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Abstract

Restenosis typically occurs in regions of low and oscillating wall shear stress,

which also favor the accumulation of atherogenic macromolecules such as low-

density lipoprotein (LDL). This study aims to evaluate LDL transport and accu-

mulation at the carotid artery bifurcation following carotid artery stenting (CAS)

by means of computational simulation. The computational model consists of

coupled blood flow and LDL transport, with the latter being modeled as a dilute

substance dissolved in the blood and transported by the flow through a

convection-diffusion transport equation. The endothelial layer was assumed to

be permeable to LDL, and the hydraulic conductivity of LDL was shear-

dependent. Anatomically realistic geometric models of the carotid bifurcation

were built based on pre- and post-stent computed tomography (CT) scans. The

influence of stent design was investigated by virtually deploying two different

types of stents (open- and closed-cell stents) into the same carotid bifurcation

model. Predicted LDL concentrations were compared between the post-stent

carotid models and the relatively normal contralateral model reconstructed from

patient-specific CT images. Our results show elevated LDL concentration in the

distal section of the stent in all post-stent models, where LDL concentration is

20 times higher than that in the contralateral carotid. Compared with the open-

cell stents, the closed-cell stents have larger areas exposed to high LDL concen-

tration, suggesting an increased risk of stent restenosis. This computational

approach is readily applicable to multiple patient studies and, once fully vali-

dated against follow-up data, it can help elucidate the role of stent strut design

in the development of in-stent restenosis after CAS.

KEYWORD S

carotid artery stenting, low-density lipoprotein, stent design

Received: 11 October 2022 Revised: 10 July 2023 Accepted: 4 September 2023

DOI: 10.1002/cnm.3772

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2023 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.

Int J Numer Meth Biomed Engng. 2023;e3772. wileyonlinelibrary.com/journal/cnm 1 of 16

https://doi.org/10.1002/cnm.3772

https://orcid.org/0000-0003-2297-3463
mailto:nhadi@ump.edu.my
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/cnm
https://doi.org/10.1002/cnm.3772
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcnm.3772&domain=pdf&date_stamp=2023-09-20


1 | INTRODUCTION

In recent years, the number of patients requiring carotid artery stenting (CAS) has increased compared to carotid artery
endarterectomy (CAE). This is due to the nature of CAS treatment, which is less invasive, has a shorter recovery time,
and is recommended to patients with high-risk surgery complications.1,2 However, this treatment faces challenges of
late failure resulting from long-term patency and restenosis3

Results from clinical trials on the long-term follow-up of CAS reported in-stent restenosis (ISR) rates ranging from
5.0 to 17.3%.2–5 Data pertaining to the incidence of restenosis have shown the influence of stent characteristics with dif-
ferent designs and configurations.6,7 Previous studies reported different risks of peri-procedural incidents in patients
treated with open-cell stents and closed-cell stents.6,8,9

The stent designs and vessel geometry correlate strongly with neointimal hyperplasia regions, modulated by
wall shear stress.10–12 Differences in stent design may contribute to the disparity in wall shear stress distribution
and subsequent development of neointimal hyperplasia; the latter involves platelet aggregation, smooth muscle
cell proliferation and migration, and accumulation of inflammatory cells and fatty deposits. Several studies used
wall shear stress as a hemodynamic risk indicator to identify potential regions of ISR10,12,13 and to determine the
optimal stent type for specific vessels. They found that post-stent models with a closed-cell type had a larger area
of low and oscillating wall shear stress compared to the open-cell type. Similarly, Hussain et al.9 collected clinical
data that showed restenosis was higher in patients with closed-cell stents over a follow-up period of 20.2
± 16.4 months. This finding was supported by Texakalidis et al.14 that open-cell stents were associated with a lower
risk of restenosis compared to closed-cell stents.

