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Abstract

Combinatorial problems are common in machine learning, but they are often

large-scale, exponential or factorial complexity optimization problems, for which

exhaustive methods are impractical. Heuristics are typically used instead but

these are not provably optimal, although they may produce a workable compro-

mise solution in a reasonable time. On the other hand, dynamic programming

(DP) is an efficient and broadly applicable tool that finds exact solutions to

combinatorial problems. However, DP lacks systematicity as most algorithms

are derived in an ad-hoc, problem-specific manner. In the literature, there are

attempts to standardize DP algorithms, but they are either unnecessarily gen-

eral (constructive algorithmics) or have limited applications to different problems

(Emoto’s GTA).

In this thesis, we propose a rigorous algebraic approach that systematically

solves DP problems either by deriving algorithms from existing ones, or by deriv-

ing them from simple functional recurrences. The main contribution is providing

novel, exact solutions for combinatorial optimization problems in machine learn-

ing and artificial intelligence. Our novel formalism largely bypasses the need to

invoke the often quite high level of abstraction present in classical constructive

algorithmics, as well as providing algorithms that are provably correct and poly-

morphic over any semiring. These algorithms can be applied to any combinato-

rial problem expressible in terms of semirings as a consequence of polymorphism.

This approach also contributes to systematicity in embedding combinatorial con-

straints applying tupling to avoid the need for ad-hoc backtracking.



Acknowledgment

During my PhD, I have been extremely lucky with the people I have stumbled upon. I

would like to thank Dr Max A. Little firstly for accepting me as his PhD student; and

then for all the support, and guidance that he has given me throughout my PhD journey.

I also could not have undertaken this journey without the academic support and great

friendship of Dr Yordan Raykov. Of course this journey would not have been possible

without the generous funding provided by the Ministry of National Education/Turkiye.

Apparently the Turkish tax payer made a good investment.

I have also been blessed with meeting some truly kind and supportive friends. First

of all, I would like to thank Adele for being my English advisor, for all the walks that we

had together and for making me feel like I am the best chef in the world (as indicated

by me never having any food left). Meeting with Ellen was also a great pleasure and

thank you Ellen for checking the reference list of this thesis (so you know who to blame

if you spot a mistake). I also need to mention Dorine for being an amazing flatmate

and for teaching me how to clean the right way.

Reham was an amazing mentor, she provided me with exceptional support through-

out my first year (then she disappeared suddenly). It would be rude of me not to

mention that I am so thankful for Yazan, Adam and Hakan (although none of them

thanked me in their thesis despite all my support and amazing friendship) for answering

my random questions during my PhD. I would like to thank Wayfarers hiking society

and APRS for making my social life great again. Lastly and most importantly, I would

like to thank my family for the support and genetic inheritance they provided.



Contents

Contents i

List of Figures iv

List of Algorithms vii

List of Tables viii

I Introduction 1

1 Motivation 1

2 Contributions 3

3 Thesis Structure 3

II Background 5

1 Related Work 5

2 Machine Learning 10

2.1 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Mathematical Optimization 14

3.1 Combinatorial optimization . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Concepts in Computational Complexity 19

i



5 Combinatorial Machine Learning (ML) Problems 26

5.1 k-means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Abstract algebra: monoids, groups and semirings 28

7 Dynamic programming (DP) and Directed Acyclic Computation Graphs

(DAG) 31

III Methods and Techniques 37

1 Preliminaries 37

2 A Generalized Bellman’s Recursion 38

3 Embedding a Constraint 43

3.1 Lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 Group lifting-simplifying the constraint algebra . . . . . . . . . 54

4 Tupling semirings to avoid backtracking 58

IV Applications 61

1 Segmented Linear Regression 61

1.1 ℓ1 trend filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1.2 Exact segmented linear regression (SLR) . . . . . . . . . . . . . . . . . 64

1.3 Fixed segmented linear regression (F-SLR) . . . . . . . . . . . . . . . . 66

1.4 Minimum length segmented linear regression (ML-SLR) . . . . . . . . . 68

2 Sequence Alignment 71

2.1 Needleman-Wunsch algorithm . . . . . . . . . . . . . . . . . . . . . . . 73

ii



2.2 Constrained sequence alignment . . . . . . . . . . . . . . . . . . . . . . 74

3 Clustering 75

3.1 DP-means clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 MAP-DP clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Exact clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

V Results and Discussion 80

VI Conclusion 86

1 Limitations and Future Work 88

VII Appendices 90

1 Appendix A 90

2 Appendix B 91

VIII 92

Bibliography 92

iii



List of Figures

1 An illustration of linear regression. Arbitrary data in (a), and a line fitting this data

in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 A representation of computational complexity classes listed in Table 1 for small sizes

using assigned curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 The required computational steps for f = 3
20 N2 and g = 20N − 50. The efficiency

performance entirely depends on the size of N e.g. for N ≤ 130, algorithm g(N) is

more efficient, but for N > 130 algorithm f(N) is more efficient. . . . . . . . . . 22

4 A representation of directed acyclic graph where the nodes (dots) are vertices, and

connectors (arrows) are edges. An acyclic graph is directed when no cycles (or loops)

are presented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Unbounded knapsack problem as a longest path; weight, value and the weight limit

are the fundamental knowledge for the problem. An edge tells the weight of an

item with the magnitude, and shows the value of the item as assigned on it. Nodes

represent different weight constraints from 0 to 6. Brute force solution of this problem

generates every single path (blue paths) from Start to End, and then choose the path

with maximum value. The red path from Start to End indicates the optimal solution

which requires x1 = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Informal illustration of the dynamic programming (DP) semiring fusion theorem (2.4),

the basis on which DP computations in arbitrary semirings is justified. . . . . . . 43

iv



7 0-1 knapsack problem with inequality weight constraint; the aim is to find a path

from Start node to End nodes to fill a bag with the highest value that has the weight

limit up to W = 5. An edge tells the weight of an item with the magnitude, and

shows the value of the item as assigned on it. The right end nodes represent different

weight constraints from 0 to 5. Diagonal move means adding an item to the bag and

horizontal move is to pass an item. The path shows the optimal solution for W = 5

which requires which requires x1 = x3 = 1 and x2 = x4 = 0, and the green paths

demonstrates the case W = 3. . . . . . . . . . . . . . . . . . . . . . . . . . 56

8 The sum of top K-elements can be determined with DP-DAG formalism. The aim

is to find a path from Start node to End nodes to fill a bag with the highest value

that has the weight limit up to W = 5. An edge tells the weight of an item with the

magnitude (wn = 1 for this problem), and shows the value of the item as assigned on

it. The right end nodes represent different weight constraints from 0 to 5. Diagonal

move means adding an item to the bag and horizontal move is to pass an item. The

red path shows how to find the number with the highest value when we set W = 1,

following that the green path finds the sum of top 2-elements by using the previous

optimal solution as recursion requires, and then the dark blue path gives the sum of

top 3-elements for W = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9 Line fitting through random data in different scenarios. A line under-fits the data in

(a), multiple piece-wise linear lines cover the data in (b), and a reasonable piece-wise

line fit in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

v



10 DP segmentation algorithms for a synthetic example with sum-squared error and

Gaussian noise (standard deviation σ). The original data; piece-wise linear constant

signal (grey line) and noise added input data yn (grey dots) segmentation result (red

line). (a) unconstrained SLR with regularization λ = 15, noise σ = 15, (b) F-SLR

with L = 3 and noise σ = 30, (c) ML-SLR with ML = 70 and noise σ = 60 and (d)

ℓ1 trend filtering with regularization λ = 103, noise σ = 60. . . . . . . . . . . . 81

11 DP segmentation algorithms for a sample of logarithmically-transformed S&P500

financial index daily values [Kim et al., 2009]. Input data yn (grey lines) and segmen-

tation result (red line). (a) unconstrained SLR with regularization λ = 1.78× 10−5,

(b) F-SLR with L = 4, (c) ML-SLR with ML = 50 and (d) ℓ1 trend filtering with

regularization λ = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

12 Computational time (red line) required to solve the Needleman-Wunsch DP sequence

alignment algorithm (left) without constraints and (right) with lifted constraint. The

horizontal axis is the length of both sequences and also the size of the constraint

algebra (e.g. N = M = |M|). The vertical axis is on a quadratic (left) and cubic

(right) scale such that exact O(N2) and O(N3) complexities correspond to a straight

line (grey line). Python language implementation on a Intel Core i7 2.80 GHz, 8 GB

RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

13 The representation of the synthetic data set for the clustering experiment; Each

cluster of data has a small variance so that there is not any overlapping between

them. The expected performance from each clustering method is high. . . . . . . 84

14 The representation of the synthetic data set for the clustering experiment; the variance

of each cluster is high enough to have overlaps, which makes the partitioning difficult.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

vi



List of Algorithms

1 Exponential-time complexity Fibonacci algorithm [Dasgupta et al., 2008] . . . . . 22

2 Linear Fibonacci algorithm [Dasgupta et al., 2008] . . . . . . . . . . . . . . . . 23

3 Procedural pseudo-code implementation of Bellman’s recursion to find minimum error

segmentation, O(N2) time and O(N) space complexity. . . . . . . . . . . . . . 66

4 Procedural pseudo-code implementation of the fixed (L) length segmentation with

minimum error algorithm, O(N2L) time and O(NL) space complexity. . . . . . . 68

5 Procedural pseudo-code implementation of the fixed (L) length segmentation with

minimum error algorithm, O(N2L) time and O(N) space complexity. . . . . . . . 69

6 Procedural pseudo-code implementation of the minimum length (L) length segmen-

tation with minimum error algorithm, O(N3) time and O(N2) space complexity. . . 71

7 Procedural pseudo-code implementation of exact DP-means algorithm with O(N2)

time and O(N) space complexity. . . . . . . . . . . . . . . . . . . . . . . . 77

8 Procedural pseudo-code implementation of exact MAP-DP algorithm with O(N2)

time and O(N) space complexity. . . . . . . . . . . . . . . . . . . . . . . . . 78

9 Procedural pseudo-code implementation of exact k-means algorithm with O(N2k)

time and O(N) space complexity. . . . . . . . . . . . . . . . . . . . . . . . . 79

vii



List of Tables

1 Computational complexity order classes, in big-O notation. Most efficient classes at

the top, down to the least efficient at the bottom [Little, 2019]. . . . . . . . . . 20

2 Dynamic programming solution for the unbounded knapsack problem. . . . . . . 36

3 An optimal solution for a sequence alignment problem for two DNA sequences with

nucleotides adenine (A), cytosine (C), guanine (G) and thymine (T). {H,I,D} are

abbreviations of homology, insertion and deletion respectively. . . . . . . . . . . 72

5 A comparison of clustering methods for the data with separable clusters. . . . . . 84

7 A comparison of clustering methods for the data with inseparable. . . . . . . . . 85

8 Some examples of semirings with their applications [Huang, 2008] . . . . . . . 90

9 Some useful example constraints and simplified expressions for the resulting lifted

semiring products, see (3.27), along with simplified expressions for the product against

the lifted single value, see (3.28). . . . . . . . . . . . . . . . . . . . . . . . . 91

viii



Notation
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letters for names, e.g. S and M. Integer indices and numbers are indicated by both

upper and lower case letters in italic font such as n and N etc. Binary algebraic

operators ⊕, ⊗, ⊙ are given with their identity elements ı⊕, ı⊗, ı⊙ where they exist.

Functions are indicated as f : N→ R or f ∈ R[N]. Bold symbols are used to represent

vectors such as x, y, and subscript notation is utilized to index elements of vectors fn,

x1 or xn etc. We also use subscript notation, fG,w, to denote a polymorphic function f

computed using the algebra G and mapping function w as parameters. Operators are

subscripted to indicate lifting, e.g. ⊕M is the ⊕ operator lifted over the algebra M.
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Chapter I

Introduction

1 Motivation

The invention of the decimal system in India around AD 600 was a significant develop-

ment in quantitative reasoning [Dasgupta et al., 2008]. It would be tricky to write the

number 3894 in Roman numerals as MMMDCCCXCIV or to add two Roman numerals

such as MMMDCCCXCIV + MMDLXVIII. On the other hand, the decimal positional

system provided the means for people to write down very large numbers and manip-

ulate them arithmetically in an efficient manner through the use of only 10 symbols

[Kleiner, 2007]. In the ninth century, Al Khwarizmi manipulated these 10 symbols with

basic methods such as adding, multiplying and dividing, and these precise, unambigu-

ous, mechanical procedures were the foundation of what we know today as algorithms

[Dasgupta et al., 2008].

An algorithm is defined as “a sequence of computational steps that transform the in-

put into the output” [Cormen et al., 2009]. In other words, algorithms are specific proce-

dures that achieve the desired relationship between the input and output [Cormen et al.,

2009]. Since its construction, the decimal system and associated numerical algorithms

have accelerated scientific and technological developments throughout human history.

Much later, the computer was created, enabling sequenced computations, in which the

specific sequence can depend upon the results of previous computations [White and

Downs, 1998]. Algorithms are used to generate different applications/programs which

have become an important part of daily life.

A user’s primary expectation of a program is to obtain a correct result. As comput-
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ing applications are relied upon heavily, incorrect results can have adverse consequences.

For instance, more than 700 Post Office operators in the UK, were wrongly convicted

of theft, fraud and false accounting, based on evidence from company IT systems which

were discovered to be faulty, in the Post Office Horizon Scandal between 2000 and 2014

[Moorhead et al., 2021]. Another example can be employing advanced algorithms and

techniques in healthcare settings such as in the diagnosis and/ or prediction of heart

disease [Hazra et al., 2017], diabetes [Iyer et al., 2015], breast cancer [Williams et al.,

2015] and many more [Shailaja et al., 2018]. Either raising a false positive for serious

disease or failing to detect such a condition, can have detrimental effects. Therefore, it

is important that the algorithms we deploy are correct, and provably so.

The second concern relating to programs is how quickly the results can be computed.

One famous example of relevance, is the decryption of messages from the Enigma ma-

chine, where rapid actions in response to the decoding of messages led to significant

course changing events during World War II [Hodges, 2014]. Computing outputs (in

this case, decrypted messages) within a short time was critical in that setting, and it

still remains of critical importance today. For instance, advanced algorithms are used

in market investment [Lee et al., 2019] to make predictions about stock market values.

As stock market values change rapidly, computing results at the right time and quickly

is important for an investor. Thus, processing time has to be taken into account when

we apply advanced algorithms to real-world problems.

Computing a solution which is both correct and obtained in a reasonable time, is not

necessarily straightforward. Limited time and resources always need to be considered.

Most current methods for optimization in machine learning, can only provide either

exhaustive solutions which are not practical or approximate results which cannot be

employed for critical problems as is discussed above. In this thesis, we aim to provide a

framework which solves some well-known, affecting daily-life problems, in an accurate
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and fast way.

2 Contributions

This work is based on a research paper written by Little and Kayas [2021]. This thesis

details the following two main contributions to the topic:

1. We derive novel general polymorphic rigorous approach which systematically

solves dynamic programming (DP) problems arising in combinatorial machine

learning;

• Deriving algorithms for mixed-continuous combinatorial problems in ma-

chine learning, which solve the problem exactly and efficiently;

• This systematicity also allows the specification of constraints to problems in

a standard form, which alleviates the need for ad-hoc approaches to DP;

• The framework naturally allows the use of the tupling method to avoid ad-hoc

backtracking.

2. Derivations of algorithms for some widely-occurring mixed-continuous combina-

torial machine learning problems, such as segmented linear regression, sequence

alignment and clustering.

3 Thesis Structure

Chapter II gives all the necessary background information for the thesis through a com-

prehensive literature review. We introduce combinatorial machine learning briefly and

then describe some relevant, fundamental concepts such as mathematical/combinatorial
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optimization, and computational complexity. Subsequently, the main focus of this the-

sis — combinatorial machine learning problems — is introduced. Having described the

main problem, we refer to the literature to discuss what is already known about the

topic, and also familiarize ourselves with the mathematical tools that we will use in

Chapter III.

Chapter III introduces all the technical details. First we give some fundamental

descriptions and then we state the general form of Bellman’s recursion. Afterwards, we

use semiring homomorphims to gain some effectiveness. After representing problems

in this framework, we expand the scope of applicability it by adding constraints via

lifting. We then simplify the lifting using algebraic arguments, optimizing the efficiency

of the derived algorithms. At the end of the chapter, we revisit the tupling method to

examine what benefits we can obtain from it.

Chapter IV explores the application of the resulting formalism, to develop novel

algorithms for some well-known mixed contiuous-combinatorial problems in machine

learning.

Chapter V reports on computational tests of the implementation of our derived algo-

rithms on some real and synthetic data, as well as examining the practical performance

of these algorithms. We discuss the advantages and disadvantages of these derived

algorithms, comparing them with existing heuristic algorithms for the same problems.

Finally, Chapter VI concludes the thesis by discussing future directions in this area

posing new questions raised by the novel research presented here. We will also provide

some useful supplementary information such as tables of widely used semiring structures

and constraints, and their applications, in the Appendices.
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Chapter II

Background

1 Related Work

The foundation of modern machine learning dates back to 1949 and is inspired by

Donald Hebb’s model of brain cell network interactions. Hebb’s theories on neuron ex-

citation and inter-neuronal communication are presented in Hebb [1949]. In 1957, the

psychologist Frank Rosenblatt used Hebb’s model in his textbook Rosenblatt [1957] and

created the perceptron, which was the first neuro-computer that was deployed for image

recognition. A decade later, nearest neighbor algorithm was invented by Cover and Hart

[1967] to solve the traveling-salesman problem (TSP), which was the beginning of pat-

tern recognition [Foote, 2022]. Indeed, TSP is originally an optimization problem, more

specifically a combinatorial optimization problem (See Section 3); therefore, machine

learning requires mathematical optimization.

