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Occupation time of a run-and-tumble particle with resetting
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We study the positive occupation time of a run-and-tumble particle (RTP) subject to stochastic resetting.
Under the resetting protocol, the position of the particle is reset to the origin at a random sequence of times
generated by a Poisson process with rate r. The velocity state is reset to ±v with fixed probabilities ρ1 and
ρ−1 = 1 − ρ1, where v is the speed. We exploit the fact that the moment-generating functions with and without
resetting are related by a renewal equation, and the latter generating function can be calculated by solving a
corresponding Feynman-Kac equation. This allows us to numerically locate in Laplace space the largest real
pole of the moment-generating function with resetting, and thus derive a large deviation principle (LDP) for
the occupation time probability density using the Gartner-Ellis theorem. We explore how the LDP depends on
the switching rate α of the velocity state, the resetting rate r, and the probability ρ1. First, we show that the
corresponding LDP for a Brownian particle with resetting is recovered in the fast switching limit α → ∞. We
then consider the case of a finite switching rate. In particular, we investigate how a directional bias in the resetting
protocol (ρ1 �= 0.5) skews the LDP rate function so that its minimum is shifted away from the expected fractional
occupation time of one-half. The degree of shift increases with r and decreases with α.
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I. INTRODUCTION

Additive functionals provide important information con-
cerning the spatiotemporal properties of the trajectory of a
particle evolving according to a continuous stochastic process
such as Brownian motion. If X (t ) denotes the position of the
particle at time t , then an additive functional over a fixed
time-interval [0, T ] is defined as a random variable FT such
that

FT =
∫ T

0
f (X (t ))dt, (1.1)

where f (x) is some prescribed function or distribution such
that FT has positive support and X (0) = x0 is fixed. Since
X (t ) is a continuous stochastic process, it follows that each
realization of a trajectory will typically yield a different value
of FT , which means that FT will be distributed according to
some probability density function P (a, T |x0, 0) for a < FT <

a + da. In the particular case of Brownian motion, the statis-
tical properties of the associated Brownian functional can be
analyzed by using path integrals and leads to the well-known
Feynman-Kac formula [1]. That is, let G(k, t |x0, 0) be the
moment-generating function of P (a, t |x0, 0):

G(k, t |x0, 0) =
∫ ∞

0
ekaP (a, t |x0, 0)da. (1.2)

Then G satisfies the modified backward Fokker-Planck equa-
tion (FPE)

∂G
∂t

= D
∂2G
∂x2

0

+ k f (x0)G, (1.3)

where D is the diffusivity and G(k, 0|x0, 0) = 1. Brownian
functionals are finding increasing applications in probability
theory, finance, data analysis, and the theory of disordered
systems [2]. Three additive functionals of particular interest
are as follows [3,4]: (i) the occupation or residence time that
the particle spends in R+ for which f (x) = �(x), where �(x)
is the Heaviside function; (ii) the local time density for the
amount of time that a particle spends at a given location y
for which f (x) = δ(x − y); (iii) the signed or unsigned area
integral obtained by setting f (x) = x or f (x) = |x|.

We briefly discuss some applications of these functionals.
In addition to being a fundamental quantity in the mathemat-
ical theory of random walks, occupation times have figured
prominently in a variety of physical applications under the
alternative name of residence times. One relevant example in
molecular biology is fluorescent imaging [5]. This involves
a single fluorescent particle diffusing under the objective of
a confocal microscope. Every time it enters the focus of the
laser beam it is excited and emits photons, so that the total
number of emitted photons is proportional to the mean resi-
dence time of the molecule in the laser beam’s cross section.
If V denotes the volume occupied by the beam, then the
residence time is defined according to FT = ∫ t

0 IV (X (τ ))dτ ,
where X (t ) ∈ R3 is now three-dimensional Brownian motion,
IV (x) denotes the indicator function of the set V ⊂ R3; that
is, IV (x) = 1 if x ∈ V and is zero otherwise. [Note that, for
one-dimensional (1D) motion, �(x) = IR+ (x).] In probability
theory, local time plays an important role in the path-wise
formulation of reflected Brownian motion [6]. For the sake of
illustration, consider a Wiener process confined to the interval
[0, L] with reflecting boundaries at x = 0, L. Sample paths are
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generated from the stochastic differential equation (SDE)

dX (t ) = σdW (t ) + dT (0, t ) − dT (L, t ), (1.4)

where T (x, t ) = ∫ t
0 δ(X (τ ))dτ so that, formally speaking,

dT (0, t ) = δ(X (t ))dt, dT (L, t ) = δ(X (t ) − L)dt .

In other words, each time the Brownian particle hits the end
at x = 0 (x = L) it is given an impulsive kick to the right
(left). Finally, area integrals appear in a range of applica-
tions, including queuing theory and certain lattice polygon
models [7].

Recently, a number of papers have explored the effects
of stochastic resetting on the properties of additive func-
tionals [8–12]. Under a resetting protocol, the position of a
particle is reset to some fixed point xr at a random sequence
of times that is usually (but not necessarily) generated by
a Poisson process with rate r. Following an initial study of
Brownian motion under resetting [13,14], there has been an
explosion of interest in the subject (see the recent review [15]
and references therein). Much of the work has focused on
random search processes and the observation that the mean
first passage time (MFPT) to find a hidden target can be
optimized as a function of the resetting rate. This phenomenon
is particularly significant in cases where the MFPT without
resetting is infinite, such as Brownian motion in an unbounded
domain. Stochastic resetting renders the MFPT finite, with a
unique minimum at an optimal resetting rate 0 < ropt < ∞. In
a certain sense, resetting plays an analogous role to a confining
potential.