It is well known that the initiation and progression of atherosclerosis are directly associated with a high level
of low-density lipoprotein (LDL) accumulation in the arterial wall.15–18 The high incidence of coronary athero-
sclerosis has led to numerous studies of hemodynamics and LDL transport in the coronary artery,19–31 demon-
strating high LDL concentration in regions prone to atherosclerotic plaque formation. LDL accumulation is also
suggested to promote plaque formation in the aorta32–34 and carotid artery.35–38 In the case of restenosis, recent
reports suggest that the process starts with neoatherosclerosis after stenting, characterized by the accumulation of
lipid-laden foamy macrophages within the neointimal layer.39–42 Therefore, early accumulation of LDL could be
the most crucial reason for intimal thickening, which is the first step of arterial narrowing (initiation of intimal
thickening).

Different models of LDL transport through an arterial wall have been proposed in the literature.43 The simplest
model is the wall-free model, where only the fluid domain is considered in the simulation, and the effects of the sur-
rounding wall are incorporated through the imposed boundary conditions.34,44,45 Coupled fluid-wall models where the
wall is treated as a single layer of homogenous porous medium wall have been developed to investigate macromolecule
transport, including oxygen and LDL transport in arteries.46–48 A more realistic wall model using an anatomically real-
istic multi-layered structure has also been proposed to model mass transport within the wall.49 Another advanced
model combining a multi-layered wall with a multi-pore model for mass transfer of LDL has been applied to a stenosed
coronary artery27 and has shown improved prediction of LDL concentration in the local proximity of the endothelium,
particularly for the initial progress of atherosclerosis.

Following these advancements, several computational models of atherosclerosis have been investigated by dif-
ferent research groups in order to characterize the onset of the disease.19,24,50,51 However, computational studies
on the mass transport of macromolecules in post-stenting arteries are still lacking. Few studies have examined the
altered hemodynamics caused by different post-stent geometry on neointimal hyperplasia (NIH).42 Understanding
the effects of detailed stent cell geometry on the accumulation of atherogenic macromolecules such as LDL is
essential for further future improvement and optimization of stent design. Modeling mass transport phenomena
would also help elucidate the role of stent design and vascular curvature52 in LDL clearance near the endothelial
surface.

In order to investigate how the different stent designs could affect the transport of biologically active molecules dis-
solved in the blood, LDL transport was simulated in three post-stent carotid artery bifurcation models and a healthy
contralateral carotid bifurcation, with the latter being used as a control. LDL transport was described using a
convection-diffusion model accounting for trans-endothelial transport.
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2 | MODELS AND METHODS

2.1 | Reconstruction of the carotid artery bifurcation and stents

A patient with asymptomatic chronic stenosis (90% according to NASCET grading) in the right internal carotid artery
(ICA) was examined using contrast-enhanced computed tomography angiography (CTA). Due to the patient medical
background, the patient was recommended for endovascular intervention using CAS. Figure 1 shows a self-expanding
Wallstent (Carotid WALLSTENT 6–8 � 37 mm, Boston Scientific, MA) deployed in the ICA and distal to the common
carotid artery (CCA). According to the NHS Health Research Authority guidelines and regulations to the guidelines
and regulations of the NHS Health Research Authority in England, formal ethical approval was not required for this
limited retrospective and anonymized study.

The post-stent CTA images were acquired to reconstruct patient-specific models. The images were acquired using
Philips Ingenuity CT machine with a slightly lower resolution: 100 slices of the carotid artery were taken with a thick-
ness of 2 mm for each slice, interslice of 1 mm and pixel size of .549 mm with a higher dose of 120 kV and 67.99 mAs.
Two carotid bifurcation geometric models were built: (a) the post-stent model (reconstructed from post-stent CTA
images of the right carotid) and (b) the contralateral carotid with low-grade stenosis (30%), reconstructed from
CTA images of the left carotid. Both geometries were reconstructed with approximately similar dimensions—for CCA,
the diameter is within .8 to 1.0 cm with the length of 7.0 to 7.2 cm. Similarly, for ICA length from the apex of bifurca-
tion to the end is �6.2 to 6.5 cm. However, the diameter of the geometries differed in the area of distal and proximal to
the bifurcation, that is, 1.12 cm is the largest diameter in the post-stent model compared with .81 cm in the contralat-
eral model. The post-stent model is larger than the contralateral model primarily due to the deployed stent shape.
Another factor is the existence of low-grade stenosis in the contralateral model at the bulb area wall. The ICA length
for both models was built way longer than the external carotid artery (ECA) as the region of interest for the flow pattern
analysis comparison.

