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ACCUMULATION TIME OF DIFFUSION IN A 3D SINGULARLY
PERTURBED DOMAIN*

PAUL C. BRESSLOFF\dagger 

Abstract. Boundary value problems for diffusion in singularly perturbed domains is a topic of
considerable current interest. Applications include intracellular diffusive transport and the spread
of pollutants or heat from localized sources. In a previous paper, we introduced a new method for
characterizing the approach to steady state in the case of two-dimensional (2D) diffusion. This was
based on a local measure of the relaxation rate known as the accumulation time T (x). The latter
was calculated by solving the diffusion equation in Laplace space using a combination of matched
asymptotics and Green's function methods. We thus obtained an asymptotic expansion of T (x) in
powers of \nu = - 1/ ln \epsilon , where \epsilon specifies the relative size of the holes. In this paper, we develop the
corresponding theory for three-dimensional (3D) diffusion. The analysis is a nontrivial extension of
the 2D case due to differences in the singular nature of the Laplace transformed Green's function.
In particular, the asymptotic expansion of the solution of the 3D diffusion equation in Laplace space
involves terms of order O((\epsilon /s)n), where s is the Laplace variable. These s-singularities have to
be removed by partial series resummations in order to obtain an asymptotic expansion of T (x) in
powers of \epsilon .
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1. Introduction. There is considerable current interest in solving boundary
value problems (BVPs) for two-dimensional (2D) and three-dimensional (3D) diffusion
in singularly perturbed domains, where small holes or perforations are removed from
the interior [25, 24, 23, 3, 12, 11, 10, 19, 13, 4, 22, 21, 18, 6, 7]. Applications range
from modeling intracellular diffusion, where interior holes could represent subcellular
structures such as organelles or biochemical substrates, to tracking the spread of
chemical pollutants or heat from localized sources. Roughly speaking, one can divide
the various BVPs into two distinct groups. The first treats the holes as totally or
partially absorbing traps, and the main focus is determining the first passage time or
splitting probability for a single particle to be captured by an interior trap (narrow
capture). The second treats the holes as localized sources or reflecting obstacles, and
now one is interested in calculating the steady-state solution (if it exists) and the rate
of approach to steady state. Both types of BVP can be solved using a combination of
matched asymptotic analysis and Green's function methods. This involves obtaining
an inner or local solution of the diffusion equation that is valid in a small neighborhood
of each hole, and then matching to an outer or global solution that is valid away from
each neighborhood. The matching requires taking into account the singular nature
of the associated Green's function. However, the details of the matched asymptotic
analysis in 2D and 3D domains differ considerably due to corresponding differences
in the Green's function singularities. That is, as | x - x0| \rightarrow 0,
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ACCUMULATION TIME OF 3D DIFFUSION 863

(1.1) G(x| x0)\rightarrow  - 1

2\pi D
ln | x - x0| in 2D, G(x| x0)\rightarrow 

1

4\pi D| x - x0| 
in 3D,

where D is the diffusivity. Consequently, an asymptotic expansion of the solution to
a BVP in 3D is usually in powers of \epsilon , where \epsilon represents the size of a hole relative
to the size of the bulk domain. On the other hand, an analogous expansion in 2D is
in powers of \nu = - 1/ ln \epsilon at O(1) in \epsilon . The slower convergence of \nu in the limit \epsilon \rightarrow 0
can be dealt with by summing the logarithmic terms nonperturbatively [25, 24].

In a recent paper [9], we introduced and analyzed a new quantity for charac-
terizing the rate of relaxation to steady state in a 2D singularly perturbed domain
containing circular holes, based on the so-called accumulation time. The latter is
a local measure of the rate of relaxation that has been used extensively within the
context of diffusion-based morphogenesis [1, 2, 17, 5]. Previous studies of singu-
larly perturbed BVPs have considered a global measure of the relaxation rate that is
identified with the principal eigenvalue of the Laplacian [25, 24, 12]. However, such
a measure has some limitations: (i) it does not account for possible differences in
the relaxation rate at different spatial locations; (ii) it is independent of the initial
conditions; and (iii) it assumes that the eigenvalues have sufficiently large spectral
gaps. In [9] the accumulation time was calculated by solving the diffusion equation
in Laplace space, which yielded an asymptotic expansion of the accumulation time in
powers of \nu . In the current paper, we develop the corresponding theory for diffusion
in 3D singularly perturbed domains \Omega containing N small spherical holes \scrU k \subset \Omega ,
k = 1, . . . ,N . We impose a Neumann boundary condition on the external boundary
\partial \Omega and inhomogeneous Dirichlet boundary conditions on the interior boundaries \scrU k.
The latter inhomogeneities ensure that there exists a nontrivial steady-state concen-
tration. The analysis is a nontrivial extension of the 2D case due to differences in the
singular nature of the Laplace transformed Green's function with respect to the limits
x\rightarrow x0 and s\rightarrow 0, where s is the Laplace variable. Surprisingly, in spite of significant
differences in the analyses, we find that the O(1/\epsilon ) and O(1) contributions to the
accumulation time are formally identical to the corresponding terms in 2D under the
mappings (from 3D to 2D) 4\pi D \rightarrow 2\pi D and \epsilon \ell j \rightarrow \nu j \equiv  - 1/ln \epsilon \ell j , where \epsilon \ell j is the
radius of the jth hole.

The structure of the paper is as follows. In section 2 we formulate the general
problem of diffusion in a 3D singularly-perturbed domain \Omega and define the associated
accumulation time in terms of the Laplace transform of the concentration. The accu-
mulation time is calculated in section 3 by solving the diffusion equation in Laplace
space using a combination of matched asymptotic analysis and Green's function meth-
ods. Our results are compared with those previously obtained in 2D. In section 4,
we relate our analysis to an alternative approach based on an eigenfunction expan-
sion. Finally, in section 5, we illustrate the theory by considering holes in a spherical
domain for which the associated Green's function is known explicitly.

2. Accumulation time of diffusion in a 3D singularly perturbed domain.
Consider the diffusion equation in a bounded domain \Omega \subset \BbbR 3 that is perforated by
a set of N small holes denoted by \scrU k \subset \Omega , k = 1, . . . ,N , see Figure 2.1(a). For
simplicity, we take each hole to be a sphere of radius \epsilon \ell j centered at xj , j = 1, . . . ,N .
That is, | x  - xj | = \epsilon \ell j with 0 < \epsilon \ll 1. In addition, the holes are assumed to
be well separated with | xi  - xj | \gg \epsilon (\ell i + \ell j), j \not = i, and dist(xj , \partial \Omega ) \gg \epsilon \ell j for all
i, j = 1, . . . ,N . We impose a Neumann boundary condition on the external boundary
\partial \Omega and inhomogeneous Dirichlet boundary conditions on the interior boundaries \partial \scrU j .
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864 PAUL C. BRESSLOFF
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Fig. 2.1. Diffusion in a 3D singularly perturbed domain. (a) Particles diffuse in a bounded
domain \Omega containing N small interior holes or perforations denoted by \scrU j , j = 1, . . . ,N . The exterior
boundary \partial \Omega is reflecting, whereas u = \Phi j on the jth interior boundary \partial \scrU i. (b) Construction of
the outer solution. Each hole is shrunk to a single point. The outer solution can be expressed in
terms of the corresponding modified Neumann Green's function and then matched with the inner
solution around each hole. (c) Construction of the inner solution in terms of stretched coordinates
y= \epsilon  - 1(x - xi), where xi is the center of the ith hole. The rescaled radius is \rho i = \ell i, and the region
outside the hole is taken to be \BbbR 3 rather than the bounded domain \Omega .

