
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTISCALE MODEL. SIMUL. c© 2016 Society for Industrial and Applied Mathematics
Vol. 14, No. 4, pp. 1417–1433

A STOCHASTIC HYBRID FRAMEWORK FOR OBTAINING
STATISTICS OF MANY RANDOM WALKERS IN A SWITCHING

ENVIRONMENT∗

ETHAN LEVIEN† AND PAUL C. BRESSLOFF†

Abstract. We analyze a population of randomly walking particles in a stochastically switching
environment by formulating the model as a stochastic hybrid system. The latter describes the
evolution of the probability distribution of the particles, which is a random variable depending
on realizations of the random environment. We derive a hierarchy of moment equations for the
probability distribution, which allows us to extract statistics of the multiparticle system. As a
specific example, we consider a population of particles walking on a one-dimensional lattice with a
dynamic gate at some unknown location, which stochastically switches between an open and closed
state according to a two-state Markov process. This type of model has two levels of stochasticity:
one due to the jump process describing the evolution of each particle on the lattice, and the other
due to the switching of the gate. By solving the moment equations for the stochastic hybrid system,
we extract statistical information about the location and dynamics of the gate in terms of how the
mean and variance of site occupancies varies with distance of a given site from the gate. This has
potential applications in the analysis of time series data obtained from biophysical experiments on
the diffusion of particles in the plasma membrane of cells.
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1. Introduction. A random walk with spatially varying jump rates on a spa-
tially discrete lattice can be viewed as a birth-death process (BDP), which is an
example of a continuous-time Markov process. The defining feature of a BDP is that
jumps can only occur between neighboring lattice states. They are a fundamental
component of numerous mathematical models in fields ranging from population and
cell biology [1, 3, 25] to queueing theory and operations research [15]. The theory
of BDPs is typically developed under the assumption that the birth and death rates,
α and β, are independent of time (homogeneous BDPs), although there have been
several studies involving time-dependent transition rates (inhomogeneous BDPs); see
for example [33, 12]. In this paper, we consider another level of complexity whereby
the transition rates are themselves stochastic. This is primarily motived by the ex-
ample of diffusion of proteins in the cell membrane, although the theory developed is
more general, having applications in gene networks, queuing theory, and population
biology.

At the simplest level, the plasma membrane can be treated as a two-dimensional
sheet of membrane lipids into which proteins are embedded. Membrane lipids are a
group of compounds (structurally similar to fats and oils) which form the double-
layered surface of all cells. Lipids are amphiphilic: they have one end that is soluble
in water (“polar”) and another end that is soluble in fat (“nonpolar”). By forming a

∗Received by the editors February 11, 2016; accepted for publication (in revised form) September
6, 2016; published electronically November 10, 2016.

http://www.siam.org/journals/mms/14-4/M106108.html
Funding: The second author was supported by the National Science Foundation (DMS-

1120327).
†Department of Mathematics, University of Utah, Salt Lake City, UT 84112 (levien@math.

utah.edu, bressloff@math.utah.edu).

1417

D
ow

nl
oa

de
d 

11
/1

1/
16

 to
 1

55
.1

01
.9

7.
26

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/mms/14-4/M106108.html
mailto:levien@math.utah.edu
mailto:levien@math.utah.edu
mailto:bressloff@math.utah.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1418 ETHAN LEVIEN AND PAUL C. BRESSLOFF

membrane skeleton anchored proteins

Membrane-skeleton (fence) model Anchored-protein (picket) model

(A) (B)

Fig. 1. Picket-fence model of membrane diffusion. The plasma membrane is parceled up into
compartments whereby both transmembrane proteins and lipids undergo short-term confined diffu-
sion within a compartment and long-term hop diffusion between compartments. This corralling
is assumed to occur by two mechanisms. (A) The membrane-cytoskeleton (fence) model: trans-
membrane proteins are confined within the mesh of the actin-based membrane skeleton. (B) The
anchored-protein (picket) model: transmembrane proteins, anchored to the actin-based cytoskeleton,
effectively act as rows of pickets along the actin fences.

double layer with the polar ends pointing outwards and the nonpolar ends pointing
inwards, membrane lipids can form a “lipid bilayer” which keeps the watery inte-
rior of the cell separate from the watery exterior. In the fluid mosaic model of [29],
the membrane lipids are treated as the solvent (water concentrations are very low
within the membrane) into which proteins are dissolved. Although the diffusion of
lipids appears to be Brownian in pure lipid bilayers, single-particle tracking experi-
ments indicate that lipids and proteins undergo periods of confined diffusion, in which
the mean-square displacement is sublinear in time. Confinement domains arise due
to the fact that the cell membrane is a highly heterogeneous, fluctuating environ-
ment, in which obstacles can appear and disappear stochastically [27, 22]. This has
led to a modification of the original fluid mosaic model, in which lipids and trans-
membrane proteins undergo confined diffusion within, and hop between, membrane
microdomains or corrals [32, 22, 23]; the corraling could be due to “fencing” by the
actin cytoskeleton or confinement by anchored-protein “pickets”; see Figure 1. Par-
titioning the membrane into a set of corrals implies that anomalous subdiffusion of
proteins will be observed on intermediate timescales, due to the combined effects of
confinement and binding to the actin cytoskeleton. However, on timescales over which
multiple hopping events occur, normal diffusion will be recovered. A rough estimate
of the corresponding diffusion coefficient is D ∼ L2/τ , where L is the average size of a
microdomain and τ is the mean hopping rate between microdomains. A typical range
of values for various types of mammalian cell are L ∼ 30−240 nm and τ ∼ 1−20 ms.

