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Abstract – We present a pedagogical introduction to the current state of quantum computing
algorithms for the simulation of classical fluids. Different strategies, along with their potential
merits and liabilities, are discussed and commented on.
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Introduction. – Quantum computing is one of the
most uproaring topics of modern science, holding promises
of spectacular applications far beyond the reach of classical
electronic computers, at least for selected applications [1].

The manifesto of quantum computing can be traced
back to Richard Feynman’s epoch-making paper, in which
he famously observed that physics “ain’t classical”, hence
it ought to be simulated on quantum computers [2].

Following Feynman’s observations, early theoretical
work on quantum computing was performed in the 1980 s,
e.g., Deutsch’s work on the link between quantum the-
ory, universal quantum computers and the Church-Turing
principle [3]. Then, with the publication of Shor’s algo-
rithm for integer factoring and Grover’s search algorithm
in the middle of the 1990 s, the research area gathered
significant momentum in terms of theoretical work and
quantum computing hardware as well. The research
area of quantum computing has continued to grow ever
since [4–6]. In terms of applications for quantum comput-
ers, the simulation of quantum many-body systems has
received the most attention, due to its scientific and in-
dustrial applications, as well as the relatively close link
with quantum hardware, as per Feynman’s original pro-
posal. In this Perspective, however, we shall focus on a
much less beaten track, namely the use of quantum com-
puters for the simulation of classical fluids1. To this pur-
pose, let us refer to a physics-computing plane defined by

(a)E-mail: sauro.succi@iit.it (corresponding author)
1Despite their early appearance, we shall not discuss the so-called

type-II quantum computers [7], since they do not appear to be uni-
versal.

Fig. 1: The four quadrants in the Physics-Computing plane.
The CC and CQ quadrants are the mainstay of current simu-
lation work. QQ is the quadrant invoked by Feynman, and QC
is the quadrant addressed by the present Perspective.

the following four-quadrants:

CC: Classical computing for Classical physics;

CQ: Classical computing for Quantum physics;

QC: Quantum computing for Classical physics;

QQ: Quantum computing for Quantum physics.

as represented graphically in fig. 1.
Feynman was probably referring to the CQ sector shown

in fig. 1, where one is often faced with exponential com-
plexity barriers (in his Nobel speech, Walter Kohn defines
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the many-body Schrödinger wave function as “unphysi-
cal” precisely because of this reason [8]). The basic idea
is that these barriers are unphysical because we are us-
ing the wrong formalism to ask the questions that lie be-
hind them. Unlike Kohn, Feynman takes no issue at the
N -body Schrödinger equation, but simply observes that
it is unphysical only if we insist in solving it on the CQ
quadrant instead of the QQ one. In line with this observa-
tion, the simulation of quantum many-body systems has
received most of the quantum computing attention in the
recent past [9,10].

In this Perspective, we shall focus on the much less
explored off-diagonal QC quadrant, the natural question
being whether the power of quantum computing can be
brought to the benefit of classical physics as well, with
specific focus on classical fluid dynamics.

Yet, there is another, subtler, motivation along the
Kohn-Feynman discussion above: while it is undeniable
that physics is quantum, it is no less true that physics
has a very strong innate tendency to become classical
at sufficiently large scales (high temperature). Such ten-
dency, the major source of troubles for quantum comput-
ing, remains only partially understood and therefore the
“foundational” question is whether at some point, classical
computing takes over and cannot be beaten by any quan-
tum algorithm. This is just the opposite of the standard
notion of “Quantum Advantage”, hence we may dub it
“Classical Advantage”. Speaking of Classical Advantage,
the starting observation is that many classical problems
feature two major elephants in the quantum computing
room: non-linearity and non-Hermicity (dissipation). How
does quantum computing deal with the two “elephants”
above? This is the main question addressed by this Per-
spective, with specific focus on classical fluids [11].

Challenges facing quantum computational fluid
dynamics (QCFD). – As mentioned in the introduc-
tion, realising the potential of quantum computing means
leveraging distinctive features of quantum mechanics that,
by definition, are not available on classical computers.
However, it also follows that it is precisely these specific
features that expose major challenges in realising simula-
tions with a quantum advantage.

