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Many systems in biology, physics, and chemistry can be modeled through ordinary differential
equations (ODEs), which are piecewise smooth, but switch between different states according to
a Markov jump process. In the fast switching limit, the dynamics converges to a deterministic ODE.
In this paper, we suppose that this limit ODE supports a stable limit cycle. We demonstrate that a
set of such oscillators can synchronize when they are uncoupled, but they share the same switching
Markov jump process. The latter is taken to represent the effect of a common randomly switching
environment. We determine the leading order of the Lyapunov coefficient governing the rate of decay
of the phase difference in the fast switching limit. The analysis bears some similarities to the clas-
sical analysis of synchronization of stochastic oscillators subject to common white noise. However,
the discrete nature of the Markov jump process raises some difficulties: in fact, we find that the Lya-
punov coefficient from the quasi-steady-state approximation differs from the Lyapunov coefficient
one obtains from a second order perturbation expansion in the waiting time between jumps. Finally,
we demonstrate synchronization numerically in the radial isochron clock model and show that the
latter Lyapunov exponent is more accurate. Published by AIP Publishing. https://doi.org/10.1063/1.
5054795

There are a growing number of systems in physics and
biology where a population of oscillators can be synchro-
nized by a randomly fluctuating external input applied
globally to all of the oscillators, even if there are no inter-
actions between the oscillators (noise-induced phase syn-
chronization). Experimental evidence for such an effect
has been found in neural oscillations of the olfactory bulb,
synthetic genetic oscillators, laser dynamics, and vari-
ations in geographically separated animal populations.
Most previous studies of noise-induced phase synchroniza-
tion have taken the oscillators to be driven by common
Gaussian noise. Typically, phase synchronization is estab-
lished by constructing the Lyapunov exponent for the
dynamics of the phase difference between a pair of oscil-
lators and averaging with respect to the noise. If the
averaged Lyapunov exponent is negative definite, then
the phase difference is expected to decay to zero in the
large time limit, establishing phase synchronization. In
this paper, we extend the theory of noise-induced syn-
chronization to the case of a common randomly switching
environment. Each oscillator then evolves according to a
piecewise deterministic Markov process, which involves
the coupling between a piecewise continuous differential
equation and a time-homogeneous Markov chain. In the
fast switching limit, the dynamics converges to a deter-
ministic ordinary differential equation (ODE), which is
assumed to support a stable limit cycle. We demonstrate
that an uncoupled population of such oscillators can syn-
chronize when they share the same switching Markov
jump process. We determine the leading order of the Lya-
punov coefficient governing the rate of decay of the phase
differences in the weak noise regime (fast but finite switch-
ing rates) and show that it differs from the standard

expression obtained using a Gaussian approximation of
the noise.

I. INTRODUCTION

Self-sustained oscillations in biological, physical, and
chemical systems are often described in terms of limit cycle
oscillators where the timing along each limit cycle is spec-
ified in terms of a single phase variable. Phase reduction
methods can then be used to analyze synchronization of an
ensemble of weakly-coupled oscillators by approximating
the high-dimensional limit cycle dynamics as a closed sys-
tem of equations for the corresponding phase variables.1–9

More recently, there has been considerable interest in apply-
ing phase reduction methods to the analysis of noise-induced
phase synchronization.10–16 This concerns the observation that
a population of oscillators can be synchronized by a randomly
fluctuating external input applied globally to all of the oscilla-
tors, even if there are no interactions between the oscillators.
Evidence for such an effect has been found in experimental
studies of neural oscillations in the olfactory bulb17 and the
synchronization of synthetic genetic oscillators.18,19 A related
phenomenon is the reproducibility of a dynamical system’s
response when repetitively driven by the same fluctuating
input, even though initial conditions vary across trials. Exam-
ples include the spike-time reliability of single neurons,20,21

improvements in the reproducibility of laser dynamics,22 and
synchronized variations in wild animal populations located in
distinct, well-separated areas caused by common environmen-
tal fluctuations.23
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FIG. 1. Pair of non-interacting limit cycle oscillators with phases θj(t),
j = 1, 2, driven by a common switching external input I(t).

Most studies of noise-induced synchronization take the
oscillators to be driven by common Gaussian noise. Typi-
cally, phase synchronization is established by constructing the
Lyapunov exponent for the dynamics of the phase difference
between a pair of oscillators and averaging with respect to
the noise. If the averaged Lyapunov exponent is negative def-
inite, then the phase difference is expected to decay to zero in
the large time limit, establishing phase synchronization. How-
ever, it has also been shown that common Poisson-distributed
random impulses, dichotomous or telegrapher noise, and other
types of noise generally induce synchronization of limit-cycle
oscillators.24–26 Consider, in particular, the case of an addi-
tive dichotomous noise signal I(t) driving a population of M
identical non-interacting oscillators according to the system of
equations ẋj = F(xj)+ I(t), where xj ∈ R

d is the state of the
jth oscillator, j = 1, . . . , M 25 (see Fig. 1). Here, I(t) switches
between two values I0 and I1 at random times generated by
a two-state Markov chain.27 That is, I(t) = I0[1 − N(t)] +
I1N(t) for N(t) ∈ {0, 1}, with the time T between switching
events taken to be exponentially distributed with mean switch-
ing time τ . Suppose that each oscillator supports a stable limit
cycle for each of the two input values I0 and I1. It follows that
the internal state of each oscillator randomly jumps between
the two limit cycles. Nagai et al.25 show that in the slow
switching limit (large τ ), the dynamics can be described by
random phase maps. Moreover, if the phase maps are mono-
tonic, then the associated Lyapunov exponent is generally
negative and phase synchronization is stable.

The dichotomous noise-driven system is just one example
of a much more general class of randomly switching pro-
cesses known as piecewise deterministic Markov processes
(PDMPs).28,29 More explicitly, let N(t) ∈ � ≡ {0, . . . ,�0 −
1} denote the state of the randomly switching environment.
When the environmental state is N(t) = n, each oscillator xi(t)
evolves according to the piecewise deterministic ordinary dif-
ferential equation (ODE) ẋi = Fn(xi), i = 1, . . . , M , where
the vector field Fn : R

d → R
d is a smooth function. The

discrete stochastic variable N(t) evolves according to a sta-
tionary, continuous-time Markov chain with transition matrix
W. The additive dichotomous noise case is recovered by tak-
ing �0 = 2 and Fn(x) = F(x)+ In. One major application of
PDMPs is stochastic gene regulatory networks, where the con-
tinuous variables xj are the concentrations of protein products
(and possibly mRNAs) and the discrete variables represent
the various activation/inactivation states of the genes.30–40 The
common randomly switching environment could represent the
state of a promoter site that is common to a pair of genes
within the same cell or the state of the extracellular environ-
ment that drives gene expression in a population of cells. It is
thought that synchronous oscillations may have an important
functional purpose in systems biology.34

In this paper, we develop the theory of noise-induced
synchronization for a population of non-interacting PDMPs
evolving under a common randomly switching environment.
(The population model is presented in Sec. II.) In the slow
switching limit, one could generalize the approach of Nagai
et al.25 by assuming that each of the vector fields Fn(xi),
n ∈ �, supports a stable limit cycle and constructing the asso-
ciated random phase maps. Here, instead, we consider the fast
switching regime in which the transition rates between the dis-
crete states n ∈ � are much faster than the relaxation rates of
the piecewise deterministic dynamics for xi ∈ R

d . Thus, there
is a separation of time scales between the discrete and contin-
uous processes, so that if r is the characteristic relaxation rate
of the continuous dynamics, then r/ε is the characteristic tran-
sition rate of the Markov chain for some small positive dimen-
sionless parameter ε. If the Markov chain is ergodic, then,
in the fast switching limit ε → 0, one obtains a determinis-
tic dynamical system in which one averages the piecewise
dynamics with respect to the corresponding unique station-
ary distribution. Suppose that in the deterministic limit, we
have a population of independent limit cycle oscillators. Since
there is no coupling or remaining external drive to the oscilla-
tors, their phases are uncorrelated. The basic issue we wish to
address is whether or not phase synchronization occurs when
ε > 0; we will refer to the resulting oscillators as stochastic
hybrid limit cycle oscillators. We will proceed by construct-
ing the Lyapunov exponent for a pair of such oscillators driven
by a common randomly switching environment.