The reconstruction process begins with the segmentation of the inner surface of the carotid artery based on
thresholding values and region-growing technique using MIMICS 16.0 (Materialise Inc., Leuven, Belgium). The
sequence began with marking the region of interest, which was the lumen of the CCA, ICA, and ECA in the transverse
plane. The region of interest was highlighted using pixel intensity, and the same procedure was repeated to all trans-
verse plane images. The surface contours were then highlighted pixels and the smoothing criteria. The smoothing was
done based on the prescribed measures to ensure the accuracy of the surface contours. Then, the 3D surface was created
by superimposing and lofting these surface contours in the coronal plane, representing the 3D geometry of patient-

FIGURE 1 (A) CT image of post-stent carotid artery bifurcation showing metallic artifact due to the presence of stent metal. (B) Volume

rendering and segmentation of the model from CT images before generation (C) polylines. (D) Both polylines and centerlines were exported

to CAD files to reconstruct the lumen surface.
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specific carotid artery bifurcation. The smoothing level was controlled to ensure that none of the important physiologi-
cal features were lost during the smoothing process. Polylines of the segmented post-stent geometry were also created
together with the centerline path before being exported to SolidWorks (Dassault Systemes, Velizy, France) for lofting.

For stents creation in Figure 2, a generic approach to reconstruct the deployed stent was developed by making use
of the following information: (1) geometry of the post-stent carotid bifurcation and (2) stent-specific properties includ-
ing the number and width of cells, circumferential and longitudinal struts, as well as the overall stent length and diam-
eter. To virtually deploy the stent, a series of Boolean operations were performed. Firstly, the stented region was
separated from the post-stent model to undergo virtual stenting. The region was then wrapped with the parameterized
sketch of the stent cell and hollowed to .12 mm thickness. An intersection Boolean operation was performed between
the stent cell geometry and the stented region in order to remove the vessel and isolate the stent geometry. The stent
geometry was then exported into a reconstructed post-stent carotid bifurcation. Lastly, a patient-specific stented carotid
bifurcation model was obtained by subtracting the stent geometry from the post-stent model and removing the strut vol-
ume from the flow domain at the opening of the ECA. The inclusion of the stent struts at the opening of ECA is impor-
tant in order to assess the effect of stent design and location on post-stent carotid hemodynamics. To investigate the
influence of open- and closed-cell stent designs on blood flow patterns, models of two additional commercial stent
designs were built. Stent B was created to represent another closed-cell stent design resembling an XACT stent, and
Stent C was created for an open-cell design to resemble an ACCULINK stent (Figure 3).

The models were then exported and discretized into tetrahedral elements using ANSYS ICEM CFD 15.0. Initially,
the ‘octree’ method was used before the volume mesh was regenerated using the ‘delaunay’ method to ensure the
high-quality unstructured mesh. The skewness of the mesh elements and the mesh expansion factor were kept as small
as possible. Figure 4 shows the mesh elements generated with local refinement around the stent struts, where the mesh
density was much greater than in the rest of the model. A finer mesh strategy, including gradually finer elements
toward the wall, was used to ensure convergence of the near wall transport equations and appropriate spatial resolution
for LDL flux in the endothelial layer.54 Hence, the number of mesh elements increased by 15% more than the ones
reported in our previous study.53 Mesh sensitivity tests were carried out for both models to ensure mesh-independent
solutions. The final meshes for all post-stent models are approximately 8.2 million elements, while the contralateral
model consists of approximately 3 million elements.