Mathematical optimization has an established history dating back to 300 BC. Euclid

observed the minimum distance between two points on a line; and proved that a square

has the maximum area among other rectangles with the same total edge length [Sim-

son, 1838]. In the 17th century, Newton and Leibniz independently developed calculus

which forms the basis of continuous optimization problems [Thomas and Finney, 1961].

Studies during WW II, which required effective military responses while using limited

resources, showed the direct impact and utility of mathematical optimization [Dantzig

and Thapa, 2006]. Today, mathematical optimization is widely used to solve real-world

problems in areas such as economics [Intriligator, 2002], civil engineering [Easa and

Hossain, 2008] and electrical engineering [Angell and Kirsch, 2004]. Mathematical op-
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timization is a vast subject and has many sub-fields such as linear programming (LP),

integer programming, and combinatorial optimization.

Combinatorial optimization is a relatively young research area, which was developed

in a variety of different research directions that separately take into account problems

such as the TSP, minimum spanning tree and optimal assignment [Schrijver, 2005]. In

1950s, operations research received a lot of attention, which led putting these problems

into one framework and links between them were established [Schrijver, 2005]. The

history of combinatorial optimization cannot be held without linear programming as

Kantorovich [1960] and Koopmans [1960] built the early conceptualization of LP by

the motivation of combinatorial applications. After Dantzig’s work on simplex method

[Dantzig, 1990] and the generic interpretation of LP, the popularity and application ar-

eas of combinatorial optimization were extended with LP techniques [Schrijver, 2005].

For instance, Edmonds [1965] developed the blossom algorithms which constructs max-

imum matchings (pairings) on graphs. Especially for the last three decades, as com-

binatorial optimization are implemented into complex real world problems, there has

been an increasing interest in them [Weinand et al., 2022]. As a result, combinatorial

problems are also common in machine learning [Moshkov and Zielosko, 2011, Bengio

et al., 2018] in the form of feature selection, minimum spanning tree; and the most

common method to solve them is dynamic programming (DP) (See Section 7) .

The “Principle of optimality” was proposed by Richard Bellman to give a general

formalism to dynamic programming problems, which breaks an optimization problem

into sub-optimization problems, Bellman’s recursion [Bellman and Dreyfus, 1962]. Af-

ter Bellman’s prescription, there have been many attempts to solve/generalize dynamic

programming problems at various levels of abstraction in the literature. Karp and Held

[1967] represent Bellman’s recursion with another formalism which handles discrete

decision process as sequential decision process (DDP-SDP) to solve problems such as

6



scheduling, where monotonicity justifies optimizing an associated global objective func-

tion. Helman and Rosenthal [1985] relax the associativity rule of DDP-SDP with the

model which includes separating the ideas of problem structure and computation, and

a special kind of homomorphic map over structural operators. Helman and Rosenthal

[1985] also interpret dynamic programming with tree structures rather than strings

[Curtis, 1996]. We need to emphasize that both Karp and Held [1967]’s and Helman

and Rosenthal [1985]’s formalisms only work for specific types and are not allowed to

be used with different types, as they are not polymorphic (See Chapter III).

Later, Oege de Moor extended Helman and Rosenthal [1985]’s structural approach

to initial data types [De Moor, 1991, Bird and De Moor, 1996]. In the work of De Moor

[1991], an abstraction of DP is based on category theory and relations such as inequali-

ties, which are typical operations for optimization applications of DP algorithms such as

expectations for parameter estimation in natural language processing problems [Li and

Eisner, 2009]. In order to address significant non-optimization uses of DP, it is unclear

how to further adapt this relational framework to arbitrary semirings (See Definition 4)

despite it being polymorphic. Goodman [1999] and Huang [2008] use implicit different

semirings with their polymorphic structures in DP algorithms for specialized appli-

cation domains such as natural language processing across graphs and hyper-graphs.

However, they only address special DP algorithms, which are not general.

Alternative to dynamic programming, divide-and-conquer (divide et impera) and

greedy are two other approaches to solve combinatorial problems. Unlike dynamic pro-

gramming, divide-and-conquer breaks down a problem into smaller pieces and then

solves each one separately rather than solving it sequentially [Cormen et al., 2009]. An

early implementation of divide-and-conquer algorithms has an old history going back

to Galois, which is now used in fast Fourier transform [Heideman et al., 1985]. In

1945, John von Neumann developed the merge sort algorithm based on the divide-and-

7



conquer manner [Kamlesh et al., 2014]. Divide-and-conquer algorithms provide various

advantages such as structural simplicity, parallel implementation and diversity of appli-

cations from social network partitioning [Pujol et al., 2009] to classification [Frosyniotis

et al., 2003] [Smith, 1985]. However, these algorithms can be computationally demand-

ing and the structure of the algorithm differs depending upon the problem.

The other important method, greedy algorithms were conceptualized by Edsger Di-

jkstra in 1959 to solve spanning tree problems [Dijkstraa, 1959]. In the same decade,

[Kruskal, 1956] and Prim [1957] also developed greedy algorithms to solve shortest path

problems. Later, Cormen et al. [2009] proposed a recursive structured version of greedy

algorithms. Greedy algorithms are used for different areas such as DNA sequencing

[Frieze and Szpankowski, 1998, Kececioglu and Myers, 1995] and computational geom-

etry [Dickerson et al., 1997, Guibas et al., 1993]. However, the main disadvantage of

greedy algorithms is that they may fall into local optimal results, and local optimal

solutions are not always equal to the global optima.

Bird-Meertens formalism (BMF) or Emoto et al. [2012]’s generate-test-aggregate

(GTA) algorithm are two different principles of deriving efficient and correct algorithms

from correct but inefficient specifications [Bird and Meertens, 1987, Backhouse, 1988].

BMF formalism is also referred to as constructive algorithmics as it constructs algo-

rithms from specifications [Hu et al., 1998]. In other words, constructive algorithmics

was designed by Richard Bird and Lambert Meertens to develop an efficient program

from a correct but inefficient initial specification (brute-force for instance) by apply-

ing a series of meaning preservation transformations [Gibbons, 2019]. Constructive

algorithmics and their properties have been widely studied in the literature [Bird and

De Moor, 1996, Jeuring, 1993, Bird, 1987, 1989]. The BMF consists of some fundamen-

tal theorems such as fusion (combining two recursive computations into a single one)

and Horner’s Rule (leveraging distributivity in polynomial division) to solve recurring
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optimization problem structures [Gibbons, 2019].

Another approach, Emoto et al. [2012]’s algorithm, specifies brute-force problems

with a constraint under their GTA framework. Similar to brute-force, GTA generates

every single possible configuration in the search space (generate), but additionally filters

out those that do not match with the constraint (test), and then finally provides the

best option within the elements that survived filtering (aggregate). Emoto et al. [2012]’s

GTA algorithm applies fusion theory to combine generator and aggregator, and also

embeds a filter on the combination to gain computational savings by preventing the

generation of unnecessary subsets [Liu et al., 2014, Emoto et al., 2012]. Nonetheless,

this algorithm requires the problem to be in a list structure and all the components

need to be linked to each other via list homomorphisms.

Regarding the basic motivation, all these frameworks and our thesis aim to increase

the efficiency of problems by considering their exactness. Both BMF and GTA for solv-

ing DP (and other) problems are based on the idea of generate-test-aggregate. Another

way to say this is that they all exploit the same overall pattern of specifying provably

exact algorithms through brute-force enumeration, followed by constraint satisfaction

(filtering), and then aggregation (accumulation). Subsequently, they all use some form

of fusion (and possibly other equational equivalences) and algebraic features to derive

efficient algorithms which are exact by construction.

Both BMF and GTA are created on the list structure which limits the extension

of the area of application because many problems in ML are not structured as com-

putations over (join) lists. Bird-Meertens is a compact notation for dealing with list

computations and equational reasoning in a point-free way for functional programs

expressed in this notation. However, we will not need the full generality of computa-

tions described in the BMF. While Emoto’s GTA framework is based on (free) join list

homomorphisms because it is restricted to lists, their goal is to come up with easily
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parallelizable algorithms, which explains the restriction to join lists.

We will use already existing algorithms to build up our method like the examples

in the literature. More specifically, Morihata et al. [2007] derive efficient algorithms

for DP problems from existing naive but inefficient algorithms by using functions, logic

and the strictly monotone property (preserving the order of sets). Another example is

that Mu and Oliveira [2012] derive programs from specifications which take the form of

Galois connections (functions between ordered sets). Liu and Stoller [2003] propose a

method to solve DP problems, which is based on static incrementalization (a recursive

solving method that uses the memoization technique).

In recent years, solving combinatorial problems in machine learning exactly and ef-

ficiently is an increasing trend. Mensch and Blondel [2018] propose an approach which

uses the continuous relaxation strategy in semirings (smoothing the max operator in the

DP recursion). Choi et al. [2020] use probabilistic circuits to reach exact probabilistic

inference in linear time. Parallel to our method, Belle and De Raedt [2020] use semiring

features to create a semantic framework for generalized sum-product problems. How-

ever, none of these studies mention about constraint for combinatorial problems. Here,

we will propose a different novel approach to solve combinatorial problems in machine

learning exactly and efficiently, which also proposes a generic way to embed constraint.

In the next section, we will start delivering the essential background of our framework.

2 Machine Learning

The study that investigates regularities in data through the use of algorithms is known

as pattern recognition [Bishop, 2006]. An examples of pattern recognition problems are

Kepler’s astronomical observations to determine the rules behind planetary motions in

the 17th century, and recognizing cars from digital number plate images automatically
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[Bishop, 2006].

Since today’s pattern recognition problems are of increasing complexity, hand-

crafted solutions are not able to respond to the demand. From the 1940’s, machine

learning (ML) emerged as the study of finding (or “learning”) patterns by using math-

ematical algorithms implemented in software, which improve themselves automatically

from experience (or “knowledge”) to give useful predictions [Little, 2019]. Widespread

accessibility to the internet has increased the importance and use of machine learning, in

various areas such as digital health monitoring [Badawy et al., 2017], genetics-genomics

[Libbrecht and Noble, 2015], image processing [Singh, 2019] and analysis of human

behavior [Qarout et al., 2020].

By contrast to classical programming, a machine learning system is trained rather

than programmed. Given a task, an ML system is presented with enough training

examples so as to identify the underlying pattern in these examples, which enables the

system to determine the rules for automating the task [Chollet, 2021]. Machine learning

systems predict the structure (or the pattern) from the relationship between input and

output data. As an analogy, ML algorithm determines the recipe from the ingredients

list and the prepared dish; whereas classical programming produces the dish with the

ingredients and a recipe.

Traditionally, machine learning has been divided into three fundamental kinds of

data analysis tasks: regression, classification and dimensionality reduction & clustering

[Mitchell, 1997]. In this thesis, our main focus will be on regression and clustering.

2.1 Regression

Regression is a widely used tool for analysis and prediction, which goals to find the

associative mapping f : SP → S between P -dimensional data X = {x(i)
p }

N,P
i=1,p=1 and

desired continuous targets Y = {y(i)}N
i=1 where N is the number of observed samples
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[Sykes, 1993, Raykov and Saad, 2022]. Once we find the relationship between X and

Y we can make predictions about Y with given X. In the literature, regression has

been studied in different forms such as linear regression [Weisberg, 2005], polynomial

regression [Cheng and Schneeweiss, 1998], logistic regression [Wright, 1995] etc..

Linear regression which is a widely utilized form of regression, fits a line through

data to establish a relationship between covariates and their effects, as shown in Figure

1(b). Here, a line y = αx+β where x a vector with size N , α represents the slope and β

is the intercept, fits through data subject to an error function (commonly sum-squared

error). Let P be a set of points in the plane, denoted (x1, y1), (x2, y2), . . . , (xN , yN); and

L is the line, and then the estimation error (E) of L with respect to P is the sum of its

squared distances to the points in P:

E(L,P) =
N∑

n=1
(yn − αxn − β)2 (2.1)

where x1 < x2 < . . . < xN . The main goal is to minimize this fit error [Kleinberg and

Tardos, 2006].

2.2 Clustering

Clustering is a conventional machine learning technique that is mainly used to determine

assignments from unlabeled data in many areas [Raykov et al., 2016] such as social media

analysis [Luo et al., 2014], neuroscience [Yang et al., 2014], bio-informatics [Saeed et al.,

2012] and image processing [Bogner et al., 2013]. In other words, clustering is the task

of partitioning data into small groups where data points associated with each cluster

share more structure between each other then with the rest of the data. There are a

very large number of clustering techniques such as k-means [Bishop, 2006], DP-means

[Kulis and Jordan, 2011] and Maximum a-posteriori DP (MAP-DP) [Raykov et al.,

12
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Figure 1: An illustration of linear regression. Arbitrary data in (a), and a line fitting this data in
(b).

2016].

Clustering methods can be divided into two principal categories: hierarchical and

partitional [Omran et al., 2007]. Here we will examine partitional clustering methods

with distance-based similarity measures. As mentioned previously, clustering is the

process of identifying groupings or clusters that occur naturally within a set of data.

Similarity measures are, therefore, a fundamental component of most clustering algo-

rithms [Omran et al., 2007]. One of the most applied similarity measures is distance

measure with Euclidean distance being a popular measurement of choice:

||xn − yn|| = (1/2)
N∑

n=1
(yn − xn)2 (2.2)

which is a special case of Minkowski metric [Jain et al., 1999].

Highly dimensional data can be transformed into a useful representation with re-

duced dimensionality in a process referred to as dimensionality reduction [Van Der Maaten
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et al., 2009]. One of the most used dimensionality reduction method is feature selec-

tion, is used to control the number of input variables for a predictive model [Liu and

Motoda, 2007]. Specifically, in real-world applications, there may be an intractably

large number of input variables. Using each variable is computationally challenging

and reduces the interpretability of the prediction algorithm. Therefore, the number

of features needs to be reduced. For instance, a real life example could be that of a

company only interested in a specific criterion (i.e. programming skills) within a group

of features (from candidate CV) in order to select suitable applicants for a software

post at the company. As clustering is employed to group large scale data into certain

number of clusters, clustering is a kind of dimensionality reduction

Although there are many different machine learning problems, common to nearly

all machine learning algorithms is a loss function which is minimized over a training

data set [Sra et al., 2012]. In this context, a loss function measures the algorithm’s

performance by aggregating over mismatches between the expected and actual results

[Chollet, 2021]. The measurement can be used as feedback so that algorithms can adjust

their parameters to reach an optimal solution. The “learning” part actually comes from

these adjustment steps [Chollet, 2021]. As a result, machine learning cannot generally

be separated from optimization, which is the topic of the next section.

3 Mathematical Optimization

Optimization is the discipline of determining the ‘best’ result among a set of other

available alternatives under given constraints [Dantzig and Thapa, 2006]. Formally, all

constrained optimization problems can be represented in the following general form:

max (or min) f(x), x = (x1, x2, . . . , xN) ∈ X (3.1)
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subject to the constraints:

gm(x) ≤ 0, m = 1, 2, . . . , M

hr(x) = 0, r = 1, 2, . . . , R
(3.2)

where f(x) is the objective function or cost function, g(x) and h(x) represent the

inequality constraint functions and equality constraint functions respectively [Snyman,

2005]. The objective function f(x) can be either linear or nonlinear whereas the type

of constraint functions affects the form of the problem directly [Yang, 2008]. Here,

xn of x ∈ X are called as decision variables, and they can be either continuous e.g.

X = R such that xn ∈ RN , or discrete or combinatorial when X consists of finite set,

or countably finite as X = {0, 1}N such that xn ∈ {0, 1} [Yang, 2008]. X is called

the search space, while objective function values form the solution space [Yang, 2008].

The optimization problem essentially maps the search space into a solution space. For

instance:

min(x2 + 1), x ∈ R (3.3)

subject to:

x ∈ (−∞,−1] (3.4)

is a minimization problem that aims to find a feasible value (one which satisfies the

constraint equations) where the objective function is minimal in R. The notation is

equivalently represented as

arg min
x∈(−∞,−1]

(x2 + 1) (3.5)

15



where arg min is argument of the minimum, which expresses the value(s) that minimizes

(or maximizes with arg max) the objective function under the constraint. Here, as we

go through in the entire search space, the optimal solution is called global optima (or

global optimal value). However, if it was the optimal value for a certain neighborhood

(or part) of search space, then the solution would be named as local optima (or local

optimal value). In some cases, the local optimal value can be equal to the global

optima [Pedregal, 2006]. An optimization problem which does not require constraints

is called an unconstrained optimization problem [Snyman, 2005]. In this thesis, we will

focus on; as a sub-field of mathematical optimization, mixed continuous-combinatorial

optimization as well as its connection with machine learning problems.

3.1 Combinatorial optimization

Combinatorics is the mathematical study of the ordering, grouping, arrangement, or

collection of a discrete set of objects, usually of a finite size [Lawler, 2001]. As discussed,

combinatorial optimization aims to find the ‘best’ order, group or arrangement of a

discrete set of elements. Well-known combinatorial optimization include the traveling-

salesman and 0-1 knapsack problems. The 0-1 knapsack problem aims to fill a bag with

a given set of items, each with a given weight and non-negative value, by subject to a

weight limit, so as to maximize the total value of the items. As these combinatorial

problems are mathematical optimization problems, (3.1) and (3.2) are reformulated as

(3.6) and (3.7) with N number of items and weight limit W :

max
∑

n∈ 1,2,...,N

xnvn, xn ∈ {0, 1}, vn ∈ R (3.6)

subject to:
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∑
n∈ 1,2,...,N

xnwn ≤ W, wn ∈ Z (3.7)

where xn is the number of instances of item n with assigned a weight wn and a value

vn. In (3.7), xn ∈ {0, 1} says that an item can be chosen only once or not at all.