The main quantum mechanical concepts spawning the
potential benefit of quantum algorithms are quantum su-
perposition and quantum parallelism. The quantum state
in a Q-qubit coherent register can be described by the
Schrödinger wave function, defined by 2Q complex ampli-
tudes for 2Q states in superposition. The square of each
of these amplitudes defines the probability of finding the
system in the corresponding state after quantum measure-
ment. By encoding classical data in terms of these am-
plitudes an exponential saving in storage can be achieved
when the number of qubits is compared to required num-
ber of classical bits.

Let us illustrate the idea for the specific case of
turbulent flow simulation. Turbulence features a Re3

complexity, where the Reynolds number Re represents the
relative strength of convection (nonlinearity) vs. dissipa-
tion. Most real life problems feature Reynolds numbers
in the many-millions; for instance an airplane features
Re ∼ 108, implying O(1024) floating-point operations per
simulation. This is basically the best one can afford on
a nearly ideal exascale classical computer. The simula-
tion of regional atmospheric circulation flows takes us at
least another two decades above in the Reynolds number,
hence totally out of reach for any foreseeable classical com-
puter [12,13]. On the other hand, the minimum number
of qubits Q required to represent Re3 complexity can be
roughly estimated as 2Q = Re3, namely,

Q ∼ 3log2Re. (1)

This simple estimate shows that about 80 qubits match
the requirement of full-scale airplane design, while O(100)
qubits would enable regional atmospheric models. How-
ever, several key challenges stand in the way of this task.
First, quantum measurement needed to extract classical
information collapses the quantum wave vector. Hence,
to get classical values for each of the amplitudes, multi-
ple realisations of the quantum state vector are needed
with an associated set of measurements. Second, in the
quantum circuit model, the “classical” information is not
available to the quantum gate operations performed in the
circuit. Specifically, gate operations can be conditional on
the state of one or more control qubits, while specifying
gate operations conditional on one or more of the com-
plex amplitudes defining the wave function is impossible.
Therefore, when classical data is encoded in terms of am-
plitudes, for example, a rotation angle in a quantum gate
operation, this information is required at the time the cir-
cuit is compiled. During the execution of the circuit, this
angle cannot be changed as a function of “classical” data
encoded in quantum amplitudes. Third, in an algorithm
involving multiple iterations or time-steps, the overhead
associated with quantum measurements used to extract
classical data and re-initialization of the quantum state for
a next iteration, scale quadratically with the grid size [14]
and consequently they severely tax the quantum CFD ef-
ficiency. Associated with these challenges, it should be
observed that the well-known HHL [15] algorithm for lin-
ear system solution assumes that the input and output
data are encoded in terms of quantum amplitudes with-
out including the cost of setting up the quantum state and
extracting the classical solution.

With the exception of quantum measurement opera-
tions, quantum mechanical operators are unitary, linear
and reversible. These operators are implemented using a
series of unitary quantum gates (quantum circuit model).
If we further assume that the velocity field is represented
in terms of amplitude encoding [16], i.e., the components
of velocity vector at all grid points are represented in terms
of the amplitudes defining the wave function, then the no-
cloning theorem prevents the use of (temporary) copies of
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any of these amplitudes. So, evaluation of u2 or u∂u
∂x can-

not be performed by storing a temporary copy temp = u,
to perform the computation of the value of u2 as u×temp.
Also, for data encoded in terms of the complex ampli-
tudes of the Schrödinger wave function, there is a need for
this state vector to have a unit norm, since these ampli-
tudes represent probabilities of states. This means that for
an operator attempting to compute the squares of these
complex amplitudes, the resulting state vector loses uni-
tarity. So, even without the no-cloning theorem compli-
cating such a step, this points to a further problem with
computing nonlinear terms. A similar argument runs for
orthogonality of the eigenstates, since a nonlinear propa-
gator rotates the state by an angle which depends on the
state itself. Dissipation is also a concern, since it breaks
Hermicity of the quantum propagator. However, several
ways out can be conceived, one of the most popular ones
being to augment the system with its Hermitian conjugate,
so that the doubled system is Hermitian by construction.

To summarize, dealing with nonlinear terms can be re-
garded as one of the main challenges for Quantum Com-
putational Fluid Dynamics (QCFD).

Hybrid quantum/classical approaches. – The
challenges sketched above relating to nonlinearity, non-
Hermicity, in combination with quantum circuit depth
limitations imposed by NISQ-era hardware, have resulted
in most of the existing work in QCFD being based on a
hybrid quantum/classical approach, with the quantum pro-
cessor performing computations for which efficient quan-
tum algorithms exist, while the output is then passed on to
classical hardware to perform further computational tasks
not (yet) amenable to quantum algorithms.