Brown et al. [8] modeled the flux of proteins into and out of a well-mixed confine-
ment domain in terms of a stochastically gated BDP. The authors focused on the par-
ticular problem of determining whether or not there is a dynamic gate based on time
series data from a population of particles within the gated domain. They analyzed
the system as a rate process with dynamic disorder using the framework developed
in [34], and derived analytical expressions for the mean and variance of the number
of particles in the domain. This model was later extended in order to study protein
trafficking in dendritic spines [7]. A natural generalization of the model studied by
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(A)
Environment 1

Environment 0

(B)

(C)

Environment 1

Environment 0

n n+1n-1
α

β

α

β

Fig. 2. A diagram depicting the two scales of stochasticity for a set of well-mixed con-
finement domains with nearest-neighbor diffusive coupling arranged along a one-dimensional
lattice. (Since the individual compartments are well-mixed, we can ignore the spatial struc-
ture of each compartment and just keep track of site occupancies. Particles then simply hop
between neighboring sites.) (A) A large population of particles diffusing in a dynamic ran-
dom environment that can be in one of two states due to the presence of a dynamic gate. In
state 1 the gate is open and particles can freely diffuse between each well-mixed confinement
domain (lattice site), while in state 0 the gate is closed (indicated by the shaded rectangle)
and particles are blocked from diffusing between two neighboring sites. (B) The stochastic po-
sition of each particle on the lattice is described by a BDP whose transition matrix randomly
switches between two forms due to the switching environment. The population of particles is
described by an ensemble of noninteracting BDPs driven by a common environmental input
(state of the dynamic gate). (C) Histograms comparing the probability distributions P (n, t)
(bars) for a single realization of the random environment in (A) and p(n, s, t) (black line)
obtained by averaging over multiple realizations of the environment. The difference is due
to the effects of the dynamic environment concentrating particles to the left and right of the
gate, an effect that would be smoothed out if we averaged over multiple realizations.

Brown et al. consists of a population of particles jumping along a sequence of con-
finement domains whose connections may be gated; see Figure 2 (A). If the domains
are well-mixed, then one can represent each domain as a site on a one-dimensional
lattice, and specify the state of each particle at time t by its location on this lattice.
(A more realistic model of diffusion in the plasma membrane as illustrated in Fig-
ure 1 would consider the hopping of particles between nearest-neighbor, well-mixed
compartments arranged on a two-dimensional lattice; in this paper we focus on the
simpler one-dimensional case.) The resulting process has two levels of stochasticity:
one due to the jump process describing the hopping of individual particles between
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1420 ETHAN LEVIEN AND PAUL C. BRESSLOFF

neighboring sites on the lattice, and one due to the random switching of the gate;
see Figure 2 (B). While this process has been mentioned in previous papers on the
topic of protein diffusion in cell membranes, the complexity of the master equation
resulting from such a process has prohibited analytical investigation. Therefore, the
problem of determining the existence and location of one or more dynamic gates in a
spatially extended domain has not been studied in detail.

In this paper we develop a mathematical framework for studying the above type of
problem in the mean-field or thermodynamic limit Ctot →∞, where Ctot is the num-
ber of identical, independent random walkers moving in the same switching environ-
ment. Suppose that the state of the environment at time t is denoted by s(t) ∈ {0, 1}.
Each realization of the environment up to time t, σ(t) = {s(τ), 0 ≤ τ < t} will typ-
ically generate a different particle distribution P (n, t)—in the mean-field limit this
represents the fraction of particles at lattice site state n at time t, given some initial
distribution P0(n). The presence of the random environment means that the particle
distribution P (n, t) is itself a random variable; that is, it implicitly depends on σ.
One finds that P evolves according to a so-called stochastic hybrid system (SHS) [11].
Introducing the rth order moments

C(r)(n1, . . . , nr, s) = Eσ[P (n1, t) . . . P (nr, t)1s(t)=s],

where expectation is taken with respect to realizations σ conditioned on the envi-
ronmental state at time t being s, s(t) = s, one can derive a closed hierarchy of
moment equations in the form of deterministic master equations. This then estab-
lishes a relationship between C(r)(n1, . . . , nr, s) and the joint probability distribution
for r random walkers having positions n1, . . . , nr at time t, given that the random
environment is currently in state s(t) = s (but previous states of the environment are
not fixed). Consider, in particular, the first moment

πn,s(t) = Eσ[P (n, t)1s(t)=s].

We find that πn,s(t) satisfies the same deterministic master equation as p(n, s, t),
which is the probability that a single random walker is at site n at time t, given that
the environment is currently in state s. The difference between the two distributions
P (n, t) and p(n, s, t) is illustrated in Figure 2 (C). Note that in the absence of a
stochastic gate, the two distributions are equivalent, since both sample the same
underlying BDP. This raises the issue of how the statistics obtained from the two
perspectives differ in the presence of a stochastic gate. An analogous issue has recently
been explored within the context of partial differential equations (PDEs) in switching
environments [6, 4, 5]. These studies analyze the drift-diffusion equation in a domain
with switching boundaries, in which the rth moments of the stochastic PDE determine
the statistics of r particles moving in the same random environment.