The study of additive functionals with resetting is less de-
veloped. In Ref. [8] a renewal equation was derived that links
the generating functions with and without resetting, analogous
to the renewal equation linking the corresponding probability
densities for the position X (t ) [15]. The derivation exploited
the fact that, when the particle resets, it loses all information
regarding the trajectory prior to reset. Although the renewal
formula applies to additive functionals of general Markov
processes, concrete examples have to date been restricted to
the area functional of an Ornstein-Uhlenbeck process [8],
the occupation time, area and absolute area functionals of
Brownian motion [9], the local time and work fluctuations
of a diffusing particle in a potential well [10,12], and the
time-integrated current in a symmetric exclusion process with
resetting [11]. In most of these cases, the authors investigated
fluctuations of the relevant observable under resetting in the
long-time limit, which can be characterized by the so-called
rate function of large deviation theory [16–19]. One of the
interesting issues raised by these studies is to what extent
observables that do not satisfy a large deviation principle
(LDP) in the absence of resetting gain a LDP when reset-
ting is included. This is analogous to the conversion of an
infinite MFPT to a finite one due to the confining effects of
resetting.

In this paper, we consider the effects of resetting on
the occupation time of a run-and-tumble particle (RTP) that
switches randomly between a left- and right-moving state
of constant speed v. This type of motion arises in a wide
range of applications in cell biology, including the unbiased
growth and shrinkage of microtubules [20] or cytonemes [21],

the bidirectional motion of molecular motors [22], and the
“run-and-tumble” motion of bacteria such as E. coli [23]. The
run-and-tumble model has also attracted considerable recent
attention within the nonequilibrium statistical physics com-
munity, both at the single-particle level and at the interacting
population level, where it provides a simple example of active
matter [24–26]. Studies at the single-particle level include
properties of the position density of a free RTP [27,28],
non-Boltzmann stationary states for a RTP in a confining
potential [29–31], first-passage time properties [32–36], and
RTPs under stochastic resetting [37].

From a more general perspective, the motion of a RTP
is governed by a symmetric, two-state version of a velocity
jump process, which is itself an example of a piecewise deter-
ministic Markov process (PDMP), also known as a stochastic
hybrid system. Previously, we derived a general Feynman-Kac
formula for additive functionals of a PDMP [38] and used this
to determine properties of the occupation time for a two-state
velocity jump process, which included the RTP as a special
case. Our results for the occupation time of a RTP were
subsequently rediscovered in Ref. [39]. Here we combine our
Feynman-Kac formulation of additive functionals for RTPs
with the renewal approach of Ref. [8] in order to investigate
the effects of resetting on the long-time behavior of the occu-
pation time.

We begin in Sec. II by briefly reviewing the model of a
RTP with resetting introduced in Ref. [37]. We highlight the
fact that the resetting protocol also needs to specify a reset
condition for the discrete velocity state, which is chosen to
be consistent with renewal theory. In particular, we assume
that the velocity state is reset to ±v with fixed probabilities
ρ1 and ρ−1 = 1 − ρ1, where v is the speed. We then calculate
the nonequilibrium stationary probability density (NESS) and
show that the bias in the reset protocol skews the density in the
positive x direction when ρ1 > 0.5 and the negative direction
when ρ1 < 0.5. We also discuss the fast-switching limit in
which one recovers Brownian motion. In Sec. III we define an
additive functional for a RTP and briefly review the Gartner-
Ellis theorem for LDPs, which relates the LDP rate-function
to the largest real pole of the moment-generating function in
Laplace space. We then derive the renewal equation relating
the moment-generating functions with and without resetting
along the lines of Ref. [8], emphasizing the important role
of the resetting protocol for the velocity state. We also write
down the Feynman-Kac formula for the moment-generating
function without resetting, which was previously derived in
the more general context of PDMPs [38]. A simplified version
of the derivation is presented in the Appendix. Finally, in
Sec. IV we apply the theory developed in previous sections to
analyze the long-time behavior of the positive occupation time
of a RTP with resetting, and how this depends on the resetting
rate r, the switching rate α, and the bias determined by ρ1.
First, we show that the corresponding LDP for a Brownian
particle with resetting is recovered in the fast-switching limit
α → ∞. We then consider the case of a finite switching rate.
In particular, we investigate how a directional bias in the
resetting protocol (ρ1 �= 0.5) skews the LDP rate function so
that its minimum is shifted away from the expected fractional
occupation time of one-half. The degree of shift increases with
r and decreases with α.
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II. RUN-AND-TUMBLE PARTICLE WITH RESETTING

Consider a particle that randomly switches between two
constant velocity states labeled by n = ± with v+ = v and
v− = −v for some v > 0. Furthermore, suppose that the par-
ticle reverses direction according to a Poisson process with
rate α. The position X (t ) of the particle at time t then evolves
according to the piecewise deterministic equation

dX

dt
= vσ (t ), (2.1)

where σ (t ) = ±1 is a dichotomous noise process that
switches sign at the rate α. Following other authors, we refer
to a particle whose position evolves according to Eq. (2.1) as a
run-and-tumble particle (RTP). Let pσ (x, t ) be the probability
density of the RTP at position x ∈ R at time t > 0 and moving
to the right (σ = 1) and to the left (σ = −1), respectively. The
associated differential Chapman-Kolomogorov (CK) equation
is then

∂ p1

∂t
= −v

∂ p1

∂x
− αp1 + αp−1, (2.2a)

∂ p−1

∂t
= v

∂ p−1

∂x
− αp−1 + αp1. (2.2b)

This is supplemented by the initial conditions x(0) =
x0 and σ (0) = σ0 = ±1 with probability ρ±1 such that
ρ1 + ρ−1 = 1.

The above two-state velocity jump process has a well-
known relationship to the telegrapher’s equation. That is,
differentiating Eqs. (2.2a) and (2.2 b) shows that the marginal
probability density p(x, t ) = p0(x, t ) + p1(x, t ) satisfies the
telegrapher’s equation [40,41][

∂2

∂t2
+ 2α

∂

∂t
− v2 ∂2

∂x2

]
p(x, t ) = 0. (2.3)

(The individual densities p0,1 satisfy the same equation.)
One finds that the short-time behavior (for t � τc = 1/2α) is
characterized by wave-like propagation with 〈x(t )〉2 ∼ (vt )2,
whereas the long-time behavior (t � τc) is diffusive with
〈x2(t )〉 ∼ 2Dt, D = v2/2α. This can also be seen by tak-
ing the limits α → ∞ and v2 → ∞ in Eq. (2.3) with v2/α

fixed [42]. For certain initial conditions one can solve the tele-
grapher’s equation explicitly. In particular, if p(x, 0) = δ(x)
and ∂t p(x, 0) = 0 then

p(x, t ) = e−αt

2
[δ(x − vt ) + δ(x + vt )]

+ αe−αt

2v
[�(x + vt )−�(x − vt )]

[
I0(α

√
t2 − x2/v2)

+ t√
t2 − x2/v2

I0(α
√

t2 − x2/v2)

]
, (2.4)

where In is the modified Bessel function of nth order and �

is the Heaviside function. The first two terms represent the
ballistic propagation of the initial data along characteristics
x = ±vt , whereas the Bessel function terms asymptotically
approach Gaussians in the large-time limit. In particular,
p(x, t ) → 0 pointwise when t → ∞.

