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ABSTRACT 

 

This dissertation examines how firms’ selection of technological and R&D opportunities shape 

the performance of their innovation efforts. Managers select R&D investments in complex and 

uncertain environments where it is difficult to learn from past decisions. I examine this 

challenge using empirical and agent-based modelling methods and by focusing on three 

interrelated aspects: managers’ individual learning processes, the adaptation of mental 

representations in complex environments, and the role of distributed expertise in group 

evaluations. In the first chapter, I propose an alternative explanation to how managers learn 

from experience that does not involve feedback and that is thus applicable to contexts where 

learning from feedback is difficult. I test this novel learning mechanism, termed ‘representation 

learning’, by analysing a large proprietary dataset of patent evaluations and termination 

decisions made by managers at a Fortune 500 firm. The second chapter explores further 

implications for performance of representation learning by means of an agent-based model of 

representation and policy search in rugged landscapes. This study examines how different 

representation search strategies affect decision-makers’ adaptation in complex environments. 

Finally, the third chapter explores the performance of group evaluation processes when 

evaluators differ in the depth and breadth of their knowledge of the technologies being 

evaluated. This research contributes to management literature by shedding light on the 

cognitive processes underlying learning and decision-making in uncertain and complex 

environments. These findings also have practical implications for strategy research and practice 

concerning the management of uncertain R&D and technology investments. 
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INTRODUCTION 

 

This dissertation examines how firms’ selection of technological and R&D opportunities shape 

the performance of their innovation efforts. The challenge managers face when selecting R&D 

investments is determined by the interplay of two fundamental issues. On the one hand, the 

commercial or strategic value of R&D opportunities is uncertain and depends on multiple 

interdependent factors. On the other, the extended time lags between investments and 

commercialisation make it difficult to learn from past decisions. Hence, managers rely on 

combinations of portfolio approaches and group decision processes to select uncertain 

technologies and R&D opportunities. 

 
I study this challenge by examining individual and group decision processes. The first two 

chapters of this dissertation focus on the individual cognition of managers and on how they 

learn in these contexts. The third chapter examines how the diverse expertise of evaluators 

contributes to the performance of group evaluation processes. 

 
In Chapter 1, I build on the managerial cognition and cognitive science literatures to derive a 

learning mechanism that can explain learning in contexts where feedback is noisy or 

unobserved. I propose that the relationship between decision experience and performance is 

mediated by changes in the structure of managers’ mental representations. I test my theoretical 

predictions with a large dataset of written patent evaluations made by managers at a Fortune 

500 firm between 1995 and 2015.  

 
Chapter 2 explores further implications for performance of my proposed learning mechanism 

with an agent-based model. This study shows how decision-makers learn by incrementally 

refining simple mental representations and balancing the trade-offs between broad and narrow 

representation search strategies.  
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Finally, Chapter 3 leverages the above empirical setting to study the performance of group 

evaluations. Specifically, I explore the boundary conditions of the assumption that greater 

diversity of expertise among evaluators ensures broader access to knowledge and improves the 

quality of group decisions. 

 

In Chapter 1 - “Representation Learning: How Individuals Learn when Feedback is Noisy or 

Unobserved”, we examine the decision performance of managers who routinely evaluate R&D 

opportunities. Performance feedback is often noisy or delayed in these contexts due to large 

time lags between investments and commercialisation. We ask how learning from experience 

can be explained when feedback is unobserved or has low informative value.  

 
To address this question, we develop a learning mechanism that explains how cognition can 

adapt to the environment regardless of the quality of feedback. While uncertainty is generally 

thought to impair learning by deteriorating the informative value of feedback, we argue that 

the persistent cognitive costs that individuals sustain when making repeated, uncertain 

decisions induce them to refine their understanding of the environment’s causal structure – i.e., 

to refine the categories of their mental representations. This happens regardless of whether 

feedback is noisy or unobserved because, as research in the neuro-cognitive sciences suggests, 

mental representations adapt to minimise the cognitive costs of decisions. In turn, changes in 

representations result in improved decision performance, especially when individuals are 

initially inexperienced, and representations are underspecified. Performance improves when 

representations adapt because new conceptual distinctions are constrained by prior 

observations and background knowledge and are consistent with current representations.  

 
We find support for this learning mechanism, which we refer to as representation learning, in 

the patent evaluation context. We measure individuals’ mental representations by analysing 

evaluation statements that portfolio managers in a Fortune 500 high-tech firm were required to 
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write for each patent of the firm’s portfolio. We developed NLP tools to code the evaluation 

criteria used by the firm’s managers – or patent engineers - in over 40,000 evaluation statements 

and derive a measure of their cognitive complexity based on these criteria. We interviewed the 

firm’s patent engineers and analysed internal documentation to further validate the coded 

criteria. This measure allows us to observe changes in mental representation over time for each 

individual. Finally, we collected data on commercialisation outcomes for all the patents in the 

portfolio, which we can compare against patent engineers’ forecasts to observe both errors of 

commission (type I) and errors of omission (type II) over time.  

 
In line with our proposed theory, we find that patent engineers with less evaluation experience 

held simpler mental representations and used increasingly refined and complex representations 

as the number of evaluations increased. In turn, we find that patent engineers more accurately 

forecasted the future value of patents as they accumulated evaluation experience and that 

changes in their mental representations mediated these performance improvements.  

 
These findings have implications for our understanding of experiential learning and the role of 

mental representation in guiding decisions under uncertainty. Contrary to reinforcement 

learning, representation learning can explain how decision-makers learn from experience 

regardless of whether performance feedback is observed. While research has assumed that 

noisy or delayed feedback impairs learning, this mechanism implies that conditions of absent 

or poor feedback can also foster learning by inducing the adaptation of mental representations.  

 
Thus, this study also contributes to the literature on mental representation by showing that 

representations adapt towards greater complexity in contexts characterised by low-quality 

feedback. A central question in this literature pertains to the performance implications of 

different degrees of representational complexity in complex environments. This question has 

prompted a debate about whether simple rules and heuristics rather than more accurate and 
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complex representations may offer superior performance. We inform this debate by 

emphasising the process by which decision-makers adapt to complex environments by 

developing greater complexity. 

 

In Chapter 2 - “Representation Search Breadth: An Agent-based Simulation of Representation 

Learning, I further explore the performance implications of representation learning using an 

agent-based computational model. An implication of representation learning is that individuals 

face a trade-off between developing highly refined yet narrow representations on the one hand 

and refining their representations to a lower degree yet more broadly across several dimensions 

of representation on the other. For instance, in the patent evaluation context, managers may 

have acquired advanced knowledge of the technological aspects of patents but only a simplified 

understanding of competitive or legal issues. In contrast, other managers with the same level 

of experience may have acquired a less advanced yet more balanced understanding of 

technological, competitive, legal and other dimensions related to patent value. These different 

distributions of expertise are reflected in the structure of managers’ mental representations and 

have performance implications. Managers who are “specialists” in some narrow aspects of a 

decision problem develop a complex understanding of one or few dimensions and have a 

superior capacity to discriminate and identify highly valuable solutions along those 

dimensions. On the contrary, “generalists” show a relatively more limited capacity to identify 

highly valuable solutions but can search more broadly across several dimensions. 

 
A vast literature on the topic presents conflicting views on the implications of specialist and 

generalist knowledge for the identification of superior solutions and opportunities and for the 

outputs of inventive and creative work. The distinction is rooted in the above strategic trade-

off that all decision-makers and creative workers face: either invest limited time entirely within 

a specific knowledge domain and become a specialist in that domain or invest it across several 
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domains and become a generalist. Current research is divided on which strategy leads to 

superior performance, as proponents on each side have presented compelling arguments and 

evidence supporting their views.  

 
I explore the performance implications of broad and narrow representation search strategies in 

an NK model of mental representation and search. The central elements of this model are two 

landscapes, namely the true environment landscape and a simplified representation of it that 

agents can iteratively refine. While the true landscape is fixed during each simulation, agents 

can search for increasingly accurate representations as they adapt to the environment. The main 

parameter of the simulations is the breadth of agents’ representation search strategies. Agents 

can search narrowly and refine their representations across a few dimensions, or they can search 

broadly and refine representations across several dimensions.  

 
I find that the optimal representation search strategy is contingent on the complexity of the 

environment and the level of noise that affects feedback signals. Specifically, contrary to 

previous research, intermediate levels of search breadth are associated with high performance 

only for low to moderate levels of complexity. Highly complex and noisy environments 

demand narrow search strategies, while broad search strategies are optimal at all levels of 

complexity when noise is low or absent. 

 
The second main set of results explores the relationship between the breadth of search strategies 

and the optimal degree of representational complexity. In line with recent findings in this 

research stream, I find that, counterintuitively, less accurate representations can outperform 

more accurate ones – i.e., that the optimal degree of representational complexity does not 

necessarily match the true complexity of the environment. However, I show that less accurate 

representations can outperform more accurate ones only for broad rather than narrow 

representation search strategies. 
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These findings contribute to research on the trade-off between specialist and generalist 

knowledge and the role of representational complexity in guiding adaptation over complex 

environments.  

 

In Chapter 3 - “Group Evaluation Accuracy: The Role of Depth and Breadth of Expertise in 

the Selection of Technologies”, I examine the contingencies relating evaluators’ domain 

expertise to the accuracy of group evaluations of technology. With reference to the empirical 

setting context of Chapter 1, patent engineers were individually responsible for evaluating 

patents but could solicit other evaluators, including the firm’s technology experts and patent 

inventors, to contribute to group evaluations whenever they deemed it necessary. Levering the 

expertise of multiple evaluators is costly but is expected to improve the accuracy of evaluations. 

Specifically, it is generally assumed that greater diversity of expertise among the evaluators 

contributing to group evaluations provides broader access to knowledge and information that 

improves the quality and accuracy of evaluations. 

 
However, the boundary conditions of this assumption remain understudied. Specifically, this 

study examines the above central tenet of group evaluations that diversity of expertise provides 

a wealth of knowledge and perspectives that collectively improve the quality of evaluations. 

 
The main argument I will present is twofold. First, while research characterises expertise 

diversity only in terms of differences between the distributions of expertise of evaluators – i.e., 

in terms of the group’s breadth diversity – I argue that differences between their expertise in 

the technology being evaluated – i.e., the group’s depth diversity – play at least an equally 

important role in determining evaluation accuracy. Second, the effect of depth diversity on 

group accuracy is contingent on depth diversity. High breadth diversity is detrimental to 

accuracy when depth diversity is high but beneficial to accuracy when depth diversity is low. 
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I find empirical support for my predictions. I extend the patent evaluation dataset analysed in 

Chapter 1 with over 5,000 email exchanges between patent engineers and other evaluators 

pertaining to group evaluations. I measure evaluators’ distribution of expertise across 

technology areas as the stock of experience accumulated evaluating patents in each area. I find 

that evaluators with high levels of expertise in the focal technology were more likely to 

overestimate and less likely to underestimate the future value of patents. In turn, groups 

composed of evaluators who all had either high or low expertise in the focal technology – i.e., 

low depth diversity groups - were less likely to evaluate the value of patents accurately than 

groups comprising evaluators with both high and low levels of expertise – i.e. high depth 

diversity groups. Finally, while individual expertise breadth and group breadth diversity were 

not associated with evaluation accuracy in our setting, breadth diversity attenuated the positive 

relationship between depth diversity and accuracy as predicted. That is, the positive effect of 

high depth diversity on accuracy was lower when evaluators had expertise across different 

areas – i.e., when breadth diversity was high. However, high breadth diversity improved 

accuracy when depth diversity was low. 

 
A key implication of these findings is that aggregating more and more diverse knowledge from 

multiple evaluators with unique expertise does not necessarily improve the accuracy of 

evaluations as generally assumed. High diversity of expertise on depth and breadth dimensions 

can be detrimental to group evaluation accuracy. Further, counterintuitively, counterintuitively, 

groups of evaluators who all specialise in the focal technology would benefit not from the 

contributions of other evaluators with expertise but from the contributions of evaluators with 

less or no expertise. 

 
Collectively, these studies contribute to our understanding of the relationship between different 

dimensions of knowledge and expertise and the performance of decisions under uncertainty. 

The first main contribution of this dissertation is to propose a mechanism that explains the 
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adaptation of decision-makers’ mental representations induced by the accumulation of decision 

experience in uncertain environments. Relatedly, this work illustrates some of the performance 

implications of changes in representations and different strategies that decision-makers can 

adopt to refine their understanding of complex decision environments. Secondly, this work 

sheds light on issues related to the aggregation of decision-makers’ knowledge and expertise 

for group evaluations under uncertainty.   
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CHAPTER 1 

 

 

REPRESENTATION LEARNING: HOW INDIVIDUALS LEARN WHEN 

PERFORMANCE FEEDBACK IS NOISY OR UNOBSERVED 

 

 

 

 

 

ABSTRACT 

Reinforcement learning is viewed as the central mechanism in organizational learning 

literature. However, reinforcement learning cannot explain how accumulating decision 

experience can lead to valuable learning when performance feedback is highly noisy or 

unobserved. We build on managerial cognition literature to introduce the notion of 

representation learning, which provides an alternative explanation of learning when individuals 

make repeated decisions under causal ambiguity. We argue that persistent exposure to causal 

ambiguity may promote learning because it induces individuals to refine their mental 

representations of the environment, regardless of whether performance feedback is observed. 

This effect is more pronounced in conditions of higher causal ambiguity and when individuals 

do not already have knowledge of the most relevant dimensions of the environment’s causal 

structure. We find support for our theory in the context of patent evaluation and termination 

decisions, made by 146 intellectual property experts in a high-tech Fortune-500 firm over 15 

years. Our study demonstrates that learning from experience can occur even when performance 

feedback is not observed, and we specify representation learning as an alternative learning 

mechanism, distinct from reinforcement learning. Our insights extend work on deliberate and 

mindful learning and contribute to research on the performance implications of complex 

representations. 
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INTRODUCTION 

Theories of experiential learning, which explain how the accumulation of experience shapes 

current cognition and behaviour, are generally based on the idea of reinforcement learning 

(Levitt and March, 1988; Levinthal and Rerup, 2006; Argote and Miron-Spektor, 2011). The 

notion that individuals and organisations iteratively adjust to performance feedback has been 

widely adopted in the literature (Cyert and March, 1963; Nelson and Winter 1982; Greve, 

2003). Nonetheless, recent work has challenged the assumption that accumulating experience 

generates feedback that systematically leads to valuable learning (Nelson, 2008; March, 2010). 

Experience, defined as the accumulation of task performances (Argote and Miron-Spektor, 

2011), does not necessarily furnish the unambiguous and timely performance feedback that the 

reinforcement mechanism requires. Feedback information may be delayed (Denrell, Fang, and 

Levinthal, 2004; Rahmandad 2008) or difficult to interpret and impute to prior actions (Zollo, 

2009; Levinthal and Rerup, 2021). Performance feedback may even be unobserved by decision 

makers; for instance, when delays are excessively large or due to information asymmetries 

(Mosakowski, 1997). This research maintains that in these situations of noisy or unobserved 

feedback, experiential learning, as explained by reinforcement, can lead to spurious 

associations between actions and outcomes (Denrell, 2008; Zollo, 2009). 