In developing our analysis we will make repeated use of the following acronyms:
• DSBDP (doubly stochastic birth-death process): A BDP that has stochastic

transition rates due to a randomly switching environment. In the random
walk model this is due to stochastic gating.

• QBDP (quasi birth-death process): Formulation of a DSBDP as a bivariate
Markov process, in which one simultaneously samples over multiple realiza-
tions of the BDP and the switching environment. It determines the state
probability of a single random walker.

• SHS (stochastic hybrid system): Formulation of a DSBDP in which one
samples over multiple realizations of the BDP for a single realization of the
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RANDOM WALKERS IN A SWITCHING ENVIRONMENT 1421

randomly switching environment. It describes the piecewise deterministic
evolution equation for the probability distribution of a large population of
random walkers evolving in the same environment, which is a random vari-
able depending on realizations of the random environment.

The structure of the paper is as follows. We begin by considering the two distinct
formulations of a DSBDP given by a QBDP and an SHS, respectively (section 2). We
analyze the relationship between the two formulations in section 3. Exploiting the
fact that the piecewise deterministic dynamics of the SHS is linear in the probability
distribution, we derive a hierarchy of moment equations that provide statistical infor-
mation regarding the site occupancies (section 3). We also establish a probabilistic
relationship between the moments obtained from the SHS framework, and the statis-
tics of a finite number of particles in the QBDP framework. That is, we show that the
r-point correlations are related to the joint probability densities of r noninteracting
particles in the same switching environment. We then apply our theoretical results
to the particular example of a population of particles walking on a one-dimensional
lattice with a dynamic gate at some unknown location (section 4). Solving the mo-
ment equations for the SHS, we extract statistical information about the location and
dynamics of the gate in terms of how the mean and variance of site occupancies vary
with distance of a given site from the gate.

Finally, note that there is a considerable amount of literature on so-called doubly
stochastic Poisson processes (DSPPs), also known as Cox processes, but, as far as we
are aware, there has been very little work on DSBDPs. DSPPs were first introduced
by Cox [9] as a generalization of an inhomogeneous Poisson process, in which the
time-dependent transition rate depends on a second, independent stochastic process.
The general theory of DSPPs was subsequently developed by Grandell [14]. Example
applications include photon and electron detection [26], occurrences of credit events
in finance [24], and neural coding [28, 20].

2. Model formulation. A BDP is an example of a Markov process with a
discrete state space (which could be infinite) N = {0, 1, . . . , L} ⊂ N. Let the ran-
dom variable N(t) ∈ N denote the current state of this stochastic process. We will
let αn and βn denote the transition rates from state n to n + 1 and n to n − 1,
respectively. Consider the probability distribution for N(t), which we denote by
p(n, t). The invariant density, or steady-state distribution, denoted p∗(n), is defined
by p∗(n) = limt→∞ p(n, t) if it exists. Provided αn 6= 0 and βn+1 6= 0 for all 0 ≤ n < L,
the BDP is ergodic and the existence of p∗(n) is guaranteed. Following a derivation
which can be found in [15], we obtain the birth-death master equation

(2.1)
d

dt
p(n, t) = αn−1p(n− 1, t) + βn+1p(n+ 1, t)− [αn + βn]p(n, t)

with α−1 = β0 = 0 and αL = βL+1 = 0. It is convenient to introduce the vector p(t) =
[p(0, t), . . . , p(L, t)]T and an appropriate matrix A so that we can write this equation
in matrix form: dp/dt = Ap. The adjoint matrix AT is known as the generator of
the Markov process. The steady-state distribution p∗ = [p∗(1), . . . , p∗(L)]T satisfies
Ap∗ = 0 and 1Tp∗ = 1 and it is well known that this definition of p∗ is equivalent to
the limit definition given above [15].

2.1. Doubly stochastic BDP. Motivated by the aforementioned biological ex-
ample of membrane diffusion, we introduce an added level of stochasticity to the
BDP by allowing the transition rates αn, βn to depend on a second, independent
discrete stochastic variable S(t). The latter takes values in a discrete state space
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1422 ETHAN LEVIEN AND PAUL C. BRESSLOFF

S = {0, . . . ,M − 1} ⊂ N, and transitions between states in S occur according to a
jump process with rates ωss′ . For simplicity, we assume that the transition rates are
independent of N(t). If q(s, t) is the probability distribution for the process S(t), the
vector q = [q(0, t), . . . , q(M − 1, t)]T is governed by the master equation

(2.2)
d

dt
q = Ωq,

where the matrix Ω has entries

Ωss′ = ωss′ − δs,s′
∑
k∈S

ωks′ .

We will assume that the matrix of transition rates ωss′ is irreducible, so that there
exists a unique steady-state distribution q∗ satisfying Ωq∗ = 0 and 1Tq∗ = 1. Note
that S(t) need not evolve according to a BDP, so the transition rates have a more
general structure on the state space S. We will refer to S(t) as an environmental
variable, while N(t) will be referred to as a state variable. This terminology will
also be applied to associated objects such as transition rates. For example, we refer
to αn, βn as state transition (or birth-death) rates, while ωss′ is an environmental
transition rate.