Now suppose that the position X (t ) is reset to its initial
location x0 at random times distributed according to an expo-

nential distribution with rate r � 0 [37]. (For simplicity, we
identify the reset state with the initial state.) We also assume
that the discrete state σ (t ) is reset to its initial value σ0 = ±1
with probability ρ±1. The evolution of the system over the
infinitesimal time dt is then

X (t + dt ) =
{

X (t ) + vσ (t )dt with probability 1 − rdt
x0 with probability rdt,

(2.5a)

and

σ (t + dt ) =
⎧⎨⎩σ (t ) with probability 1 − rdt − αdt

−σ (t ) with probability αdt
σ0 = ±1 with probability rρ±1dt .

(2.5b)

The resulting probability density with resetting, which we
denote by pr,n, evolves according to the modified CK equa-
tion [37]

∂ pr,1

∂t
= −v

∂ pr,1

∂x
− (α + r)pr,1 + αpr,−1 + rδ(x − x0)ρ1,

(2.6a)

∂ pr,−1

∂t
= v

∂ pr,−1

∂x
− (α + r)pr,−1 + αpr,1 + rδ(x − x0)ρ−1.

(2.6b)

In Ref. [37], the NESS was determined in the symmetric
case ρ± = 1/2 and x0 = 0 by noting that the total density
with resetting, pr = pr,1 + p−1, is related to the correspond-
ing density without resetting, p0, according to the renewal
equation

pr (x, t ) = e−rt p0(x, t ) + r
∫ t

0
e−rτ p0(x, τ )dτ. (2.7)

The first term is the contribution from trajectories that do not
reset, which occurs with probability e−rt , while the second
term integrates the contributions from all trajectories that last
reset at time t − τ (irrespective of their position). Taking the
limit t → ∞ implies that

p∗
r (x) = lim

t→∞ pr (x, t ) = r p̃0(x, r), (2.8)

where p̃0(x, r) is the Laplace transform of p0(x, t ) with r
acting as the Laplace variable. The latter can be calculated
by Laplace transforming Eqs. (2.2), and one finds that [37]

p∗
r (x) = μ̄r

2
e−μ̄r |x|, μ̄r =

√
r(r + 2α)

v2
. (2.9)

However, in this paper, we are interested in how the oc-
cupation time of a RTP depends on the choice of resetting
protocol. Therefore, we derive a more general expression for
the NESS that applies for all choices of ρ±1. Again we take
x0 = 0. Rather than using a renewal equation, we directly
solve Eqs. (2.6) using Laplace transforms. In Laplace space
we have

v
∂ p̃r,1

∂x
= −(α + z + r) p̃r,1 + α p̃r,−1 + r + s

s
ρ1δ(x),

(2.10a)

−v
∂ p̃r,−1

∂x
= −(α + z + r) p̃r,−1 + α p̃r,1 + r + s

s
ρ−1δ(x).

(2.10b)
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Differentiating either equation and rearranging one obtains a
pair of decoupled second-order differential equations for all
x �= 0:

d2 p̃r,±1

dx2
− [(z + r + α)2 − α2] p̃r,±1 = 0, x �= 0. (2.11)

Requiring that the solution remains bounded as x → ±∞
leads to the general solution

p̃r,±1(x, z) = A±e−μr (z)x for x > 0, (2.12a)

p̃r,±1(x, z) = B±eμr (z)x for x < 0, (2.12b)

where

μr (z) =
√

(z + r)(z + r + 2α)

v2
. (2.13)

We now need four algebraic conditions to determine the
four coefficients A± and B±. First, substituting the general
solution into the original first-order Eqs. (2.10) with x �= 0
yields the conditions

[z + r + α − μr (z)v]A+ = αA−, (2.14a)

[z + r + α + μr (z)v]B+ = αB−. (2.14b)

Second, integrating Eqs. (2.10) over the interval x ∈ (−ε, ε)
and taking the limit ε → 0 gives

A+ + A− − (B+ + B−) = r + s

sv
(ρ1 − ρ−1). (2.15)

Third, integrating Eqs. (2.10) over R yields the conservation
condition

P =
∫ ∞

−∞
[ p̃1(x, z) + p̃−1(x, z)]dx = 1

z
, (2.16)

which implies that

A+ + A− + B+ + B− = μr (z)

z
. (2.17)

Finally, adding and subtracting conditions (2.15) and (2.17)
we obtain the solution of the total probability density in
Laplace space:

p̃(x, z) = p̃1(x, z) + p̃−1(x, z)

= (A+ + A−)e−μr (z)x�(x) + (B+ + B−)eμr (z)x�(−x)

= μr (z)

2z
e−μr (z)|x| + sgn(x)

r + z

2zv
(ρ1 − ρ−1)e−μr (z)|x|.

(2.18)

Note that p̃(x, z) is discontinuous at x = 0. Using the result

p∗
r (x) = lim

z→0
z p̃(x, z), (2.19)

and noting that μr (0) = μ̄r , the NESS is

p∗(x) = μ̄r

2
e−μ̄r (|x| + sgn(x)

r

2v
(ρ1 − ρ−1)e−μ̄r |x|. (2.20)

Clearly this reduces to the symmetric distribution when ρ1 =
ρ−1 = 1/2. On the other hand, the NESS is skewed towards
positive (negative) values of x when ρ1 > ρ−1 (ρ1 < ρ−1).
This makes sense, since the particle is more likely to start off
in one direction over the other, which adds a directional bias
that is reinforced by resetting. On the other hand, the bias is

reduced by increasing the switching rate α for fixed r. These
various effects are illustrated in Fig. 1.