  

The literature has examined alternatives to reinforcement learning, notably deliberate (Zollo 

and Winter, 2002) and mindful (Weick, Sutcliffe, and Obstfeld 1999; Levinthal and Rerup, 

2006) learning. These theories challenge the automaticity associated with reinforcement 

learning. They argue that individuals and organizations decide to invest attention and resources 

in making sense of ambiguous information and improving their understanding of the causal 

structure of the environment. However, these prior contributions do not offer a complete 

explanation of experiential learning when feedback is noisy or unobserved, for two reasons. 

First, the accumulation of experience is not the main explanatory variable in these theories; and 
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second, these theories still implicitly or explicitly explain learning in terms of performance 

feedback. 

 

In this paper, we extend recent thinking on deliberate and mindful learning and propose a new 

mechanism called representation learning, which can explain experiential learning when 

performance feedback is highly noisy or unobserved. We focus on individuals who make 

repeated decisions under causal ambiguity (Mosakowski, 1997). Building on managerial 

cognition literature (Walsh 1995; Gavetti, 2005; Eggers and Kaplan, 2013) and cognitive 

science (Rosch et al., 1976; Radulescu, Shin, and Niv 2021), we propose that learning occurs 

in these contexts by means of changes in the representations that decision makers use to 

understand the causal structure of the environment (Fiske and Taylor, 1984; Barr, Stimpert, 

and Huff, 1992; Martignoni, Menon, and Siggelkow, 2016; Csaszar and Ostler, 2020). We 

show that by repeatedly making decisions – and being exposed to the causal ambiguity that 

decisions entail – individuals learn because they are induced to increase the accuracy of their 

mental representations. Contrary to reinforcement learning, these changes in cognition are 

prompted by repeated perceptions of causal ambiguity and occur regardless of whether 

performance feedback is observed. 

 

Our argument comes in two steps. First, repeated exposure to the cognitive efforts that causal 

ambiguity demands, induces decision makers to refine their mental representations of the 

environment by drawing new conceptual distinctions; this occurs because the degree to which 

mental representations are simplified adapts to the complexity and cognitive demands of a 

decision environment (Rosch and Lloyd, 1978). In turn, new representations induced by this 

process result in a more accurate understanding of the environment’s causal structure, because 

new conceptual distinctions are consistent with prior knowledge (Heit, 1994; Lamberts and 

Shanks, 1997), and are both constrained and validated by observations made during prior 

decision episodes (Murphy and Medin 1985; Lamberts and Shanks, 1997). Overall, we pose 
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that there is a positive effect of decision experience on decision performance, mediated by a 

decision maker’s cognitive complexity1.  

 

We test our conjectures in the context of patent evaluations and termination decisions at a large, 

high-tech Fortune-500 firm. The firm’s intellectual property experts, or patent engineers, 

periodically evaluated all patents in the firm’s portfolio and decided whether to renew or 

terminate them, depending on the patents’ forecasted economic prospects. Interviews with the 

firm’s patent engineers confirmed that they made these decisions individually and without 

receiving any feedback on how the patents eventually performed. As patent engineers 

accumulate decision experience, any improvements in their decision performance – the degree 

to which they accurately forecast a patent’s future prospects – are unlikely to be due to 

reinforcement learning, making this setting suitable for testing our theory. 

 

We find support for our predictions. We analysed a corpus of 40,000 written evaluation 

statements produced by the firm’s patent engineers pertaining to approximately 9,000 patent 

families between 1990 and 2016. We performed causal mapping of the evaluation statements 

to observe individuals’ mental representations (Huff and Jenkins, 2002; Axelrod, 2015) and 

measured longitudinal changes in representations as patent engineers accumulated decision 

experience (number of decisions made). We found that cognitive complexity, i.e., the number 

of conceptual categories and casual relations used by engineers (Gary and Wood, 2011), 

increased with decision experience. Importantly, this effect was stronger the more causal 

ambiguity patent engineers experienced. Further, higher cognitive complexity was positively 

associated with decision performance: patent engineers who used more complex 

representations made better decisions, as assessed against actual patent commercialization 

outcomes. 

 

 
1 We argue below that increases in cognitive complexity and their positive impact on performance are more likely 
to occur when decision makers are inexperienced and unaware of which aspects of a decision problem are most 
relevant, or “uninformed” (Csaszar and Ostler, 2020). 
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This study contributes to our understanding of experiential learning by addressing the central 

question of how accumulating experience generates valuable learning (Morris and Moore 2000; 

Haunschild and Sullivan, 2002). We specify a cognitive mechanism that generalizes the 

possibility of learning from experience to include contexts where reinforcement learning 

cannot provide a complete explanation (Glynn et al. 1994; Gavetti, 2005). These contexts are 

important because decisions with noisy or unobserved feedback are arguably the norm, rather 

than an exception, in organizational environments (Levitt and March, 1988; Brehmer, 1980; 

March, Sproull, and Tamuz, 1991; Nelson, 2008; March, 2010).  

 

One implication of our theory is that experiential learning is not only driven by the objective 

of improving performance as generally assumed, but also by the need to alleviate the cognitive 

costs that causally ambiguous decisions demand. Hence, experiential learning can be 

characterized as changes in cognition or behaviour that aim to maximize not decision 

performance per se, but performance relative to the cognitive costs of decisions. This novel 

view of experiential learning suggests a wider range of explanations of both individual and 

organizational level change and adaptation. For instance, it can explain changes that may or 

may not occur in response to environmental shifts as an attempt to improve or maintain 

efficiency, especially when it is not immediately clear how performance can be improved (Barr, 

Stimpert, and Huff, 1992, Eggers and Kaplan, 2009). 

 

Further, our theory shows that noisy or unobserved feedback is not necessarily detrimental to 

learning as generally assumed. While extant theories argue that decision makers learn 

“superstitiously” when causal ambiguity is high and feedback is difficult to interpret (Zollo, 

2009), the representation learning mechanism shows that these conditions may actually foster 

learning by inducing the development of more accurate representations. 

 

Finally, our study contributes to the large literature on the role of mental representation in 

decision-making, which presents conflicting views of the effects of representational 
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complexity (Csaszar and Ostler, 2020). Research has examined the performance advantages of 

low complexity and fast-and-frugal heuristics (Gigerenzer and Goldstein, 1996; Sull and 

Eisenhardt, 2015), of highly complex and accurate representations (Kiesler and Sproull, 1982; 

Weick, Sutcliffe, and Obstfeld, 1999), and of representations that match the complexity of the 

environment (Ashby, 1956). We inform these views by emphasizing not the performance 

consequences of different degrees of complexity, but the process by which decision makers are 

induced to adjust their representational complexity as they accumulate decision experience. 

 

INDIVIDUAL DECISION-MAKING AND LEARNING IN ORGANIZATIONS 

A central tenet in the literature on organizational learning is that learning is explicitly or 

implicitly explained by way of a reinforcement mechanism2 (Levitt and March, 1988; 

Levinthal and Rerup, 2006). Decision makers adjust their beliefs and behaviours based on 

performance feedback, defined as the difference between the outcomes that decision makers 

observe ex-post and the desired outcomes they intended to achieve ex-ante (March and Simon, 

1958; Cyert and March, 1963; Mosakowski, 1997; Gavetti and Levinthal, 2000; Greve, 2003). 

By implication, reinforcement learning results in improved performance only if performance 

feedback is observed and furnishes intelligible information about the performance 

consequences of past actions3 (Reagans, Argote, and Brooks, 2005; Bae, Biddle, and Park, 

2022). 

 

 
2 Reinforcement learning is not the only proposed mechanism to describe how learning occurs, yet it is 
conceptually central (Levinthal and Rerup, 2006). Other learning mechanisms include social influence effects 
(Bandura, 1977), such as imitation or vicarious learning (March, Sproull, and Tamuz, 1991) 
3 Since we define learning as changes in cognition or behaviour that occur as a function of the accumulation of 
experience, a discussion of changes in decision performance requires additional definitions. Learning can be 
related to decision performance only if an appropriate definition of performance is given that specifies: i) the 
observer who observes outcomes and measures performance; and ii) the procedure used by the observer for 
assessing and comparing performance before and after changes occur. Subject to these specifications, learning is 
said to be positive or beneficial (negative or detrimental) from the perspective of the observer if performance is 
higher (lower) in the final state than in the initial state. This distinction is important because the decision maker 
and other observers, including the researcher, may use different assessment procedures. 
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Reinforcement learning may result in superstitious learning when feedback is difficult to 

interpret, i.e. noisy, with adverse consequences for decision performance (Levitt and March, 

1988; Zollo, 2009). Feedback may become noisy for a variety of reasons (Brehmer, 1980; 

March, Sproull, and Tamuz, 1991; Nelson, 2008; March, 2010). Environmental complexity 

and stochastic effects may provide spurious evidence of the linkages between actions and 

outcomes (Sterman, 1989; Denrell, 2008); outcome and feedback signals may be difficult to 

interpret and to impute to prior actions (Zollo, 2009; Levinthal and Rerup 2021); or feedback 

may be erroneously attributed to recent actions due to time delays between actions and 

observed outcomes (Denrell, Fang, and Levinthal, 2004; Rahmandad, 2008). In the extreme, 

when delays are excessively large or due to information asymmetries, feedback may never be 

observed (Mosakowski, 1997). 

 

Given that performance feedback is often noisy or unobserved in organizational contexts, we 

ask whether alternative mechanisms may explain experiential learning, for two reasons. First, 

empirical observations suggest that improvements of performance do in fact occur in these 

conditions. Research has documented improvements of decision performance in difficult 

learning environments such as new product introductions (Paich and Sterman, 1993; Gary and 

Wood, 2011) and responses to external change (Barr, Stimpert, and Huff, 1992). Experimental 

evidence shows that task performance can systematically increase even when performance 

feedback is never observed (Harris and Rosenthal, 1985; Kluger and DeNisi, 1996), and that 

“individuals will improve their performance on unfamiliar tasks even if they are not given goals 

and feedback” (Greve 2003: 21). 

 

Second, research in the neuro-cognitive sciences has examined complementary mechanisms to 

reinforcement learning. Cognitive psychologists have studied processes of categorization and 

category learning, examining how conceptual categories are acquired and evolve (Rosch et al. 

1976; Kruschke, 1992; Murphy, 2004). Relatedly, recent work in the neuro-cognitive sciences 
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has examined the neural bases of representation or structure learning (Tenenbaum et al., 2011; 

Collins and Frank, 2013; Gershman and Niv, 2013), defined as “the process of learning a useful 

and compact mapping between observations and states in a specific task” where “usefulness 

can be measured by how efficiently one can solve a task given the current representation” 

(Radulescu, Shin, and Niv, 2021: 254). Overall, this work suggests that individuals learn by 

generating cognitively efficient representations of the environment due to mechanisms that do 

not exclusively depend on performance feedback (Rosch and Lloyd, 1978; Radulescu, Niv, and 

Ballard, 2019). 

 

Recent work in organizational learning literature has examined learning processes that address 

the limitations of reinforcement learning. Deliberate (Zollo and Winter, 2002) and mindful 

(Weick, Sutcliffe, and Obstfled, 1999; Levinthal and Rerup, 2006) views of learning are central 

among these contributions4. Deliberate learning is attained via knowledge articulation and 

codification (Cangelosi and Dill, 1965; Zollo and Winter, 2002), allowing decision makers to 

purposefully invest attention and resources in improving their causal understanding of the 

environment and thus decision performance (Zollo, 2009). Relatedly, scholars have built on 

the notion of mindfulness developed in psychology literature (Langer, 1989) to analyse 

cognitive processes that complement the automaticity associated with reinforcement (Weick 

and Roberts, 1993; Fiol and O'Connor, 2003). Mindful cognitive states describe “the continual 

creation and refinement of categories [..] and a willingness to view contexts from multiple 

perspectives” (Levinthal and Rerup, 2006: 502), which allow individuals to learn from 

experiences that are difficult to interpret (March, Sproull, and Tamuz, 1991; Weick, Sutcliffe, 

and Obstfeld, 1999).  

 

 
4 They partially integrate or are closely related to equally important notions, such as analogical reasoning (Gavetti, 
Levinthal, and Rivkin, 2005), cognitive search (Gavetti and Levinthal, 2000; Csaszar and Levinthal 2016), 
counterfactual thinking (Morris and Moore, 2000), and dialogic practices (Tsoukas, 2009). 
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However, these contributions do not address the question of how experiential learning can be 

explained when performance feedback is noisy or unobserved. First, the accumulation of 

experience is not the main explanatory variable in these theories. The notion of deliberate 

learning does not suggest that individuals become more likely to make learning investments as 

they accumulate experience. Similarly, research in mindfulness does not discuss the 

relationship between increasing stocks of experience and the likelihood of entering mindful 

cognitive states, or of learning mindfully. Second, generally these theories are implicitly or 

explicitly premised on the assumption that some performance feedback information is available 

(Zollo and Winter, 2002; Levinthal and Rerup, 2006). 

 

In summary, existing research on reinforcement learning, as well as deliberate and mindful 

learning, do not offer a complete characterization of individual learning, particularly when 

feedback is noisy or unobserved. Below, we develop a model of representation learning that 

theorizes how learning can occur under these circumstances. 

 

HYPOTHESES 

The role of mental representations in individual decision-making and learning 

We analyse individual decision-making through the lens of mental representation (Brunswik, 

1952; Johnson-Laird, 1983; Barr, Stimpert, and Huff, 1992; Walsh, 1995; Gavetti and 

Levinthal, 2000; Gary and Wood, 2011). Decision makers have limited cognitive capabilities 

and need simplified mental representations to process the vast amount of information generated 

by the environment (Simon, 1991). Simplifications are obtained by ignoring important 

dimensions of reality (Csaszar and Ostler, 2020) or by aggregating them in broader and less 

distinctive conceptual categories (Rosch et al. 1976; Martignoni, Menon, and Siggelkow, 2016; 

Choi and Levinthal, 2022). Mental representations are a critical determinant of strategic 

choices (Porac et al., 1995; Gavetti, 2005; Eggers and Kaplan, 2013) and can vary substantially 
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across decision makers (Chi, Feltovich, and Glaser, 1981; Ericsson and Smith, 1991; Tanaka 

and Taylor 1991). 

 

A widely adopted characterization of mental representations consists of a set of concepts and 

causal relations that represent the causal structure of the environment in an approximate, 

simplified fashion (Barr, Stimpert, and Huff, 1992; Lamberts and Shanks, 1997; Gary and 

Wood 2011). Concepts are cognitive categories (Rosch et al. 1976; Murphy, 2004) that 

determine which information from the decision environment receives attention and what is 

dismissed (Nisbett and Ross, 1980; Kiesler and Sproull, 1982). Relations between concepts 

allow for more complex information processing than the simple assignment of raw information 

to categories of meaning (Thagard, 2005; Gopnik and Schulz 2007). Together, concepts and 

causal relations co-determine how decision makers process stimuli and respond with solutions, 

opinions, decisions, and actions (Nisbett and Ross, 1980; Dutton and Jackson, 1987). 