Definition 2.1. A DSBDP is an inhomogeneous BDP with stochastic birth-death
rates αn(S(t)) and βn(S(t)), and environmental transition rates ωss′ .

2.2. Two alternative probabilistic formulations of a DSBDP. We now
consider two complementary probabilistic formulations of a DSBDP.

2.2.1. DSBDP as a level-dependent QBDP. The DSBDP is an example of
a bivariate Markov process for the random variable

Z(t) = (N(t), S(t)) ∈ N × S.

Let p(n, s, t) be the joint probability distribution of N(t) and S(t) given the initial
conditions N(0) = n0 and S(0) = s0; that is,

(2.3) p(n, s, t) = P[N(t) = n, S(t) = s|N(0) = n0, S(0) = s0].

We will interpret p(n, s, t) as the probability that a single particle is in state n at time
t, given that the environment is in state s. The master equation for p(n, s, t) takes
the form

d

dt
p(n, s, t) = αn−1,sp(n− 1, s, t) + βn+1,sp(n+ 1, s, t)− [αn,s + βn,s]p(n, s, t)

+

M−1∑
s′=0

[ωss′p(n, s
′, t)− ωs′sp(n, s, t)],

(2.4)

where αn,s = αn(s) and βn,s = βn(s). Equation (2.4) is supplemented by the initial
condition p(n, s, 0) = δn,n0δs,s0 .

The right-hand side of the master equation (2.4) has an obvious intuitive inter-
pretation: the first line represents the flow of probability due to the state transitions,
while the second line represents the flow due to environmental transitions. Equation
(2.4) is an example of a level-dependent QBDP. More generally, a QBDP is a Markov
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RANDOM WALKERS IN A SWITCHING ENVIRONMENT 1423

process on some subset of N×N where the transitions in the first variable (the state)
are restricted to nearest neighbors, but the transitions in the second variable (the
environment) may be arbitrary. If the state transitions depend on the environmental
label, then this becomes a level-dependent QBDP. Such processes have applications
in queuing theory and communications systems, but little is known about them in
general [19]. To our knowledge, the connection between a general level-dependent
QBDP and a DSBDP has not previously been made.

In many applications we are not particularly interested in the environmental vari-
able, but rather the total probability that a particle is in discrete state n. This is due
to the fact that in many biological systems the random variable N(t) can be observed,
whereas S(t) is hidden. We thus introduce the unconditional probability distribution

(2.5) p(n, t) =

M∑
s=1

p(n, s, t).

The corresponding steady-state distribution is then given by

p∗(n) =

M∑
s=1

p∗(n, s), p∗(n, s) = lim
t→∞

p(n, s, t).

We will assume throughout that the transition matrix of the Markov process Z(t) is
irreducible.

2.2.2. DSBDP as an SHS. For a given realization of the stochastic process
S(t), σ(t) = {s(τ), 0 ≤ τ < t}, the conditional probability distribution

(2.6) P (n, t) = P[N(t) = n|{s(τ), 0 ≤ τ < t}]

evolves according to the inhomogeneous birth-death master equation
(2.7)
d

dt
P (n, t) = αn−1(s(t))P (n−1, t)+βn+1(s(t))P (n+1, t)− [αn(s(t))+βn(s(t))]P (n, t).

The initial conditions are taken to be P (n, 0) = P0(n) and S(0) = s0. We will inter-
pret P (n, t) as the probability distribution for an infinite population of independent,
identical particles subject to a single realization of the random environment.1 Observ-
ing multiple independent particles evolving in the same random environment allows
us to separate out the sampling of the BDP N(t) and the stochastic process S(t). It
follows that multiple realizations of S(t) will produce a “distribution of distributions.”
In order to analyze the latter, we replace s(t) in (2.7) by the random environmen-
tal variable S(t). Setting P (t) = [P (0, t), . . . , P (L, t)]T , we can rewrite (2.7) in the

1This interpretation relies on the strong law of large numbers. That is, consider Ctot

particles undergoing a DSBDP in the same switching environment and let C(n, t)/Ctot be
the fraction of particles at site n at time t. The strong law of large numbers implies
C(n1, t) . . . C(nr, t)C

−r
tot → P (n1, t) . . . P (nr, t) a.s. Taking the expectation of both sides of this

expression with respect to the realizations of S(t) and applying the dominated convergence the-
orem yields limCtot→∞ C−rtotEσ [Cn1 (t) . . . Cnr (t)] = Eσ

[
P (n1, t) . . . P (nr, t)1S(t)=s

]
. One should

also note that it is straightforward to apply recent technical work on error bounds for stochastic
hybrid approximations of chemical reaction networks to obtain error bounds on the approximation
of P (n, t) by C(n, t)/Ctot for large but finite Ctot. see for example [10, 17] We have omitted these
technical results since our goal is not to obtain error bounds for modeling purposes, but rather to
explore the various conceptual interpretations of the SHS formation.
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1424 ETHAN LEVIEN AND PAUL C. BRESSLOFF

matrix form

(2.8)
d

dt
P = AsP ,

where As is the generator of the BDP for S(t) = s ∈ S. That is,

(2.9)

L∑
k=0

[As]knP (k, t) = αn−1,sP (n− 1, t) +βn+1,sP (n+ 1, t)− [αn,s +βn,s]P (n, t).