In Sec. III, we obtain an approximate expression for the
Lyapunov exponent by considering a quasi-steady-state (QSS)
diffusion approximation of the underlying PDMPs41 (see also
Appendix A), in which each oscillator is approximated by a
stochastic differential equation (SDE) with a common Gaus-
sian input. This allows us to adapt previous work on the
phase reduction of stochastic limit cycle oscillators10–12,14 and
thus establish that phase synchronization occurs under the dif-
fusion approximation. However, the QSS approximation is
only intended to be accurate over timescales that are longer
than O(ε). Hence, it is unclear whether or not the associated
Lyapunov exponent is accurate, since it is obtained from aver-
aging the fluctuations in the noise over infinitesimally small
timescales. Therefore, in Sec. IV, we derive a more accurate
expression for the Lyapunov exponent by working directly
with an exact implicit equation for the phase dynamics. We
exploit the fact that multiple switching events (jumps) occur
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during small excursions around the limit cycle for small ε,
which allows us to express the Lyapunov exponent in terms
of discrete sums over these events. Taking expectations then
yields an expression for the Lyapunov exponent that dif-
fers significantly from the one obtained using the diffusion
approximation. Note, however, that both are negative defi-
nite, so they both imply phase synchronization but at different
rates. Our derivation of the Lyapunov exponent from the exact
phase equation also allows us to obtain greater insights into
the nature of the QSS approximation and the meaning of the
associated Brownian motion (see also Appendix B). Finally,
we illustrate the theory by considering the particular example
of radial isochron clocks (Sec. V).

II. POPULATION OF STOCHASTIC HYBRID LIMIT
CYCLE OSCILLATORS

Consider a population of identical, noninteracting
dynamical systems labeled i = 1, . . . , M , whose states are
described by the pair [xi(t), N(t)] ∈ � × �, where xi(t) is
a continuous variable in a connected bounded domain � ⊂
R

d and N(t) is an i-independent discrete stochastic variable
taking values in the finite set � ≡ {0, . . . ,�0 − 1}. The lat-
ter represents the state of an environment that is common
to all members of the population. When the environmental
state is N(t) = n, xi(t) evolves according to the piecewise
deterministic ODE

ẋi = Fn(xi), i = 1, . . . , M , (2.1)

where the vector field Fn : R
d → R

d is a smooth function. We
assume that the dynamics of xi is confined to the domain �.
The discrete stochastic variable is taken to evolve accord-
ing to a homogeneous, continuous-time Markov chain with
x-independent generator A, where

Anm = Wnm − δn,m

∑
k∈�

Wkn,

and W is the transition matrix. We make the further assump-
tion that the chain is irreducible, that is, there is a non-zero
probability of transitioning, possibly in more than one step,
from any state to any other state of the Markov chain.
This implies the existence of a unique invariant probability
distribution on �, denoted by ρ, such that∑

m∈�
Anmρm = 0, ∀n ∈ �. (2.2)

As a simple example, suppose that N(t) evolves according to
a two-state Markov chain. That is, N(t) ∈ � ≡ {0, 1}, and the
generator of the Markov chain is given by the matrix

A =
( −k− k+

k− −k+

)
. (2.3)

The corresponding stationary distribution of the Markov chain
then has components

ρ0 = k+
k+ + k−

, ρ1 = k−
k+ + k−

. (2.4)

Equation (2.1) defines a PDMP28 on R
d for each

i = 1, . . . , M , also known as a stochastic hybrid system
(SHS). A useful way to implement the PDMP is to decompose

the transition matrix of the Markov chain as Wnm = Pnmλm,
with

∑
n �=m Pnm = 1. Here, λm is the rate of the exponential

waiting time density for transitions from state m, whereas
Pnm is the probability of the transition m → n, n �= m. Sup-
pose that N(t) = n0 and let t1 be an exponentially distributed
random variable with rate λn0 . That is,

P(t1 < t) = 1 − exp
(−λn0 t

)
.

Then, in the random time interval s ∈ [0, t1), the state of
the ith system is [x(0)(s), n0] with x(0) evolving according to
Eq. (2.1) for n = n0. (For the moment, we drop the population
label i.) At the random time t1, we choose an internal state
n1 ∈ � with probability Pn1n0 and call x(1)(t) the solution of
the following Cauchy problem on [t1, ∞):{

ẋ(1)(t) = Fn1 [x(1)(t)], t ≥ t1,
x(1)(t1) = x(0)(t1).

Iterating this procedure, we construct a sequence of increasing
jumping times (tk)k≥ 0 (setting t0 = 0) and a corresponding
sequence of internal states (nk)k≥ 0. The evolution [x(t), N(t)]
is then defined as (see Fig. 2)

[x(t), N(t)] = [x(k)(t), nk] if tk ≤ t < tk+1. (2.5)

We introduce the population vector x(t) = [x1(t), . . . , xM (t)]
and define the probability density pn(x, t), given the initial
conditions xi(0) = xi,0, N(0) = n0, according to

pn(x, t)dx = P{x(t) ∈ (x, x + dx), N(t) = n|x0, n0}.
It can be shown that p evolves according to the forward
differential Chapman-Kolmogorov (CK) equation29,42

∂pn

∂t
= Lpn, (2.6)

with the generator L defined according to

Lpn(x, t) = −
M∑

i=1

∇i · [Fn(xi)pn(x, t)] + 1

ε

∑
m∈�

Anmpm(x, t).

(2.7)

Here, ∇i denotes the d-dimensional gradient operator with
respect to xi. The first term on the right-hand side represents
the probability flow associated with the piecewise determinis-
tic dynamics for a given n, whereas the second term represents
jumps in the discrete state n. Note that we have rescaled

FIG. 2. Schematic diagram of a PDMP for a sequence of jump times {t1, . . .}
and a corresponding set of discrete states {n0, n1, . . .}. See text for details.
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the matrix A (and hence the rates λn) by introducing the
dimensionless parameter ε, ε > 0. This is motivated by the
observation that many applications of PDMPs involve a sep-
aration of time-scales between the relaxation time for the
dynamics of the continuous variables x and the rate of switch-
ing between the different discrete states n of the environment.
The fast switching limit then corresponds to the case ε → 0.
Now, we introduce the averaged vector field F : R

d → R
d by

F(x) =
∑
n∈�

ρnFn(x) (2.8)

and define the averaged system{
ẋi(t) = F[xi(t)], i = 1, . . . , M ,
xi(0) = x0.

(2.9)

Intuitively speaking, one expects the PDMP (2.1) to reduce to
the deterministic dynamical system (2.9) in the fast switching
limit ε → 0. That is, for sufficiently small ε, the Markov chain
undergoes many jumps over a small time interval �t during
which �x ≈ 0, and, thus, the relative frequency of each dis-
crete state n is approximately ρn. This can be made precise in
terms of a law of large numbers for PDMPs proven in Ref. 43.