 

From the vantage point of mental representation, and in keeping with the definition of learning 

as changes in cognition or behaviour, we focus on changes in the number and structure of 

concepts and relations (Bartunek, 1984; Walker, 1985; Lurigio and Carroll, 1985; Walsh, 1995; 

Denrell, Fang, and Levinthal, 2004) and in how they reflect the causal structure of the 

environment (Weick, 1979; Barr, Stimpert, and Huff, 1992). 

 

A model of representation learning in individual decision-making 

We propose a learning mechanism that we call representation learning. Inspired by cognitive 

categorization theory (Rosch et al., 1976; Lamberts and Shanks, 1997; Rehder, 2003; Murphy, 

2004), we hypothesize that the effect of accumulating decision experience on decision 

performance is mediated by changes in the structure of mental representations. Specifically, 

we argue that individuals develop more distinctive and fine-grained mental representations of 

the environment as they repeatedly make decisions under causal-ambiguity and in condition of 
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noisy or unobserved feedback (H1a, H1b). In turn, more fine-grained mental representations 

help individuals make better decisions even in these adverse learning contexts, as they reflect 

increasingly accurate representations of the environment (H2). 

--- INSERT FIGURE 1 ABOUT HERE --- 

We define cognitive complexity as an increasing function of the number of concepts and 

relations of mental representations (Simon, 1962; Dane, 2010). For clarity, greater cognitive 

complexity is not necessarily associated with enhanced representation accuracy, as concepts 

and interdependences may be unrepresentative of the environment’s causal structure (Gary and 

Wood, 2011) or irrelevant for a given class of decision problems (Csaszar and Ostler, 2020). 

 

We argue that the relationship between decision experience and cognitive complexity is a 

consequence of the fact that individuals tend to adapt the complexity of their representations 

to the cognitive demands of the decision environment. This occurs because the structure of 

mental representations reflects the principle of cognitive economy (Rosch et al. 1976; Rosch 

and Lloyd, 1978; Murphy and Brownell, 1985; Lamberts and Shanks, 1997; Murphy, 2004). 

This principle states that human beings’ goal is to use representations that “provide maximum 

information with the least cognitive effort […] conserving finite resources as much as possible” 

(Rosch and Lloyd, 1978: 28). It follows that the conceptual categories used by individuals 

reflect an equilibrium resulting from a trade-off between distinctiveness and aggregation 

(Rosch et al., 1976). 

 

On the one hand, the informative content of categories can be maximized by using finer-

grained, highly distinctive concepts that discriminate observations with respect to a large 

number of dimensions. In the extreme, every observation would be assigned its own concept 

and stored in memory as a separate entity. However, this degree of distinctiveness would soon 

exhaust available memory and become excessively costly in terms of retrieval and processing 

(Rosch et al., 1976). On the other hand, cognitive resources can be preserved by way of coarser-



 
 

28 
 

grained, simplified concepts that aggregate observations by neglecting contingencies and 

differences across dimensions. (Gershman and Niv, 2013). However, excessively simplified 

concepts “are harder to use, because it is difficult to tell them apart” (Murphy, 2004: 219). 

Excessive aggregation may increase rather than decrease cognitive efforts because it makes it 

difficult to disambiguate the relevant dimensions of a decision problem and identify effective 

courses of action. 

 

Thus, individuals tend to adopt representations that balance these two conflicting tendencies – 

that is, they are induced to optimize the number of dimensions and contingencies that 

conceptual categories can encode relative to the cognitive resources they demand. This insight 

allows us to reflect on how cognitive complexity evolves as individuals accumulate decision 

experience, i.e., repeatedly make decisions of a similar nature over time. 

 

We argue that the equilibrium between distinctiveness and aggregation is altered towards 

greater distinctiveness, and thus greater complexity, when individuals repeatedly make 

decisions under causal ambiguity. The subjective causal ambiguity perceived by decision 

makers is the dimension of decision uncertainty that is most relevant in this context, defined as 

the extent to which action-outcome linkages are understood and perceived as clear by decision 

makers (Konlechner and Ambrosini, 2019). Perceptions of causal ambiguity require 

individuals to deploy cognitive work, time and time again, aimed at identifying effective 

courses of action. Given that the reduction of these costs is a “fundamental need” of individuals 

(Hogg and Mullin, 1999: 253), individuals are induced to increase distinctiveness when causal 

ambiguity is persistent in order to restore cognitive efficiency. This is expected to occur until 

further increases in the cognitive load associated with processing more complex representations 

exceed the costs associated with causal ambiguity (Finton, 2005). 

 

We note that increases in cognitive complexity are expected to occur under the following two 

general conditions. First, individuals tend to increase complexity when they are not yet aware 
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of most relevant dimensions and contingencies of the environment, i.e. they are “uninformed” 

(Csaszar and Ostler, 2020: 9). Second, increases tend to occur for repeated decisions that are 

not prescribed by rules or standard operating procedures and over which decision makers have 

considerable discretion - i.e. decisions for which causal ambiguity is substantial and persistent 

(Mosakowski, 1997; Michel, 2007). While conditions may exist under which individuals are 

induced to simplify representations, the above conditions ensure that complexity tends to 

increase5, especially when performance feedback is systematically difficult to interpret or 

observe. In these conditions, decision makers cannot rely on trial-and-error iterations to 

understand which dimensions are most relevant or identify effective courses of action. Further, 

they have no reasons to believe that simplifying representations by focusing on a subset of 

dimensions or actions would increase their chances to achieve desired outcomes, because they 

still do not know which dimensions are most relevant or actions are most effective among the 

ones they are aware of. Rather, perceptions of causal ambiguity might even increase by 

simplifying representations, because decision makers would be aware that they are omitting 

potentially relevant dimensions and interdependencies that they have previously taken into 

account. 

 

Whereas feedback is central to reinforcement learning, the above line of reasoning explains 

changes in mental representation solely as a function of the repeated exposure to causal 

ambiguity, regardless of whether any performance feedback is observed. Therefore, we pose: 

 

H1a: As individuals accumulate experience in making decisions in a domain, their mental 

representations relating to this domain become more complex. 

 

If the development of more complex mental representations is a function of repeated exposure 

to decisions that are causally ambiguous, we should expect this effect to be more pronounced, 

 
5 These conditions are especially important because we are interested in studying how individuals learn from their 
own experience when they do not possess pre-existing knowledge of the decision environment and when their 
decisions are not guided by knowledge embedded in the organization (March and Simon, 1958) 
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the greater the extent of causal ambiguity the decision maker perceives. The higher and more 

persistent the causal ambiguity perceived during repeated decisions, the greater the efforts and 

the need to adjust representations to optimize cognitive efficiency. Accordingly, we predict: 

 

H1b: The positive effect of accumulating decision experience on cognitive complexity is 

strengthened by the cumulative degree of causal ambiguity experienced. 

 

The relationship between cognitive complexity and decision performance is a consequence of 

the fact that the above process induces changes in cognition that are accurate representations 

of actual dimensions and interdependencies of the environment. 

 

New finer-grained distinctions are accurate for two reasons. First, new distinctions are derived 

and inherit accuracy from previously held concepts and relations. We can build again on the 

principle of cognitive economy and on further results from cognitive psychology literature. 

Any conceptual change that occurs to satisfy the requirements of cognitive economy is likely 

consistent with prior concepts and relations in order to avoid additional ambiguities and 

inconsistencies (Fiske and Taylor, 1991). Changes that conflict with what is already known 

would increase rather than alleviate cognitive efforts. This phenomenon is documented in the 

cognitive psychology literature and described in terms of integration (Heit, 1994) and selective 

weighting (Murphy and Medin, 1985) effects of prior knowledge on the generation of new 

concepts and relations (Lamberts and Shanks, 1997).  

 

Second, new concepts and relations are derived from previous observations of the actual 

functioning of the environment’s causal structure, rather than as acts of pure imagination. In 

their seminal work on the effects of prior knowledge on concept learning, Murphy and Medin 

argue that individuals form “background beliefs” about the decision environment that constrain 

the generation of new concepts and relations (Murphy and Medin 1985: 303). They argue that 

representations are cognitive devices that reflect users’ needs and decision objectives, but 

regardless of how simplified representations are, individuals are still exposed to the multiplicity 
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of dimensions and interdependencies that characterize an environment. In fact, background 

beliefs are raw data that individuals store in memory as they accumulate experience and 

observe how cause-effect chains of events unfold in the environment. These data contain 

information about causal relations and thus about what is possible and what is unlikely to occur 

in a domain. As such, background beliefs restrict the “space of hypotheses” that individuals 

would consider as plausible for conceiving new concepts and relations6 (Lamberts and Shanks 

1997: 12). It follows that new distinctions are constrained by previous observations that are 

stored in memory and gain accuracy from them. 

 

In turn, research on managerial cognition shows that accurate representations improve decision 

performance (Bourgeois, 1985; Barr, Stimpert, and Huff, 1992; Gary and Wood, 2011). 

Accurate representations provide a more complete and deeper understanding of causes and 

effects, allowing decision makers to make more precise estimates of the distributions of 

outcomes and thus to choose more effective actions (Einhorn and Hogarth, 1986). For instance, 

Lurigio and Carroll’s (1985) study of probation officers demonstrated that respondents with 

higher representational accuracy made higher quality decisions and processed information 

more easily and confidently; while McNamara, Luce and Tompson (2002) showed that the 

complexity of top managers’ representations of the competitive environment was associated 

with higher firm performance. Gary and Wood’s (2011) managerial simulation study provided 

experimental evidence of the performance benefits of representational accuracy. Participants 

made strategic decisions in a simulated environment to maximize profits from product sales. 

The authors used answers to standardized tests to observe participants’ mental representations 

during the experiment. The results show that more accurate mental representations improved 

decision performance (Gary and Wood, 2011). 

 

 
6 For instance, in the patenting context, it would be unreasonable to expect that patents’ value depends on the day 
of the week in which a patent application was filed or on that day’s weather. The fact that this independence would 
be obvious to intellectual property experts, and even to non-experts, is precisely the consequence of possessing 
background beliefs, which constrain the range of plausible hypotheses. 
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As previously discussed, it is important to note that we expect increases in complexity to be 

more likely beneficial to performance when individuals are relatively inexperienced and 

uninformed of the most relevant dimensions of the environment. Consistent with the patterns 

observed by Bingham and Eisenhardt (2011) and with the results obtained by Csaszar and 

Ostler (2020), our argument suggests that decision performance increases with complexity and 

accuracy in the more general case in which we do not assume pre-existing levels of experience 

or of knowledge of the casual structure. It is in these cases that individuals cannot discriminate 

among important contingencies and courses of action and that representations are likely too 

simple or “underspecified” (Martignoni, Menon, and Siggelkow, 2016: 2545). Therefore, we 

pose: 

 

H2: Increases in cognitive complexity relating to a decision domain are associated with higher 

decision performance. 

 

In sum, our representation learning mechanism states that the accumulation of decision 

experience drives greater cognitive complexity, which is in turn associated with higher decision 

performance. We pose:  

 

H3a: Cognitive complexity relating to a decision domain mediates the positive relationship 

between the accumulation of decision experience and decision performance. 

H3b: The positive relationship between decision experience and decision performance 

mediated by cognitive complexity is strengthened by the cumulative degree of causal ambiguity 

experienced. 

 

EMPIRICAL CONTEXT: MANAGING THE PATENT PORTFOLIO AT ALPHA 

To test our hypotheses, we require a context where individuals in an organization: (a) 

repeatedly make decisions in a specific domain; and (b) receive noisy or no feedback. 



 
 

33 
 

Accordingly, we study decisions relating to the recurring evaluation of patents within the patent 

portfolio at Alpha, a multinational, Fortune-500 ITC firm (pseudonym). 

 

Many large firms regularly review all active portfolio patents in the to identify opportunities 

for value creation while saving on maintenance costs. The regular re-evaluation of patent 

portfolios is necessary because the value a firm attributes to a patent changes over its lifetime, 

as new competing technologies are developed or new market opportunities arise (Guler, 2007; 

Khanna, Guler, and Nerkar, 2018). Patent rights can be renewed with the respective patent 

offices for up to 20 years, subject to the payment of recurring maintenance fees. Maintenance 

costs can be reduced by terminating patents, frequently by reducing the size of a given patent 

family rather than by terminating the whole family at once. Serrano (2010) estimates that nearly 

50% of all patents are terminated before their legal term by their owners. 

 

In order to better understand the patent evaluation process at Alpha, we conducted interviews 

with employees and with Alpha’s director of IP, and we obtained access to and analysed 

evaluation guidelines and other internal documents. We conducted one-hour interviews with 

16 patent evaluators based in 7 locations worldwide and collected 10 responses from evaluators 

to a 15-question survey. This qualitative evidence confirmed the suitability of this empirical 

setting for testing our theory. 

 

At Alpha, regular patent evaluations were performed by patent engineers. They could solicit 

advice from Alpha’s technology experts, including patent inventors, as deemed necessary, but 

remained solely responsible for making termination decisions. Patents were typically re-

evaluated over time by the same patent engineer, although they were occasionally reallocated 

to a different patent engineer, due to personnel mobility, for instance.  

 

For a patent engineer, patent evaluation consisted of writing an evaluation statement, assigning 

a rating, and terminating one or more family members as deemed necessary. The statements 

were meant to describe a patent’s limitations and highlight opportunities for value creation that 
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the firm’s business units could potentially exploit. Additionally, the statements needed to 

provide useful information for future re-evaluations. Accordingly, patent engineers were 

required to produce exhaustive evaluation statements that articulated their reasonings and 

included any relevant information for future reference. 

 

Ratings were numerical ranging from 0 (low) to 5 (high) according to broad evaluation 

guidelines. Patent engineers could also add identifiers to the numerical ratings to identify 

patents that could potentially become part of a technology standard or be implemented in 

Alpha’s products. The evaluation history of all patents was stored in a software system to which 

patent engineers had unrestricted access. The system was also accessible to Alpha’s 

commercialization units, such as standardization, infringement and litigation, or the product 

implementation units. These units used ratings to identify higher potential cases and the 

information provided by the evaluation statements to guide their commercialization efforts. 

 

The suitability of this setting for studying learning in conditions of noisy or unobserved 

feedback is underscored by the substantial causal ambiguity to which patent engineers were 

exposed and by the extended time lags between evaluations and commercialization outcomes. 

The fact that evaluations were made in conditions of substantial causal ambiguity emerged 

from interviews we conducted with patent engineers and from an analysis of internal evaluation 

documents and guidelines. Alpha did not provide specific criteria or rules for making 

evaluations, and patent engineers had significant discretion over ratings and terminations. 

Internal documents and evaluation guidelines mention broad dimensions or evaluation factors 

against which patents’ future economic prospects could be evaluated, such as ‘legal protection’ 

or ‘business value’. However, Alpha did not provide training or instructions on how the specific 

characteristics of patents could be assessed and mapped into those broad factors. Patent 

engineers relied instead on their own knowledge and subjective judgement. They admitted that 

it was often difficult to identify factors that could clearly indicate whether patents had potential 
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for commercialization. Engineers also confirmed that these patents were given intermediate 

ratings (2 and 3) and that were the “most difficult to evaluate”. This type of causal ambiguity 

reflects the longstanding challenges of assessing patent value, as discussed in the patent 

literature (Wang and Hsieh, 2015; Higham, de Rassenfosse, and Jaffe, 2021). 