We will come back to the knapsack problem later on. We will briefly discuss other

combinatorial problems. The following list suggests that combinatorial problems can be

grouped according to their combinatorial object, e.g. sorting, permutations, partitions,

subsets, calendars and schedules.

• Sorting deals with the arrangement of a set of elements in increasing or decreasing

order [Skiena, 1998].

• Searching investigates methods that locate and recall information stored in data

structures [Skiena, 1998]. There are very common problems in computer science,

often dealing with tree structures to store data.

• Median and selection aims to find the item that has the middle value, or a

certain sorted rank, within the list of items [Skiena, 1998].

• Permutations permutes N number of items from a list of numbers [Skiena, 1998].

For example, arranging a seating plan of a group of people at a round table.

• Subsets refers to the set of all possible selections of elements of a set, of which

there are 2N for a set with N number of elements [Skiena, 1998].

• Partitions finds possible ways of separating a set into groups. For example; the

partitions of 4 into groups which, when added sum up to 4, are {4}, {3, 1},{2, 2},

{2, 1, 1} and {1, 1, 1, 1}.
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• Graphs are objects with vertices connected by edges, where the edges may have

values [Skiena, 1998].

All the kinds of problems above can be “solved” with either exact or heuristic meth-

ods [Lawler, 2001]. The main difference between these two methods is that exact

methods guarantee that the solution is globally optimal, whereas heuristic methods do

not provide any guarantee that the solution is globally optimal [Rothlauf, 2011]. A

good example of an exact method is perhaps the most obvious method, brute-force. A

brute-force algorithm finds the optimal result by evaluating all possible combinatorial

configurations. On the other hand, greedy algorithms are an ideal example of a heuristic

algorithm, which provide a result by identifying locally optimal solutions at each step,

which does not guarantee the global optimality.

To illustrate the above ideas, let us take a toy example of the 0-1 knapsack prob-

lem with items x1 and x2 which have (v1, v2) = (20, 40) values and (w1, w2) = (2, 5)

weights, subject to the weight constraint W = 6. A brute-force algorithm would

check every single weight configuration in the search space, e.g. the set of pairs

(x1, x2) = {(0, 0), (0, 1), (1, 0), (1, 1)}, and can find the optimal solution by selecting

the pair with the largest total value which satisfies the constraint. A greedy algorithm

would check the ratio of value and weight and then place items in the bag beginning

with the one with the highest ratio. In this case, the ratios are r1 = 10 and r2 = 8, and

the algorithm naturally selects only the first item as it has the larger ratio value such

that the weight limit can not be exceeded. However, the optimal solution is a bag with

the second item only as it has a higher value.

As this example demonstrates, heuristic methods are not guaranteed to find the

optimal solution. Exact solution methods have the problem that, checking all possible

combinatorial configurations exhaustively, may not be practical for a much larger data

set. This raises the question of, “What is practical?” or “Is there any threshold that
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we can apply to separate methods which practical from impractical?”. Answering this

question is the topic of the next section.

4 Concepts in Computational Complexity

A key criterion for evaluating an algorithm’s performance is its efficiency. In this

context, efficiency can be examined in terms of both time and space. The number of

fundamental computational steps that are needed to execute an algorithm is referred to

as time efficiency. Space efficiency refers to the number of fundamental data structures

that have to be stored in computer memory to execute a program [Goldreich, 2008].

The required time and space are measured with respect to N , the size of the input data

for the algorithm. More data usually demands more computational space and time

[Goldreich, 2008].

Time complexity is determined by reference to the worst-case scenario. For instance,

to find a specific person from a group of N people , we would need to ask each individual;

the best-case scenario would be finding the person in the first step. However, there is no

guarantee of finding the desired person in any specific turn, which leads us to argue that

the worst-case scenario is that we must question every individual. Therefore, the order

of the time complexity equals the size of the possible steps, N , which it the number of

people in the group.

In general, the specific amount of time or space required to execute an algorithm,

is a property of a specific hardware or software implementation. Therefore, instead, we

are more interested in the relative computational resource requirements under changing

algorithm input size [Little, 2019]. For instance, given a specific hardware setting, one

algorithm (a) requires a(N) = 2N3 fundamental steps to be executed and another

algorithm (b) needs b(N) = 1/2N3 steps. Thus, although algorithm (a) requires four
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times more fundamental steps than algorithm (b), as N increases, this 1-4 ratio does

not change. We therefore say that both algorithms have the same time complexity of

order O(N3).

Definition 1. (Big-O Notation): The order of time complexity is symbolized with

big-O notation, which is defined as f(x) = O
(
g(x)

)
as x → ∞. This indicates that

there is an upper bound which satisfies

∣∣∣f(x)
∣∣∣ ≤ c×

∣∣∣g(x)
∣∣∣, for all x ≥ x0 such that x0 ∈ R (4.1)

where c is a positive constant [Skiena, 1998].

As the degree of a function is determined by the most dominant term, big-O notation

measures only the highest degree term. For instance, the time complexity order of an

algorithm which takes 2N3 + 7N steps, is O(N3) as 2N3 is the dominant element.

The order of the complexity is determined by the class of the function measuring it.

For instance, an algorithm with O(N) complexity has linear time complexity. Table 1

gives a hierarchy of computation complexity.

Order Name
O(1) constant

O
(

log(N)
)

logarithmic
O(N) linear

O
(
N log(N)

)
log-linear

O(Nk), k > 1 polynomial
O(kN), k > 1 exponential

O(N !) factorial

Table 1: Computational complexity order classes, in big-O notation. Most efficient classes at the
top, down to the least efficient at the bottom [Little, 2019].

As the table demonstrates, constant time complexity requires the least computa-
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tional time effort, by contrast, factorial time complexity demands the highest. Figure

2 gives a visual demonstration of the computational complexity classes listed in Ta-

ble 1 for small sizes. From the figure, it is clear that exponential and factorial time

complexity orders increase dramatically with N , whereas log(N) rises very slowly.

2 3 4 5 6 7 8 9 10

0

2

4

6

8

Figure 2: A representation of computational complexity classes listed in Table 1 for small sizes using
assigned curves.

Efficiency for small N can be quite specific. For example, consider two different

algorithms, one taking f(N) = 3
20N2 number of steps and another g(N) = 20N − 50

steps. Which one is more efficient? For small N it depends on the value of N . In this

case, for N ≤ 130, algorithm g(N) is more efficient, but for N > 130 algorithm f(N)

is more efficient [Dasgupta et al., 2008], see Figure 3.

Under more realistic circumstances, there are significant practical differences be-

tween the order classes. For example, exponential time computations require extremely

large amounts of time. As a specific example, finding the Nth element of the Fibonacci

sequence with Algorithm 1 requires 20.694N elementary computer steps to solve [Das-
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Figure 3: The required computational steps for f = 3
20 N2 and g = 20N − 50. The efficiency

performance entirely depends on the size of N e.g. for N ≤ 130, algorithm g(N) is more efficient, but
for N > 130 algorithm f(N) is more efficient.

gupta et al., 2008]. The Fibonacci sequence is a sequence of numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . (4.2)

where each element is the sum of its two immediate predecessors [Dasgupta et al., 2008].

Algorithm 1 requires 227 computational steps to find the 40th element of Fibonacci se-

quence, which takes 134.572 seconds on a Intel Core i7 2.80 GHz, 8 GB RAM machine.

Although this seems like a reasonable time for a relatively small example, this would be

prohibitive for even N = 50, which takes 4.5 hours to perform with the same machine.

Algorithm 1 Exponential-time complexity Fibonacci algorithm [Dasgupta et al., 2008]
function fib1 (N)

if N = 0; return 0
if N = 1; return 1
return f [N − 1] + f [N − 2]
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Algorithm 1 is not practically feasible has O(2N) computational complexity. The

reason for this is that many computations are repeated. However, it is possible to

enhance the performance if the intermediate results are stored and re-used, as shown in

the more efficient Algorithm 2. This storage and re-use technique is called memoization.

Algorithm 2 Linear Fibonacci algorithm [Dasgupta et al., 2008]
function fib2 (N)

if N = 0; return 0
f [0] = [0], f [1] = [1]
for i = 2...N

f [i] = f [i− 1] + f [i− 2]
return f [N ]

In this case, memoization reduces the complexity to linear time, O(N), so that

Algorithm 2 executes the same problem (N = 50) within a second with the same

machine [Dasgupta et al., 2008]. This large difference in computational steps and

the time required to execute them illustrates the difference between computational

complexity classes. To understand these classes, let us consider decision problems which

are identified as “yes, or no questions” of the input values. For instance, finding prime

numbers from a list is a decision problem as elements are checked regardless of whether

they are prime numbers or not. So far, we have considered optimization problems

and the complexity theory is on decision problems. However, we can always recast an

optimization problem as a decision problem by adding a constraint and asking if the

solution satisfies the constraint [Cormen et al., 2009]. The traveling-salesman problem

(TSP) is a good example of this transformation. The TSP requires finding the shortest

possible tour of a salesman who can visit each city in the tour only once [Potvin, 1993].

Once we add a constraint e which indicates that the shortest TSP tour must spend less

or equal energy than e, the TSP become a decision problem.

Another important point we need to highlight is the difference between deterministic

and non-deterministic algorithms. The main difference between these two algorithms is
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how solution steps are executed. The deterministic algorithms execute one step in each

iteration, whereas non-deterministic methods can execute multiple steps in each turn.

Nonetheless, non-deterministic algorithms are theoretical models which are impractical

[Cormen et al., 2009]. Emoto et al. [2012]’s generate-test-aggregate algorithm is a nice

illustration of how non-deterministic algorithms work, as GTA is an implementation of

brute-force solution search algorithms, and brute-force algorithms have a close concep-

tual fit to non-deterministic implementation [Floyd, 1967]. After giving the essential

background for the complexity classes, we can divide them as below:

1. Polynomial-time (or P) problems represent decision problems which are solv-

able in polynomial time with deterministic algorithms. Polynomial class problems are

identified as “tractable” problems [Harel and Feldman, 2004].

2. Non-deterministic Polynomial-time (or NP) problems are identified as the

problems solved by non-deterministic algorithms in polynomial time. With determinis-

tic algorithms, solving NP problems may require exponential time complexity, but they

are verifiable in polynomial time. What we mean by verifiable is that it is possible to

check the accuracy of a given solution for an NP problem. For example, let us consider

the TSP again where we want to check if the given solution satisfies the energy con-

straint. We can easily calculate the amount of energy that the proposed path requires

and see if it is below or above the limit, whereas solving the problem with a brute-force

algorithm could require factorial time complexity [Cormen et al., 2009].

3. Non-deterministic Polynomial-time Complete (or NP-Complete) prob-

lems are the hardest NP problems. A decision problem L is accepted as an NP-complete

problem if it is in NP and all problems in NP are reducible to L in polynomial time.

Here, the reduction is a transformation of one problem to another to use the related

first algorithm in the second one. NP-complete problems are accepted as “intractable”

problems [Cormen et al., 2009, Harel and Feldman, 2004].
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4. Non-deterministic Polynomial-time hard (or NP-hard) problems also

require reducibility. Same as above, a decision problem M is accepted as an NP-hard

problem when all problems in NP-hard are reducible to M in polynomial time [Cormen

et al., 2009].

To sum up, the complexity of these classes is ordered as P, NP, NP-complete, and

NP-hard, respectively. NP-hard problems do not have to be in NP, but they may

be included in NP. NP-complete problems lie at the intersection of NP and NP-hard

problems. P problems are considered “easy” as they can be solved efficiently, while

NP-complete and NP-hard problems are considered the most difficult or intractable

problems. For example, combinatorial problems with exhaustive solutions, such as the

solution for the 0-1 knapsack problem, are NP-hard problems, which require exponential

time complexity.

Where possible, more efficient algorithms are always preferable for reasons shown

above. Even if an initial formulation of an algorithm is not efficient, there are ways to

improve its efficiency. This is possible by using special techniques such as memoization

described above for Fibonacci numbers. In this same manner, the divide-and-conquer

method could be another example. As mentioned, this method simply transforms com-

plex algorithms into manageable components to solve them more efficiently [Roman,

2017]. In detail, divide-and-conquer is a solving technique which divides a problem into

sub-problems solving them independentely before combining them at the end to obtain

computational save [Bentley and Shamos, 1976].

Our last example is the computation of the discrete Fourier transform. The de-

fault algorithm has time complexity O(N2), but this can be reduced O(N log N) by

exploiting mathematical symmetries in the problem [Little, 2019]. Using this technique

a polynomial time complexity class algorithm can be reformulated as a log-linear com-

plexity algorithm. However, not all mathematical problems have such highly efficient
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algorithms.

5 Combinatorial Machine Learning (ML) Problems

The traveling-salesman problem (TSP) an example of a well-known combinatorial prob-

lem. To solve the TSP exactly, we need to consider every possible sequence of cities vis-

ited, which requires factorial time complexity. For instance, it would require (N)! = 11!

different possible sequences if N = 11 cities are given [Potvin, 1993]. There are many

different heuristic approaches to solving the problem [Nilsson, 2003]. As an example,

the nearest neighbor method works as follows; firstly, it selects a random city, and then

finds the nearest unvisited city and repeats this process until there are no cities remain-

ing unvisited, before finally returning back to the first city [Nilsson, 2003]. Nearest

neighbor performs executes in polynomial time, in fact O(N2) for N cities, but it can-

not guarantee optimality as the initial city is chosen completely at random [Nilsson,

2003].

There are many combinatorial problems in ML, which makes substantial use of

combinatorial objects, such as subsets in feature selection [Hall and Smith, 1998] and

partitions in classification [Chou, 1991]. As we have seen in knapsack and TSP exam-

ples; heuristics simplistic and exact methods are unsatisfactory as either the solution

is not guaranteed to be optimal, or it is guaranteed optimal but the computations re-

quired to find the solution are impractical. As the machine learning algorithms are

employed in many critical areas, this lack of provable, efficient optimality is now a big

challenge in real-world applications [Murray et al., 2005]. One of the most well known

combinatorial machine learning problems is k-means clustering.
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5.1 k-means Clustering

A widely employed clustering algorithm is that k-means clustering is formalized as given

a set of data points x1, x2, . . . , xN ; to find labels ℓ1, ℓ2, . . . , ℓk to minimize the following

objective function:

min
{ℓc}k

c=1

k∑
c=1

∑
x∈ℓc

||x− µc||22 (5.1)

where µc = 1
|ℓc|
∑

x∈ℓc
x. This unsupervised methods start with selecting k number of

centroids arbitrary, and then assigns each data points xi, i ∈ 1, 2, . . . , N with a centroid

through reducing the in-cluster sum of squares ℓ∗(i) = argminc||xi−µc||22. The centroids

are kept reassigned and the mean of each clusters µc for all c are updated until reaching

a minimum value of the objective function [Kulis and Jordan, 2011]. Each step executed

to reach a solution are named as iteration. This process performs with restarts to get

better solution.

As the main goal is to minimize the objective function, k-means clustering can be

seen as an optimization problem. However, k-means algorithm is also a heuristics of

which the optimality is not guaranteed. As the initial centroids are arbitrary, algorithms

can not satisfy the clustering repeatability, and each turn could end up with a different

result. For instance, we can find an optimal solution after M number of restarts, but

the most optimal solution might be found in the (M + 1)th turn.

In conclusion, existing methods for solving combinatorial machine learning problems

do not meet with the modern-day demands on reliability and efficiency. With this

in mind, the motivation for this thesis is to seek methods for solving combinatorial

machine learning problems exactly, under practical time constraints. To achieve this,

we will construct a theoretical framework which aims to create a practical synthesis of

successful solutions to this problem. To do this, in the next section, some fundamental
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abstract algebraic structures will be considered, which will form a crucial part of this

synthetic framework.

6 Abstract algebra: monoids, groups and semirings

To build up the theory, we begin with some fundamental definitions.

Definition 2. (Monoid): Let M be a set, and ⊕ an operation on M. M = (M,⊕) is

called as a monoid if the following properties are satisfied;

• (closure) for any x, y ∈M, x⊕ y ∈M,

• (associativity) for any x, y, z ∈M, we have (x⊕ y)⊕ z = x⊕ (y ⊕ z),

• (identity left and right) there exists identity element ı ∈ M such that for any

x ∈M, we have ı⊕ x = x⊕ ı = x (also symbolized as ı⊕) [Lang, 2012].

For instance, (R\{0},×) is a monoid as it is closed, associativity applies and 1 is the

identity element.

Definition 3. (Group): Let M be a set, and ⊗ an operation on M. M = (M,⊗) is

called as a group if the following properties are satisfied;

• (closure) for any x, y ∈M, x⊗ y ∈M,

• (associativity) for any x, y, z ∈M, we have (x⊗ y)⊗ z = x⊗ (y ⊗ z),

• (identity left and right) there exists identity element ı ∈ M such that for any

x ∈M, we have ı⊗ x = x⊗ ı = x (also symbolized as ı⊗),

• (inverse) for any x ∈M, there exists y ∈M such that x⊗ y = y ⊗ x = ı.
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For example, (R\{0},×) is also a group as each element has an inverse e.g. 1/a ∈ R\{0}

holds for all a ∈ R\{0}[Lang, 2012].