In the fast switching (deterministic) limit, each member
of the population becomes independent, since the dependence
on the current state of the environment disappears. In this
paper, we will assume that for each i = 1, . . . , M , the aver-
aged dynamical system (2.9) supports a set of stable periodic
solutions with the same natural frequency ω = 2π/�, where
� is the period. That is, we have a population of identical,
independent oscillators in the fast switching limit. In state
space, each periodic solution is an isolated attractive trajec-
tory or limit cycle. The dynamics on the limit cycle can be
described by a uniformly rotating phase such that

dθi

dt
= ω, (2.10)

and xi = �[θi(t)] = �(ωt + ψi) with � being a 2π -periodic
function and ψi the initial phase. Note that � satisfies the
equation

ω
d�

dθ
= F[�(θ)]. (2.11)

Differentiating both sides with respect to θ gives

d

dθ

(
d�

dθ

)
= ω−1J(θ) · d�

dθ
, (2.12)

where J is the 2π -periodic Jacobian matrix

Jab(θ) ≡ ∂Fa

∂xb

∣∣∣∣∣
x=�(θ)

(2.13)

for a, b = 1, . . . , d .
In the deterministic limit, there is no mechanism for phase

synchronizing the population of oscillators, since θj(t)−
θi(t) = ψj − ψi for all t. The main issue we wish to address in
this paper is whether or not the presence of a common switch-
ing environment can synchronize the population of stochastic
hybrid oscillators when ε > 0, analogous to the noise-driven
synchronization of SDEs.10–14

III. DIFFUSION APPROXIMATION AND PHASE SDE

One approach to analyzing synchronization in the fast
switching regime (0 < ε 
 1) is to use a QSS diffusion
approximation, in which the CK equation (2.6) is approxi-
mated by a Fokker-Planck (FP) equation for the total density
C(x, t) = ∑

n pn(x, t).41 The latter determines the probability
distribution of solutions of a corresponding SDE for a popula-
tion of oscillators driven by a common O(

√
ε) multiplicative

noise term, which can then be reduced to an effective SDE
for the phases along the lines of Ref. 10. The resulting FP
equation in the Stratonovich representation takes the form
(see Appendix A)

∂C

∂t
= −

M∑
i=1

∇i · [
F(xi)C

]
(3.1a)

− ε

M∑
i,j=1

∑
m,n∈�

A†
mnρn∇i · {

Gm(xi)∇j · [Gn(xj)C]
}

,

with

Gm(x) = Fm(x)− F(x). (3.1b)

Since Eq. (3.1a) is symmetric with respect to the exchange
(ni, mj) ↔ (mj, ni), we can replace Aρ by its symmetric part

Ãmn = 1

2
(A†

mnρn + A†
nmρm). (3.2)

Note that the matrix Ã is negative semi-definite, which can
be inferred from (B.7) in Appendix B. For example, in
the case of a two-state Markov chain, Ã = diag[−ρ0/(k+ +
k−), −ρ1/(k+ + k−)].

It follows that under the diffusion approximation, the
PDMP (2.1) can be approximated by the Stratonovich SDE

dXi(t) = F(Xi)dt +
√

2ε
∑

m,n∈�
Gm(Xi)BmndWn(t) (3.3)

for i = 1, . . . , M , where BB� = −Ã, and W(t) is a vector of
uncorrelated Brownian motions in R

M ,

E
[
W(t)W(t)�

] = tI,

and I is the identity matrix. [Note that it does not matter which
Hermitian square root of −Ã we take for B, since they all
yield the same statistical behavior of Xi(t).] Equation (3.3)
represents a population of independent, non-interacting limit
cycle oscillators, driven by common external white noise. One
can now use phase reduction methods developed for SDEs.

A. Phase reduction

First, suppose that the noise amplitude ε is sufficiently
small relative to the rate of attraction to the limit cycle, so
that deviations transverse to the limit cycle are also small
(up to some exponentially large stopping time). This suggests
that the definition of a phase variable persists in the stochas-
tic setting, and one can derive a stochastic phase equation by
decomposing the solution to the SDE (3.3) according to

Xi(t) = �[θi(t)] + √
εvi(t), (3.4)

with θi(t) and vi(t) corresponding to the phase and amplitude
components, respectively, of the ith oscillator. However, there
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FIG. 3. Different choices of amplitude-phase decomposition. Two possibili-
ties are orthogonal projection with phase θ ′(t) and isochronal projection with
phase θ(t). In the latter case, the response to perturbations depends on the
phase response curve R(θ), which is normal to the isochron at the point of
intersection with the limit cycle.

is not a unique way to define the phase θi, which reflects the
fact that there are different ways of projecting the exact solu-
tion onto the limit cycle44–47 (see Fig. 3). One well-known
approach is to use the method of isochrons,10,12–14 which we
briefly outline here.

Consider the unperturbed deterministic system ẋi =
F(xi). Stroboscopically observing the system at time intervals
of length � leads to a Poincare mapping

xi(t) → xi(t +�) ≡ P[xi(t)],

for which all points on the limit cycle are fixed points.
We choose a point x∗

i on the limit cycle and consider all
points in the vicinity of x∗

i that are attracted to it under the
action of P . They form a (d − 1)-dimensional hypersurface
I called an isochron,1,2,4,6,7 crossing the limit cycle at x∗

i . A
unique isochron can be drawn through each point on the limit
cycle (at least locally) so that the isochrons can be param-
eterized by the phase, I = I(θi). Finally, the definition of
phase is extended by taking all points xi ∈ I(θi) to have the
same phase, �(xi) = θi, which then rotates at the natural fre-
quency ω (in the unperturbed case). Hence, for an unperturbed
oscillator in the vicinity of the limit cycle, we have

ω = d�(xi)

dt
= ∇�(xi) · dxi

dt
= ∇�(xi) · F(xi).

Now, we consider the Stratonovich SDE (3.3). For the
moment, we replace the O(ε1/2) term by a bounded deter-
ministic function H ∈ R

d so that we have the perturbed
deterministic equation

dxi

dt
= F(xi)+ √

εH(xi, t).

The additional complications arising from a stochastic pertur-
bation will be addressed below. Differentiating the isochronal
phase using the chain rule gives

d�

dt
= ∇�(xi) · [F(xi)+ √

εH(xi, t)]

= ω + √
ε∇�(xi) · H(xi, t).

We now make the approximation that deviations of xi from
the limit cycle are ignored on the right-hand side by setting
xi(t) = �[θi(t)] with � being the 2π -periodic solution on the
limit cycle. This then yields the closed phase equation

dθi

dt
= ω + √

ε

d∑
a=1

Ra(θi)Ha[�(θi), t], (3.5)

where

Ra(θ) = ∂�

∂xa

∣∣∣∣
xa=�(θ)

(3.6)

is a 2π -periodic function of θ known as the ath component of
the phase resetting curve (PRC).1,2,4,6,7 One way to evaluate
the PRC is to exploit the fact that it is the 2π -periodic solution
of the linear equation

ω
dR(θ)

dθ
= −J(θ)� · R(θ), (3.7)

under the normalization condition

R(θ) · d�(θ)

dθ
= 1. (3.8)

J(θ)� is the transpose of the Jacobian matrix J(θ).
Returning to the Stratonovich SDE (3.3), treating the

stochastic perturbation along identical lines to the determinis-
tic case (i.e., substituting H(t)dt = √

2
∑

m,n∈� {Fm[�(θi)] −
F[�(θi)]

}
BmndWn(t), and exploiting the fact that the usual

rules of calculus hold (in contrast to Ito SDEs) would then
lead to the following SDE for the phase θi(t):

dθi = ωdt +
√

2ε
∑

m,n∈�
Fm(θi)BmndWn(t), (3.9)

where

Fn(θi) =
d∑

a=1

Ra(θi)
{
Fn,a[�(θi)] − Fa[�(θi)]

}
. (3.10)

Introducing the population phase vector θ(t) = [θ1(t), . . . ,
θM (t)], the corresponding phase FP equation for the popula-
tion probability density C(θ , t) is

∂C

∂t
= −ω

M∑
i=1

∂C

∂θi
(3.11)

+ ε

M∑
i,j=1

∑
m,n∈�

Ãmn
∂

∂θi

{
Fm(θi)

∂

∂θj
[Fn(θj)C]

}
.

However, there are a number of major differences from the
deterministic case. Probably, the most significant is that a
Wiener process is not bounded, which means that over suf-
ficiently long time intervals, there is a small but non-zero
probability that the stochastic term induces large deviations
from the limit cycle, resulting in a breakdown of the pertur-
bation analysis. This issue can be addressed using variational
methods and large deviation theory,47,48 which show that for
sufficiently small ε, the system remains in a neighborhood of
the limit cycle up to exponentially long times. The second
issue is that there are no O(

√
ε) corrections to the deter-

ministic part of the phase equation so that one has to go to
O(ε) in order to determine the leading order corrections to the
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drift term. There are two sources of O(ε) terms: one arises
from the coupling between the phase and amplitude fluctu-
ations transverse to the limit cycle, and the second arises
from changing between Stratonovich and Ito versions of the
SDE based on Ito’s formula.14,46–48 The precise form of these
terms will also depend on the particular choice of the phase
reduction method. However, if the limit cycle is sufficiently
attracting, then they tend to have a small effect.14 Moreover,
such drift terms do not contribute to the leading order expres-
sion for the Lyapunov exponent describing the evolution of
phase differences [see Eq. (3.16)]. Therefore, we shall drop
such contributions in our subsequent analysis and reinterpret
Eq. (3.9) as an Ito SDE.