 

Extended time lags between evaluations and commercialization outcomes made it particularly 

challenging to learn from the outcomes of past decisions in this context. Commercialization 

outcomes frequently materialize several years after evaluations are conducted. Larger time lags 

increase the likelihood that exogenous changes, such as technological, legal, or competitive 

shifts, interfere with the realization of commercialization efforts, adding significant noise to 

feedback signals. 

 

Most importantly, extended time lags also meant that patent engineers typically could not 

observe the outcomes of their decisions. This can be attributed to three reasons. First, ongoing 

commercialization efforts and eventual (un)successful outcomes were not internally 

communicated to patent engineers at Alpha. Patents commercialized by the firm’s business 

units were simply removed from the list of patents allocated to patent engineers, and units were 

not instructed to notify patent engineers of initiated or finalized attempts to commercialize 

patents they had previously evaluated. Indeed, all interviewees confirmed that, in the vast 

majority of cases, they “do not know what happens to the patents” they evaluate.  

 

Second, patents were often reallocated to different patent engineers, a practice that further 

decreased the limited opportunities that they might have had to observe the outcomes of their 

evaluations. Patent engineers may have changed role within Alpha or left the firm during the 

period between their evaluations and the realization of commercialization outcomes. 

 

Finally, even if Alpha’s business units provided information about outcomes, patent engineers 

would have likely struggled to recollect why and how they had used certain evaluation factors 

several years in the past, as suggested by the following interview quote: “You don’t know if you 
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do good or bad. And when you know, it’s too much in the past”. Large delays significantly 

disrupt the learning value of feedback because individuals may not be able to link feedback 

information to the problem representations that guided their decisions (Rahmandad, 2008; 

Denrell, Fang, and Levinthal, 2004). 

 

Therefore, in our setting, systematic improvements of decision performance are unlikely to be 

explained by reinforcement learning, that is, in terms of an iterative adjustments to performance 

feedback. Patent evaluation at Alpha thus offers a suitable context in which to explore 

experiential learning mechanisms that do not depend on feedback. 

 

DATA AND METHODS 

Data 

We constructed a dataset with information drawn from Alpha’s patent portfolio management 

system, matched with archival data on patents obtained from external sources. We collected a 

corpus of 40,000 written evaluation statements pertaining to approximately 9,000 patent 

families that Alpha filed between 1988 and 2006. Most of the evaluations were made within 

the first ten years of patents’ life (92%), and each family was evaluated nearly three times on 

average. The statements were produced by nearly 146 Alpha patent engineers, who each, on 

average, evaluated 161 patents and made 450 evaluations between 1990 and 2016. The average 

evaluation statements contained 101 words.  

 

We used Alpha sources and external sources to collect information about successful patent 

commercialization outcomes, which include licensing agreements, sales, patent 

standardizations, litigations, and implementations in products. Alpha’s commercialization 

units recorded dates and details of commercialization events. We complemented and validated 

this information with data collected from two external databases. We collected data on transfers 

of ownership and litigation legal actions from Google Patents, and additional data on litigation 
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legal actions and infringements from Clarivate’s Darts-IP database. More than 3,700 (23%) 

patents were successfully commercialized during the observation period. Commercialization 

occurred with approximately equal frequency between two and fifteen years after filing, while 

we observed a sharp decline of the rate of commercialization events for older patents (greater 

than sixteen years). 

 

Variables and Measurements 

Decision performance 

The variable describes the extent to which patent engineers correctly estimated the future value 

of patents and accounts for both false positives (Type I errors) and false negatives (Type II 

errors). We used changes in engineers’ patent family ratings as indicative of positive or 

negative evaluations. The guidelines recommended, but did not prescribe, reducing or 

“trimming” the number of active members for a patent family with lower ratings (ratings 0 and 

1), and renewing or expanding active members for families with higher ratings (ratings 4 and 

5). Additionally, as previously mentioned, ratings guided commercialization units’ search for 

valuable patents in the portfolio. Hence, ratings were meaningful indicators of the value that 

patent engineers attributed to patents, and ratings’ increases or decreases reflected patent 

engineers’ positive or negative forecasts of patents’ future prospects7. 

 

Considering changes in ratings, we defined decision performance in the following way. 

Decision performance is positive when patent engineers increased or maintained the ratings of 

patents they believed had positive future prospects and that were subsequently commercialized; 

and patent engineers decreased the ratings of patents they believed had negative future 

prospects and that subsequently expired without being commercialized. Conversely, decision 

 
7 The average rating assigned to a patent was 2.54 (SD 1.01). Intermediate ratings 2 and 3 were assigned 
respectively, 42% and 38% of the times and ratings 1 and 4 were assigned respectively, 6% and 8% of the times. 
Nearly 65% of all evaluations confirmed the most recently assigned rating, whereas ratings were upgraded or 
downgraded by one unit respectively, 16% and 11% of the times and by two units nearly 4% and 3% of the times. 
Most upgrades by one unit occurred for families rated 2 (58%) and 3 (24%), while downgrades by one unit 
occurred for families rated 3 (55%) and 2 (27%). 
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performance is negative when patent engineers increased or maintained the ratings of patents 

they believed had positive future prospects and that subsequently expired without being 

commercialized (false positive); and when patent engineers decreased the ratings of patents they 

believed had negative future prospects and that were subsequently commercialized (false 

negative). See Appendix A for an example of how we computed decision performance. 

 

Our measure of decision performance has at least three desirable characteristics. It is an 

objective measure of the accuracy of patent engineers’ estimates (Zollo, 2009). Second, the 

measure accounts symmetrically for both the objectives of the patent evaluation process at 

Alpha. That is, it captures the accuracy of evaluations in terms of identifying both high value 

patents for commercialization and low value patents for saving on maintenance and 

management costs. Finally, the measure avoids issues of manipulability (Zollo, 2009), because 

commercialization decisions did not depend on patent engineers but on the business units and 

other parties. 

 

As a caveat, we cannot measure the accuracy of decisions to terminate all the active members 

of a patent family, because it is not possible to know whether commercialization could have 

occurred had the patent engineers not decided to abandon these families. However, this issue 

has limited consequences in our setting because abandonment decisions were made for less 

than 6% of the families in the portfolio. 

 

We operationalize decision performance as an ordered categorical variable defined as: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = (𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎 𝑝𝑝𝑝𝑝𝑟𝑟𝑎𝑎𝑝𝑝𝑎𝑎 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎 𝑝𝑝𝑝𝑝𝑟𝑟𝑎𝑎𝑝𝑝𝑎𝑎)  × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑐𝑐𝑎𝑎𝑐𝑐𝑝𝑝𝑟𝑟𝑎𝑎𝑝𝑝𝑝𝑝 

The variable 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑐𝑐𝑎𝑎𝑐𝑐𝑝𝑝𝑟𝑟𝑎𝑎𝑝𝑝𝑝𝑝 is equal to 1 if patents were eventually commercialized and 

equal to −1 if patents expired without being commercialized, while assigned rating and 
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previous rating were, respectively, the rating assigned by the patent engineer as a result of the 

focal evaluation and the rating assigned to the patent as a result of the most recent evaluation8.  

 

 

 

Cognitive complexity 

This variable describes the number of concepts and causal relations that characterize patent 

engineers’ mental representations. In our context, concepts and relations correspond to patent 

engineers’ understanding of evaluation factors, such as ‘novelty’, ‘potential for 

standardization’, and ‘scope of legal claims’, and of how these factors were interrelated. 

Cognitive complexity increases with both the number of concepts that represent evaluation 

factors and the number of interdependencies among them (Simon, 1991; Dane, 2010). 

 

We observed the evolution of patent engineers’ mental representations over time by applying 

a causal mapping method to the evaluation statements they produced. Causal mapping is a form 

of content analysis, whose purpose is to identify and categorize concepts and causal 

relationships within a document (Barr, Stimpert, and Huff 1992; Huff and Jenkins, 2002; Gary 

and Wood, 2011; Axelrod, 2015).  

 

We proceeded as follows. We performed an iterative coding procedure, which yielded 28 

evaluation factors that patent engineers collectively used over the entire observation period 

(Appendix B). We initially applied topic modelling (Hannigan et al. 2019) and word 

embedding methods to the evaluation statements and obtained a first list of factors. We 

validated and refined this list using rating descriptions contained in the evaluation guidelines 

and analysed patent engineers’ email exchanges with inventors and domain experts. Patent 

engineers often solicited evaluation advice from inventors and experts by sending forms 

containing standard sets of questions on certain topics. We used these topics to further refine 

 
8 Each patent entered Alpha’s portfolio with a preassigned rating. 
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our list of factors. Eventually, this procedure yielded 28 evaluation factors and, for each factor, 

a dictionary of keywords and key phrases. 

 

We then mapped the content of each evaluation statement against the factors and causal 

connections between factors within the text. Using dictionaries of keywords and key phrases, 

we matched each phrase contained in the statements to an evaluation factor. We then identified 

causal connecting words between phrases associated with different factors to estimate the 

extent to which patent engineers made causal connections between factors9. To illustrate, we 

show the computation of complexity for two sample evaluation statements in Table 1.  

--- INSERT TABLE 1 ABOUT HERE --- 

We computed a patent engineer’s mental representation complexity by counting the distinct 

evaluation factors and causal connections that occurred in the evaluation statements they 

produced in a given time window10. Our measure of complexity can be expressed as follows: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑐𝑐𝑎𝑎𝑟𝑟𝑦𝑦𝑡𝑡,𝑡𝑡−𝑡𝑡∗ =  (𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑟𝑟𝑎𝑎𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑎𝑎)𝑡𝑡,𝑡𝑡−𝑡𝑡∗ + (𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑐𝑐 𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑟𝑟𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎)𝑡𝑡,𝑡𝑡−𝑡𝑡∗ 

where the time periods 𝑟𝑟, 𝑟𝑟 − 𝑟𝑟∗ define the observation window prior to the time of evaluation; 

and evaluation factors, causal relations are, respectively, the average number of distinct 

evaluation factors and causal connecting words occurring in the evaluation statements 

produced by a patent engineer during the 10 most recent evaluations prior to the focal 

evaluation.  

 

In robustness tests, we define alternative windows to include the 5, 20, or 30 most recent prior 

evaluations; or 10, 30, or 60 days prior to the focal evaluation. Additionally, we use measures 

of cognitive complexity that only accounts for the number of causal connections that occur in 

the evaluation statements (Gary and Wood, 2011) and measures that are weighted by the word 

 
9 We used the dictionary of causal keywords defined in the LIWC software, such as thus and because. 
10 Multiple evaluation statements written by a same patent engineer over a short period of time must all reflect 
the same mental representations held by the patent engineer during that time. Mental representations change 
gradually and are relatively persistent (Walsh, 1995), and hence the cognition of a patent engineer will not 
substantially change between two evaluations made over a sufficiently short period of time. 



 
 

41 
 

length of the evaluation statements. These sets of measures provide results that are consistent 

with our chosen measure. 

 

Causal ambiguity 

This variable describes the causal ambiguity to which patent engineers were exposed during 

evaluations prior to the focal evaluation. In line with strategic decision-making literature 

(Mosakowski, 1997), we measure causal ambiguity as a linearly decreasing function of patents’ 

age. Age measures the difference between the family’s earliest filing year and the year at the 

time of evaluation. We expect age to be inversely related to the residual causal ambiguity 

perceived by patent engineers because information on future value creation opportunities is 

disclosed over time and, concurrently, the likelihood of positive outcomes decreases over time, 

(Mosakowski, 1997; Konlechner and Ambrosini, 2019). Since we are interested in capturing 

the degree to which perceived causal ambiguity was persistent over time, we operationalize 

causal ambiguity as a linearly decreasing function of the average patents’ age of the 10 most 

recent prior evaluations, which we scale so that it ranges from 0 (low) to 1 (high). 

 

We define alternative operationalizations in robustness tests. We expect perceived causal 

ambiguity to be lower for patents that were rated relatively very low (0 and 1) and very high 

(4 and 5). In our interviews, respondents confirmed that patents rated 2 or 3 were the most 

uncertain and thus difficult to evaluate. Accordingly, we alternatively compute causal 

ambiguity as the proportion of patents with previous rating 2 and 3 among the 10 most recent 

prior evaluations. The variable ranges from 0 to 1. We also define alternative windows for both 

this and our chosen measure to include the 5, 20, or 30 most recent prior evaluations; or 10, 30, 

or 60 days prior to the focal evaluation. These alternative operationalizations produce results 

that are consistent with those presented here. 

 

Decision experience  
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This variable simply counts the number of decisions made by a patent engineer prior to a focal 

evaluation. Patents were randomly allocated to patent engineers. For instance, interviewees 

confirmed that patents were not allocated on the basis of patent engineers’ seniority or 

evaluation competence. Rather, the number and type of allocated patents depended on 

circumstances, such as incoming renewal deadlines, specific needs related to ongoing R&D 

projects, or periodic budget constraints. 

 

Control variables 

We included control variables pertaining to both decision and patent family levels. First, we 

included variables to account for different features across decisions. To account for external 

input that patent engineers received to reach a decision, we included two dummy variables, 

inventor opinion and expert opinion, which indicate whether the focal patent engineer obtained 

opinions from an inventor (of the patent to be evaluated) and from other Alpha experts, 

respectively. We also constructed a dummy variable, transferred case, which accounts for 

whether previous evaluations of the focal patent were performed by another patent engineer. 

While causal ambiguity accounts for the average causal ambiguity to which patent engineers 

were exposed during the most recent prior evaluations, we included the causally ambiguous 

patent variable to account for the perceived casual ambiguity related to the focal evaluation. 

We operationalize this variable as a linearly decreasing function of the focal patent’s age, which 

we scale so that it ranges from 0 (low) to 1 (high). Similarly, we included the dummy variable, 

flagged patent, which equals 1 if the focal family was identified as potentially relevant to 

technology standards or product implementation in Alpha prior to the focal evaluation. To 

control for attention and cognitive capacity, we computed the number of evaluations made by 

the focal patent engineer in the previous seven days (workload). Finally, we include the word 

length of the focal evaluation statement.  
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Second, in line with previous work (Khanna, Guler, and Nerkar, 2018; Higham, de 

Rassenfosse, and Jaffe, 2020), we included several patent family level variables that could 

influence patent engineers’ perception of future patent value. Family size and number of claims 

can be associated with the scope of patent protection and, thus, with patent value. Family size 

is the number of jurisdictions where patent applications were submitted, while number of 

claims is the maximum number of independent claims across the patents of the family. We 

counted the maximum number of forward and backward citations across the family to account 

for potential signals of quality. Further, the number of granted and abandoned family members 

at the time of evaluation could have respectively been perceived as positive and negative 

quality signals by patent engineers. Accordingly, granted ratio and abandoned ratio are the 

proportions of respectively granted and abandoned family members to the family size at any 

time up to the evaluation. We include filing year dummy variables to control for variations in 

patent quality due to time trends and 16 technology dummy variables based on the internal 

technological classification to account for differences across technologies. 

 

Empirical strategy 

To test Hypotheses 1a and 1b, we used panel data linear models adjusted for patent engineer 

fixed effects, filing year and technology dummies, and robust standard errors. The models 

represent the path a between decision experience and complexity and the interaction of causal 

ambiguity between the two variables.  