2.2 | Flow and LDL transport modeling

Laminar and pulsatile blood flows were simulated by numerically solving the governing equations for an incompress-
ible fluid using a finite volume-based CFD code (ANSYS CFX 15.0). Blood was treated as incompressible and non-

FIGURE 2 (from left to right) The stented area in the dotted square is wrapped with a parameterized sketch of stent cells. Using

Boolean operation, the intersection of the stent cells and solid surface yields the realistic expanded Wallstent before subtracting it from the

post-stent model to create a stented carotid artery bifurcation model (post-stent model) for CFD simulation.
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Newtonian with a density of 1060 kg/m3, while its viscosity was described using the Quemada model.55 The Quemada
viscosity model was adapted to incorporate regions of high shear rate with more than 100 s�1 with regions of stagna-
tion, especially at the stent struts. The Quemada is appropriate for capturing the variability of viscosity characteristics
at the low end of shear rates.55 In order to obtain clinically relevant numerical results, accurate boundary conditions
need to be specified at the CCA inlet and the ICA and ECA outlets. For this purpose, Womersley56 velocity profiles
were applied at the CCA inlet, which was derived from the corresponding mean velocity waveforms of Doppler ultra-
sound. An instantaneous mean velocity (i.e., averaged across the Doppler beam) of a cardiac cycle was extracted for the

FIGURE 3 Three stent designs geometries in the deployed configuration. (From left) WALLSTENT, XACT (Stent B), and Acculink

(Stent C). Figure adapted from the previous study.53

FIGURE 4 The tetrahedral elements mesh used in the post-stent carotid bifurcation model with high-density concentration in the

stented region, especially in the vicinity of stent struts.
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calculation of the inlet flow rate by multiplying it with the cross-sectional area of the inlet CCA measured with CTA
(Figure 5). Through the Womersleys method obtained using Matlab (Mathworks, Natick, MA), a harmonic patient-
specific fully developed time-varying velocity profile was then specified at the CCA inlet.

Physiological pressure outflow boundary conditions were obtained using the 3-element Windkessel model
(3-EWM). The 3-EWM has been proven to provide numerical results closer to in vivo, where the resistance of the down-
stream vasculature and arterial compliance determine the pressure at the outlet. The first resistance, R1 is the proximal
resistance which depends on the outlet diameter, C is the total wall compliance of the downstream vasculature, and R2

is the distal resistance offered by the peripheral resistance of the vessel. Pressures and flowrates at each ICA and ECA
outlets are related by the following Ordinary Differential Equation (ODE)57;

Qout,ICA 1þR1,ICA

R2,ICA

� �
þCICAR1,ICA

dQout,ICA

dt
¼CICA

dPout,ICA

dt
þPout,ICA

R2,ICA
, ð1Þ

Qout,ECA 1þR1,ECA

R2,ECA

� �
þCECAR1,ECA

dQout,ECA

dt
¼CECA

dPout,ECA

dt
þPout,ECA

R2,ECA
, ð2Þ

FIGURE 5 Schematic of the computational model employed in this study is similar to our previous report.53 (A) The carotid bifurcation

model together with the RCR network model at the ECA and ICA outlets and (B) the inflow waveform prescribed at the CCA inlet

section based on (C) Doppler ultrasound measurements.

6 of 16 JOHARI ET AL.

 20407947, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cnm

.3772 by T
est, W

iley O
nline L

ibrary on [11/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



where Qout is the outlet flowrate that can be calculated from the Doppler ultrasound velocity waveform, while C, R1,
and R2 were fitted parameters and adjusted to match the maximum, minimum and cycle-averaged carotid blood pres-
sures of 110, 90 and 70 mmHg, respectively (Table 1). Different values for these parameters were calculated for the con-
tralateral and post-stent models based on the corresponding measured flow waveforms at the outlets. The walls were
assumed to be rigid with no-slip conditions.

LDL was modeled as a dilute substance dissolved in the blood and transported by the flow through a convection-
diffusion transport equation:

∂c
∂t

þu �rc¼Dr2c, ð3Þ

where c is LDL concentration, u is blood velocity vector, and D is LDL diffusivity in blood. A physiological concentra-
tion of 1.2 mg/mL was applied at the inlet.34 The endothelial layer was assumed to be permeable to LDL, with LDL flux
(Js) and transmural velocity (Jv) being described by the Kedem-Katchalsky equations:

Js ¼ kwΔcþ Jv 1�σf
� �

c, ð4Þ

Jv ¼Lp ΔP�σDΔ
Y� �

, ð5Þ

where Lp is the hydraulic conductivity of the endothelium, ΔP is the pressure drop across the arterial wall, Δ
Q

is the
oncotic pressure difference, σD and σf are respectively the osmotic and solvent reflection coefficients, kw is the LDL
endothelial permeability, Δc is the LDL concentration difference across the endothelial wall and c is the average endo-
thelial concentration.58 The shear-dependent equation for hydraulic conductivity Lp proposed by Sun et al.23 was
adopted in order to incorporate the influence of local shear stress τw on transmural flux:

Lp τwj jð Þ ¼ :392�10�12 ln τwj jþ :015ð Þþ2:7931�10�12: ð6Þ

All parameter values have been taken from Sun et al.23 In order to account for the early effects of smooth muscle
cell proliferation, the strut thickness was reduced to half of its original size in the three post-stent models.

It is well known that the time scale of LDL transport is much greater than a cardiac cycle. In other words, LDL
accumulation in atheroprone regions would take months or years to form. Within the current limitations of computa-
tional power, it is only feasible to simulate a limited number of cardiac cycles under pulsatile flow. While it is possible
to observe differences in spatial distribution of LDL on the endothelial and sub-endothelial surfaces, it would be desir-
able to predict LDL accumulation over a longer time period. Clearly, simulating LDL accumulation over months/years
in a real-time scale would be computationally prohibitive. This difficulty was circumvented by artificially accelerating
the near wall processes. This artificial acceleration was achieved by multiplying the LDL flux by an enhancement coeffi-
cient, ϕ, which is related to the local time-averaged shear rate:

TABLE 1 Windkessel parameters for each outlet.

Model Boundary R1 (Pa s/m3) R2 (Pa s/m3) C (m3/Pa)

Post-stent ICA 4.107 � 108 2.924 � 109 5.757 � 10�10

ECA 6.707 � 108 5.099 � 109 3.327 � 10�10

Pre-stent ICA 7.944 � 108 9.742 � 109 1.822 � 10�10

ECA 1.001 � 108 1.633 � 109 7.288 � 10�10

Contralateral ICA 8.969 � 108 2.756 � 109 5.255 � 10�10

ECA 7.292 � 108 4.074 � 109 3.977 � 10�10
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ϕ¼ 10
4

γ5t
γ5t þγ5av , ð7Þ

where γav is the time-averaged shear rate and γt is a pre-defined threshold value for shear rate. The coefficient will be
equal to 1 in regions where the local time-averaged shear stress is greater than .4 (i.e., γav >> γt = 37 s�1 for Quemada
viscosity model), and it will be equal to 104 in regions of particularly low shear. The .4 value is based on Malek et al.59

that suggested the wall area with TAWSS <.4 Pa is considered to be atheroprone, in which atherosclerotic lesions co-
localize with regions of low wall shear stress. In regions where the local time-averaged shear stress is below .4 Pa, the
wall flux will be enhanced by 104-fold, so that LDL accumulation over a much longer time scale can be predicted by
only simulating a few cardiac cycles:

ϕ Jvc�D
∂c
∂n

����
wall

� �
¼ϕ:Js ð8Þ

This methodology allows us to de-couple the time scales of solute and blood transport, simulating a wall transport
process occurring over a time scale of the order of 104 s (�3 h) per cardiac cycle.

2.3 | Computational details

In ANSYS CFX 15.0, a high-resolution advection strategy was utilized to spatially discretize the Navier–Stokes equation,
while a second order implicit backward Euler scheme was employed to temporally discretize the equation. The model
was first to run for three cardiac cycles to get a periodic flow solution and to initialize the model variables. Then the
LDL model was included starting with the fourth cardiac cycle. For temporal advancement, a uniform time-step of
.001 s was employed, with a maximum root-mean-square (RMS) residual of 10�5 manually specified to regulate the
solution's precision. Around 15–20 iterations were required to attain convergence at each time step. Overall, CFD simu-
lations including the LDL transport simulations for all post-stent models, require an average of 3 h of computer
processing time per cardiac cycle using an Intel Xeon E5-2697 workstation with 24 cores and 96 GB RAM.