Figure 2 provides an illustration of the main concepts in
this approach. As shown, quantum state ψ0 is advanced to
the next quantum state ψ1 via a QQ algorithm. The quan-
tum state ψ1 is then used to generate classical observables
C1 which are advanced to C2 by a CC algorithm. The
classical observables C2 are then used to reconstruct the
quantum state ψ2, ready for the next QQ step. The Q2C
conversion shown in fig. 2 involves quantum measurements
and requires averaging over a statistical sample of quan-
tum states, since none of them can be reused. The C2Q
reconstruction requires the preparation of all the quan-
tum eigenstates, hence a full reset of the quantum circuits
from scratch. Both operations impose a substantial com-
putational burden on the hybrid algorithm. Specifically,
the cost of initialization of an arbitrary quantum state
with Q qubits scales exponentially with Q. Initialization
techniques with smaller overhead have been developed but
only for a limited set of specific quantum states.

Examples of previous works using the hybrid quan-
tum/classical approach include the works of Steijl [17],
Gaitan [18] and Budinski [19]. The algorithm presented
by Gaitan uses Kacewiz’s quantum amplitude estima-
tion ODE algorithm [20] as applied to the set of nonlin-
ear ODE’s resulting from standard discretization of the

Fig. 2: Sketch of a hybrid quantum-classical algorithm. The
illustration shows the steps involved in a single time step
or single iteration, including preparation of the subsequent
step/iteration.

Navier-Stokes equations. As shown, for certain “non-
smooth” problems (illustrated using the quasi-1D flow in
converging-diverging duct with normal shock wave), the
complexity analysis shows potential for exponential speed-
up, so that the challenges associated with hybrid quan-
tum/classical computing can potentially be overcome.
For the linear advection-diffusion equation, Budinski [21]
presented a quantum algorithm based on the Lattice
Boltzmann method [22]. The algorithm can perform mul-
tiple successive time steps with no need for quantum mea-
surements and re-initialization of qubit register between
the time steps if suitable re-scaling of solution vector is
applied to deal with non-unitarity. In the quantum circuit
model, the fact that velocity field is unchanged between
successive timestep means that an operator implementing
u∂u

∂x can be re-used in multiple time steps. Budinski [19]
then extended the work to Navier-Stokes equations in
streamfunction-vorticity formulation. Then, velocity-field
updates during each time step mean that quantum-
circuit implementation of convection terms cannot be
re-used during multiple timestep and that the “classical”
value of u (as well as other flow field data) is needed to
define quantum circuit implementation of the next time
step. This shows that the nonlinearity forces the use of
a hybrid quantum/classical approach, similar to previous
fluid simulations based on quantum-Poisson solvers [17].

In summary, key challenges for the hybrid quan-
tum/classical approach are: i) cost and complexity of (re-
peated) measurements; ii) statistical noise due to sampling
of the quantum solution; iii) cost and complexity of (re-
peated) re-initialization.

Quantum fluid dynamics strategies. – For the sake
of concreteness, let us consider the Navier-Stokes equa-
tions for time-dependent incompressible flows. We write
as follows:

∂u
∂t

+ u · ∂u
∂x

= −∂P

∂x
+ νΔu, (2)

∇ · u = 0, (3)
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where u is the velocity vector, P pressure, defined for
location x as a function of time t. The kinematic vis-
cosity (assumed independent of temperature) is defined
by ν and density has been conventionally set to a unit
constant value. Equation (3) enforces mass conservation,
while eq. (2) is based on momentum conservation in each
coordinate direction. Equations (2) and (3) highlight that
it is the convection term that represents the nonlinear-
ity, i.e., the second term on the left-hand side of eq. (2).
Writing the Navier-Stokes equations in non-dimensional
form, such that x and u are scaled by reference length
Lref and Uref , respectively, it follows that in eq. (2)
the term ν is replaced by 1/Re, where Reynolds number
Re = UrefLref/ν. For Stokes flow, i.e., with Reynolds
approaching 0, nonlinear terms are vanishingly small, but
still not to be neglected since they are responsible for non-
trivial long-range correlations especially important in bi-
ological flows [23]. For high Reynolds number (turbulent)
flows, obviously the nonlinear terms play the leading role.