 

To test Hypotheses 2 and 3a/b, we conducted a moderated mediation analysis using generalized 

structural equation modelling (GSEM) with bootstrapping (Edwards and Lambert, 2007; 

Preacher, Rucker, and Hayes, 2007; Hayes, 2013). We used panel data-ordered logit and linear 

models, adjusted for patent engineer fixed effects, filing year and technology dummies, and 

robust standard errors. Moderated mediation exists when a moderator variable affects the path 

between independent and mediator variables. In our model, the path a between the independent 
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variable (decision experience) and mediator variable (cognitive complexity) depends on the 

value of the moderator (casual ambiguity, Hypothesis 1b). The path b between the moderator 

and the dependent variable (performance) does not depend on the value of the moderator 

(Hypothesis 2). The mediated effect – or Indirect Effect, path ab – is alternative to the Direct 

Effect – path c – of the independent variable on the dependent variable. The Conditional 

Indirect Effect or CIE is the value of the Indirect Effect conditional on the value of the 

moderator variable. The sum of the CIE and of the Direct Effect is equal to the Total Effect 

c’=c + ab. Mediation (Hypothesis 3a) is tested by verifying the statistical significance of the 

CIE and of the Direct Effect. Full mediation occurs when the Direct Effect is not significant. 

Otherwise, the degree of partial mediation is estimated by comparing the CIE to the Total 

Effect11. 

 

We used standardized variables for decision experience and causal ambiguity in all models. 

Further, we ran all models on the subsample of patent engineers who performed at least 15 

patent evaluations, consisting of 146 out of nearly 180 patent engineers in our full sample. 

 

RESULTS  

Table 2 and 3 report summary statistics and pair-wise correlations for the variables used in our 

models. Most of the correlation coefficients are low. We derived variance inflation factors 

(VIF) for all models (Greene, 2003). All the computed values were less than 3 and the mean 

VIF was less than 1.6, indicating that multicollinearity is not a concern in the regressions. 

--- INSERT TABLE 2 & 3 ABOUT HERE --- 

Hypotheses 1a and 1b are supported. Table 4 shows the results for panel data linear models 

that we used to test Hypothesis 1a and 1b. We predicted a positive relationship between 

decision experience and cognitive complexity (H1a) and a positive moderating effect of causal 

 
11 The conditional indirect effect is calculated by estimating the following two equations, where X is the 
independent variable, M is the mediator variable, W is the moderator variable, and Y is the dependent variable: 
𝑀𝑀 = 𝑝𝑝0 + 𝑝𝑝1𝑋𝑋 + 𝑝𝑝2𝑊𝑊 + 𝑝𝑝3𝑋𝑋𝑊𝑊 and 𝑌𝑌 = 𝑏𝑏0 + 𝑏𝑏1𝑀𝑀 + 𝑏𝑏2𝑋𝑋 + 𝑏𝑏3𝑊𝑊 + 𝑏𝑏4𝑋𝑋𝑊𝑊.  
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ambiguity (H1b). Model 2 indicates a positive and significant relationship between experience 

and complexity (𝐵𝐵 = 0.16, 𝑝𝑝 < 0.01). Model 3 indicates a positive and significant interaction 

between experience and causal ambiguity (𝐵𝐵 = 0.07, 𝑝𝑝 < 0.01).  

 

These results show that one standard deviation increase in decision experience – or about 122 

evaluations - is associated with 13% and 37% of one standard deviation increase in complexity 

when causal ambiguity is one standard deviation below and above its mean value, respectively. 

The average complexity for relatively inexperienced patent engineers who made 25 or less 

evaluations (lower quartile of decision experience) is nearly 2, while average complexity for 

engineers who made 300 or more evaluations (10% of all patent engineers) increases by more 

than 50%. Further, we verified in additional analyses that increases in complexity result from 

changes in representations that are incremental and consistent with previously held 

representations12. 

 

The estimates for the other controls are consistent across specifications and confirm our 

expectations. The workload allocated to the patent engineers at the time of evaluation is 

negatively associated with cognitive complexity, indicating that accounting for more factors 

and interdependencies demands more attention and cognitive resources. A negative coefficient 

for flagged patent was also expected because these patents were likely evaluated with 

evaluation factors that were predominantly related to standardization and implementation. 

Cognitive complexity also tends to be lower when patent engineers requested evaluation advice 

from the inventors (inventor opinion, p<0.05) and from Alpha experts (expert opinion, p>0.1). 

Similarly, complexity is lower when patent engineers have access to the evaluation statements 

of previous patent engineers made for transferred patents (transferred case). These results 

 
12 Evaluation factors that patent engineers have used more frequently in the past are significantly more likely to 
be used in the future as compared to less frequently used ones, and tend not to be replaced by new factors. Thus, 
increases in complexity result from new evaluation factors that patent engineers start using as they accumulate 
experience and that stabilize over time; and from new causal relations between factors. 
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suggest that increases in the complexity of representations is unlikely to be explained by the 

external influence of the opinions provided by inventors, experts, or other patent engineers.  

--- INSERT TABLE 4 ABOUT HERE --- 

Table 5 and 6 report the results for moderated mediation GSEM analyses with bootstrapping 

that we used to test Hypothesis 2 and 3a/b. Additionally, the results provide further evidence 

in support of Hypothesis 1a and 1b. We predicted a positive relationship between cognitive 

complexity and decision performance (H2) and the mediating effect of complexity (H3a) 

conditional on the effect of causal ambiguity (H3b). In Table 6, the results for the bootstrapping 

confidence intervals confirm, as above, that the effect of experience on complexity (path a) 

and the moderating effect of causal ambiguity are positive and significant. 

 

Bootstrapping confidence intervals also confirm that the effect of cognitive complexity on 

decision performance (path b) is positive and significant, indicating support for Hypothesis 2 

(𝐵𝐵 = 0.07, 𝑝𝑝 < .01). Additionally, Table 5 shows ordered logit models adjusted for patent 

engineer fixed effects, filing year and technology dummies. The models confirm Hypothesis 2 

(𝐵𝐵 = 0.07, 𝑝𝑝 < 0.01).  

 

Hypothesis 3a predicted that the relationship between decision experience and performance is 

mediated by cognitive complexity. The results for the bootstrapping confidence intervals 

indicate that the direct effect of experience on performance (path c) is not significant (𝐵𝐵 =

0.06, 𝑝𝑝 > 0.1), while the CIE is positive and significant for low, mean, and high values of 

causal ambiguity (respectively one standard deviation below mean prior uncertainty (𝐵𝐵 =

0.01, 𝑝𝑝 < 0.01); mean prior uncertainty (𝐵𝐵 = 0.01, 𝑝𝑝 < 0.01); and one standard deviation 

above mean prior uncertainty, 𝐵𝐵 = 0.02, 𝑝𝑝 < 0.01). It follows that cognitive complexity fully 

mediates the relationship between experience and performance, indicating support for 

Hypothesis 3a. 
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These results also confirm Hypothesis 3b. We predicted that the positive indirect relationship 

between decision experience and performance is strengthened by the cumulative degree of 

causal ambiguity to which patent engineers were exposed. We tested this hypothesis by 

computing the difference between the CIEs at different values of prior uncertainty, as shown 

above (Hayes, 2013; Edwards and Lambert, 2007). The results for the bootstrapping confidence 

intervals of these differences indicate support for Hypotheses 3b. In particular, the difference 

between the CIEs at mean and low levels of prior uncertainty, and between the CIEs at high 

and mean levels of prior uncertainty, are positive and statistically significant (𝐶𝐶𝐶𝐶𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 −

𝐶𝐶𝐶𝐶𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑠𝑠𝑠𝑠 = 0.005, 𝑝𝑝 < 0.01, and 𝐶𝐶𝐶𝐶𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+𝑠𝑠𝑠𝑠 − 𝐶𝐶𝐶𝐶𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.005, 𝑝𝑝 < 0.01, 

respectively). 

--- INSERT TABLE 6 ABOUT HERE --- 

The estimates for the other controls are consistent across specifications and mostly confirm our 

expectations. The workload allocated to the patent engineers at the time of evaluation is 

negatively associated with performance. On the contrary, families that were flagged as 

potentially relevant for standardization or implementation (flagged patent) are significantly and 

largely associated with higher performance. Indeed, this information is especially valuable in 

terms of reducing causal ambiguity and facilitating patent engineers’ forecasts. Finally, the 

opinions of the inventors seem to bias rather than inform patent engineers. This effect may be 

due to the inventors’ overly positive assessments of their own creations. In additional analyses 

we verified that the availability of inventors’ opinions is in fact positively and largely 

associated with likelihood of Type I errors. 

 

DISCUSSION AND CONCLUSIONS 

In this paper, we explore how patent engineers in a large corporation learned how to make 

patent evaluations and termination decisions. We show that the quality of patent engineers’ 

decisions improved as they gained experience in evaluating the commercial prospects of 
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patents, even though they almost never obtained feedback on how their decisions fared. We 

argue that this happens because these decision makers develop more complex mental 

representations as they repeatedly engage in decisions of a specific class. Accordingly, we 

found that individuals who had made more decisions predicted actual patents outcomes more 

accurately; and that this effect was mediated by the cognitive complexity individuals had 

developed as a result of accumulating experience. We further found that the positive effect of 

decision experience was accentuated when decisions were persistently perceived as causally 

ambiguous. We refer to the type of feedback-less learning as representation learning. 

 

Our study has implications for three bodies of literature. Our first contribution is to prior work 

on experiential learning. The experiential learning framework is premised on the beneficial 

effects of accumulating experience in a decision environment (Levitt and March, 1988). The 

main explanatory variable is the stock of experience gained by a learning actor and the central 

explanation is the reinforcement mechanism (Argote and Miron-Spektor, 2011). 

 

Representation learning extends the way we conceptualize experiential learning in the 

following ways. While in reinforcement learning the main function of experience is to provide 

successive feedback loops between the environment and the decision maker, in representation 

learning, experience enables a developmental cognitive process that works regardless of 

whether feedback is observed. This has implications for the boundary conditions under which 

effective experiential learning can occur, most obviously by expanding the spectrum of 

situations to include those where feedback is noisy or unobserved. The latter kind of condition 

is pervasive in organizational contexts (Brehmer, 1980; March, 2010). 

 

Importantly, representation learning also introduces a novel perspective on why learning 

happens in the first place. One of the central assumptions of reinforcement learning is that 

decision makers engage in trial-and-error iterations to improve decision performance. We 

argue that learning is also driven by the need to alleviate perceptions of causal ambiguity. This 
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alternative view is consistent with the definition of learning as changes in cognition or 

behaviour that occur as a function of experience; and supported by the core tenet of cognitive 

science literature that individuals need to economize on cognitive resources. It follows that 

experiential learning can be more broadly characterized as driven by the objective of 

optimizing decision performance relative to the costs of making decisions. This implies that 

when it is difficult to verify whether alternative actions or solutions would improve 

performance, individuals may – or may not – adjust their beliefs or behaviours depending on 

efficiency considerations. This perspective extends our understanding of managerial responses 

to environmental change (Barr, Stimpert, and Huff, 1992) and of decision structures aimed at 

promoting decision efficiency (Simon, 1947) and avoiding uncertainties (Cyert and March, 

1963) in organizations. 

 

Further, our theory shows that noisy or unobserved feedback is not necessarily detrimental to 

learning as generally assumed. Extant theories argue that decision makers learn spurious 

action-outcome associations when feedback is largely delayed or difficult to interpret (Levitt 

and March, 1988; Zollo, 2009). By contrast, we show that decision makers may also learn a 

different, more detailed representation of decision problems when they are persistently exposed 

to causal ambiguity and representation learning occurs. Our theory therefore implies a 

reinterpretation of what causal ambiguity and uninformative feedback mean for a decision 

maker’s ability to learn from experience. 

 

Nonetheless, representation learning will be less applicable to situations where feedback is 

timely and precise, and trial-and-error changes can be iterated quickly and almost 

automatically. All else being equal, the possibility to learn from semi-automatic adjustments 

leads decision-makers to be less likely to engage in more cognitively taxing learning efforts. 

For instance, by repeatedly executing an operational routine, underperforming actions can be 

immediately adjusted until performance is satisfactory across all intermediate steps of the 
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procedure, and decision-making becomes automatic or less-mindful (Nelson and Winter, 1982; 

Levinthal and Rerup, 2006). We would expect representation learning to have a much lower 

explanatory power than reinforcement in these, and analogous, contexts. 

 

Our second contribution relates to research on deliberate and mindful theories of organizational 

learning (Weick, Sutcliffe, and Obstfeld, 1999; Zollo and Winter, 2002). Both strands of theory 

have emerged to challenge and provide alternatives to the automaticity associated with 

reinforcement learning. Our conceptualization is consistent with these theories and proposes 

significant extensions. First, contrary to deliberate and mindful learning, representation 

learning addresses the central question in experiential learning: all else being equal, what 

predictions can be made regarding the difference in the decision competence of individuals 

with varying degrees of experience? Our mechanism explains how the accumulation of 

experience itself drives improved understanding and decision competence. 

 

Second, these theories assume that feedback is available or at least do not single out a scenario 

where feedback is unobserved. For instance, the learning benefits of knowledge articulation 

and codification derive from making explicit, valuable implicit knowledge accumulated by 

reinforcement, which requires prior observations of feedback in the first place (Cangelosi and 

Dill, 1965; Zollo and Winter, 2002). More generally, the fact that intentional learning 

investments result in an improved understanding of the causal structure, is a premise on which 

these theories are built, and which leaves the role of feedback unspecified. 

 

Finally, deliberate and mindful learning theories do not characterize the type of changes in 

cognition that generate an improved understanding of the causal structure. On the contrary, we 

provide a rationale for making predictions in terms of the type of changes in representations 

that occur in representation learning. The key feature of our argument is path-dependency. New 

finer-grained conceptual distinctions and contingencies are derived from and consistent with 

previously acquired representations. This pattern implies idiosyncratic learning trajectories that 
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depend on the unique decision experience of each individual. That is, by analogy with a fitness 

landscape (Levinthal, 1997), equally experienced individuals may develop distinct yet equally 

accurate representations of the same decision environment. This central aspect of how decision 

competence is acquired is left unspecified in deliberate and mindful learning theories and is 

critical for our understanding of how mental representations and decision competence evolve 

with experience. 

 

Our third contribution is to the large literature on the role of mental representation in 

organizational and strategic decision making (Walsh, 1995, Tripsas and Gavetti, 2000). A 

central question in this literature pertains to the performance implications of the degree of 

complexity of representations. Less simplified representations that more accurately capture the 

causal structure of the environment are expected to benefit decision performance (Gary and 

Wood, 2011). However, managers have limited cognitive capacity for handling high 

dimensional representations (Levinthal, 2011), and developing highly accurate knowledge is 

costly at the organizational level (Zollo and Winter, 2002). This tension is reflected by 

conflicting views of the role of representational complexity (Csaszar and Ostler, 2020), divided 

among advocates of low complexity and fast-and-frugal heuristics (Gigerenzer and Goldstein, 

1996; Sull and Eisenhardt, 2015), of highly complex and accurate representations (Kiesler and 

Sproull, 1982; Weick, Sutcliffe, and Obstfeld, 1999), and of representations that match the 

complexity of the environment (Ashby, 1956). 