III. GENERATING FUNCTIONS AND LARGE DEVIATIONS

Let σT = {σ (t ), 0 � t � T } denote a particular realization
of the dichotomous noise process in the interval [0, T ]. Let
XσT (t ) denote the corresponding solution of Eq. (2.25a) and
consider the functional

FT =
∫ T

0
f (XσT (t ))dt, (3.1)

where f is a real function or distribution. Here FT is a random
variable with respect to different realizations of σT . Denote
the corresponding probability density for T −1FT (assuming
it exists) by P (a, T ). Analogous to Brownian functionals, we
will assume that, in the large-T limit, the probability density

P (a, T )da = P [a < T −1FT < a + da|X (0) = x0]

has the form

P (a, T ) = e−T Ir (a)+o(T ), (3.2)

with Ir (a) being the so-called rate function. This type of scal-
ing is known as a large deviation principle (LDP) [16–19].
It implies that the probability of observing fluctuations in
FT at large times is exponentially small and centered about
the global minimum of Ir (a), assuming one exists. A typical
method for determining the rate function of a LDP is to
calculate the scaled cumulant function of FT . The latter is
defined as

λr (k) = lim
T →∞

1

T
lnE[ekFT ], (3.3)

where k ∈ R and E[·] denotes the expectation with respect to
different realizations σT , given that X (0) = x0. If λr (k) exists
and is differentiable with respect to k, then one can use the
Gartner-Ellis theorem of large deviation theory, which ensures
that FT satisfies a LDP with a rate function given by the
Legendre-Fenchel transform of λ(k) [16–19]:

Ir (a) = sup
k

{ka − λr (k)}. (3.4)

The quantity E[ekFT ] appearing in Eq. (3.3) is the scaled
moment-generating function of P (a, T ). That is,

E
[
Fn

T

] = ∂n

∂kn
E[ekFT ]|k=0. (3.5)

In Ref. [8], renewal theory is used to derive an integral
equation that expresses the moment-generating function with
resetting in terms of the corresponding moment-generating
function without resetting. Although the authors focus on
SDEs, they highlight the fact that their analysis also carries
over to other Markov processes. Here we apply their deriva-
tion to a RTP with resetting. It is useful to include the details
of the analysis in order to highlight the fact that one also has
to specify a reset rule for the discrete variable σ (t ). Let

Gr (x0, t, k) = E
[
ek

∫ t
0 f (Xσt (s))ds

]
(3.6)

be the generating function for the RTP with resetting, which
evolves according to Eqs. (2.5a) and (2.5b). Assume that over
the time interval [0, T ] there are N resettings with intervals
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FIG. 1. NESS p∗(x) for a RTP that resets to the origin at a rate r; the velocity state is also reset to the initial value σv, σ ∈ {−1, 1}, with
probability ρσ . Plots are shown for various values of ρ1 and (a) α = 0.5, r = 2; (b) α = 5, r = 2; (c) α = 0.5, r = 0.2; (d) α = 5, r = 0.2.
The speed is taken to be v = 1.

τ1, . . . , τN such that T = ∑N+1
l=1 τl , where τN+1 is the time

since the last resetting. The integral defining FT can then be
partitioned into a sum of integrals:

FT =
N+1∑
l=1

∫ Tl−1+τl

Tl−1

f (X (s))ds, (3.7)

where τ0 = 0, Tl−1 = ∑l
j=1 τ j−1, and X (s) evolves according

to Eq. (2.1) in each integral domain. To proceed, we have to
sum over all possible reset events (number of events N and
their reset times). Since the probability density of having a
reset at time τ is re−rτ and the probability of no reset until
time τ is e−rτ , the moment-generating function decomposes
as [8]

Gr (x0, T, k) =
∞∑

N=0

∫ T

0
dτ1re−rτ1G0(x0, τ1, k)

×
∫ T

0
dτ2re−rτ2G0(x0, τ2, k)

× · · · ×
∫ T

0
dτN+1e−rτN+1G0

× (x0, τN+1, k)δ

(
T −

N+1∑
l=1

τl

)
, (3.8)

where Q0 is the corresponding generating function without
resetting.

The above renewal equation exploits the fact that each reset
returns the system to its initial state (x0, σ0) with σ0 generated
from the distribution ρσ0 . A standard method for solving such
an equation is to use Laplace transforms. Let

G̃r (x0, z, k) =
∫ ∞

0
e−zTGr (x0, T, k)dT . (3.9)

Assuming that we can reverse the summation over l and
integrate with respect to T , we can Laplace transform each
term in Eq. (3.8). For example, setting

q(τ ) = e−rτQ0(x0, τ, k),

we have∫ ∞

0
e−zT

∫ T

0
dτ1q(τ1)

∫ T

0
dτ2q(τ2)δ(T − τ1 − τ2)

=
∫ ∞

0
e−zT

∫ T

0
dτ1q(τ1)q(T − τ1) = q̃(z)2

from the convolution theorem, where q̃(z) = Q̃0(x0, z + r, k).
Hence,

G̃r (x0, z, k) = G̃0(x0, z + r, k)
∞∑

N=0

rN G̃0(x0, z + r, k)N .
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Assuming that rG̃0(x0, z, k) < 1, the geometric series can be
summed to yield the result [8]

G̃r (x0, z, k) = G̃0(x0, z + r, k)

1 − rG̃0(x0, z + r, k)
. (3.10)

From the definition of the generating function, Eq. (3.3)
can be rewritten as

λr (k) = lim
T →∞

1

T
ln Gr (x0, T, k). (3.11)

This then implies that

Gr (x0, T, k) ∼ eλr (k)T (3.12)

as T → ∞, so that

G̃r (x0, z, k) ∼ 1

z − λr (k)
. (3.13)

Hence, as for SDEs with resetting [8], one can determine λr (k)
by identifying the largest simple and real pole of the right-
hand side of Eq. (3.10). The latter will correspond to a zero
of 1 − rG̃r when G̃r is finite. Finally, if λr (k) is differentiable,
then we can obtain the rate function Ir (k) for a PDMP with
resetting by taking the Legendre-Fenchel transform of λr (k).

