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Turing mechanism for homeostatic control of synaptic density during C. elegans growth
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We propose a mechanism for the homeostatic control of synapses along the ventral cord of Caenorhabditis
elegans during development, based on a form of Turing pattern formation on a growing domain. C. elegans
is an important animal model for understanding cellular mechanisms underlying learning and memory. Our
mathematical model consists of two interacting chemical species, where one is passively diffusing and the
other is actively trafficked by molecular motors, which switch between forward and backward moving states
(bidirectional transport). This differs significantly from the standard mechanism for Turing pattern formation
based on the interaction between fast and slow diffusing species. We derive evolution equations for the chemical
concentrations on a slowly growing one-dimensional domain, and use numerical simulations to demonstrate the
insertion of new concentration peaks as the length increases. Taking the passive component to be the protein
kinase CaMKII and the active component to be the glutamate receptor GLR-1, we interpret the concentration
peaks as sites of new synapses along the length of C. elegans, and thus show how the density of synaptic sites
can be maintained.

DOI: 10.1103/PhysRevE.96.012413

I. INTRODUCTION

The dynamical processes underlying the establishment of
synaptic connections during neural development are thought to
be critical in learning and memory. One of the most important
signaling pathways underlying the maturation, maintenance,
and elimination of synapses is the interplay between type II
calcium- and calmodulin-dependent protein kinase (CaMKII)
and the trafficking of glutamate receptors. Since these proteins
are conserved across multiple species, considerable insights
into synaptic development can be obtained by studying sim-
pler organisms, such as the nematode worm Caenorhabditis
elegans; see Fig. 1. During larval development of C. elegans,
the density of ventral and dorsal cord synapses containing the
glutamate receptor GLR-1 is maintained despite significant
changes in neurite length [1]. It is known that the coupling
of synapse number to neurite length requires CaMKII and
voltage-gated calcium channels, and that CaMKII regulates
the active (kinesin-based) transport and delivery of GLR-1 to
synapses [1–3]. However, a long outstanding problem has been
identifying a possible physical mechanism involving diffusing
CaMKII molecules and motor-driven GLR-1 that leads to the
homeostatic control of synaptic density.

Although the above problem arises within the context of
neural development, it raises a more general issue regarding
self-organization in systems of actively and passively trans-
ported particles. That is, (i) the formation of a regularly
spaced distribution of synaptic puncta at an early stage
of development is suggestive of some form of Turing-
like pattern formation and (ii) the maintenance of synaptic
density as the organism grows is suggestive of “pulse or
stripe insertion” in spatially periodic patterns on growing
domains [4]. Following the original work of Turing [5], the
traditional mechanism for spontaneous pattern formation is
the interaction of two or more passively diffusing chemical
species undergoing nonlinear reaction kinetics and having
different rates of diffusion [6–8]. Recently, motivated by issue
(i), we proposed an alternative pattern-forming mechanism [9],
involving the interaction between a slowly diffusing species

(e.g., CaMKII) and a rapidly advecting species (e.g., GLR-1)
switching between anterograde and retrograde motor-driven
transport (bidirectional transport). Using the classical Gierer
and Meinhardt mechanism for reaction kinetics [10], we
showed that our model supported in-phase Turing patterns
on a one-dimensional domain of fixed length. Within the
context of synaptogenesis in C. elegans, the periodically
spaced concentration peaks are interpreted as the locations of
synaptic puncta. (Note that Turing pattern formation based on
advecting species has also been considered within the context
of animal movement and chemotaxis [11]. However, in the
latter case, all species are assumed to undergo bidirectional
transport, and in the fast switching limit the model reduces to
a traditional reaction-diffusion model for pattern formation. In
our model, pattern formation cannot occur in the fast switching
limit. Advection also plays a role in reaction-diffusion systems
subject to active fluid flow [12].)

