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THE NARROW CAPTURE PROBLEM WITH PARTIALLY
ABSORBING TARGETS AND STOCHASTIC RESETTING∗

PAUL C. BRESSLOFF† AND RYAN D. SCHUMM†

Abstract. We consider a particle undergoing diffusion with stochastic resetting in a bounded
domain U ⊂ Rd for d = 2, 3. The domain is perforated by a set of partially absorbing spherical targets
within which the particle may be absorbed at a rate κ. Each target is assumed to be much smaller
than |U|, which allows us to use asymptotic and Green’s function methods to solve the diffusion
equation in Laplace space. In particular, we construct an inner solution within the interior and local
exterior of each target and match it with an outer solution in the bulk of U . This yields an asymptotic
expansion of the Laplace transformed flux into each target in powers of ν = −1/ ln ε (d = 2) and ε
(d = 3), respectively, where ε is the nondimensionalized target size. The fluxes determine how the
mean first passage time (MFPT) to absorption depends on the reaction rate κ and the resetting rate
r. For a range of parameter values, the MFPT is a unimodal function of r, with a minimum at an
optimal resetting rate ropt that depends on κ and the target configuration.
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1. Introduction. Chemical reaction kinetics depend on the transport mecha-
nisms that enable two reactants A and B to meet within their reaction radius [35].
The transport process can be formulated as a searcher A looking for a target B, and
the effective reaction rate is related to a first passage time (FPT) problem [26]. Within
the interior of living cells, molecular concentrations tend to be dilute so that there
are very few copies of reactants. This means that the corresponding search process
involves finding a small hidden target within a much larger bounded domain—the
so-called narrow capture problem. The small size of the targets can be exploited to
solve the FPT problem using matched asymptotic expansions and Green’s function
methods [37, 4, 14, 13, 12, 15, 27, 28, 30, 25]. Given the fact that passive diffu-
sion results in unrealistically slow reaction rates, there has been considerable interest
in identifying both natural and artificial mechanisms for speeding up the underly-
ing search process. One major example is random intermittent transport, in which
a reactant switches between passive diffusion and active ballistic motion [31, 1]; the
latter could be mediated by molecular motors transiently binding diffusing reactant
molecules within the cellular environment. One finds that intermittent transport can
significantly enhance chemical reactivity and often leads to a nontrivial optimization
of reaction rates. (The general theory of random intermittent search processes is
reviewed in [2].) An idealized version of a random intermittent search process is diffu-
sion with stochastic resetting or restart, whereby the position of a Brownian particle
is reset to a fixed location at a random sequence of times, which is typically (but not
necessarily) generated by a Poisson process [16, 17, 18]. Moreover, there typically
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858 PAUL C. BRESSLOFF AND RYAN D. SCHUMM

Fig. 1.1. Two models of a chemical reaction. (a) A diffusing particle reacts as soon as it
reaches the boundary ∂Ω of the reaction domain Ω. The surface ∂Ω acts as a perfect absorber.
Alternatively, the surface may acts as a partial absorber with a finite reaction rate κ. (b) A particle
can diffuse in and out of the reaction domain and reacts at a finite rate κ within the domain. In
the presence of stochastic resetting (not shown), the particle can instantaneously return to its initial
point x0 at a rate r prior to reacting, after which the search process is restarted.

exists an optimal resetting rate for minimizing the mean first passage time (MFPT)
to find a target. The simplicity of the resetting protocol means that it can be applied
to a wide range of stochastic processes beyond Brownian motion; see the recent review
[20] and references therein.

There are a few different reaction scenarios that can be combined with the trans-
port process, as illustrated in Figure 1.1. In the case of a diffusion-limited reaction,
as soon as the particle hits the boundary ∂Ω of the reaction domain or target Ω it
reacts instantaneously (totally absorbing target boundary); see Figure 1.1(a). This
can be implemented by imposing the Dirichlet boundary condition p(x, t) = 0 for all
x ∈ ∂Ω, where p(x, t) is the probability density for the position of a diffusing particle.
Alternatively, there could be a nonzero probability that the particle is reflected rather
than absorbed (partially absorbing target boundary). This is typically modeled using
a Robin boundary condition, namely, D∇p(x, t) · n + κ0p(x, t) = 0 for all x ∈ ∂Ω.
Here D is the diffusivity and κ is a reactivity constant. The partially absorbing ex-
ample suggests a second type of target interaction, as shown in Figure 1.1(b). Now
a particle can diffuse in and out of the reaction domain Ω and reacts at a finite rate
κ when inside the domain. The target thus acts like a partially absorbing chemical
substrate. One important example is the passive or active intracellular transport of a
vesicle (particle) along the axon or dendrite of a neuron, where absorption represents
the transfer of the vesicle to a synaptic target within the surface membrane of the
neuron [5, 7]. (It is also possible to develop a more general probabilistic formulation of
diffusion-mediated surface reactions using the encounter-based approach developed by
Grebenkov [23, 24], which has recently been extended to partially absorbing interior
targets [10].)

We have previously analyzed the effects of stochastic resetting on diffusion in
Rd in the case of a single spherical target with a partially absorbing interior [36].
This type of boundary value problem can be solved exactly by exploiting spherical
symmetry. However, in the case of diffusion in a bounded domain with multiple
targets, it is not usually possible to obtain an exact solution so that some form
of approximation scheme is necessary. This motivates the study of narrow capture
problems, at least when the targets are small compared to the size of the bulk domain.
Previous studies of the narrow capture problem have focused primarily on partially
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NARROW CAPTURE WITH PARTIALLY ABSORBING TARGETS 859

or totally absorbing target boundaries without stochastic resetting. However, we
have recently shown how asymptotic methods can be extended to incorporate the
effects of stochastic resetting by solving the diffusion equation in Laplace space and
determining the resulting flux into each target [8, 9]; the Laplace transformed flux
acts as a generator of statistical quantities such as the MFPT to absorption. In
this paper, we analyze the two-dimensional (2D) and three-dimensional (3D) narrow
capture problem with stochastic resetting and partially absorbing targets, as opposed
to partially reflecting target boundaries. We proceed by considering the diffusion
equation in a bounded, perforated domain U ⊂ Rd, d = 2, 3. Working in Laplace
space, we construct an inner solution that holds within the interior and local exterior
of each reaction domain, and then we match it with an outer solution in the bulk
U . This yields an asymptotic expansion of the Laplace transformed flux into each
reaction domain in powers of ν = −1/ ln ε (d = 2) and ε (d = 3), where ε is the
nondimensionalized target size. The Laplace transformed fluxes are used to determine
how the MFPT to absorption depends on the reaction rate κ and the resetting rate r.
For a range of parameter values, we find that the MFPT is a unimodal function of r,
with a minimum at an optimal resetting rate ropt that depends on κ and the target
configuration. The narrow escape problem is formulated in section 2 , the matched
asymptotic expansions for d = 2 and d = 3 are carried out in section 3 and section
4, respectively, and comparisons of the theoretical results with numerical simulations
are presented in section 5.

2. The narrow capture problem. Consider a set of partial absorbing targets
Uk ⊂ U , k = 1, . . . , N , in a bounded search domain U ⊂ Rd, and set

⋃N
k=1 Uk = Ua;

see Figure 2.1. Whenever the particle is within Uk it can be absorbed (react) at a
rate κ. Each target is taken to be much smaller than U , that is, |Uj | ∼ εd|U| with
Uj → xj ∈ U uniformly as ε→ 0, j = 1, . . . , N . In addition, the targets are assumed
to be well separated with |xi − xj | = O(1), j 6= i, and dist(xj , ∂U) = O(1) for all
i = 1, . . . , N . In order to develop the analysis we will assume, for simplicity, that each
target is a d-dimensional sphere of radius ε`j : Ui = {x ∈ U , |x− xi| ≤ ε`i}.

