {𝑣2, 𝑣4}, {𝑣3, 𝑣4}}. Let the probabilities of infection and recovery be uniformly given by 1∕2. Let 𝑀 have 
initial conditions as follows: at time 𝑡 = 0,

⟨𝑆1⟩ = 1 (10)

⟨𝑆2⟩ = 1 (11)

⟨𝑆3⟩ = 1 (12)

⟨𝑆4⟩ = 0. (13)

i.e., vertex 4 is infected and the other vertices are susceptible. Then, by 𝑡 = 1 vertices 3 is infected with probability 1∕2 and similarly 
for vertex 4. Assume that by time 𝑡 = 3,

⟨𝑆1𝑆2𝐼3𝐼4⟩ = ⟨𝑆1𝑆2𝐼3⟩⟨𝑆2𝐼3𝐼4⟩⟨𝑆2𝐼3⟩ . (14)

Given the initial conditions in equations (10)-(13), it is a simple task to find the following probabilities at time 𝑡 = 3:

⟨𝑆1𝑆2𝐼3𝐼4⟩ = 7∕128

⟨𝑆1𝑆2𝐼3⟩ = 1∕8

⟨𝑆2𝐼3𝐼4⟩ = 5∕64

⟨𝑆2𝐼3⟩ = 9∕16

and thus, again at time 𝑡 = 3,

⟨𝑆1𝑆2𝐼3𝐼4⟩ ≠ ⟨𝑆1𝑆2𝐼3⟩⟨𝑆2𝐼3𝐼4⟩⟨𝑆2𝐼3⟩ ,

since 7∕128 ≠ (1∕8 × 5∕64)∕(9∕16) = 5∕288. ■

The closure expression in Theorem 3.5 is derived directly from the Kolmogorov definition of conditional probabilities, so the 
result holds because the states of the cutset and subgraphs are independent. When this is not true, for example in an 𝑆𝐼𝑅 model in 
which individuals can return to the susceptible state or in the case of Proposition 3.1, no closure result - even on single-vertex cutsets 
11

- would be possible as no outlet state exists.
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4. Empirical results

To understand the dynamical approach empirically, we conduct experiments on Erdős-Rényi random graphs. After expaining the 
algorithmic procedure used to generate and solve equations, we use our implementation to comparing runtimes when generating 
and solving full and closed systems to understand the practical impact of moment closures. We then present runtime comparisons of 
the dynamical approach and a Monte Carlo implementation. We find that solving the full system is practically infeasible for all but 
very sparse graphs, where we expect only a handful of edges, as models on graphs generated with edge probability 𝑝 > 0.1 all timed 
out at 60 seconds. We show that the closed system can be solved for slightly more highly connected graphs but often times out (at 
60 seconds) for graphs with average degree 4 or more - a significant improvement on the full system, but difficult to justify in most 
practical settings as 25 vertices is a very small graph. We now show how this dynamical approach with moment closures compares 
in runtime to an analogous Monte Carlo approach, which supports this conclusion.

4.1. Implementation

The first equations generated are those for single-vertex terms: a complete representation of the system dynamics includes equa-

tions for each vertex in each non-terminal model state. The equations for each term are determined using the master equation -
this involves considering model projections that could lead into and out of the model projection represented by each term. Then, 
we recursively add to the system equations for moments of terms that have been added in previous equations (for example, if an 
equation for ⟨𝑆1⟩ includes the term ⟨𝑆1𝐼2⟩, we now need to add an equation for the latter) until we have written an equation for 
each term in the right hand side of any other equations. Pseudocode for this implementation is provided in Algorithm 1.

The implementation is written in Python and publicly available here: https://github .com /Ethan -CS /DynamicalGraphModel. We 
use the LSODA solver from ODEPACK, a suite of solvers written in FORTRAN [21]. This is able to quickly detect and switch between 
nonstiff and stiff methods for solving systems of differential equations using a method outlined in [22]. A dynamical system problem 
is stiff if the solution being sought varies slowly but has close solutions that vary very quickly, meaning a numerical solver needs to 
take small steps to obtain correct results, and nonstiff otherwise.

Example 4.1. Consider inputting into Algorithm 1 an 𝑆𝐼𝑅 model on a path on three vertices, with vertices labelled 1, 2 and 3 and 
edges {1, 2} and {2, 3}. At line 2, we assign to the variable non_terminal_states the list [𝑆, 𝐼]. At lines 4-6, the set rhs_terms

is assigned the value

{[(𝑆,1)], [(𝑆,2)], [(𝑆,3)], [(𝐼,1)], [(𝐼,2)], [(𝐼,3)]}.

Taking the first (and only) pair of the first term gives (𝜎, 𝑣) ← (𝑆, 1). At line 12 the variable interact_states for state 𝑆 is assigned 
the value {𝐼} and on line 13 we assign 𝜌 ← 𝐼 , its only value for this term. This is an out-neighbour of 𝑆 in the transition digraph of 
the 𝑆𝐼𝑅 model we consider, so we go to line 18. In lines 19 and 20, we assign 𝜏 ← 𝐼 and 𝑟 ← 𝛽𝑣, the rate of infection for 𝑣 (potentially 
time-dependent, depending on model definition). The only neighbour of vertex 1 in the path on 3 vertices is the vertex 2, so in line 
21 we assign 𝑤 ← 2 and this is not already in term. Then, in line 23 new_term is assigned to the value [(𝑆, 1), (𝐼, 2)]. We cannot 
close this term (while 2 is a cut-vertex, it does not contain 3 or more state-vertex pairs) so we go to line 34, where eq_terms (the 
equation for the term [(𝑆, 1)]) is updated with the term −𝛽𝑣 ∗ [(𝑆, 1), (𝐼, 2)]. We add this equation to the dictionary system in line 
38, with the key being [(𝑆, 1)] and the value eq_terms. We remove [(𝑆, 1)] from rhs_terms in line 39 now it has an equation in
system and add [(𝑆, 1), (𝐼, 2)] to rhs_terms in lines 40-42. The variable rhs_terms now has the value

{[(𝑆,2)], [(𝑆,3)], [(𝐼,1)], [(𝐼,2)], [(𝐼,3)], [(𝑆,1), (𝐼,2)]}

so we return to line 10, repeating the procedure until this list is empty.