In the following we present a cursory view of various
existing strategies to simulate fluid dynamics on quantum
computers.

Nonlinear quantum ODE solvers. A straight approach
to quantum simulation of fluids consists in tackling the
nonlinearity head-on, without trying to establish any par-
allel to quantum mechanics. In this case, one would dis-
cretize the Navier-Stokes equations, turn them into a set
of nonlinear ODEs, to be solved by appropriate quantum
nonlinear ODE solvers, Symbolically,

du
dt

= f(u), (4)

where u is a shorthand for the full set of unknowns hosted
by the computational grid. A standard time marching
scheme yields

u(t+ Δt) = u(t) +
∫ t+Δt

t

f(u(z))dz (5)

and the quantum algorithm takes charge of performing the
discrete summation implementing the time-integration at
the right-hand side. This approach has been pioneered by
Gaitan [18] for the case of a Laval nozzle with encouraging
results on grids between 30 and 60 grid points over 1400
timesteps. The dangling issue, though, is identification of
an appropriate quantum oracle for evaluating the right-
hand side f(u), a task that as already mentioned, Gaitan
leaves to classical computers.

Nonlinear variational quantum eigenvalue solvers. It
has recently be proposed that variational quantum eigen-
value (VQE) solvers, a major tool of the QQ sector, might
be exported to the fluid context as well [24]. The basic idea
behind VQE is to use quantum computing to construct
variational eigenfunctions and minimize the energy func-
tional through a classical procedure. In [24], the authors
propose to use a similar technique for the Navier-Stokes
equations, i.e., 1) construct variational trial functions and

2) minimize the associated (dissipative) functional via a
classical procedure. Formally, step 1) consists in express-
ing the flow field in variational form,

u(x, t;λ) =
∑

n

un(t)φn(x;λ), (6)

where φn is a suitable set of basis functions parametrically
dependent on the a set of variational parameters λ. Such
variational parameters are then fixed by minimizing the
energy dissipation functional D(λ) = ν

∫
(∇u(x;λ))2dx

where the integral runs over the entire volume occupied
by the fluid. The appeal of this idea is twofold: first, it
may borrow a lot of QQ know-how, second it bypasses
the issue of quantum time marching. We are not aware of
any practical implementation of the idea, but best guess
is that they will become available soon.

Linearization: Carleman embedding. It has long been
known that any nonlinear problem can be mapped into
a linear one in a space of higher dimensions, a technique
also known as Carleman embedding or Carleman lineariza-
tion [25]. Spatial discretization of the non-dimensional
form of eq. (2) using a spatial grid consisting of l = 1, G
lattice sites, results in the following set of equations:

dul

dt
= Llmulm +Re Qlmnumun (7)

where Llm and Qlmn are the grid matrices associated with
linear and nonlinear interactions, respectively. The pres-
sure term was removed for simplicity, although it is all but
a minor item, since pressure-flow-stress coupling heavily
affects the structure of the Carleman matrix. It should
be noted that in the discretization of the velocity deriva-
tives at lattice point l, the values of the velocity at one
or more neighboring lattice points are used. This means
that when the Carleman linearization is used to introduce
a new variable Vlm = ulum to formally generate a linear
system, marching the system of equations forward in time
produces an ever growing hierarchy in which the Carle-
man variables at level k involve the Carleman variables
at the next level k + 1. Note that at each level we are
faced with a tensor of rank k, with O(Gκk−1) indepen-
dent components, κ being the sparsity of the Q matrix.
Furthermore the tensors occupy a neighborhood of the
original field whose diameter grows linearly with the Car-
leman level. This shows that uplifting the nonlinearity
of the fluid equations comes at a major cost in terms of
increasing dimensionality and non-locality.

Nevertheless, in [26] the authors present an algorithm
based on Carleman linearization along with the use of a
quantum linear system solution approach for the solution
of the one-dimensional Burgers equation. The presented
algorithm shows a polylog scaling with the number of grid
points, i.e., an exponential improvement over classical ap-
proach. However, for a given time span T , the algorithm
shows a complexity T 2Poly(logT ), i.e., a significantly in-
creased time-complexity compared to classical case. The
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authors simulate shock formation in a one-dimensional
Burgers flow, with 16 grid points over 4000 time-steps,
with a fourth-order Carleman truncation. They reach
Reynolds numbers up to 40, an order of magnitude larger
than predicted by the theoretical no-go analysis, a wel-
come discrepancy which begs for further analysis. Like
for [18], exponential gain remains to be demonstrated in
practice because of insufficient number of available qubits,
as reflected by the very modest sizes of the grids employed.