Let u(x, t) denote the concentration of freely diffusing particles for x\in \Omega \setminus \scrU a, and let
\scrU a \equiv 

\bigcup N
j=1 \scrU j . Then

\partial u(x, t)

\partial t
=D\nabla 2u(x, t), x\in \Omega \setminus \scrU a, t > 0,(2.1a)

together with the boundary conditions

(2.1b) \nabla u(x, t) \cdot n= 0, x\in \partial \Omega ; u(x, t) =\Phi j , x\in \partial \scrU j , t > 0,

where n is the outward unit normal at a point on \partial \Omega and D is the diffusivity. The
inhomogeneous Dirichlet boundary condition means that the concentration on \partial \scrU j is
fixed to be a constant \Phi j for all t > 0. Finally, we impose the initial condition

(2.1c) u(x,0) = \Gamma 0\delta (x - x0)

for some x0 \in \Omega \setminus \scrU a, where \Gamma 0 is the initial number of molecules introduced into the
domain. Note that one could nondimensionalize equations (2.1) by introducing the
fundamental length and time scales L= | \Omega | 1/3 and T =L2/D.

Let u\ast (x) = limt\rightarrow \infty u(x, t), x \in \Omega \setminus \scrU a, denote the nontrivial steady-state concen-
tration, which exists for the given inhomogeneous Dirichlet--Neumann BVP. (On the
other hand, if the constants \Phi j = 0 for all j = 1, . . . ,N , then u\ast (x) = 0 and the steady
state would be trivial.) Given a nontrivial steady state, we define

(2.2) Z(x, t) = 1 - u(x, t)

u\ast (x)
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ACCUMULATION TIME OF 3D DIFFUSION 865

to be the fractional deviation of the concentration from the steady state. In order to
ensure that Z(x, t) remains positive (no overshooting) we impose the condition

(2.3)
\Gamma 0

| \Omega | 
<\Phi j for all j = 1, . . . ,N.

This represents a BVP where there is a net flux of particles into the domain \Omega \setminus \scrU a from
each of the the interior boundaries, that is, all of the holes act as particle sources.
Then 1  - Z(x, t) represents the fraction of the steady-state concentration that has
accumulated at x by time t, and  - \partial tZ(x, t)dt is the fraction accumulated in the
interval [t, t+ dt]. The accumulation time T (x) at position x is then defined as [1, 2,
17, 5]

(2.4) T (x) =

\int \infty 

0

t

\biggl( 
 - \partial Z(x, t)

\partial t

\biggr) 
dt=

\int \infty 

0

Z(x, t)dt.

In practice, it is more convenient to calculate the accumulation time in Laplace space.
Using the identity

(2.5) u\ast (x) = lim
t\rightarrow \infty 

u(x, t) = lim
s\rightarrow 0

s\widetilde u(x, s),
where \widetilde u(x, s) = \int \infty 

0
e - stu(x, t)dt, and setting \widetilde F (x, s) = s\widetilde u(x, s), the Laplace transform

of (2.2) gives

(2.6) s \widetilde Z(x, s) = 1 - 
\widetilde F (x, s)\widetilde F (x)

, \widetilde F (x) = lim
s\rightarrow 0

\widetilde F (x, s) = u\ast (x)

and, hence,

T (x) = lim
s\rightarrow 0

\widetilde Z(x, s) = lim
s\rightarrow 0

1

s

\Biggl[ 
1 - 

\widetilde F (x, s)\widetilde F (x)

\Biggr] 
= - 1\widetilde F (x)

d

ds
\widetilde F (x, s)

\bigm| \bigm| \bigm| \bigm| 
s=0

.(2.7)

In light of (2.7), we will work with the diffusion equation (2.1) in Laplace space:

D\nabla 2\widetilde u - s\widetilde u= - \Gamma 0\delta (x - x0), x\in \Omega \setminus \scrU a,(2.8a)

D\nabla \widetilde u(x, s) \cdot n= 0, x\in \partial \Omega , \widetilde u(x, s) = \Phi j

s
, x\in \partial \scrU j .(2.8b)

The Dirac delta function on the right-hand side of (2.8a) can be eliminated by intro-
ducing the Green's function of the 3D modified Helmholtz equation,

D\nabla 2G(x, s| x0) - sG(x, s| x0) = - \delta (x - x0), x\in \Omega , \nabla G(x, s| x0) \cdot n= 0, x\in \partial \Omega .

(2.9)

Two useful features of the Green's function that will play an important role in the
subsequent analysis are its singularity structure and its normalization:

G(x, s| x0) =
1

4\pi D| x - x0| 
+R(x, s| x0),

\int 
\Omega 

G(x, s| x0)dx=
1

s
,(2.10)

where R(x, s| x0) is defined to be the regular part of the Green's function. Finally,
taking

(2.11) \widetilde u(x, s) = \Gamma 0G(x, s| x0) + \widetilde v(x, s), x\in \Omega \setminus \scrU a,
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866 PAUL C. BRESSLOFF

we have

D\nabla 2\widetilde v(x, s) - s\widetilde v(x, s) = 0, x\in \Omega \setminus \scrU a,(2.12a)

\nabla \widetilde v \cdot n= 0, x\in \partial \Omega , \widetilde v= \Phi j

s
 - \Gamma 0G(x, s| x0), x\in \partial \scrU i.(2.12b)

3. Matched asymptotic analysis of the accumulation time in 3D. The
goal of this paper is to derive an asymptotic expansion of the accumulation time
(2.7) in powers of \epsilon . We will proceed along lines analogous to studies of the 3D
narrow capture problem [11, 13, 7], deriving an inner or local solution of equations
(2.8) that is valid in an O(\epsilon ) neighborhood of each hole, and then matching to an
outer or global solution that is valid away from each neighborhood. However, as
previously highlighted in [7], the resulting asymptotic expansion of the solution in
Laplace space results in terms of order O((\epsilon /s)n). Therefore, we will have to remove
these s-singularities to obtain an asymptotic expansion of the accumulation time in
the limit s\rightarrow 0.

The outer solution is constructed by shrinking each domain \scrU j to a single point
xj (see Figure 2.1(b)) and expanding according to

\widetilde u(x, s)\sim \Gamma 0G(x, s| x0) + \epsilon \widetilde v1(x, s) + \epsilon 2\widetilde v2(x, s) + \cdot \cdot \cdot ,

where G is the 3D Neumann Green's function (see (2.9)) and

D\nabla 2\widetilde vn  - s\widetilde vn = 0, x\in \Omega \setminus \{ x1, . . . ,xN\} ; \nabla \widetilde vn \cdot n= 0, x\in \partial \Omega .(3.1)

Equation (3.1) is supplemented by a corresponding set of singularity conditions as
x \rightarrow xj , j = 1, . . . ,N , which are obtained by matching to the inner solution around
each hole. Introducing the stretched local variable y= \varepsilon  - 1(x - xj) in a neighborhood
of the jth hole (see Figure 2.1(c)), we set U(y, s) = \widetilde u(xj + \varepsilon y, s) with

D\nabla 2
\bfy U = \epsilon 2sU, | y| > \ell j , U(y, s) =

\Phi j

s
, | y| = \ell j .(3.2)

Substituting the asymptotic expansion U \sim U0+ \epsilon U1+O(\epsilon 2) into (3.2), we obtain the
following pair of equations for the first two terms in the expansion:

D\nabla 2
\bfy U0(y, s) = 0, | y| > \ell j ; U0(y, s) =

\Phi j

s
, | y| = \ell j ,(3.3a)

D\nabla 2
\bfy U1(y, s) = 0, | y| > \ell j ; U1(y, s) = 0, | y| = \ell j .(3.3b)

These are supplemented by far-field conditions obtained by matching with the near-
field behavior of the outer solution. In order to perform this matching, we need to
Taylor expand G(x, s| x0) near the jth target and rewrite it in terms of stretched
coordinates:

(3.4) G(x, s| x0)\sim G(xj , s| x0) + \epsilon \nabla \bfx G(xj , s| x0) \cdot y+ \cdot \cdot \cdot .