 

We inform this debate by emphasizing the process by which decision makers develop 

representations of different complexity. In particular, our main contribution is to show that 

decision makers may adjust representational complexity not primarily due to its implications 

for performance, but to adapt to the complexity of the environment and optimize cognitive 

efficiency. Two implications follow. First, there are often situations where increases in 

complexity and decision efficiency do not necessarily constitute a trade-off as research on fast-
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and-frugal heuristics suggests. When decision makers do not already know what the most 

relevant dimensions of a decision environment are, such as in novel domains or after substantial 

environmental change, increases in complexity can improve both only efficiency and 

performance (Csaszar and Ostler, 2020). Put it differently, we suggest that increasing 

complexity can in fact be a way for decision makers to adapt to environments where learning 

from feedback is difficult.  

 

Second, we cannot exclude the possibility that decision makers may develop overly complex 

representations that do not benefit performance when causal ambiguity is especially high and 

persistent. Research in this stream suggests that there may be diminishing or even negative 

returns to excessive increases in complexity (Csaszar and Levinthal, 2016; Martignoni, Menon, 

and Siggelkow, 2016). Excessively complex problem representations may even become 

intractable from a computational perspective (Bettis and Hu, 2018). We speculate that decision 

makers may “overfit” representations when they cannot learn from feedback for prolonged 

periods of time and yet they are induced to keep increasing complexity by persistent 

perceptions of causal ambiguity. We argued that perceptions of ambiguity diminish as 

individuals refine their oversimplified representations, but we cannot exclude that conditions 

may exist under which they remain persistently high – for instance, due to significant and 

frequent changes in the environment’s causal structure. In additional analyses, we obtained 

preliminary evidence of an inverted curvilinear relationship between decision experience and 

cognitive complexity. Future research could examine longer decision histories in difficult 

learning environments and provide more evidence of the relationship between complexity and 

performance for large stocks of decision experience. 

 

Concluding, in this study, we have developed the concept of representation learning to explain 

how individuals in organizations can learn, despite an absence or an insufficiency of feedback. 

For the practice of management, our insights imply that in decision-making contexts where 
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feedback is notoriously delayed or noisy – such as the evaluation of early-stage technologies – 

organizations are well advised to rely on expert evaluators who are systematically apportioned 

large numbers of decisions of a given class over time. Additionally, evaluators could be given 

support for developing requisite complexity of their mental representations and for aggregating 

representations across the organization. Overall, the key managerial implication is that, even 

though feedback is not available, it is still possible for an organization to improve its ability to 

predict outcomes more reliably from decision alternatives as individuals accumulate 

experience. 
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Figure 1 – Representation learning, a model of individual learning in organizational contexts.  

 

Table 1 – Examples of how Cognitive Complexity is computed. 

 

Terms in upper case represent anonymised references to specific technologies, standards, etc. 

  

Evaluation report text  Rating Evaluation factors Causal links Complexity 

TECH’s protocol has STANDARD 
acceptance, but no application number or 
official version is available, yet (1). A 
request tells the user that TECH is done, 
after which the user is identified. Then the 
service is identified, and the result can be 
found in TECH (2). Thus, the STANDARD is 
covering our patent application (1). The 
invention is also relevant for different kind 
of PRODUCTs. Real implementation 
schedule totally open, though, but possibility 
exists (3). 

2 => 3 

(1) Standardization 
(2) Technology 
(3) Implementation 

“(2) Thus (1)”  

3 1 4 

The invention is related to TECH used for 
elimination errors in STANDARD (1). The 
idea is basically a TECH (2) and based on 
the patent claims (3), the general usability 
area is left unclear. Some implications are 
present that it could be used in STANDARD 
(1) but PRODUCT and other TECH 
techniques might also be possible (4) The 
priority date for the invention is 6.3.1985 (5) 
and the only country where the patent is still 
active is COUNTRY (6). Thus the technical 
value of this case is uncertain (2) and the 
patent is anyhow soon to be lapse due the 
age (5). It is hard to see any business value 
for this case. 

3 => 1 

(1) Standardization 
(2) Technology 
(3) Legal claims 
(4) Implementation 
(5) Age 
(6) Geography 

“(3) and based on (4)” 
“(5) Thus (2)” 
“(6) Thus (2)” 

 

6 3 9 

Dashed lines represent a mediation path. 
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Table 2 – Descriptive statistics. 

 

Variable Obs Min Max Mean Median SD 

Abandoned Ratio 17,136 0 1 0.11 0 0.18 

Age 17,136 0 20 4.52 4 3.40 

Backward Citations 17,136 0 249 15.49 12 16.18 

Causal Ambiguity 17,136 0.23 1 0.79 0.81 0.12 

Causally Ambiguous 

Patent 

17,136 0 1 0.77 0.8 0.17 

Cognitive Complexity 17,136 1 12.4 3.25 3.10 0.75 

Decision Experience 17,136 1 659 130.52 92 122.29 

Decision Performance 17,136 -2 2 -0.32 -1 1.03 

Expert Opinion 17,136 0 1 0.08 0 0.28 

Family Size 17,136 1 21 4.66 4 3.17 

Filing Year 17,136 1990 2007 2001 2002 3.82 

Flagged Patent 17,136 0 1 0.36 0 0.48 

Forward Citations 17,136 0 525 34.13 20 44.26 

Granted Ratio 17,136 0 1 0.17 0 0.27 

Inventor Opinion 17,136 0 1 0.14 0 0.34 

Number of Claims 17,136 0 120 20.28 20 17.46 

Transferred Case 17,136 0 1 0.39 0 0.49 

Word Length 17,136 5 789 72.26 37 98.17 

Workload 17,136 1 43 4.64 2 7.94 

 

 



 
 

56 
 

Table 3 – Correlation matrix. 

Observations = 17,136 

* p<0.05 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) 

1 Decision 

Performance 

                 

2 Decision Experience -07 
                

3 Cognitive 

Complexity 

0.012 0.0562* 
               

4 Causal Ambiguity 0.0037 -0.2551* 0.0128 
              

5 Causally 

Ambiguous Patent 

-0.0525 0.2498* 0.0064 -0.5360* 
             

6 Word Length -0.0250* -0.0122 0.1661* 0.0900* -0.1025* 
            

7 Inventor Opinion -0.0336* -0.0535* 0.0320* 0.1066* -0.1443* 0.3185* 
           

8 Expert Opinion 0.0041 0.0126 0.0135 0.0562* -0.0631* 0.2174* 0.3701* 
          

9 Granted Ratio 0.0405* 0.1236* -0.013 -0.4361* 0.7236* -0.0927* -0.1242* -0.0669* 
         

10 Family Size 0.1215* -0.0107 -0.0042 -0.0699* 0.1911* -0.0501* -0.0418* -0.0137 0.0943* 
        

11 Forward Citations 0.0891* 0.0291* -0.0351* -0.0066 0.0978* -0.0476* -0.0407* 0.0064 0.0799* 0.1653* 
       

12 Number of Claims 0.0073 0.0376* 0.0217* 0.0891* -0.1195* -0.0150* 0.006 0.0142 -0.1390* 0.0542* 0.1412* 
      

13 Backward Citations 0.0497* 0.0645* -0.0508* 0.0422* -0.0111 -0.0311* -0.0269* 0.014 -0.0523* 0.1620* 0.3343* 0.1186* 
     

14 Abandoned Ratio 0.0184* 0.1614* 0.0276* -0.2937* 0.5091* -0.0330* -0.0607* -0.0189* 0.2953* 0.1060* 0.0071 -0.0576* -0.0207* 
    

15 Transferred Case 0.0329* 0.1863* 0.0025 -0.1490* 0.3090* -0.0413* -0.0118 0.0553* 0.1305* 0.0624* 0.0611* 0.0345* 0.0578* 0.2176* 
   

16 Workload -0.0306* 0.0540* -0.1778* -0.2945* 0.1338* -0.1456* -0.0933* -0.0622* 0.1729* 0.0220* -0.0190* -0.0658* -0.0283* 0.0739* -0.0410* 
  

17 Flagged Patent 0.0956* 0.0018 -0.0139 0.1469* -0.1030* -0.0112 0.0439* 0.0674* -0.1031* 0.1625* 0.0162* 0.0815* 0.0013 -0.0665* 0.1197* -0.0794* 
 

18 Filing Year -0.0614* 0.1222* 0.0106 0.3646* -0.6350* 0.1330* 0.1231* 0.0981* -0.5581* -0.2879* -0.0579* 0.1947* 0.1027* -0.2948* 0.0458* -0.1839* 0.1468* 
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Table 4 – Linear regression models of Cognitive Complexity. 

 

    

VARIABLES Model 1 Model 2 Model 3 
    
Decision Experience  0.16*** 0.19*** 
  (0.01) (0.01) 
Causal Ambiguity   0.01 
   (0.01) 
Decision Experience # Causal 
Ambiguity 

  0.07*** 

   (0.01) 
Word Length 0.00*** 0.00*** 0.00*** 
 (0.00) (0.00) (0.00) 
Causally Ambiguous Patent -0.8** 0.12 0.17 
 (0.08) (0.11) (0.11) 
Inventor Opinion -0.05** -0.05** -0.05** 
 (0.02) (0.02) (0.02) 
Expert Opinion -0.01 -0.01 -0.00 
 (0.02) (0.02) (0.02) 
Granted Ratio 0.013 -0.01 0.00 
 (0.04) (0.04) (0.04) 
Family Size -0.00 -0.00 -0.00 
 (0.00) (0.00) (0.00) 
Forward Citations 0.00* 0.00* 0.00* 
 (0.00) (0.00) (0.00) 
Number of Claims 0.00 0.00 0.00 
 (0.00) (0.00) (0.00) 
Backward Citations -0.00 -0.00 -0.00 
 (0.00) (0.00) (0.00) 
Abandoned Ratio -0.00 -0.00 -0.00 
 (0.04) (0.04) (0.04) 
Transferred Case -0.03** -0.04** -0.044*** 
 (0.02) (0.02) (0.02) 
Workload -0.02*** -0.03*** -0.02*** 
 (0.00) (0.00) (0.00) 
Flagged Patent -0.03* -0.03** -0.04** 
 (0.02) (0.02) (0.02) 
    
Constant 2.34*** 2.17*** 2.13*** 
 (0.1) (0.1) (0.1) 
    
Observations 17,136 17,136 17,136 
Number of Patent Engineers 146 146 146 
Patent Engineer FEs Yes Yes Yes 
Filing Year FEs Yes Yes Yes 
Technology FEs Yes Yes Yes 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 5 – Ordered logit models of Decision Performance. 

 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

 

 

     
VARIABLES Model 4 Model 5 Model 6 Model 7 
     
Decision Experience  0.08**  0.06* 
  (0.03)  (0.3) 
Cognitive Complexity   0.07*** 0.07*** 
   (0.02) (0.02) 
Word Length -0.00 -0.00 -0.00 -0.00 
 (0.00) (0.00) (0.00) (0.00) 
Causally Ambiguous Patent -0.16 0.27 -.01 0.27 
 (0.22) (0.29) (0.22) (0.29) 
Inventor Opinion -0.18*** -0.18*** -0.18*** -0.18*** 
 (0.05) (0.05) (0.05) (0.05) 
Expert Opinion 0.1 0.1 0.1 0.1 
 (0.06) (0.06) (0.06) (0.06) 
Granted Ratio -0.00 -0.01 -0.01 -0.01 
 (0.01) (0.1) (0.1) (0.1) 
Family Size 0.06*** 0.06*** 0.06*** 0.06*** 
 (0.1) (0.1) (0.1) (0.1) 
Forward Citations 0.00*** 0.00*** 0.00*** 0.00*** 
 (0.00) (0.00) (0.00) (0.00) 
Number of Claims -0.00 -0.00 -0.00 -0.00 
 (0.00) (0.00) (0.00) (0.00) 
Backward Citations 0.00*** 0.00*** 0.00*** 0.00*** 
 (0.00) (0.00) (0.00) (0.00) 
Abandoned Ratio -0.11 -0.11 -0.11 -0.11 
 (0.11) (0.11) (0.11) (0.11) 
Transferred Case 0.06 0.06 0.06 0.06 
 (0.04) (0.04) (0.04) (0.04) 
Workload -0.01*** -0.01*** -0.01*** -0.01*** 
 (0.00) (0.00) (0.00) (0.00) 
Flagged Patent 0.27*** 0.26*** 0.26*** 0.26*** 
 (0.04) (0.04) (0.04) (0.04) 
     
     
Observations 17,136 17,136 17,136 17,136 
Number of Patent Engineers 146 146 146 146 
Patent Engineer FEs Yes Yes Yes Yes 
Filing Year FEs Yes Yes Yes Yes 
Technology FEs Yes Yes Yes Yes 
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Table 6 - Results of bootstrapping moderated mediation GSEM analysis.  

 

Note: Generalized structural equation modelling (GSEM) fits a single model and estimates both indirect 
and direct effects (Hayes 2013; Preacher et al., 2007), in contrast to traditional mediation analysis, 
which involves a series of linear regression models (Baron and Kenny, 1986). A key advantage of this 
approach is that it allows the residuals to vary (Shaver, 2005). We employed bootstrapping with 1,000 
replications and robust standard errors to test the significance of the indirect paths from the independent 
variable (experience) to the dependent variable (performance) through the mediator (complexity). 
Generalized SEM allowed us to include patent engineer, filing year, and technology fixed effect, and to 
use ordered logit models for estimating the dependent variable performance. 
 

 

 

 

 

 

 

 B Bootstrap SE p-value 95% CI 
      
INDIRECT EFFECT      
      
Path a      
Experience 0.19 0.01 0.000 0.17 0.21 
Experience x Causal Ambiguity  0.07 0.01 0.000 0.06 0.08 
      
Path b      
Complexity 0.07 0.02 0.003 0.03 0.13 
      
Path ab (CIE)      
CIE – Low Causal Ambiguity  0.01 0.00 0.009 0.00 0.02 
CIE – Mean Causal Ambiguity  0.01 0.00 0.005 0.00 0.03 
CIE – High Causal Ambiguity 0.02 0.01 0.005 0.01 0.04 
      
DIRECT EFFECT      
      
Path c      
Experience 0.06 0.04 0.123 -0.01 0.13 
      
MODERATED MEDIATION      
𝐶𝐶𝐶𝐶𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐶𝐶𝐶𝐶𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙 0.005 0.00 0.005 0.00 0.01 
𝐶𝐶𝐶𝐶𝐸𝐸ℎ𝑖𝑖𝑖𝑖ℎ − 𝐶𝐶𝐶𝐶𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.005 0.00 0.005 0.00 0.01 
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APPENDIX A 

Table 1 – Definition of Decision performance 

 

 

  

Patent engineer’s decision (ex-ante) 
Patent outcome (ex-post) 

A. Positive outcome B. Negative outcome 

Rating confirmed or 

increased 
1. Positive prospect Positive 

Negative 

(Type I Error) 

Rating decreased 2. Negative prospect 
Negative 

(Type II Error) 
Positive 
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In this example, patent engineers 1 and 2 are respectively assigned patent 1 and 2 for periodic 
evaluations. The timeline shows a sequence of relevant events; for instance, both patents are 
granted 5 years after filing and the first two evaluations are made while patents are under 
prosecution. Patent 1 is successfully licensed to a third party after the grant, while patent 2 
expires at the end of its legal life without being commercialized. That is, the outcomes for 
patent 1 and 2 are respectively positive and negative. For illustrative purposes, both patent 
engineers evaluate their respective patents at the same time and assign the same ratings. Both 
ratings are increased from 2 to 3 at the first evaluation, confirmed at 3 at the second evaluation, 
and decreased to 2 at the third evaluation. Patent 1 is removed from the first patent engineer’s 
list of assigned patents because it was commercialized, and additional evaluations are no longer 
necessary. Patent 2, instead, keeps being evaluated until the expiration date is reached. The 
table shows that rating changes (∆𝑅𝑅) are equal for both patents, while the sign of decision 
performance is the opposite. For instance, the rating decrease decided at the third evaluation 
(∆𝑅𝑅 = −1) corresponds to a negative performance for engineer 1 and to a positive performance 
for engineer 2.  