The key question then is: how fast does the Carleman
procedure converge as a function of the Reynolds number?

As we shall see, preliminary results offer room for
optimism.

Carleman lattice Boltzmann method. The answer may
depend on the chosen representation of the fluid equations,
the Lattice Boltzmann (LB) method being a prominent
candidate in this respect. In equations,

∂tfi + vi · ∇fi = −fi − feq
i

τ
, (8)

where f(x,v, t) =
∑

i fi(x, t)δ(v − vi) is the probability
to find a representative particle with discrete velocity vi

at position x and time t, feq
i is the corresponding discrete

local equilibrium and τ is a local relaxation time, fixing
the viscosity of the lattice fluid. Importantly, the local
equilibrium is a quadratic function of the Mach number
Ma = u/cs, cs being the speed of sound.

A key point of using the discrete-velocity Boltzmann
formalism instead of Navier-Stokes is that, owing to the
double dimensional phase-space, in the latter non-locality
(streaming) is linear while nonlinearity (collision) is lo-
cal, while in Navier-Stokes the two merge into a single
u∇u convective term. On classical computers this dis-
entanglement proves extremely beneficial and the idea is
that similar benefits apply to the quantum case as well.
Indeed, most importantly for the quantum case, in the
Boltzmann formulation the nonlinearity is not measured
by the Reynolds number, but by the Mach number instead,
which is typically well below 1, thereby dramatically low-
ering the nonlinearity barrier.

Based on the Lattice Boltzmann method, Itani et al. [27]
employ Carleman linearization to develop an approach
termed Carleman for second-quantized Lattice Boltzmann.
This terminology stems from the fact that the Boltzmann
operator, defined by Bfi = −vi · ∇fi − fi−feq

i

τ , can be ex-
pressed in terms of the second-quantization annihilation
and generation operators via the relation ∇ = (â − â+).
As a result, the formal solution ft = eBtf0 can be com-
puted in close analogy with quantum mechanics.

The quantum computing algorithm for streaming is
based on the approach used by Steijl and co-workers [28],
while collisions follow the bosonic encoding first proposed
by Mezzacapo et al., whereby dissipative effects are rep-
resented as a weighted sum of two unitary operators [29].
The scheme is as “Feynmanesque” as it can possibly get,
as it builds on a one-to-one analogy between LB and

the Dirac equation, first proposed in [30]. However, it
is subject to a number of additional questions: primar-
ily truncation effects due to the finite number of bosonic
excitations and the long-time behaviour of non-unitarity
errors [31]. Recently, Cheung and coworkers performed a
Taylor-Green vortex simulation based on a Carleman-LB
scheme, showing excellent agreement at moderate Mach
number, with just three Carleman iterations [32]. Al-
though preliminary, these results invite some optimism on
the use of Lattice-Boltzmann-Carleman quantum comput-
ing schemes.

Functional Liouville approach. The Carleman embed-
ding provides a linearization of the actual equations of
fluid motion. An alternative procedure is to take the sta-
tistical dynamics approach, whereby one seeks the prob-
ability distribution function (PDF) of the fluid velocity
field [33]. This is formally straightforward since the PDF
obeys a functional continuity equation, best know as Li-
ouville equation:

∂tP [u] +
δ

δu
(f(u)P [u]) = 0, (9)

where P = P [u] is the functional PDF and u̇ = f(u) is the
nonlinear equation of motion (hence f(u) is an operator in
function space). Note that regardless of the nonlinearity of
the dynamics, reflected by f(u), the functional equation is
linear, by construction. Once the fluid equations are dis-
cretized on a grid withG lattice nodes, the Liouville distri-
bution PG becomes a G-variate PDF PG(u1 . . .uG) which
lives in a O(G)-dimensional space, where for large-scale
turbulent flow applications, G can reach values of multi-
billions. However, it should be noted that for most prac-
tical purposes, the G-body Liouville PDF is an hotel with
vastly more rooms than customers, meaning that (much)
lower order marginals often suffice to deliver the essential
physical information. Key to the success of the program
is the ability to find an appropriate closure, namely an ef-
fective kinetic equation for the low order marginals. This
is a classical topic in non-equilibrium statistical physics,
which may draw significant benefits from modern devel-
opments in tensor networks theory [34,35]. In [36], the
authors develop a general and elegant framework based
on the Koopman-von Neumann and the level-set approach
to classical nonlinear field theories [36]. The formalism is
applied to hyperbolic PDEs and Hamilton-Jacobi equa-
tions, but its extension to the Navier-Stokes equations is
addressed only marginally, making it difficult to draw firm
conclusions.