First consider the leading-order contribution to the inner solution. Matching the
far-field behavior of U0 with the near-field behavior of \Gamma 0G(x, s| x0) shows that

(3.5) U0 \sim \Gamma 0G(xj , s| x0) as | y| \rightarrow \infty .

Hence,

(3.6) U0 =
\Phi j

s
w(y) + \Gamma 0G(xj , s| x0)(1 - w(y)),
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D
ow

nl
oa

de
d 

04
/3

0/
23

 to
 1

28
.1

10
.1

84
.5

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



ACCUMULATION TIME OF 3D DIFFUSION 867

with w(y) satisfying the boundary value problem

\nabla 2
\bfy w(y) = 0, | y| > \ell j ; w(y) = 1, | y| = \ell j ; w(y)\rightarrow 0 as | y| \rightarrow \infty .(3.7)

In the case of a spherical target of radius \ell j , we have

(3.8) w(y) =
\ell j
| y| 

.

It now follows that \widetilde v1 satisfies (3.1) together with the singularity condition

\widetilde v1(x, s)\sim \ell jVj(s)

| x - xj | 
as x\rightarrow xj ,

where

(3.9) Vj(s) =
\Phi j

s
 - \Gamma 0Gj0(s), Gj0(s)\equiv G(xj , s| x0).

Hence,

(3.10) \widetilde v1(x, s) = 4\pi D

N\sum 
j=1

\ell jVj(s)G(x, s| xj).

The next step is to match the far-field behavior of U1 with the O(\epsilon ) term in
the expansion of \Gamma 0G(x, s| x0) (see (3.4)), together with the nonsingular near-field
behavior of \widetilde v1 around the jth target. The latter takes the form

\widetilde v1(x, s)\sim \ell jVj(s)

| x - xj | 
+ 4\pi D

N\sum 
i=1

\ell iVi(s)\scrG ij(s),

with

(3.11) \scrG ij(s) = \scrG ji(s) =G(xi, s| xj), j \not = i, \scrG jj(s) =R(xj , s| xj).

It follows that

U1(y, s)\rightarrow \nabla \bfx G(xj , s| x0) \cdot y+ 4\pi D

N\sum 
i=1

\ell iVi(s)\scrG ij(s) as | y| \rightarrow \infty .(3.12)

The first term on the right-hand side generates contributions to the inner solution
in the form of first-order spherical harmonics, which only affect the outer solution at
O(\epsilon 3) [7]. We thus have

(3.13) U1(y, s) = \chi 
(1)
j (s)

\biggl( 
1 - \ell j

| y| 

\biggr) 
+ higher-order harmonics

with

(3.14) \chi 
(1)
j (s) = 4\pi D

N\sum 
k=1

\ell kVk(s)\scrG kj(s).

Finally, \widetilde v2 satisfies (3.1) supplemented by the singularity condition

\widetilde v2(x, s)\sim  - 
\chi 
(1)
j (s)\ell j

| x - xj | 
, as x\rightarrow xj .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/3

0/
23

 to
 1

28
.1

10
.1

84
.5

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



868 PAUL C. BRESSLOFF

Hence,

(3.15) \widetilde v2(x, s) = - 4\pi D

N\sum 
j=1

\ell j\chi 
(1)
j (s)G(x, s| xj).

It turns out that the zeroth-order spherical harmonic contributions to the inner solu-
tion Un(y, s) for all n\geq 0 generate an O(\epsilon n+1) term in the outer solution of the form

\chi 
(n+1)
j , which is determined iteratively according to the equation

(3.16) \chi 
(n+1)
j = - 4\pi D

N\sum 
k=1

\ell k\chi 
(n)
k \scrG kj , n\geq 1.

This same mathematical structure occurred in our analysis of first passage time prob-
lems [7].

In summary, the outer solution has the asymptotic expansion

\widetilde u(x, s)\sim \Gamma 0G(x, s| x0) + 4\pi \epsilon D

N\sum 
j=1

\ell j

\Bigl[ 
Vj(s) - \epsilon \chi 

(1)
j (s)

\Bigr] 
G(x, s| xj)

= \Gamma 0

\biggl\{ 
G(x, s| x0) - 4\pi \epsilon D

N\sum 
j=1

\ell jG(xj , s| x0)G(x, s| xj)

+ (4\pi \epsilon D)2
N\sum 

j,k=1

\ell j\ell kG(xk, s| x0)\scrG kj(s)G(x, s| xj)

\biggr\} 

+
4\pi \epsilon D

s

\biggl\{ N\sum 
j=1

\ell j\Phi j  - 
N\sum 

j,k=1

\ell j\ell k\Phi k\scrG kj(s)G(x, s| xj)

\biggr\} 
+O(\epsilon 3).(3.17)

3.1. Small-\bfits expansion. In order to calculate the steady state u\ast (x) and the
corresponding accumulation time, we need to consider the small-s expansion of the
outer solution (3.17). This in turn requires expanding the Green's function with
respect to s:

(3.18) G(x, s| x0) =
1

s| \Omega | 
+G0(x,x0) + sG1(x,x0) +O(s2),

where G0 is the generalized Neumann Green's function of Laplace's equation:

D\nabla 2G0(x,x0) =
1

| \Omega | 
 - \delta (x - x0), x\in \Omega ,(3.19a)

\nabla G0(x,x0) \cdot n= 0, x\in \partial \Omega ,

\int 
\scrU 
G0(x,x0)dx= 0,(3.19b)

G0(x,x0) =
1

4\pi | x - x0| 
+R0(x,x0).(3.19c)

Substituting (3.18) into (3.17) gives

\widetilde u(x, s)\sim \Gamma 0

\biggl[ 
1

s| \Omega | 
+G0(x,x0) +O(s)

\biggr] 
(3.20)

+ 4\pi \epsilon D

N\sum 
j=1

\ell j

\Biggl\{ \Biggl[ \widehat \Phi j

s
 - \Gamma 0\scrG (0)

j0  - s\Gamma 0\scrG (1)
j0 +O(s2)

\Biggr] 
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ACCUMULATION TIME OF 3D DIFFUSION 869

 - 4\pi \epsilon D

N\sum 
k=1

\ell k

\Biggl[ \widehat \Phi k

s
 - \Gamma 0\scrG (0)

k0  - s\Gamma 0\scrG (1)
k0 +O(s2)

\Biggr] 

\times 
\biggl[ 

1

s| \Omega | 
+ \scrG (0)

kj + s\scrG (1)
kj +O(s2)

\biggr] \Biggr\} 

\times 
\biggl[ 

1

s| \Omega | 
+G0(x,xj) + sG1(x,xj) +O(s2)

\biggr] 
+O(\epsilon 3).

