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A B S T R A C T   

The motor-driven intracellular transport of vesicles to synaptic targets in the axons and dendrites of neurons 
plays a crucial role in normal cell function. Moreover, stimulus-dependent regulation of active transport is an 
important component of long-term synaptic plasticity, whereas the disruption of vesicular transport can lead to 
the onset of various neurodegenerative diseases. In this paper we investigate how the discrete and stochastic 
nature of vesicular transport in axons contributes to fluctuations in the accumulation of resources within synaptic 
targets. We begin by solving the first passage time problem of a single motor-cargo complex (particle) searching 
for synaptic targets distributed along a one-dimensional axonal cable. We then use queuing theory to analyze the 
accumulation of synaptic resources under the combined effects of multiple search-and-capture events and 
degradation. In particular, we determine the steady-state mean and variance of the distribution of synaptic re-
sources along the axon in response to the periodic insertion of particles. The mean distribution recovers the 
spatially decaying distribution of resources familiar from deterministic population models. However, the discrete 
nature of vesicular transport can lead to Fano factors that are greater than unity (non-Poissonian) across the 
array of synapses, resulting in significant fluctuation bursts. We also find that each synaptic Fano factor is in-
dependent of the rate of particle insertion but increases monotonically with the amount of protein cargo in each 
vesicle. This implies that fluctuations can be reduced by increasing the injection rate while decreasing the cargo 
load of each vesicle. 
Statement of significance: The motor-driven intracellular transport of vesicles to synaptic targets in the axons and 
dendrites of neurons plays a crucial role in normal cell function. Moreover, stimulus-dependent regulation of 
active transport is an important component of long-term synaptic plasticity, whereas the disruption of vesicular 
transport can lead to the onset of various neurodegenerative diseases. In this paper we investigate how the 
discrete and stochastic nature of vesicular transport in axons contributes to fluctuations in the accumulation of 
resources within synaptic targets. Almost all previous studies of axonal transport have focused on deterministic 
population models, or on stochastic models of a single motor particle searching for a target. The novel feature of 
the current paper is to take a target-centric viewpoint, which focuses on the accumulation of resources within 
synaptic targets under multiple search-and-capture events. In particular, building on previous work by the author 
on cytoneme-based morphogenesis, he develops a general framework for studying synaptic resource accumu-
lation based on queuing theory. Two major results of the paper are as follows: (i) the discrete nature of vesicular 
transport can lead to Fano factors that are greater than unity (non-Poissonian) across the array of synapses, 
resulting in significant fluctuation bursts. (ii) Each synaptic Fano factor is independent of the rate of particle 
insertion but increases monotonically with the amount of protein cargo in each vesicle. This implies that fluc-
tuations can be reduced by increasing the injection rate while decreasing the cargo load of each vesicle. A wide 
range of possible extensions of the basic model are highlighted in the discussion.   

1. Introduction 

Axons of neurons can extend up to 1m in large organisms but syn-
thesis of many of their components occurs in the cell body. The healthy 
growth and maintenance of an axon depends on the interplay between 
the axonal cytoskeleton and the active transport of various organelles 

and macromolecular proteins along the cytoskeleton [12,24,37,39]. The 
disruption of axonal transport occurs in many neurodegenerative dis-
eases, including Alzheimer’s disease, Parkinson’s disease, amyotrophic 
lateral sclerosis (also known as Lou Gherig’s disease), and Huntington’s 
disease [16,43]. All of these diseases exhibit an aberrant accumulation 
of certain cellular components and excessive focal swelling of the axon, 
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ultimately leading to axon degeneration. 
The axonal cytoskeleton contains microtubules and actin microfila-

ments, which play a role in long-range and short-range axonal transport, 
respectively, and neurofilaments that provide structural support for the 
axon. Actin microfilaments are mainly found beneath the axon mem-
brane, forming evenly-spaced ring-like structures that wrap around the 
circumference of the axon shaft. They are also enriched in growth cones 
and axon terminals. Actin microfilaments tend to be involved in more 
short-range transport, such as the transfer of organelles and proteins 
from microtubules to targets in the membrane via myosin molecular 
motors. Longer-range vesicular transport involves microtubules, which 
are polarized polymers with biophysically distinct (+) and ( − ) ends. 
This polarity determines the preferred direction in which an individual 
molecular motor moves. For example, kinesin moves towards the (+) 
end whereas dynein moves towards the ( − ) end of a microtubule. It 
turns out that microtubules align axially along an axon, with plus ends 
pointing away from the cell body. They do not extend over the whole 
length of an axon, having typical lengths of around 100 µm, but rather 
form an overlapping array from the cell body to the axon terminal, see 
Fig. 1. Individual vesicles are often transported by multiple motors 
forming a motor/cargo complex. The velocity state of the complex then 
depends on the current number of kinesin and/or dynein motors bound 
to a microtubule. The resulting tug-of-war between opposing motors can 
result in random intermittent behavior, with constant velocity move-
ment in both directions along the microtubular array (bidirectional 
transport), interrupted by brief pauses or fast oscillatory movements 
that may correspond to localization at specific targets such as synapses 
or the growth cone at the axon terminal [23,28,44–46,48,68]. Analo-
gous behavior has been observed during the transport of mRNA in 
dendrites and oocytes [14,18,54]. There are also higher-dimensional 
versions of motor-driven transport within the soma of neurons and in 
most non–polarized animal cells, which involves the microtubular 
network that projects radially from organizing centers known as cen-
trosomes [13]. 

Axonal transport is typically divided into two main categories based 
upon the observed speed [11,12]: fast transport (1–9 µm/s) of organelles 
and vesicles and slow transport (0.004–0.6 µm/s) of soluble proteins and 
cytoskeletal elements. Slow transport is further divided into two groups; 
actin and actin-bound proteins are transported in slow component A 
while cytoskeletal polymers such as microtubules and neurofilaments 
are transported in slow component B. It had originally been assumed 
that the differences between fast and slow components were due to 
differences in transport mechanisms, but direct experimental observa-
tions now indicate that they all involve fast motors but differ in how the 
motors are regulated. Membranous organelles such as mitochondria and 
vesicles, which function primarily to deliver membrane and protein 
components to sites along the axon and at the axon tip, move rapidly in a 
unidirectional or bidirectional manner, pausing only briefly. In other 
words, they have a high duty ratio – the proportion of time a cargo 
complex is actually moving. On the other hand, cytoskeletal polymers 
such as neurofilaments move in an intermittent and bidirectional 
manner, pausing more often and for longer time intervals; such transport 

has a low duty ratio. 
When modeling the active transport of intracellular cargo over 

relatively long distances, it is often convenient to ignore the microscopic 
details of how individual motors perform a single step (as described by 
Brownian ratchet models for example [53]), and to focus instead on the 
transitions between the different velocity states as described by a ve-
locity jump process [5,70]. The corresponding differential Chap-
man–Kolmogorov (CK) equation for the probability density is often 
approximated by a Fokker–Planck equation using a quasi-steady-state 
reduction [14,20,46,52,59]. (Alternatively, the motion of each motor 
can be modeled directly in terms of a stochastic differential equation 
[40].) Velocity jump processes have also been used to model slow axonal 
transport, in which the slow rate of movement of a population is an 
average of rapid bidirectional movements interrupted by prolonged 
pauses (stop-and-go hypothesis) [25,32]. Given a stochastic model for 
the motion of an individual motor/cargo complex (particle), one can 
formulate the transport and delivery of a vesicle to some cellular target 
as a classical search-and-capture process. That is, given the initial po-
sition of the particle, one can determine the first passage time (FPT) 
distribution for the particle to be absorbed by the target and calculate 
various moments such as the mean FPT (MFPT). One issue of interest is 
how to optimize the search process (minimize the MFPT) with respect to 
the transition rates between the different velocity states, which is a 
major feature of so-called random intermittent search processes [1,2,4, 
5,36]. In the case of multiple independent searchers one can also 
consider the FPT of the fastest particle to find a target, which is an 
example of an extreme statistic [19,31,58]. 