2.1. Diffusion without resetting. Let p(x, t|x0) be the probability density
that at time t a particle is at X(t) = x, having started at position x0. We will set
p = q for all x ∈ U\Ua and p = pk for all x ∈ Uk such that

x0

U

∂U

Uj

Ui

n

nj

partially absorbing

        target

x0

U

∂U

Uj

κ
Ui

κ

target

n

nj

(a) (b)

Fig. 2.1. Random search in a domain U ⊆ Rd with N partially absorbing targets Uj , j =
1, . . . , N . Whenever the searcher is within the target domain Uj , it can be absorbed at a rate κ. (a)
d = 2, (b) d = 3.
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860 PAUL C. BRESSLOFF AND RYAN D. SCHUMM

∂q(x, t|x0)

∂t
= D∇2q(x, t|x0), x ∈ U\Ua,(2.1a)

∂pk(x, t|x0)

∂t
= D∇2pk(x, t|x0)− κpk(x, t|x0), x ∈ Uk,(2.1b)

together with continuity conditions at each target boundary,

q(x, t|x0) = pk(x, t|x0), ∇q(x, t|x0) · nk = ∇pk(x, t|x0) · nk(2.2)

for all x ∈ ∂Uk, and the exterior boundary condition

∇q · n = 0, x ∈ ∂U .(2.3)

Here κ is the rate at which the particle is absorbed by a target, n is the outward unit
normal at a point on ∂U , and nk is the outward unit normal at a point on Uk. We
will assume that the particle starts outside all of the targets, so that

q(x, 0|x0) = δ(x− x0), pk(x, 0|x0) = 0.(2.4)

It follows that in the limit κ→∞, the particle is immediately absorbed when it hits
any target boundary ∂Ui. The latter then acts as a perfect absorber.

The probability flux into the kth target at time t is

Jk(x0, t) = κ

∫
Uk
pk(x, t|x0)dx, k = 1, . . . , N.(2.5)

Hence, the splitting probability that the particle is eventually captured by the kth
target is

πk(x0) =

∫ ∞
0

Jk(x0, t
′)dt′ = J̃k(x0, 0),(2.6)

where J̃k(x0, s) denotes the Laplace transform of Jk(x0, t). Let Q(x0, t) denote the
survival probability that the particle hasn’t been absorbed by a target in the time
interval [0, t], having started at x0:

Q(x0, t) =

∫
U
p(x, t|x0)dx =

∫
U\Ua

q(x, t|x0)dx +

N∑
k=1

∫
Uk
pk(x, t|x0)dx.(2.7)

Differentiating both sides of this equation with respect to t and using equations
(2.1)a,b implies that

∂Q(x0, t)

∂t
= D

∫
U\Ua

∇2q(x, t|x0)dx +

N∑
k=1

∫
Uk

[
D∇2pk(x, t|x0)− κpk(x, t|x0)

]
dx

= −
N∑
k=1

∫
∂Uk
∇q · nkdσ +

N∑
k=1

∫
∂Uk
∇pk · nkdσ − κ

N∑
k=1

∫
Uk
pk(x, t|x0)dx

= −
N∑
k=1

Jk(x0, t),(2.8)
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NARROW CAPTURE WITH PARTIALLY ABSORBING TARGETS 861

where we have used the current conservation condition in (2.2). Laplace transforming
(2.8) and imposing the initial condition Q(x0, 0) = 1 gives

sQ̃(x0, s)− 1 = −
N∑
k=1

J̃k(x0, s).(2.9)

In the case of a bounded domain U , the particle is eventually absorbed by one of the
targets with probability one, which means that limt→∞Q(x0, t) = lims→0 sQ̃(x0, s) =
0. Hence,

∑N
k=1 J̃k(x0, s) =

∑N
k=1 πk(x0) = 1. The normalized flux Jk(x0, t)/πk(x0)

is the conditional FPT density for absorption by the kth target. Hence, the kth
conditional MFPT is

Tk(x0) =
1

πk(x0)

∫ ∞
0

tJk(x0, t)dt = − 1

πk(x0)

∂

∂s
J̃k(x0, s)

∣∣∣∣
s=0

.(2.10)

The corresponding unconditional MFPT is

T (x0) ≡
N∑
k=1

πk(x0)Tk(x0) = − ∂

∂s

N∑
k=1

J̃k(x0, s)

∣∣∣∣∣
s=0

= Q̃(x0, 0).(2.11)

Note that if the domain U were unbounded, then T (x0) would be infinite.

2.2. Diffusion with resetting. Now suppose that prior to being absorbed by
one of the targets, the particle can instantaneously reset to a fixed location xr at a
random sequence of times generated by an exponential probability density ψ(τ) =
re−rτ , where r is the resetting rate. The probability that no resetting has occurred
up to time τ is then Ψ(τ) = 1 −

∫ τ
0
ψ(s)ds = e−rτ . In the following we identify xr

with the initial position by setting x0 = xr.
1 Equations (2.1)a,b become

∂qr(x, t|x0)

∂t
= D∇2qr(x, t|x0)− rqr(x, t|x0) + rQr(x0, t)δ(x− x0), x ∈ U\Ua,

(2.12a)

∂pr,k(x, t|x0)

∂t
= D∇2pr,k(x, t|x0)− (κ+ r)pr,k(x, t|x0), x ∈ Uk.

(2.12b)

Here qr and pr,k are the resetting analogues of q and pk, respectively, whereas Qr(x0, t)
denotes the survival probability in the presence of resetting:

Qr(x0, t) =

∫
U
pr(x, t|x0)dx =

∫
U\Ua

qr(x, t|x0)dx +

N∑
k=1

∫
Uk
pr,k(x, t|x0)dx.(2.13)

Equations (2.12) are supplemented by the continuity conditions

qr(x, t|x0) = pr,k(x, t|x0), ∇qr(x, t|x0) · nk = ∇pr,k(x, t|x0) · nk(2.14)

1For simplicity we do not include resetting delays such as finite return times and refractory
periods, nor do we include nonexponential resetting statistics [11, 32, 33, 19, 3, 34, 6]. Another
possible generalization would be to take the reset point x0 to be randomly distributed over some
compact subset of U . For example, in the case of a single spherical target in Rd, the initial/reset point
is often taken to be randomly distributed on a sphere so that one can exploit spherical symmetry to
solve the associated boundary value problem [18, 36]. Choosing a distributed reset point does not
change the basic results.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/2

0/
22

 to
 1

28
.1

10
.1

84
.5

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



862 PAUL C. BRESSLOFF AND RYAN D. SCHUMM

for all x ∈ ∂Uk, and the exterior boundary condition

∇qr · n = 0, x ∈ ∂U .(2.15)

Qr can be related to the survival probability without resetting, which is denoted by
Q, using a last renewal equation [16, 17, 20]; this holds irrespective of whether the
target is partially or totally absorbing, since the reactivity κ is a constant:

Qr(x0, t) = e−rtQ(x0, t) + r

∫ t

0

Q(x0, τ)Qr(x0, t− τ)e−rτdτ.(2.16)

The first term on the right-hand side represents trajectories with no resettings. The
integrand in the second term is the contribution from trajectories that last reset at
time τ ∈ (0, t) and consists of the product of the survival probability starting from x0

with resetting up to time t− τ and the survival probability starting from x0 without
any resetting for the time interval τ . Laplace transforming the last renewal equation
and rearranging shows that

Q̃r(x0, s) =
Q̃(x0, r + s)

1− rQ̃(x0, r + s)
.(2.17)

It is also possible to derive (2.17) directly from the forward equations. Here we sketch
the basic argument. Laplace transforming equations (2.12) gives

D∇2q̃r(x, s|x0)− (r + s)q̃r(x, s|x0) = −(1 + rQ̃r(x0, s))δ(x− x0), x ∈ U\Ua,
(2.18a)