Quantum-fluid duality: inverse Madelung transform.
Formal analogies between quantum mechanics and fluid
dynamics have been noted since the early days of quan-
tum physics, most notably with the work of Madelung,
who noted that upon writing the wave function in eikonal
form Ψ = ρ1/2eiθ, the imaginary part of the Schroedinger
equation turns into the continuity equation, while the real
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Fig. 3: Schematics of the quantum-fluid duality. The
Schroedinger equation (SCE) maps one to one to the Madelung
fluid (MAF), which is compressible, inviscid, irrotational and
subject to quantum potential (pressure). The idea of the inverse
Madelung transform is to generate a generalized Schroedinger
equation (GSCE) equivalent to the compressible Navier-Stokes
fluid. By solving the GSCE on a quantum computer one would
then solve the Navier-Stokes physics.

one provides the following Madelung fluid equation:

∂tu + u · ∇u = −∇(VC + VQ), (10)

where u = (�/m)∇θ is the fluid velocity, VC the classical
potential and VQ = (�2/2m)ρ−1/2Δρ1/2 is the so-called
quantum potential. The Madelung formulation shows that
the Schroedinger equation behaves like an inviscid, irro-
tational fluid subject to the classical potential VC plus
a genuinely quantum potential VQ (see fig. 3). This anal-
ogy has interesting interpretations for the hidden-variables
theory of quantum mechanics, which are beyond the scope
of this Perspective. Here we simply wish to highlight its
operational value, i.e., it permits to solve quantum prob-
lems using numerical methods for fluids. In the context
of quantum computing, we are interested in taking the
opposite path, namely using quantum computers to solve
fluid problems in quantum mechanical vests. The major
caveat is that the Madelung fluid is a far distant relative
of classical Navier-Stokes fluids, the main points of depar-
ture being i) dissipation, ii) non-gradient flow, iii) absence
of quantum potential. Very recent work has shown how to
mend points ii) and iii) using quaternions, but still leaves
item i) open [37]. Encouraging work to solve item i) as
well has just appeared [38].

Quantum spectral methods. Given the major role
played by spectral methods for the simulation of classical
fluids (in simple geometries), it is natural to wonder about
the viability of quantum computing analogues. Quantum
spectral methods have been discussed recently in the liter-
ature [39], but only for linear differential equations. Spec-
tral Chebishev representations have been used to define
functions as expectation values of parametrized differental
quantum circuits (DQCs) [40]. Such circuits have been
utilized to solve a variety of non-trivial nonlinear equa-
tions, including the one-dimensional Navier-Stokes in a

Laval nozzle, training the DQCs over a set of 20 to 40 grid
points.

Low-Reynolds flows. – Last but definitely not least,
the physics of fluids is rich in interesting problems at low-
Reynolds flows, especially in microfluidics, soft matter and
biology [41–43]. For instance, it would be of great in-
terest to devise a quantum multi-scale application, cou-
pling quantum algorithms for biomolecules swimming in a
water solvent described by a quantum algorithm for low-
Reynolds fluid flow. Given that low-Reynolds flows are
non-local, perhaps the inherent non-locality of quantum
mechanics could prove helpful in representing the classical
non-locality of low-Reynolds flows.

Conclusions. – In summary, we have presented a sur-
vey of the main current approaches to the quantum simu-
lation of classical fluids. Various obstacles stand in the
way of the efficient simulation of fluid flows on quan-
tum computers, especially at high Reynolds numbers. A
few potential ways out have been illustrated, but their
practical implementation commands major advances in
quantum technology, particularly quantum error correc-
tion [44]. Assessing to what extent quantum computers
can deal with nonlinearity and, more generally, withstand
the tendency of quantum systems to become classical at
macroscales/high temperatures, is not only of practical
but also of major foundational interest. Quantum com-
puters offer indeed a unique opportunity to ask questions
that the founding fathers of quantum mechanics could only
formulate as “Gedanken Experiments”.
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