In the case of multiple, non-interacting motor particles one can 
model axonal transport in terms of an advection-diffusion equation for 
the concentration of particles along the axon, which is the analog of the 
Fokker–Planck equation at the single-particle level. This type of popu-
lation model has been used extensively to study the problem of axonal 
transport within the context of axonal growth [17,22,41,42,49,50,71]. 
Such studies typically focus on the transport and delivery of tubulin (the 
basic monomeric unit of microtubules) to the growth cone at the axon 
terminal. This determines the rate of microtubule polymerization within 
the growth cone and thus the speed of axonal elongation. (A compli-
cating factor from a mathematical perspective is that one has to deal 
with a moving boundary value problem.) Population models provide a 
good framework for studying axonal growth because there is a contin-
uous flux of tubulin at the axon terminal such that stochastic effects can 
be ignored. However, the discrete and stochastic nature of vesicular 
transport and delivery to individual synaptic targets is much more sig-
nificant, and cannot be accounted for using population models. Sources 
of noise include the random motion of individual motor complexes along 
the axon, the stochastic nature of particle injection and capture, and 
resource degradation. This target-centric perspective motivates the 
construction and analysis of discrete particle models, which is the focus 
of this paper. 

Our main goal is to analyze the stochastic accumulation of resources 
in one or more synaptic targets due to the active transport and delivery 
of vesicles by multiple motor/cargo complexes (multiparticle search- 

Fig. 1. Bidirectional transport of intracellular cargo along an overlapping 1D array of microtubules within an axon.  
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and-capture). Each time a complex is captured by a synaptic target, it 
secretes a vesicle containing a fixed amount of resources (e.g. proteins), 
which we refer to as a burst event. Following target capture, the complex 
is either sorted for degradation or recycled for another round of trans-
port and delivery. The random sequence of burst events under multiple 
rounds of search-and-capture leads to an accumulation of resources 
within a target, which is counteracted by subsequent degradation. (For 
simplicity, we lump together all downstream processes that ‘use up’ the 
supplied resources.) At the multiple particle level, the accumulation of 
resources will also depend on the rule for injecting new particles into the 
axon from the soma. We will assume that particles are inserted 
sequentially, either at periodic intervals Δ0 or according to a renewal 
process with waiting time density ψ(τ). An alternative injection protocol 
would be to assume multiple particles are simultaneously injected into 
the axon and after each particle has delivered its cargo, it returns to the 
soma where it is resupplied with resources after some delay. However, 
this is based on the unrealistic assumption that there is a fixed number of 
particles. 

As we have recently highlighted elsewhere [9], there are interesting 
parallels between axonal transport and cytoneme-based morphogenesis 
in invertebrates. More specifically, there is growing experimental evi-
dence for a direct cell-to-cell signaling mechanism during embryonic 
development, which involves the active transport of morphogenic re-
ceptors or ligands along cytonemes, which are thin, actin-rich cellular 
extensions with a diameter of around 100 nm and lengths that vary from 
1 to 200 μm [21,29,51,55]. Each cytoneme can be treated as a tunneling 
nanotube linking a source cell and a target cell, along which vesicles are 
actively transported by myosin motors. Since the steady-state amount of 
resources in a target cell is an exponentially decreasing function of 
cytoneme length, this provides a mechanism for the formation of a 
morphogen gradient [7,27,63].1 Analogous to the accumulation of 
morphogen in a target cell due to active transport along a cytoneme, we 
show how the accumulation of synaptic resources in response to axonal 
transport can be modeled as an infinite server queue [35,62]. 

Queuing theory concerns the mathematical analysis of waiting lines 
formed by customers randomly arriving at some service station and 
staying in the system until they receive service from a group of servers. 
The multiparticle search-and-capture model is mapped into a queuing 
process as follows: The delivery of a vesicle of size C represents the 
arrival of C customers, a given target represents the service station, and 
the degradation of resources is the analog of customers exiting the sys-
tem after service. Since the resource elements are degraded indepen-
dently of each other, the effective number of servers in the 
corresponding queuing model is infinite. The distribution F(t) of 
customer interarrival times is determined by the first passage time dis-
tributions of the individual particles and the times at which they initiate 
their searches. (In the case of axonal transport, the latter would depend 
on the rate at which motor complexes enter the axon from the soma.) 
Similarly, the service time distribution H(t) is determined by the 
degradation of resources, which is taken to be a Poisson process. It fol-
lows that the model maps to a G/M/∞ queue. Here the symbol G denotes 
a general interarrival time distribution, the symbol M stands for a 
Markovian service time distribution, and ∞ denotes an infinite number 
of servers. The advantage of mapping the stochastic process to a G /M /
∞ queue is that one can use renewal theory to determine the moments of 
the steady-state number of resources within a target. 

The structure of the paper is as follows. In Section 2 we introduce the 
basic axonal transport model. We begin in Section 2.1 by briefly 
considering a population version of the model that determines the 
evolution of the concentration of motor particles along a one- 
dimensional axon, under the combined effects of advection-diffusion 
and absorption by synaptic targets. As we previously noted, although 
such a model captures the macroscopic distribution of resources along 
an axon, it cannot account for the discrete and stochastic nature of 
resource accumulation within an individual synapse. Therefore, in 
Section 2.2 we turn to a stochastic model of a single particle and solve 
the resulting inhomogeneous Fokker–Planck equation using Laplace 
transforms and Green’s functions. The solution for the probability flux 
into a given synaptic target is then used to derive expressions for the 
splitting probability and conditional mean first passage time (MFPT) for 
the target to capture the particle. In Section 3 we extend the single- 
particle analysis to the case of multiple particles injected sequentially 
into the axon in order to determine the accumulation of synaptic re-
sources due to competition between the transport/delivery of cargo and 
degradation. In particular, we show how the statistics of a single search- 
and-capture model can be incorporated into an infinite server queue, 
where motor particles represent customer batches, synapses correspond 
to service stations, and degradation signals the exit of a customer. We 
then use queuing theory to construct a renewal equation for the Bino-
mial moments of the number of resources in each target. In Section 4 we 
use the renewal equation to derive expressions for the steady-state mean 
and variance of the distribution of synaptic resources, and explore the 
parameter dependence of the fluctuations. Possible extensions of the 
analysis are described in Section 5. 

2. Axonal transport model 

A schematic illustration of our basic model of axonal transport is 
shown in Fig. 2. For simplicity, we treat the axon as a finite cable of 
length LT with a pool of motor-cargo complexes (particles) located at the 
end x = 0 and a set of en passant synapses located in the subregion x ∈ [0,
L] with L < LT . Particles are inserted into the axon at a mean rate J0. 
Each time a particle enters the axon, it executes a stochastic search for a 
synaptic target. When a particle is within a neighborhood of a target, it 
can be captured at some rate κ. Following target capture, the particle 
secretes a discrete packet (vesicle) of C resources (e.g. proteins), which 
we refer to as a burst event, after which it is either sorted for degradation 
or recycled to the particle pool. The random sequence of burst events 
under multiple rounds of search-and-capture leads to an accumulation of 
resources within the synaptic target, which is counteracted by degra-
dation at some rate γ. The main elements of the model are the dynamics 
of the motor-cargo complexes along the axon, and the rules of particle 
insertion, capture and recycling. 

2.1. Population model 

The simplest version of the axon transport model is to consider a 
population of motor particles within the axon and to assume a uniform 
distribution of synaptic targets with density ρ0. Let c(x, t) be the con-
centration of particles at position x along the axon at time t, which 
evolves according to the advection-diffusion equation 

∂c
∂t

= − v
∂c
∂x

+ D
∂2c
∂x2 − κρ0c, t > 0, 0 < x < L, (2.1)  

where κ is the target absorption rate (in units of velocity), v is an 
effective drift velocity and D is an effective diffusivity. Eq. (2.13) is 
supplemented by the boundary conditions J(0, t) = J0 and c(L, t) = 0, 
where 

J(x, t) = vc(x, t) − D
∂c
∂x

(x, t). (2.2) 

1 Cytoneme-based morphogenesis in vertebrates such as zebrafish appears to 
involve a different transport mechanism [29,56,61]. In these systems, 
morphogen is located at the tip of a cytoneme growing out from a source cell. 
When the tip makes contact with a target cell, it delivers its cargo and then 
rapidly retracts back to the source cell. The cytoneme then renucleates from the 
source cell and initiates a new round of search-and-capture. Such a process can 
be modeled in terms of a single particle (cytoneme tip) executing multiple 
rounds of search-and-capture [8,9]. 
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The absorbing boundary condition at x = L implies that if a motor 
particle travels beyond the region containing the en passant synapses, 
then it either delivers its cargo to some other target (such as the growth 
cone at x = LT) or simply degrades and returns to the motor pool. One 
could consider a more general Robin boundary condition at x = L, in 
which there is a non-zero probability that the particle is reflected and 
then subsequently absorbed by one of the synaptic targets. The precise 
choice of boundary condition does not affect the main results developed 
in this paper. 