Definition 4. (Semiring): (M,⊕,⊗) is a semiring if (M,⊕) is a monoid with ı⊕

identity element, which satisfies for any x, y, z ∈M:

• (commutativity) x⊕ y = y ⊕ x,

(M,⊗) is a monoid with ı⊗ identity element and ⊗ distributes over ⊕:

• (distributivity left) x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z),

• (distributivity right) (x⊕ y)⊗ z = (x⊗ z)⊕ (y ⊗ z),

and then ı⊕ is the zero element of ⊗, which annihilates over ⊗:

• (right annihilator) x⊗ ı⊕ = ı⊕,

• (left annihilator) ı⊕ ⊗ x = ı⊕ [Lothaire, 2005].

A semiring can also be identified as M = (M,⊕,⊗, ı⊕, ı⊗) where ı⊕ and ı⊗ are the

identity elements for ⊕ and ⊗ respectively. For example, R = (R,+,×, 0, 1) is a

semiring as (R,+) is commutative, × distributes over +, and a× 0 = 0 for all a ∈ R.

In abstract algebra, a problem can be handled in different structures/operators,

which is possible with a structure-preserving map between two identical algebraic struc-

tures (e.g. monoids, groups), homomorphism [Beachy and Blair, 2019].

Definition 5. (Monoid homomorphism): Given two monoids (M,⊕) and (M′,⊕′)

, a function hom : M→M′ is called a monoid homomorphism from M = (M,⊕) to

M′ = (M′,⊕′) if and only if:

hom ı⊕ = ı⊕′

hom(x⊕ y) = hom x⊕′ hom y

(6.1)
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For example; the log function which takes the logarithmic value of all elements in a list

are a monoid homomorphism from (R+,×) to (R, +):

log(1) = 0

log(x× y) = log(x) + log(y)
(6.2)

such that x, y ∈ R+.

Definition 6. (Semiring homomorphism): Given two semirings (M,⊕,⊗) and

(M′,⊕′,⊗′), a function hom : M→M′ is called semiring homomorphism from (M,⊕,⊗)

to (M′,⊕′,⊗′) if the following conditions are satisfied:

g(ı⊕) = ı⊕′

g(x⊕ y) = g(x)⊕′ g(y)

g(ı⊗) = ı⊗′

g(x⊗ y) = g(x)⊗′ g(y)

(6.3)

for all x, y ∈M [Allen, 1969].

Such abstract algebraic ideas have been explored to improve the effectiveness of

established algorithms or to create more efficient novel algorithms [Kaltofen, 1989].

If a question is defined in an algebraic structure e.g. semiring, then it can be ma-

nipulated with algebraic features thanks to various similarities and properties of each

algebra. In this case, the question relates to how algebraic features can contribute in

a computational manner. For instance, we can consider the following toy example; let

a1, a2, . . . , aN and c ∈ N0, with which we want to evaluate the following expression:

c×a1 + c×a2 + . . . + c× aN (6.4)

we would need to use n multiplication and (N − 1) addition operations, which costs
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(2N − 1) computational steps. However, as N = (N0,+,×, 0, 1) is a semiring, using

distributivity we can reformulate the above as

c×a1 + c×a2 + . . . + c× an = c× (a1 + a2 + . . . + an) (6.5)

so that, using this feature of the algebra (distributivity) we can decreases the compu-

tational to N steps. Distributivity is an exchange in the order of operations. In simple

terms, we use the addition operator first and then multiplication rather than applying

them in the reverse order. This simple abstract algebraic rule and others can be applied

to more complex algorithms to save computational time and space.

7 Dynamic programming (DP) and Directed Acyclic

Computation Graphs (DAG)

In early 1950s, Richard Bellman introduced a new approach to solving combinatorial

optimization problems, known as dynamic programming (DP) [Bellman, 1952].

Definition 7. (Dynamic Programming): Dynamic programming is an optimization

approach that transforms a complex problem into a sequence of simpler problems;

which solves problems in a divide-and-conquer logic recursively and uses the overlapping

solution to prevent recalculation [Huang, 2008, Bradley et al., 1977].

DP has numerous areas of application from speech recognition [Silverman and Mor-

gan, 1990] to finance [Elton and Gruber, 1971]. For instance, Algorithm 2 is a useful

example to show how DP and its essential memoization technique can be utilized. Tradi-

tionally, DP problems have three important characteristics; stages, states and recursive

optimization.

Conventional DP approach structures an optimization problem into multiple stages,
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which are solved sequentially one stage at a time. Each one-stage problem in the

sequence is solved as an ordinary optimization problem and then its solution is used

to define the characteristic of the next one-stage problem [Bradley et al., 1977]. For

instance, let us consider the traveling-salesman problem (TSP) once again. Here, each

city represents a stage.

The states of the process are associated with each stage of the optimization problem.

The information needed to fully assess the implications of the current decision on future

actions is reflected by the states [Bradley et al., 1977]. The structure of a DP algorithm

is determined by the relation between states [Bradley et al., 1977]. As an example of

states in DP, the city of departure in TSP is the initial state of the problem.

The recursive optimization procedure obtains the solution of the overall N -stage

problem by first solving a one-stage problem followed by a sequence of remaining stages.

Repetition of this process until the overall optimum is found, is the final general char-

acteristic of the DP approach [Bradley et al., 1977].

All dynamic programming problems can be expressed as a special case of Bellman’s

recursion which obtains exact solutions to combinatorial problems by assembling solu-

tions to “self-similar” sub-problems [Bellman, 1957]. In other words, Bellman’s recur-

sion provides the most optimal solution at each stage depending upon the solution to

already-computed stages. For instance, in TSP, the global optimal result for N th city

can be reached by using the optimality result of (N − 1)th city. Formally, TSP can be

formalized as below;

C(n, V ) = min
{

C
(
m, V − {m}

)
+ d[n, m]

}
, m ∈ V and n /∈ V (7.1)

where d[n, m] is the distance between cities n and m, V is the cities; C
(
m, V −{m}

)
is
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the cost of the path that starts from city m [Bellman, 1962]. DP creates 2N subproblems

for each city where N is the total number of city, which means N × 2N subproblems to

reach a solution. DP for TSP then requires O(2N) time complexity; although this is an

exponential, it is still far better than exhaustive solution with O(N !) complexity.

One major drawback of dynamic programming is that the level of systematicity

is low as most algorithms are derived in an ad-hoc, problem-specific manner. Huang

[2008] proposes a framework which describes DP problems, which can be solved Viterbi

algorithms or Dijkstra’s algorithms; with the sub-problem structure using a graph for-

malism over semirings. Here, Viterbi algorithms are topological order algorithm (e.g.

finding the shortest path in the US from East Coast to West Coast) and Dijkstra’s algo-

rithms are the graph algorithms that aim to find shortest path within a graph [Huang,

2008].

Definition 8. (Graph/Directed Acyclic Graph): A graph G (or network) is a

mathematical structure which is formed by a finite set or vertices (nodes) V and edges

(links) E, which is represented as G = (V,E). Vertices are connected via edges. The

graph is called directed when there is a specific directionality to the edge [Diestel, 2000].

A common form of directed graph is the directed acyclic graph (DAG) which has no

cycles (or loops), as represented in Figure 4.

The DAG is a conceptual way to represent dependencies of events [Kleinberg and

Tardos, 2006]. The order of the dependencies is depicted by a graph, and events are

represented by vertices, which are linked via edges. For instance, a DAG structure

can represent a distribution chain of a delivery company from the main hub to small

distribution points.

DAG is named as weighted directed acyclic graph when a homomorphism w : E→ S

assigns each edge to a weight from the semiring (S,⊕,⊗, ı⊕, ı⊗) [Huang, 2008]. A

weighted DAG works recursively as each of the nodes indicate the value of the solution at
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Figure 4: A representation of directed acyclic graph where the nodes (dots) are vertices, and con-
nectors (arrows) are edges. An acyclic graph is directed when no cycles (or loops) are presented.

each stage, and the weighted dependency of each stage on previous stages is represented

by the graph edges.

Let us focus on an unbounded knapsack problem to illustrate how DAG can be

used to represent a brute-force solution first, and then see how DAG can be used

to solve a dynamic programming problem. Here, in comparison with a 0-1 knapsack

problem, items can be used multiple times in an unbounded knapsack problem [Salkin

and De Kluyver, 1975]. For the problem, we have three different items with the values

{40, 5, 45} and weights {3, 1, 4} and weight limit W = 6 . We can represent the problem

in mathematical optimization framework with the object and subject functions as below:

max(40x1 + 5x2 + 45x3), x1, x2, x3 ∈ N0 (7.2)

subject to:

3x1 + x2 + 4x3 ≤ 6 (7.3)

and this problem can be transformed into a DAG representation, see Figure 5. Here,

the DAG nodes represent states with different bag configurations corresponding to the

weight capacity of the bag. For instance, the node assigned with w = 0 represents
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v =40

Start

W =2 W =3 W =4 W =5 W =6
v =0

W =0 W =1
v =0v =0v =0 v =0 v =0 v =0 v =0

v =5 v =5 v =5 v =5

v =40

v =5 v =5 

v =40 v =40 v =40

v =45 v =45 v =45

v =40

End
v =0

Figure 5: Unbounded knapsack problem as a longest path; weight, value and the weight limit are
the fundamental knowledge for the problem. An edge tells the weight of an item with the magnitude,
and shows the value of the item as assigned on it. Nodes represent different weight constraints from 0
to 6. Brute force solution of this problem generates every single path (blue paths) from Start to End,
and then choose the path with maximum value. The red path from Start to End indicates the optimal
solution which requires x1 = 2.

an empty bag while node assigned with w = 3 represents the bag with weight 3. The

magnitude of a single edge gives the weight of an item, and the value of the item is

indexed on the edge. The purpose is to maximize the sum of the edge length. In other

words; as Huang’s semiring graph DP formalism (which is illustrated above) requires,

the knapsack problem becomes a longest path problem [Huang, 2008].

Exhaustively, we can fill an empty bag with different combination of these items

with a weight limit up to 6. Each path represents the addition of an item to the bag or

just skipping the item (horizontal arrows between adjacent nodes). The solution to this

problem is obtained via any path from Start to End node [Zhang et al., 2013]. Start

node represents the empty bag while End node gives the bag with the items giving the

best result. All the possible configurations of the blue lines (edges) from Start to End is

calculated to perform a brute-force solution, and at the end the path with the highest

value is chosen. Among the all possible paths, the red path is the one with highest

value e.g. v = 80 with respect to the weight limit W = 6.

Dynamic programming also solves this problem, by finding the longest path to the
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node with W = 1, and then the longest path to the node W = 2, and so on up to the

final node. In this recursive algorithm, the DP stage is given by;

n ∈ N = {1, 2, . . . , N} (7.4)

and the DP state

m ∈M = {0, 1, 2, . . . , W} (7.5)

where N = 3 is the number of elements, W = 6 is the weight limit for this problem

specifically. The recursion for the unbounded knapsack problem is stated below;

T (m) = max(T (m), T [m− w[n]] + v[n]) when w[n] < m (7.6)

where T is the total value, v[n] is the value of, and w[n] is the weight of item n. To

solve this problem, we have to generate a table that starts with the first item, and the

recursion checks possible solutions that the first item is used as the first row indicates

in Table 2. Afterwards, the same procedure is held for the first and second items; and

then it continues until all the items are considered. Therefore, the DP solution for the

unbounded knapsack problem requires O((W + 1)×N) computational complexity.

m
Index (n) Value Weight 0 1 2 3 4 5 6

1 40 3 0 0 0 40 40 40 80
2 5 1 0 5 10 40 45 50 80
3 45 4 0 10 15 40 45 50 80

Table 2: Dynamic programming solution for the unbounded knapsack problem.
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Chapter III

Methods and Techniques

1 Preliminaries

Let us start the chapter with some fundamental definitions and theories that we will

use later.

Definition 9. (Type): A type is the collection or class of data [Shaffer, 1997].

For instance, False and True are the values of the Boolean type and strings consists

of any sequence of characters in a particular written language e.g. the string “Hello

world”. Data types (or types in short) are manipulated by functions, for example,

addition on the integer data type differs from addition on the type of real numbers

Definition 10. (Parametric Polymorphism): A function acts on all types uni-

formly (or exactly same) when parametric polymorphism holds, such a uniformly-acting

function is called a polymorphic function [Milewski, 2019].

The identity function is the simplest example of a polymorphic function as it just

returns the input element for all types. Another example could be the list length

function, as it maps a list with elements of any type, into the integer corresponding to

the list size [Cardelli and Wegner, 1985].

Definition 11. (Topological Order): In a directed graph G = (V,E), we say that a

total ordering ≺ on vertices V is a topological ordering if for every edge (u, v) ∈ E, we

have u ≺ v [Bender et al., 2009].

Namely, in a DAG structure, for every directed edge from vertex u to vertex v, u

comes before v in the ordering.
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Theorem 12. Given G is a directed a cyclic graph, then G has a topological ordering.

Proof. It is true for the base case when N = 1.

For the induction step, let G′ be a DAG of size ≤ N , and then we assume G′ has a

topological ordering.

Given DAG G with N + 1 vertices. A DAG must have a vertex v without any

parents (otherwise, it contradicts the directed graph being acyclic), then G\{1} is a

DAG since removing v does not create any cycles. From the induction, G′ = G\{1} is

topologically ordered. To create a topological ordering in G, first, we can put v and

then append the topological ordering of G\{1}. This is valid as v does not have any

incoming edges. By induction, the theorem is proven [Kleinberg and Tardos, 2006].

2 A Generalized Bellman’s Recursion

As discussed in the previous chapter, weighted directed acyclic graphs can represent

dynamic programming problems, which also implies Bellman’s recursion with regards

to the graph edges represent weighted dependency of each stage on previous stages. In

Figure 5, we have shown that a knapsack problem can be represented as a longest path

problem in an appropriate DAG.

Here, we will give a presentation of this general correspondence between longest path

problems in a DAG, and a generalized form of Bellman’s recursion. With node labels

V = {1, 2, · · · , N}, edge labels E = V × V and the (set-valued) function P : V → {V}

giving the DAG structure, the DP problem can be described using functional equations

on the DAG. We can represent the longest Start to End path problem as a Bellman’s
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recursion, given the edge weight map function w : E→ R:

f1 = 0

fv = max
v′∈P(v)

(
fv′ + w(v, v′)

)
∀v ∈ V\{1}

(2.1)

where fv is the length of the longest path between node v and the end node, which is a

sub-problem. (2.1) can be defined over the set R, the operators + and max first satisfy

Definition 2 with their identity elements as 0 and −∞; and then the monoid structures

(R, max) and (R, +) also meet the conditions in Definition 4, which leads us to form

a semiring R = (R, max, +,−∞, 0). Once we represent (2.1) in a semiring form, it is

possible to swap the semiring with any other semiring, S = (S,⊕,⊗, ı⊕, ı⊗) [Huang,

2008]. In the abstract, (2.1) over semiring S with edge map w : E→ S becomes:

f1 = ı⊗

fv =
⊕

v′∈P(v)

(
fv′ ⊗ w(v, v′)

)
∀v ∈ V\{1}

(2.2)

which is denoted by fS,w. Let us move on by considering knapsack problem once again

to see why “semiring substitution” is correct. One exact solution to knapsack problem

is exhaustive brute force as it was mentioned in Figure 5. To obtain the exact solution,

we can insert the generator semiring G =
({

[E]
}
,∪, ◦, ∅,

{
[]
})

into (2.2). Here, fG,w′

is the DP recursion that generates all possible elements,
{
[E]
}

is the list of lists which

is the list of all the possible element combinations, ∪ is the union operator, and ◦ is

the cross-join operator which concatenates lists from different sets. For E = N, the

cross-join operator works as below:

{
[1, 2], [3]

}
◦
{
[4], [5]

}
=
{
[1, 2, 4], [3, 4], [1, 2, 5], [3, 5]

}
(2.3)

As all the possible candidates are examined, the optimality must be held for the knap-
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sack problem, which proves that semiring substitution is correct for the special case of

the DP solver for the knapsack problem. As a result, f is a polymorphic function that

satisfies Definition 10.

In the DAG structure, the general form of solving a DP problem over some other

semiring S = (S,⊕,⊗, ı⊕, ı⊗) with associated edge map w : E → S in a brute-force

manner follows the procedure below;

• Mapping each element in each generated path into values of type S.

• Combining the values with ⊗.

• Accumulating over paths with ⊕.

This exhaustive computation is a function g :
{
[E]
}
→ S which is a semiring homomor-

phism G → S as Definition 6 with the requirement g
({

[e]
})

= w(e) for all e ∈ E is

held with
({

[E]
}
,∪
)

to (S,⊕) and
({

[E]
}
, ◦
)

to (S,⊗) monoid homomorphisms. The

most crucial point here is that the semiring structure is preserved with homomorphism.

Theorem 13. (DP Semiring Fusion): Given the generator semiring G =
({

[E]
}
,∪, ◦, ∅,

{
[]
})

with the mapping function w′(e) =
{
[e]
}

for all e ∈ E, and another, arbitrary semiring

S = (S,⊕,⊗, ı⊕, ı⊗) together with its edge map w : E → S, if there exists a homo-

morphism gS,w mapping g : G → S which additionally satisfy g
({

[e]
})

= w(e) for all

e ∈ E, then for a function f ;

gS,w · fG,w′ = fS,w (2.4)

Proof. Firstly, we will assume without loss of generality, that such DP DAGs have the

property that there is only one “start” vertex which must be given a value in order to

evaluate all the rest of the DAG vertices, which we denote by v = 1. Even if we have
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multiple starts, we can always link these start nodes to an initial start vertex via edges

that have the values of the “old” start nodes. We also assume that P(v) ∈ 2|V| that is,

the parent sets contain only subsets of V.