Equation (2.8) holds between jumps in the environmental variable S(t), which occur
according to the master equation (2.2). Equations (2.8) and (2.2) are an example of
an SHS, also known as a piecewise deterministic Markov process [11]. Let %(s,p, t)
denote the joint probability density of P and S, that is,

%(s,p, t)dp = P[S(t) = s,P (t) ∈ (p,p + dp)|s(0) = s0,P (0) = p0].

The vector %(p, t) = [%(1,p, t), . . . , %(M,p, t)]T evolves according to the differential
Chapman–Kolmogorov (dCK) equation

(2.10)
∂

∂t
%(s,p, t) = −∇p · [(Asp)%(s,p, t)] +

M−1∑
s′=0

Ωss′%(s′,p, t).

Noting that p is a probability density on RL+1, the spatial domain of (2.10) must be
the L-simplex

∆L =
{
p ∈ RL+1|1Tp = 1, p(i) ≥ 0 for all i = 0, . . . , L

}
.

Finally, we impose reflecting boundary conditions so that %(s,p, t) = 0 for p ∈ ∂∆L

and initial conditions
%(s,p, 0) = δs,s0δ(p− p0).

3. Moments of the SHS. In the previous section we introduced two mathe-
matically different descriptions of a DSBDP. The relationship between the two for-
mulations can be expressed by the following theorem.

Theorem 3.1. The relationship between the QBDP and SHS formulations of a
DSBDP is given by

(3.1) p(n, s, t) = πn,s(t),

where

(3.2) πn(s, t) ≡ Eσ
[
P (n, t)1S(t)=s

]
=

∫
∆L

p(n)%(s,p, t)dp.

That is, the probability distribution of the QBDP corresponds to a first moment of the
SHS. It follows that

p∗(n, s) ≡ lim
t→∞

p(n, s, t) = lim
t→∞

∫
∆L

p(n)%(s,p, t)dp =

∫
∆L

p(n)%∗(s,p)dp,

assuming that the dCK equation (2.10) has a stationary solution %∗(s,p).
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Proof. First note that (3.2) immediately follows from the definition of %(s,p, t).
In order to establish (3.1), differentiate (3.2) with respect to time, substitute for ∂%/∂t
using (2.10) and integrate by parts. This yields the master equation

d

dt
πn,s(t) =

L∑
k=0

[As]knπk,s(t) +

M−1∑
s′=0

Ωss′πn,s′(t)

= αn−1,sπn−1,s(t) + βn+1,sπn+1,s(t)(3.3)

− [αn,s + βn,s]πn,s(t) +

M−1∑
s′=0

[ωss′πn,s′(t)− ωs′sπn,s(t)].

We then note the equivalence of (3.3) and (2.4).

The obvious question to ask is how to generalize (3.1) to relate the rth moments
of P (n, t),

(3.4) π(r)
n1...nr,s(t) ≡ Eσ

[
P (n1, t) . . . P (nr, t)1S(t)=s

]
=

∫
∆L

p(n1) . . . p(nr)%s(p, t)dp,

to the statistics of a finite number of particles undergoing the QBDP. Generalizing the
calculation of the first moments, we obtain the more general moment flow equations

d

dt
π(r)
n1...nr,s(t) =

r∑
i=1

L∑
k=0

[As]kni

∫
∆L

p(k)

r∏
j=1,j 6=i

p(nj)dp +

M−1∑
s′=0

Ωss′π
(r)
n1...nr,s′

=

r∑
i=1

L∑
k=0

[As]kniπ
(r)
kn1...ni−1ni+1...nr,s

(t) +

M−1∑
s′=0

Ωss′π
(r)
n1...nr,s′

(t).(3.5)

Now consider the joint probability distribution for r particles undergoing a QBDP in
the same environment, with Nj(t) the state of the jth particle at time t, j = 1, . . . , r,
and S(t) = s:

f(n1, . . . , nr, s, t) = P[N1(t) = n1, . . . , Nr(t) = nr, S(t) = s|N1(0)

= n1,0, . . . , Nr(0) = nr,0, S(0) = s0].

Here it makes sense to consider the joint probability distribution for the particle
states Nj(t) and the environmental state S(t), because we are considering all these
particles to be in the same environment. From a modeling perspective this means that
whatever mechanism changes the rates is not associated with the particles, but the
environment they are evolving in. Writing out the master equation for the evolution
of f(n1, . . . , nr, s), we find that it is exactly the form of (3.5). This yields the following
result which generalizes Theorem 3.1.