B. Lyapunov exponent

We now use the phase SDE (3.9) interpreted in the
Ito sense to investigate the effects of a common switch-
ing environment in the small ε regime, following previous
studies.10,12–15 The first step is to consider the SDE for the
phase difference ψ = θj − θ1 for any fixed j such that j �= 1.
Assuming ψ is infinitesimally small, we have

dψ

dt
=

√
2εψ(t)

[ ∑
m,n∈�

F ′
m(φ)BmndWn(t)

]
, (3.12)

where ′ denotes differentiation with respect to φ, and we have
set θ1(t) = φ(t) so that φ(t) evolves according to Eq. (3.9) for
i = 1. Introducing a new variable y = log(ψ) and using Ito’s
formula yields the SDE

dy = −ε
∑

m,n∈�
F ′

m(φ)ÃmnF ′
n(φ)dt

+
√

2ε

[ ∑
m,n∈�

F ′
m(φ)BmndWn(t)

]
. (3.13)

We define the Lyapunov exponent according to

λQSS = lim
T→∞

1

T
[y(T)− y(0)]. (3.14)

(More precisely, we only take the limit in T up until the time
that the system leaves a neighborhood of the limit cycle.) In
the previous work,49 we have demonstrated that such times
are typically of exponential length, so there is plenty of time
for the Lyapunov exponent to converge to the expected value.
It follows that λ corresponds to the long-time average of the
right-hand of Eq. (3.13). Assuming that the system is ergodic,
we can replace the time average by an ensemble average with
respect to the Wiener processes. Given

E

[ ∑
m,n∈�

F ′
m(φ)BmndWn(t)

]
= 0

for the Ito stochastic process, it follows that

λQSS = εE

[ ∑
m,n∈�

F ′
m(φ)ÃmnF ′

n(φ)

]
< 0, (3.15)

provided Fn(φ) is not a constant (since the matrix Ã is
negative definite). Since the Lyapunov exponent is then neg-
ative definite, we infer that the population of phases evolving

according to Eq. (3.9) synchronize, in the sense that

lim
t→∞[θj(t)− θ1(t)] = 0, for all j = 1, . . . , M .

Moreover, assuming that a stationary density Ps(φ) exists,
with Ps(φ) ≈ 1/(2π) in the weak noise regime, then we can
approximate the expectation by an integral around the limit
cycle:

λQSS = ε

∫ 2π

0

[ ∑
m,n∈�

F ′
m(φ)ÃmnF ′

n(φ)

]
dφ

2π
< 0. (3.16)

This then implies that if we had included O(ε) contribu-
tions to the drift, then these would yield a total derivative
in the phase difference equation, which would vanish when
averaged around the limit cycle.

In conclusion, we have established that under the dif-
fusion approximation, a population of identical, stochastic
hybrid limit cycle oscillators will phase synchronize when
driven by a common switching environment in the fast switch-
ing limit. This then raises the issue as to whether or not this
ensures synchronization of the corresponding population of
PDMPs evolving according to the exact dynamics of Eq. (2.1).
In particular, the QSS approximation is only intended to be
accurate over timescales that are longer than O(ε). Hence, it
is not clear to what extent the above Lyapunov exponent λQSS

is accurate, because it is obtained from averaging the noise
fluctuations over infinitesimally small timescales. Indeed, it
follows from the smoothness of the functions {Fm} that the
infinitesimal of the exact isochronal phase θi = �(xi) satis-
fies dθi ∼ O(dt), whereas under the diffusion approximation,
dθi ∼ √

εO(dt1/2). This implies that no matter how small
we take ε, the isochronal phase will never exhibit the rel-
atively large fluctuations over very small timescales that is
characteristic of SDEs.

In fact, the above issue also raises some questions
about the conventional approach to phase synchronization in
stochastic differential equations. We are not aware of any
application of SDEs that is intended to be accurate over
infinitely short timescales (i.e., for infinitely high frequen-
cies): in practice, there is always a very short timescale over
which the noise is not white, but highly correlated. For exam-
ple, in stochastic models of stock price fluctuations, this
timescale must be at least as long as the time it takes for
the central computer to process a single trade. However, the
Lyapunov coefficient that one obtains from the conventional
stochastic phase synchronization analysis derives from aver-
aging over these infinitesimally fine fluctuations. In fact, one
finds that phase synchronization still occurs in the case of
more realistic forms of environmental noise.26

IV. STOCHASTIC HYBRID PHASE EQUATION

In this section, we consider an alternative approach to
deriving the Lyapunov exponent, which avoids the need for
the QSS diffusion approximation. The method involves ana-
lyzing the PDMP for the exact isochronal phase defined
according to

θi(t) = �[xi(t)], (4.1)
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where xi(t) now evolves according to the exact PDMP (2.1),
rather than the approximate SDE (3.3).

A. Exact PDMP for the isochronal phase

Suppose that there is a finite sequence of jump times
{t1, . . . tr} within the time interval (0, T), and let nk be the cor-
responding discrete state in the interval (tk , tk+1) with t0 = 0
(see Sec. II). Introducing the set

T = [0, T]\ ∪r
k=1 {tk},

it follows that Eq. (2.1) holds for all t ∈ T . Hence, using the
chain rule for t ∈ T ,

dθi

dt
= ∇�(xi) · Fn(xi)

= ω + ∇�(xi) · [Fn(xi)− F(xi)]

= ω + Hn(xi), (4.2)

where

Hn(x) := ∇�(x) · [Fn(x)− F(x)]. (4.3)

We will use Eq. (4.2) to derive a more accurate expression for
the Lyapunov exponent that has the same sign as Eq. (3.16)
but differs in explicit form. The direct method has a num-
ber of other advantages. First, it is more intuitive to preserve
the piecewise nature of the stochastic dynamics, rather than
replacing it by a continuous Markov process. Indeed, it is
not clear which aspect of the PDMP the Brownian motion
Wn(t) corresponds to. (In Appendix B, we explicitly identify
a random variable that corresponds to the Brownian motion
in the QSS SDE. This then allows us to identify over what
timescale the QSS approximation is accurate.) Second, since
Eq. (4.2) is exact, it is possible to numerically solve for θi(t)
outside the fast switching regime and thus determine how
phase synchronization varies as ε is increased.

For sufficiently small ε, there is a high probability that
the environmental state switches multiple times during one
period �0. Hence, although Hn(xi) is not necessarily O(ε), it
only applies for a small time interval before switching, and the
accumulative effect of the perturbation over one cycle remains
small. This suggests that we can set xi = �(θi) on the right-
hand side of Eq. (4.2), which yields the closed PDMP for the
phase

dθi

dt
= ω + Fn(θi), t ∈ T , N(t) = n, (4.4)

with Fn(θ) = Hn[�(θ)]. The corresponding probability den-
sity pn(θ , t) evolves according to the CK equation

∂pn

∂t
= −

M∑
i=1

∂

∂θi
{[ω + Fn(θi)]pn(θ , t)} + 1

ε

∑
m∈�

Anmpm(θ , t).

(4.5)

One way to proceed, by analogy with the analysis of SDEs,12

would be to consider a pair of oscillators, introduce slow
phase variables ϕj = θi − ωt, and average over a single period
of the limit cycle. One could then attempt to find the steady-
state probability density for the resulting phase difference and
establish that the phase difference is localized around zero.

However, it is difficult to make this approach rigorous, and
finding the stationary solution of the CK equation for a PDMP
is non-trivial.