In this paper, we address issue (ii), namely, how is the
synaptic density of C. elegans maintained as the worm
grows? From the perspective of self-organizing systems,
this corresponds to the issue of whether or not the Turing
mechanism based on interacting diffusing and advecting
species exhibits pulse or stripe insertion on a growing domain.
We establish the latter by extending the analysis of Crampin
et al. [4] to our diffusion-advection model, and thus provide
an experimentally testable explanation for the homeostatic
control of synaptic density in C. elegans. Our main hypothesis
is that synaptogeneisis in C. elegans is an example of pattern
formation on a growing domain, analogous to stripe insertion
in patterns of skin pigmentation of the marine angelfish [13].

II. MODEL

The homeostatic control of synaptic density appears to
be mediated by two distinct antagonistic effects of CaMKII;
see Fig. 2. As the worm grows in size, the synaptic density
along the ventral cord decreases, which tends to result in
reduced synaptic excitation of the motor neurons. In this
situation, the activation of CaMKII via voltage-gated calcium
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ventral cord synaptic punta
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FIG. 1. Schematic figure showing distribution of synaptic punta
along ventral cord of early and late stage C. elegans. New synapses
are inserted during development to maintain the synaptic density.

channels induces the formation of new synapses by enhancing
the active transport of GLR-1. On the other hand, when the
synaptic density becomes too high, the corresponding increase
in excitation leads to constitutive activation of CaMKII
(autophosphorylation) due to the increased calcium levels.
Although constitutively active CaMKII also enhances the
motor-driven transport of GLR-1 along the ventral cord, it fails
to localize the receptors at synaptic sites. This is consistent
with the observation that the synaptic localization of CaMKII
in rate changes in response to autophosphorylation [14].

To model this system, consider a one-dimensional domain
of fixed length L, which represents a neurite in the ventral
cord of C. elegans at a particular stage of larval development.
Let R(x,t) denote the concentration of GLR-1 receptors at
position x along the cell at time t and let C(x,t) denote the
corresponding concentration of active CaMKII. For simplicity,
no distinction is made between membrane-bound (synaptically
localized) and cytoplasmic CaMKII. On the other, GLR-1
is partitioned into two subpopulations: those that undergo
anterograde transport (R+) and those that undergo retrograde
transport (R−) with R(x,t) = R+(x,t) + R−(x,t). Individual
receptors randomly switch between the two advective states
according to a two-state Markov process R+ β�

α
R−, with transi-
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CaMKIIGLR-1
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FIG. 2. Regulation of transport and delivery of GLR-1 to
synapses by CaMKII. (a) Calcium influx through voltage-gated
calcium channels activates CaMKII, which enhances the active
transport and delivery of GLR-1 to synapses. (b) Under conditions
of increased excitation, higher calcium levels results in constitutively
active CaMKII which fails to localize at synapses, leading to the
removal of GLR-1 from synapses.

tion rates α,β. This yields the following system of equations
[9]:

∂C

∂t
= D

∂2C

∂x2
+ f (R+,R−,C), (1a)

∂R+
∂t

= −v
∂R+
∂x

+ αR− − βR+ + g(R+,C), (1b)

∂R−
∂t

= v
∂R−
∂x

+ βR+ − αR− + g(R−,C). (1c)

Here D is the CaMKII diffusion coefficient and v is the
speed of motor-driven GLR-1. The reaction term f (R+,R−,C)
represents both the self-activation of CaMKII and the in-
hibition of CaMKII by GLR-1. (In a more detailed model,
one could consider synaptic rather than cytoplasmic GLR-1
inhibiting synaptic rather than cytoplasmic CaMKII.) The
reaction terms g(R±,C) represents the increase in actively-
transported GLR-1 due to the action of CaMKII, which is
taken to be symmetric with regards anterograde and retro-
grade transport. Equations (1) are supplemented by reflecting
boundary conditions at the ends x = 0,L:

∂C(x,t)

∂x

∣∣∣∣
x=0,L

= 0, (2a)

vR+(0,t) = vR−(0,t), vR+(L,t) = vR−(L,t). (2b)