The absorption of motor particles by the synaptic targets leads to a 
build up of synaptic resources that is counteracted by degradation. 
Taking n(x, t), x ∈ [0, L], to be the concentration of synaptic resources 
along the axon then 

∂n
∂t

= κρ0c − γn, (2.3)  

where γ is the degradation rate. (Note that there is no diffusion term in 
the above equation because the synaptic resources are localized within 
discrete compartments.) The steady-state solution is of the form 

c(x) = A+eμ+x + A− eμ− x, n(x) =
κρ0c(x)

γ
, (2.4)  

with 

μ± =
1

2D

[
v ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
v2 + 4κρ0D

√ ]
. (2.5)  

Imposing the boundary conditions generates the constraints 

μ− A+ + μ+A− = J0, A+eμ+L + A− eμ− L = 0. (2.6)  

Hence, 

c(x) =
J0

μ− e− μ+L − μ+e− μ− L

{
e− μ+(L− x) − e− μ− (L− x)}. (2.7)  

In Fig. 3 we plot the steady-state concentration c(x) as a function of x for 
various absorption rates κ. Units of length and time are μm and seconds, 
respectively. It can be seen that if κ/v is not too small then the con-
centration profile in the bulk of the domain is an exponentially 
decreasing function of x. However, as κ/v decreases, a boundary layer 
develops at the distal end x = L. (A boundary layer at x = L would also 
occur in the case of a reflecting boundary, for example, but now there 
would be an increase in the concentration within the boundary layer.) 
For sufficiently small κ/v, the bulk concentration is approximately uni-
form but comes at the cost of a slow build up of resources within the 
synapses. 

One mechanism for generating a more uniform distribution of re-
sources for relatively fast absorption is to allow for the reversible de-
livery of vesicles, which has been observed experimentally in C. elegans 
and Drosophila [38,39,69] and demonstrated theoretically using a 
generalized version of the population model (2.1) that keeps track of 
motor-complexes that are no longer carrying a vesicle [6,26]. More 
specifically, let c1(x, t) and c0(x, t) denote the density of 
motor-complexes with and without an attached vesicle, respectively, 
and denote the forward and backward rates for cargo delivery by κ±. The 
transport of each motor population is described by an 
advection-diffusion equation, but we now include the transitions be-
tween the two populations due to the reversible exchange of vesicles 
with synaptic targets. Thus, Eq. (2.1) becomes 

∂c0

∂t
= − v0

∂c0

∂x
+ D

∂2c0

∂x2 − κ− nc0 + κ+ρ0c1, (2.8a)  

∂c1

∂t
= − v1

∂c1

∂x
+ D

∂2c1

∂x2 + κ− n c0 − κ+ρ0c1 (2.8b)  

with ck(L, t) = 0, k = 0, 1. We are allowing for the possibility that the 
mean speed of a motor complex may differ, depending on whether or not 
it is bound to a vesicle. It is also assumed that motor-complexes with and 
without cargo are injected at the somatic end x = 0 at constant rates J1, 

Fig. 2. Model of axonal transport. The axon is treated as a cable of length LT 

with partially absorbing synaptic targets distributed along a subregion of length 
L, L < LT . (i) Particles from a compartmental pool are inserted into the axon at a 
mean rate J0. (ii) Each particle undergoes bidirectional transport along the axon 
until it is captured by the kth target with splitting probability πk, and secretes a 
discrete packet of resources (burst event). (iii) Following target capture, the 
particle is either sorted for degradation or recycled to the particle pool. 

Fig. 3. Population model. Plot of steady-state concentration c(x) along the axon 
for different absorption rates κ. Other parameter values are D = v = ρ0 = 1 and 
L = 100. The injection rate is J0 = 1. 
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and J0, respectively. Finally, in order to incorporate the reversible ex-
change between motor complexes and synaptic targets, it is necessary to 
modify Eq. (2.3) according to 

∂n
∂t

= κ+ρ0c1(x, t) − κ− n(x, t)c0(x, t) − γn(x, t). (2.9)  

For the sake of illustration, suppose that γ = 0 and L→∞. The steady- 
state resource distribution is then 

n(x) =
κ+c1(x)
κ− c0(x)

, (2.10)  

with 

uj(x) =
Jje− x/ξj

D
/

ξj + vj
, ξj =

2D

− vj +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
v2

j + 4Dγu

√ (2.11)  

for j = 0,1. Combining with Eq. (2.10) then yields the following result 
for the steady-state density of synaptic vesicles: 

n(x) =
κ+
κ−

J1

J0

D/ξ0 + v0

D/ξ1 + v1
e− Γx, (2.12)  

where Γ = ξ− 1
1 − ξ− 1

0 . In particular, if the transport properties of the 
motor-complex are independent of whether or not it is bound to a vesicle 
(v0 = v1), then ξ0 = ξ1 and we have a uniform vesicle distribution n(x) =

(κ+ /κ− )(J1 /J0). 

2.2. Single particle model 

As we highlighted in the introduction, the discrete and stochastic 
nature of vesicular transport and delivery to individual synaptic targets 
cannot be accounted for using population models. This motivates the 
construction and analysis of discrete particle models. Here we will 
consider stochasticity at the single particle level. We will then show in 
Sections 3 and 4 how the statistics of single-particle search can be 
incorporated into a multiple particle model using queuing theory, 
assuming that injected particles are identical and noninteracting so that 
each particle independently searches for a target according to the same 
stochastic process. 

Suppose that a particle is injected into the axon at time t = 0. Let p(x,
t) denote the probability density that the given particle is at position x at 
time t, having started at x(0) = 0 with t ≥ 0. In the absence of any 
synaptic targets, p evolves according to the Fokker–Planck equation 

∂p
∂t

= − v
∂p
∂x

+ D
∂2p
∂x2 ≡ −

∂J
∂x
, t > 0, 0 < x < L, (2.13)  

where J is the probability flux. Eq. (2.13) is supplemented by the 
boundary conditions J(0, t) = 0 = p(L, t) and the initial condition p(x,0)
= δ(x). Again the absorbing boundary condition at x = L is based on the 
assumption that once the motor particle crosses the right-hand boundary 
it delivers its cargo to some other region of the axon beyond x = L or 
degrades. Note that Eq. (2.13) can be derived from a more detailed 
biophysical model that takes the form of a velocity jump process. The 
latter assumes that the particle randomly switches between different 
velocity states according to some irreducible Markov chain. In the limit 
of fast switching one can obtain (2.13) using an adiabatic approximation 
[46]. 

Now suppose that rather than a uniform distribution of synapses, 
there exists a finite set of synaptic targets located at positions xk ∈ (0, L)
along the axon, k = 1,…,M. In the one-dimensional case, the synapses 
can be represented as point-like sinks so that Eq. (2.13) becomes 

∂p
∂t

= − v
∂p
∂x

+ D
∂2p
∂x2 − κ

∑M

k=1
δ(x − xk)p, t > 0, 0 < x < L, (2.14)  

where κ is again the rate of absorption (in units of velocity). Next we 
introduce the survival probability that the particle hasn’t been absorbed 
by a target in the time interval [0, t]: 

Q(t) =
∫ L

0
p(x, t)dx. (2.15)  

Differentiating both sides with respect to t and using Eq. (2.14) implies 
that 

dQ(t)
dt

= −

∫ L

0

[
∂J
∂x

+ κ
∑M

k=1
δ(x − xk)p

]

dx = −
∑M

k=1
Jk(t) − JL(t), (2.16)  

where JL(t) = J(L, t) is the probability flux at the distal end of the axon 
and 

Jk(t) = κp(xk, t) (2.17)  

is the probability flux into the kth target. Let T k denote the FPT that the 
particle is captured by the kth target, with T k = ∞ indicating that it is 
not captured. The splitting probability that the particle is captured by 
the kth target is 