B. Lyapunov exponent

Therefore, we will proceed by considering a pair of
isochronal phases θ1(t) and θ2(t) evolving according to Eq.
(4.2). We set θ1 = φ, θ2 = φ + ψ and define y = logψ as
before. [Without loss of generality, we take θ2(0) > θ1(0).]
Exploiting the fact that the inter-switching times�tk = tk+1 −
tk are exponentially distributed with an O(1/ε) rate, we Taylor
expand �yk := y(tk+1)− y(tk) to second order in �tk ,

�yk = ψ(tk)
−1�ψk − 1

2
ψ(tk)

−2�ψ2
k + O(�ψ3

k ),

where �ψk = ψ(tk+1)− ψ(tk), and

�ψk = �tk[Hnk (x2)− Hnk (x1)]

+ 1

2
�t2

k [Qnk (x2)− Qnk (x1)] + O(�t3
k),

with xj evaluated at time t = tk ,

Qn(x) = ∇�(x) · {
Jn(x)Fn(x)

} + {
J�(x)Fn(x)

} · Fn(x),

(4.6)

and J� is the Hessian of the isochronal phase map, and Jn is
the Jacobian of Fn. Hence, we have

�yk = ψ(tk)
−1[Hnk (x2)− Hnk (x1)]�tk (4.7)

− 1

2
ψ(tk)

−2[Hnk (x2)− Hnk (x1)]
2�t2

k

+ 1

2
ψ(tk)

−1[Qnk (x2)− Qnk (x1)]�t2
k + O(�t3

k).

Our goal is to understand the asymptotics of the rate of
increase of y with respect to time, i.e., the typical value of

∑K
k=0�yk∑K
k=0�tk

,

for large K. We will show that the second term in the decom-
position (4.7) dominates the numerator of the above fraction.
It is not immediately obvious why this should be the case, par-
ticularly since the second term is itself asymptotically small
in ε, since �t2

k scales as ε2. In fact, over short time scales, the
fluctuations due to ψ(tk)−1[Hnk (x1)− Hnk (x2)]�tk are dom-
inant. However, we will see that the reason that they are not
dominant in the long time average is that their mean is zero,
and the fluctuations decorrelate exponentially quickly in time.

The first step is to note that for sufficiently small ε, the
system will switch many times during one period �, while
ψ will hardly change. To this end, we introduce the cycle
times τp = p� and set �̂yp = y(τp+1)− y(τp). If there are an
average of N jumps during one cycle, we then have

�̂yp �
l=k+N∑

l=k

�yl. (4.8)
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We recall that�tk is exponentially distributed with rate λnε
−1

when the current discrete state is n. This means that

E[�tk|nk = n] = ε

λn
, E[�t2

k |nk = n] = 2ε2

λ2
n

.

Noting that E[�tk|nk = n] is the mean waiting time in state n,
over any particular time interval δt, we can estimate that the
number of jumps from state n to some other state per cycle to
be δtρnλn/ε (obtained by dividing the expected time spent in
state n by the average time it takes to leave state n). Summing
over n, the total number of jumps is approximately

δtε−1
∑
n∈�

ρnλn. (4.9)

In particular, over the course of one cycle, we expect that the
total number of jumps is approximately

N ≈ �

ε

∑
n∈�

ρnλn. (4.10)

Since x1, x2 will not be static over the limit cycle, we must
further partition the set of N jumps into blocks of M jumps,
for 1 
 M 
 ε−1, such that over these M jumps, x1, and
x2 (as well as ψ) are approximately constant. (The motiva-
tion for this choice of scaling is as follows: M must be small
enough that x1 and x2 do not change substantially over all M
jumps, but large enough that the number of jumps that the
system makes to each state is determined by ρ.) It follows
from Eq. (4.9) that the total elapsed time over M jumps is
approximately

τM :=
l=k+M∑

l=k

�tl � εM∑
n∈� ρnλn

. (4.11)

Furthermore, the number of these M jumps that enter state n
is approximately Mρnλn/

∑
m∈� ρmλm.

The next step is to evaluate the sum of each of the terms
on the right-hand side of Eq. (4.7) over M jumps. Because
there are many jumps, the Law of Large Numbers implies
that the sum can be approximated by its average. (We discuss
this in more detail in Sec. IV C.) For the sake of illustration,
let us focus on the second term and consider the following
summation:

l=k+M∑
l=k

ψ(tl)
−2[Hnl (x2)− Hnl (x1)]

2�t2
l

�
l=k+M∑

l=k

E

[
ψ(tl)

−2[Hnl (x2)− Hnl (x1)]
2�t2

l

]

� M∑
m∈� λmρm

ψ(tk)
−2

∑
m∈�

ρmλm{Hm(x2)− Hm(x1)}2

× E
[
�t2

l |nl = m
]

= 2ε2 M∑
m∈� λmρm

ψ(tk)
−2

∑
m∈�

ρm

λm
{Hm(x2)− Hm(x1)}2

� 2ετMψ(tk)
−2

∑
m∈�

ρm

λm
[Hm(x2)− Hm(x1)]

2.

Ignoring transverse amplitude fluctuations, which can be
justified using methods from Ref. 49, we have

x1 � �(φ), x2 � �(φ + ψ) � x1 +�′(φ)ψ .

Therefore,

Hm(x2)− Hm(x1) � H′
m[�(φ)]�′(φ)ψ ,

and

ψ(tk)
−1{Hm(x2)− Hm(x1)} � F ′

m(φk),

where Fm(φ) = Hm [�(φ)]. Hence,

τ−1
M

l=k+M∑
l=k

ψ(tl)
−2[Hnl (x1)− Hnl (x2)]

2�t2
l

� 2ε
∑
m∈�

ρm

λm
F ′

m

(
φk

)2
. (4.12)

We similarly find that

τ−1
M

l=k+M∑
l=k

ψ(tl)
−1[Qnl (x1)− Qnl (x2)]�t2

l

� 2ε
∑
m∈�

ρm

λm

d

dφk
Qm

[
�(φk)

]
. (4.13)

If we apply the same analysis to the summation of the lin-
ear term in �tk in Eq. (4.7), we notice that its expectation is
approximately zero. That is,

E

{
l=k+M∑

l=k

ψ(tl)
−1[Hnl (x1)− Hnl (x2)]�tl

}

� M∑
m∈� λmρm

ψ(tk)
−1

∑
m∈�

ρmλm{Hm(x1)− Hm(x2)}

× E
[
�tl|nl = m

]

= ε
M∑

m∈� λmρm
ψ(tk)

−1
∑
m∈�

ρm{Hm(x1)− Hm(x2)}

= 0,

since
∑

m∈� ρmHm(xi) = 0. This suggests that its contri-
bution to the Lyapunov exponent is negligible over long
times. A more rigorous analysis indeed establishes that (see
Appendix B)

1

q�̄

qN∑
l=0

ψ(tl)
−1[Hnl (x1)− Hnl (x2)]�tl → 0 (4.14)

as q → ∞, as long as both oscillators stay close to the limit
cycle.

Finally, we can take the rate of change of the phase
to be approximately that of the deterministic system, over
one course of the limit cycle. That is, we assume that for
all t ∈ [τp, τp+1], φ(t)− φ(τp) = ω(t − τp)+ O(ε). Since, by
assumption, M 
 ε−1, the expressions in (4.12) and (4.13)
are excellent approximations to the derivative with respect to
time. Combining the above results and choosing k to be such
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that τp � tk ,

y(τp+1)− y(τp) =
∫ τp+1

τp

y′(t)dt

� ε

∫ τp+1

τp

( ∑
m∈�

ρm

λm

{
d

dφ
Qm

[
�(φt)

] − F ′
m(φt)

2

})
dt

� ε�̄

2π

∫ 2π

0

( ∑
m∈�

ρm

λm

{
d

dα
Qm

[
�(α)

] − F ′
m(α)

2

})
dα,

upon a change of variable. Now∫ 2π

0

d

dα
Qm [�(α)] dα = Qm [�(2π)] − Qm [�(0)] = 0

due to the periodicity of �. We thus find that taking q
revolutions around the limit cycle (which take a time q�̄)

1

q�̄

[
y(τq)− y(τ1)

] � − ε

2π

∫ 2π

0

∑
m∈�

ρm

λm
F ′

m(α)
2dα.