We have set \scrG (n)
k0 =Gn(xk,x0) and \widehat \Phi j =\Phi j  - \Gamma 0/| \Omega | . Rearranging the various terms

and multiplying by s yields the asymptotic expansion

s\widetilde u(x, s)\sim \Gamma 0

| \Omega | 
+ 4\pi \epsilon D

\biggl\{ N\sum 
j=1

\ell j \widehat \Phi jG0(x,xj) - 
N\sum 
j=1

\ell j\scrG (0)
j0

\biggr\} (3.21)

+
4\pi \epsilon D

s| \Omega | 

\biggl\{ N\sum 
j=1

\ell j \widehat \Phi j  - 4\pi \epsilon D

N\sum 
j,k=1

\ell j\ell k\widehat \Phi k

\biggl[ 
G0(x,xj) + \scrG (0)

kj

\biggr] 
+

4\pi \epsilon D\Gamma 0

| \Omega | 

N\sum 
j=1

\ell j\ell k\scrG (0)
j0

\biggr\} 

 - 
\biggl( 
4\pi \epsilon D

s| \Omega | 

\biggr) 2 N\sum 
j,k=1

\ell j\ell k\widehat \Phi j + s\scrV (x) +O(s2, \epsilon 3),

with

\scrV (x) = \Gamma 0G0(x,x0) + 4\pi \epsilon D

N\sum 
j=1

\ell j \widehat \Phi jG1(x,xj)

 - 4\pi \epsilon D\Gamma 0

N\sum 
j=1

\ell j

\Bigl[ 
\scrG (0)
j0 G0(x,xj) + \scrG (1)

j0 /| \Omega | 
\Bigr] 
.(3.22)

The \epsilon -expansion in (3.21) indicates a potential problem in taking the limit s\rightarrow 0.
More specifically, there exist terms involving factors of \epsilon /s that will become arbitrarily
large in the small-s limit and thus could potentially lead to a breakdown of the \epsilon 
expansion. On the other hand, we know that both the steady-state concentration
and accumulation time exist, which suggests that the apparent singularities can be
removed. This same issue was previously encountered in an analysis of first passage
time problems in 3D singularly perturbed domains with small traps [7]. In the latter
study, we calculated the Laplace transformed flux into each trap, which acted as
the generator for the first passage time moments in the limit s \rightarrow 0. In contrast to
the analysis of steady-state problems for diffusion, where the goal is to calculate the
outer solution in the bulk of the domain, the focus of narrow capture problems is the
inner solution around each trap. Nevertheless, the methods developed in [7] can be
used to eliminate singularities in (3.21), since it has the same basic structure as the
asymptotic expansion of the flux considered in the previous paper; see, for example,
equation (3.36) of [7]. That is, we proceed by treating (3.21), including higher-order
terms, as a triple expansion in \epsilon , s and \Lambda , with

(3.23) \Lambda =
4\pi \epsilon D\=\ell 

s| \scrU | 
, \=\ell =

N\sum 
j=1

\ell j .

This then converts a subset of terms at O(\epsilon n) to O(\epsilon r\Lambda n - r) terms, 0 \leq r \leq n. At
each order of \epsilon , we obtain geometric series in \Lambda that can be summed to remove the
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870 PAUL C. BRESSLOFF

associated singularities in the limit s\rightarrow 0. In [7], we explicitly showed how this pro-
cedure works to all orders in \epsilon for terms that arise from the zeroth-order spherical
harmonic contributions to the inner solution. In the limit s\rightarrow 0 we obtained asymp-
totic expansions valid up to O(\epsilon 2). (Higher-order spherical harmonic contributions
to the inner solution generate singular terms of O(\epsilon 3+n/sn) for n\geq 0.) As a further
check of the validity of the resummation method, we showed that the low-order as-
ymptotic expansions for the first passage time moments agreed with previous results
obtained without Laplace transforms [7]. A similar agreement is obtained below for
the steady-state concentration.

Returning to the asymptotic expansion (3.17), we now include all terms arising
from the zeroth-order spherical harmonic contributions to the inner solution,

\widetilde u(x, s)\approx \Gamma 0G(x, s| x0) + 4\pi \epsilon D

N\sum 
j=1

\ell j

\Biggl[ 
Vj(s) - 

\infty \sum 
n=1

\epsilon n\chi 
(n)
j (s)

\Biggr] 
G(x, s| xj),(3.24)

and use the iterative equation (3.16). Consider, for example, the factors multiplying\sum 
j \ell j

\widehat \Phi j on the second and third lines of (3.21). Inclusion of higher-order contributions
leads to a geometric series in \Lambda that can be summed explicitly:

(3.25) \scrI 1(\Lambda )\equiv 

\left(  \Lambda 
\=\ell 

\sum 
n\geq 0

( - 1)n\Lambda n

\right)  N\sum 
j=1

\ell j \widehat \Phi j =
1
\=\ell 

\Lambda 

1+\Lambda 

N\sum 
j=1

\ell j \widehat \Phi j =
\Lambda 

1+\Lambda 
[\Phi  - \Gamma /| \Omega | ].

We have set

(3.26) \Phi =
1
\=\ell 

N\sum 
j=1

\ell j\Phi j .

Similarly, combining the last term on the second line of (3.21) with higher-order
contributions, we have

(3.27) \epsilon \scrI 2(\Lambda )\equiv 

\left(  \Lambda 
\sum 
n\geq 0

( - 1)n\Lambda n

\right)  4\pi \epsilon D\Gamma 0

| \Omega | 

N\sum 
j=1

\ell j\scrG (0)
j0 =

\Lambda 

1+\Lambda 

4\pi \epsilon D\Gamma 0

| \Omega | 

N\sum 
j=1

\ell j\scrG (0)
j0 .

Finally, combining the middle term of the second line of (3.21) with high-order con-
tributions yields

\epsilon \scrI 3(\Lambda )\equiv  - 

\left(  \Lambda 
\sum 
n\geq 0

( - 1)n\Lambda n

\right)  4\pi \epsilon D
\=\ell 

N\sum 
j,k=1

\ell j\ell k\widehat \Phi k

\biggl[ 
G0(x,xj) + \scrG (0)

kj

\biggr] 

+\Lambda 2
\sum 
m\geq 0

(m+ 1)( - \Lambda )m
4\pi \epsilon D
\=\ell 2

N\sum 
i,j,k=1

\ell i\ell j\ell k\widehat \Phi i\scrG (0)
kj

= - \Lambda 

1+\Lambda 

4\pi \epsilon D
\=\ell 

N\sum 
j,k=1

\ell j\ell k\widehat \Phi k

\biggl[ 
G0(x,xj) + \scrG (0)

kj

\biggr] 

+
\Lambda 2

(1 +\Lambda )2
4\pi \epsilon D

\=\ell 
[\Phi  - \Gamma /| \Omega | ]

N\sum 
j,k=1

\ell j\ell k\scrG (0)
kj .(3.28)
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ACCUMULATION TIME OF 3D DIFFUSION 871

We have used the following results for geometric series:

\Lambda 
\sum 
m\geq 0

( - \Lambda )m =\Lambda (1 - \Lambda +\Lambda 2  - . . . - ) =
\Lambda 

1+\Lambda 
,(3.29a)

\Lambda 2
\sum 
m\geq 0

(m+ 1)( - \Lambda )m =\Lambda 2(1 - 2\Lambda + 3\Lambda 2  - . . . - ) = \Lambda 2 d

d\Lambda 

\Lambda 

1+\Lambda 
=

\Lambda 2

(1 +\Lambda )2
.