From Theorem 12, we can always construct a topological ordering of a DP DAG

which satisfies Definition 11 [Kleinberg and Tardos, 2006]. This topological ordering of

DP DAG starting at un = 1 with the traversal un ∈ V\{1} for n ∈ 2, 3, . . . , N . We want

to construct an inductive proof of DP semiring fusion using induction on this vertex

ordering. Here, to have notational clearance we use upper index to indicate semirings

and edge mappings, fS,w. Additionally, w edge mapping is arbitrary, therefore, we can

ignore it to be clear, fS . Showing the first part of (2.2) is trivial here. fG
1 =

{
[]
}

from

(2.2), which implies that

gS(fG
1 ) = gS

({
[]
})

(2.5)

As gS is a semiring homomorphism, we can conclude that:

gS
({

[]
})

= ı⊗ (2.6)

which requires ı⊗ = fG
1 ; therefore, gS(fG

1 ) = fS
1 .

For the induction step, we can assume g(fG
v′) = fS

v′ for all v′ ∈ P(un) holds in

traversal structure which is the process of visiting each vertex in a graph:
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gS(fG
un

) = gS
(
∪v′∈P(un)

(
fv′ ◦ {[w(un, v′)]}

))
(Generator recursion)

=
⊕

v′∈P(un)
gS
(
fv′ ⊗ {[w(un, v′)]}

)
(Definition 6)

=
⊕

v′∈P(un)
gS(fv′)⊗ gS({[w(un, v′)]})

)
(Definition 6)

=
⊕

v′∈P(un)
fS ⊗ w(un, v′) (g

({
[e]
})

=w(e) and the induction)

= fS ((2.2))
(2.7)

This induction is possible with the topological ordering which guarantees that for

every un, all its parents v′ ∈ P(un) are arranged before un in the ordering. Therefore,

induction on the topological ordering is valid and we can conclude that all the rest of the

vertex values un ∈ V\{1} are mapped into the semiring S by the homomorphism.

The proof of Theorem (13) is informally illustrated in Figure 6. Once Bellman’s

recursion is fit in the right side of (2.4), we can plug computationally heavy but provable

generator semiring in to the left side of (2.4), which gives the proof that our approach

is exact. There are a couple of very important results of having Bellman’s recursion

under semiring fusion theorem structure;

1. As mentioned above, any DP problem over semiring S can be solved in brute-

force manner with DAG structures by using the generator semiring G first, and

then applying the semiring S to result using the homomorphism g, which proves

(exhaustively) that DP algorithm is correct as all paths in the DAG is explored.

Namely; for any specific problem, all possible combinatorial configurations are

tested, one of which must be the solution to the stated problem.

2. As this exhaustive implementation requires the generation and storage of all pos-
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sible DP DAG paths, it is computationally inefficient/intractable. This computa-

tional intractability is a consequence of the operators in G being computationally

expensive, for example the cross-join ◦ operator which is quadratic in the size of

each set, and the length of the edge lists they contain. The required memory also

grows quadratically with each invocation.

3. However, a consequence of (2.4); we can swap costly G’s operators with computa-

tionally and memory-wise less expensive semiring S’s operators (as small as O(1)

time and space) like max and +.

(2.4) is a shortcut fusion implementation that combines the computation into a sin-

gle recursion by avoiding the explicit building of the intermediary DAG paths [Hinze,

2010]. Emoto et al. [2012] apply to semiring polymorphic computations over list struc-

tures. Indeed, the structural decomposition of the DP problem gives the efficiency of

(2.4). However, the proof of (2.4) justifies the decoupling of the type of the quantities

computed from the structure of the computation.

Figure 6: Informal illustration of the dynamic programming (DP) semiring fusion theorem (2.4), the
basis on which DP computations in arbitrary semirings is justified.

3 Embedding a Constraint

So far, we have only considered problems which do not require any constraints. It

is easy to implement a constraint when we use an exhaustive algorithm (like Emoto
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et al. [2012]’s GTA framework). For instance, to solve the 0-1 knapsack problem with

a constraint; the only step that we need to add is; after generating all the possible bag

configurations, an intermediate operator (a filter) that filters out the bags which do not

match with the constraint before moving to the next operator (e.g. aggregation stage).

However, applying a constraint to DP problems is not straightforward as we have to rely

on custom methods to decompose the problem into sub-problems [Kleinberg and Tardos,

2006]. Once again, exhaustive solutions are not feasible owing to their computational

demand, and dynamic programming methods are not systematic meaning they are often

quite complex to apply in practice.

As an illustration of how we will systematize DP problems, let us consider the prob-

lem of finding the maximum sum sub-sequence of a list. An exhaustive solution of the

problem starts with generating 2N possible sub-sequences which requires an exponen-

tial time complexity. However, semiring distributivity (max-sum semiring) allows us to

solve the same problem in O(N) linear time with the following polymorphic semiring

recurrence;

f1 = 0

fn = max
(
fn′ + w(n, n′)

)
∀n ≤ n′ ∈ {1, 2, . . . , N}

(3.1)

where w : N → S. Here, (3.1) sums up the elements with a non-negative value. Let

us consider the length-constrained maximum sub-sequence sum problem. As discussed

above, an exhaustive method (like GTA) is not preferable due to the requirement of

expensive computation. However, we can increase the efficiency by using a new semiring

that enables us to fuse the constraint with the semiring homomorphism, followed by DP

semiring fusion (2.4), in the hopes of eliminating the filtering step and, consequently,

the need to generate the intermediate data structures, while taking advantage of the

effectiveness of the current recurrence. To fuse the constraint with the generation part,
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the function of constraint needs to be in separable form.

Here, what we mean by separable form is that the constraint can be expressed in

a recursive formula. We will formalize such separable constraint by M = (M,⊙, ı⊙)

where ⊙ is a binary operator with an identity ı⊙ (although it is not essential in some

applications). The following recurrence hM,v expresses a typical constraint over a list

of DAG edges of length L:

h0 = ı⊙

hl = hl−1 ⊙ v(el) ∀l ∈ {1, 2, . . . , L}
(3.2)

where the constraint map v : E → M maps edges into constraint set. To complete the

specification of the constraint, we define a Boolean acceptance condition a : M → B

below, which filters out a list of edges if a(hL) evaluates false; and the remaining part

is kept.

a(m) =


T m = M

F otherwise

(3.3)

Thus, constraint embedded exhaustive formula (based on 2.4) is represented as:

gS,w · ϕM,v,a · fG,w′ (3.4)

where ϕ :
{
[S]
}
→

{
[S]
}

is the filter function we mentioned. We can write a specific

recursive implementation to illustrate as [Bird and De Moor, 1996]:
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ϕ(∅) = ∅

ϕ({x}) =


{x} a

(
hM,v(x)

)
= T

∅ otherwise

ϕ(x ∪ y) = ϕ(x) ∪ ϕ(y)

(3.5)

To solve the problem above, we use the semiring which is obtained by lifting original

semiring over the algebra M [Emoto et al., 2012, Jeuring, 1993]. Lift operators are a

widely used algebraic tool in the literature such that addition is lifted point-wise to

functions,
(
f + g

)
(x) = f(x) + g(x) [Hinze, 2010]. In the next subsection, we will cover

the technical details of lifting.

3.1 Lifting

A structure-preserving map from one mathematical structure to another of the same

type is called a morphism. Given morphisms f : X→ Y and g : Z→ Y, a lifting of f to

Z is a morphism h : X→ Z such that f = g · h. In category theory, a morphism is an

abstraction of homomorphism [Jacobson, 2012]. The following diagram is an illustration

of lifting:

O × A

I O

g (projection)

f (hom)

h (lifting hom) (3.6)

Here, (I,O) denotes the input and output of the original homomorphism, and A is the

auxiliary information that is “lifted” by h lifting operator [Farzan and Nicolet, 2019].

Definition 14. (Lifted Set): M is a finite and S is an arbitrary set, a lifted set of S

with M is denoted by S[M] such that an element s ∈ S[M] can be seen as an array of

size |M| of which index space is M [Emoto, 2011].
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Emoto et al. [2012] propose an algebraic tool which uses the index space M to define

a generalized product, lifted semiring [Emoto, 2011, Emoto et al., 2012].

Definition 15. (Lifted Semiring): Lifting defines a vector of semiring values f ∈

S[M] indexed by M, which can also be seen as a function, f : M → S. Let S[M] =(
S[M],⊕M,⊗M, ı⊕M , ı⊗M

)
be a composite semiring and (M,⊙) be a finite monoid. The

semiring binary operators with parameters x, y ∈ S[M] satisfy the following:

(x⊕M y)m = xm ⊕ ym (a)

(x⊗M y)m =
⊕

m′,m′′∈M
m′⊙m′′=m

(xm′ ⊗ ym′′) (b) (3.7)

is a semiring with associated identities:

(ı⊕M)m = ı⊕ ∀m ∈M

(ı⊗M)m =


ı⊗ m = ı⊙

ı⊕ otherwise

(3.8)

Let us make this definition more understandable with an example. We start with

the lifted space Z3 which is a vector space with |Z3| = 3 and (Z3, max3, +3,−∞3, 03)

is a semiring with lifted operators max3 and +3 with the identity elements −∞3 =

(−∞,−∞,−∞) and 03 = (0, 0, 0). Here, we have two vector elements p = (p0, p1, p2),

q = (q0, q1, q2) ∈ Z3 . To find a maximum value associated to each component, max3

utilizes the underlying maximum operator max; as (3.7)(a) requires:

max 3
(
p, q

)
=
(

max(p0, q0), max(p1, q1), max(p2, q2)
)

(3.9)
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Furthermore, the operator +3 combines associated components, works as in (3.7)(b) :

p +3 q =
(

(p0 + q0︸ ︷︷ ︸
0,0 ∈ Z
0+0=0

), max
(
(p0 + q1), (p1 + q0)

)
︸ ︷︷ ︸

0,1 ∈ Z
0+1=1 and 1+0=1

, max
(
(p0 + q2), (p2 + q0), (p1 + q1)

)
︸ ︷︷ ︸

0,1,2 ∈ Z
0+2=2, 2+0=2 and 1+1=2

)

(3.10)

After having the lifted semiring structure, we also need the lifted edge mapping:

wM : E[M]→ S:

wM(x)m =


w(x) v(x) = m

ı⊕ otherwise
(3.11)

where v : E → M and w : E → S. To obtain the solution to (3.4), we need to lift the

monoid (M,⊙) onto the Boolean acceptance condition a : M→ B:

πS,a(x) =
⊕

m′∈M:a(m′)=T

xm′ (3.12)

which requires a result that we call DP semiring constrained fusion:

Theorem 16. (DP semiring constrained fusion): Given the generator semiring

G with the mapping function w′, and another, arbitrary semiring S with edge mapping

function w, the constraint algebra M = (M,⊙, ı⊙) with edge mapping function v, ac-

ceptance criteria a : M→ B, constraint filtering function ϕ : (M×M→M)×M×(E→

M)× (M→ B) and projection function π : (S× S→ S)× S× (M→ B)→ S:

gS,w · ϕM,v,a · fG,w′ = πS,a · fS[M],wM (3.13)

Proof. Being able to fuse the composition of the constraint filtering followed by a semir-

ing homomorphism into a single semiring homomorphism is essential to demonstrating

the constrained version of DP semiring fusion. Lifting the constraint filtering over the
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set M will be used to achieve this. Assume the shorthand g′ :
{
[E]
}
→ S[M] and

ϕ′
m = ϕM,v,δm where the acceptance function δm(m′) = T if m′ = m and F otherwise.

We write:

g′
m(x) = (gS,w · ϕM,v,δm)(x) (3.14)

As a result, g′
m(x) is the outcome of applying the homomorphism gS,w to the remain-

ing lists after first filtering the set of lists x to keep any lists on which the constraint

evaluates to m. Now, g′
m must maintain a semiring structure in order to be a semiring

homomorphism. It must also maintain the action of the filtering under ϕM,v,δm in order

for it to remain consistent with the filtering.

Turning to the semiring sum, we have:

g′
m(x ∪ y) = gS,w · ϕ′

m(x ∪ y)

= gS,w ·
(
ϕ′

m(x) ∪ ϕ′
m(y)

)
= (gS,w · ϕ′

m)(x)⊕ (gS,w · ϕ′
m)(y)

= g′
m(x)⊕ g′

m(y)

(3.15)

To clarify the second step: note that forming the union of sets of lists does not affect

on the computation of the constraint value which determines the result of the filtering.

Thus, the union of sets of lists is invariant under the action of the filter. The third step

follows because gS,w is a semiring homomorphism.
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Somewhat more complex is the semiring product, for which we have:

g′
m(x ◦ y) = gS,w · ϕ′

m(x ◦ y)

= gS,w ·
⋃

m′,m′′∈M:m′⊙m′′=m

(
ϕ′

m′(x) ◦ ϕ′
m′′(y)

)

=
⊕

m′,m′′∈M:m′⊙m′′=m

gS,w ·
(
ϕ′

m′(x) ◦ ϕ′
m′′(y)

)

=
⊕

m′,m′′∈M:m′⊙m′′=m

(gS,w · ϕ′
m′)(x)⊗ (gS,w · ϕ′

m′′)(y)

=
⊕

m′,m′′∈M:m′⊙m′′=m

g′
m′(x)⊗ g′

m′′(y)

(3.16)

Clearly, this motivates the definition of the lifted semiring product as

(x⊗M ym) =
⊕

m′,m′′∈M:m′⊙m′′=m

xm′ ⊗ ym′′ (3.17)

A more thorough explanation is necessary for (3.16)’s second phase. In order to

define a semiring homomorphism We need to be able to push the filter ϕ′
m inside the

cross-join. Recall that the cross-join x ◦ y of two sets of lists entails combining each list

in x with each list of y. For general lists l′, l′′ whose constraints evaluate to m′ and m′′

respectively, then due to the separability of the constraint algebra, the constraint value

of their join l′ ◦ l′′ is m′ ⊙m′′. The cross-join s′ ◦ s′′ will consist of sets of lists, all of

which have constraints evaluating to m = m′ ⊙ m′′ if we group together into one set

s′, all those lists whose constraints evaluate m′ and into another set s′′, all those lists

whose constraints evaluate to m′′. In the end, we may determine the values of m′, m′′

such that m′⊙m′′ = m for a given m without knowing further about the characteristics

of ⊙ by exhaustively evaluating all such pairs. Our algebraic simplifications for unique

instances like group lifting algebras are based on the fact that this exhaustive search

may be reduced if ⊙ is specialized in some way, particularly with regard to the presence
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of inverses.

A semiring homomorphism must map identities. For empty sets which are the

identity for ∪, we simply require:

g′
m (∅) = i⊕ ∀m ∈M (3.18)

Similarly, sets of empty lists act as identities for the cross-join operator. In this

case, we must have g′
m

({
[]
}
◦ x
)

= g′
m

(
x ◦

{
[]
})

= g′
m(x). If we set g′

m

({
[]
})

= δi⊙,m,

then we have:
g′

m

({
[]
}
◦ x
)

=
⊕

m′,m′′∈M:m′⊙m′′=m

δi⊙,m′ ⊗ g′
m′′(x)

=
⊕

m′′∈M:i⊙⊙m′′=m

δi⊙,i⊙ ⊗ g′
m′′(x)

=
⊕

m′′∈M:i⊙⊙m′′=m

g′
m′′(x)

= g′
m(x)

(3.19)

and similarly for g′
m

(
x ◦

{
[]
})

. This shows the lifted semiring identity to be i⊗M = δi⊙ .

The homomorphic mapping of sets containing single lists of single edges, such as

terms like
{
[e]
}

is something we must finally take into account. Such terms are only

kept under the action of the filter ϕM,v,δm if the constraint edge mapping v(e) = m, at

which point they add a value w(e) to the semiring value of the homomorphism gS,w.

They do not otherwise add anything to the semiring sum. Thus, it follows:

g′
m

({
[e]
})

= δv(e),m ⊗ w(e)

=


w(e) m = v(e)

i⊕ otherwise

(3.20)

which we write as the lifted edge mapping, wM(e)m. To summarize then, (3.15)-(3.20)
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show that g′
m is a semiring homomorphism performing the lift mapping G → S[M]:

gS,w · ϕM,v,δm = gS[M],wM (3.21)

The next step is to reconstruct the result of DP constraint filtering ϕM,v,a, from

the lifted result. This involves computing the effect of the transformation a : M → B

mapping the lifting algebra M into the value in B of the predicate a, on an arbitrary

lifted semiring object x ∈ S[M]. The joint product function π on M×B is written using

the Boolean-semiring unit function:

The lifted result is then used to recreate the DP constraint filtering ϕM,v,a. This

entails calculating the impact of the transformation a : M → B mapping the lifting

algebra M into the value in B of the predicate a on any lifted semiring object x ∈ S[M].

Using the Boolean-semiring unit function, the joint product function π on M × B is

represented as follows:
πm,b(x) = xm ⊗ δb,a(m)

δb,b′ =


i⊗ b′ = b

i⊕ otherwise

(3.22)

We then project onto the second parameter of π to obtain:

πb(x) =
⊕

m′∈M
xm′ ⊗ δb,a(m′)

=
⊕

m′∈M:a(m′)=b

xm′

= xa−1(b)

(3.23)

where the last line holds if a has a unique inverse. We use the notation πS,a as a

shorthand for πT over the semiring S and the acceptance criteria a.