We thus obtain the Lyapunov exponent

λ = −ε
∫ 2π

0

∑
n∈�

ρnλ
−1
n F ′

n(φ)
2 dφ

2π
< 0. (4.15)

C. Remarks

The above analysis establishes that the Lyapunov expo-
nent λ obtained from the exact isochronal phase equation dif-
fers significantly from the Lyapunov exponent λQSS obtained
under the diffusion approximation, i.e., λ �= λQSS, with λQSS

given by Eq. (3.16). Since they are both negative definite
[assuming F ′

n(φ) �= 0], they both predict that phase synchro-
nization will occur, but at different rates. The origin of the
discrepancy is that λQSS is obtained by averaging with respect
to noise fluctuations over infinitesimally small timescales that
do not occur in the exact PDMP. As we show in Appendix B,
one can write

λQSS � − lim
K→∞

1

2tK
E

[( K∑
l=0

F ′
l�tl

)2]
, (4.16)

whereas

λ � − lim
K→∞

1

2tK
E

[ K∑
l=0

(
F ′

l�tl
)2

]
. (4.17)

(Again, the limit should only really be taken up until the time
that the system leaves a neighborhood of the limit cycle.)
Our derivation of λ is also useful in helping us understand
how the QSS approximation works. It is not immediately
obvious where the Brownian motion of Eq. (3.3) comes
from. In Appendix B, we demonstrate that in Eq. (4.7), the
term linear in �tl corresponds to the stochastic integral of
the QSS reduction in (3.13). More precisely, the probabil-
ity law of

√
2ε

∫ tK
0

∑
m,n∈� F ′

m(φ)BmndWn(t) is very close to

the law of
∑K

l=0 F ′
nl
�tl. Indeed, it can be shown that their

first two moments are equal to leading order in ε. (One
could straightforwardly extend the analysis of Appendix B to
demonstrate that their higher order moments must also con-
verge as ε → 0.) However, the probability laws of the above
two random variables are only convergent over timescales

much larger than O(ε), and this essentially accounts for the
discrepancy in the Lyapunov exponents.

V. EXAMPLE: RADIAL ISOCHRON CLOCK

In order to illustrate the above general theory, we will
consider a particularly simple model of an oscillator based on
the complex amplitude equation that arises for a limit cycle
oscillator close to a Hopf bifurcation:

dA

dt
= (μ+ iη)A − (1 + iα)|A|2A, A ∈ C. (5.1)

In polar coordinates, A = reiφ ,

dr

dt
= r(μ− r2),

dφ

dt
= η − αr2. (5.2)

This system is also known as a modified radial isochron clock
model. The solution for arbitrary initial data r(0) = r0, θ(0) =
θ0 is

r(t) = √
μ

[
1 + μ− r2

0

r2
0

e−2μt

]−1/2

, (5.3a)

φ(t) = φ0 + ωt − α

2
log[r2

0 + (μ− r2
0)e

−2μt], (5.3b)

where ω := η − αμ is the natural frequency of the stable limit
cycle at r2

0 = μ. In Cartesian coordinates,

dx

dt
:= F1(x, y) = μx − ηy − (x2 + y2)(x − αy), (5.4a)

dy

dt
:= F2(x, y) = μy + ηx − (x2 + y2)(y + αx). (5.4b)

One of the useful features of the radial isochron clock
model is that the isochronal phase can be calculated explicitly.
Strobing the explicit solution (5.3) at times t = n�0, we see
that

lim
n→∞φ(n�0) = φ0 − α ln r0 mod 2π .

Hence, we can define an isochronal phase on the whole plane
according to

�(r,φ) = φ − α ln r. (5.5)

It follows that the isochrones are logarithmic spirals with
φ − α ln r = constant. Now, we rewrite the phase (5.5) in
Cartesian coordinates,

�(x) = tan−1 y

x
− α

2
log(x2 + y2),

so that

∂�

∂x
= − y

x2 + y2
− α

x

x2 + y2
,

∂�

∂y
= x

x2 + y2
− α

y

x2 + y2
.

On the limit cycle �(θ) = √
μ(cos θ , sin θ), so that the com-

ponents of the PRC are

Rx(θ) = ∂�[�(x)]
∂x

= 1√
μ

[− sin θ − α cos θ ] , (5.6a)

Ry(θ) = ∂�[�(x)]
∂x

= 1√
μ

[cos θ − α sin θ ] . (5.6b)
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Given the deterministic model, the next step is to specify
the corresponding PDMP for a single oscillator. One possibil-
ity is to assume that one or more of the coefficients switch.
For example, in polar coordinates, we could take

dr

dt
= r(μn − r2

i ),
dφ

dt
= ηn − αr2. (5.7)

That is, both the amplitude and angular frequency of each
oscillator switch. In Cartesian coordinates, we have

dx

dt
:= Fn,1(x) = μnx − ηny − (x2 + y2)(x − αy), (5.8a)

dy

dt
:= Fn,2(x) = μny + ηnx − (x2 + y2)(y + αx). (5.8b)

It immediately follows that the averaged system is given by

dx

dt
= F1(x) := μx − ηy − (x2 + y2)(x − αy), (5.9a)

dy

dt
= F2(x) := μy + ηx − (x2 + y2)(y + αx), (5.9b)

where

μ =
∑
n∈�

μnρn, η =
∑
n∈�

ηnρn. (5.10)

The corresponding natural frequency is ω = η − αμ. Also,
note from Eq. (3.1b) that

Gn,1(x) = (μn − μ)x − (ηn − η)y, (5.11a)

Gn,2(x) = (μn − μ)y + (ηn − η)x. (5.11b)

The phase PDMP (4.4) for the radial isochron clock takes the
form of a simple velocity jump process

dθ

dt
= ωn, (5.12)

since

Fn(θ) =
∑

a=1,2

Ra(θ)
{
Fn,a[�(θ)] − Fa[�(θ)]

}

= [− sin θ − α cos θ ] [(μn − μ) cos θ − (ηn − η) sin θ ]

+ [cos θ − α sin θ ] [(μn − μ) sin θ + (ηn − η) cos θ ]

= (ηn − η)− α(μn − μ) = ωn − ω. (5.13)

In this case, F ′
n = 0, so Eq. (4.15) implies that the Lyapunov

exponents is zero (to leading order in ε). This means that one
cannot establish that synchronization occurs using the anal-
ysis of this paper. It is possible that synchronization might
still occur, but the Lyapunov coefficient would be o(ε), and it
is not easy to ascertain the synchronization in the numerical
results.

A second possibility is to assume that the environments
drive the x coordinate with a switching input In such that Ī =∑

n ρnIn = 0. As a concrete example, we take the evolution in

Cartesian coordinates to be given by

dx

dt
= μx − ηy − (x2 + y2)(x − αy)+ x√

x2 + y2
v1

n, (5.14a)

dy

dt
= μy + ηx − (x2 + y2)(y + αx)+ y√

x2 + y2
v2

n. (5.14b)

Here, vn = (v1
k , v2

k) is a jump Markov process, assuming the
following 4 states

v1 = (2, −1), v2 = (−4, −4),

v3 = (−3, 2), v4 = (8.8, 7.2),

with transition matrix⎛
⎜⎜⎝

0 2 2.5 0.1
1 0 0.5 4

0.5 0.7 0 2
3 0.4 0.25 0

⎞
⎟⎟⎠ . (5.15)

The state vector and transition matrix were chosen arbitrarily,
except for the normalization

4∑
k=1

ρkvk = 0,

to ensure that the averaged system supports a deterministic
limit cycle. Hence, the averaged system is given by Eq. (5.4),
whereas the phase PDMP takes the form

dθ

dt
= ω − (sin θ + α cos θ)v1

n + [cos θ − α sin θ ] v2
n. (5.16)

In this case, F ′
n �= 0, and we expect a pair of hybrid oscillators

to synchronize.
Numerical simulations of a pair of radial isochron oscil-

lators evolving according to Eq. (5.14) with a common envi-
ronmental drive confirm that synchronization does occur. An
example set of results are shown in Fig. 4. Note, in particular,
that the quantity

−1

t
log

∣∣φ1(t)− φ2(t)
∣∣

converges to the Lyapunov exponent λ given by Eq. (4.15),
which was calculated directly from the underlying PDMP,
rather than the quasi-steady-state Lyapunov exponent λQSS of
Eq. (3.16).