Further in the process, we reach line 25 having assigned to new_term the value [(𝑆, 1), (𝑆, 2), (𝐼, 3)] - this contains a cut-vertex 
(vertex 2) and is of length 3, so the closure result in Theorem 2.1 can be applied. In line 26, 𝑉 ← [1, 2, 3] and in line 27 (𝜍, 𝑐) is (𝑆, 2). 
We assign 𝐹1 ← [1] and 𝐹2 ← [2] in line 28 so lines 29-31 yield the assignment

new_term← [(𝑆,1), (𝑆,2)] ∗ [(𝑆,2), (𝐼,3)]∕[(𝑆,2)].

This is multiplied by the relevant rate of transition and added to the relevant equation in line 37.

The resulting system of 12 equations outputted by this procedure for an 𝑆𝐼𝑅 model on a path on three vertices, which corresponds 
to the system of equations in Appendix B, is:

𝑑

𝑑𝑡
[(𝑆,0)] = −𝛽1,0 ∗ [(𝑆,0), (𝐼,1)]

𝑑

𝑑𝑡
[(𝑆,1)] = −𝛽0,1 ∗ [(𝐼,0), (𝑆,1)] − 𝛽2,1 ∗ [(𝑆,1), (𝐼,2)]

𝑑

𝑑𝑡
[(𝑆,2)] = −𝛽1,2 ∗ [(𝐼,1), (𝑆,2)]
12

𝑑

𝑑𝑡
[(𝐼,0)] = 𝛽1,0 ∗ [(𝑆,0), (𝐼,1)] − 𝛾0 ∗ [(𝐼,0)]

https://github.com/Ethan-CS/DynamicalGraphModel
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Algorithm 1 Generate equations for a model 𝑀 on a graph 𝐺 where 𝑀 = [((𝑇 , 𝑤), , 𝐺 = (𝑉 , 𝐸)] comprises: a weighted transition 
digraph (𝑇 , 𝑤); an interaction function describing interaction between states , and a contact graph 𝐺.

1: procedure GENERATEEQUATIONS(model 𝑀[((𝑇 , 𝑤), , 𝐺= (𝑉 , 𝐸)]) ⊳ as in Definition 2.5

2: non_terminal_states← [𝜎 ∈ 𝑇 ∣ out_degree(𝜎) > 0]

3: rhs_terms← { }
4: for each vertex 𝑣 in 𝐺 do

5: for each state 𝜎 in non_terminal_states do

6: append [(𝜎, 𝑣)] to rhs_terms ⊳ corresponds to ⟨𝜎𝑣⟩
7: end for

8: end for

9: system← [ ]
10: while rhs_terms not empty do

11: for each term in rhs_terms do

12: eq_terms← [ ]
13: for each (𝜎, 𝑣) in term do

14: interact_states← {𝜌 ∣ {𝜌, 𝜎} ∈ domain of } ∪ {𝑛 ∣ 𝑛 a neighbour of 𝜎 in 𝑇 }
15: for each 𝜌 in interact_states∩ non_terminal_states do

16: if 𝜌 is an in-neighbour of 𝜎 then ⊳ i.e. there is an edge from 𝜌 to 𝜎 in 𝐸
17: 𝑟 ← transition rate of (𝜎, 𝑣) ↦ (𝜌, 𝑣) calculated from 𝑀
18: new_term← term with (𝜎, 𝑣) replaced by (𝜌, 𝑣)
19: add 𝑟 ∗ new_term to eq_terms
20: else if {𝜌, 𝜎} in domain of  then

21: 𝜏 ← resulting state for 𝜎 interacting with 𝜌
22: 𝑟 ← transition rate of (𝜎, 𝑣) ↦ (𝜏, 𝑣) calculated from 𝑀
23: for each neighbour 𝑤 of 𝑣 do

24: if 𝑤 is not in term then ⊳ introduce closure terms - see Theorem 2.1

25: new_term← term ∪ (𝜌, 𝑤)
26: if ∃ ∈ new_term such that 𝑥 is a cut-vertex in 𝐺 and length new_term≥ 3 then

27: 𝑉 ← [𝑣 ∣ (𝜖, 𝑣) ∈ term]
28: (𝜍, 𝑐) ← state-vertex pair of cut-vertex 𝑐 in term

29: lists 𝐹1 , 𝐹2 ← vertices of components of 𝐺[𝑉 ⧵ {𝑐}]
30: new_term_1← vertices of 𝐹1 and 𝑐 in original states from term

31: new_term_2← vertices of 𝐹2 and 𝑐 in original states from term

32: new_term← new_term_1 ∗ new_term_2∕(𝜍, 𝑐)
33: end if

34: else

35: new_term← term with state of 𝑤 replaced by 𝜌
36: end if

37: add −𝑟 ∗ new_term to eq_terms
38: end for

39: else

40: 𝑟 ← transition rate of (𝜎, 𝑣) ↦ (𝜌, 𝑣) calculated from 𝑀
41: add −𝑟 ∗ term to eq_terms
42: end if

43: end for

44: end for

45: update system with 𝑑∕𝑑𝑡(term) = eq_terms

46: remove term from rhs_terms
47: for new_term in eq_terms do

48: if no equation for new_term in system then

49: add new_term to rhs_terms

50: end if

51: end for

52: end for

53: end while

54: return system

55: end procedure

𝑑

𝑑𝑡
[(𝐼,1)] = 𝛽0,1 ∗ [(𝐼,0), (𝑆,1)] + 𝛽2,1 ∗ [(𝑆,1), (𝐼,2)] − 𝛾1 ∗ [(𝐼,1)]

𝑑

𝑑𝑡
[(𝐼,2)] = 𝛽1,2 ∗ [(𝐼,1), (𝑆,2)] − 𝛾2 ∗ [(𝐼,2)]

𝑑

𝑑𝑡
[(𝑆,0), (𝐼,1)] = −𝛽1,0 ∗ [(𝑆,0), (𝐼,1)] + 𝛽2,1 ∗ [(𝑆,0), (𝑆,1)] ∗ [(𝑆,1), (𝐼,2)]∕[(𝑆,1)] − 𝛾1 ∗ [(𝑆,0), (𝐼,1)]

𝑑

𝑑𝑡
[(𝐼,1), (𝑆,2)] = 𝛽0,1 ∗ [(𝐼,0), (𝑆,1)] ∗ [(𝑆,1), (𝑆,2)]∕[(𝑆,1)] − 𝛽1,2 ∗ [(𝐼,1), (𝑆,2)] − 𝛾1 ∗ [(𝐼,1), (𝑆,2)]