Theorem 3.2. The joint probability of r independent particles undergoing a QBDP
in the same random environment with initial states Nj(t) = nj,0 and S(t) = s0 is re-
lated to the rth moments π(r) according to

f(n1, . . . , nr, s, t) = π(r)
n1...nr,s(t)

with the initial conditions

π(r)
n1...nr,s(0) = δn1,n1,0

. . . δnr,nr,0δs,s0 .
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4. Application of SHS formulation to spatially extended gating model.
Having provided a mathematical formulation of a DSBDP, we now return to the
example considered in the introduction. Namely, we are interested in modeling the
spatial dynamics of diffusing proteins in a plasma membrane with dynamically gated
corrals. We begin by reviewing the spatially homogeneous stochastic gating model of
Brown and collaborators [8], in which diffusion within a bounded domain is relatively
fast, so that the molecules are well mixed and one can ignore spatial effects within the
domain—such a domain corresponds to a single lattice site in our spatially extended
model. Brown and collaborators study this problem analytically by explicitly studying
the BDP for the number of particles inside a single confinement domain. (The exterior
of the domain is simply treated as a homogeneous region with a constant background
concentration of particles—particle conservation is not imposed.) Their method allows
one to obtain exact results for the mean and variance of the number of particles within
the domain when the effects of the larger spatial structure can be ignored. In contrast,
the stochastic hybrid formulation developed in the previous section allows one to
obtain approximate statistics for a large number of proteins in a plasma membrane
with multiple homogeneous confinement domains linked by gates. The basic idea is
illustrated in Figures 2 (A) and (B).

4.1. Stochastic gating model of confinement. Let Pl(t) be the probability
that there are l free particles within a single domain at time t; see Figure 3. (In order
to avoid confusion, we use l to denote the number of particles in a single compartment
and n to index a compartment on a spatially extended lattice.) Denote the state of
the stochastic gate at time t to be the binary random variable s(t) with s(t) = 1
(s(t) = 0) corresponding to the open (closed) state. The opening and closing of the
stochastic gate is governed by the two-state Markov process with a density evolving
according to (2.2) with q(0, t) = P[s(t) = 0], q(1, t) = P[s(t) = 1], and

Ω =

[
−a b
a −b

]
.(4.1)

Particles can only transfer between the exterior and interior of the domain when the
gate is open, in which case the rates of outflux and influx are α and β. It is assumed
that a constant background concentration c0 of particles exists in the exterior, so
β is proportional to c0. The probability distribution Pl(t) evolves according to the
time-inhomogeneous birth-death master equation

dPl
dt

= s(t) [βPl−1(t) + (l + 1)αPl+1(t)− (β + αl)Pl(t)](4.2)

s(t) = 1s(t) = 0

Fig. 3. Escape from a domain with a single stochastic gate.
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with l ≥ 0 and P−1(t) ≡ 0. The positive terms on the right-hand side represent the
various transitions into the state (l), whereas the negative terms represent the various
transitions from the state (l). The initial condition is Pl(0) = δl,l0 ; i.e., at time t = 0
there are l0 free particles within the domain. First, suppose that the gate is always
open so that (4.2) reduces to the autonomous master equation

dPl
dt

= βPl−1(t) + (l + 1)αPl+1(t)− (β + αl)Pl(t).(4.3)

The mean concentration of particles in the domain, x(t) = E[l(t)]/V , where V is the
volume of the domain, evolves according to the simple kinetic equation

dx

dt
= β/V − αx.

This has a steady-state solution l = V x = β/α.
Equation (4.3) is a rare example of a master equation that can be solved exactly,

and one finds that Pl(t) is given by a Poisson distribution. The simplest way to see
this is to introduce the generating function

G(z, t) =
∑
k≥0

zkPk(t)

and substitute into (4.3):

∂G

∂t
+ α(z − 1)

∂G

∂z
= β(z − 1)G.

This is a linear first-order PDE with nonconstant coefficients. A standard method for
solving such equations is the method of characteristics. Given the initial condition
Pl(0) = δl,l0 , we have G(z, 0) = zl0 and

(4.4) G(z, t) = [1 + e−αt(z − 1)]l0eβ(1−e−αt)(z−1)/α.

We now Taylor expand G(z, t) in powers of z and thus find that for l0 = 0 (bounded
domain is initially empty),

(4.5) Pl(t) = e−λ(t)λ(t)l

l!
, λ(t) =

β

α
(1− e−αt),

which is a time-dependent Poisson distribution of rate λ(t). It immediately follows
that

E[l(t)] = λ(t), Var[l(t)] = λ(t).

In the more general case l0 6= 0, the mean and variance can be calculated from the
formulae

E[l(t)] =
∂G(z, t)

∂z

∣∣∣∣
z=1

, E[(l2(t)− l(t))] =
∂2G(z, t)

∂z2

∣∣∣∣
z=1

.

Calculating these derivatives yields

E[l(t)] = (l0 − β/α)e−αt + β/α, Var[l(t)] = E[l(t)]− l0e−2αt.
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1428 ETHAN LEVIEN AND PAUL C. BRESSLOFF

4.2. Kubo equation. Let us now turn to the full stochastic gating model (4.2),
in which the state of the gate is given by the stochastic variable s(t) so that there
are two levels of stochasticity: the stochastic process of exchange of particles when
the gate is open, and the random opening and closing of the gate itself. For a given
realization σ(t) = {s(τ), 0 ≤ τ < t} of the stochastic gate, we can repeat the analysis
of the autonomous master equation (4.3), except that

(4.6) e−αt → X(t) ≡ e−α
∫ t
0
s(t′)dt′

in the definition of λ(t); see (4.5). It follows that different realizations of s(t) will
yield different values of the mean and variance. Hence, a more useful characterization
of the statistics is obtained by averaging X(t) with respect to all possible stochastic
realizations of the gate, which is denoted by Eσ[X]. The latter can be performed using
a method originally developed by Kubo [21] in the study of spectral line broadening
in a quantum system, and subsequently extended to chemical rate processes with
dynamical disorder by Zwanzig [34].