πk := P[0<T k <∞] =

∫ ∞

0
Jk(t

′

)dt
′

= J̃k(0) = κp̃(xk, 0), (2.18)  

where J̃k(s) is the Laplace transform of Jk(t) etc. We have used the fact 
that for the given class of partially absorbing targets, Jk(t) is equivalent 
to the conditional FPT density. The corresponding conditional MFPT is 
defined by 

Tk = E[T k|T k <∞]. (2.19)  

It follows that the conditional MFPT is given by 

πkTk =

∫ ∞

0
tJk(t)dt = − J̃

′

k(0) = − κp̃
′

(xk, 0). (2.20)  

Similarly, the second order moments of the FPT density are 

πkT (2)
k =

∫ ∞

0
t2Jk(t)dt = J̃

′′

k (0) = κp̃′′
(xk, 0). (2.21) 

Integrating both sides of Eq. (2.16) with respect to t after imposing 
the conditions Q(0) = 1 and Q(t)→0 as t→∞, we have 

1 =
∑M

k=1

∫ ∞

0
Jk(t)dt +

∫ ∞

0
JL(t)dt =

∑M

k=1
J̃k(0) + J̃L(0). (2.22)  

Eq. (2.18) then implies that 

∑M

k=1
πk = 1 − J̃L(0) < 1. (2.23)  

The physical interpretation of this result is that the total probability that 
the particle is absorbed by one of the M synaptic targets is less than unity 
due to the fact that there is a nonzero probability of absorption at the 
right-hand boundary x = L. If the right-hand boundary had been 
reflecting, then J̃L(0) ≡ 0 and 

∑M
k=1πk = 1. 

Eqs. (2.18) and (2.20) imply that the splitting probabilities and 
conditional MFPTs can be determined by solving Eq. (2.14) in Laplace 
space: 

sp̃(x, s) − δ(x) = − v
∂p̃
∂x

+ D
∂2p̃
∂x2 − κ

∑M

k=1
δ(x − xk)p̃, 0 < x < L. (2.24)  

This is supplemented by the boundary conditions 

J̃(0, s) = 0, p̃(L, s) = 0.
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Introducing the Green’s function G(x, s|x0) according to 

− v
∂G(x, s|x0)

∂x
+ D

∂2G(x, s|x0)

∂x2 − sG(x, s|x0) = − δ(x − x0), 0 < x < L,

(2.25a)  

with 

vG(0, s|x0) − D
∂G(x, s|x0)

∂x

⃒
⃒
⃒
⃒

x=0
= 0, G(L, s|x0) = 0, (2.25b)  

we can formally write the solution as 

p̃(x, s) = G(x, s|0) − κ
∑M

l=1
G(x, s|xl)p̃l(s), (2.26)  

where ̃pk(s) = p̃(xk,s). Finally, the unknown functions ̃pk(s) are obtained 
by setting x = xk to yield the following matrix equation for the target 
fluxes 

∑M

l=1

(
δk,l + κG(xk, s|xl)

)
J̃l(s) = κG(xk, s|0). (2.27) 

One can derive an explicit expression for the Green’s functions G, 
which is given by 

G(x, s|x0) = A− 1
(

eλ− (s)x

λ+(s)
−

eλ+(s)x

λ− (s)

)
(
eλ− (s)(x0 − L) − eλ+(s)(x0 − L)), x < x0,

(2.28a)  

and 

G(x, s|x0) = A− 1
(

eλ− (s)x0

λ+(s)
−

eλ+(s)x0

λ− (s)

)
(
eλ− (s)(x− L) − eλ+(s)(x− L)), x > x0,

(2.28b)  

where 

A = D
[(

1 −
λ+
λ−

)

e− λ− L +

(

1 −
λ−
λ+

)

e− λ+L
]

e(λ++λ− )x0 (2.29)  

and 

λ±(s) =
1

2D

[
v ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
v2 + 4sD

√ ]
. (2.30)  

G takes a particularly simple form in the case of pure diffusion (v = 0), 
namely, it is given by the Green’s function of the modified Helmholtz 
equation: 

G(x, s|x0) =
1̅̅
̅̅̅̅

sD
√

cosh
( ̅̅̅̅̅̅̅̅

s/D
√

x
)

sinh
( ̅̅̅̅̅̅̅̅

s/D
√

(L − x0)
)

cosh
( ̅̅̅̅̅̅̅̅

s/D
√

L
) , x < x0, (2.31a)  

and 

G(x, s|x0) =
1̅̅
̅̅̅̅

sD
√

cosh
( ̅̅̅̅̅̅̅̅

s/D
√

x0

)
sinh

( ̅̅̅̅̅̅̅̅
s/D

√
(L − x)

)

cosh
( ̅̅̅̅̅̅̅̅

s/D
√

L
) , x > x0. (2.31b) 

In order to determine the splitting probabilities πk and MFPTs Tk it is 
necessary to determine ̃Jk(s) in the small s limit. This requires taking into 
account the fact that the Green’s function can be expanded as 

G(x, s|x0) = G0(x|x0) + sG1(x|x0) + O
(
s2), (2.32)  

where 

G0(x|x0) = lim
s→0

G(x, s|x0), G1(x|x0) = lim
s→0

d
ds

G(x, s|x0). (2.33)  

Substituting the series expansion (2.32) into the matrix Eq. (2.27) and 

expanding the fluxes according to 

J̃l(s) = πl
(
1 − sTl +O

(
s2)) (2.34)  

gives 

∑M

l=1

(
δk,l + κG0(xk|xl) + sκG1(xk|xl) + O

(
s2))

×πl
(
1 − sTl + s2T (2)

l

/
2 + …

)
= κ
(
G0(xk|0) + sG1(xk|0) + O

(
s2)).

(2.35)  

Collecting O(1) terms yields the equation 

∑M

l=1

(
δk,l + κG0(xk|xl)

)
πl = κG0(xk|0). (2.36)  

Introducing the matrix A(κ) with elements 

Akl(κ) = δk,l + κG0(xk|xl), (2.37)  

which is invertible for κ/v < 1, we have the solution 

πk = κ
∑M

l=1
A− 1

kl (κ)G0(xl|0). (2.38)  

The conditional MFPTs are obtained by collecting O(s) terms in Eq. 
(2.35): 

∑M

l=1

(
δk,l + κG0(xk|xl)

)
πlTl = κ

∑M

l=1
G1(xk|xl)πl − κG1(xk|0). (2.39)  

It follows that 

πkTk = κ
∑M

l=1
A− 1

kl (κ)

(
∑M

l′ =1

G1(xl|xl′ )πl′ − G1(xl|0)

)

. (2.40) 

Since the Green’s function is O(1/v), it follows that for ϵ ≡ κ/v≪1 
(slow absorption) we can carry out a perturbation expansion in ϵ, which 
yields the leading order expressions 

πk = ϵvG0(xk|0) + O
(
ϵ2), (2.41)  

and 

Tk = −
G1(xk|0)
G0(xk|0)

+ O(ϵ). (2.42)  

Note that G1(xk|0) < 0. Hence, in the slow absorption regime, the 
splitting probabilities and conditional MFPTs of each synaptic target are 
approximately independent of the locations of the other synapses. We 
can then define the functions 

Π(x) = vG0(x|0), T(x) = −
G1(x|0)
G0(x|0)

, (2.43)  

such that πk ≈ Π(xk)/ϵ and Tk ≈ T(xk). Example plots of the functions 
Π(x) and T(x) are shown in Figs. 4 and 5, respectively. In particular, the 
splitting probability is monotonically decreasing function of position 
along the axon, consistent with the population model for small κ/v. As 
expected, the MFPT increases distally along the axon and is a decreasing 
function of the drift velocity v. 