𝑑

𝑑𝑡
[(𝐼,0), (𝑆,1)] = −𝛽2,1 ∗ [(𝐼,0), (𝑆,1)] ∗ [(𝑆,1), (𝐼,2)]∕[(𝑆,1)] − 𝛽0,1 ∗ [(𝐼,0), (𝑆,1)] − 𝛾0 ∗ [(𝐼,0), (𝑆,1)]

𝑑

𝑑𝑡
[(𝑆,1), (𝐼,2)] = −𝛽0,1 ∗ [(𝐼,0), (𝑆,1)] ∗ [(𝑆,1), (𝐼,2)]∕[(𝑆,1)] − 𝛽2,1 ∗ [(𝑆,1), (𝐼,2)] − 𝛾2 ∗ [(𝑆,1), (𝐼,2)]
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𝑑

𝑑𝑡
[(𝑆,0), (𝑆,1)] = −𝛽2,1 ∗ [(𝑆,0), (𝑆,1)] ∗ [(𝑆,1), (𝐼,2)]∕[(𝑆,1)]
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Fig. 7. Time taken to generate and solve full and closed systems of equations for random Erdős-Rényi graphs on 25 vertices and probabilities in the range 0.02 ≤ 𝑝 ≤ 0.2. 
Point hue indicates mean vertex degree and the timeout of 60 seconds is indicated by a red line.

𝑑

𝑑𝑡
[(𝑆,1), (𝑆,2)] = −𝛽0,1 ∗ [(𝐼,0), (𝑆,1)] ∗ [(𝑆,1), (𝑆,2)]∕[(𝑆,1)]

4.2. Comparison to Monte Carlo simulation

An Erdős-Rényi graph is defined as follows:

Definition 4.1 (Erdős-Rényi random graph). [23] An Erdős-Rényi graph 𝐺(𝑛, 𝑝) is a graph generated on 𝑛 vertices such that each edge 
(𝑣𝑖, 𝑣𝑗 ) ∈ 𝑉 × 𝑉 exists with probability 𝑝.

Using this graph class allows us to test our approach on graphs of varying density by varying 𝑝. An important property of 
Erdős-Rényi random graphs is the following probability threshold for connectivity:

Result 4.1. [23] For an Erdős-Rényi graph 𝐺(𝑛, 𝑝), the value ln(𝑛)∕𝑛 is a sharp threshold for the connectivity of 𝐺. That is, for any constant 
𝜖 > 0, if 𝑝 < (1−𝜖) ln(𝑛)

𝑛
, then 𝐺 is disconnected with high probability and if 𝑝 > (1+𝜖) ln(𝑛)

𝑛
, the graph is connected with high probability.

4.3. Moment closures on Erdős-Rényi graphs

Fig. 7 shows plots of runtime measurements for generating and solving full and closed systems of equations on Erdős-Rényi 
graphs on 25 vertices for edge probabilities between 0.02 and 0.2. Using Result 4.1, we expect Erdős-Rényi graphs on 25 vertices to 
be disconnected with high probability when 0 ≤ 𝑝 < 0.129 and connected with high probability when 0.129 < 𝑝 ≤ 1.

We compare the runtime performance of our implementation of the dynamical approach to a more commonly used alternative, 
Monte Carlo simulation, which is used to simulate an 𝑆𝐼𝑅 model for random Erdős-Rényi graphs on 20 vertices for a range of 
probabilities using repeated random sampling.

For these experiments, we defined the 𝑆𝐼𝑅 model with all per-link infection rates set as 𝛽 = 0.7 and individual recovery rates set 
as 𝛾 = 0.3. We then generated initial conditions by randomly selecting a vertex to be initially infected, while all other vertices remain 
susceptible. We used these conditions to solve the model with two different approaches. First, we ran Monte Carlo simulations to time 
𝑡 = 5 until the mean results, the set of probabilities with which each graph vertex is infected at time 𝑡 = 5, converged to an average 
within a tolerance of 1 × 10−3. We then generated systems of equations with moment closures and solved to the same time-step 𝑡 = 5
for the same initial conditions. The solver was used with a time-step of 0.5, a relative tolerance of 1 × 10−3 and an absolute tolerance 
of 1 × 10−4.

Fig. 8 shows that the dynamical approach is always slower than the Monte Carlo approach. While the time taken to solve the 
dynamical system appears to increase exponentially as the probability used to generate the contact graphs increases, the time taken 
for the Monte Carlo simulations to produce results seems to increase only slightly as the probability used to generate contact graphs 
increases. Although many of the graphs generated up to 𝑝 = 0.14 are almost certainly disconnected or tree-like, where the number 
of equations is polynomial in the number of vertices using moment closures, the Monte Carlo approach is still significantly faster 
because of the cubic complexity of the numerical solver [18]. In Table 2, we show how much faster the Monte Carlo simulation 
approach produced results than solving systems of equations on average for each probability in the range - the dynamical approach 
14

was never faster.
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Fig. 8. Comparison of runtime measurements of two approaches to solving an 𝑆𝐼𝑅 model on Erdős-Rényi graphs on 25 vertices generated on probabilities 
0.02, 0.04, … , 0.2) for two methods, generating and solving a system of ODEs describing model dynamics and averaging results of Monte Carlo simulations until 
convergence to within a given tolerance of a self-consistent average. The timeout threshold is indicated, although the Monte Carlo simulation did not reach the 
threshold. Note that the difference in axes scales is considerable and simulation was always faster than generating and solving equations.

Table 2

Average runtimes, in seconds, for dynamical and simulation approaches to producing results for an 𝑆𝐼𝑅 model on 
Erdős-Rényi graphs generated on 20 vertices and probabilities between 0.02 and 0.2 and the difference between 
these runtimes, where TO indicates all trials on this number of vertices resulted in a timeout.