(3.29b)

Having performed the various partial summations, (3.21) can be rewritten in the more
compact form

s\widetilde u(x, s)\sim \Gamma 0

| \Omega | 

\biggl\{ 
1 - 4\pi \epsilon D

N\sum 
j=1

\ell j\scrG (0)
j0

\biggr\} 
+ 4\pi \epsilon D

N\sum 
j=1

\ell j \widehat \Phi jG0(x,xj)

+ \scrI 1(\Lambda ) + \epsilon \scrI 2(\Lambda ) + \epsilon \scrI 3(\Lambda ) + s\scrV (x) +O(\epsilon 2, s2).(3.30)

3.2. Steady state and accumulation time. We can now safely take the limit
s \rightarrow 0 for fixed \epsilon > 0 in (3.30), since \Lambda \rightarrow \infty and \Lambda /(1 + \Lambda ) \rightarrow 1. This yields the
following asymptotic expansion of the steady state to O(\epsilon ):

u\ast (x) = lim
s\rightarrow 0

s\widetilde u(x, s)\sim \Gamma 0

| \Omega | 
+

1
\=\ell 

N\sum 
j=1

\ell j \widehat \Phi j + 4\pi \epsilon D

N\sum 
j=1

\ell j \widehat \Phi jG0(x,xj)

(3.31)

 - 1
\=\ell 

\biggl\{ 
4\pi \epsilon D

N\sum 
j,k=1

\ell j\ell k\widehat \Phi k

\biggl[ 
G0(x,xj) + \scrG (0)

kj

\biggr] \biggr\} 
+

4\pi \epsilon D
\=\ell 

1
\=\ell 

N\sum 
i=1

\ell i\widehat \Phi i

N\sum 
j,k=1

\ell j\ell k\scrG (0)
kj .

Finally, noting that \widehat \Phi j = \Phi j  - \Gamma 0/| \Omega | , we see that any dependence on the initial
distribution u(x,0) = \Gamma 0\delta (x - x0) vanishes and

u\ast (x)\sim \Phi + 4\pi \epsilon D

N\sum 
j=1

\ell j [\Phi j  - \Phi ]G0(x,xj) - 
4\pi \epsilon D

\=\ell 

N\sum 
j,k=1

\ell j\ell k[\Phi k  - \Phi ]\scrG (0)
kj +O(\epsilon 2).

(3.32)

Equation (3.32) is identical to the result obtained by directly solving the steady-state
diffusion equation using matched asymptotics [11, 13]. However, the advantage of
working in Laplace space is that one can also calculate the accumulation time.

In order to calculate the accumulation time according to (2.7), we need to differ-
entiate both sides of (3.30) with respect to s:

ds\widetilde u(x, s)
ds

\sim \scrV (x) + d\Lambda 

ds

d

d\Lambda 
(\scrI 1(\Lambda ) + \epsilon \scrI 2(\Lambda ) + \epsilon \scrI 3(\Lambda )) +O(\epsilon 2, s).(3.33)

Using the results

d\Lambda 

ds
= - 1

s2
4\pi \epsilon D\=\ell 

| \Omega | 
= - \Lambda 

s
,

d

d\Lambda 

\Lambda n

(1 +\Lambda )n
= - n\Lambda n - 1

(1 +\Lambda )n+1
,

it follows that

(3.34)
d

ds

\Lambda n

(1 +\Lambda )n
= - 1

s

n\Lambda n

(1 +\Lambda )n+1
\rightarrow  - n| \Omega | 

4\pi \epsilon D\=\ell 
as s\rightarrow 0.
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872 PAUL C. BRESSLOFF

Therefore, using (3.25)--(3.28) we have

\scrF (x)\equiv d \widetilde F (x, s)

ds

\bigm| \bigm| \bigm| \bigm| \bigm| 
s=0

=
1

4\pi \epsilon D\=\ell 
[\Gamma 0  - | \Omega | \Phi ] + \Gamma 0G0(x,x0) - 

\Gamma 0

\=\ell 

N\sum 
j=1

\ell j\scrG (0)
j0

+
| \Omega | 
\=\ell 2

N\sum 
j,k=1

\ell j\ell k\widehat \Phi k

\biggl[ 
G0(x,xj) + \scrG (0)

kj

\biggr] 
 - 2

\=\ell 2
[| \Omega | \Phi  - \Gamma 0]

N\sum 
j,k=1

\ell j\ell k\scrG (0)
kj +O(\epsilon )

=
1

4\pi \epsilon D\=\ell 
[\Gamma 0  - | \Omega | \Phi ] + \Gamma 0G0(x,x0)

 - \Gamma 0

\=\ell 

N\sum 
j=1

\ell jG0(xj ,x0) - 
\Gamma 0  - | \Omega | \Phi 

\=\ell 

N\sum 
j=1

\ell jG0(x,xj)(3.35)

+
\Gamma 0  - | \Omega | \Phi 

\=\ell 2

N\sum 
j,k=1

\ell j\ell k\scrG (0)
kj +

| \Omega | 
\=\ell 2

N\sum 
j,k=1

\ell j\ell k[\widehat \Phi k  - \Phi ]\scrG (0)
kj +O(\epsilon ).

We have used \scrV (x) = \Gamma 0G0(x,x0) +O(\epsilon ). Since \widehat \Phi k =\Phi k  - \Gamma 0/| \Omega | , it follows that

\scrF (x)\sim \Gamma 0  - | \Omega | \Phi 
4\pi \epsilon D\=\ell 

+\scrF 0(x) +O(\epsilon )(3.36)

with

\scrF 0(x) = \Gamma 0G0(x,x0) - 
\Gamma 0

\=\ell 

N\sum 
j=1

\ell jG0(xj ,x0) - 
\Gamma 0  - | \Omega | \Phi 

\=\ell 

N\sum 
j=1

\ell jG0(x,xj)(3.37)

+
\Gamma 0  - | \Omega | \Phi 

\=\ell 2

N\sum 
j,k=1

\ell j\ell k\scrG (0)
kj +

| \Omega | 
\=\ell 2

N\sum 
j,k=1

\ell j\ell k[\widehat \Phi k  - \Phi ]\scrG (0)
kj +O(\epsilon ).