Following Kubo [21], we differentiate (4.6) with respect to time to obtain the
piecewise deterministic equation

(4.7)
dX

dt
= −αs(t)X(t),

where s(t) is a discrete random variable that switches between s = 1 and s = 0
according to (2.2). Introduce the probability densities pk(x, t) with pk(x, t)dx =
Prob[s(t) = k, x ≤ X(t) ≤ x+ dx], k = 0, 1, and initial conditions

pk(x, 0) = δ(x− 1)q∗k.

Here q∗k, k = 0, 1, are the stationary probability distributions of the two-state Markov
process with transition matrix (4.1):

q∗0 =
b

a+ b
, q∗1 =

a

a+ b
.

These densities evolve according to the dCK equation

∂p0

∂t
= bp1 − ap0,(4.8a)

∂p1

∂t
= α

∂(xp1)

∂x
− bp1 + ap0.(4.8b)

This takes into account the piecewise deterministic decay of x when the gate is open,
given by the Liouville term in (4.8b), and transitions between the two states of the
gate. We now make the observation that p(x, t) = p0(x, t) + p1(x, t) is the probability
density for the stochastic process X(t), which has the formal solution (4.6) together
with the constraint that the initial state of the gate s(0) is a random variable dis-
tributed according to the stationary distribution q∗. Thus, finding the mean of X(t)
with respect to the stochastic process µ(t) is equivalent to finding the conditional
means

µk(t) =

∫ ∞
0

xpk(x, t)dx, k = 0, 1,

and setting
Eσ[X(t)] = µ0(t) + µ1(t).
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In order to determine µk(t), take the first moments of (4.8a) and (4.8b). This
yields the matrix equation

(4.9)
d

dt

[
µ0(t)
µ1(t)

]
= −A

[
µ0(t)
µ1(t)

]
, A =

[
−a b+ α
a −b

]
,

which has the solution [
µ0(t)
µ1(t)

]
= e−tAq∗.

A similar analysis can be carried out for second moments. One thus finds that the
σ-averaged mean and variance of l(t) are

Eσ[l] = (l0 − β/α)Eσ[X] + β/α,(4.10)

varσ[l] = Eσ[l]− l0Eσ[X2] + (l0 − β/α)2
(
Eσ[X]− Eσ[X]2

)
,(4.11)

where

(4.12) Eσ [X(t)r] = 1T exp

(
−t
[
−a b+ rα
a −b

])
q∗

for r = 1, 2. The averages Eσ[Xr], r = 1, 2, approach zero as time increases, hence
the steady-state mean and variance are both equal to β/α.

4.3. SHS formulation of spatially extended gating model. As we men-
tioned earlier, the model developed by Brown and collaborators includes the effects
of an extended spatial domain implicitly by not conserving the total number of par-
ticles in the system. This is a significant simplification of the underlying biophysical
process, namely, the diffusion of a large population of proteins within the cell mem-
brane, which consists of multiple confinement domains; see Figure 1. Using the above
methods, this problem becomes highly intractable for more than two connected con-
finement domains, even for one dynamic gate. On the other hand, if we consider an
infinite population of particles, the model without dynamic gating becomes determin-
istic, and the statistics of the density of particles on a given lattice site in the presence
of a dynamic gate can be obtained from the SHS formulation.

Returning to the spatially extended model of protein diffusion in a plasma mem-
brane, for a large number of particles we can study the effects of a spatially extended
lattice to the right of the dynamic gate. Specifically, we consider a DSBDP (Definition
2.1) with two environmental states (M = 2), Ω given by (4.1), and

αn,1 = α, βn,1 = β, αn,0 = (1− δn,0)α, βn,0 = (1− δn,1)β.

We assume that all particles are initially at the leftmost site n = 0 (corresponding
to the confinement domain of Brown et al. [8]) and that there is a dynamical gate
between the sites n = 0 and n = 1. Hence, when the gate is closed (s(t) = 0), no
particles can transfer between the first two lattice sites, that is, α0,0 = β1,0 = 0.
Figure 4 illustrates the difference between the normalized first moments determined
using, respectively, the nonconservation model of Brown et al. for a single confinement
domain and the SHS formulation of the DSBDP for multiple confinement domains on
a lattice. The former is given by E[l(t)]/l0, where l0 is the initial number of particles
in the single confinement domain and E[l(t)] satisfies (4.10); the latter is given by
π0(t), where

πn(t) = Eσ[P (n, t)] =
∑
s=0,1

πn,s(t) = p(n, t);
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l
l

Brown et al. model

SHS (β = 0.1)

SHS (β = 1.0)

Fig. 4. A comparison of first-order statistics obtained by Brown et al. [8] (gray curve) using
(4.10) with the results obtained from the SHS formulation (black curves) using (2.4), in which the
system is spatially extended to the right of the dynamic gate by including L = 100 ungated regions.
The dashed black curve corresponds to β = 1, while the solid black curve corresponds to β = 0.1.
The value of β has little effect on the first moment of the Brown et al. [8] model, so we only see
one gray curve. Other parameter values used are l0 = 100 and gating rates a = b = 1.

see (2.5) and Theorem 3.1. Note that in the limit β → 0, both formulations yield
the same result, since the spatial extent of the domain surrounding the leftmost site
becomes unimportant.