D∇2p̃r,k(x, t|x0)− (κ+ r + s)p̃r,k(x, s|x0) = 0, x ∈ Uk,
(2.18b)

together with the analogues of (2.2) and (2.3). Introduce the following Green’s func-
tion for the modified Helmholtz equation in Ω\Ua:

D∇2G(x, α|x0)− (r + s)G(x, α|x0) = −δ(x− x0), x ∈ U\Ua,(2.19)

G(x, α|x0) = 0, x ∈ ∂Ua, ∇G(x, α|x0) · n = 0, x ∈ ∂U ,(2.20)

with α =
√

[r + s]/D. Using the decomposition

q̃r(x, s|x0) = ur(x, s|x0) + (1 + rQ̃r(x0, s))G(x, α|x0),(2.21)

and imposing the Laplace transformed versions of (2.2) and (2.3), one finds

q̃r(x, s|x0) = (1 + rQ̃r(x0, s))q̃(x, r + s|x0),(2.22a)

p̃r,k(x, s|x0) = (1 + rQ̃r(x0, s))p̃k(x, r + s|x0).(2.22b)

Substituting these expressions into the Laplace transform of (2.13) and using (2.7)
implies that

Q̃r(x0, s) = (1 + rQ̃r(x0, s))Q(x0, r + s),(2.23)

which, on rearranging, yields (2.17).
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NARROW CAPTURE WITH PARTIALLY ABSORBING TARGETS 863

Proceeding along similar lines to the derivation of (2.8), we can differentiate (2.13)
with respect to t and use equations (2.12) to obtain the result

∂Qr(x0, t)

∂t
= −κ

N∑
k=1

∫
Uk
pr,k(x, t|x0)dx ≡ −

N∑
k=1

Jr,k(x0, t).(2.24)

In Laplace space we have

sQ̃r(x0, s)− 1 = −
N∑
k=1

J̃r,k(x0, s).(2.25)

As in the analysis of diffusion without resetting, the splitting probability is πr,k(x0) =

J̃r,k(x0, 0), and the unconditional MFPT is Tr(x0) = Q̃r(x0, 0). Using (2.17) and
(2.22), these statistical quantities can then be expressed in terms of their counterparts
without resetting. First, the splitting probability for absorption by the kth target
satisfies

πr,k(x0) = J̃r,k(x0, 0) = (1 + rQ̃r(x0, 0))J̃k(x0, r)

=

[
1 +

rQ̃(x0, r)

1− rQ̃(x0, r)

]
J̃k(x0, r) =

J̃k(x0, r)∑N
j=1 J̃j(x0, r)

.(2.26)

Similarly, the unconditional MFPT is given by

Tr(x0) = Q̃r(x0, 0) =
Q̃(x0, r)

1− rQ̃(x0, r)
=

1−
∑N
k=1 J̃k(x0, r)

r
∑N
j=1 J̃j(x0, r)

.(2.27)

Equations (2.26) and (2.27) imply that the splitting probabilities and unconditional
MFPT with resetting are determined by the Laplace transforms of the fluxes into
the targets without resetting, J̃k(x0, r), k = 1, . . . , N . The latter depend on the
absorption rate κ. In order to determine the fluxes we have to solve the Laplace
transformed version of (2.1), which take the form

D∇2q̃(x, s|x0)− sq̃(x, s|x0) = −δ(x− x0), x ∈ U\Ua,(2.28a)

D∇2p̃k(x, s|x0)− (κ+ s)p̃k(x, s|x0) = 0, x ∈ Uk,(2.28b)

together with the boundary condition∇q̃·n = 0, x ∈ ∂U and the continuity conditions

q̃(x, s|x0) = p̃k(x, s|x0), ∇q̃(x, s|x0) · nk = ∇p̃k(x, s|x0) · nk(2.28c)

for all x ∈ ∂Uk. Integrating (2.28b) over the domain Uk implies that

(s+ κ)

∫
Uk
p̃k(x, s|x0) = D

∫
∂Uk
∇p̃k · nkdσ = D

∫
∂Ui
∇q̃ · nkdσ.(2.29)

In the fast absorption limit κ→∞, the system reduces to the scalar equation

D∇2q̃(x, s|x0)− sq̃(x, s|x0) = −δ(x− x0), x ∈ U\Ua, q̃(x, s|x0) = 0, x ∈ ∂Ua.
(2.30)

Equation (2.30) takes the form of a classical narrow capture problem, which can be
analyzed using matched asymptotic expansions and Green’s function methods [37, 4,
14, 13, 12, 15, 27, 28, 30, 25].
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864 PAUL C. BRESSLOFF AND RYAN D. SCHUMM

In the following two sections we further extend the analysis to the case of partially
absorbing targets as described by (2.28). We consider 2D diffusion in section 3 and
3D diffusion in section 4. The details of the asymptotic analyses differ due to the
well-known differences in the singular nature of the associated Green’s function in 2D
(ln |x− x′|) and 3D (1/|x− x′|). In particular, carrying out the matched asymptotic
expansion in 2D naturally leads to terms involving the small parameter ν = −1/ ln ε,
which is a common feature of strongly localized perturbations in 2D domains [37].
Since ν → 0 much more slowly than ε→ 0, it is necessary to sum over the logarithmic
terms nonperturbatively in order to obtain O(1) accuracy with respect to an expansion
in ε.

3. Matched asymptotic analysis in 2D. We first consider 2D diffusion and
develop the asymptotic analysis by summing over all logarithmic terms, which is
accurate to leading order in ε. The corresponding analysis for totally absorbing targets
was developed in [29, 8]. The inner solution near the jth target is constructed by
introducing the stretched local variable y = ε−1(x − xj) and setting U(y, s|x0) =
q̃(xj + εy, s|x0) and V (y, s|x0) = p̃j(xj + εy, s|x0). In order to maintain effective
absorption in the limit ε → 0, we also introduce the scaling κ = κ1/ε

2. Then U, V
satisfy to O(ε)

∇2
yU = 0, |y| > `j , ∇2

yV =
κ1
D
V0, |y| < `j ,(3.1a)

U(y, s|x0) = V (y, s|x0), ∇yU · nj = ∇yV · nj , |y| = `j .(3.1b)

The solution in the original coordinates takes the form

U(x, s|x0) = Aj(ν, s) + νAj(ν, s) [Φ(β`j) + log |x− xj |/`j ] ,(3.2a)

V (x, s|x0) =
νAj(ν, s)Φ(β`j)

I0 (β`j)
I0
(
βε−1|x− xj |

)
,(3.2b)

where ν = −1/ ln ε,

Φ =
I0(β`j)

β`jI1(β`j)
, β =

√
κ1/D,(3.3)

and In(y) is a modified Bessel function of the first kind.
The outer solution is constructed by shrinking each target to a single point and

imposing a corresponding singularity condition that is obtained by matching with the
inner solution. The outer equation is given by

D∇2q̃(x, s|x0)− sq̃(x, s|x0) = −δ(x− x0)(3.4)

for x ∈ U\{x1, . . . ,xN}, together with the boundary condition ∇q̃ · n = 0, x ∈ ∂U .
The corresponding singularity conditions are

q̃ ∼ Aj(ν, s) + νAj(ν, s) [Φ(β`j) + log |x− xj |/`j ](3.5)

for x → xj . The next step is to introduce the Green’s function of the 2D modified
Helmholtz equation according to

− δ(x− x0) = D∇2G(x, s|x0)− sG(x, s|x0), x ∈ U ,(3.6a)

0 = ∇G(x, s|x0) · n, x ∈ ∂U ,
∫
U
G(x, s|x0)dx = −1

s
.(3.6b)
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NARROW CAPTURE WITH PARTIALLY ABSORBING TARGETS 865

Note that G can be decomposed as

G(x, s; x0) = − log |x− x0|
2πD

+R(x, s; x0),(3.7)

where R is the nonsingular part of the Green’s function. We then set

q̃(x, s|x0) = G(x, s|x0) + ψ(x, s),(3.8)

such that

D∇2ψ(x, s)− sψ(x, s) = 2πνD

n∑
j=1

Aj(ν, s)δ(x− xj)(3.9)

for x ∈ U . This is supplemented by the boundary condition ∇ψ · n = 0 on ∂U . It
follows that ψ has a solution of the form