Finally, substituting for \scrF (x) into (2.7) and using (3.32) for u\ast (x) yields the
following result for the accumulation time for diffusion in a 3D singularly perturbed
domain:

T (x) =
| \Omega | \Phi  - \Gamma 0

4\pi \epsilon D\=\ell \Phi 
 - \scrF 0(x)

\Phi 

+
| \Omega | \Phi  - \Gamma 0

\=\ell \Phi 
2

\left[  N\sum 
j=1

\ell j [\Phi j  - \Phi ]G0(x,xj) - 
1
\=\ell 

N\sum 
j,k=1

\ell j\ell k[\Phi k  - \Phi ]\scrG (0)
kj

\right]  
+O(\epsilon ).(3.38)

The expression for the accumulation time simplifies considerably in the case of N
identical interior boundary conditions, \Phi j = \Phi , and identical hole sizes \ell j = \ell , j =
1, . . . ,N :

T (x) =
| \Omega | \Phi  - \Gamma 0

4\pi \epsilon DN\ell \Phi 
 - \Gamma 0

\Phi 

\left[  G0(x,x0) - 
1

N

N\sum 
j=1

G0(xj ,x0)

\right]  (3.39)

 - | \Omega | \Phi  - \Gamma 0

N\Phi 

\biggl\{ N\sum 
j=1

G0(x,xj) - 
1

N

N\sum 
i,j=1

\scrG (0)
ij

\biggr\} 
+O(\epsilon ).
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ACCUMULATION TIME OF 3D DIFFUSION 873

In either case, the leading-order contribution to T (x) is the constant

(3.40) \mu 0 \equiv 
| \Omega | \Phi  - \Gamma 0

4\pi \epsilon N\Phi 
.

Note that \mu 0 > 0 due to the condition (2.3), which ensures that the accumulation
time is positive. Moreover, T (x) \rightarrow \infty as \epsilon \rightarrow 0. This singular behavior as the size
of the holes shrinks to zero is related to the fact that lim\epsilon \rightarrow 0 u

\ast (x) = \Phi , whereas the
steady state in the absence of any holes is \Gamma 0/| \Omega | . In other words, the limits \epsilon \rightarrow 0
and t\rightarrow \infty do not commute.

3.3. Comparison with the accumulation time for 2D diffusion. In our
previous paper [9], we developed an analogous asymptotic analysis of the accumula-
tion time T (x) for diffusion in 2D singularly perturbed domains. However, the details
of the matched asymptotic analysis differed considerably from the 3D case, reflect-
ing differences in the singular nature of the modified Helmholtz Green's function; see
(1.1). Consequently, in 2D we obtained an asymptotic expansion of T (x) in powers
of \nu =  - 1/ ln \epsilon at O(1) in \epsilon . On the other hand, taking the small-s limit was rela-
tively straightforward. Surprisingly, in spite of significant differences in the analyses,
the O(1/\epsilon ) and O(1) contributions to T (x) in (3.38) are formally identical to the
corresponding terms in 2D under the mappings (from 3D to 2D)

4\pi D\rightarrow 2\pi D, \epsilon \ell j \rightarrow \nu j \equiv  - 1

ln \epsilon \ell j
, \epsilon \=\ell \rightarrow 

N\sum 
j=1

\nu j ;

see equations (4.34)--(4.37) of [9].
As originally shown by Ward and Keller [25] within the context of 2D and 3D

eigenvalue problems, it is possible to generalize the asymptotic analysis of the ac-
cumulation time to more general hole shapes such as ellipsoids by applying classical
results from electrostatics. For example, given a general shape \scrU j \subset \BbbR 3, the solution
to (3.3a) is given by (3.6) with w(y) having the far-field behavior

(3.41) w(y)\sim Cj

| y| 
+

Pj \cdot y
| y| 3

+ \cdot \cdot \cdot as | y| \rightarrow \infty .

Here Cj is the capacitance andPj the dipole vector of an equivalent charged conductor
with the shape \scrU j . (For a sphere, Cj = \ell j and Pj = 0). It turns out that the O(\epsilon )
and O(\epsilon 2) contributions to the accumulation time only depend on Cj so that (3.38)
still holds on making the replacements \ell j \rightarrow Cj for j = 1, . . . ,N . Similarly, in 2D one
simply sets \nu j = - 1/ ln \epsilon dj with dj the associated logarithmic capacitance.

4. Eigenfunction expansion. Characterizing the relaxation to steady state in
terms of the x-dependent accumulation time T (x) is significantly different from the
standard method based on an eigenvalue expansion [25, 24, 12]. Consider the set of
eigenpairs of the negative Laplacian in the given singularly perturbed domain, which
are denoted by (\lambda n, \phi n(x)) for n\geq 0 with 0<\lambda 0 <\lambda 1 <\lambda 2 < \cdot \cdot \cdot and\int 

\Omega \setminus \scrU a

\phi n(x)\phi m(x)dx= \delta n,m.

Then

(4.1) u(x, t) - u\ast (x) =
\sum 
n\geq 0

cn\phi n(x)e
 - \lambda nt \approx c0\phi 0(x)e

 - \lambda 0t,
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874 PAUL C. BRESSLOFF

where \lambda 0 is the smallest nonzero eigenvalue. Since \lambda 0 =O(\epsilon ), it can be calculated by
solving the singularly perturbed BVP [25, 11]

D\nabla 2\phi 0 + \lambda 0\phi 0 = 0, x\in \Omega \setminus \scrU a, \nabla \phi 0 \cdot n= 0, x\in \partial \Omega ,

\int 
\Omega \setminus \scrU a

\phi 2
0(x)dx= 1,(4.2a)

\phi 0 = 0, x\in \partial \scrU j , j = 1, . . . ,N.(4.2b)

Following [11], we expand the principal eigenvalue as

(4.3) \lambda 0 = \epsilon \lambda 
(1)
0 + \epsilon 2\lambda 

(2)
0 + \cdot \cdot \cdot .

Similarly, the outer eigenfunction is expanded as

(4.4) \phi 0 = \phi 
(0)
0 + \epsilon \phi 

(1)
0 + \epsilon 2\phi 

(2)
0 + \cdot \cdot \cdot ,

where \phi 
(0)
0 = | \Omega |  - 1/2. In particular,

D\nabla 2\phi 
(1)
0 = - \lambda 

(1)
0 \phi 

(0)
0 , x\in \Omega \setminus \{ x1, . . . ,xN\} , \nabla \phi 

(1)
0 \cdot n= 0, x\in \partial \Omega ,

(4.5a)

\int 
\Omega 

\phi 
(1)
0 (x)dx= 0,

D\nabla 2\phi 
(2)
0 = - \lambda 

(2)
0 \phi 

(0)
0  - \lambda 

(1)
0 \phi 

(1)
0 , x\in \Omega \setminus \{ x1, . . . ,xN\} , \nabla \phi 

(2)
0 \cdot n= 0, x\in \partial \Omega ,

(4.5b)

\int 
\Omega 

\phi 
(2)
0 (x)dx= - 1

2\phi 
(0)
0

\int 
\Omega 

[\phi 
(1)
0 (x)]2dx.

The matching of \phi 
(1)
0 and \phi 

(2)
0 with the inner solution around each hole will yield

singularity conditions as x \rightarrow xj , j = 1, . . . ,N . The inner eigensolution is expanded
as U =U0 + \epsilon U1 + \cdot \cdot \cdot with

\nabla 2
\bfy Uk = 0, | y| > \ell j , Uk(y) = 0, | y| = \ell j ,(4.6)

for k \leq 2. The near-field behavior of the outer eigenfunction as x\rightarrow xj has to match
the far-field behavior of the inner solution as y= \epsilon  - 1| x - xj | \rightarrow \infty .

The first matching condition is U0 \rightarrow \phi 
(0)
0 as | y| \rightarrow \infty , which means that

(4.7) U0 = \phi 
(0)
0 (1 - w(y)), w(y) =

\ell j
| y| 

.