3 | RESULTS AND DISCUSSION

Figure 6 shows the local sub-endothelial LDL concentration with normal near-wall transport in the four models. For
the contralateral carotid (Figure 6A), the normalized LDL concentration is concentrated around the bifurcation wall,
especially at the outer wall of CCA to ICA. Elevated LDL concentrations of about 3.4% are observed in this area which
is the entrance of the carotid bulb. The increase of LDL in this area was reported earlier by Kenjeres and Loor,60 with a
maximum increase of 3.5% in the healthy patient-specific carotid bifurcation model. The variation of LDL concentration
distribution can be interpreted through observation of time-averaged wall shear stress (TAWSS) gradients. As reported
in References 38,53,60, low TAWSS corresponds to the recirculation flow structure within the carotid bulb. The area of
high LDL concentration is limited to the connection of CCA and ICA, which corresponds to the area of low TAWSS in
the geometry. The computed area for both low TAWSS and high LDL is similar to Kim and Giddens,38 who applied
realistic wall thickness to represent wall structure in their FSI simulations. The local flow fields are highly dependent
upon individual or patient-specific lumen and wall geometry as well as the blood flowrates, thus making the recon-
struction of actual hemodynamic environment is crucial since the wall shear stress is used as the basis to measure local
LDL transport parameters.

To establish additional correlations between the local flow and LDL concentration distributions, an arbitrarily
selected ‘0 to 1’ line profile along the lumen wall of the carotid bulb is extracted (Figure 7A). The resulting profiles of
TAWSS and normalized LDL concentration along the ‘0 to 1’ line are plotted the Figure 7B for comparison. It can be
seen that a local minimum of the TAWSS takes place at L/Lo = .2 before gradually increasing toward the end of the
profile line. At the same location, profiles of normalized LDL concentration reached local maximum and gradually
decreased, respectively. This means that many areas with low WSS also have high LDL concentrations along the

8 of 16 JOHARI ET AL.
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endothelium layer. Similar findings were also recorded in References 44,60 where the area of lowest WSS and highest
LDL concentration mostly coincide.

For the post-stent models, elevated LDL concentrations are observed in the proximal portion of the stent along the
outer wall, especially at the sharp corners of the struts, with less pronounced LDL accumulation in the distal region
(Figure 6A). The highest normalized concentration found in these regions is up to 2.34, about 80% higher than the con-
tralateral carotid. The elevated LDL concentration was observed around the stent struts in all post-stent models, with
the highest LDL is at the outer wall of CCA to ICA. As the geometry shapes of the post-stent models are identical, the
spatial pattern of LDL is observed following the stent design. A marginally larger area of elevated LDL concentration
occurs in the Wallstent model compared to the other two models (Figure 6B). Since the geometrical feature of the
Wallstent has a higher number of stent cells, it causes a larger area of complex flow patterns near the wall, especially
between the struts. Similar to the contralateral model, these areas are dominantly covered by low TAWSS which
directly correspond to local flow recirculation close to the struts (Figure 8). This abnormal hemodynamic environment
leads to larger areas of low TAWSS. Similar results were also recorded by Santis et al.13 in the study of restenosis predic-
tion using wall shear stress and indices computed from CFD simulations on ideal open- and closed-cell stents.

The LDL concentrations in the contralateral carotid are not affected by the artificial acceleration of its near wall
transport as shown in Figure 9. A similar location of elevated LDL concentrations is recorded in the carotid bulb. How-
ever, the accelerated LDL concentration in the contralateral model may not be compared directly with previous studies.
Kenjeres and Loor60 used steady laminar flow profile with identical Re = 105, while Kim and Giddens38 only performed
simulations in three cardiac cycles. However, all post-stent models observed notable changes in accelerated LDL con-
centrations. First, there is a substantial increase in LDL accumulation in different regions of the stented geometries
where concentrations are more than 20 times higher than in the contralateral carotid. Second, LDL accumulation is
most pronounced in the distal region of the stent, with Stent C showing the least coverage of high LDL hot spots.