In the case of SDEs, it is well known that the generating
function without resetting satisfies a Feynman-Kac equa-
tion [16–19]. An analogous result holds for velocity jump
processes without resetting. Introduce the conditional gener-
ating function

Qσ0 (x0, t, k) = E
[
ek

∫ t
0 f (Xσt (s))ds|1σ (0)=σ0

]
, (3.14)

with Xσt (s) satisfying Eq. (2.1). It follows that

G0(x0, t, k) = ρ1Q1(x0, t, k) + ρ−1Q−1(x0, t, k). (3.15)

In the Appendix, we use a modified version of the path-
integral construction developed in Ref. [38] to show that Qσ0

evolves according to the Feynman-Kac equation

∂Q1

∂t
= v

∂Q1

∂x0
+ k f (x0)Q1 − αQ1 + αQ−1, (3.16a)

∂Q−1

∂t
= −v

∂Q−1

∂x0
+ k f (x0)Q−1 − αQ−1 + αQ1.

(3.16b)

Laplace transforming this equation with respect to τ gives

−1 = v
∂Q̃1

∂x0
+ k f (x0)Q̃1 − (z + α)Q̃1 + αQ̃−1, (3.17a)

−1 = −v
∂Q̃−1

∂x0
+ k f (x0)Q̃−1 + αQ̃1 − (z + α)Q̃−1.

(3.17b)

In the following we drop the subscript 0 on x0 in order to
simplify the notation.

IV. POSITIVE OCCUPATION TIME

Suppose that x ∈ R and consider the occupation time de-
fined by Eq. (3.1) with f (x) = �(x), where �(x) is the

Heaviside function:

FT =
∫ T

0
�(XσT (t ))dt . (4.1)

We first calculate the Laplace-transformed generators Q̃±1

along the lines of Ref. [38], and then use Eq. (3.10) to de-
termine the generator with resetting, Gr . For the given choice
of f (x), we have to solve Eqs. (3.17) separately in the two
regions x > 0 and x < 0, and then impose continuity of the
solutions at the interface x = 0. To determine the far-field
boundary conditions for x → ±∞, we note that, if the system
starts at x = ±∞, then it will never cross the origin a finite
time τ in the future; that is,

P (FT , t |∞, 0) = δ(t − FT ), P (FT , t | − ∞, 0) = δ(FT ).

Substituting this into the definition of Q̃n shows that

Q̃n(∞; z, k) = 1

z − k
, Q̃n(−∞; z, k) = 1

z
. (4.2)

Therefore, setting

Q̃n(x; z, k) = u+
n (x; z, k) + 1

z − k
, x > 0,

Q̃n(x; z, k) = u−
n (x; z, k) + 1

z
, x < 0,

we have

0 = v
∂u+

1

∂x
− (z − k + α)u+

1 + αu+
−1, (4.3a)

0 = −v
∂u+

−1

∂x
+ αu+

1 − (z − k + α)u+
−1, (4.3b)

and

0 = v
∂u−

1

∂x
− (z + α)u−

1 + αu−
−1, (4.3c)

0 = −v
∂u−

−1

∂x
+ αu−

1 − (z + α)u−
−1. (4.3d)

with the corresponding boundary conditions u±
n (±∞; z, k) =

0. Equations (4.3) can be rewritten in the matrix form

∂

∂x

(
u+

1

u+
−1

)
+ M(z − k)

(
u+

1

u+
−1

)
= 0, x ∈ (0,∞), (4.4)

and

∂

∂x

(
u−

1

u−
−1

)
+ M(z)

(
u−

1

u−
−1

)
= 0, x ∈ (−∞, 0), (4.5)

with

M(z) =
(− z+α

v
α
v

−α
v

z+α
v

)
. (4.6)

The matrix M(z) has eigenvalues

λ±(z) = ±
√

z2 + 2αz

v
. (4.7)

The corresponding eigenvectors are

w±(z) =
(

z+α
v

− λ±(z)
α
v

)
. (4.8)
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In order that the solutions u±
n vanish in the limits x → ±∞,

they have to take the form

u+
n (x; z, k) = Aw+

n (z − k)e−λ+(z−k)x, x ∈ (0,∞),

(4.9a)

u−
n (x; z, k) = Bw−

n (z)e−λ−(z)x, x ∈ (−∞, 0). (4.9b)

We thus have two unknown coefficients A, B, which are deter-
mined by imposing continuity of the solutions Q̃±

n , n = ± at
x = 0. This yields the two conditions

Aw+
1 (z − k) + 1

z − k
= Bw−

1 (z) + 1

z
, (4.10a)

Aw+
−1(z − k) + 1

z − k
= Bw−

−1(z) + 1

z
. (4.10b)

Adding and subtracting these equations gives

AD+(z − k) = BD−(z),

AS+(z − k) = BS−(z) + 2

z
− 2

z − k
,

where

S±(z) = w±
1 (z) + w±

−1(z), D±(z) = w±
1 (z) − w±

−1(z).

Hence

A =
[

S+(z − k) − S−(z)D+(z − k)

D−(z)

]−1[2

z
− 2

z − k

]
,

(4.11a)

B =
[

S+(z − k)D−(z)

D+(z − k)
− S−(z)

]−1[2

z
− 2

z − k

]
. (4.11b)

In the following we assume that the initial (reset) position
is x0 = 0. It then follows from Eq. (3.15) that the Laplace
transformed generating function without resetting is given by

G̃0(0, z, k) = 1

z
+

[
2

z
− 2

z − k

]
× ρ1[(z + α)/v − λ−(z)]D+(z − k) + ρ−1αD−(z)/v

S+(z − k)D−(z) − S−(z)D+(z − k)
. (4.12)

Substituting Eq. (4.12) into Eq. (3.10) then yields the corre-
sponding generating function with resetting, G̃r (0, z, k).