VI. DISCUSSION

In this paper, we proved that stable oscillators subject to a
common rapidly-switching noise will synchronize, in the vast
majority of cases. We identified the leading order contribution
to the Lyapunov exponent and explained why this is different
from the Lyapunov exponent predicted by the QSS diffusion
approximation. These results were shown to be consistent
with a simulation of the radial isochron oscillator subject to
a common environmental noise.

In more detail, we considered a population of M identi-
cal stochastic hybrid systems in R

d , evolving according to the
piecewise deterministic ODE (2.1) and subject to a common
switching environment. In the fast switching limit, the result-
ing dynamical system (2.9) was assumed to support a stable
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FIG. 4. Synchronization of two radial isochron oscillators with common switching noise. We set ε = 0.01. The radii of the initial conditions differ by 0.1, and
the phases of the initial condition differ by 0.1. In the top left, we plot the radii of the two oscillators, and in the top right, we plot the angle (one oscillator is
plotted in black and one in blue). In the bottom right, we plot the x − y trajectories of the oscillators: one in black and one in blue. In the bottom left, we plot
−ε−1t−1 log

∣∣φ1(t)− φ2(t)
∣∣ in black. We plot ε−1λQSS in green and ε−1λ in blue. It can be seen that λ is the correct Lyapunov exponent.

limit cycle. We showed that the phases of rapidly-switching
oscillators converge at a rate e−εκt, where ε is the timescale of
the switching, and the Lyapunov exponent λ = −εκ is given
by Eq. (4.15):

κ =
∫ 2π

0

∑
n∈�

ρnλ
−1
n F ′

n(φ)
2 dφ

2π
> 0.

Here, {ρn}n∈� is the stationary distribution of the Markovian
switching process, λn is the rate of the exponential waiting
time density for transitions from state n, and Fn is given by
(3.10),

Fn(φ) =
d∑

a=1

Ra(φ)
{
Fn,a[�(φ)] − Fa[�(φ)]

}
,

where x = �(φ) specifies the deterministic limit cycle in R
d ,

{Ra(φ), a = 1, . . . , d} is the phase resetting curve, and

Fa(x) =
∑
n∈�

ρnFn(x).

We also established that errors occur in estimating the rate of
phase convergence under the QSS diffusion approximation.
That is, the latter yields a rate e−εκQSSt, where λQSS = −εκQSS

is given by Eq. (3.16):

κQSS = −
∫ 2π

0

[ ∑
m,n∈�

F ′
m(φ)ÃmnF ′

n(φ)

]
dφ

2π
> 0,

where

Ãmn = 1

2
(A†

mnρn + A†
nmρm),

and A† is the pseudo-inverse of the generator A of the
switching process.

In the limit as the switching gets faster and faster (i.e.,
ε → 0), the rate of synchronization gets slower and slower.
This is not surprising, since we know that in the deterministic
ε = 0 limit, the oscillators will in general never synchro-
nize if their starting conditions are different. These results
are contingent on the two oscillators staying in the attracting
neighborhood of the limit cycle. Indeed, we have shown in
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Ref. 49 that the timescale over which the oscillators remain
close to the limit cycle scales as exp

(
cε−1

)
, for a constant c.

In fact, if one were to continue the analysis of this paper, and
develop precise error bounds for the probability of the two
oscillators synchronizing, then one would find that the smaller
ε is, then the more likely it is that the oscillators, once they
are almost synchronized, stay almost synchronized. In sum-
mary, as ε → 0, the oscillators synchronize at a slower and
slower rate but stay synchronized with a higher and higher
probability.
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APPENDIX A: QUASI-STEADY-STATE (QSS)
REDUCTION

The basic steps of the QSS reduction of the population
equations (3.3) are as follows:

(a) Decompose the probability density as

pn(x, t) = C(x, t)ρn + εwn(x, t),

where
∑

n pn(x, t) = C(x, t) and
∑

n wn(x, t) = 0. Substitut-
ing into Eq. (2.6) yields

ρn
∂C

∂t
+ ε

∂wn

∂t
= −

M∑
i=1

∇i · (Fn(xi)[ρnC + εwn])

+ 1

ε

∑
m∈�

Anm[ρmC + εwm].

Summing both sides with respect to n then gives

∂C

∂t
= −

M∑
i=1

{
∇i · [

F(xi)C
] + ε

∑
n∈�

∇i · [Fn(xi)wn]

}
.

(A1)

(b) Using the equation for C and the fact that Aρ = 0, we have

ε
∂wn

∂t
=

∑
m∈�

Anmwm

− ρn

M∑
i=1

{∇i · [Fn(xi)C] − ∇i · [F(xi)C
]}

− ε

M∑
i=1

{[
∇i · [Fn(xi)ωn] − ρn

∑
m∈�

∇i · [Fm(xi)wm]

]}
.

(c) Introduce the asymptotic expansion

wn ∼ w(0)n + εw(1)n + ε2w(2)n + · · ·
and collect O(1) terms:

∑
m∈�

Anmw(0)m = ρn

M∑
i=1

∇i · [Fn(xi)− F(xi)]C
]

.

The Fredholm alternative theorem show that this has
a solution, which is unique on imposing the condition

∑
n w(0)n (x, t) = 0:

w(0)n (x) =
∑
m∈�

A†
nmρm

N∑
j=1

{∇j · [
Fm(xj)− F(xj)

]
C

}
,

where A† is the pseudo-inverse of the generator A.
(d) Combining Eqs. (A2) and (A1) shows that C evolves

according to the Fokker-Planck (FP) equation

∂C

∂t
= −

M∑
i=1

∇i · [
F(xi)C

] − ε

M∑
i,j=1

∑
n,m∈�

A†
nmρm

× ∇i · (Fn(xi)∇j · [
Fm(xj)− F(xj)C

])
.

Using the fact that
∑

m wn = 0, this can be rewritten in the
Stratonovich form (3.1a). One typically has to determine the
pseudo-inverse of A numerically.

APPENDIX B: ANALYSIS OF O(�tk) TERM IN
LYAPUNOV EXPONENT

In this appendix, we show that the O(�tk) term in Eq.
(4.7) does not contribute to the Lyapunov exponent in the long
time limit. First, recall that

ψ(tl)
−1[Hnl (x1)− Hnl (x2)] � F ′

nl
(φ).

From now on, we drop the dependence of F on φ to simplify
notation. We start by understanding the leading order second
moment of M terms, i.e.,

VM := E

[( l=k+M∑
l=k

F ′
nl
�tl

)2]
.

(An important reason that we do this is that, as noted in
Sec. IV C, the rate of change of this term with respect to time
yields the Lyapunov exponent of the quasi-steady-state reduc-
tion.) M will be taken to be large enough that the system has
switched sufficiently many times for the quasi-steady-state
approximation to be accurate, but M is also taken to be suffi-
ciently small that x1, x2, and φ are approximately constant. In
other words, 1 
 M 
 ε−1. To this end, we expand out the
square to obtain

E

[( l=k+M∑
l=k

F ′
nl
�tl

)2]

=
l=k+M∑

l=k

j=k+M∑
j=k

E

[
�tl�tjF ′

nl
F ′

nj

]

� 2
l=k+M∑

l=k

M∑
j=0

E

[
�tl�tl+jF ′

nl
F ′

nj+l

]
.

The reason why the above approximation is very accurate is
that the number of extra terms obtained through the reindexing
is negligible compared to the total number of terms.

Now, we can approximate the above equation by using
the fact that the correlations between �tlF ′

nl
and �tl+jF ′

nl+j

decay exponentially fast in j, thanks to the Perron-Frobenius
theorem. The Perron-Frobenius theorem applies because
the Markov chain is irreducible. Since, as demonstrated in
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Sec. IV, the mean of �tl+j�Fnl+j is 0, the contribution of the
terms with asymptotically large j will be negligible. We now
explain these statements in more detail.