ψ(x, s) = −2πνD

n∑
j=1

Aj(ν, s)G(x, s|xj).(3.10)

We have N unknown coefficients Aj(ν, s), which are obtained by solving N constraints
obtained by matching the inner and outer solutions:

G(xj , s|x0) = Aj(ν, s) [1 + νΦ(β`j) + 2πνDR(xj , s|xj)]

+ 2πνD
∑
i 6=j

Ai(ν, s)G(xi, s|xj).(3.11)

These N equations can be represented by the matrix equation[
(1 + νΦ(β`j)) I + 2πνDG>

]
a = g,(3.12)

where I is the N ×N identity matrix,

a = (A1(ν, s), . . . , AN (ν, s))T , g = (G(x1, s|x0), . . . , G(xN , s|x0))T ,(3.13)

and G is an N ×N matrix given by

Gjj = R(xj , s|xj), Gij = G(xi, s|xj), j 6= i.(3.14)

Inverting (3.12) yields in component form for j = 1, . . . , N

Aj(ν, s) =

N∑
i=1

[
(1 + νΦ(β`j)) I + 2πνDG>

]−1
ji
G(xi, s|x0).(3.15)

This is a nonperturbative solution that sums over all logarithmic terms along analo-
gous lines to [37].

The coefficients Aj of (3.20) determine the splitting probabilities and conditional
MFPTs under resetting. Using (2.29), we can write

J̃i(x0, s) =
κ1D

ε2s+ κ1

∫
∂Ui
∇q̃ · ndσ,(3.16)

where q̃ is the inner solution (3.1a) so that

∇xq̃ · n|x∈∂Uj = ε−1 ∇yU0 · n||y|=`j ∼ ε
−1`−1j νAj(ν, s).
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866 PAUL C. BRESSLOFF AND RYAN D. SCHUMM

Hence, to O(1) in ε

J̃i(x0, s) ∼ 2πνDAi(ν, s).(3.17)

Substituting for the flux into (2.26) and (2.27) for the hitting probability πr,k(x0) and
unconditional MFPT Tr(x0) with resetting gives

πr,k(x0) =
Ak(ν, r)∑N
j=1Aj(ν, r)

, Tr(x0) =
1− 2πνD

∑N
k=1Ak(ν, r)

2πνDr
∑N
j=1Aj(ν, r)

.(3.18)

It follows from the above analysis that all information regarding absorption within
a target domain Uj , including the effective absorption rate κ1, is contained in the
function Φ(β`j) defined in (3.3) with β =

√
κ1/D. In particular, Φ(β`j) is an expo-

nentially decreasing function of β with Φ(β`j) → 0 as β → ∞ and Φ(β`j) → ∞ as
β → 0. It immediately follows that the results for totally absorbing targets [8] are
recovered in the fast absorption limit. On the other hand, Aj(ν, s) → 0 in the limit
κ1 → 0. The latter means that the net flux into each target is zero since there is
no absorption. Hence, the dependence of Tr on Φ(β`j) implies that Tr(x0) → ∞ as
κ1 → 0, whereas it converges to the unconditioned MFPT for totally absorbing target
boundaries when κ1 →∞.

3.1. Example. In order to determine the coefficients Ak(ν, s) we need to ob-
tain accurate numerical or analytical approximations of the Green’s function for the
modified Helmholtz equation and solve the matrix equation (3.12). This particular
issue has been addressed by Lindsay, Spoonmore, and Tzou [29], whose results can be
applied to the current problem. An important step in the evaluation of the Green’s
function is to decompose G as the sum of the free-space Green’s function and a regular
boundary-dependent part:

G(x, s; |x0) =
1

2πD
K0

(√
s/D|x− x0|

)
+ R̂(x, s|x0),(3.19)

where K0 is the modified Bessel function of the second kind and R̂ is nonsingular at
x = x0. It can be shown that for |x − x0| = O(1) and large

√
s/D, the boundary

contributions to R̂ are exponentially small. This allows us to write

G(x, s; |x0) ∼ 1

2πD
K0

(√
s/D|x− x0|

)
, x 6= x0,

R̂(x0, s; |x0) ∼ − 1

2πD

(
ln
√
s/D − ln 2 + γc

)
,

where γc ≈ 0.5772 is Euler’s gamma constant. It follows that the off-diagonal terms
in (3.12) are exponentially smaller than the diagonal terms. Therefore, we have to
leading order

Aj(ν, s) ∼
(2πD)−1K0

(√
s/D|xj − x0|

)
1 + νΦ(β`j)− ν

[
ln
√
s/D − ln 2 + γc

] .(3.20)

Hence, under the boundary-free approximation, Aj(ν, s) depends on the distances of
the targets from x0 but is independent of the shape of the domain and the absolute
locations of the targets. Numerically it has been shown that such an approximation
remains valid even at intermediate values of s (or equivalently at intermediate times)
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NARROW CAPTURE WITH PARTIALLY ABSORBING TARGETS 867

provided that x0 and xj , j = 1, . . . , N , are not close to the boundary and there are no
bottlenecks separating the targets from x0. This result is reinforced in the presence
of resetting. Hence, under the further approximation (3.20) and assuming `j = ` for
all j, equations (3.18) become

πr,j(x0) ∼
K0

(√
r/D|xj − x0|

)
∑N
k=1K0

(√
r/D|xk − x0|

) ,(3.21)

Tr(x0) ∼ 1

r

1 + νΦ(β`)− ν
[
ln
√
r/D − ln 2 + γc

]
− ν

∑N
k=1K0

(√
r/D|xk − x0|

)
ν
∑N
k=1K0

(√
r/D|xk − x0|

) .

(3.22)

Note, however, that these expressions break down in the limit r → 0 (no resetting).
This is consistent with the fact that there is a major difference between diffusion in
bounded and unbounded domains in the absence of resetting. That is, in the latter
case the MFPT is infinite.

In Figure 3.1(a) we plot Tr as a function of r for a single target with |x1 − x0| ≡
ρ1 = 0.5. A corresponding contour plot is shown in Figure 3.1(b). It can be seen that
Tr has a minimum at an optimal resetting rate ropt, which is only weakly dependent
on κ1. As expected, increasing κ1 reduces Tr as the particle has a higher probability
for absorption. We also note that the MFPT is most sensitive to variations in κ1
at small resetting rates. In all cases, Tr → ∞ as r → ∞, which reflects the fact
that if the particle resets too often, then it never has the chance to reach even the
closest target. The divergence of Tr can be explored further using the asymptotic
expansion

K0(z) ∼
√

π

2z
e−z

[
1− 1

8z
+O(z−2)

]
, z →∞,(3.23)
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Fig. 3.1. Single small target in R2 with |x1 − x0| ≡ ρ1 = 0.5. (a) Plot of the MFPT Tr(x0)
given by (3.21) as a function of the resetting rate r for various absorption rates κ1. Other parameters
are ν = 0.1, ` = 1, and D = 1. Filled circles indicate the optimal resetting rate. (b) Corresponding
contour plot.
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Fig. 3.2. (a) Same as Figure 3.1 for different target distances ρ1 and κ1 = 1. (b) N + 1 targets
in R2 with |xj−x0| = ρ0 +(j−1)∆ρ for j = 1, . . . , N . Unconditional MFPT Tr(x0) given by (3.21)
as a function of the resetting rate for fixed κ1 = 0.1, 1. Other parameter values are ν = 0.1, ` = 1,
ρ0 = 0.5, ∆ρ = 1, and D = 1. Filled circles indicate the optimal resetting rate.

which implies that

Tr(x) ∼ (1 + νΦ(β`))

√√
r/D|x1 − x0|

νr

√
2

π
e
√
r/D|x1−x0|(3.24)

as r → ∞. In contrast to its dependence on κ1, the optimal resetting rate increases
significantly with the target distance ρ1, as shown in Figure 3.2(a). Analogous results
hold for multiple target configurations as illustrated in Figure 3.2(b) for a set of N+1
targets whose distances from x0 are of the form ρj = |xj − x0| = ρ0 + (j − 1)∆ρ,
j = 1, . . . , N .