The singularity condition for \phi 
(1)
0 is thus \phi 

(1)
0 \sim  - \phi 

(0)
0 \ell j/| x  - xj | as x \rightarrow xj , which

implies that

(4.8) \phi 
(1)
0 = - 4\pi D\phi 

(0)
0

N\sum 
j=1

\ell jG0(x,xj),

where G0 is the 3D Green's function satisfying (3.19). Requiring that the solution for

\phi 
(1)
0 satisfies (4.5a) yields

(4.9) \lambda 
(1)
0 =

4\pi D

| \Omega | 

N\sum 
j=1

\ell j .
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ACCUMULATION TIME OF 3D DIFFUSION 875

The near-field behavior of \phi 
(1)
0 is

(4.10) \phi 
(1)
0 \sim  - \ell j\phi 

(0)
0

| x - xj | 
 - 4\pi D\phi 

(0)
0

N\sum 
k=1

\ell k\scrG (0)
jk .

Matching with the far-field behavior of U1 gives

(4.11) U1 = - 4\pi D\phi 
(0)
0

N\sum 
k=1

\ell k\scrG (0)
jk

\biggl( 
1 - \ell j

| y| 

\biggr) 
.

It follows that the singular behavior of \phi 
(2)
0 is

(4.12) \phi 
(2)
0 \sim  - \phi 

(0)
0

\ell j\chi j

| x - xj | 
as x\rightarrow xj , \chi j = 4\pi D

N\sum 
k=1

\ell k\scrG (0)
jk ,

which means that \phi 
(2)
0 satisfies the equation

D\nabla 2\phi 
(2)
0 = - \lambda 

(2)
0 \phi 

(0)
0  - \lambda 

(1)
0 \phi 

(1)
0  - 4\pi D

N\sum 
j=1

\ell j\chi j\delta (x - xj), x\in \Omega ,

\nabla \phi 
(2)
0 \cdot n= 0, x\in \partial \Omega .(4.13)

Applying the divergence theorem with
\int 
\Omega 
\phi 
(1)
0 (x)dx= 0 yields

(4.14) \lambda 
(2)
0 = - 4\pi D

| \Omega | 

N\sum 
j=1

\ell j\chi j .

Hence, the principal eigenvalue is given by

(4.15) \lambda 0 =
4\pi \epsilon D

| \Omega | 

\left(  N\sum 
j=1

\ell j  - 4\pi \epsilon D

N\sum 
j,k=1

\ell j\ell k\scrG (0)
jk

\right)  +O(\epsilon 3).

The inverse of the principal eigenvalue can be identified as a global measure of the
relaxation rate [25, 11]:

(4.16) \tau 0 \equiv 
1

\lambda 0
=

| \Omega | 
4\pi \epsilon D\=\ell 

\left(  1 +
4\pi \epsilon D

\=\ell 

N\sum 
j,k=1

\ell j\ell k\scrG (0)
jk

\right)  +O(\epsilon ).

Note that, in contrast to the accumulation time, \tau 0 is independent of the initial density
and the boundary values \Phi j . As expected, \tau 0 \rightarrow \infty as \epsilon \rightarrow 0. One important advantage
of the accumulation time, beyond the fact that it includes local information about
the relaxation process, is that it can be calculated without recourse to a spectral
decomposition, and thus does not rely on the existence of a sufficiently large spectral
gap. However, one could use the eigenfunction expansion to obtain an approximation
of the accumulation time in terms of the principal eigenvalue and eigenfunction. That
is, substituting (4.1) into (2.4) implies that

(4.17) T (x) = - 1

u\ast (x)

\int \infty 

0

\sum 
n\geq 0

\phi n(x)e
 - \lambda ntdt= - 

\infty \sum 
n=0

cn\phi n(x)

\lambda nu\ast (x)
,
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876 PAUL C. BRESSLOFF

which is nonsingular since \lambda n > 0 for all n \geq 0. Keeping only the first term in the
series expansion then yields the truncated accumulation time

(4.18) T0(x) = - c0\phi 0(x)

\lambda 0u\ast (x)
.

For simplicity, consider the homogeneous case \Phi j =\Phi and \ell j = \ell for all j = 1, . . . ,N ,
such that u\ast (x) =\Phi . The principal eigenvalue and eigenfunction have the asymptotic
expansions

(4.19) \lambda 0 =
4\pi \epsilon DN\ell 

| \Omega | 

\left(  1 - 4\pi \epsilon D\ell 

N

N\sum 
j,k=1

\scrG (0)
jk

\right)  +O(\epsilon 3)

and

\phi 0(x)\sim 
1\sqrt{} 
| \Omega | 

 - 4\pi \epsilon D\ell \sqrt{} 
| \Omega | 

N\sum 
j=1

G0(x,xj) +O(\epsilon 2).(4.20)

It remains to calculate the coefficient c0. Setting t= 0 in (4.1) gives

(4.21) \Gamma 0\delta (x - x0) - \Phi =

\infty \sum 
n=0

cn\phi n(x).

Multiplying both sides by \phi 0(x), integrating with respect to x, and imposing or-
thonormality of the eigenfunctions yields

(4.22) c0 =\Gamma 0\phi 0(x0) - \Phi 

\int 
\Omega 

\phi 0(x)dx.

Substituting the solution for \phi 0(x) and using the condition
\int 
\Omega 
G0(x| x0)dx = 0, we

have

c0 =
\Gamma 0  - | \Omega | \Phi \sqrt{} 

| \Omega | 
 - 4\pi \epsilon D\ell \sqrt{} 

| \Omega | 

N\sum 
j=1

G0(x0,xj) +O(\epsilon 2).(4.23)

Combining our various results and comparing with (3.39) for the full accumulation
time shows that

(4.24) T (x)\sim T0(x) - 
\Gamma 0

\Phi 
G0(x,x0) +O(\epsilon ).

It can be seen that the difference between the two is maximized in a neighborhood of
the initial position x0. Again, we obtained an analogous result for the accumulation
time in 2D up to O(\nu ) [9].

5. Examples.

5.1. Single target in the unit sphere. As our first example, consider the 3D
configuration shown in Figure 5.1(a). The domain \Omega is taken to be the unit sphere
with a single hole placed at x1 = (a,0,0). The boundary condition is

(5.1) \nabla u(x, t) \cdot n= 0, | x| = 1, u(x, t) = 1, | x - x1| = \epsilon .
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ACCUMULATION TIME OF 3D DIFFUSION 877

x0

x1

x2

x3

2p/3

2p/3x
0

x
1

y

x

z x

(a) (b)

φ

θ

Fig. 5.1. Holes in the unit sphere. (a) Single spherical hole whose center x1 is located along the
x-axis of the unit sphere, and the initial concentration is localized at the origin, x0 = (0,0,0). (b)
Triplet of identical spherical holes evenly distributed in the horizontal mid-plane of the unit sphere
(\theta = \pi /2).

We also take \Phi 1 = 1 and \ell 1 = 1. The initial concentration is localized at the origin of
the sphere

(5.2) u(x,0) = \Gamma 0\delta (x), \Gamma 0 <
4\pi 

3
.