Let P = (Pkm) be the matrix with elements Pkm =
λ−1

m Wkm. If one knows that the system was in state m, and that
it has jumped, then it jumps to state k with probability Pkm.
The Perron-Frobenius theorem implies that

lim
q→∞ Pq = B, (B1)

where B is the rank-1 matrix with the ith element of each col-
umn equal to 1∑

a∈� ρaλa
λiρi. Furthermore, the convergence is

exponentially fast, i.e.,

||Pq − B|| = O
[

exp(−q)
]
, (B2)

for any matrix norm.50

Now,

2
l=k+M∑

l=k

M∑
j=0

E

[
�tl�tl+jF ′

nl
F ′

nj+l

]

= 2
l=k+M∑

l=k

∑
p,m∈�

P
(
nl = m

)
E
[
�tlF ′

nl
|nl = m

]

×
M∑
j=0

(
Pj

)
pm

E
[
�tl+jF ′

nj+l
|nj+l = p

]

� 2ε2
l=k+M∑

l=k

∑
p,m∈�

F ′
pF ′

m

λmλp
P
(
nl = m

) M∑
j=0

(
Pj

)
pm

.

Because x1, x2 change by a negligible amount over this
timescale [as M = o(ε−1)], if ni = nj, then F ′

ni
� F ′

nj
.

If we substitute Pj for its limit B in the above, we obtain

1∑
a∈� ρaλa

M∑
j=0

l=k+M∑
l=k

∑
p,m∈�

F ′
mF ′

p

λmλp
P
(
nl = m

)
ρpλp = 0,

since
∑

p∈� ρp�F ′
p = 0. This is what we expect in light of

the above discussion, because the system decorrelates after
infinitely many jumps, and the mean is zero.

In light of (B2), the above discussion means that for large
M, we can extend the summation to ∞, without much of a
loss of accuracy

2
l=k+M∑

l=k

M∑
j=0

E

[
�tl�tl+jF ′

nl
F ′

nj+l

]

� 2ε2
l=k+M∑

l=k

∑
p,m∈�

F ′
pF ′

m

λmλp
P
(
nl = m

) ∞∑
j=0

(
Pj

)
pm

� 2ε2M∑
a∈� ρaλa

∑
p,m∈�

ρmF ′
pF ′

m

λp

∞∑
j=0

(
Pj

)
pm

, (B3)

since, as explained above, the number of jumps to state m is
approximately Mρmλm/

( ∑
a∈� ρaλa

)
.

Now, we wish to understand how the above term relates
to the pseudo-inverse of A (which occurred in the QSS SDE

of Appendix A). In fact, we claim that

−
∞∑

j=0

∑
p,q∈�

Ampλ
−1
p

(
Pj

)
pq
ρqF ′

q = ρmF ′
m, (B4)

which will allow us to establish the identity in (B5).
Note that the summation on the left converges because∑

p∈� Ampλ
−1
p Bpq = 0 for every q, m ∈ �, and, therefore, the

convergence is exponential in j thanks to (B2). We expand
out the left hand side, substituting A and using a truncated
summation, i.e., for some R ∈ Z

+,

−
R∑

j=0

∑
p,q∈�

Ampλ
−1
p

(
Pj

)
pq
F ′

qρq

= −
R∑

j=0

∑
p,q∈�

[
Wmp − λpδ(m, p)

]
λ−1

p

(
Pj

)
pqF

′
qρq

=
∑
q∈�

{ R∑
j=0

(
Pj

)
mqF

′
qρq −

R+1∑
j=1

(
Pj

)
mqF

′
qρq

}

= F ′
mρm −

∑
q∈�

(
PR+1

)
mq
F ′

qρq.

Now,
∑

q∈� BmqF ′
qρq = 0, because, as noted just below (B1),

the columns of B are all the same, and
∑

q∈�Hqρq = 0. Since
PR+1 → B as R → ∞, when we take R → ∞, we obtain
(B4).

It follows from (B4) that

−
∞∑

j=0

∑
q∈�

λ−1
p

(
Pj

)
pq
ρqF ′

q =
∑
m∈�

A†
pmρmF ′

m + Cρp, (B5)

for some C, where we recall the pseudo-inverse A†, defined in
Appendix A on the QSS approximation.

Substituting this identity into (B3), we find that

l=k+M∑
l=k

M∑
j=0

E

[
�tl�tl+jF ′

nl
F ′

j+l

]

� − ε2M∑
a∈� ρaλa

∑
p,q∈�

A†
pqF ′

pF ′
qρq. (B6)

This implies that

1

2(tk+M − tk)
VM � −ε

∑
p,q∈�

A†
pqF ′

pF ′
qρq, (B7)

using the expression for τM = tk+M − tk in (4.11). Just like
the end of Sec. IV B, we find that

1

2tK
E

[( K∑
l=0

F ′
l�tl

)2]

� − ε

2π

∫ 2π

0

∑
p,q∈�

A†
pqF ′

p(θ)F ′
q(θ)ρqdθ

= λQSS . (B8)

We have thus established the claim in (4.16).
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The final step in the proof is to show that

P

(
t−1
qM

qM∑
l=0

F ′
nl
�tl ≥ O(ε)

)

 1. (B9)

(Technically, this probability is conditional on both systems
staying in a neighborhood of the limit cycle until the time tqM.
We have demonstrated that this occurs for very long times,
with very high probability, elsewhere.49) To this end, we use
Chebyshev’s inequality, noting that

P

(
t−1
qM

qM∑
l=0

F ′
nl
�tl ≥ a

)

≤ 1

(atqM)2
E

[( qM∑
l=0

F ′
nl
�tl

)2]
. (B10)

We now bound the rate of growth in time of the expectation
on the right. The immediate use of this bound will be to show
that the probability is negligible. A secondary use is that it will
help us understand how this discrete approximation compares
to the QSS SDE.

We must thus understand the second order moment of
qM terms, i.e.,

E

[( qM∑
l=0

F ′
nl
�tl

)2]
=

qM∑
l=0

qM∑
j=0

E

[
�tl�tjF ′

nl
F ′

nj

]

� 2
qM∑
l=0

qM∑
j=0

E

[
�tl�tl+jF ′

nl
F ′

nj+l

]

= 2
q∑

r=1

l=rM∑
l=(r−1)M

qM∑
j=0

E

[
�tl�tl+jF ′

nl
F ′

nj+l

]
.

Using the estimate derived in (B6), we find that

E

[( qM∑
l=0

F ′
nl
�tl

)2]
− E

[( (q−1)M∑
l=0

F ′
nl
�tl

)2]

� − 2ε2M∑
a∈� ρaλa

∑
p,u∈�

A†
puF ′

pF ′
uρu.

Hence, using the expression for the time for M jumps in
(4.11),

1∑qM
l=(q−1)M+1�tl

{
E

[( qM∑
l=0

F ′
nl
�tl

)2]

−E

[( (q−1)M∑
l=0

F ′
nl
�tl

)2]}

� −
∑

n∈� ρnλn

εM
2ε2M∑
a∈� ρaλa

∑
p,u∈�

A†
puF ′

pF ′
uρu

= −2ε
∑

p,u∈�
A†

puF ′
pF ′

uρu.

Since the above expression approximates the derivative with
respect to time, after re-integrating, we find that

E

[( qM∑
l=0

F ′
l�tl

)2]
� −2ε

∫ tqM

0

∑
p,u∈�

A†
puF ′

p(θs)F ′
u(θs)ρuds.

(B11)

It then follows from the above expression and (B10) that

P

(
t−1
qM

qM∑
l=0

F ′
nl
�tl ≥ a

)
= O

(
ε

a2tqM

)
. (B12)

This clearly goes to zero as q → ∞. We have thus justified
why the linear terms in �tl in (4.7) are o(ε) over long peri-
ods of time, and this implies (4.14). This is why the quadratic
terms in �tl dominate the linear ones over long periods of
time. More powerful bounds could be obtained by taking
exponential moments, but we do not go into this in this paper.
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