Generation Probability Dynamical Runtime (s) Monte Carlo Runtime (s) Runtime difference (s)

0.02 21.58 3.96 17.62

0.04 29.07 3.24 25.82

0.06 35.80 3.62 32.18

0.08 35.75 2.61 33.15

0.1 38.94 4.18 34.77

0.12 59.18 3.83 55.35

0.14 56.25 4.61 51.64

0.16 58.72 6.54 52.18

0.18 TO 5.27 -

0.20 TO 5.9 -

5. Discussion and conclusion

We have presented several bounds and expressions as well as empirical results to understand the feasibility of an existing dy-

namical approach to describing compartmental models on contact graphs which has so far lacked such feasibility analysis. For the 
use-case of modelling the spread of disease across a graph, we recommend this approach only where one of the following apply: (1)

an exact solution to a system is essential, (2) the contact graph is small and tree-like, (3) a Monte Carlo simulation would take equal 
or greater time to develop than the time taken for existing code to generate and solve the equations for the required system, or (4)

numerical integrators improve significantly in efficiency.

We have shown that Monte Carlo simulation can be used in far less time than generating and solving equations to provide the 
same result as the equation solution. This, we saw, is the case for even very sparse random graphs and even with moment closures. 
However, we can conceive of some scenarios in which an exact (rather than stochastic) solution is essential, for example in machine 
learning and artificial intelligence, where the quality, accuracy and reliability of training data has a direct impact on the model. 
Further, Monte Carlo simulations can be time-consuming to develop, meaning the total time for a stochastic modelling result for 
some users may be longer, given the dynamical systems can be generated and solved by an existing implementation. This code is 
publicly available and is capable of generating and solving systems of equations for static compartmental models on general contact 
graphs. While we did show several promising results on the sizes of systems for particular graph classes, in practice experiments 
showed that this did not translate to runtimes close to those of Monte Carlo simulation - as we discussed, this is because numerical 
integrators run in time cubic in the size of the input, so even if the input is small the runtime for solving these equations to some 
15

initial conditions can be large. If there is a drastic change in approach for solving systems of equations, including developing a much 
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more efficient implementation of a numerical method whose complexity is an improvement on cubic in the size of the input, the 
dynamical approach would benefit greatly and perhaps prove of some further practical usefulness.

There are other methods of estimating epidemic size, for example [24] discusses a method that uses a mean-field approximation 
based on the degree distribution of a contact graph. While this method does not give probability of infection for any particular 
vertex in the contact graph where only an approximate overall epidemic size is needed, it would be appropriate to consider this (or 
other percolation-related approaches e.g. as in [25]). We have not compared the computational efficiency of such methods here, but 
suggest a comparison to Monte Carlo methods as future work. We would expect that this sort of method would, like the Monte Carlo 
approach, typically be much faster than the equations-based approach we have considered.
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Appendix A. Lollipop example systems

Consider an 𝑆𝐼𝑅 model on the Lollipop graph of Fig. 2, where each vertex 1, 2, 3, 4 can be in one of three states 𝑆, 𝐼, 𝑅 at a given 
time 𝑡 with (for simplicity) uniform rates of infection and recovery 𝛽 and 𝛾 respectively.

A.1. Full system

The full system of equations describing this model is as follows:

̇⟨𝑆1⟩(𝑡) = −𝛽⟨𝑆1𝐼2⟩(𝑡) − 𝛽⟨𝑆1𝐼3⟩(𝑡)
̇⟨𝑆2⟩(𝑡) = −𝛽⟨𝐼1𝑆2⟩(𝑡) − 𝛽⟨𝑆2𝐼3⟩(𝑡) − 𝛽⟨𝑆2𝐼4⟩(𝑡)
̇⟨𝑆3⟩(𝑡) = −𝛽⟨𝐼1𝑆3⟩(𝑡) − 𝛽⟨𝐼2𝑆3⟩(𝑡)
̇⟨𝑆4⟩(𝑡) = −𝛽⟨𝐼2𝑆4⟩(𝑡)
̇⟨𝐼1⟩(𝑡) = 𝛽⟨𝑆1𝐼2⟩(𝑡) + 𝛽⟨𝑆1𝐼3⟩(𝑡) − 𝛾⟨𝐼1⟩(𝑡)
̇⟨𝐼2⟩(𝑡) = 𝛽⟨𝐼1𝑆2⟩(𝑡) + 𝛽⟨𝑆2𝐼3⟩(𝑡) + 𝛽⟨𝑆2𝐼4⟩(𝑡) − 𝛾⟨𝐼2⟩(𝑡)
̇⟨𝐼3⟩(𝑡) = 𝛽⟨𝐼1𝑆3⟩(𝑡) + 𝛽⟨𝐼2𝑆3⟩(𝑡) − 𝛾⟨𝐼3⟩(𝑡)
̇⟨𝐼4⟩(𝑡) = 𝛽⟨𝐼2𝑆4⟩(𝑡) − 𝛾⟨𝐼4⟩(𝑡)

̇⟨𝐼2𝑆3⟩(𝑡) = −𝛽⟨𝐼1𝐼2𝑆3⟩(𝑡) + 𝛽⟨𝐼1𝑆2𝑆3⟩(𝑡) − 𝛽⟨𝐼2𝑆3⟩(𝑡) + 𝛽⟨𝑆2𝑆3𝐼4⟩(𝑡) − 𝛾⟨𝐼2𝑆3⟩(𝑡)
̇⟨𝐼1𝑆2⟩(𝑡) = −𝛽⟨𝐼1𝑆2𝐼3⟩(𝑡) − 𝛽⟨𝐼1𝑆2𝐼4⟩(𝑡) − 𝛽⟨𝐼1𝑆2⟩(𝑡) + 𝛽⟨𝑆1𝑆2𝐼3⟩(𝑡) − 𝛾⟨𝐼1𝑆2⟩(𝑡)
̇⟨𝐼2𝑆4⟩(𝑡) = 𝛽⟨𝐼1𝑆2𝑆4⟩(𝑡) − 𝛽⟨𝐼2𝑆4⟩(𝑡) + 𝛽⟨𝑆2𝐼3𝑆4⟩(𝑡) − 𝛾⟨𝐼2𝑆4⟩(𝑡)
̇⟨𝑆2𝐼3⟩(𝑡) = −𝛽⟨𝐼1𝑆2𝐼3⟩(𝑡) + 𝛽⟨𝐼1𝑆2𝑆3⟩(𝑡) − 𝛽⟨𝑆2𝐼3𝐼4⟩(𝑡) − 𝛽⟨𝑆2𝐼3⟩(𝑡) − 𝛾⟨𝑆2𝐼3⟩(𝑡)
̇⟨𝑆1𝐼3⟩(𝑡) = −𝛽⟨𝑆1𝐼2𝐼3⟩(𝑡) + 𝛽⟨𝑆1𝐼2𝑆3⟩(𝑡) − 𝛽⟨𝑆1𝐼3⟩(𝑡) − 𝛾⟨𝑆1𝐼3⟩(𝑡)
̇⟨𝑆1𝐼2⟩(𝑡) = −𝛽⟨𝑆1𝐼2𝐼3⟩(𝑡) − 𝛽⟨𝑆1𝐼2⟩(𝑡) + 𝛽⟨𝑆1𝑆2𝐼3⟩(𝑡) + 𝛽⟨𝑆1𝑆2𝐼4⟩(𝑡) − 𝛾⟨𝑆1𝐼2⟩(𝑡)
̇⟨𝑆2𝐼4⟩(𝑡) = −𝛽⟨𝐼1𝑆2𝐼4⟩(𝑡) − 𝛽⟨𝑆2𝐼3𝐼4⟩(𝑡) − 𝛽⟨𝑆2𝐼4⟩(𝑡) − 𝛾⟨𝑆2𝐼4⟩(𝑡)
̇⟨𝐼1𝑆3⟩(𝑡) = −𝛽⟨𝐼1𝐼2𝑆3⟩(𝑡) − 𝛽⟨𝐼1𝑆3⟩(𝑡) + 𝛽⟨𝑆1𝐼2𝑆3⟩(𝑡) − 𝛾⟨𝐼1𝑆3⟩(𝑡)