For simplicity, we will take α = β in the following.
It remains to specify the form of the chemical interaction

functions f and g. The precise details of the interactions
between CaMKII and GLR-1 are currently unknown. There-
fore, we choose the simplest model that can capture the
activation of GLR-1 transport and delivery by CaMKII and
the inhibition (synapse removal) of CaMKII by GLR-1
and the autophosphorylation properties of CaMKII. Another
requirement is that the nonlinear interactions yield Turing
patterns for which the peaks of the various concentrations
are in-phase. Hence, following our previous work [9], we
take the classical activator-inhibitor system due to Gierer and
Meinhardt (GM) [10]:

f (R+,R−,C) = ρ1
C2

R+ + R−
− μ1C + γ, (3a)

g(R,C) = ρ2C
2 − μ2R. (3b)

Here ρ1,ρ2 represent the strength of interactions, μ1 and
μ2 are the respective decay rates, and γ is the production
rate of CaMKII. To justify the trafficking-based mechanism
for pattern formation in C. elegans, the conditions for
Turing instability must be satisfied for biophysically relevant
parameters. Many of these parameters can be cited from the
biological literature. First, we require μ1 < μ2 for stability in
the homogeneous steady state in this system; this is satisfied
because the decay rate of GLR-1 is approximately four times
that of CaMKII [15]. For our simulations (see Sec. III), we
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take μ1 = 0.25/s and μ2 = 1/s. Additionally, data on the
transport of GLR-1 via molecular motors suggest an average
velocity along the ventral cord is 1 μm/s, with an average run
length of 9.2 μm [16]. From this, we infer a switching rate of
α ≈ 0.11/s. We take diffusion of CaMKII to be 0.01 μm2/s
and production rate to be γ = 0.02 μM/s. Finally, we set
the strength of interaction parameters to be ρ1 = 1/s and
ρ2 = 1/(μM s).

III. PATTERN FORMATION ON A GROWING DOMAIN

Previously, we used linear stability analysis to derive
conditions for a Turing instability, and confirmed numerically
that spatially periodic patterns emerge beyond the Turing
bifurcation point [9]. In particular, we found that γ = αD/v2

has to be sufficiently small for patterns to emerge. One
consequence is that patterns emerge outside the parameter
regime of fast switching (large α), where the linearized model
reduces to a two-component reaction-diffusion system. Here
we investigate pattern formation on a slowly growing 1D
domain, 0 < x < L(t), where L(t) is the increasing length
of the domain. The basic idea is that L(t) represents the length
of C. elegans at a time t during development, following an
initial phase of synaptogenesis at time t = 0. This means
that the model system is already operating beyond the Turing
bifurcation point identified in our previous paper [9]. If we
interpret the in-phase peaks of CaMKII and GLR-1 as synaptic
sites, then the wavelength of the pattern at time t = 0 is
equivalent to the spacing of the newly formed synapses. This
suggests that under uniform growth of the domain for t > 0,
the spacing of the synapses will increase. Therefore, to obtain
a similar synaptic density in the adult as in the first stages
of synaptiogenesis, it is necessary for new synaptic puncta to
be formed. From the mathematical perspective, this can be
interpreted as stripe insertion of a Turing pattern on a growing
domain.

In light of the above, consider the system of advecting and
diffusing particles (1) on the growing domain 0 < x < L(t).
Following previous studies of diffusion processes on growing
domains [4], we model domain growth in terms of a velocity
field u such that x → x + u(x,t)�t over the time interval
[t,t + �t]. We will assume spatially uniform growth by taking
∂xu = σ (t), which implies that

u(x,t) = x

L(t)

dL(t)

dt
. (4)

Let X ∈ [0,L0] be the local coordinate system at the initial
length L0. Using a Lagrangian description, we can then
represent spatial position at time t as

x = 	(X,t) ≡ XL(t)

L0
, L(0) = L0.

To derive the evolution equations on a growing domain,
let us focus on the diffusing component C(x,t); the other
components can be treated in a similar fashion. Consider the
particle conservation equation

d

dt

∫ L(t)

0
C(x,t)dx =

∫ L(t)

0

[
−∂J (x,t)

∂x
+ f

]
dx, (5)

with J (x,t) = −D ∂C(x,t)
∂x

. Using the Reynold’s transport the-
orem, the left-hand side becomes

d

dt

∫ L(t)

0
C(x,t)dx

=
∫ L(t)

0

[
∂C(x,t)

∂t
+ L̇(t)

L(t)

∂[xC(x,t)]

∂x

]
dx.