Putting everything above together, we can show the following:
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gS,w · ϕM,v,a · fG,w′ = πS,a · gS,w · ϕM,v,δm · fG,w′

= πS,a · gS[M],wM · fG,w′ (From (3.21))

= πS,a · fS[M],wM (From Theorem 13)

(3.24)

This indicates that we can impose a constraint via lifting to create new “compound”

semiring, resulting in a new polymorphic DP recurrence that can be computed over any

arbitrary semiring. By repeating the lifting procedure above, we can also lift a lifted

semiring meaning that we may create innovative, polymorphic DP recurrences with

multiple constraints.

Constructing DP algorithms with constraint seems different than DP algorithms in

textbooks. However, they are indeed intimately related, in the following way. In the

lifting structure, ⊙ operator breaks down a DP problem with a constraint into sub-

problems with the condition m′⊙m′′ = m for each m ∈M. By using partitioning, this

condition determines how the DP sub-problems should be combined. For instance, let

us consider a knapsack problem with a weight constraint W ≤ 3. To solve this problem,

the sub-problems should consider first W ≤ 1, W ≤ 2 and W ≤ 3 respectively. As

(3.10) shows, we consider the partitions of different values respectively. More precisely;

for W = 3, we have to consider all possible weight compositions (partitions) such as

1 + 1 + 1, 2 + 1, 1 + 2 and 3 in the 0-1 knapsack problem. This partitioning provides

a more general description of sub-problem structure than dividing into “smaller”, self

similar problem approach. Such “constraint-driven” DP decomposition is a key step in

our systematic construction of practical DP algorithms. However, this method can be

computationally inefficient depending upon the size of M.
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3.1.1 Group lifting-simplifying the constraint algebra

In lifting, the computational complexity of the binary operator ⊕M is O(1), and the

operator ⊗M is O(M2) for each value of m ∈ M. To compute the result, we need one

iteration over the constraint set per iteration of the original recurrence. Therefore; for

the worst-case scenario, the computational complexity that we would have is O(M3),

which results an inefficient algorithm for larger data sets.

The reason behind the inefficiency is that x ⊗M y has a double summation which

makes it quadratic in the size of M. On the other hand; in the DP algorithms, we need

to compute terms of the form a⊗M wM(x) for some general for some general a ∈ S[M].

We can say m′′ = v(x) since (3.11) indicates that wM(x) takes a different value other

than identity element ı⊕ only for one value, and we can simplify the double summation

to a single one:

a⊕M wM(x) =
⊕

m′,m′′∈M
m′⊙m′′=m

(am′ ⊗ wM(x)m′′)

=

 ⊕
m′∈M

m′⊙v(x)=m

am′

⊗ w(x)
(3.25)

Solutions m′ ∈ M to the equation m′ ⊙ v(x) = m does not have to be unique

because the ⊙ operator may not have inverses. However, we can reverse this and

directly compute m = m′ ⊙ v(x) for each m′ ∈ M, which leads us to an obvious

iterative algorithm:

z ←[ ı⊕M

zm⊙v(x) ←[ zm⊙v(x) ⊕
(
am ⊗ w(x)

)
∀m ∈M

(3.26)

to obtain a ⊗M wM(x) = z at the end of the iteration. As the product in (3.25) is an

inherently O(M) operation, and; therefore, by using this simplification, DP recurrence
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can perform with O(M2) for the worst-case scenario.

Another case would be the situation when M has inverses (for instance, M is a

group which was described in Definition 3), as a natural result of having inverses, there

is a unique solution to m′ ⊙m′′ = m which we can write as m′′ = (m′)−1 ⊙m on fixing

m and m′. This allows us to simplify (3.7)(b) to the O(M) computation:

x⊗M y =
⊕

m′∈M

(xm′ ⊗ y(m′)−1⊙m) (3.27)

Here, we are only interested in those elements y(m′)−1⊙m where their index satisfy

(m′)−1⊙m ∈M. The rest of the elements are truncated as y(m′)−1⊙m = ı⊕ as ı⊕ is an an-

nihilator. By applying that to (3.25) in such group liftings, we can solve m′⊙v(x) = m

uniquely to find m′ = v(x)−1 ⊙m, and reach the following simplification:

(a⊗M wM(x))m =


ı⊕ m⊙ v(x)−1 /∈M

am⊙v(x)−1 ⊗ w(x) otherwise
(3.28)

which is an O(1) time operation. As a result, DP recurrences produced using group

lifting constraints can often be computed with a minimal additional multiplicative time

complexity O(M).

Let us consider 0-1 knapsack problem once again to illustrate the lifting method

over directed acyclic graphs:

max(35x1 + 20x2 + 30x3 + 8x4), xn ∈ {0, 1} (3.29)

subject to:
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3x1 + 2x2 + 2x3 + x4 ≤ 5 (3.30)

We have nodes and arrows which are placed in the grid order. Each column repre-

sents each item with their values from Start node to End nodes. The main purpose is

to build a bridge between these two nodes. Rows represent total weights of items from

0 to the weight limit. As (3.11) maps edges according to the value of assigned elements,

all the horizontal transitions gain 0 value.

v =0

v =0

v =0 v =0

W =2

W =1

v =30

v =0

v =8

v =0v =0 v =0

v =0

v =20
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v =0

v =8

v =8

v =8

v =8
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Figure 7: 0-1 knapsack problem with inequality weight constraint; the aim is to find a path from
Start node to End nodes to fill a bag with the highest value that has the weight limit up to W = 5. An
edge tells the weight of an item with the magnitude, and shows the value of the item as assigned on it.
The right end nodes represent different weight constraints from 0 to 5. Diagonal move means adding
an item to the bag and horizontal move is to pass an item. The path shows the optimal solution for
W = 5 which requires which requires x1 = x3 = 1 and x2 = x4 = 0, and the green paths demonstrates
the case W = 3.
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Under consideration of the weight limit W , the optimal solution is obtained by gen-

erating all the possible paths between Start and End nodes, and accordingly evaluating

the path with the highest value. As Figure 8 illustrates, the red path indicates the

optimal solution W = 5 which requires x1 = x3 = 1 and x2 = x4 = 0, and the green

paths demonstrates the case W = 3.

We can also implement this idea to the sum of top K-elements of a list which is a

selection algorithm as it is shown below. Finding the sum of top K-elements of a list can

also lead us to find the highest K-elements of a list. Here, we apply the same logic as

we did for knapsack problem, once we set the weight of each item 1, a list of numbers

become a bag of items with the same weight. This problem can be interpreted in

combinatorial optimization framework for the example Figure 8 illustrates in as below:

max(8x1 + 15x2 − 3x3 + 27x4 + 10x5), xn ∈ {0, 1} (3.31)

subject to:

x1 + x2 + x3 + x4 + x5 = W (3.32)

According to the weight limits, paths are generated between Start and End nodes,

and the optimal one is chosen i.e. the red path shows the highest number for W = 1.

As recursion requires, the latter values with higher weight limits are found by adding up

to the previous optimal values as the green path branches from the red path to obtain

the optimal value for W = 2 and so on.
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Figure 8: The sum of top K-elements can be determined with DP-DAG formalism. The aim is to
find a path from Start node to End nodes to fill a bag with the highest value that has the weight limit
up to W = 5. An edge tells the weight of an item with the magnitude (wn = 1 for this problem),
and shows the value of the item as assigned on it. The right end nodes represent different weight
constraints from 0 to 5. Diagonal move means adding an item to the bag and horizontal move is to
pass an item. The red path shows how to find the number with the highest value when we set W = 1,
following that the green path finds the sum of top 2-elements by using the previous optimal solution
as recursion requires, and then the dark blue path gives the sum of top 3-elements for W = 3.

4 Tupling semirings to avoid backtracking

In most optimization problems, the solution needs to present the value of the decision

variables that lead to the most optimal solution. For instance, in Figure 7, we have

solved a knapsack problem, and reached an optimal solution 65 when W = 5. However,

we do not know what decision variables led us to reach this result. The typical solution

to this (according to the majority of DP literature) is backtracking, which keeps a list

of decisions at each step and a series of “back pointers” to the prior choice, and then

recovers the unknown decisions by going through the chain of pointers in reverse order
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[Ginsberg, 1993].

On the other hand, by utilizing an appropriate semiring, we can prevent the need to

implement backtracking, and gain significant flexibility at the same time. Particularly,

we will focus on the generator semiring G. Here, we will use a practical trick, tupling

to apply two different semirings simultaneously. A tuple is a data structure which is

an ordered collection of elements, and tupling (which is also known as pairing) is a

transformation strategy which groups different structures into a tuple [Hu et al., 1997,

Pettorossi, 1984, Bird, 1984]. For instance, a tupled semiring is a cartesian product

of semirings, and the logic mostly follows applying two different semiring at the same

time. We can simultaneously update a semiring total while keeping the values chosen

at that stage if we map the semiring values used throughout the DP computations

within a pair
(
S,
{
[S]
})

. As we already keep the decision variables that lead us to

the optimal value, we do not need to use backtracking. For instance, we can use the

following Viterbi (arg-max-plus) semiring [Goodman, 1999, Emoto et al., 2012]:

SG =
((

S,
{
[S]
})

,⊕,⊗,
(
−∞, ∅

)
,
(

0,
{
[]
}))

(4.1)

where

(a, x)⊕(b, y) =



(a, x) a > b

(b, y) a < b

(a, x ∪ y) otherwise

(a, x)⊗(b, y) = (a + b, x ◦ y)

(4.2)

with identities ı⊕ = (−∞, ∅) and ı⊗ =
(

0,
{
[]
})

. Furthermore, as we also keep the

scenarios where the function has the same value with multiple items, this leads us

to multiple solutions at the end. Therefore, the Viterbi semiring maintains multiple
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solutions with the same highest score rather than a single solution with the highest

score. However, it will cost additional time and space complexity.

Alternatively, using the simplification below, we can get only the optimal single

solution:

(a, x)⊕(b, y) =


(a, x) a ≥ b

(b, y) a < b

(4.3)

In order to compute the value of the best solution as well as the values needed

to compute it, the semiring SG is clearly the tupling of max-plus with G. Regarding

time complexity, backtracking and the simple (Viterbi) tupled semiring require similar

computational complexity. Backtracking traverses the DP recurrence in the reverse

order at the end, which takes O(N) for N made decisions. On the contrary, tupled

semirings have the same time complexity as the DP recursion itself. In terms of sys-

tematicity, the backtracking implementations often depend entirely on the specific DP

recurrence whereas the tupling method only requires changing the semiring. Therefore,

we can conclude that tupled semirings are preferable as it provides the systematicity,

flexibility and simplicity for finding optimal DP solutions.
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Chapter IV

Applications

1 Segmented Linear Regression

Fitting a line through data can be straightforward as we just need to pay attention to

the error between the actual data and the line fit. However, it becomes increasingly

complex when the linear model does not provide parsimonious representation for the

problem as Figure 9(a) demonstrates [Kleinberg and Tardos, 2006]. Of course there are

nonlinear options that use curve fitting techniques to represent data such as log-linear

regression or polynomial regression [Ostertagová, 2012, Nassif et al., 2013]. Nonetheless,

our initial intention is to stick with the linearity. Then, the next question would be

how many lines are needed to represent data. This question leads us another important

element in combinatorial machine learning, which is segmentation of data items yn for

n ∈ {1, 2, . . . , N}, into contiguous, non-overlapping intervals (i, j) such that i ≤ j for

i, j ∈ {1, 2, . . . , N}. We can utilize segmentation to break the line (with the help of

break-points) into small pieces and represent data. The points where these small pieces

intersect are named as break-points. In the literature, there is a well known technique

segmented linear regression (SLR) which is used to find the best possible piece-wise

linear fit with the least-squares error under a penalty which is directly proportional to

the number of linear segments [Kleinberg and Tardos, 2006]. Figure 9(b) shows that

the data can be represented by N − 1 small lines by crossing each of the data points.

However, it is neither logical nor efficient.

On the other hand, Figure 9(c) demonstrates that a reasonable representation of

the data using two consecutive lines and connecting them at a proper break-point.
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Figure 9: Line fitting through random data in different scenarios. A line under-fits the data in (a),
multiple piece-wise linear lines cover the data in (b), and a reasonable piece-wise line fit in (c).

This suggests two crucial aspects which must be considered in order to find an optimal

solution; how many linear segments are enough to represent the data, and where the

break-points should be located. Such a linear segmented regression problem aims to

minimize the estimation error under these two concerns. The general form of segmented

regression problem can be represented as minimizing the sum of model fit errors:

E(x) =
N∑

j=1

j∑
i=1

xi,jei,j (1.1)

where ei,j = 1
p

∑j
n=i | yn − f(n, ai,j) |p for p > 0 and xi,j ∈ {0, 1} being segment

indicators; and ai,j are the optimal model parameters . Before proposing our solution

to SLR problems, let us consider one of commonly used solutions to segmented linear

problem, ℓ1 trend filtering which proposes an estimation for piece-wise linear time series

[Kim et al., 2009].
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1.1 ℓ1 trend filtering

ℓ1 trend filtering is a non-combinatorial method which is a natural convex relaxation to

the combinatorial SLR. A trend is a pattern/character found in time series data sets

in long run [Proietti, 2011]. Let yn be a scalar time series which satisfies yn = xn + rn

for n = 1, 2, . . . , N . The underlying trend of data is represented by xn and rn is

random component (sometimes called the residual) which represents noise. The goal is

to estimate the trend component xn from the measurements yn, which is also called as

smoothing or filtering [Kim et al., 2009]. The penalty term, and then the trend filtering,

varies with what norm is performed. Kim et al. [2009] define trend filtering (called ℓ1

trend filtering) when the norm equals to 1 as below:

Ê = (1/2)
N∑

n=1
(yn − xn)2 + λ

N−1∑
n=2
|xn−1 − 2xn + xn+1| (1.2)

where the first term of (1.2) is the objective function measures the size of the residual,

and the second term is the regularizer term, with λ > 0 is the regularizer parameter

balances off the fit term against smoothness. The regularizer term equals to zero when

any three consecutive points are on a line. Here, the norm is defined in general form of

p-norm of vector x = (x1, x2, ..., xN) ∈ RN as:

∥x∥p =
(

N∑
n=1
|xn|p

)1/p

, p ∈ Z+ (1.3)

ℓ1 trend filtering is a variant of H-P filtering which was introduced by Hodrick and

Prescott [1997] that uses 2-norm/Euclidean norm (p = 2 in (1.3)) for the regularizer

term. Although the difference seems minor, H-P gives filtering smooth trend whereas

ℓ1 trend filtering provides continuous piece-wise linear trend estimations [Yamada and

Bao, 2021]. H-P filtering and ℓ1 trend filtering are methods that estimate the trend

component from previous observations [Kim et al., 2009]. The reader can find all the
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details of ℓ1 trend filtering and H-P filtering in Kim et al. [2009].

ℓ1 trend filtering could provide desirable heuristic results in many ways; like interior-

point optimization; that are convex and have been widely studied in literature [Ne-

mirovski and Todd, 2008]. However, in this approach, it is not possible to control the

number of segment and the location of break-points are not clear. In the next section,

we will propose our segmented linear regression framework which fills the gap where

ℓ1 trend filtering is lacking. Later, we will visualize the difference between ℓ1 trend

filtering and our SLR framework in some synthetic and real data.

1.2 Exact segmented linear regression (SLR)

To solve segmented linear regression problem exhaustively, we need to generate all

possible segments and then pick the segment with the minimum value with O(2N)

time complexity. For instance, segment : N→
[[

(N,N)
]]

is a recursive function that

generates all contiguous segmentations of length N . Here,
{[

(N,N)
]}

represents the

data type of lists of lists of pairs of start/end indices. For N = 3 elements:

segment 3 =
{[

(1, 3)
]
,
[
(1, 1), (2, 3)

]
,
[
(1, 2), (3, 3)

]
,
[
(1, 1), (2, 2), (3, 3)

]}
(1.4)

As Equation (1.4) illustrates segment 3 generates every single possible 23−1 = 4 different

segmentations such as
[
(1, 3)

]
is the one-piece segment which starts at the initial point

and ends at the end or
[
(1, 1), (2, 2), (3, 3)

]
is another segment which fits the data in 3

pieces. We have generated every single possible segments, to find the best fit we can

use the function minsum :
{[

(N,N)
]}
→

{[
(N,N)

]}
which picks the list of segments

and the returns the segment with the lowest error value. There are possible results such

that we can over-fit or under-fit the data.
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To optimize this problem, we need to minimize an objective function to reach the

final result under the consideration of two parameters such that an error term which

is the sum of linear fit errors from each segment and a penalty term that penalizes the

number of segments. In dynamic programming form, it can be represented as:

Ê = min
xi,j∈{0,1}

[
E(x) + λC(x)

]
(1.5)

where the regularizer parameter λ is added up when a new segment occurs with C(x) =∑
i,j∈{1,2,...,N} xi,j.

Bellman has developed an algorithm in dynamic programming, which solves the

problem in O(N2) [Kleinberg and Tardos, 2006]. As DP requires, the optimal segmen-

tation is obtained by combining all the previous “smaller” optimal segmentations:

f0 = 0

fj = min
i∈{1,2,...,j}

[fi−1 + ei,j] ∀j ∈ {1, 2, . . . , N}
(1.6)

where so that Ê = πS,a(f) = fN . We can implement the polymorphic version of the

DP segmentation algorithm as:

f0 = ı⊗

fj =
⊕

i∈{1,2,...j}

[
fi−1 ⊗ w(i, j)

]
∀j ∈ {1, 2, . . . , N}

(1.7)

This can be fit in (1.5) by setting w(i, j) = ei,j + λ.