̇⟨𝑆1𝐼2𝐼3⟩(𝑡) = −4𝛽⟨𝑆1𝐼2𝐼3⟩(𝑡) + 𝛽⟨𝑆1𝑆2𝐼3𝐼4⟩(𝑡) − 2𝛾⟨𝑆1𝐼2𝐼3⟩(𝑡)
̇⟨𝐼1𝐼2𝑆3⟩(𝑡) = −4𝛽⟨𝐼1𝐼2𝑆3⟩(𝑡) + 𝛽⟨𝐼1𝑆2𝑆3𝐼4⟩(𝑡) − 2𝛾⟨𝐼1𝐼2𝑆3⟩(𝑡)
̇⟨𝑆1𝑆2𝐼4⟩(𝑡) = −2𝛽⟨𝑆1𝑆2𝐼3𝐼4⟩(𝑡) − 2𝛽⟨𝑆1𝑆2𝐼4⟩(𝑡) − 𝛾⟨𝑆1𝑆2𝐼4⟩(𝑡)
̇⟨𝐼1𝑆2𝐼3⟩(𝑡) = −𝛽⟨𝐼1𝑆2𝐼3𝐼4⟩(𝑡) − 4𝛽⟨𝐼1𝑆2𝐼3⟩(𝑡) − 2𝛾⟨𝐼1𝑆2𝐼3⟩(𝑡)
̇⟨𝑆2𝐼3𝐼4⟩(𝑡) = −𝛽⟨𝐼1𝑆2𝐼3𝐼4⟩(𝑡) + 𝛽⟨𝐼1𝑆2𝑆3𝐼4⟩(𝑡) − 4𝛽⟨𝑆2𝐼3𝐼4⟩(𝑡) − 2𝛾⟨𝑆2𝐼3𝐼4⟩(𝑡)
̇⟨𝐼1𝑆2𝑆4⟩(𝑡) = −𝛽⟨𝐼1𝑆2𝐼3𝑆4⟩(𝑡) − 2𝛽⟨𝐼1𝑆2𝑆4⟩(𝑡) + 𝛽⟨𝑆1𝑆2𝐼3𝑆4⟩(𝑡) − 𝛾⟨𝐼1𝑆2𝑆4⟩(𝑡)
̇⟨𝑆2𝑆3𝐼4⟩(𝑡) = −2𝛽⟨𝐼1𝑆2𝑆3𝐼4⟩(𝑡) − 2𝛽⟨𝑆2𝑆3𝐼4⟩(𝑡) − 𝛾⟨𝑆2𝑆3𝐼4⟩(𝑡)
̇⟨𝑆1𝐼2𝑆3⟩(𝑡) = −2𝛽⟨𝑆1𝐼2𝑆3⟩(𝑡) + 𝛽⟨𝑆1𝑆2𝑆3𝐼4⟩(𝑡) − 𝛾⟨𝑆1𝐼2𝑆3⟩(𝑡)
16

̇⟨𝑆1𝑆2𝐼3⟩(𝑡) = −𝛽⟨𝑆1𝑆2𝐼3𝐼4⟩(𝑡) − 2𝛽⟨𝑆1𝑆2𝐼3⟩(𝑡) − 𝛾⟨𝑆1𝑆2𝐼3⟩(𝑡)
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̇⟨𝐼1𝑆2𝑆3⟩(𝑡) = −𝛽⟨𝐼1𝑆2𝑆3𝐼4⟩(𝑡) − 2𝛽⟨𝐼1𝑆2𝑆3⟩(𝑡) − 𝛾⟨𝐼1𝑆2𝑆3⟩(𝑡)
̇⟨𝑆2𝐼3𝑆4⟩(𝑡) = −𝛽⟨𝐼1𝑆2𝐼3𝑆4⟩(𝑡) + 𝛽⟨𝐼1𝑆2𝑆3𝑆4⟩(𝑡) − 2𝛽⟨𝑆2𝐼3𝑆4⟩(𝑡) − 𝛾⟨𝑆2𝐼3𝑆4⟩(𝑡)
̇⟨𝐼1𝑆2𝐼4⟩(𝑡) = −𝛽⟨𝐼1𝑆2𝐼3𝐼4⟩(𝑡) − 4𝛽⟨𝐼1𝑆2𝐼4⟩(𝑡) + 𝛽⟨𝑆1𝑆2𝐼3𝐼4⟩(𝑡) − 2𝛾⟨𝐼1𝑆2𝐼4⟩(𝑡)