We thus obtain the following evolution equation for C on
0 < x < L(t):

∂C

∂t
+ L̇(t)

L(t)

∂[xC]

∂x
= D

∂2C

∂x2
+ f. (6)

Finally, we transform Eq. (6) to the fixed interval [0,L0]
by performing the change of variables x → X = (xL0)/L(t).
Under this transformation the advection term in Eq. (6) is
eliminated and we obtain the modified evolution equation,

∂C

∂t
= D

L(t)2

∂2C

∂x2
−

(
L̇

L

)
C + f (R+,R−,C). (7a)

Applying a similar analysis to the advecting variables R±(x,t),
with fluxes J±(x,t) = ∓vR± and f (R+,R−,C) replaced by
±(αR− − βR+) + g(R±,C), we derive the following evolu-
tion equations on [0,L0]:

∂R+
∂t

= − v

L(t)

∂R+
∂x

−
(

L̇

L

)
R+ + αR− − βR+

+ g(R+,C) (7b)

∂R−
∂t

= v

L(t)

∂R−
∂x

−
(

L̇

L

)
R− + βR+ − αR−

+ g(R−,C). (7c)

In the above equations, we have fixed the length-scale by
setting L0 = 1.

Equations (7a)–(7c) and (3a), (3b) are the starting point
for our investigation of Turing pattern formation on a growing
domain of length L(t). Following Ref. [4], we make one further
simplification by noting that for sufficiently slow growth,
the terms involving the dilution factor −L̇(t)/L(t) are small
compared to the remaining terms and can be neglected. It is
reasonable to assume slow growth for C. elegans, since the
larvae grow to the adult stage at an average rate of around
10−3 μm/s [17]. For the sake of illustration, we will assume
logistic growth [4],

L(t) = ert

[
1 + 1

	0
(ert − 1)

]−1

, (8)

with r = 0.001 μm/s and 	0 = 10. With this choice of growth
function, a section of the ventral cord grows from 10 μm
to 100 μm in 2 h. Although we choose this logistic growth
function because it represents the physical growth during
C. elegans development, similar results are obtained for other
choices of growth functions (such as exponential or linear).

In our numerical simulations, we assume that the system
of evolution equations operates beyond the Turing bifurcation
point for pattern formation at the initial length L0. The initial
concentrations are chosen from a uniform random distribution
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FIG. 3. Numerical simulations showing temporal evolution of the concentrations C,R± on a slowly growing domain. (a) t = 0 s;
(b) t = 100 s; (c) t = 850 s; (d) t = 1300 s; (e) t = 1400 s; (f) t = 1500 s. Initial concentrations are taken to be random fluctuations about
steady-state values. A spatially periodic pattern is becoming established with five potential synapse sites by t = 100 s, and as the domain
continues to grow, the synapse sites begin to spread out. At t = 1300 s, we can see the beginnings of pattern reorganization between the
synapse sites as CaMKII concentrations start to grow there. New peaks are inserted after the second, third, and fourth existing synapse
sites by t = 1400 s; the beginnings of a new CaMKII peak can also be observed between the first and second peak. Numerical simulations
were performed using a combination of Crank-Nicolson and Lax-Wendroff schemes, with no flux boundary conditions. Full solutions were
computed in the Lagrangian coordinate system, and then converted back into physical coordinates. We take space step dx = 0.05 and time step
dt = 0.025. The 1D domain grows with growth parameters r = 0.001 μm/s and 	0 = 10. Other parameters are ρ1 = 1/s, ρ2 = 1/(μM s),
μ1 = 0.25/s, μ2 = 1/s, α = 0.11/s, D = 0.01 μm2/s, γ = 0.02 μM/s, and v = 1 μm/s.