The first benefit of having polymorphic version of Bellman’s recursion is that we

can prevent from backtracking by implementing the tupled semiring as we have seen

in the previous part. For the pre-computation, the least square error eij is calculated

between the actual data and every possible linear fit for all possible segments xi,j such

that i ≤ j ∈ N . The next step is to determine the segment with the minimum error
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E[j], j ∈ {1, 2, . . . , N} by starting from the first point of the data with the error E[0] =

0, and adding up every next point one by one, and finally checking whether existing

segmentation is the best or not. Each step may lead to a change in the segmentation

modification. This algorithm is shown in Algorithm 3.

Algorithm 3 Procedural pseudo-code implementation of Bellman’s recursion to find minimum error
segmentation, O(N2) time and O(N) space complexity.
function SLR (e[1...N, 1...N ], λ)

E[0] = 0
for j = 1...N

for i = 1...j
E[j] = min(E[i− 1] + e[i, j] + λ)

return E[N ]

To perform Algorithm 3, we first need to compute N ×N squares-error matrix for

each ei,j pairs (i, j), which requires O(N2) time complexity for a recursive approach.

Additionally, for each value of j = 1, 2, . . . N we have to determine the value of E[j];

this takes time O(N) for each, which is for a total of O(N2) [Kleinberg and Tardos,

2006]. We need to fill an N -sized array with tuples to reach the solution, which requires

O(N) space complexity.

1.3 Fixed segmented linear regression (F-SLR)

After this point, we can go further with another question is that “Can we control

the number of segments directly?” Indeed, ℓ1 trend filtering can indirectly control

the number of change points (break-points) with a regularizer, but this also causes a

change in the magnitude of the gradient [Kim et al., 2009]. In the same way, Bellman’s

algorithm can also not control the number of segments directly the appropriate choice

of the single parameter λ can be difficult to obtain, which may cause under and over

fitting in different parts of the same signal (for instance, Figure 11(a)). However, we

can control the number of segments with more efficient way by directly constraining
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the segmentation to solve segmentation error problem with a fixed number L > 0 of

segments:

ÊL = minxi,j∈{0,1} E(x)

subject to ∑N
j=1

∑j
i=1 xi,j = L

(1.8)

To solve this problem, first we need a constraint which counts the number of seg-

ments up to the fixed number of segments L, which implies that we need the lifting

algebra M =
(
{1, 2, . . . , L}, +, 0

)
and lifting mapping function v(i, j) = 1, with ac-

ceptance condition a(m) = T when m = L. Afterwards, we need to insert this lifting

semiring to (1.7), which gives us:

f0,m = (ı⊗M)m

fj,m =
([
⊕M

]
i∈{1,2,...j}

[
fi−1 ⊗M wM(i, j)

])
m
∀j ∈ {1, 2, . . . , N}

(1.9)

As above, the first line indicates that f0,0 = ı⊗ and f0,m = ı⊕ when m ̸= 0, and the

second line becomes:

fj,m =
([⊕]

i∈{1,2,...j}
[
fi−1 ⊗M wM(i, j)

])
m

=
⊕

i∈{1,2,...j}


ı⊕ m− 1 /∈M

fi−1,m−1 ⊗ w(i, j) otherwise
∀j ∈ {1, 2, . . . , N}

=


ı⊕ m− 1 /∈M

⊕
i∈{1,2,...j} fi−1,m−1 ⊗ w(i, j) otherwise

(1.10)

using the group lifting simplification (3.28) in the second step. After applying the

acceptance condition, we get ÊL = πS,a(f) = fN,L which obtained in O(N2L) time with

O(NL) space complexity. The pseudo-code of the algorithms is as shown in Algorithm
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4:

Algorithm 4 Procedural pseudo-code implementation of the fixed (L) length segmentation with
minimum error algorithm, O(N2L) time and O(NL) space complexity.
function F-SLR (e[1...N, 1...N ], L)

E[0, 0] = 0
E[0, 1...L] = inf
for m = 1...L

E[j, 0] = inf
for j = 1...N

E[j, m] = min(E[i− 1, m− 1] + e[i, j], i = 1...j)
return E[N, L]

As calculating E[j] for all j = 1 . . . N requires O(N2) complexity, and we need

to run inside the outer loop m, L times; the total time complexity is then O(N2L).

The same applies to space complexity for each turn, which makes the same complexity

O(NL).

We can simplify Algorithm 4 by following the instructions below:

• Swapping nested two loops as the inner m = 1 . . . L loop over the outer loop

j = 1 . . . N as L ≤ N .

• The inner loop computations are recursive in terms of stage m and we only need

results from stage m − 1 and information at F-SLR {0, 1, . . . , j − 1} to compute

the latest stage (F-SLR j)m

These steps provide an opportunity to avoid storing intermediate computation and only

keep results from the m − 1 stage, which decrease the space complexity from O(NL)

to O(N) in Algorithm 5.

1.4 Minimum length segmented linear regression (ML-SLR)

Another method to control segmentation could be constraining the size of each seg-

ments. We can control the minimum size of each segment with the length, #(i, j) =
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Algorithm 5 Procedural pseudo-code implementation of the fixed (L) length segmentation with
minimum error algorithm, O(N2L) time and O(N) space complexity.
function F-SLR (e[1...N, 1...N ], L)

E[0] = 0
E[1...L] = inf
for m = 1...L

for j = N...1
E[j] = min(E[i− 1] + e[i, j], i = 1...j)

E[0] = inf
return E[L]

j − i + 1 such that:

Êmin #=L = minxi,j∈{0,1} E(x)

subject to min #(x) = L
(1.11)

where #(x) =
{
#(i, j) : (i, j) ∈ {1, 2, . . . , N}2, xi,j = 1

}
is the set of lengths of all

selected segments. We will call this problem as minimum length segmented linear re-

gression (ML-SLR).

Same as above, we use the lifting algebra M =
(
{1, 2, . . . , N}, min, N

)
and lifting

mapping function v(i, j) = j − i + 1. Changing the algebra here requires that the first

line of (1.9) becomes:

f0,m =


ı⊗ m = N

ı⊕ otherwise
(1.12)

and also (3.25) becomes:

(
a⊕M wM(i, j)

)
m

=
( ⊕

m′∈{1,2,...,N}
min(m′,#(i,j))=m

)
am′ ⊗ w(i, j) (1.13)

Here, we have to consider all the possible scenarios of min as the lifting algebra is a

monoid (no analytical inverses is required):
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{
m′ : min

(
m′, #(i, j)

)
= m

}
=



{m} m < #(i, j)

{m, m + 1, ..., N} m = #(i, j)

∅ m > #(i, j)

(1.14)

Inserting this into (1.13), we obtain:

(a⊕M wM(i, j))m =





am m < #(i, j)
⊕N

m′=m am′ m = #(i, j)

ı⊕ m > #(i, j)


⊗ w(i, j) (1.15)

and then the second line of (1.9) can be simplified:

fj,m =
⊕

i∈{1,2,...,j}

[
fi−1 ⊗M wM(i, j)

]
m

=
⊕

i∈{1,2,...,j}





fi−1,m m < #(i, j)
⊕N

m′=m fi−1,m′ m = #(i, j)

ı⊕ m > #(i, j)


⊗ w(i, j) ∀j ∈ {1, 2, . . . , N}

=
⊕

i∈{1,2,...,j}



fi−1,m ⊗ w(i, j) m < #(i, j)
⊕

m′={m,m+1,...,N} fi−1,m′ ⊗ w(i, j) m = #(i, j)

ı⊕ m > #(i, j)
(1.16)

Using the acceptance condition a(m) = T when m = L, we have an O(N3) time DP

algorithm to find the optimal solution, Êmin #=L = πS,a(f) = fN,L. The pseudo code

of the algorithm is given in Algorithm 6. We will check the results and compare the

70



methods in the next part. Now , we are moving to examine another application of our

framework.

Algorithm 6 Procedural pseudo-code implementation of the minimum length (L) length segmen-
tation with minimum error algorithm, O(N3) time and O(N2) space complexity.
function ML-SLR (e[1...N, 1...N ], λ, L)

E[0, 0...N − 1] = inf
E[1, N ] = 0
for j = 1...N

for m = 1...N
E[j, m] = inf
for i = 1...j

if (m < j − i + 1)
E[j, m] = min(E[j, m], e[i, j] + λ + E[i− 1, m])

else if (m = j − i + 1)
E[j, m] = min(E[j, m], e[i, j] + λ + min(E[i− 1, l], l = m...N))

return E[N, L]

Same as above, we need O(N2) time complexity to calculate E[j] for all j = 1 . . . N ,

we need to calculate this for all m = 1 . . . N . Therefore, the worst case scenario could

have O(N3) time complexity for E[j, m]. We would need to create a N × N array to

save the result, which would require O(N2) space complexity.

2 Sequence Alignment

Sequence alignment is a useful method for comparing two (or more) sequences by search-

ing for similar, overlapping patterns between them [Mount, 2004]. This is widely per-

formed for machine learning applications in bio-informatics [Katoh and Toh, 2010], nat-

ural language processing [Nadkarni et al., 2011] and linguistics [List, 2012]. In response

to the COVID-19 pandemic, sequence alignment was applied to identify potential simi-

larities in RNA/ protein sequences of the novel virus and of those already characterized

[Ibrahim et al., 2020]. Relating to this, it has been further used to identify new variants

of the COVID-19 virus; aligning two RNA sequences to determine how closely related
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a set of viral sample pairs are, and estimating mutations such as insertion and deletion

[Kumar et al., 2020].

The main goal in this problem is to minimize the total cost of transforming one se-

quence into another by changes to individual characters. Such changes in the sequence,

termed edits, may involve the insertion of a new character, or deletion of an existing one

[Pachter and Sturmfels, 2005]. The sequence alignment problem aims to identify the

shortest sequential of edits relating multiple sequences. For instance, let us consider two

DNA sequences given in Table 3. DNA molecules are formed by chains of nucleotides

such as adenine (A), cytosine (C), guanine (G) and thymine (T). Mutations within

DNA sequences occur upon insertion or deletion of one or several adjacent nucleotides

[Rosen, 2017]. Here, original sequence 1=ATCAGCAAC and sequence 2=ATGCGCTA,

would pose the question how many edits are needed to align these two sequences. As

each insertion or deletion have different cost in different nucleotides, we have to consider

minimizing the total cost to reach the optimal output.

H H I H D H H I D H D
sequence 1 A T - C A G C - A A C
sequence 2 A T G C - G C T - A -

Table 3: An optimal solution for a sequence alignment problem for two DNA sequences with nu-
cleotides adenine (A), cytosine (C), guanine (G) and thymine (T). {H,I,D} are abbreviations of ho-
mology, insertion and deletion respectively.

Table 3 shows us how the optimal solution could be. In the table, {H,I,D} stand

for homology, insertion and deletion respectively. One solution for this problem could

be possible with brute-force method, which requires to generate every single possible

assignment settings:

(
n

m

)
≈ 22n

√
πn

(2.1)

for n > m alignments to find the optimal minima, which is not feasible as n = 100
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requires to check more than 1060 possible alignments which requires exponential time

complexity [Di Fatta, 2019].

2.1 Needleman-Wunsch algorithm

In line with Bellman’s recursion, Needleman-Wunsch (NW ) algorithm provides a dy-

namic programming solution for sequence alignment by building up the best alignment

from the optimal alignments of smaller sub-sequences [Likic, 2008]. The general repre-

sentation of the algorithm with min-sum semiring as below:

f0,0 = 0

fi,0 = fi−1,0 + w(i, 0)

f0,j = f0,j−1 + w(0, j)

fi,j = min
(
fi−1,j−1 + w(i, j), fi−1,j + w(0, j), fi,j−1 + w(i, 0)

)
(2.2)

for all i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , M} where N and M are the length of the

sequences and w(i, j) is the cost of the alignment with ith element of the first sequence

and jth element of the second sequence [Pachter and Sturmfels, 2005]. The polymorphic

abstraction of NW is as below:

f0,0 = ı⊗

fi,0 = fi−1,0 ⊗ w(i, 0)

f0,j = f0,j−1 ⊗ w(0, j)

fi,j =
(
fi−1,j−1 ⊗ w(i, j)

)
⊕
(
fi−1,j ⊗ w(0, j)

)
⊕
(
fi,j−1 ⊗ w(i, 0)

)
(2.3)

with the result obtained at fN,M . Therefore, it is possible to insert Viterbi semiring into

(2.3) and prevent from backtracking which lacks in the literature. In comparison with

brute-force, DP algorithm provides a tractable solution in O(N ×M) computational
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time.

2.2 Constrained sequence alignment

The standard NW approach has a practical problem in that it has no limit on how far

the sequences can move out of alignment.

(a⊗M wM(x))m =


ı⊕ m <| i− j |

am−|i−j| ⊗ w(i, j) otherwise
(2.4)

which we write as (a � w(i, j))m for convenience. Inserting this into (2.3), we get:

f0,0 =


ı⊗ m = 0

ı⊕ otherwise

fi,0,m =
(
fi−1,0 � w(i, 0)

)
m

f0,j,m =
(
f0,j−1 � w(0, j)

)
m

fi,j,m =
(
fi−1,j−1 � w(i, j)

)
m
⊕
(
fi−1,j � w(0, j)

)
m
⊕
(
fi,j−1 � w(i, 0)

)
m

(2.5)

for all i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , M}. The length of the alignments, lying

between max(N, M) and N + M , should be considered when the constraint is set. The

lifted sequence alignment requires O(N ×M × L) computational time complexity for

maximum sum of absolute alignment differences L.
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3 Clustering

3.1 DP-means clustering

Kulis and Jordan [2011] propose a new algorithm based on k-means algorithm:

min
{ℓc}k

c=1

k∑
c=1

∑
x∈ℓc

||x− µc||22 + λk (3.1)

where µc = 1
|ℓc|
∑

x∈ℓc
x. Unlike k-means, DP-means does not specify the number of clus-

ters k in advance. Instead, DP-means forms a new cluster when the distance from a

data point to the nearest cluster exceeds a predefined threshold λ [Jiang et al., 2017].

In other words, in DP-means, number of clusters are controlled by a penalizer term λ

while k-means predefines them.

Another significant difference between two methods is that the result depends on

chosen centroids in k-means clustering whereas, for DP-means, the order of processed

data points effects the output [Kulis and Jordan, 2011]. As a result, the optimality can

not be guaranteed either in DP-means algorithm.

3.2 MAP-DP clustering

Both k-means and DP-means are distance based clustering methods, and they have

limitations when the actual clusters overlap. Raykov et al. [2016] propose a new clus-

tering method which can also be used when nonlinear separation is needed. MAP-DP

algorithm minimizes the following objective function which is derived as the negative

log likelihood of a Dirichlet process mixture model:

75



min
{ℓc}k

c=1

k∑
c=1

[ ∑
x∈ℓc

1
2(σc + σ̂2)x∈ℓc

∥x− µc∥2
2 + D

2 ln(σc + σ̂2)
]
− k ln N0 −

k∑
c=1

log Γ(Nc) + C

(3.2)

where σc = ( 1
σ2

0
+ 1

σ̂2 N i
c)−1such that i ∈ 1, 2, · · · , N , µc = σc(µ0

σ2
0

+ 1
σ̂2
∑

x∈ℓc
x) and

C = − ln
(

Γ(N0)
Γ(N0+N)

)
. Here N0 is prior count, D is the dimension of the data, σ̂2 is

spherical cluster variance, σ2
0 is prior centroid variance, µ0 is prior centroid location

and Γ is the gamma/factorial function [Raykov et al., 2016].

Unlike k-means and DP-means clustering, MAP-DP is a model based clustering

algorithm which benefits from the flexibility of the Dirichlet process mixture model.

Although the algorithm is more advantageous than Euclidean distance based clustering

algorithms; nevertheless, MAP-DP algorithm does not guarantee finding a globally

optimal parameter fit to the model likelihood, and it gives different results in each

restart.

3.3 Exact clustering

In over all, all the algorithms that we have mentioned can provide results depending

upon how they are initialized. As a consequence of this, the results are not provably

correct. Other traditional clustering methods such as distribution based (DBCLASD

[Xu et al., 1998]), model based (GMM [Rasmussen, 1999]) and grid based algorithms

(STING [Wang et al., 1997]) also cannot provide any solution with guaranteed accuracy

[Xu and Tian, 2015].

We have discovered that DP-means clustering in 1-D naturally lays down in Equa-

tion (2.2) when data is sorted as the following indicates:
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f0 = ı⊗

fj =
⊕

i∈{1,2,...j}

[
fi−1 ⊗ w(i, j)

]
∀j ∈ {1, 2, . . . , N}

(3.3)

where w(i, j) = ei,j + λ such that where ei,j = 1
p

∑j
n=i

∣∣∣yn − f(n, ai,j)
∣∣∣p for p > 0 and

xi,j ∈ {0, 1} being cluster indicators; and ai,j are the optimal model parameters and the

regularizer parameter λ is added up when a new cluster occurs [Wang and Song, 2011].

For the pre-computation, the least square error eij is calculated between the actual data

and every possible fit for all possible clustering xi,j such that i ≤ j ∈ N . The next step

is to determine the cluster adjustments with the minimum error E[j], j ∈ 1, 2, . . . , N

by starting from the first point of the data with the error E[0] = 0, and adding up every

next point one by one, and finally checking whether existing clustering is the best or

not. Each step may lead to a change in the clustering modification. This algorithm is

shown in Algorithm 7.

Algorithm 7 Procedural pseudo-code implementation of exact DP-means algorithm with O(N2)
time and O(N) space complexity.
function exact clustering dp-means (e[1...N, 1...N ], λ)

E[0] = 0
for j = 1...N

E[j] = min(E[i− 1] + e[i, j] + λ, i = 1...j)
return E[N ]

In the special case of 1-D clustering with known component variances, MAP-DP

clustering can also be achieved using Bellman recursion as each new clusters add a

penalty to the objective value, then naturally (3.3) works for MAP-DP as Algorithm 8

implies.