̇⟨𝐼1𝑆2𝐼3𝑆4⟩(𝑡) = −6𝛽⟨𝐼1𝑆2𝐼3𝑆4⟩(𝑡) − 2𝛾⟨𝐼1𝑆2𝐼3𝑆4⟩(𝑡)
̇⟨𝐼1𝑆2𝑆3𝐼4⟩(𝑡) = −6𝛽⟨𝐼1𝑆2𝑆3𝐼4⟩(𝑡) − 2𝛾⟨𝐼1𝑆2𝑆3𝐼4⟩(𝑡)
̇⟨𝑆1𝑆2𝐼3𝐼4⟩(𝑡) = −6𝛽⟨𝑆1𝑆2𝐼3𝐼4⟩(𝑡) − 2𝛾⟨𝑆1𝑆2𝐼3𝐼4⟩(𝑡)
̇⟨𝐼1𝑆2𝐼3𝐼4⟩(𝑡) = −9𝛽⟨𝐼1𝑆2𝐼3𝐼4⟩(𝑡) − 3𝛾⟨𝐼1𝑆2𝐼3𝐼4⟩(𝑡)
̇⟨𝐼1𝑆2𝑆3𝑆4⟩(𝑡) = −3𝛽⟨𝐼1𝑆2𝑆3𝑆4⟩(𝑡) − 𝛾⟨𝐼1𝑆2𝑆3𝑆4⟩(𝑡)
̇⟨𝑆1𝑆2𝑆3𝐼4⟩(𝑡) = −3𝛽⟨𝑆1𝑆2𝑆3𝐼4⟩(𝑡) − 𝛾⟨𝑆1𝑆2𝑆3𝐼4⟩(𝑡)
̇⟨𝑆1𝑆2𝐼3𝑆4⟩(𝑡) = −3𝛽⟨𝑆1𝑆2𝐼3𝑆4⟩(𝑡) − 𝛾⟨𝑆1𝑆2𝐼3𝑆4⟩(𝑡)

A.2. Closed system

The system of equations with moment closures as per Theorem 2.1 describing the above 𝑆𝐼𝑅 model on the Lollipop graph is as 
follows:

̇⟨𝑆1⟩(𝑡) = −𝛽⟨𝑆1𝐼2⟩(𝑡) − 𝛽⟨𝑆1𝐼3⟩(𝑡)
̇⟨𝑆2⟩(𝑡) = −𝛽⟨𝐼1𝑆2⟩(𝑡) − 𝛽⟨𝑆2𝐼3⟩(𝑡) − 𝛽⟨𝑆2𝐼4⟩(𝑡)
̇⟨𝑆3⟩(𝑡) = −𝛽⟨𝐼1𝑆3⟩(𝑡) − 𝛽⟨𝐼2𝑆3⟩(𝑡)
̇⟨𝑆4⟩(𝑡) = −𝛽⟨𝐼2𝑆4⟩(𝑡)
̇⟨𝐼1⟩(𝑡) = 𝛽⟨𝑆1𝐼2⟩(𝑡) + 𝛽⟨𝑆1𝐼3⟩(𝑡) − 𝛾⟨𝐼1⟩(𝑡)
̇⟨𝐼2⟩(𝑡) = 𝛽⟨𝐼1𝑆2⟩(𝑡) + 𝛽⟨𝑆2𝐼3⟩(𝑡) + 𝛽⟨𝑆2𝐼4⟩(𝑡) − 𝛾⟨𝐼2⟩(𝑡)
̇⟨𝐼3⟩(𝑡) = 𝛽⟨𝐼1𝑆3⟩(𝑡) + 𝛽⟨𝐼2𝑆3⟩(𝑡) − 𝛾⟨𝐼3⟩(𝑡)
̇⟨𝐼4⟩(𝑡) = 𝛽⟨𝐼2𝑆4⟩(𝑡) − 𝛾⟨𝐼4⟩(𝑡)

̇⟨𝑆2𝐼3⟩(𝑡) = −𝛽⟨𝑆2𝐼3⟩(𝑡)⟨𝑆2𝐼4⟩(𝑡)∕⟨𝑆2⟩(𝑡) − 𝛽⟨𝐼1𝑆2𝐼3⟩(𝑡) + 𝛽⟨𝐼1𝑆2𝑆3⟩(𝑡) − 𝛽⟨𝑆2𝐼3⟩(𝑡) − 𝛾⟨𝑆2𝐼3⟩(𝑡)
̇⟨𝐼1𝑆3⟩(𝑡) = −𝛽⟨𝐼1𝐼2𝑆3⟩(𝑡) − 𝛽⟨𝐼1𝑆3⟩(𝑡) + 𝛽⟨𝑆1𝐼2𝑆3⟩(𝑡) − 𝛾⟨𝐼1𝑆3⟩(𝑡)
̇⟨𝐼2𝑆3⟩(𝑡) = −𝛽⟨𝐼1𝐼2𝑆3⟩(𝑡) + 𝛽⟨𝐼1𝑆2𝑆3⟩(𝑡) − 𝛽⟨𝐼2𝑆3⟩(𝑡) + 𝛽⟨𝑆2𝐼4⟩(𝑡)⟨𝑆2𝑆3⟩(𝑡)∕⟨𝑆2⟩(𝑡) − 𝛾⟨𝐼2𝑆3⟩(𝑡)
̇⟨𝑆2𝐼4⟩(𝑡) = −𝛽⟨𝐼1𝑆2⟩(𝑡)⟨𝑆2𝐼4⟩(𝑡)∕⟨𝑆2⟩(𝑡) − 𝛽⟨𝑆2𝐼3⟩(𝑡)⟨𝑆2𝐼4⟩(𝑡)∕⟨𝑆2⟩(𝑡) − 𝛽⟨𝑆2𝐼4⟩(𝑡) − 𝛾⟨𝑆2𝐼4⟩(𝑡)
̇⟨𝐼1𝑆2⟩(𝑡) = −𝛽⟨𝐼1𝑆2⟩(𝑡)⟨𝑆2𝐼4⟩(𝑡)∕⟨𝑆2⟩(𝑡) − 𝛽⟨𝐼1𝑆2𝐼3⟩(𝑡) − 𝛽⟨𝐼1𝑆2⟩(𝑡) + 𝛽⟨𝑆1𝑆2𝐼3⟩(𝑡) − 𝛾⟨𝐼1𝑆2⟩(𝑡)
̇⟨𝐼2𝑆4⟩(𝑡) = 𝛽⟨𝐼1𝑆2⟩(𝑡)⟨𝑆2𝑆4⟩(𝑡)∕⟨𝑆2⟩(𝑡) − 𝛽⟨𝐼2𝑆4⟩(𝑡) + 𝛽⟨𝑆2𝐼3⟩(𝑡)⟨𝑆2𝑆4⟩(𝑡)∕⟨𝑆2⟩(𝑡) − 𝛾⟨𝐼2𝑆4⟩(𝑡)
̇⟨𝑆1𝐼3⟩(𝑡) = −𝛽⟨𝑆1𝐼2𝐼3⟩(𝑡) + 𝛽⟨𝑆1𝐼2𝑆3⟩(𝑡) − 𝛽⟨𝑆1𝐼3⟩(𝑡) − 𝛾⟨𝑆1𝐼3⟩(𝑡)
̇⟨𝑆1𝐼2⟩(𝑡) = −𝛽⟨𝑆1𝐼2𝐼3⟩(𝑡) − 𝛽⟨𝑆1𝐼2⟩(𝑡) + 𝛽⟨𝑆1𝑆2𝐼3⟩(𝑡) + 𝛽⟨𝑆1𝑆2⟩(𝑡)⟨𝑆2𝐼4⟩(𝑡)∕⟨𝑆2⟩(𝑡) − 𝛾⟨𝑆1𝐼2⟩(𝑡)
̇⟨𝑆1𝑆2⟩(𝑡) = −𝛽⟨𝑆1𝑆2⟩(𝑡)⟨𝑆2𝐼4⟩(𝑡)∕⟨𝑆2⟩(𝑡) − 2𝛽⟨𝑆1𝑆2𝐼3⟩(𝑡)
̇⟨𝑆2𝑆4⟩(𝑡) = −𝛽⟨𝐼1𝑆2⟩(𝑡)⟨𝑆2𝑆4⟩(𝑡)∕⟨𝑆2⟩(𝑡) − 𝛽⟨𝑆2𝐼3⟩(𝑡)⟨𝑆2𝑆4⟩(𝑡)∕⟨𝑆2⟩(𝑡)
̇⟨𝑆2𝑆3⟩(𝑡) = −𝛽⟨𝑆2𝐼4⟩(𝑡)⟨𝑆2𝑆3⟩(𝑡)∕⟨𝑆2⟩(𝑡) − 2𝛽⟨𝐼1𝑆2𝑆3⟩(𝑡)