A. Principal pole λr(k)

The poles of G̃r (0, z, k) in the complex z plane can be
determined numerically, and the largest real pole yields λr (k)
for a given k. Let us begin by considering the case that the
particle always starts in the right-moving state, ρ1 = 1. In
Fig. 2 we plot λr (k) as a function of k for various resetting
rates r. In the absence of resetting we find that λ0(k) = k for
k > 0 and λ0(k) = 0 for k � 0 (dashed line in Fig. 2). In this
case λ0(k) is not differentiable at k = 0 and is not strictly con-

FIG. 2. Largest real pole of the Laplace transformed generating
function for the occupation time of a RTP that resets to the state x0 =
0 and σ0 = 1. Plot of λr (k) as a function of k for various resetting
rates r. The solid curves are for the RTP and the dotted curves are for
a corresponding Brownian particle with resetting. The dashed line
indicates the dominant pole without resetting, λ0(k). Other parameter
values are v = 1 and α = 0.5.

vex, indicating that there does not exist a LDP. On the other
hand, if r > 0 then λr (k) is a continuously differentiable and
strictly convex function of k, consistent with the existence of
a LDP. In addition, we find that the curves have the horizontal
asymptotes λr (k) → −r as k → −∞, whereas λr (k) < λ0(k)
for k > 0.

Also shown in Fig. 2 are the corresponding plots for a
Brownian particle with resetting, which was previously ana-
lyzed in Ref. [9]. The latter authors used the well-known result
that the Laplace transform of the generator in the absence of
resetting takes the form [2]

G̃0(0, z, k) = 1√
z(z − k)

. (4.13)

This can be inverted to obtain an explicit expression for
the so-called “arcsine” law for the probability density of
the occupation time for pure Brownian motion starting
at the origin [3]:

P (FT = a, T ) = 1

π
√

a(T − a)
, 0 < a < T . (4.14)

As noted in Ref. [9], the nonexponential form of the arcsine
law and the fact that P (a, T ) does not concentrate as T → ∞
indicate that a LDP does not exist when r = 0. Substituting
Eq. (4.12) into Eq. (3.10) then gives

G̃r (0, z, k) = 1√
(z + r)(z + r − k) − r

. (4.15)

It follows that the poles of Gr are determined in terms of
solutions to the equation

(z + r)(z + r − k) = r2,

which implies that the leading real pole is

λk (r) = 1
2 [k − 2r +

√
k2 + 4r2]. (4.16)
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FIG. 3. Dependence of λr (k) on the switching rate α for r = 1, 2
and ρ1 = 1 (particle always resets to the right-moving state). The
shaded regions show the range of values of λr (k) for a given r as α

is varied from zero to infinity. Other parameters are as in Fig. 2.

This formula determines the dotted curves in Fig. 2. Two
major differences from the RTP curves are (i) they approach
the horizontal asymptotes −r much more slowly as k → −∞;
(ii) they deviate more significantly from λr = k when k > 0.
The behavior in the large-|k| regime can be further identified
by Taylor expanding the expression for λr (k):

λr (k) ∼ 1
2 [k − 2r + |k|(1 + 2r2/k2) + O(r3)], (4.17)

which shows that λr (k) ∼ −r for k � −1 and λr (k) ∼ k − r
for k � r > 0.

The differences between the RTP and Brownian particle
vanish in the fast-switching limit α → ∞, which is a conse-
quence of the relationship between the CK equation of the
RTP and the telegrapher’s equation, see Sec. II. In particular,
taking k, z � α, we obtain the asymptotic behavior S±(z) →
2α/v and D±(z) → ±λ(z) with λ(z) = √

2αz/v. The leading-
order approximation of the coefficient B is then

B ∼ − v

α

√
z − k(√

z − k + √
z
)[

1

z
− 1

z − k

]
(4.18)

= v

α

√
z − √

z − k

z
√

z − k
, (4.19)

and the asymptotic solution for G̃0(0, z, k) reduces to
Eq. (4.13). This asymptotic result holds for all choices of
the probability ρ1 in the case of finite r. On the other hand,
the behavior in the slow switching limit α → 0 is strongly
dependent on ρ1. For example, if ρ1 = 1 as in Fig. 2, then the
particle always starts out in the positive x direction and rarely
reverses its speed. This means that �(X (t )) = 1 for almost all
times t and in the limit α → 0 we have P (a, T ) → δ(a − 1)
and G̃r (0, z, k) → 1/(z − k). In Fig. 3 we plot the range of
values of λr (k) for r = 1, 2 as α varies in the interval (0,∞).
The α → ∞ boundaries coincide with the dotted curves of
Fig. 2, whereas the α → 0 boundary is given by the straight
line λr (k) = k. In Fig. 4 we show the corresponding diagram
in the case ρ1 = 0. Now the particle always starts in the left-
ward moving state so that �(X (t )) = 0 for almost all times t ,

FIG. 4. Same as Fig. 3 except that ρ1 = 0 (particle always resets
to the left-moving state).

P (a, T ) → δ(a), and G̃r (0, z, k) → 1/z. The zero α boundary
is now the horizontal line λr (k) = 0. [If 0 < ρ1 < 1 then the
α = 0 boundary is λr (k) = 0 for k < 0 and λr (k) = k for
k > 0.]

B. Rate function Ir(a)

Given a strictly convex, differentiable principal pole λr (k)
one can apply the Gartner-Ellis theorem to determine the
rate function Ir (a) of the LDP. First, consider the case of
pure Brownian motion [9]. Equation (3.4) reduces to a sim-
ple Legendre transformation in which a = ∂λr (k)/∂k. From
Eq. (4.16) we have

a = 1

2

[
1 + k√

k2 + 4r2

]
,

which can be rearranged to give

k = k(a) = r(2a − 1)√
(1 − a)a

, a ∈ (0, 1). (4.20)

Hence,

Ir (a) = r(1 − 2
√

a(1 − a)), a ∈ (0, 1). (4.21)

FIG. 5. Plot of rate function Ir (a) for the occupation time density
in the case of a Brownian particle with resetting to the origin.
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FIG. 6. Graphical construction of the rate-function for the occupation time of a RTP with resetting. (a)–(c) Plots of the function �a(k) =
ka − λr (k) as a function of k for a = 0 (dashed curve) and a = 0.5 (solid curve) for (a) a Brownian particle, (b) a RTP with ρ1 = 1, and (c) a
RTP with ρ1 = 0. The peak of the solid curves determines Ir (a) for the given a. (d) Effect of ρ1 on the rate function Ir (a). The shifts in the rate
function curves increase with r and decrease with α. Other parameters are r = 2, α = 0.5, and v = 1.