Outside the slow absorption regime, we can determine πk and Tk by 
inverting the matrix A(κ). For illustrative purposes, we focus on the case 
of two synaptic targets at positions x1 and x2, respectively. Inverting the 
matrix 

A =

(
1 + κG11 κG12

κG21 1 + κG22

)

, (2.44)  

with Gkl = G0(xk|xl), Gk = G0(xk|0) and setting N = 2 in Eq. (2.38) 
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yields 

π1 = κD
− 1
([1+ κG22]G1 − κG12G2), (2.45a)  

π2 = κD
− 1
([1+ κG11]G2 − κG21G1). (2.45b) 

Here 

D = detA(κ) = 1 + κ(G11 +G22) + κ2(G11G22 − G12G21). (2.46)  

Similarly, setting N = 2 in Eq. (2.40) gives 

π1T1 = κD
− 1(

[1+ κG22]
[
G′

11π1 +G′

12π2 − G′

1

]

− κG12
[
G

′

21π1 +G
′

22π2 − G
′

2

])
, (2.47a)  

π2T2 = κD
− 1(

[1+ κG11]
[
G′

21π1 +G′

22π2 − G′

2

]

− κG21
[
G

′

11π1 +G
′

12π2 − G
′

1

])
, (2.47b)  

where 

G′

kl = G1(xk|xl), G
′

k = G1(xk|0). (2.48) 

Example plots of πk and Tk, k = 1,2 are shown in Figs. 6 and 7, 
respectively. A number of observations can be made. First, in the slow 
absorption limit, the splitting probability and conditional MFPT of the 
first target become insensitive to the location of the second target, 
consistent with our previous analysis. Second, π1 is a monotonically 
increasing function of the absorption rate κ with π1→1 as κ→∞. On the 
other hand, π2 is a non-monotonic function of κ since π2→0 as κ→∞. This 
is a consequence of the fact that the first target captures the vesicle with 
probability one in the fast absorption limit. Note that for finite κ we have 
π1 + π2 < 1 since there is a non-zero probability of absorption at the 
distal end x = L. Finally, the conditional MFPTs are monotonically 
decreasing functions of κ. 

3. Mapping to a G/M/∞ queue 

In this section we extend the single particle analysis to the case of 
multiple particles in order to determine the accumulation of synaptic 
resources along an axon due to the competition between the transport/ 
delivery of cargo and degradation, see Fig. 8. In particular, we show how 
the statistics of a single search-and-capture model can be incorporated 
into an infinite server queue, where vesicles represent customer batches, 
synapses correspond to service stations, and degradation signals the exit 
of a customer. 

3.1. Multiple search-and-capture events 

Let tj denote the time of the jth insertion event, j = 1,2,…, with t1 =

0. We will assume that the inter-insertion times Δj = tj+1 − tj are 
generated from a waiting time density ψ(Δ) with finite mean Δ0, and 
that a single particle is inserted each time. The particular case of peri-
odic insertion considered in Kim and Bressloff [27], ψ(Δ) = δ(Δ − Δ0), 
is illustrated in Fig. 8(a) for a single target. Note that this rule could be 
further generalized in at least two ways. First, the number of particles 
injected at time tj could itself be a random variable Mj. Second, the total 
number of particles in the compartmental pool could be bounded (finite 
capacity pool). The latter would significantly complicate the analysis, 
since one would need to keep track of the total number of particles that 
have been inserted up to time t, including any particles that have been 
recycled to the pool. 

Fig. 4. Single particle model. Plot of splitting probability Π(x) along the axon 
for different drift velocities v and fixed ϵ = κ/v≪1. Other parameter values are 
D = 1 and L = 100. 

Fig. 5. Single particle model. Plot of MFPT T(x) along the axon for different 
drift velocities v and fixed ϵ = κ/v≪1. Other parameter values are D = 1 and L 
= 100. 

Fig. 6. Pair of synaptic targets. Plot of splitting probabilities π1, π2 for a pair of 
synaptic targets at positions x1,x2. Plots are shown for various positions x2 = 6,
10, 15, 20 and x1 = 5. Other parameter values are D = 1, v = 0.1 and L = 100. 

P.C. Bressloff                                                                                                                                                                                                                                     



Brain Multiphysics 2 (2021) 100042

8

Denote the synaptic target that receives the jth vesicle by kj and 
define τj to be the time at which the jth particle is captured by the target 
and delivers its cargo (jth burst event). It follows that 

τj = tj + T j,kj j ≥ 1, (3.1)  

where T j,kj is the FPT for the jth particle to find the target kj. It is 
important to note that although the insertion times are ordered, tj < tj+1 

for j ≥ 1, there is no guarantee that the burst times are also ordered. That 
is, the condition τi < τj for i < j need not hold. For example, in Fig. 8(a) 

we see that τ3 < τ2. Suppose that a vesicle is delivered to a given target k 
at the sequence of times τj1 ,k, τj2 ,k etc. That is, the nth vesicle is delivered 
to the given target by the particle labeled jn. Consider the difference 
equation 

τjn+1,k − τjn,k = tjn+1 − tjn + T jn+1 ,k − T jn ,k. (3.2)  

Taking expectations of both sides shows that 

E
[
τjn+1 ,k

]
− E
[
τjn ,k
]

= E
[
tjn+1

]
− E
[
tjn
]
+ E
[
T jn+1 ,k

]
− E
[
T jn ,k

]

= E
[
tjn+1

]
− E
[
tjn
]
.

(3.3)  

We have used the fact that the search particles are independent and 
identical so E[T j,k] = Tk independently of j. It follows that the mean 
inter-burst interval Δk to a given target k is independent of the MFPT Tk. 
On the other hand, it does depend on the splitting probability πk, since 

Δk ≡ lim
N→∞

1
N

∑N

n=1

[
E
[
τjn+1 ,k

]
− E
[
τjn ,k
]]

=
Δ0

πk
. (3.4)  

That is, the mean time between particle injections is Δ0 and only a 
fraction πk is delivered to the kth target, so that Δ0/πk is the expected 
time separating the injection of particles jn and jn+1. 

3.2. Renewal equation for the binomial moments 

We now show how to map the accumulation of synaptic resources in 
our axon transport model to a G/M/∞ queue, generalizing our previous 
analysis of cytoneme-based morphogenesis [27]. We will assume that 
each vesicle contains C resources (e.g. proteins or other macromole-
cules), each of which degrades (is utilized) independently. Let Nk(t) be 
the number of resources within the kth target at time t that have not yet 
degraded. In terms of the sequence of capture times τi, we can write 

Nk(t) =
∑

j≥1
χ
(
t − τj

)
δkj ,k, (3.5)  

where δj,k = 1 if j = k and is zero otherwise, and 

χ
(
t − τj

)
=
∑C

d=1
I
(
t − τj, Sjd

)
(3.6)  

for 

I
(
t − τj, Sjd

)
=

⎧
⎨

⎩

0 if t − τj < 0
1 if 0 ≤ t − τj ≤ Sjd
0 if t − τj > Sjd

. (3.7)  

Here Sjd, d = 1, …, Δ, is the service (degradation) time of the dth 
resource element (protein) of the vesicle delivered by the jth particle. 

The interpretation of Eqs. (3.5)–(3.7) is as follows. In the absence of 
degradation, and assuming Nk(0) = 0, the number of resources within 
the kth target at time t would simply be the number of packets or vesicles 
delivered to that target in the interval [0, t] multiplied by the size C of 
each packet. In terms of the Heaviside function Θ, we would have 

Nk(t) = C
∑

j≥1
Θ
(
t − τj

)
δkj ,k. (3.8)  

The Heaviside function ensures that we only count capture times that 
occur within the interval [0, t] and the Kronecker delta only counts the 
subset of these that involve the kth target. However, when degradation 
is included, we have to take into account the random loss of resources 
delivered to the target. Since the C resources delivered at time τj degrade 
independently of each other, we can assign a time Sjd to each of the 
resources labeled d = 1,…,C such that the dth resource degrades at time 
τj + Sjd. It follows that we have to replace the term CΘ(t − τj) by the sum 

Fig. 7. Pair of synaptic targets. Plot of conditional MFPTs T1,T2 for a pair of 
synaptic targets at positions x1,x2. Plots are shown for x2 = 6 (dashed curves) 
and x2 = 20 with x1 = 5. Other parameter values are D = 1, v = 0.1 and L =
100. 

Fig. 8. Multiparticle search-and-capture for a single target. (a) Sample particle 
trajectories. The jth particle starts its search at time tj = (j − 1)Δ0 and is 
captured by the target at time τj = tj + T j(x0). (b) The random sequence of 
burst events results in an accumulation of resources within the target, which is 
counteracted by degradation at some rate γ. 
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χ
(
t − τj

)
=
∑C

d=1
Θ
(
t − τj

)
Θ
(
τj + Sjd − t

)
.