FIGURE 6 Sub-endothelial LDL concentration in the post-stent models and in the contralateral carotid obtained with normal wall

transport. (A) Comparison between the contralateral carotid and the Wallstent carotid showing the exact location of high concentration of

LDL accumulation, (B) all three different post-stent models showing similar pattern of high LDL accumulation distribution at the proximal

region.
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Finally, LDL accumulation in the proximal region only occurs at a few isolated spots. According to previous studies,
restenosis occurs mostly within the first year after CAS,61,62 and the accelerated near-wall transport simulation is
indeed useful to approach realistic LDL accumulation duration.

While LDL concentrations in the contralateral carotid are not affected by the artificial acceleration of its near-wall
transport, obvious changes are noted for the post-stent models. Significant LDL accumulation toward the distal end of
the stent could be attributed to the combined effect of bending at both ends of the stent, slightly enlarged local diame-
ter, and a mild constriction in the middle of the stent. Isolated spots of LDL accumulation were also observed at the
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FIGURE 7 (A) The contours of normalized LDL concentration and TAWSS at the bifurcation area and location of the lines (L/L0) for

extraction of the characteristic profiles. (B) The profiles along the L/L0 lines compare LDL concentration and TAWSS (Pa).

FIGURE 8 Recirculation flows in free cell area between the stent struts. This figure has been reported in the previous study by our

group.53
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proximal end of the stent, but these were limited to the sharp corners around the struts. Based on our results, LDL accu-
mulation appeared to be more pronounced in Wallstent and Stent B—both are closed-cell stents. Nonetheless, it should
be borne in mind that our simulation results were based on the assumption that the plaque was pushed back uniformly
by the stent so that any possible protrusion of the plaque through the free cell area of the stent was not taken into
account.

The methodology presented in this study allows us to replicate stent apposition from the post-CAS patient-
specific geometry, maintaining the complex shape of the stent struts such as floating struts at the ECA entrance and
a small constriction downstream of the bifurcation; all of these influence the local hemodynamics.4,5 The results
clearly show that the patient-specific geometry and stent design in post-stent models affects the distribution of LDL
concentration. Low endothelial shear stress, flow recirculation, and stagnation are known to be associated with
weak convective clearance near the endothelial surface, which could result in local accumulation of biologically
active compounds like LDL.28,63 Through artificial acceleration of the near wall processes, we were able to simulate
LDL accumulation over a much longer time period than a few cardiac cycles. Using a low TAWSS threshold of
.4 Pa to trigger the accelerated transport,59 our computational results predicted a potential risk for LDL accumula-
tion in the distal segment of the stent in all post-stent models, although the coverage of LDL accumulation was less
in Stent C (open-cell).

Figure 10 shows a comparison of local hemodynamic features, that is, TAWSS, oscillatory shear index (OSI) and rel-
ative residence time (RRT) reported in Johari et al.'s Reference 53, with LDL accumulation in the least potential risk of
ISR model, Stent C. As blood flow may change its direction, many studies have used OSI to quantify the cyclic motion,

FIGURE 9 LDL concentrations in the contralateral carotid (top) and the post-stent carotids (bottom) obtained with accelerated near-

wall transport.

JOHARI ET AL. 11 of 16

 20407947, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cnm

.3772 by T
est, W

iley O
nline L

ibrary on [11/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ranging between 0 and a maximum .5. RRT predicts the likelihood of cell deposition on the arterial wall.64 Low
TAWSS, elevated OSI, and high RRT have been reported being correlated with neointimal thickening, which could
potentially lead to ISR. The LDL simulation presented in this study revealed the same spots of high LDL concentration
with the hemodynamic features, especially at the area toward the distal end of the stent. The unfavorable hemodynamic
features and LDL accumulation in post-stent models were consistent with Texakalidis et al.,14 who found that open-cell
stents were associated with a statistically lower risk of restenosis compared to closed-cell stents.

By artificially accelerating the wall transport process, this study has demonstrated the feasibility of simulating LDL
accumulation in the wall over a much longer timescale than several cardiac cycles. Since the buildup of LDL is involved
in the initial stage of intimal thickening, the current findings can be used to predict the risk of intimal thickening based
on the distribution of LDL accumulation in the carotid artery.