  1st 
evaluation 

2nd 
evaluation 

3rd 
evaluation 

n-th 
evaluation 

Patent 
Engineer 1 

Rating change 
(∆𝑅𝑅) 

1 0 -1  

Performance 1 1 -1  

Patent 
Engineer 2 

Rating change 
(∆𝑅𝑅) 

1 0 -1 -1 

Performance -1 -1 1 1 

Figure 1 – Example of how decision performance is computed. 
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APPENDIX B 

Table 1 – Evaluation Factors 

 

 

 

  

 Topic Factor 
1. Standard Relevance in Standardization 
2. Implementation Internal Implementations 
3. Interdependence Relevance to other Internal Projects and Cases 
4. Business strategy Relevance to Internal Business Strategy 
5. Competition Competitors Implementations 
7. Competition Relevance to Competitors Business Strategy 
8. Commercialization Relevance to Markets and Users 
9. Commercialization Relevance to Products and Services 
10. Litigations Use in Infringements 
11. Litigations Use in Litigations 
12. Licensing Relevance for Licensing 
13. Technology Relevance of the Technology Area 
14. Technology Control over Technology Area 
15. Technology Relevance of the Technical Problem  
16. Technology Comparison of the Invention 

to other Solutions to the same Problem 
17. Claims Scope of Protection of Claims 
18. Patent Citations Patent Forward Citations  
19. Costs Annuity Costs 
20. Costs Prosecution Costs 
21. Technology Possibility to Design Around 
22. Geography Geography 
23. Claims Supervision 
24.  Claims Detectability  
25 Prosecution Industrial application 
26 Prosecution Inventive step 
27 Prosecution Prior Art/Novelty 

28. Commercialization Relevance for Divestment/ 
Other commercialization efforts 
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CHAPTER 2 

 

 

A MODEL OF REPRESENTATION AND POLICY SEARCH IN 

COMPLEX ENVIRONMENTS 

 

 

 

ABSTRACT 

Mental representations determine how individuals and firms make decisions and have 

implications for individual and firm performance. A recent line of work has started 

investigating the performance implications of searching over alternative representations, 

including the implications of searching over different representations of dimensions of 

performance and of various degrees of representational complexity. However, current research 

does not distinguish between ways of developing representations of different complexity across 

distinct dimensions of a decision problem. In this study, I explore the trade-offs associated with 

the allocation of representation search efforts across the distinct dimensions of a decision 

problem – that is, with the breadth of representation search strategies. To this end, I develop a 

NK model of dual search over policies and representations where agents can either refine their 

representations broadly across dimensions or deeply in one or few dimensions of a decision 

problem. Results obtained with this model show that the optimal representation search breadth 

is contingent on the complexity of the decision environment. Contrary to previous research, 

intermediate levels of search breadth are associated with optimal performance only for 

moderate levels of complexity. Higher levels of complexity demand narrow search strategies, 

while broad search strategies are optimal when complexity is low. A second set of results 

explores the relationship between the breadth of search strategies and the optimal degree of 

representational complexity. In line with recent findings in this research stream, I find that, 

counterintuitively, less accurate representations can outperform more accurate ones – i.e., that 

the optimal degree of representational complexity does not necessarily match the true 

complexity of the environment. However, I show that less accurate representations can 

outperform more accurate ones only for broad rather than narrow representation search 

strategies. These findings contribute to research on learning and adaptation in complex 

environments and on the role of mental representation in organisational decisions.  
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INTRODUCTION 

Mental representations determine how individuals and firms make decisions (Gardenfors, 2004; Simon 

1990) and have implications for individual and firm performance (Barr, Stimpert, and Huff, 1992; 

Eggers and Kaplan, 2009). Representations vary across individuals and over time, for instance, in terms 

of their accuracy or degree to which they simplify distinctions among the features of the environment 

(Gary and Wood, 2011; Axelrod, 2015; Martignoni, Menon, and Siggelkow, 2016). Changes in 

representations occur with experience (Walsh, 1995) and as the result of search efforts (Csaszar and 

Levinthal, 2016), thus their evolution is core for understanding the origins of individual capabilities and 

their implications for firm performance. 

 

A recent line of work has started investigating the performance implications of searching over 

alternative representations (Csaszar and Levinthal, 2016; Martignoni, Menon, and Siggelkow, 2016; 

Choi and Levinthal, 2022). Managers can and do update their representations of problems to be solved 

and of the decision environment as they attempt to achieve superior decision performance (Fiske and 

Taylor, 1984; Barr, Stimpert, and Huff, 1992; Benner and Tripsas, 2012). Recent work has started 

addressing fundamental questions about the implications of searching over different representations of 

dimensions of performance (Csaszar and Levinthal, 2016), of various degrees of representational 

complexity (Martignoni, Menon, and Siggelkow, 2016; Csaszar and Ostler, 2020), and of different ways 

of encoding prior experiences (Choi and Levinthal, 2022).  

 

While representational complexity is central to our understanding of the performance implications of 

representations, current research does not distinguish between ways of developing representations of 

different complexity and level of detail across distinct dimensions of a decision problem. This 

distinction is important for two reasons. First, different ways of developing complexity and refining 

one’s understanding of decision problems reflect a strategic trade-off in how representation search 

efforts are allocated across dimensions. Managers can, on the one hand, focus their search efforts to 

find increasingly accurate representations of only one or few aspects of a decision problem; or, on the 

other, allocate search efforts more broadly and look for new ways of representing problems from 

multiple perspectives. Thus, for any given level of experience and search effort, individuals can only 
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develop a more granular yet narrower understanding of a problem in the former case, or a broader yet 

less accurate understanding in the latter (Teodoridis, Bikard, and Vakili, 2019).  

 

Second, different representations search strategies across dimensions of a decision problem have 

important performance implications. On the one hand, using increasingly accurate and finer-grained 

representations of one or a few aspects of a decision problem can have large performance implications 

because decision environments are complex and control over even small details can have system-wide 

effects. To illustrate, consider the case of the two de Havilland Comet jets that exploded mid-air on 

their way from and to London in 1954. The two fatal plane crashes were caused by the design of the 

planes’ windows, which were square at the time. Investigations after the incidents confirmed that the 

sharp corners of the windows put the surrounding metal under up to three times the stress endured by 

other parts of the plane, resulting in the destructive cracks that eventually caused the systemic failures. 

Engineers likely held a sophisticated understanding of the window structure design problem, given how 

critical structural integrity is in aeronautical applications. Further, the intensification of stress around 

sharp corners was a known phenomenon at the time. It is reasonable to assume that designers could 

have anticipated the importance of avoiding sharp corners had they allocated efforts to further refine 

their representation of the design problem. 

 

On the other hand, narrow and focused search efforts may have limited benefits when other aspects of 

a problem are oversimplified. Interaction effects among the dimensions of a decision problem imply 

that the improvements obtainable by refining a subset of choices may largely depend on other 

underlying distinctions that managers neglect. For instance, innovative products that offer sophisticated 

new features or market strategies based on differentiation may fail because of critical shortcomings with 

other underdeveloped features (Barwise and Meehan 2004). The history of the Ford Pinto is not only a 

case of questionable business ethics but also of basic design flaws that could have been easily avoided. 

Engineers realised during final tests before the product launch that even low-speed rear impacts could 

cause fires because the fuel tank was simply too close to the rear bumper. The Pinto was praised at the 

time for being the first American car in the small-car segment to feature advanced solutions for low 

weight, low costs and a still competitive delivery deadline. Nonetheless, the original design evidently 

overlooked critical interactions between choices on a larger scale, such as the ones between the positions 
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of the rear bumper and fuel tank. From this perspective, the representation of the design problem would 

have benefited from a broader allocation of search efforts across other decision variables. 

 

In this study, I explore the trade-offs associated with the allocation of representation search efforts 

across the distinct dimensions of a decision problem – that is, with the breadth of representation search 

strategies. To this end, I develop a NK model of dual search over policies and representations (Csaszar 

and Levinthal, 2016). Search over policies occurs as in traditional NK models of search where agents 

iteratively try choice alternatives across distinct categories of policy choices13 (Gavetti and Levinthal, 

2000). In terms of search over representations, I focus on search efforts by which agents attempt to 

refine their representations of each policy category. In this sense, changes in representation correspond 

to situations where individuals realise that choices that they had treated as equivalent have instead 

distinctive features that may lead to distinct outcomes (Choi and Levinthal, 2022). For instance, a 

refinement of the aeroplane’s window design problem could result in disaggregating the choice of the 

outer shape into two separate choices, e.g., of a width-to-height ratio and of whether shapes present 

sharp corners. Accordingly, the breadth of a representation search strategy is related to the number of 

distinct categories of policy choices across which decision-makers allocate representation search 

efforts. 

 

I incorporate search over representations by adding two components to the traditional search model. 

First, the model features two search landscapes, namely the true performance landscape (of dimension 

𝑁𝑁) and agents’ simplified representation of it (of dimension 𝑁𝑁𝑚𝑚 ≤ 𝑁𝑁). Each of the 𝑁𝑁𝑚𝑚 agents’ policy 

category aggregates a distinct set of the 𝑁𝑁 dimensions of the environment, such that more distinctive 

categories aggregate fewer dimensions and are more accurate. Agents search over policies according to 

their simplified representations of possible choice alternatives, while payoffs are computed according 

to the true landscape. Second, agents can refine their representations by replacing one coarser policy 

category with two more distinctive ones. As such, representations become increasingly more accurate 

(𝑁𝑁𝑚𝑚 approaches 𝑁𝑁) as agents search over representations. The set of categories that agents can refine 

 
13 Traditional NK models of search define N categories of policy choices and two choice alternatives (or 0/1 
“bits”) for each policy category.  
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depends on their representation search breadth, such that broader strategies include a larger number or 

all the (𝑁𝑁𝑚𝑚) policy categories.  

 

Results obtained with this model show that the optimal representation search breadth is contingent on 

the complexity of the decision environment. Contrary to previous research, intermediate levels of search 

breadth are associated with optimal performance only for moderate levels of complexity. Higher levels 

of complexity demand narrow search strategies, while broad search strategies are optimal when 

complexity is low. These results can be explained by noting that simplified mental representations 

generate apparent local peaks of performance that do not correspond to true local peaks of the 

performance landscape. That is, decision-makers stop searching for new policies when they believe 

they have exhausted all local possibilities for improvement. However, the mapping between their 

simplified representations of available policy choices and the true performance landscape indicates that 

this often happens when they are not located at a local peak of the true landscape and that further 

performance improvements are in fact available even locally. Put it differently, choices taken from the 

perspective of a simplified representation can have consequences on the true performance landscape 

that decision makers simplify and neglect but that can have significant implications for performance.  

 

Importantly, the simple model of this study also shows that feedback noise is not exclusively a property 

of the external environment but also a consequence of representing choice alternatives by means of 

simplified representations. A key implication of simplification is that what decision makers treat as one 

policy choice in fact affects multiple features or dimensions of the environment in a way that they do 

not observe or are unaware of. It follows that when a policy is changed from the current state to a new 

alternative, the actual implementation of the alternative affects the environments in ways that decision 

makers do not control and that are thus random. The feedback signals they observe are thus noisy – i.e., 

configurations of policy choices generate payoffs that are non-deterministic – even when the payoffs of 

the true performance landscape are deterministic. 

 

Finally, a second set of results explores the relationship between the breadth of search strategies and 

the optimal degree of representational complexity. In line with recent findings in this research stream, 

I find that, counterintuitively, less accurate representations can outperform more accurate ones – i.e., 
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that the optimal degree of representational complexity does not necessarily match the true complexity 

of the environment (Csaszar and Levinthal, 2016). However, I show that less accurate representations 

can outperform more accurate ones only for broad rather than narrow representation search strategies. 

 

This study contributes to the literatures on search and the performance implications of mental 

representation. I introduce the notion of apparent performance peak as a necessary consequence of 

simplified mental representations that affects how decision-makers conduct policy search. Contrary to 

the assumptions of traditional local policy search, this notion suggests that decision-makers may stop 

searching at locations of the landscape that do not correspond to local peaks and that are thus 

suboptimal. In other words, decision-makers may often stop searching when they are one small policy 

change or “step” away from a location associated with higher performance. From a managerial 

perspective, these results suggest that managers do not necessarily need to explore distant policy 

configurations when they believe they do not have other possibilities for improvement locally. Instead, 

managers can just refine their representations of available policy choices and find opportunities for 

improvement by modifying their configurations locally at finer level of detail.  

 

Finally, this study contributes to the literature on the trade-offs between specialist and generalist 

knowledge. By leveraging the notion of representation search, I identify conditions under which it is 

worth investing in narrowly and deeply refined “specialised” representations rather than in broadly and 

uniformly developed “general” representations. Research on organisational search suggests that optima 

are found at intermediate levels of search breadth (Katila and Ahuja, 2002), while research on 

knowledge specialisation and creativity has produced inconsistent findings and found support for either 

high or low levels of specialisation (Teodoridis, Bikard, and Vakili, 2019). This study contributes to 

these literatures and shows that the level of interdependence among policy choices is a critical 

contingency affecting the performance of different levels of knowledge specialisation. 

 

THEORETICAL BACKGROUND 

Mental representations are central to decision-making because the set of choice alternatives that 

decision makers can control and the performance outcomes they can observe and learn from depend 

primarily on how they represent decision environments in the first place. Decision-makers can process 
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only a portion of the information available for a decision task (Simon, 1995). This insight has been 

foundational for the behavioural theory of the firm (March and Simon, 1958; Cyert and March, 1963; 

Gavetti et al., 2012) and the behavioural economics (Kahneman and Tversky, 1979) research traditions, 

which maintain that decision-makers most often rely on simplified representations of a decision 

environment. Using a simplified mental representation for making decisions entails neglecting 

distinctions among entities and interdependencies of the environment (Simon, 1990). It follows that the 

consequences of choosing among a set of choice alternatives depend primarily on the extent to which 

alternatives capture distinctions among environmental features, because decision-makers cannot 

observe or have control over features that their representations neglect (Winter, 1987). For instance, a 

very simplistic representation of an aeroplane design task may involve the choice of only the wing total 

surface area and of the fuselage length. This two-dimensional representation is over-simplified because 

a designer would not have control over other critical sets of choices such as engine features or the 

internal structure of wings and fuselage. 