This ensures that the given vesicle is captured before time t and we only 
count resources that haven’t yet degraded. 

Given Nk(t), we define the binomial moments 

Br,k(t) =
∑∞

l=r

l!
(l − r)!r!

P[Nk(t) = l], r = 1, 2,…. (3.9)  

Introducing the generating function 

Gk(z, t) =
∑∞

l=0
zlP[Nk(t)= l], t ≥ 0, (3.10)  

we have 

Br,k(t) =
1
r!

drGk(z, t)
dzr

⃒
⃒
⃒
⃒

z=1
. (3.11)  

Assuming that the target is empty at time t = 0 (Nk(0) = 0), we derive a 
renewal equation for the generating function Gk(z,t). Since the particles 
are independent, we can decompose Eq. (3.5) as 

Nk(t) = χ(t − τ1)δk1 ,k + Θ(t − t2)N∗
k (t − t2), (3.12)  

where τ1 is the capture time of the first particle injected at t1 = 0, t2 is 
the injection time of the second particle, and N∗

k(t) is the accumulation of 
resources due to all particles but the first. The main step in deriving a 
renewal equation is to observe that N∗

k(t) has the same probability dis-
tribution as Nk(t). Moreover, χ(t − τ1) and Θ(t − t2)N∗(t − t2) are statis-
tically independent. Conditioning on the first arrival time τ1 = T 1(x0)

= y, the target identity k1 = k, and the second injection time t2 = y′ , we 
have 

g(z, t, y, y′

, k) ≡ E[zNk(t)
⃒
⃒τ1 = y, t2 = y′

, k1 = k
]

= E
[
zΘ(t− y′ )N∗

k (t− y′ )
⃒
⃒t2 = y′ ]

E[zχ(t− y)δk1 ,k |τ1 = y, k1 = k].
(3.13)  

In addition, if t > y then 

P[I(t − y, S1d)= l] = [1 − H(t − y)]δl,1 + H(t − y)δl,0, (3.14)  

where H(t) is the service time distribution. Hence, 
∑

l=0,1
zlP[I(t − y, S1d)= l] = z + (1 − z)H(t − y) (3.15)  

for t > y. Since I(t − y, S1d) for d = 1,2,…,C are independent and 
identically distributed, the total expectation theorem yields 

Gk(z, t) := E[zχ(t− τ1)δk1 ,k ] = E[E[zχ(t− τ1)δk1 ,k |τ1 = y, k1 = k]]

= E

[
∏C

d=1
E
[
zI(t− y,S1d )δk1 ,k

⃒
⃒τ1 = y, k1 = k

]
]

=

∫ t

0
[z + (1 − z)H(t − y)]CdFk(y) +

∫ ∞

t
dFk(y) +

∑

k′ ∕=k

πk′ ,

(3.16)  

where dFk(y) = Jk(t)dy. The first two terms on the right-hand side are 
the contributions from all events such that k1 = k and either y < t or y 
> t; the last term represents the contributions from the remaining events 
(k1 ∕= k). Now applying the total expectation theorem to Eq. (3.13) gives 

Gk(z, t) = E[zNk(t)
]
= E[g(z, t, y, y′

, k)]

= E
[
E
[
zΘ(t− y′ )N∗

k (t− y′ )
⃒
⃒t2 = y′]]⋅E[E[zχ(t− y)δk1 ,k |τ1 = y, k1 = k]]

=
(
∫ t

0
Gk(z, t − y′

)ψ(y′

)dy′

)

Gk(z, t),

(3.17)  

where ψ is the waiting time density for particle insertion. 
One can now obtain an iterative equation for the binomial moments 

by differentiating Eq. (3.17) with respect to z and using Eq. (3.11). That 
is, 

Br,k(t) =
1
r!

drGk(z, t)
dzr

⃒
⃒
⃒
⃒

z=1

=
1
r!

∑r

l=0

(r
l

)(∫ t

0

dr− lGk(z, t − y′

)

dzr− 1

⃒
⃒
⃒
⃒

z=1
ψ(y′

)dy
′

)
dlGk(z, t)

dzl

⃒
⃒
⃒
⃒
⃒
⃒

z=1

.

(3.18)  

Since H(t) = 1 − e− γt and 

dl

dzl[z + (1 − z)H(t − y)]C
⃒
⃒
⃒
⃒

z=1
=

⎧
⎨

⎩

C!
(C − l)!

[1 − H(t − y)]l if C ≥ l

0 if C < l
,

it follows that 

dlGk(z, t)
dzl

⃒
⃒
⃒
⃒
⃒
⃒

z=1

=
C!

(C − l)!
H l,k(t), (3.19)  

where H 0,k(t) = 1 and 

H l,k(t) =
∫ t

0
e− γl(t− y)dFk(y), l = 1, 2,…. (3.20)  

On the other hand, from the definition of the Binomial moments, 

1
r!

(r
l

)∫ t

0

dr− lGk(z, t − y′

)

dzr− 1

⃒
⃒
⃒
⃒

z=1
ψ(y′

)dy
′

=
1
l!

∫ t

0
Br− l,k(t − y

′

)ψ(y′

)dy
′

. (3.21)  

We thus obtain the integral equation 

Br,k(t) =
(

C
r

)

H r,k(t) +
∑r− 1

l=0

(
C
l

)(∫ t

0
Br− l,k(t − y

′

)ψ(y′

)dy
′

)

H l,k(t).

(3.22)  

4. Calculation of the mean and variance 

Recall that the main goal of our analysis is to take into account the 
stochastic nature of synaptic resource accumulation, which cannot be 
captured using population models. That is, population models only 
determine the mean distribution of resources along an axon. In the 
discrete particle model the mean distribution is given by the first-order 
moments B1,k(t), which satisfy the renewal equation 

B1,k(t) = C
∫ t

0
e− γ(t− y)dFk(y) +

∫ t

0
B1,k(t − y′

)ψ(y′

)dy′

. (4.1)  

The integral equation can be solved using Laplace transforms, after 
making the substitution dFk(y) = Jk(y)dy. That is, 

B̃1,k(s) = ψ̃(s)B̃1,k(s) + CH̃ 1,k(s), H̃ 1,k(s) =
J̃k(s)
γ + s

. (4.2)  

Solving for B̃1(s) then gives 
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B̃1,k(s) =
C

γ + s
J̃k(s)

1 − ψ̃(s). (4.3)  

Using the fact that B∗
1 ≡ limt→∞B1(t) = lims→0sB̃1(s) and using l’Hospi-

tal’s rule, we obtain the expression for the steady-state first moment 

〈Nk〉 = B∗
1,k =

C
γ

lim
s→0

sJ̃k(s)
1 − ψ̃(s) = −

C
γ

lim
s→0

J̃k(s)
ψ̃ ′

(s)
=

Cπk

γΔ0
, (4.4)  

where Δ0 =
∫∞

0 ψ(Δ)Δ dΔ is the mean inter-insertion time and πk = J̃k(0)
is the splitting probability. Note that the first moment 〈Nk〉 in (4.4) only 
depends on the mean rate of resource delivery, Cπk/Δ0, divided by the 
mean degradation rate. It does not depend on the FPT statistics of the 
search-and-capture process, which is a major difference from sequential 
search-and-capture [27]. Within the context of queuing theory, Eq. (4.4) 
can be interpreted as a version of Little’s law [34], which states that the 
average number of customers in a stationary system is equal to the long 
term average effective arrival rate multiplied by the average time that a 
customer spends in the system. One would expect the spatial (k-depen-
dent) variation of 〈Nk〉, as determined by the splitting probabilities πk, to 
be consistent with the steady-state concentration profile obtained using 
the population model of Section 2.1. This is indeed found to be the case. 
For example, compare the variation of Π(x) in Fig. 4 with the concen-
tration profile for small κ in Fig. 3. 