̇⟨𝐼1𝑆2𝑆3⟩(𝑡) = −𝛽⟨𝐼1𝑆2𝑆3⟩(𝑡)⟨𝑆2𝐼4⟩(𝑡)∕⟨𝑆2⟩(𝑡) − 2𝛽⟨𝐼1𝑆2𝑆3⟩(𝑡) − 𝛾⟨𝐼1𝑆2𝑆3⟩(𝑡)
̇⟨𝐼1𝑆2𝐼3⟩(𝑡) = −𝛽⟨𝐼1𝑆2𝐼3⟩(𝑡)⟨𝑆2𝐼4⟩(𝑡)∕⟨𝑆2⟩(𝑡) − 4𝛽⟨𝐼1𝑆2𝐼3⟩(𝑡) − 2𝛾⟨𝐼1𝑆2𝐼3⟩(𝑡)
̇⟨𝑆1𝑆2𝐼3⟩(𝑡) = −𝛽⟨𝑆1𝑆2𝐼3⟩(𝑡)⟨𝑆2𝐼4⟩(𝑡)∕⟨𝑆2⟩(𝑡) − 2𝛽⟨𝑆1𝑆2𝐼3⟩(𝑡) − 𝛾⟨𝑆1𝑆2𝐼3⟩(𝑡)
̇⟨𝐼1𝐼2𝑆3⟩(𝑡) = −4𝛽⟨𝐼1𝐼2𝑆3⟩(𝑡) + 𝛽⟨𝐼1𝑆2𝑆3⟩(𝑡)⟨𝑆2𝐼4⟩(𝑡)∕⟨𝑆2⟩(𝑡) − 2𝛾⟨𝐼1𝐼2𝑆3⟩(𝑡)
̇⟨𝑆1𝐼2𝑆3⟩(𝑡) = −2𝛽⟨𝑆1𝐼2𝑆3⟩(𝑡) + 𝛽⟨𝑆1𝑆2𝑆3⟩(𝑡)⟨𝑆2𝐼4⟩(𝑡)∕⟨𝑆2⟩(𝑡) − 𝛾⟨𝑆1𝐼2𝑆3⟩(𝑡)
̇⟨𝑆1𝐼2𝐼3⟩(𝑡) = −4𝛽⟨𝑆1𝐼2𝐼3⟩(𝑡) + 𝛽⟨𝑆1𝑆2𝐼3⟩(𝑡)⟨𝑆2𝐼4⟩(𝑡)∕⟨𝑆2⟩(𝑡) − 2𝛾⟨𝑆1𝐼2𝐼3⟩(𝑡)
17

̇⟨𝑆1𝑆2𝑆3⟩(𝑡) = −𝛽⟨𝑆1𝑆2𝑆3⟩(𝑡)⟨𝑆2𝐼4⟩(𝑡)∕⟨𝑆2⟩(𝑡)
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Appendix B. System for an 𝑺𝑰𝑹 model on a path on three vertices

The following (closed) system describes the dynamics of an 𝑆𝐼𝑅 model on a path 𝑃3 on three vertices. The rate of infection is 
given by a matrix 𝛽 in which 𝛽𝑖,𝑗 gives the rate of infection from vertex 𝑖 to vertex 𝑗 and values 𝛾𝑖 give the rates of recovery for each 
vertex 𝑖 ∈ {0, 1, 2}.