4. Matched asymptotics in 3D. We now turn to the corresponding asymp-
totic analysis of the 3D problem, following along the lines of [13, 15, 9] for totally
absorbing targets. The outer solution for q̃(x, s|x0) is expanded as

q̃(x, s|x0) ∼ q̃0(x, s|x0) + εq̃1(x, s|x0) + ε2q̃2(x, s|x0) + . . . .

The leading order term q̃0 satisfies the Laplace transformed diffusion equation without
any targets within U :

D∇2q̃0 − sq̃0 = −δ(x− x0), x ∈ U ; ∇q̃0 · n = 0, x ∈ ∂U .(4.1)

That is, q̃0 = G(x, s|x0) where G is now the Neumann Green’s function of the 3D
modified Helmholtz equation. The latter can be decomposed as

G(x, s|x0) =
1

4πD|x− x0|
+R(x, s|x0),(4.2)

where R is the regular (nonsingular) part of G. The higher-order contributions to the
outer solution satisfy the equations

D∇2q̃n − sq̃n = 0, x ∈ U\{x1, . . . ,xN}, ∇q̃n · n = 0, x ∈ ∂U ,(4.3)

for n ≥ 1, together with certain singularity conditions as x→ xj , j = 1, . . . , N , which
are determined by matching to the inner solution.
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NARROW CAPTURE WITH PARTIALLY ABSORBING TARGETS 869

The inner solution near Uj is constructed in terms of the stretched local variable
y = ε−1(x − xj) by setting U(y, s|x0) = q̃(xj + εy, s|x0) and V (y, s|x0) = p̃j(xj +
εy, s|x0); see Figure 3.1. Then U, V satisfy

D∇2
yU − sε2U = 0, |y| > `j , D∇2

yV − (s+ κ)ε2V = 0, |y| < `j ,(4.4a)

U(y, s|x0) = V (y, s|x0), ∇yU · nj = ∇yV · nj , |y| = `j .(4.4b)

Now consider a perturbation expansion of the inner solution around the jth target of
the form

U ∼ U0 + εU1 + ε2U2 +O(ε3), V ∼ V0 + εV1 + ε2V2 +O(ε3).

Assuming κ = κ1/ε
2 and s� 1/ε, this yields the hierarchy of equations

D∇2
yUn(y, s) = 0, |y| > `j , D∇2

yVn(y, s)− κ1Vn = 0, |y| < `j , n = 0, 1,(4.5a)

D∇2
yUn(y, s) = sUn−2(y, s), |y| > `j n ≥ 2,(4.5b)

D∇2
yVn − κ1Vn = sVn−2, |y| < `j , n ≥ 2,(4.5c)

Un(y, s) = Vn(y, s), ∇yUn · nj = ∇yVn · nj , |y| = `j , n ≥ 0.(4.5d)

These are supplemented by far-field conditions obtained by matching U with the
near-field behavior of the outer solution:

U0 + εU1 + ε2U2 + · · · ∼ q̃0 + εq̃1 + ε2q̃2 + . . . .(4.6)

The matching is developed iteratively along the lines of [9], starting from the known
leading order contribution to the outer solution. Taylor expanding the latter near the
jth region Uj yields

q̃0 ∼ G(xj , s|x0) +∇xG(x, s|x0)|x=xj(4.7)

· (x− xj) +
1

2
Hj · (x− xj)⊗ (x− xj) + . . . ,

where Hj is the Hessian

Hab
j =

∂2

∂xa∂xb
G(x, s|x0)

∣∣∣∣
x=xj

, a, b ∈ {1, 2, 3}.(4.8)

In terms of the stretched coordinate y, we have

q̃0 ∼ G(xj , s|x0) + ε∇xG(xj , s|x0) · y +
ε2

2
Hj · y ⊗ y + . . . .(4.9)

It follows that the nth order derivative of G will contribute to the far-field behavior
of Un, along with lower order derivatives of the 1, . . . , n − 1 terms. Additional con-
tributions will arise from the nonsingular terms in q̃n. On the other hand, the inner
solution Un will have a term proportional to 1/|y| = ε/|x − xj | that determines the
singular behavior of q̃n+1 as x→ xj . We will use this iterative matching procedure to
calculate the terms U0, U1, U2, and then use these to obtain the target fluxes to O(ε3).
The major difference from our previous study of the 3D narrow capture problem [9]
is that we also have to match Un with the solution Vn inside a target; this is crucial
for quantifying how the fluxes depend on the absorption rate κ1.
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870 PAUL C. BRESSLOFF AND RYAN D. SCHUMM

4.1. Calculation of the leading order inner solution U0. Setting n = 0 in
(4.5) and matching the far-field behavior of U0 with the near-field behavior of q̃0 leads
to the set of equations

D∇2
yU0(y, s) = 0, |y| > `j , U0 ∼ G(xj , s|x0) as |y| → ∞,(4.10a)

D∇2
yV0(y, s)− κ1V0 = 0, |y| < `j ,(4.10b)

U0(y, s) =V0(y, s), ∇yU0 · nj = ∇yV0 · nj , |y| = `j .(4.10c)

The general solution is of the form

U0 = G(xj , s|x0) +A0
`j
|y|
, V0 = B0

I1/2(β|y|)√
β|y|

, β =

√
κ1
D
.(4.11)

Note that we can write I1/2(x) =
√

2/π sinh(x)/
√
x so that V0 = B0 sinh (β|y|)/β|y|.

The matching conditions then imply that

G(xj , s|x0) +A0 =
B0√
β`j

I1/2(β`j),(4.12a)

−A0

`j
=

B0√
β`j

[
βI ′1/2(β`j)−

1

2`j
I1/2(β`j)

]
=

B0

β`2j
[β`j cosh(β`j)− sinh(β`j)] .

(4.12b)

Hence,

U0 = G(xj , s|x0)

[
1− Φ(β`j)

`j
|y|

]
,(4.13)

where

Φ(β`j) =
2`jβI

′
1/2(β`j)− I1/2(β`j)

2`jβI
′
1/2(β`j) + I1/2(β`j)

= 1− tanh(β`j)

β`j
.(4.14)

It now follows that q̃1 satisfies (4.3) together with the singularity condition

q̃1(x, s) ∼ −Φ(β`j)
Gj0`j
|x− xj |

as x→ xj ,(4.15)

For notational convenience, we have set Gj0 = G(xj , s|x0) and dropped the explicit
dependence on s,x0. Hence, q̃1(x, s) satisfies the inhomogeneous equation

D∇2q̃1 − sq̃1 = 4πD

N∑
j=1

Φ(β`j)Gj0`jδ(x− xj), x ∈ U , ∇q̃1 · n = 0, x ∈ ∂U ,

(4.16)

which can be solved in terms of the modified Helmholtz Green’s function:

q̃1(x, s) = −4πD

N∑
j=1

Φ(β`j)Gj0`jG(x, s|xj).(4.17)
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NARROW CAPTURE WITH PARTIALLY ABSORBING TARGETS 871

4.2. Calculation of higher-order terms. The next step is to match the far-
field behavior of U1 with the O(ε) term in the expansion of q̃0; see (4.9) and the
near-field behavior of q̃1 around Uj . The latter takes the form

q̃1(x, s) = −Φ(β`j)

{
Gj0`j
|x− xj |

+ 4πDGj0`jR(xj , s|xj)
}

− 4πD

N∑
k 6=j

Φ(β`k)Gk0`kG(xj , s|xk).