Note that Ir (1/2) = 0 and Ir (a) is strictly positive for a ∈
[0, 1/2)

⋂
(1/2, 1] (see Fig. 5). Since the Brownian particle

dynamics is symmetric about the origin, the corresponding
rate function is also symmetric with a minimum at a = 0.5.
That is in the long-time limit, the particle is expected to spend
an equal amount of time in the positive and negative domains
so that the most likely value of the occupation time is a = 1/2.
The restriction of a to the domain [0,1] reflects the fact that
0 � FT /T � 1.

Calculating the rate function in the case of a RTP has to
be carried out numerically. However, the qualitative differ-
ences between the rate functions of a RTP and a Brownian
particle can be discerned by using the graphical construction
shown in Fig. 6. For a fixed value of a and r, we verti-
cally displace the curves −λr (k) by ka. This generates the
curve �r (k, a) = ka − λr (k) whose supremum with respect
to k determines Ir (a) for the specific choice of a. Given
the fact that the λr (k) curves for the RTP are tilted in the
clockwise (anticlockwise) direction around the origin relative
to the corresponding curves for the Brownian particle when
ρ1 = 1 (ρ1 = 0), the shift in the peak of �r (k, a) as a function
of a can be deduced. In particular there exists a crossover
point a = ac. In the case ρ1 = 1, we find that I rtp

r (a) > Ibp
r (a)

for 0 < a < ac and I rtp
r (a) < Ibp

r (a) for ac < a < 1, where ac

depends on α and r. In particular, the rate function is no
longer symmetric about a = 0.5 and its minimum is shifted
towards a = 1. This is consistent with the observation that the
NESS is also shifted to the right when ρ1 > 0.5, see Sec. II.

In the slow-switching limit α → 0, the density P (T −1FT =
a, T ) → δ(a − 1). Similarly, when ρ1 = 0, the minimum of
the rate function is shifted toward a = 0. This is illustrated
schematically in Fig. 6(d).

V. DISCUSSION

In this paper we have used a mixture of renewal theory,
large deviation theory, and a Feynamn-Kac formula to inves-
tigate the long-time behavior of the occupation time of a RTP
with stochastic resetting. We focused on how the behavior
compared with a Brownian particle with resetting, which is
obtained in the fast-switching limit, and the dependence on the
resetting protocol for the discrete velocity state. In particular,
we showed how a directional bias in the resetting protocol
(ρ1 �= 0.5) skews the LDP rate function so that its minimum
is shifted away from the expected fractional occupation time
of one-half. Moreover, the degree of shift increased with r
and decreased with α. In future work we hope to extend our
analysis to other additive functionals of RTPs with resetting.
It would also be of interest to consider other examples of
PDMPs, given that both the renewal equation (3.10) and a
Feynman-Kac formula [see Eq. (A17)] apply to this more gen-
eral class of stochastic process. One simple extension would
be to consider a directed velocity jump process with resetting,
as recently studied in Ref. [43]. Now there is a directional bias
when the reset protocol is unbiased.
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APPENDIX: FEYNMAN-KAC OPERATOR FOR A
PIECEWISE DETERMINISTIC MARKOV PROCESS

WITHOUT RESETTING

In this Appendix we simplify the path-integral construction
of Ref. [38] in order to derive the Feynman-Kac operator of
Eq. (3.16). For the sake of generality, consider a system whose
states are described by a pair (x, σ ) ∈ R × �, where x is a
continuous variable and σ is a discrete stochastic variable
taking values in the finite set � with |�| = M. When the
internal state is n, the system evolves according to the ordinary
differential equation (ODE)

ẋ = Fn(x), (A1)

where Fn : R → R is a continuous function. For fixed x, the
discrete stochastic variable evolves according to a homoge-
neous, continuous-time Markov chain with generator A(x).
The generator is related to the transition matrix W of the
discrete Markov process according to

Anm = Wnm − δn,m

∑
l

Wln,

with Wmm = 0 for all m. We make the further assumption that
the chain is irreducible for all x ∈ ; that is, for fixed x there
is a nonzero probability of transitioning, possibly in more than
one step, from any state to any other state of the Markov chain.
This implies the existence of a unique invariant probability
distribution on � for fixed x ∈ , denoted by the vector p∗(x)
with p∗ = (p∗

j, j ∈ �), such that∑
m∈�

Anm(x)p∗
m(x) = 0 ∀ n ∈ �. (A2)

The above stochastic model defines a one-dimensional PDMP.
Let X (t ) and σ (t ) denote the stochastic continuous and dis-

crete variables, respectively, at time t , t > 0, given the initial
conditions X (0) = x0, σ (0) = σ0. Introduce the probability
density pn(x, t |x0, n0, 0) with

P {X (t ) ∈ (x, x + dx), σ (t )=n|x0, σ0)= pn(x, t |x0, σ0, 0)dx.

It follows that p evolves according to the forward differential
Chapman-Kolmogorov (CK) equation

∂ pn

∂t
= Lpn, (A3)

with the operator L (dropping the explicit dependence on
initial conditions) defined according to

Lpn(x, t ) = −∂Fn(x)pn(x, t )

∂x
+

∑
m∈�

Anm(x)pm(x, t ). (A4)

The first term on the right-hand side represents the probability
flow associated with the piecewise deterministic dynamics for
a given n, whereas the second term represents jumps in the
discrete state n.

For a given realization σt define

S (x0, t, t0, k) = ek
∫ t

t0
f (Xσt (s))ds

, (A5)

so that the associated generating function can be written as

Qσ (x0, t, k) = E[S (x0, t, 0, k)|1σ (0)=σ ]. (A6)
We proceed by first deriving a Feynman-Kac formula for S
and fixed σt , which takes the form of a stochastic Liouville
equation. We then obtain the corresponding Feynman-Kac
equation for Qn by averaging with respect to different real-
izations σt . This takes the form of a differential CK equation.