The most realistic generalization of Brown’s et al. model would include an inde-
pendent, stochastic gate at each lattice site in a two-dimensional domain. The SHS
formulation could certainly be applied to this, but we simplify matters here and con-
sider the problem of understanding how the effect of a single dynamical gate depends
on the distance of a given site n from the gate. Figure 4 shows the results for n = 0.
We further generalize the model of Brown et al. by also considering a partial or rec-
tifying gate, which switches between states allowing particles to pass from the left
(s = 0) and from the right (s = 1), respectively. In this case Ω is still given by (4.1)
and

αn,0 = α, βn,1 = β, αn,1 = (1− δn,0)α, βn,0 = (1− δn,1)β.

We can in principle approximate the probability distribution for the number of parti-
cles at any lattice site. It is of course more reasonable to simply look at the mean and
variance. If we can observe the time-dependent distributions, we can easily compare
them to numerical simulations of the linear systems for π(r). In Figure 5 we show
the time evolution of the first moment πn(t) and variance Varn(t) at three different
lattice sites and for different gating rates. Here

Varn(t) = Eσ[P (n, t)P (n, t)]− (Eσ[P (n, t)])2 =
∑
s=0,1

π(2)
nn,s(t)− πn(t)2;

see (3.4). This figure demonstrates how the SHS formulation can be used to study the
general problem of determining the existence, location, and properties of a dynamic
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n n n

n
n

no gate

stochastic gate

rectifying gate

Fig. 5. Time-dependent mean and variance of P (n, t) for the SHS formulation at three different
lattice sites computed using the SHS formulation. The initial conditions are πn(0) = δ0,n and
parameters are a = 0.1, b = 0.1, α = 1, β = 1. Note that in the absence of a gate there are no
fluctuations (zero variance) so only two curves are shown in the bottom row of figures.

gate based on time series data of particles evolving in a switching environment. We
can see that, analogous to the well known over-dispersion for doubly stochastic Poisson
processes [9], observations closer to the gate produce a greater variance which can be
used to identify its location. The mean trajectories also appear to change qualitatively
as we approach the gate. In particular for n = 2 the mean is no longer monotonically
increasing for the gated trajectories. In terms of distinguishing between the two types
of gating, the variance is clearly more effective because the partial gate produces
qualitatively similar trajectories for the mean, but qualitatively different trajectories
in the variance.

5. Discussion. To summarize, we analyzed a population of randomly walking
particles in a stochastically switching environment by formulating the model as a
stochastic hybrid system. The latter describes the evolution of the probability dis-
tribution of the particles in the mean-field limit and for a particular realization of
the switching environment. The probability distribution is a random variable with
respect to different realizations. We derived a hierarchy of moment equations for the
probability distribution averaged over these realizations, which took the form of de-
terministic master equations. As a specific example, we considered a population of
particles walking on a one-dimensional lattice with a dynamic gate at some unknown
location. Solving the moment equations for the stochastic hybrid system allowed us
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to determine how the mean and variance of the distribution varied with distance from
the gate. This has potential applications in the analysis of time series data obtained
from biophysical experiments on the diffusion of particles in the plasma membrane
of cells. In addition, we established a relationship between the rth order moments
obtained from the SHS framework and the joint probability distribution of r noninter-
acting particles walking in the same switching environment, which evolves according
to a QBPD. This result is reminiscent of the Feynman–Kac-type formula obtained in
[6].

There are a number of possible extensions of this work. In terms of applica-
tions, the more physically relevant generalization of the model used in [8] consists of
a dynamic gate between every confinement domain, which are now distributed on a
two-dimensional lattice. We have focused on a single dynamic gate because our goal
is to demonstrate the utility of the SHS formulation by looking at the simple prob-
lem of how a single dynamic gate affects the statistics of a random walker. From a
mathematical perspective, it would be interesting to study more general switching en-
vironments with many states and to solve the general inverse problem of determining
the switching environment based on time series data from the BDP. Another possible
application of our analytical framework is to the study of gene networks operating in a
randomly switching environment [18, 30, 16]. The control of transcription (switching
on or off of a gene) is mediated by proteins known as transcription factors. These bind
to a promoter region along the DNA, and either initiate or terminate transcription
of mRNA. Whether or not a promoter site is occupied may depend on the state of
the environment, which will be common to all cells evolving in the same environment.
The discrete environmental states could represent the presence of some extracellular
metabolite or signaling molecule, perhaps arising from changes in the physiological or
hormonal state that a cell experiences in a multicellular organism. Thus the analogue
of the position n of a random walker is the number of proteins synthesized by a gene
regulatory network, and the analogue of a switching gate is a switching promoter site
with discrete states s(t).
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