This method can be applied to multiple patient cases to elucidate further stent design's role in the development of
ISR after CAS. There are four limitations of this study. First, the model for LDL transport was limited to luminal and
trans-endothelium transport without accounting for the multi-layered structure of the arterial wall. The initial condi-
tion of LDL concentration was also assumed with a constant value (C C0), proving by a previous study65 that different
LDL concentrations may produce different patterns of LDL distributions in the artery. However, the present study aims
to compare the LDL distribution between different stent designs with the normal contralateral carotid. The purpose is
to identify which stent design is predicted to have a higher risk of stent restenosis. Hence, we believe our initial condi-
tion of constant LDL concentration profiles diluted in blood flow is reasonable to meet the study's purpose. Nonethe-
less, the recommendation by Reference 65 is beneficial for future studies.

Second, the vessel wall and the stent were assumed to be rigid in the CFD simulations; nevertheless, as the study
aimed to observe the pattern of LDL distribution in the stented region, the rigid wall assumption is expected to have a
minor influence on the results.66 To account for the potential influence of remodeling on the hemodynamics, the strut
thickness was also reduced to half of its original size in all post-stent models. This adjustment attempts to partially

FIGURE 10 Comparison of hemodynamic simulations (top) reported by Johari et al. 202053 with LDL concentrations in post-stent

model, Stent C (bottom).
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consider the remodeling of the stent's geometry and its effects on the flow patterns and LDL distribution. The findings
reported by Corti et al.67 are in line with the assumptions made in the current study regarding stent remodeling. They
observed that most of the restenosis occurred in the first post-operative month, and subsequent remodeling affected the
hemodynamics, leading to a slowing down of the restenosis process over time. While the current study did not explicitly
simulate the long-term follow-up and remodeling process as performed by Corti et al.,67 the inclusion of the stent strut
thickness reduction aimed to consider the potential effects of remodeling on the results. However, it is important to
note that the specific influence of remodeling on the results was not extensively investigated in the current study.

It would be more interesting to evaluate the qualitative comparison of LDL concentration between the different
sizes of the stenotic model (pre-stent) and post-stent models. The absence of follow-up data has limited the study for
any direct comparison between the predicted LDL accumulation and restenosis, especially the LDL concentration
values around the stent strut. A few previous articles simulated the LDL transport in the other parts of the stented
artery, such as Gai et al.,68 Liu et al.,69 and Escuer et al.70 However, none of the articles proposed the LDL concentra-
tion values in the stented area. Nonetheless, the similarity of the three articles is that the normalized LDL concentration
around the stent struts is way higher than in the other endothelium wall, which is also predicted in the present study.
The studies are not focusing on the stent strut shape and size, as they mentioned difficulties in reproducing the complex
geometry of the stent; hence, the simplified circular stent area was employed in the study. Besides, the clinical observa-
tion study by68 recommends further analysis for possible LDL concentration values in the specific stent area. Finally,
regarding the influence of different acceleration factors on the areas of high LDL concentration, it is to note that the
specific influence of other acceleration factors was not addressed in this particular study. Instead, the focus was on
assessing LDL influx in a longer time period and providing preliminary results. Further evaluation and validation of
the computational technique used in this study, including performing sensitivity analyses with different acceleration
factors would be useful in the future studies for a more comprehensive understanding of the model's behavior.

4 | CONCLUSION

In this study, we investigated the accumulation of LDL in patient-specific post-stent carotid bifurcation models
reconstructed from CTA images to predict the potential of restenosis. The predicted LDL accumulation was compared
between the closed- and open-cell stents models and the normal contralateral model. Our results clearly show that LDL
accumulation is more pronounced in Wallstent and Stent B—both are closed-cell stents. This computational technique
is readily applicable to various patient data. Once fully validated against follow-up data, it can help elucidate the role of
stent strut design in the development of in-stent restenosis after CAS. Future studies of more patient-specific models
using our methodology will be beneficial to assess the impact of more stent designs and vessel curvatures, especially
with specific post-stenting follow-up information. This will facilitate a similar analysis to determine key factors in the
progression of restenosis.
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