The advantage of the discrete particle model is that it also allows us 
to determine the size of fluctuations about the mean number of re-
sources. We will illustrate this by calculating the second-order Binomial 
moments, which yield the variance of the resource distribution. Note, 
however, that the analysis of higher-order moments is more complicated 
due to the presence of terms involving products of time-dependent 
functions in Eq. (3.22). Setting r = 2 in Eq. (3.22) gives 

B2,k(t) =
(

C
2

)

H 2,k(t) +
∫ t

0
B2,k(t − y′

)ψ(y′

)dy′

+ CH 1,k(t)
∫ t

0
B1(t − y

′

)ψ(y′

)dy
′

. (4.5)  

Squaring both sides of Eq. (4.1) implies that 

2CH 1,k(t)
∫ t

0
B1,k(t − y

′

)ψ(y′

)dy
′

= B1,k(t)2
− C2H 1,k(t)2

−

{∫ t

0
B1,k(t − y

′

)ψ(y′

)dy
′

}2

.

Setting 

B 2,k(t) = B2,k(t) −
1
2
B1,k(t)2  

and rearranging gives 

B 2,k(t) −
∫ t

0
B 2,k(t − y)ψ(y)dy =

(
C
2

)

H 2,k(t) −
C2

2
H 1,k(t)2

+
1
2
M 1,k(t),

(4.6)  

where 

M 1,k(t) =
∫ t

0
B1,k(t − y′

)
2ψ(y′

)dy′

−

{∫ t

0
B1,k(t − y′

)ψ(y′

)dy′

}2

. (4.7)  

Laplace transforming Eq. (4.6), 

B̃ 2,k(s) − ψ̃(s)B̃ 2,k(s) =
(

C
2

)
J̃k(s)

2γ + s
−

C2

2
̃

H
2
1,k(s) +

1
2
M̃ 1,k(s), (4.8)  

and solving for B̃ 2,k(s) we obtain the result 

B̃ 2,k(s) =
(

C
2

)
1

2γ + s
J̃k(s)

1 − ψ̃(s) +
1
2

M̃ 1,k(s) − C2 ̃H
2
1,k(s)

1 − ψ̃(s) . (4.9)  

The steady-state second moment thus takes the form 

B∗
2,k =

B∗
1,k

2

2
+

(
C
2

)
1
2γ

lim
s→0

sJ̃k(s)
1 − ψ̃(s) +

1
2

lim
s→0

s
[

M̃ 1,k(s) − C2 ̃H
2
1,k(s)

]

1 − ψ̃(s)

=
B∗

1,k
2

2
−

(
C
2

)
1
2γ

lim
s→0

J̃k(s)
ψ̃

′

(s)
−

1
2

lim
s→0

M̃ 1,k(s) − C2 ̃H
2
1,k(s)

ψ̃
′

(s)

=
B∗

1,k
2

2
+

(
C
2

)
πk

2γΔ0
+

1
2

M̃ 1,k(0) − C2 ̃H
2
1,k(0)

Δ0
.

(4.10)  

Using the identity 
〈
N2

k

〉
− 〈Nk〉

2
= 2B∗

2,k + B∗
1,k − B∗

1,k
2
, (4.11)  

we find that the variance is 

Var[Nk] =
C + 1

2
〈Nk〉 +

M̃ 1,k(0) − C2 ̃H
2
1,k(0)

Δ0
. (4.12) 

Further simplification can be obtained in the special case of a peri-
odic insertion rule. In particular, taking ψ(Δ) = δ(Δ − Δ0), Eq. (4.7) 
becomes 

M 1,k(t) =
∫ t

0
B1,k(t − y

′

)
2δ(y′

− Δ0)dy
′

−

{∫ t

0
B1,k(t − y

′

)δ(y
′

− Δ0)dy
′

}2

= 0.

Hence, for periodic insertion we just have to evaluate the Laplace 
transform of H 1,k(t)2. The latter takes the form 

̃
H

2
1,k(s) =

∫ ∞

0
e− stH1,k(t)2dt

=

∫ ∞

0
dt e− st

∫ t

0
dy e− γ(t− yJk(y)

∫ t

0
dy′ e− γ(t− y′ )Jk(y

′

)

=

∫ ∞

0
dt
∫ ∞

0
dy
∫ ∞

0
dy′ e− (2γ+s)teγ(y+y′ )Jk(y)Jk(y

′

)Θ(t − y)Θ(t − y
′

).

We can partition the integral into the two cases y < y′ and y > y′ . These 
two cases yield the same result by symmetry and interchange of y and y′ . 
Hence 

̃
H

2
1,k(s) = 2

∫ ∞

0
dt
∫ ∞

0
dy
∫ ∞

0
dy

′ e− (2γ+s)teγ(y+y′ )Jk(y)Jk(y
′

)Θ(t − y
′

)Θ(y
′

− y)

= 2
∫ ∞

0
dy
∫ ∞

y
dy′

∫ ∞

y′
dt e− (2γ+s)teγ(y+y′ )Jk(y)Jk(y

′

)

=
2

2γ + s

∫ ∞

0
dy
∫ ∞

y
dy′ e− γ(y′ − y)− sy′ Jk(y)Jk(y

′

).

Setting s = 0 then gives 

̃
H

2
1,k(0) =

Ak(γ)
γ

, (4.13a)  

Ak(γ) =
∫ ∞

0
e− γy′

∫ ∞

0
Jk(y)Jk(y+ y

′

)dydy
′

. (4.13b) 

Finally, setting M̃ 1,k(0) = 0 in Eq. (4.12) and substituting for ̃H 2
1(0)

using (4.13a) gives 
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Var[Nk] = 〈Nk〉

{
C + 1

2
−

CAk(γ)
πk

}

. (4.14) 

One of the immediate consequences of Eq. (4.14) is that the corre-
sponding Fano factor Σk, which is the ratio of the variance to the mean, is 
independent of the insertion period Δ0: 

Σk :=

〈
N2

k

〉
− 〈Nk〉

2

〈Nk〉
=

C + 1
2

−
CAk(γ)

πk
. (4.15)  

Differentiating Eq. (4.13b) with respect to γ shows that dAk(γ) /dγ < 0 
for all γ, which means that Ak(γ) is a monotonically decreasing function 
of γ and Σk is a monotonically increasing function of γ. Moreover, in the 
fast degradation limit, γ→∞, we see that Ak(γ)→0 and hence 

Σk→
C + 1

2
as γ→∞. (4.16)  

In order to determine the behavior in the limit γ→0, we first note that 
Jk(t) = πkfk(t), where fk(t) is the conditional FPT density to be captured 
by the kth target. In particular, from Eq. (2.20) we have 
∫ ∞

0
fk(t)dt = 1,

∫ ∞

0
tfk(t)dt = Tk, (4.17)  

where Tk is the corresponding conditional MFPT. Substituting for Jk in 
the definition of Ak(γ), see Eq. (4.13), and performing the change of 
integration variables y = Tkξ, y′

= Tkη shows that 

Âk(γ) ≡
Ak(γ)

π2
k

= T2
k

∫ ∞

0
e− γTkη

∫ ∞

0
fk(Tkη)fk(Tk(ξ+ η))dξdη. (4.18)  

Introduce the rescaled function 

g(ξ) = Tkf (Tkξ) (4.19)  

such that 
∫ ∞

0
g(ξ)dξ = 1,

∫ ∞

0
ξg(ξ)dx = 1. (4.20)  

We can then rewrite Âk(γ) as 

Âk(γ) =
∫ ∞

0
e− γTkξ

∫ ∞

0
g(η)g(ξ+ η)dηdξ. (4.21)  

It now follows that 

lim
γ→0

Âk(γ) =
∫∞

0 g(η)
∫∞

η g(ξ)dξdη = − 1
2

∫∞
0

d
dη

[ ∫∞
η g(ξ)dξ

]2dη

=
1
2

[ ∫ ∞

0
g(ξ)dξ

]2

dη =
1
2
.