It follows that U1 is determined by (4.5) for n = 1, supplemented by the condition

U1(y, s)→ ∇xG(xj , s|x0) · y − 4πD

N∑
k=1

Φ(β`k)Gk0`kGjk as |y| → ∞,(4.18)

where Gij = G(xi, s|xj) for i 6= j, and Gii = R(xi, s|xi). It is convenient to introduce

the decomposition U1 = W1 + Ŵ1 with Ŵ1 = 0 on |y| = `j ,

W1 → χ
(1)
j = −4πD

N∑
k=1

Φ(β`k)Gk0`kGjk as |y| → ∞(4.19)

and

Ŵ1 → bj · y as |y| → ∞, bj = ∇xG(xj , s|x0).(4.20)

The general solutions for W1 and V1 are

W1 = χ
(1)
j +A1

`j
|y|
, V1 = B1I1/2(β|y|)/

√
β|y|.(4.21)

In terms of spherical polar coordinates ρ = |y|, bj = (0, 0, bj), and y · bj = bjρ cos θ,
0 ≤ θ ≤ π, we have

∂2Ŵ1

∂ρ2
+

2

ρ

∂Ŵ1

∂ρ
+

1

ρ2 sin θ

∂

∂θ

(
sin θ

∂Ŵ1

∂θ

)
= 0, ρ > 1,(4.22)

Ŵ1 ∼ bjρ cos θ as ρ→∞; Ŵ1 = 0 on ρ = `j .(4.23)

The general solution of Laplace’s equation in spherical polar coordinates is given by

B(ρ, θ, φ) =
∑
l≥0

l∑
m=−l

(
almρ

l +
blm
ρl+1

)
Pml (cos θ)eimφ,(4.24)

where Pml (cos θ) is an associated Legendre polynomial. Imposing the Dirichlet bound-
ary condition and the far-field condition implies that

Ŵ1(y) = bj`j cos θ

(
|y|
`j
−

`2j
|y|2

)
.(4.25)

This will contribute to the far-field behavior of the O(ε3) term in the outer solution.
However, it does not contribute to the flux into a target. Also note that

∇Ŵ1(y) · n = 3bj cos θ on |y| = `j .(4.26)
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872 PAUL C. BRESSLOFF AND RYAN D. SCHUMM

We can now determine the unknown coefficients A1, B1 using the matching conditions

W1(y) = V1(y), ∇W1(y) · n +∇Ŵ1(y) · nj = ∇V1(y) · nj , |y| = `j .(4.27)

The matching conditions then imply that

χ
(1)
j +A1 =

B1√
β`j

I1/2(β`j),(4.28a)

−A1

`j
+ 3bj cos θ =

B1√
β`j

[
βI ′1/2(β`j)−

1

2`j
I1/2(β`j)

]
.(4.28b)

Hence,

W1 = χ
(1)
j

[
1− Φ(β`j)

`j
|y|

]
+ 3bj cos θ[1− Φ(β`j)]

`2j
|y|
.(4.29)

The analysis of Un for n ≥ 2 is more complicated due to the fact that the equation
for Vn, (4.5c), is now inhomogeneous. The case n = 2 is given in the appendix. One
finds that Un has the general form

Un(y) = χ
(n)
j − (Φ(β`j)χ

(n)
j − w(n)

j )
`j
|y|

+ ŵ
(n)
j (|y|)

+ higher-order spherical harmonics,(4.30)

where the coefficients χ
(n)
j satisfy the iterative equation

χ
(n+1)
j = −4πD

N∑
k=1

Φ(β`k)χ
(n)
k `kGjk, n ≥ 1.(4.31)

Note that w
(0)
j = ŵ

(0)
j = 0, whereas (4.25) and (4.29) yield the expressions w

(1)
j =

bj`j cos(θ)(1 − Φ(β`j)) and ŵ
(1)
j = bj`j cos(θ)

(
|y|/`j − `2j/|y|2

)
. The calculations of

w
(n)
j and ŵ

(n)
j (y) are carried out in the appendix.

4.3. The flux. The ε expansion of the inner solution generates a corresponding
expansion of the flux into the jth target. In particular, Laplace transforming (2.29)
and rescaling by the factor κ1/(κ1 + ε2s) shows that

J̃j(x0, s) = Dε2
∫
|y|=`j

∇xU · nj dy ∼ Dε
∫
|y|=`j

[∇yU0 + ε∇yU1 + . . .] ·(4.32)

nj dSy.

Introducing spherical polar coordinates (ρ, θ, φ) relative to the center of Uj , we can
rewrite the asymptotic expansion of the flux as

J̃j(x0, s) ∼ εJ̃ (0)
j (x0, s) + ε2J̃

(1)
j (x0, s) + ε3J̃

(2)
j (x0, s) + . . .(4.33)

with

J̃
(n)
j = D`2j

∫ 2π

0

∫ π

0

∂

∂ρ

∣∣∣∣
ρ=`j

[
−
`j [Φ(β`j)χ

(n)
j − w(n)

j ]

ρ
+ ŵ

(n)
j (ρ)

]
sin θdθdφ

= 4πD`j [Φ(β`j)χ
(n)
j − w(n)

j ] + 4πD`2j
dŵ

(n)
j

dρ

∣∣∣∣∣
ρ=`j

.(4.34)
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NARROW CAPTURE WITH PARTIALLY ABSORBING TARGETS 873

In particular, the flux through the jth target is

J̃j(x0, s) ∼ 4πεD`jΦ(β`j)

(
G(xj , s|x0)− 4πεD

N∑
k=1

Φ(β`k)G(xk, s|x0)`kGjk(s)

)
+O(ε3).(4.35)

This expansion will be valid provided that s� 1/ε. Several remarks are in order.

(i) The series expansion (4.35) to O(ε2) has a relatively straightforward depen-
dence on the rescaled absorption rate κ1. That is, each Green’s function
product of order n is scaled by a factor of Φ(β`j)

n, where Φ(β`j) is defined
in (4.14) with β =

√
κ1/D. However, there are additional terms at higher

orders in ε that display a more complicated dependence on κ1 due to the
coefficients w

(n)
j and ŵ

(n)
j .

(ii) Since Φ(β`j) → 1 in the limit κ1 → ∞, we recover our previous result for
totally absorbing targets [9]. On the other hand, Φ(β`j) → 0 as κ1 → 0,
which means that the net flux into each target vanishes in the absence of any
absorption.

(iii) Our previous analysis of the 3D narrow capture problem with totally absorb-
ing targets established that the limit s→ 0 in (4.35) is nontrivial due to the
small-s singularity of the modified Helmholtz Green’s function [9]:

G(x, s|x′) =
1

s|U|
+G(x,x′) + sF (x,x′) +O(s2),(4.36)

where G(x,x′) is the Neumann Green’s function for the diffusion equation:

D∇2G(x; x′) =
1

|U|
− δ(x− x′), x ∈ U ; ∇G · n = 0, x ∈ ∂U ,(4.37a)

G(x,x′) =
1

4πD|x− x′|
+R(x,x′),

∫
U
G(x,x′)dx = 0,(4.37b)

and R(x,x′) is regular part of G(x,x′). Substitution of (4.36) into (4.35) leads
to terms involving factors of ε/r, which become arbitrarily large as r → 0,
thus leading to a breakdown of the ε expansion. Following along analogous
lines to [9], it is possible to perform a partial resummation of the asymptotic
expansion that renders the resulting series nonsingular in the limit r → 0.
The basic idea is to introduce a new dimensionless parameter

Λ =
4πεD ¯̀

r|U|
.(4.38)

This converts a subset of O(εn) terms in the expansion of J̃j to O(εrΛn−r)
terms, 0 ≤ r ≤ n. At each order of ε, we obtain an infinite power series in Λ
that can be summed to remove all singularities in the limit r → 0. Following
similar steps to [9], we find that