The 3D Neumann Green's function in the unit sphere is known explicitly [11]:

G0(x,\bfitxi ) =
1

4\pi | x - \bfitxi | 
+

1

4\pi | x| r\prime 
+

1

4\pi 
ln

\biggl( 
2

1 - | x| | \bfitxi | cos\theta + | x| r\prime 

\biggr) 
+

1

6| \Omega | 
(| x| 2 + | \bfitxi | 2) - 7

10\pi 
,(5.3)

where | \Omega | = 4\pi /3, and

cos\theta =
x \cdot \bfitxi 
| x| | \bfitxi | 

, x\prime =
x

| x| 2
, r\prime = | x\prime  - \bfitxi | .

The final constant is chosen so that
\int 
\Omega 
G(x,\bfitxi )dx= 0. It follows from (3.39) that the

accumulation time is

T (x) =
4\pi /3 - \Gamma 0

4\pi \epsilon D
 - \Gamma 0 [G0(x,x0) - G0(x1,x0)]

 - [4\pi /3 - \Gamma 0][G0(x,x1) - R0(x1,x1)] +O(\epsilon ).(5.4)

In Figure 5.2 we show contour plots of the full accumulation time T (x), x =
(x, y, z), in the x -y plane for several horizontal sections of the sphere (fixed z). In the
plane containing the initial position x0 and the center x1 of the spherical hole, we see
that there are two minima of T (x) located around the points x0 and x1, respectively.
Note that T (x) is singular at these points. The singularity in T (x) as x \rightarrow x0 is
a consequence of the initial condition involving a Dirac delta function. It is easily
removed by taking the initial concentration to be a strongly localized Gaussian, for
example. The singularity as x \rightarrow x1 is due to the fact that we define T (x) in terms
of the outer solution; it would be resolved by considering the corresponding inner

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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878 PAUL C. BRESSLOFF

(c)
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θ = π/3 θ = π/6

(a)

Fig. 5.2. Accumulation time T (x) in the unit sphere with a single hole; see Figure 5.1(a). The
accumulation time is sampled across several horizontal sections of the sphere as indicated in (a).
This generates contour plots of T (x) in the x -y plane for x = r(sin\theta cos\phi , sin\theta sin\phi . cos\theta ) with
0 \leq r \leq 1, 0 \leq \phi < 2\pi , and fixed \theta : (b) \theta = \pi /2; (c) \theta = \pi /3; (d) \theta = \pi /6. Other parameter values
are a= 0.4, \Gamma 0 = 1, \epsilon = 0.01, and D= 1.
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25

(b)

Fig. 5.3. Accumulation time in the unit sphere with a single hole as shown in Fig-
ure 5.1(a). Contour plots of the truncated accumulation time T0(x) in the x -y plane for x =
r(sin\theta cos\phi , sin\theta sin\phi . cos\theta ) with 0\leq r\leq 1, 0\leq \phi < 2\pi , and fixed \theta : (a) \theta = \pi /2; (b) \theta = \pi /6. Other
parameter values are the same as in Figure 5.2.
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Fig. 5.4. Accumulation time in the unit sphere with a single hole as shown in Fig-
ure 5.1(a). Contour plots of the truncated accumulation time T0(x) in the x -y plane for x =
r(sin\theta cos\phi , sin\theta sin\phi . cos\theta ) with 0\leq r\leq 1, 0\leq \phi < 2\pi , and fixed \theta : (a) \theta = \pi /2; (b) \theta = \pi /6. Other
parameter values are the same as in Figure 5.2.

solution. In Figure 5.3 we present corresponding contour plots for the truncated
accumulation time T0(x). The reduction in the dependence on the initial position x0

is clearly seen.

5.2. Triplet of targets in the unit sphere. Now consider three identical
holes distributed at the points x1 = (a,0,0), x2 = a(cos 2\pi /3, sin2\pi /3,0), and x2 =
a(cos 4\pi /3, sin4\pi /3,0) in the unit sphere with a= 0.4; see Figure 5.1(b). The bound-
ary conditions are

(5.5) \nabla u(x, t) \cdot n= 0, | x| = 1, u(x, t) = 1, | x - x1,2,3| = \epsilon .

The initial concentration is localized at a point on the y-axis so that

(5.6) u(x,0) = \Gamma 0\delta (x - x0), x0 = (0, b), 0< b< 1,\Gamma 0 <\pi .

It follows from (3.39) that the accumulation time for three identical targets is

T (x) =
4\pi /3 - \Gamma 0

12\pi \epsilon D
 - \Gamma 0

\biggl[ 
G0(x,x0) - 

1

3

3\sum 
j=1

G0(xj ,x0) - 
4\pi /3 - \Gamma 0

3

\biggl\{ 3\sum 
j=1

G0(x,xj)

 - 1

3

\biggl[ 3\sum 
j=1

R0(xj ,xj) +
\sum 

i,j,j \not =i

G0(xi,xj)

\biggr\} \biggr] 
+O(\epsilon ).

In Figure 5.4 we show contour plots of the O(1) accumulation time T (x), x= (x, y, z),
in the x -y plane for \theta = \widetilde p/2 and \theta = 2\pi /5. As expected, the plots are symmetric with
respect to \phi -rotations by multiples of 2\pi /3. There are local minima of T (x) in the
vicinity of the holes and x0.

6. Discussion. In this paper, we continued the development of a method for
characterizing the relaxation to a nontrivial steady state of diffusion in singularly
perturbed domains, which is based on the notion of an accumulation time. The clas-
sical approach is to identify the relaxation rate with the principal nonzero eigenvalue
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880 PAUL C. BRESSLOFF

of the negative Laplacian [25, 24]. However, this only yields a global measure of the
relaxation rate and loses all information about the initial position. Moreover, it relies
on the existence of a sufficiently large spectral gap. The accumulation time, on the
other hand, can be obtained by solving the diffusion equation in Laplace space with-
out any recourse to a spectral decomposition. (One can also consider an eigenfunction
expansion of the accumulation time itself, but such an approximation still relies on a
spectral gap.) Combining our analysis of diffusion in 3D singularly perturbed domains
with our previous study of 2D diffusion [9] provides a solid foundation for investigat-
ing other relaxation processes in singularly perturbed domains. For example, one
could consider more general exterior and interior boundary conditions, provided that
there existed a unique steady-state solution. For example, modifying the exterior
boundary condition would change the definition of the Green's function used in the
outer solution, whereas changing the conditions on the hole boundaries would modify
the inner solution and the corresponding singularity conditions for the outer solution.
Another generalization, as indicated in section 3.3, would be to consider nonspherical
hole shapes, provided that the corresponding shape capacitances could be determined
[25, 24]. Finally, one could extend the underlying diffusion equation by including
advection terms, for example.

Another class of nontrivial steady state arises within the context of diffusion under
stochastic resetting. The simplest example of such a process is a Brownian particle
whose position is reset randomly in time at a constant rate r (Poissonian resetting)
to its initial position x0 [14, 15, 16]. One major finding is that the probability density
converges to a nonequilibrium stationary state (NESS) that maintains nonzero proba-
bility currents. In addition, the approach to the stationary state exhibits a dynamical
phase transition, which takes the form of a traveling front that separates spatial re-
gions for which the probability density has relaxed to the NESS from those where it
has not. Since the trajectories contributing to the transient region are rare events,
one can establish the existence of the phase transition by carrying out an asymptotic
expansion of the exact solution [20]. It turns out that this transition can also be
understood in terms of the spatial variation of the accumulation time for relaxation
to the NESS [8]. That is, T (x)\sim | x - x0| /

\surd 
4rD for | x - x0| \gg 

\sqrt{} 
D/r.
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