(4.22)  

Hence, 

Σk→
C(1 − πk) + 1

2
as γ→0. (4.23) 

In summary, we have obtained the following results: (i) the synaptic 
Fano factors are independent of the insertion rate Δ− 1

0 ; (ii) they are 
increasing functions of the degradation rate γ and the vesicle size C; (iii) 
the Fano factor of the kth synaptic target has upper and lower bounds 
given by 

C(1 − πk) + 1
2

≤ Σk ≤
C + 1

2
. (4.24)  

These bounds imply that if C = 1 then Σk ≤ 1 for all γ, whereas if C > 1 
then there is a parameter regime in which Σk > 1, which means that 
fluctuations in the number of resources are more bursty than a Poisson 
process. Now suppose that we combine our results for the Fano factor Σk 
with Eq. (4.4) for the mean 〈Nk〉. It can be seen that for fixed 〈Nk〉, 
fluctuations can be reduced by simultaneously decreasing C and Δ0 such 

that C/Δ0 is constant. In other words, inserting motor particles with 
smaller loads more frequently leads to smaller fluctuations. Finally, note 
that in the small-γ regime, more distal synapses have smaller means 〈Nk〉

and larger Fano factors Σk. The latter is illustrated in Fig. 9 for a pair of 
targets. 

5. Discussion 

In this paper we developed a probabilistic framework for investi-
gating the accumulation of resources across an array of synapses in 
response to the motor-driven axonal transport and delivery of vesicles. 
There were three major components of the model: (I) The stochastic or 
periodic insertion of motor particles into the axon; (II) The stochastic 
dynamics of motor transport along the axon; (III) The uptake of vesicles 
by synaptic targets. Components II and III for a single particle were 
formulated as a first passage time problem that determines the statistics 
of a single search-and-capture event. This was then combined with 
component I to construct a multiple particle model, which took the form 
of an infinite server queue. Queuing theory was then used to calculate 
the steady-state mean and variance of synaptic resource accumulation. 

As highlighted throughout the paper, the main reason for consid-
ering a discrete particle model of axonal transport rather than the more 
familiar advection-diffusion model is that the latter cannot account for 
the discrete and stochastic nature of resource accumulation within an 
individual synapse. One of the main results of our analysis was to 
establish that the steady-state Fano factor for the number of resources in 
a synapse can be significant, particularly when the size C of a vesicle is 
greater than unity. This means that the time-course of resource accu-
mulation has a strong bursty component, which could interfere with the 
normal functioning of the synapse, and possibly lead to unreliable syn-
aptic connections between neurons. Since these connections are thought 
to be the cellular basis of learning and memory, such fluctuations could 
also be a problem at the organismal level. Indeed, identifying molecular 
sources of synaptic variability is a topic of general interest within 
cellular neuroscience [65]. Finally, we note that the mathematical 
framework developed in this paper provides a basis for exploring a wide 
range of additional biophysical features, some of which are summarized 
below. 

Biophysical models of motor transport 

One extension would be to consider a more detailed biophysical 

Fig. 9. Pair of synaptic targets. Plot of Fano factors Σ1,Σ2 in the small γ regime 
for a pair of synaptic targets at positions x1 = 5, x2 = 20. Plots are shown for 
various vesicle sizes C. Other parameter values are D = 1, v = 0.1 and L = 100. 
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model of motor transport (component II). As highlighted in the intro-
duction, the random stop-and-go nature of motor transport can be 
modeled in terms of a velocity jump process [46]. For example, consider 
a motor-cargo complex that has N distinct velocity states, labeled n = 1,
…, N, with corresponding velocities vn. Take the position X(t) of the 
complex on a filament track to evolve according to the velocity-jump 
process 

dX
dt

= vN(t), (5.1)  

where the discrete random variable N(t) ∈ {1,…,N} indexes the current 
velocity state vN(t), and transitions between the velocity states are gov-
erned by a discrete Markov process with generator A. Define P(x, n, t|y,
m, 0)dx as the joint probability that x ≤ X(t) < x + dx and N(t) = n given 
that initially the particle was at position X(0) = y and was in state N(0)
= m. Setting 

pn(x, t) ≡
∑

m
P(x, n, t|0,m, 0)σm, (5.2)  

with initial condition pn(x,0) = δ(x)σn, 
∑

mσm = 1, the evolution of the 
probability is described by the differential Chapman–Kolmogorov (CK) 
equation 

∂pn

∂t
= − vn

∂pn(x, t)
∂x

+
∑N

n′ =1

Ann′ pn′ (x, t). (5.3)  

In the case of bidirectional transport, the velocity states can be parti-
tioned such that vn > 0 for n = 1,…,N and vn ≤ 0 for n = N +1,…,N 
with N > 0. 

Suppose that on an appropriate length-scale L, the transition rates are 
fast compared to v/L where v = maxn|vn|. Performing the rescalings x→x 
/L and t→tv/L leads to a non-dimensionalized version of the CK equation 

∂pn

∂t
= − vn

∂pn(x, t)
∂x

+
1
ϵ

∑N

n′ =1

Ann′ pn′ (x, t), (5.4)  

with 0 < ϵ≪1. Suppose that the matrix A is irreducible with a unique 
stationary density (right eigenvector) ρn. In the limit ϵ→0, pn(x, t)→ρn 
and the motor moves deterministically according to the mean-field 
equation 

dx
dt

= V ≡
∑N

n=1
vnρn. (5.5)  

In the regime 0 < ϵ≪1, there are typically a large number of transitions 
between different motor complex states n while the position x hardly 
changes at all. This suggests that the system rapidly converges to the 
quasi-steady state ρn, which will then be perturbed as x slowly evolves. 
The resulting perturbations can thus be analyzed using a quasi-steady- 
state diffusion approximation, in which the CK Eq. (5.4) is approxi-
mated by a Fokker–Planck equation for the total probability density 
p(x, t) =

∑
npn(x, t) [46]: 

∂p
∂t

= − V
∂p
∂x

+ ϵD
∂2p
∂x2 , (5.6)  

with a mean drift V and a diffusion coefficient D given by 

D =
∑N

n=1
Znvn, (5.7)  

where Zn, 
∑

mZm = 0, is the unique solution to 

∑N

m=1
AnmZm = [V − vn]ρn. (5.8)  

Hence, we recover the FP equation used in the single-particle model of 

Section 2, except that now the drift and diffusion terms preserve certain 
details regarding the underlying biophysics of motor transport due to the 
dependence of V and D on underlying biophysical parameters. 

Local signaling 

Using a more detailed biophysical transport model means that we 
could incorporate local inhomogeneities due to chemical signaling, for 
example. One of the major signaling mechanisms involves microtubule 
associated proteins (MAPs). These molecules bind to microtubules and 
effectively modify the free energy landscape of motor-microtubule in-
teractions [64]. For example, tau is a MAP found in the axon of neurons 
and is known to be a key player in Alzheimer’s disease [30]. Experi-
ments have shown that the presence of tau on a microtubule can 
significantly alter the dynamics of kinesin; specifically, by reducing the 
rate at which kinesin binds to the microtubule [66]. Within the context 
of velocity jump processes, local variations in tau concentration would 
lead to x-dependent switching rates between the different velocity 
states. That is, the matrix generator A and, hence the drift velocity and 
diffusivity, become x-dependent [47,48]. It is also known that abnormal 
hyperphosphorylation of tau can disrupt the role of tau in promoting the 
assembly and stabilization of microtubules, which is thought to be an 
important step in the progression of Alzheimer disease [67]. It would be 
interesting in future work to use the queuing modeling framework to 
investigate the effects of tau signaling on the accumulation of synaptic 
resources. 

Transfer of vesicles to synaptic targets 

In this paper we treated each synaptic target as a partially absorbing, 
point-like sink (component III). Representing each target in terms of a 
Dirac delta function was possible due to the fact that the axon was 
modeled as a one-dimensional cable, which meant that the associated 
one-dimensional Green’s function was non-singular. However, this 
quasi-1D approximation is not appropriate for synapses distributed over 
a more local region of an axon or dendrite nor for synapses located in the 
somatic membrane. In such cases one can no longer treat the synapses as 
point-like, since the corresponding two-dimensional Green’s function 
has a logarithmic singularity. However, if the synapses are relatively 
small compared to the search domain then one can use asymptotic 
methods to solve the first passage time problem for a single particle by 
extending previous studies [3,10,15,33,60] to the case of a partially 
absorbing target. Finally, note that the detailed mechanism underlying 
the transfer of vesicular cargo from motor complexes to synapses is not 
well understood, although it is likely to involve myosin motors and the 
local actin cortex. Incorporating such details would require replacing 
simple partial absorption by a more complicated kinetic scheme [57]. 
Such a scheme could also include a more detailed model of how re-
sources are subsequently utilized, beyond simple degradation. 
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