near fixed point values of the spatially uniform equations.
Example plots showing the evolution of the concentrations
C,R± are shown in Fig. 3. As the system evolves, we
initially observe growth of the concentration C of the diffusive
component, and then patterns emerge as the activator is
eventually tempered by increase of the advecting inhibitors
R±. In this case, the concentration of both activating and
inhibiting species are in phase with each other. Once the pattern
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FIG. 4. Space-time plot showing the insertion of new potential
synaptic sites as the domain representing a section of the ventral cord
grows over the course of 2.5 h. The horizontal axis represents position
along the C. elegans ventral cord and the vertical axis represents
time in seconds. Colors represent local concentration of GLR-1 (a
combined total of both leftward and rightward trafficking species) in
μM. Areas of high concentration represent potential synapse sites.
Numerical simulations and parameter values are as in Fig. 3.

is established, it persists as the domain length increases, with
areas of high concentration slowly growing farther apart. As
the areas of high concentration become sufficiently separated,
the pattern becomes reorganized and we see the emergence of
new peaks.

Having established that the Turing mechanism based on
interacting advecting and diffusing species supports pulse-
insertion on a growing domain, we can now relate our
results to the particular problem of homeostatic control of
synaptic density in C. elegans. That is, interpreting C and
R± as concentrations of CaMKII and GLR-1, respectively,
we can interpret the peaks in concentration as synaptic sites.
Hence, the insertion of additional peaks as the domain grows
provides a mechanism for maintaining synaptic density. This is
illustrated in Fig. 4, which shows a space-time plot of CaMKII
and GLR-1 concentrations in a growing domain. For the given
parameter values, our results match well the experimental
observations of Rongo and Kaplan [1], who found that C.
elegans synaptic density is maintained.

IV. DISCUSSION

In summary, we have shown how an active trafficking-
based mechanism for Turing pattern formation on a 1D
growing domain can account for the homeostatic regulation
of synapses in C. elegans during development. While the
important role of CaMKII in regulating the delivery of
GLR-1 to synapses along the ventral cord of C. elegans
is well known, the detailed mechanisms regarding their
interactions are still unclear. In future modeling work, it will
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be necessary to develop a more detailed biophysical model
of CaMKII-GLR-1 coupling, and to distinguish between
membrane-bound versus cytoplasmic CaMKII. Nevertheless,
our simple model can provide experimentally testable pre-
dictions, particularly with regard the spacing of synaptic
puncta. For example, linear stability analysis can determine
the wavelength of emerging patterns as a function of various
biophysical parameters such as the diffusivity of CaMKII,
the speed and switching rates of molecular motors, and the
rate of CaMKII phosphorylation. Our model predicts that
manipulation of these parameters should change the synaptic
spacing. On the other hand, the insertion of new puncta should
persist.

From the more general perspective of self-organizing
systems, our model provides a new paradigm for exploring
pattern-forming dynamical systems, based on nonlinear in-
teractions between distinct advecting and diffusing species.
Although our model involved molecular species, one could
equally well consider population models of animal species.
One obvious extension would be to analyze the generation
of patterns in higher spatial dimensions. In the case of the
neurites in C. elegans, the microtubles tend to be aligned in

parallel so that one can treat the active transport process as
effectively 1D. On the other hand, intracellular transport within
most non–polarized animal cells occurs along a microtubular
network projecting radially from an organizing centers or
centrosomes [18]. It has been found that microtubules bend
due to large internal stresses, resulting in a locally disordered
network, suggesting that in vivo transport on relatively short
length scales may be similar to transport observed in vitro,
where microtubular networks are not grown from a centrosome
and thus exhibit orientational and polarity disorder [19,20]. If
the network is sufficiently dense, then to a first approximation
one can assume that the set of velocity states (and associated
state transitions) available to an active particle is independent
of position. This means that one can effectively represent active
transport within the cell in terms of a two- or three-dimensional
velocity jump process [21–23], which is analogous to an
animal movement model with a turning function [24,25].
One of the interesting features of higher dimensional models,
is that one has to use weakly nonlinear analysis to derive
amplitude equations for the emerging patterns close to the
Turing bifurcation point, to investigate the selection and
stability of patterns (rolls, rhomboids, and hexagons).
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