J̃j(x0, r) ∼ 4πεD`jΦ(β`j)Gj0 +
`j
¯̀

Λ

1 + Λ

[
1− 4πεDΦ(β`j)

∑
k

Φ(β`k)`k(Gk0 + Gjk)

]

+
4πε`jDΦ(β`j)

`
2

Λ2

(1 + Λ)2

N∑
i,k=1

Φ(β`i)Φ(β`k)`iGik`k +O(ε2, r).(4.39)

We can now safely take the limit r → 0 for ε > 0 with Λ→∞.
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874 PAUL C. BRESSLOFF AND RYAN D. SCHUMM

(iv) For simplicity, we have considered spherically shaped targets. However, as
originally shown by Ward and Keller [37], it is possible to generalize the as-
ymptotic analysis of narrow capture problems to more general target shapes
such as ellipsoids by applying classical results from electrostatics. In the case
of totally absorbing targets one simply replaces the target length `j in the
far-field behavior of the inner solution by the capacitance Cj of an equiva-
lent charged conductor with the shape Uj . In addition, using the divergence
theorem, it can then be shown that the flux into a target is completely deter-
mined by the far-field behavior. However, the analysis is more complicated
when considering partially absorbing targets, since it is necessary to match
the solution U(y) exterior to a target with the solution V (y) inside the tar-
get. The latter would require solving the modified Helmholtz equation in a
nonspheroidal shape Uj .

4.4. Pair of targets in a sphere. We now combine our O(ε2) asymptotic ex-
pansion of the flux given by (4.35) with the expressions (2.26) and (2.27) for the
splitting probability πr(x0) and unconditional MFPT Tr(x0), respectively, by iden-
tifying the Laplace variable s with the resetting rate r. For the sake of illustration,
suppose that the search domain is a sphere of radius ρ0. Consider two targets of equal
size `j = 1 located along a diagonal at a distance ρj from the center, j = 1, 2; see
Figure 4.1(a). The Neumann Green’s function of the modified Helmholtz equation
and of the diffusion equation can be calculated explicitly for a spherical domain as
detailed in [25, 9]. In Figure 4.1(b) we plot the splitting probabilities πr,k, k = 1, 2, as
a function of the resetting rate r for ε� r � 1/ε. (The lower bound is imposed due
to the singular nature of the Green’s functions in the limit r → 0; see remark (iii).)
We also take ρ1 + ρ2 = 1. Clearly if ρ1 = ρ2, then each particle is equally likely to be
absorbed by either target and πr,1 = πr,2 = 1/2. However, if ρ1 < ρ2, then the particle
is more likely to be absorbed by the target closer to the origin, that is, πr,1 > πr,2. We
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target 1
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(a) (b)

Fig. 4.1. (a) 3D spherical search domain of radius r = ρ0 containing two diagonally opposed
targets at distances rj from the center. The initial position of the searcher is taken to be at the
center of the sphere, x0 = 0. (b) Plot of splitting probabilities πr,k(x0), k = 1, 2, for x0 = 0. The
splitting probabilities are determined by equations (2.26) and (4.35). The distance of the targets are
varied such that ρ1 + ρ2 = 1. Other parameter values are D = 1, `j = 1, ρ0 = 1, and ε = 0.01. The
plots are insensitive to the value of κ1 for ε� 1.
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Fig. 4.2. Plot of unconditional MFPT Tr(x0) as a function of r for the pair of targets shown
in Figure 4.1 with x0 = 0. The MFPT is determined by (2.27) and (4.35). (a) The distance of the
targets are fixed at ρ1 = ρ2 = 0.5 and the absorption rate κ1 is varied.The filled circles indicate the
optimal resetting rate for a given κ1. (b) Fxed κ1 and different target distances ρ = ρ1,2. The filled
circles indicate the optimal resetting rate for a given ρ and κ1. Other parameter values are D = 1,
`j = 1, ρ0 = 1, and ε = 0.01.

see from Figure 4.1(b) that this difference increases with r. Analogous results were
obtained in our previous study [9]. The additional observation here is that the split-
ting probabilities are only weakly dependent on the absorption rate κ1 and the target
size ε. Therefore, in order to investigate the effects of partially absorbing targets, we
consider the MFPT Tr(x0). Plots of Tr(x0) versus r are shown in Figure 4.2(a). The
results are similar to the 2D case. For target distances smaller than a critical value ρc,
the MFPT is a unimodal function of r with a minimum at an optimal resetting rate
ropt. In addition, ropt is only weakly dependent on the absorption rate κ1 compared
to other parameter values. For example, in Figure 4.2(b) we plot Tr(x0) against r for
different distances ρ = ρ1,2, which clearly show a large variation of ropt.

5. Stochastic simulations. In order to test the validity of the asymptotic ex-
pansions, a stochastic algorithm was implemented and the analytical results were
compared to a series of Monte Carlo simulations. The algorithm uses a modified walk-
on-spheres method that accommodates partial absorption and stochastic resetting to
improve computational efficiency when Nεd � 1. Let x(t) ∈ Rd be the position of a
diffusing particle at time t with d = 2, 3 and x0 = x(0). Assume that the particle is
diffusing in a bounded spherical domain Ω ⊂ Rd with radius R that contains spherical
partially absorbing targets U1, . . . ,UN ⊂ Ω with radii ε� 1 positioned at x1, . . . ,xN ,
respectively. We also place a boundary layer of width δ around the outside of each
target and the region inside of Ω adjacent to ∂Ω. The algorithm can be described
with the following steps:

1. Place the particle at x0 and let tr = t + ∆tr be the next time at which the
particle resets where ∆tr is a random variable with PDF ψ(t) = re−rt, t ≥ 0,
where r is the resetting rate.

2. Compute ρb = R − ‖x(t)‖ and ρt = minn=1,...,N ‖x(t) − xn‖ − ε and put
ρ = min {ρb, ρt}. If ρ > δ, then proceed to step 3. If 0 ≤ ρ ≤ δ, proceed to
step 4. If ρ < 0, proceed to step 5.

3. Sample a random time, ∆t̂, that has CDF F (t) = 1 − S(t, 0) where S(t, y)
is the survival probability for a diffusing particle to escape the inside of a
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876 PAUL C. BRESSLOFF AND RYAN D. SCHUMM

d-dimensional sphere with radius 1 given that the particle started at a distance
y from the center of the sphere. One can obtain S(t, y) by numerically solving
the PDE

D−1
∂S

∂t
=
∂2S

∂y2
+
d− 1

y

∂S

∂y
,(5.1)

S(0, y) = 1, y < 1,(5.2)

S(t, 1) =
∂S

∂y

∣∣∣∣
y=0

= 0.(5.3)

We can now sample ∆t̂ by noting that ∆t̂ = F−1(U) where U ∈ [0, 1] is a
uniform random variable and applying the inverse CDF method. The time it
takes a particle to escape a spherical region with radius r given the particle
started at the center of the sphere is ∆ts = r2∆t̂. If t+ ∆ts ≥ tr, then reset
the diffusion process by letting t→ t+ tr and returning to step 1. Otherwise,
let t → t + ∆ts and ∆x be a random vector such that the tail of the vector
is at x(t) and the tip is at a point sampled uniformly from the surface of a
d-dimensional sphere centered at x(t) with radius r. Let x(t) → x(t) + ∆x
and return to step 2.

4. If t ≥ tr, reset the diffusion process using the same method as that used
in step 3. Otherwise, perform an Euler–Maruyama iteration by generating
a d-dimensional vector Γ from a multivariate standard normal distribution,
letting t→ t+ ∆tEM, and letting x(t)→ x(t) +

√
2D∆tEMΓ, where ∆tEM is

a fixed parameter describing the step size. Now return to step 2.
5. If x(t−∆tEM) /∈ ∪ni=1Ui, then generate a number ∆ta by randomly sampling

a set of times according to the PDF φ(t) = κe−κt, t ≥ 0, where κ = κ1/ε
2

is the absorption rate, and let ta = t + ∆ta be the next time at which the
particle is absorbed. Now, move to step 4. If x(t − ∆tEM) ∈ ∪ni=1Ui, then
check if t ≥ ta. If this inequality holds, the simulation ends and ta is recorded
as the FPT. If t < ta, proceed to step 4.