As Algorithm 7 and Algorithm 8 are an implementation of Bellman’s recursion, the

computational requirements are the same as what Algorithm 3 requires. Namely, for

each value of j = 1, 2, . . . N we have to determine the value of E[j]; this takes time

77



Algorithm 8 Procedural pseudo-code implementation of exact MAP-DP algorithm with O(N2)
time and O(N) space complexity.
function exact clustering MAP-DP (e[1...N, 1...N ], d[1...N ], α)

E[0] = 0
for j = 1...N

E[j] = min(E[i− 1] + e[i, j]− d[j − i + 1]− ln(α), i = 1...j)
return E[N ]

O(N) for each, which is for a total of O(N2) and O(N) space complexity requires to

fill an N -sized array with tuples.

Similarly, we can do distance based clustering for known number of clusters with k-

means clustering. Another practical advantage in proposed 1-D clustering/segmentation

is that we can apply tractable constraints such as the minimum number of items to be

associated with a cluster. To solve this problem; as we did in F-SLR, first we need

a constraint which counts the number of clusters up to the fixed number of clusters

k, which implies that we need the lifting algebra M =
(
{1, 2, . . . , k}, +, 0

)
and lifting

mapping function v(i, j) = 1, with acceptance condition a(m) = T when m = k. using

the group lifting simplification (3.28) in the second step. After applying the acceptance

condition and the simplification we had in F-SLR, we can then get in O(N2k) time with

O(N) space complexity, which is the same as Algorithm 5 as As calculating E[j] for all

j = 1 . . . N requires O(N2) complexity, and we need to run inside the outer loop m, k

times; the total time complexity is then O(N2k). The pseudo-code of the algorithms is

as follows:

Further more, as we are handling 1-D clustering segmentation problem, we can apply

a constraint so that the minimum number of elements of a cluster can be determined.

Therefore, we can simply fit a clustering problem in to (1.16) where #(i, j) is the

number of elements in a cluster. As a result, Algorithm 6 can be used directly.
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Algorithm 9 Procedural pseudo-code implementation of exact k-means algorithm with O(N2k)
time and O(N) space complexity.
function exact clustering k-means (e[1...N, 1...N ], k)

E[0] = 0
E[1...k] = inf
for m = 1...k

for j = N...1
E[j] = min(E[i− 1] + e[i, j], i = 1...j)

E[0] = inf
return E[N ]
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Chapter V

Results and Discussion
In this part, we will apply our theory to some synthetic or real data experiments to see

how practical/useful our framework is. We are starting with a systematic comparison

between ℓ1 trend filtering and Bellman’s segmented linear regression. As we discussed,

although these two methods have the same aim to estimate the original data or a piece-

wise linear fit that represents the data points, they use different methodologies such

that one penalizes the gradient points and the other does for the segments.

In the first experiment, we will compare DP segmentation algorithms with ℓ1 trend

filtering with synthetic data. The original data; piece-wise linear constant signal, is

represented with grey lines, and noise added to input data yn is illustrated with grey

dots. The noise we used here is Gaussian noise with a different standard deviation

σ. Different levels of noise have been added to the same original data for (a) σ = 15,

(b) σ = 30 and (c)-(d) σ = 60 respectively as Figure 10 demonstrates. The red lines

represent the segmentation results of our DP algorithms and ℓ1 trend filtering.

In Figure 10, red lines in (a) give a solution for unconstrained segmented linear

regression (SLR) (Bellman’s recursion), (b) is the solution for SLR with a constrained

number of segments, F-SLR, (c) is when a segment has a minimum number of elements

constraint, ML-SLR and (d) is the solution that ℓ1 trend filtering is provided.

For the second experiment, we used real data (Standard and Poor’s 500 (S&P 500))

that Kim et al. [2009] also used. S&P 500 is an indexing method of 500 large companies’

stock market exchange in the United States [Blume and Edelen, 2004]. In the data, we

have 2000 consecutive daily closing values of the S&P 500 Index after the logarithmic

transform from March 25, 1999, to March 9, 2007 [Kim et al., 2009]. The same as the
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Figure 10: DP segmentation algorithms for a synthetic example with sum-squared error and Gaussian
noise (standard deviation σ). The original data; piece-wise linear constant signal (grey line) and
noise added input data yn (grey dots) segmentation result (red line). (a) unconstrained SLR with
regularization λ = 15, noise σ = 15, (b) F-SLR with L = 3 and noise σ = 30, (c) ML-SLR with
ML = 70 and noise σ = 60 and (d) ℓ1 trend filtering with regularization λ = 103, noise σ = 60.

previous one, we have got the same experiment set-up in Figure 11; the original data

is represented with a grey line, and the segmentation results are illustrated with red

lines.

Figure 10(d) and Figure 11(d) show where ℓ1 trend filtering fails to identify break-

points whereas our SLR methods return precise results, which clearly shows the ad-

vantage of constrained, exact combinatorial optimization in ML applications for time

series analysis. This comparison is one clear line of evidence in support of our approach

to DP algorithm derivation.

For the next experiment, we will compare the time complexity of the Needleman-

Wunsch algorithm against our constraint sequence alignment algorithm. More precisely,

we will check the time complexity of (2.3) and (2.5). To execute the experiment, we

have 2 randomly generated sequences with the same length N = 500. Afterwards, we
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Figure 11: DP segmentation algorithms for a sample of logarithmically-transformed S&P500 financial
index daily values [Kim et al., 2009]. Input data yn (grey lines) and segmentation result (red line).
(a) unconstrained SLR with regularization λ = 1.78× 10−5, (b) F-SLR with L = 4, (c) ML-SLR with
ML = 50 and (d) ℓ1 trend filtering with regularization λ = 100.

run the Python implementation of algorithms by increasing the length of the sequences

by 50 to check how execution time differs. Figure 12 demonstrates the difference be-

tween NW
(
O(N2)

)
and an arbitrary constraint on the maximum absolute difference

of misalignments
(
O(N3)

)
.

Our last experiment is to see the importance and accuracy of our exact algorithm

in clustering problems. We start our experiment with obvious (separable) data. Figure

13 illustrates that we have a data set which includes 3 clusters with different densities.

The crucial point here is that these three clusters have different central points and their

variances are small enough to prevent them from overlapping.

We run each approximate method 100 times with different initial starts to replicate

the randomness of initialization of approximate methods. For both exact and approx-

imate DP-means and MAP-DP, we have used the same hyper-parameters such that

λ = 40 for each DP-means, and σ̂ = 0.1, σ0 = 0.5, N0 = 1 and µ0 =(mean value of
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Figure 12: Computational time (red line) required to solve the Needleman-Wunsch DP sequence
alignment algorithm (left) without constraints and (right) with lifted constraint. The horizontal axis
is the length of both sequences and also the size of the constraint algebra (e.g. N = M = |M|).
The vertical axis is on a quadratic (left) and cubic (right) scale such that exact O(N2) and O(N3)
complexities correspond to a straight line (grey line). Python language implementation on a Intel Core
i7 2.80 GHz, 8 GB RAM.

data) for MAP-DP. Table 5 indicates the result of our exact algorithm and the mini-

mum and maximum value for approximate methods from the total run. As a result, it

can be seen that our exact algorithm and approximate methods perform the same or

very close.

On the other hand, the scenario differs when we use a data set that is shown in Figure

14, which has the same number of clusters with more variant density and variance. As

it can be seen from the figure, the far left cluster intersects with the middle one, and

the far right cluster is completely compassed by the middle one. These overlaps in data

also affect the results from approximate algorithms.

Like the previous example, we have used the same hyper-parameters for both meth-

ods such that λ = 70 for each DP-means, and σ̂ = 0.5, σ0 = 0.25, N0 = 1 and µ0 =(mean

value of data) for MAP-DP. As Table 5 shows, there is a significant gap between the
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Figure 13: The representation of the synthetic data set for the clustering experiment; Each cluster of
data has a small variance so that there is not any overlapping between them. The expected performance
from each clustering method is high.

Problem Exact Alg. Value Approx. Alg. Min Approx. Alg. Max
k-means 136 136 136

DP-means 256 256 256
MAP-DP 543 545 545

Table 5: A comparison of clustering methods for the data with separable clusters.

minimum and maximum value in which approximate methods produce, which indicates

the importance and reliability of our exact method. For a specific example, k-means

specifically, the minimum value from 100 runs matches with what the exact methods

produce. However, there is no guarantee that we can get the global optima in which

run, or we cannot be sure about how many runs are enough to obtain the optimal value.

Therefore, we can conclude that our exact algorithm can be preferable as the exactness

in solutions is provided.
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Figure 14: The representation of the synthetic data set for the clustering experiment; the variance
of each cluster is high enough to have overlaps, which makes the partitioning difficult. .

Problem Exact Alg. Value Approx. Alg. Min Approx. Alg. Max
k-means 2258 2258 3145

DP-means 919 3494 4578
MAP-DP 1300 1311 1371

Table 7: A comparison of clustering methods for the data with inseparable.
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Chapter VI

Conclusion
In conclusion, large-scale combinatorial problems of exponential or factorial complexity

that are present in machine learning cannot be optimally solved by exhaustive meth-

ods because of their high computational time demand. Heuristic techniques are one

approach to solving these issues; however, while they may give a viable compromise

solution in a reasonable time, they cannot provide proven optimality. As previously

stated, a significant difficulty in current real-world applications is the absence of verifi-

able optimality.

In the literature, there are attempts to solve combinatorial machine learning prob-

lems such as Emoto et al. [2012]’s structure or constructive algorithms approaches [Bird

and De Moor, 1996]. As discussed, they are restricted in their presentation as list struc-

tures, which are not widely applicable. Combinatorial problems are also common in

dynamic programming, but DP algorithms are problem-oriented and rely on ad-hoc

solutions; therefore, they cannot be solved systematically.

Indeed, our work is closely related to Emoto et al. [2012]’s semiring filter fusion

model, while not explicitly aimed at DP, covers some algorithms which our framework

addresses. Emoto et al. [2012]’s work also uses semirings and lifting, but the similarity

ends there. Our work applies to a much wider class of DP problems than those which can

be expressed using join list homomorphisms. Our contribution also includes an entirely

novel approach to using algebraic simplifications to derive much more efficient algo-

rithms, than can be expressed using Emoto et al. [2012]’s framework. According to our

understanding, this paper was the first to present algebraic lifting in a constrained form

that was only applicable to monoids. Our work describes an entirely novel, modular
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approach to constructing new, optimally-efficient combinatorial generators by applying

lifting and algebraic simplification to existing ones. Due to these restrictions of Emoto

et al. [2012], non-sequential DP algorithms like sequence alignment, edit distance, and

dynamic temporal warping appears to be inapplicable, as well as algorithms needing

constraints based on more “exotic” lifting algebras, such sorted subsequences, appear

to be excluded.

Another approach that we can relate to our work is what Huang [2008] proposes

a framework for DP problems under the Viterbi-style topological algorithms and the

Dijkstra-style best-first algorithms. Huang [2008] shows that we can formulate some DP

problems as semiring computations over graphs. This framework requires monotonicity

condition in a semiring, which is a partial order with respect to ≤. The monotonicity

condition divides a problem into sub-problem and finds the optimality of the problem

from the optimal sub-problems. Unlike our method, Huang [2008] doesn’t rely on

recursions and is based on semiring computations over hyper-graphs, although it is

pretty general, but does not describe the full generality of all DP algorithms. Huang

[2008] only describes the classic algebraic path problem and methods for carrying out

the necessary computations and does not offer any new contributions beyond this. Such

algebraic path problems come “fully formed” in the sense that, the DAG is fixed, and

semiring computations are simply carried out in this fixed DAG. By contrast, our work

provides proof of the correctness of this algebraic path problem for the generate-test-

aggregate approach to algorithm design. Our work also includes lifting and algebraic

simplifications to augment existing DAGs to make them applicable to new problems,

and as above, our work describes a new way of constructing efficient generators (which

will have a new, lifted DAG structure, as we have shown in Figure 7 and Figure 8).

As a result, in this thesis, we have proposed a rigorous, correct-by-design framework

which solves combinatorial machine learning problems exactly and efficiently and does
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not require high-level mathematics. Our approach is polymorphic over semirings which

provides flexibility to the structure of our algorithm and applies to a specific problem

over an existing recursion or simply transform from another algorithm as we have

applied segmented linear regression algorithm to solve 1-D clustering problems.

Our approach is simply based on the use of semiring homomorphisms of functional

recursions (e.g. Bellman’s recursion) represented by paths in the computational DAG

constructed from the specification of the DP problem as a semiring-based mathematical

‘optimization’ problem (it is not always an ‘optimization’ problem, depends on the

particular semirings chosen). We can then use the semiring fusion theorem to gain some

computational savings. Specifically, our method is broader than Emoto’s framework as

it gives a general formula to solve DP problems.

1 Limitations and Future Work

We have implemented our framework for some well-known problems such as segmented

linear regression, sequence alignment and clustering in 1-D. However, we were not able

to implement our method to feature selection. As the objective value of a feature selec-

tion problem depends on the correlation of sub-features, we could not fit this problem

into a recursion. It is because correlation is calculated independently from previous

calculations. Solving a feature selection problem exactly could require examining 2N

sub-feature sets for N number of features. Therefore, solving intractable feature selec-

tion problems efficiently and exactly is future work for us.

Although our formalism is quite broad, it still requires the constraint to be in a

separable form. Other future directions may allow the removal of this requirement by

using similar algebraic structures. Here, we have shown the constraint can be written

in a “local” recursive form in (3.2). This separability form needs to be studied more, it
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will stay as a future work.

Broad-scope methods in the literature such as Bird and Moor [1993] and Curtis

[1996] can solve greedy algorithms. However, they can only be applied to optimization

problems whereas our method works for any problem which can be expressed using a

semiring accumulation. Nonetheless, we have not covered mixed-continuous combina-

torial problems which can be solved by greedy algorithms and divide-and-conquer, the

next motivation could be to extend our method to solve these problems.

Another limitation of our work that we need to address is that it does not make use

of some of the more “sophisticated” DP speed-up techniques that have been created for

specific scenarios [Galil and Giancarlo, 1989]. Implementation of such an acceleration

technique to our method could further enhance the method.
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Chapter VII

Appendices

1 Appendix A

A table of some widely used semirings S = (S,⊕,⊗, ı⊕, ı⊗) and their applications are

given below [Golan, 2013, Huang, 2008].

Semiring Set S Operators
{⊕,⊗}

Identities
{ı⊕, ı⊗}

Intuition/
Application

Boolean {0, 1} {∨,∧} {0, 1} Logical deduction

Tropical R+ {min, +} {+∞, 0}
With

non-negative
weights

Max
Probability

[0, 1] {max,×} {0, 1} Prob. max value

Arithmetic N {+,×} {0, 1} Solution counting
Real R∪{+∞} {min, +} {+∞, 0} Shortest distance

Softmax R+ {− ln(e−x +
e−y), +}

{+∞, 0}
Differentiable

minimum
negative log
likelihood

Relational SRS {∪, ▷◁} {∅, 1R} Database queries
Generator

{
[E]
}

{∪, ◦}
{
∅,
{
[]
}}

Exhaustive listing

Viterbi R× {R+}
{
(min, arg min),

(+,∪)
}

{
(∞, ∅), (0, ∅)

}
Prob. of the best

derivation

Table 8: Some examples of semirings with their applications [Huang, 2008]
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2 Appendix B

Some useful lifting algebras:

Example
application

Algebra
M = (M,⊙, i⊙) (a⊗M b)m (3.27) (a⊗M wM (x))m (3.28)

Subset size (N, +, 0) ⊕
m′∈N

(
am′ ⊗ bm−m′

) {
i⊕ m < v (x)
am−v(x) ⊗ w (x) otherwise

Minimum
count ({1, . . . , M} , min, M)

⊕M

m′=m
(am′ ⊗ bm) ⊕⊕M

m′=m+1 (am ⊗ bm′ )

am ⊗ w (x) m < v (x)(
⊕M

m′=m
am′
)

⊗ w (x) m = v (x)
i⊕ m > v (x)

Maximum
count ({1, . . . , M} , max, 0)

⊕m−1
m′=1 (am′ ⊗ bm) ⊕⊕m

m′=1 (am ⊗ bm′ )

am ⊗ w (x) m > v (x)(
⊕m

m′=1am′
)

⊗ w (x) m = v (x)
i⊕ m < v (x)

Existence (B,∨, F )
aF ⊗ bF m = F

(aF ⊗ bT ) ⊕ (aT ⊗ bF ) m = T

⊕ (aT ⊗ bT )

am ⊗ w (x) v (x) = F

(aF ⊕ aT ) ⊗ w (x) (m = T ) ∧ (v (x) = T )
i⊕ (m = F ) ∧ (v (x) = T )

For all (B,∧, T )
(aF ⊗ bF ) ⊕ (aT ⊗ bF ) m = F

⊕ (aF ⊗ bT )
aT ⊗ bT m = T

am ⊗ w (x) v (x) = T

(aF ⊕ aT ) ⊗ w (x) (m = F ) ∧ (v (x) = F )
i⊕ (m = T ) ∧ (v (x) = F )

Sequential-
value

ordering

((N,R) ,

⪯, z⪯)
⊕

m′∈M:m′⪯m
(am′ ⊗ bm)

{(
⊕m′∈M:m′⪯mam′

)
⊗ w (x) m = v (x)

i⊕ otherwise

Table 9: Some useful example constraints and simplified expressions for the resulting lifted semiring
products, see (3.27), along with simplified expressions for the product against the lifted single value,
see (3.28).
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