The first step is to introduce a path-integral representation
of the sample paths Xσ (t ). First, discretize time by dividing
the given interval [0, t] into N equal subintervals of size �t
such that t = N�t and set x j = Xσ ( j�t ), σ j = σ ( j�t ) for
j = 0, . . . , N . The probability density for x1, . . . , xN given a
particular realization of the stochastic discrete variables σ j ,
j = 0, . . . , N − 1 is

Pσ (x1, . . . , xN ) =
N−1∏
j=1

δ
(
x j+1 − x j − Fσ j (x j )�t

)
.

We define a corresponding discretized version of S by

S (N )(x0, t, 0, k) =
∫
RN

exp

(
k

N∑
j=1

f (x j )�t

)
× Pσ (x1, . . . , xN )

[
N∏

j=1

dx j

]
. (A7)

Taking the continuum limit �t → 0, N → ∞ such that N�t = t yields the formal path-integral representation of S:

S (x0, t, 0, k) =
∫
R

〈
exp

(
k
∫ t

0
f (x(s))ds

)〉x(t )=x

x(t0 )=x0

dx, (A8)

where 〈
exp

(
k
∫ t

0
f (x(s))ds

)〉x(t )=x

x(t0 )=x0

=
∫ x(t )=x

x(t0 )=x0

exp

(
k
∫ t

0
f (x(s))ds

)
Pσ [x]D[x],

and ∫ x(t )=x

x(0)=x0

Pσ [x]D[x] = lim
�t→0,N→∞

∫
N

Pσ (x0, x1, . . . , xN )
N−1∏
j=1

dx j .
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To derive a Feynman-Kac equation for S we take the initial time to be t − τ , set σ̄ (τ ) = σ (t − τ ) and consider how
S (x0, t, t − τ, k) varies under the shift τ → τ + �τ , with the final condition S (x0, t, t, k) = 1. That is,

S (x0, t, t − τ − �τ, k) =
∫
R

dx

〈
exp

(
k
∫ t

t−τ−�τ

f (x(s))ds

)〉x(t )=x

x(t−τ−�τ )=x0

≈
∫
R

dx

〈
exp

(
k
∫ t

t−τ

f (x(s))ds

)〉x(t )=x

x(t−τ )=x0+�x0

ek f (x0 )�τ = ek f (x)�τS (x0 + �x0, t, t0, k).

We have split the time interval [t − τ − �τ, t] into two parts
[t − τ, t] and [t − τ − �τ, t − τ ] and introduced the inter-
mediate state x(t − τ ) = x0 + �x0 with �x0 determined by
�x0 = Fσ̄ (x0)�τ . Expressing �x0 in terms of �τ and Taylor
expanding with respect to �τ yields the following PDE in the
limit �τ → 0:

∂S
∂τ

= Fσ̄ (x0)
∂S
∂x0

+ k f (x0)S. (A9)

The crucial next step is to note that Eq. (A9) is a stochastic
partial differential equation (SPDE), since σ̄ (τ ) is a discrete
random variable that varies with τ according to a Markov
chain with adjoint matrix generator M�. Since S is a ran-
dom field with respect to realizations of the discrete Markov
process σ̄ (τ ), there exists a probability density functional �

that determines the statistics of S (x0, t, t − τ, k) for fixed k, t .
The expectation E[S1n(0)=n] then corresponds to a first mo-
ment of this density functional. Rather than dealing with the
probability density functional directly, we follow our previous
work [38] by spatially discretizing the piecewise deterministic
backward SPDE (A9) using a finite-difference scheme, take
expectations, and then recover the continuum limit.

Introduce the lattice spacing � and set x j = j�, � ∈
Z. Let S j (τ, k) = S ( j�, t, t − τ, k), f j = f ( j�), and Fj,n =
F ( j�, n), j ∈ Z. Equation (A9) then reduces to the piecewise
deterministic ODE (for fixed k, t)

dSi

dτ
= Fi,n

∑
j∈Z

Ki jS j + k fiSi, if σ̄ (τ ) = n, (A10)

with

Ki j = 1
�
[δi, j−1 − δi, j]. (A11)

Let S(τ, k) = {S j (τ, k), j ∈ Z} and introduce the probability
density

Prob{S(τ, k) ∈ (S, S + dS), σ̄ (τ ) = n} = �n(S, τ )dS,

(A12)

where we have dropped the explicit dependence on initial
conditions. The resulting CK equation for the discretized
piecewise deterministic PDE is

∂�n

∂τ
= −

∑
i∈Z

∂

∂Si

[
Fi,n

(∑
j∈Z

Ki jS j

)
�n(S, τ )

]

+
∑
m∈�

A�
nm�m(S, τ ). (A13)

Since the Liouville term in the CK equation is linear in S, we
can derive a closed set of equations for the first-order (and
higher-order) moments of the density �n.

Let

Q j,n(τ, k) = E[S j (τ, k)1σ̄ (τ )=n] =
∫

�n(S, τ )S jdS, (A14)

where

∫
F (S)dS =

[∏
j

∫ ∞

0
dS j

]
F (S)

for any F . Multiplying both sides of Eq. (A13) by S j and
integrating with respect to S gives [after integrating by parts
and assuming that �n(S, τ ) → 0 as S → ∞]

dQ j,n

dτ
= Fj,n

∑
l∈Z

KjlQl,n − sUjQ j,n +
∑
m∈�

A�
nmQ j,m. (A15)

If we now retake the continuum limit � → 0 and set

Qσ (x0, t, k) = E[S (x0, t, t − τ, k)
∣∣1σ̄ (τ )=σ ]τ=t , (A16)

then we obtain the system of equations

∂Qσ

∂t
=L†

kQσ =Fσ (x0)
∂Qσ

∂x0
+k f (x0)Qσ +

∑
m∈�

A�
σm(x0)Qm.

(A17)

This is the Feynman-Kac formula for the moment gener-
ator (A6). In the above derivation, we have assumed that
integrating with respect to S and taking the continuum limit
commute. (One can also avoid the issue that S is an infinite-
dimensional vector by carrying out the discretization over
the finite domain [−L, L] and taking the limit L → ∞ once
the moment equations have been derived.) Finally, in order
to obtain the Feynman-Kac equation (3.16) for the two-state
RPT, we take

� = {−1, 1}, Fσ = σv, A =
(−k k

k −k

)
.
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