It is important to note that each time the particle leaves and re-enters a target,
a new absorption time, ta, is generated. Therefore, a particle is only absorbed if it
enters a target and spends ∆ta units of time in the target without leaving. Similarly,
a new time, ∆tr, is generated each time the particle resets. Figures 5.1 and 5.2 show
good agreement between the MFPTs derived from the simulations and those obtained
from (3.18) and (4.35). Note that the error rate increases for ε near 0.01 for the 3D
simulations. This is due to the fact that 2ε3 is very small. Therefore, accuracy can
be improved by decreasing ∆tEM and increasing the total number of simulations that
are averaged over.

6. Discussion. In this paper we analyzed the narrow capture problem in 2D
and 3D under the joint effects of stochastic resetting and partially absorbing targets.
By matching inner and outer solutions of the diffusion equation in Laplace space,
we derived an asymptotic expansion of the flux J̃k into each target in powers of
ν = −1/ ln ε in 2D and powers of ε in 3D, where ε is the non-dimensionalized target
size. (In the former case, all logarithmic terms were summed over nonperturbatively.)
This then determined the MFPT to absorption according to the formula Tr(x0) =
(1 −

∑N
k=1 J̃k(x0, r))/(r

∑N
j=1 J̃j(x0, r)) for a resetting rate r. We illustrated the

theory by considering spherically symmetric targets. We determined the MFPT to
absorption as a function of r, κ, and the target distances from the resetting point,
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NARROW CAPTURE WITH PARTIALLY ABSORBING TARGETS 877

Fig. 5.1. Comparison of the analytical MFPT plots with numerical results generated by sim-
ulating the 2D narrow capture problem with two partially absorbing targets using algorithm [5] and
averaging over 104 simulations. Other parameter values were R = 5, x1 = [1, 0]T , x2 = [−1.5, 0],
κ1 = 1, δ = 0.1, ∆tEM = 10−6, and D = 1.

Fig. 5.2. Comparison of the analytical MFPT plots with numerical results generated by simulat-
ing the 3D narrow capture problem with two partially absorbing targets using algorithm [5] and aver-
aging over 104 simulations. Other parameter values include R = 5, x1 = [1, 0, 0]T , x2 = [−1.5, 0, 0],
κ1 = 1, δ = 0.1, ∆tEM = 10−8, and D = 1.
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878 PAUL C. BRESSLOFF AND RYAN D. SCHUMM

and we explored the behavior of the optimal resetting rate as a function of model
parameters.

The analysis of partially absorbing targets developed in this paper has a wide
variety of possible extensions. First, as indicated at the end of section 4.3 , one could
consider more general target shapes by numerically solving the modified Helmholtz
equation within each target and matching with the inner solution outside the target.
Second, one could incorporate a more general chemical kinetic scheme within each
target, rather than assuming direct absorption. For example, on entering a target,
the particle could reversibly bind to the chemical substrate and undergo a sequence
of reversible reactions before being absorbed [36]. Alternatively, the reaction scheme
could be non-Markovian, analogous to a study of anomalous diffusion within spiny
dendrites [21]. In this specific application particles diffuse along a one-dimensional
dendritic cable that is studded with partially absorbing spines. The exchange of a
particle between a spine and the parent dendrite is described by a non-Markovian
stochastic process and leads to subdiffusive transport. It would also be interesting to
explore the general probabilistic formulation of partially reactive surfaces developed
in [23, 25, 10]. Finally, rather than assuming that the boundary of a target is fully
permeable to a diffusing particle, one could consider a semipermeable membrane. The
boundary conditions (2.1)c would be replaced by the following equations on x ∈ ∂Ui:

D∇q(x, t|x0) ·ni = −σ[q(x, t|x0)−pi(x, t|x0)], D∇q(x, t|x0) = D∇pi(x, t|x0),(6.1)

where σ is a membrane permeability coefficient. A special case of the above is to treat
each target as a spatially homogeneous compartment, as exemplified by a model of
bacterial quorum sensing [22].

Appendix A. Calculation of U2. In order to calculate the inner contribution
U2, we have to match the far-field behavior of U2 with the O(ε2) term in the expansion
of q̃0 (see (4.9)), the O(ε) terms in the expansion of q̃1, and the near-field behavior of
q̃2 around Uj . The latter satisfies (4.3) supplemented by the singularity condition

q̃2(x, s) ∼ −Φ(β`j)
χ
(1)
j `j

|x− xj |
as x→ xj .

Following the same steps as in the derivation of q̃1(x, s) yields

q̃2(x, s) = −4πD
N∑
k=1

Φ(β`k)χ
(1)
k `kG(x, s|xk).(A.1)

Hence,

U2(y, s)→ 1

2
Hj · y ⊗ y + ∇q̃1|x=xj

· y − 4πDΦ(β`j)

N∑
k=1

χ
(1)
k `kGjk(A.2)

as |y| → ∞. In addition, setting n = 2 in (4.5), we have

D∆yU2 = sU0, |y| > `j , D∆yV2 − κ1V2 = sV0, |y| < `j ,(A.3)

U2 = V2, ∇U2 · nj = ∇V2 · nj on |y| = `j .(A.4)

Again we decompose the inner term as U2 = W2 + Ŵ2 with

∆yW2 = 0, |y| > `j ; W2 → χ
(2)
j ≡ −4πDΦ(β`j)

N∑
k=1

χ
(1)
k `kGjk as |y| → ∞,(A.5)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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and

D∆yŴ2 = sU0, |y| > `j ; Ŵ2 = 0, on |y| = `j ,(A.6)

Ŵ2 →
1

2
Hj · y ⊗ y + ∇q̃1|x=xj

· y as |y| → ∞.

The general solutions for W2 and V2 are

W2 = χ
(2)
j +A2

`j
|y|
, V2 = B2

I1/2(β|y|)√
β|y|

+ sV̂2(y, s;κ1),(A.7)

where V̂2 is the particular solution with boundary condition V̂2(y, s;κ1) = 0 on |y| =
`j (convolution of the Green’s function in the sphere with V0.) The explicit expression

for V̂2(y, s;κ1) will not be needed in this paper.

The calculation of Ŵ2 proceeds along analogous lines to [9], so we simply sum-
marize the results here. First note that the particular solution of the equation
D∆yŴ2 = sU0 has the explicit form

Ŵ2

∣∣∣
particular

=
s

D

(
ρ2

6
− ρ`jΦ(β`j)

2

)
G(xj , s|x0).(A.8)

It turns out that this matches the l = 0 component of the far-field condition, since

1

2
Hj · y ⊗ y +∇q̃1 · y =

ρ2

6
(Hxx +Hyy +Hzz) + higher-order spherical harmonics,

and

ρ2

6
(Hxx +Hyy +Hzz) =

ρ2

6
∆G(xi, s|x0) =

ρ2s

6D
G(xi, s|x0).

Hence, the only contribution to the flux integral from the component Ŵ2 arises from
the above particular solution. Finally, the unknown constants A2, B2 are determined
by the boundary conditions at |y| = `j :

χ
(2)
j +A2 = B2I1/2(β`j)/

√
β`j ,(A.9)

−A2

`j
+
s`j
6D

(2− 3Φ(β`j)))G(xj , s|x0) + Θ2,j =
B2√
β`j

[
βI ′1/2(β`j)−

1

2`j
I1/2(β`j)

]
+ V̂2

′(`j , s;κ1).

We have defined

Θ2,j = nj · ∇
(
Ŵ2 − Ŵ2

∣∣∣
particular

)
|y|=`j

,(A.10)

which collects together all terms involving higher-order spherical harmonics.
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