̇⟨𝑆0⟩ = −𝛽1,0 ∗ ⟨𝑆0𝐼1⟩
̇⟨𝑆1⟩ = −𝛽0,1 ∗ ⟨𝐼0𝑆1⟩− 𝛽2,1 ∗ ⟨𝑆1𝐼2⟩
̇⟨𝑆2⟩ = −𝛽1,2 ∗ ⟨𝐼1𝑆2⟩
̇⟨𝐼0⟩ = 𝛽1,0 ∗ ⟨𝑆0𝐼1⟩− 𝛾0 ∗ ⟨𝐼0⟩
̇⟨𝐼1⟩ = 𝛽0,1 ∗ ⟨𝐼0𝑆1⟩+ 𝛽2,1 ∗ ⟨𝑆1𝐼2⟩− 𝛾1 ∗ ⟨𝐼1⟩
̇⟨𝐼2⟩ = 𝛽1,2 ∗ ⟨𝐼1𝑆2⟩− 𝛾2 ∗ ⟨𝐼2⟩

̇⟨𝐼0𝑆1⟩ = −𝛽2,1 ∗ ⟨𝐼0𝑆1⟩ ∗ ⟨𝑆1𝐼2⟩∕⟨𝑆1⟩− 𝛽0,1 ∗ ⟨𝐼0𝑆1⟩− 𝛾0 ∗ ⟨𝐼0𝑆1⟩
̇⟨𝐼1𝑆2⟩ = 𝛽0,1 ∗ ⟨𝐼0𝑆1⟩ ∗ ⟨𝑆1𝑆2⟩∕⟨𝑆1⟩− 𝛽1,2 ∗ ⟨𝐼1𝑆2⟩− 𝛾1 ∗ ⟨𝐼1𝑆2⟩
̇⟨𝑆0𝐼1⟩ = −𝛽1,0 ∗ ⟨𝑆0𝐼1⟩+ 𝛽2,1 ∗ ⟨𝑆0𝑆1⟩ ∗ ⟨𝑆1𝐼2⟩∕⟨𝑆1⟩− 𝛾1 ∗ ⟨𝑆0𝐼1⟩
̇⟨𝑆1𝐼2⟩ = −𝛽0,1 ∗ ⟨𝐼0𝑆1⟩ ∗ ⟨𝑆1𝐼2⟩∕⟨𝑆1⟩− 𝛽2,1 ∗ ⟨𝑆1𝐼2⟩− 𝛾2,1 ∗ ⟨𝑆1𝐼2⟩
̇⟨𝑆1𝑆2⟩ = −𝛽0,1 ∗ ⟨𝐼0𝑆1⟩ ∗ ⟨𝑆1𝑆2⟩∕⟨𝑆1⟩
̇⟨𝑆0𝑆1⟩ = −𝛽2,1 ∗ ⟨𝑆0𝑆1⟩ ∗ ⟨𝑆1𝐼2⟩∕⟨𝑆1⟩

Appendix C. Proof of path system size expression

Proposition C.1. [2] The size of the full system of equations describing an 𝑆𝐼𝑅 model on a path graph on 𝑛 vertices is (3𝑛2 − 𝑛 + 2)∕2.

That is to say, the size of the full system of equations for an 𝑆𝐼𝑅 model on a path is quadratic in the number of vertices in the 
path.

Proof. Consider an 𝑆𝐼𝑅 model on a path graph on 𝑛 vertices. Consider first the equations for single-state terms for such a system. 
We require an equation for each of 𝑛 vertices being in states 𝑆 and 𝐼 , hence there are 2𝑛-many equations for singles.

Now, from equations for a vertex 𝑖 being in state 𝑆, we require, from the master equation, two equations for each adjacent pair 
of vertices (𝑖, 𝑗): ⟨𝑆𝑖𝐼𝑗⟩ and ⟨𝐼𝑖𝑆𝑗⟩, as contact with an infected vertex causes a susceptible vertex to leave this state. The remaining 
𝑆𝐼 -combinations for each edge occur in the 𝐼𝑖 equations, where the vertex 𝑖 entered the infected state through being previously 
susceptible and coming into contact with an infected vertex. Given there are 𝑛 −1 pairs of adjacent vertices in a path, and we require 
two equations for each such pair, in total there are 2(𝑛 − 1) equations needed for two-state terms.

In the case of two-state terms of the form ⟨𝑆𝑖𝐼𝑗⟩, the only subsystem state that could lead to this state is of the form ⟨𝑆𝑖𝑆𝑗𝐼𝑘⟩ for a 
vertex 𝑘 adjacent to 𝑗 (only if such a 𝑘 exists i.e., 𝑗 is non-terminal). States of the form ⟨𝑆𝑖𝐼𝑗⟩ could be exited by (1) the recovery of 𝑗, 
(2) the infection of 𝑖 by 𝑗, or (3) by external infection of 𝑖. The cases of (1) and (2) do not lead to new terms as no vertices other than 
𝑖 and 𝑗 are involved, but (3) leads to terms of the form ⟨𝐼ℎ𝑆𝑖𝐼𝑗⟩ where ℎ is a different vertex adjacent to 𝑖 (if such a vertex exists). 
For tuples of the form ⟨𝐼𝑖𝑆𝑗⟩, the entry subsystem state is ⟨𝐼ℎ𝑆𝑖𝑆𝑗⟩ for a vertex ℎ adjacent to 𝑖. Other terms are of forms already 
considered in the case of states of the form ⟨𝑆𝑖𝐼𝑗⟩. Hence, all terms on three states in this system have states in the orders 𝑆𝑆𝐼 , 𝐼𝑆𝑆

and 𝐼𝑆𝐼 on sub-paths of length three. There are clearly (𝑛 −2)-many sub-paths of length three, hence there are 3(𝑛 −2) equations for 
tuples of length three.

For tuples of length 𝑙, where 2 < 𝑙 ≤ 𝑛, the number of equations is given by 3(𝑛 − (𝑙− 1)) as, by analogous arguments to the case of 
𝑛 = 3, the equations for tuples of length 𝑙 − 1 include three state combinations for tuples of length 𝑙. In particular, these are terms of 
the form ⟨𝑆𝑖𝑆𝑖+1… 𝐼𝑖+(𝑙−1)⟩, ⟨𝐼𝑖𝑆𝑖+1… 𝑆𝑖+(𝑙−1)⟩ and ⟨𝐼𝑖𝑆𝑖+1… 𝐼𝑖+(𝑙−1)⟩, and the number of sub-paths of length 𝑙 on a path is given by 
(𝑛 − (𝑙 − 1)).

Hence, the total number of equations for a path on 𝑛 vertices is given by

2𝑛+ 2(𝑛− 1) + 3
𝑛∑

𝑖=3
(𝑛− (𝑖− 1)) = 4𝑛− 2 + 3

(
𝑛∑

𝑖=3
𝑛−

𝑛∑
𝑖=3

𝑖+
𝑛∑

𝑖=3
1

)
= 4𝑛− 2 + 3((𝑛− 2) + (𝑛2 − 2𝑛) − (𝑛(𝑛+ 1)∕2 − 3))

= 1
2
(3𝑛2 − 𝑛+ 2)
18

which is precisely the result reported in [2]. ■
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