 

Research shows that decision-makers do indeed search and learn different representations of decision 

tasks and that changes in representation are highly consequential for performance (Fiske and Taylor, 

1984; Walsh, 1995; Tripsas and Gavetti, 2000). Since representations differ primarily in terms of which 

environmental features are captured or neglected, representation search entails changes in how the 

choice alternatives available to decision-makers are represented. Each set of choice alternatives 

represents an aspect or dimension of a decision task. Alternatives within a set are distinct because they 

differ in at least one environmental feature that characterises the respective dimension. The fewer 

features across which alternatives differ, that is, the larger the number of entities and interdependencies 

that are neglected, the more simplified and less accurate representations are (Rosch et al., 1978; Walsh, 

1995). Searching for representations involves deciding which of the known environmental features are 

considered with the sets of choice alternatives available to decision-makers. For instance, with reference 

to one of the opening examples, the presence of sharp corners in the outer shape of aeroplanes’ windows 

was not a feature represented by an independent set of choice alternatives in earlier representations of 

the aeroplane design task and designers did not have direct control over it. As this example suggests, 

the consequences of failing to change current representations can be large. Similarly, research shows 
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that survival after large environmental shifts requires searching for different representations of key 

decision variables and interdependencies (Barr et al. 1992; Tripsas and Gavetti, 2000).  

 

It follows that while superior decision performance depends on choosing the optimal configuration of 

policy choices, the possibility itself of choosing the optimal configuration depends on how the sets of 

choice alternatives are represented in the first place (Gavetti and Levinthal, 2000). Thus, I refer to the 

optimal representation for a given decision environment as the set of representations that maximise the 

performance attainable via local policy search (i.e., via “hill-climbing”). 

 

Two considerations are critical to understand the search for optimal representations. First, highly 

accurate representations are not necessarily optimal. Different literatures present conflicting views of 

the performance consequences of representational accuracy (Csaszar and Ostler, 2020). Research has 

examined the performance advantages of simple and fast-and-frugal heuristics (Gigerenzer and 

Goldstein, 1996; Sull and Eisenhardt, 2015), of highly complex and accurate representations (Kiesler 

and Sproull, 1982; Weick, Sutcliffe, and Obstfeld, 1999), and of representations that match the 

complexity of the environment (Ashby, 1956). Advocates of simple representations suggest that 

simplified decision rules or heuristics can be applied across contexts and free up resources to address 

the specific features of different environments (Davis et al., 2009). Heuristics may even be a natural 

evolutionary response to deal with uncertainty, often superior to human attempts at rational optimisation 

(Gigerenzer and Gaissmaier, 2011). A recent stream of simulation studies has advanced this debate by 

examining contingencies that influence the optimal degree of representational accuracy. While greater 

accuracy is often advantageous (Simon, 1990), excessively accurate representations may be detrimental 

to performance depending on characteristics of the environment, such as the degree of interdependence 

among policy choices (Martignoni et al. 2016; Csaszar and Levinthal, 2016); and on characteristics of 

the decision maker, such as levels of experience and of knowledge of critical dimensions of the decision 

task (Csaszar and Ostler, 2020). 

 

Second, even assuming that any representation can be potentially learned given sufficient time and 

resources, not all representations can be adopted within any given time horizon and decision-makers 

must decide how search efforts are allocated across different dimensions of representation. It is 



71 

71 
 

reasonable to assume that representation search occurs locally and gradually akin to traditional models 

of policy search (Cyert and March, 1963). Decision-makers tend to avoid distant search because 

changing many policy variables at once is risky (Levinthal and March, 1993). By the same token, 

decision-makers likely avoid changing large portions of current problem representations at once 

(Csaszar and Levinthal, 2016). It follows that similar to traditional models of experiential learning 

(Gavetti and Levinthal, 2000), mental representation learning occurs gradually and in a path-dependent 

fashion. Earlier choices as to which dimensions should be searched for improved representations would 

make some subsequent representation changes possible while making others unattainable, especially in 

the presence of search interdependencies and under the constraint of limited time and resources 

(Levinthal, 2021). Hence, the possibility of attaining optimal representations depends on how decision-

makers allocate representation search efforts across different dimensions of a decision task. 

 

In this paper, I focus on the latter aspect of representation search and examine the performance 

implications of different ways of allocating search efforts across distinct dimensions of a decision 

problem. While the implications of any given degree of representational accuracy have received most 

of the research attention in this stream, it is equally important to examine the consequences of different 

search strategies, that is, of different ways of searching for optimal representations. Answering this 

question is important because it may reveal, for instance, that representations are not equifinal – that is, 

that the likelihood of attaining an optimal configuration of policy choices via local policy search 

depends on the representation search trajectory followed by a learning agent rather than on the 

representation per se, and thus on how search efforts are allocated. 

 

Specifically, I focus on the implications of searching broadly rather than narrowly across 

representational dimensions. Indeed, this distinction reflects the traditional notion of (policy) search 

breadth (Katila and Ahuja 2002). In the context of representation search, breadth is defined as the extent 

to which decision-makers adopt changes in representations across a broad rather than narrow set of 

dimensions of a decision problem. For instance, a phone manufacturer may adopt relatively simple sets 

of choice alternatives for the operating system, design, and battery features; and devote their limited 

search resources to change, and ideally improve, the representation of camera and display features. The 

manufacturer may experiment with different choice alternatives, that is, search over policies across all 
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the dimensions of the phone design. However, the choice of narrowly focusing representation search 

efforts on two dimensions reflects the manufacturer’s strategic interest in maximising the chances of 

attaining a high-performance configuration of policy choices for these two sets of phone design features.  

 

In order to emphasise the distinction between broad and narrow search strategies, I examine the 

representation search process by making two key simplifying assumptions. First, decision-makers use 

mental representations that are initially over-simplified with respect to the distinct features of a decision 

environment. Second, they search representations by adopting increasingly accurate sets of choice 

alternatives along the dimensions specified by their chosen search breadth strategies. Indeed, this setup 

is simplified in many ways. For example, representations can be over-specified rather than excessively 

simple (Martignoni et al. 2016); that is, they can account for distinctions among features that are 

irrelevant for performance or even spurious, i.e., superstitious (Levitt and March, 1988; Zollo, 2009). 

In this case, representation search may operate in the opposite direction by discounting distinctions 

among features and aggregating sets of choice alternatives (Choi and Levinthal, 2022). More broadly, 

representation search may entail changes not only in the degree to which dimensions accurately capture 

distinct entities and interdependencies but also in how interdependencies among choices are represented 

(Barr et al., 1992) or in the understanding of how representational dimensions affect the overall 

performance (Csaszar and Levinthal, 2016; Csaszar and Ostler, 2020). 

 

However, this simplified model retains the essential traits of representation search in a parsimonious 

fashion while giving salience to the central distinction between broad and narrow search strategies. In 

particular, overly simplified initial representations imply that decision-makers very likely benefit from 

increasing representational accuracy (Simon, 1990; Csaszar and Ostler, 2020). While the second 

assumption ensures that accuracy increases because of any search effort across any of the 

representational dimensions. Thus, all else being equal, any difference in the efficacy of representation 

search is due to differences in the chosen representation search breadth strategy. In other words, this 

model can answer questions about whether focusing limited search resources narrowly and deeply on a 

limited set of dimensions has different performance implications than allocating resources more broadly 

and uniformly across several or all the representational dimensions. 
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In the following sections, I further specify the model of this study and derive a set of results concerning 

the implications of different representation search strategies. 

 

A MODEL OF MENTAL REPRESENTATION AND SEARCH 

The strategy context and mental representation 

There are multiple and equally valid ways to incorporate mental representation into models of 

organisational search (Csaszar and Levinthal, 2016). The richness of perspectives and theories 

developed, for instance, in artificial intelligence or the cognitive sciences, offers a variety of conceptual 

tools that can be useful in strategy-making contexts. A parsimonious choice of tools thus depends on 

the model’s objectives (Adner et al., 2009). In order to justify a choice, I first clarify what the strategy-

making context involves in this study and then describe a minimal set of elements that can be included 

in a model of mental representation and search. 

 

For the purposes of this study, the strategy context only needs to comprise two of three elements 

described by Adner, Csaszar and Zemksy (2014), namely policies and firm profits. Policies are a 

collection of decisions and actions that managers can take to control their environment, and firm profits 

measure the market response to the outcomes of policies 14. For instance, a car manufacturer can control 

the type of engine or the number of seats of a car (policies), which jointly determine speed and market 

category (performance dimensions). In turn, speed and market category most directly influence the 

market response (firm profits). Equivalently, organisational design choices about the type of supervision 

at the manufacturer’s production floor (policies) have consequences for employee retention and 

production quality (performance dimensions) that ultimately affect the market response (firm profits). 

With respect to traditional NK models, managers search over N categories of policy choices, such as 

“engine type” or “supervision policy”, to find a configuration that maximises fitness with the landscape, 

that is, profits. 

 

 
14 The third element, performance dimensions, logically links policies to profits: it refers to the outcomes of 
policy choices, such as product functionalities or the consequences of strategies, that determine the market 
response. 
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Policies and profits can be linked to mental representation by means of two sets of elements, namely 

cognitive categories and payoff expectations. Individuals encode policies according to the conceptual 

categorisation systems of their mental representations and make policy choices depending on their 

expected payoffs. Mental representations are often conceptualised as cognitive categorisation systems 

in which categories represent sets of cognitive objects that individuals perceive as sufficiently similar 

(Rosch, 1978; Murphy, 2002; Thagard, 2005). Cognitive objects are choices and actions in decision-

making contexts, and similarity may depend on whether choices are perceived as being causally linked 

to the same outcomes or goals (Rehder, 2003; Barsalou, 1991). When managers make a design choice 

or implement a policy, they select among choice and action alternatives that they believe will achieve 

the same goal, although differently and with different payoffs. Thus, there is a one-to-one 

correspondence between policies and the cognitive categories of agents’ mental representations. For 

instance, “combustion” or “electric” are two policy choice alternatives associated with the category 

“engine type”.  

 

In turn, managers choose an alternative depending on policies’ expected payoffs. Decisions are said to 

reflect forward-looking or “theory-driven” forms of intelligence in these cases (Felin and Zenger, 2017). 

In the strategy context, managers make policy choices guided by their expected consequences for firm 

profits. For instance, the choice between two rather than five car seats may depend on designers’ 

expectations about the potential profits associated with the respective market segments. Together, 

categories of policies and expected payoffs allow us to analyse the strategy context through the lens of 

mental representation. 

 

Dual search over policies and representations 

Managers can solve problems by trying policy choice alternatives or by finding new ways to represent 

policy choices and the problems they are meant to solve. Regardless of whether decisions are guided 

by rational calculations of expected payoffs or other mechanisms, the choice of a policy alternative 

inevitably depends on how policy choices and the strategy context are represented (Levinthal, 2011). 

In this study, managers can search over alternative representations that differ by the degree of accuracy 

with which they account for distinctions among policy choice alternatives. Coarse representations use 
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simple and inclusive categories according to which many distinct choice alternatives are perceived as 

equivalent and are associated with the same policy choice (Choi and Levinthal, 2022, Martignoni et al., 

2016). Managers can search over representations by refining coarse categories and accounting for finer-

grained distinctions among alternatives. A coarse category is refined by disaggregating one or more of 

the distinct alternatives it represents and associating them to a different, additional category. The 

additional category thus becomes one of the policy choices that managers can consciously and 

deliberately control. In other words, mental representations are refined by replacing a coarser category 

with two more distinctive categories of policy choices. For instance, the choice of a car engine can be 

refined by choosing not only between combustion and electric but also the maximum output power it 

can generate.  

 

The two central elements of this model are (i) a mapping between categories of policies and the 

individual alternatives they represent and (ii) the type of search over policies that this mapping induces. 

I refer to the choice alternatives of the true landscape as the variables of the strategy context at the 

highest degree of accuracy or granularity that agents could potentially control 15. Categories of policies 

aggregate multiple true choice alternatives such that each alternative is associated with one category, 

but one category may represent multiple alternatives. That is, there is a one-to-many mapping between 

the 𝑁𝑁𝑝𝑝 policy categories of agents’ representations and the 𝑁𝑁 > 𝑁𝑁𝑝𝑝 true choice alternatives. A key 

feature of mental representation is that agents are either unaware of distinctions among aggregated 

choice alternatives or believe that the alternatives associated with the same category result in similar 

outcomes with similar payoffs. In other words, each category of policies corresponds to a decision 

variable that agents believe can control.  

 

From this mapping follows that when agents search over policies, the changes they make to one of the 

𝑁𝑁𝑝𝑝 policy categories can influence any of the aggregated true choice alternatives associated with them. 

This occurs because agents interpret and evaluate the difference between their initial configuration and 

the new configuration they intend to try from the perspective of their simplified representations, which 

do not account for the new state of the respective true choice alternatives. To illustrate, assume that the 

 
15 True choice alternatives can be thought of as being determined by available technology or knowledge. 
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choice of a car engine can be simplified to such an extent as to represent only the difference between 

combustion and electric engines. A car manufacturer produces combustion engine cars and wants to try 

an electric engine version. From the perspective of this simplified representation, this policy change can 

be implemented by choosing any electric, “non-combustion” engine, regardless of other features. In this 

hypothetical scenario, the manufacturer has no control over other finer-grained choice alternatives or 

variables related to the new engine type, such as weight or size. Nonetheless, the new design will have 

to go into production and eventually to the market. The choice of the actual engines mounted on the 

new car models will have to be made by others down the production line, such as by engineers at the 

production plant or by the car suppliers. In this way, all the engines will be electric but will likely 

present different finer-grained features. The car manufacturer will likely observe variations in the 

market responses as a consequence of these differences, for instance, in different profits across regions. 

 

Accordingly, I assume that agents search over policies by changing the state of one of the 𝑁𝑁𝑝𝑝 policies 

of their representations and that payoffs are computed with respect to changes in a random number of 

true choice alternatives associated with the chosen policy category. For instance, an NK performance 

landscape may be defined by 𝑁𝑁 = 16 true choice alternatives. A simplified representation initially 

accounts for 𝑁𝑁𝑝𝑝 = 4 categories of policies, in which each category aggregates four true alternatives. 

Agents’ perceived configuration is defined by the state of the four policy categories, while their true 

configuration on the landscape is defined by the state of the 16 true choice alternatives. When search 

over policies occurs, agents change the state of one of the four policy categories. The new true 

configuration is determined by changing the state of a random number of true alternatives among the 

four alternatives associated with the chosen policy. Agents observe the payoff of the new configurations 

and decide whether to retain or revert the policy change depending on whether performance has 

improved. If the change is reverted, both the perceived and true configuration returns to their previous 

states. 

 

Search over representations occurs by increasing the number 𝑁𝑁𝑝𝑝 of policy categories and decreasing the 

number of true choice alternatives associated with them. One category is chosen and replaced with two 

more distinctive categories that each randomly aggregate a subset of the true choice alternatives of the 

replaced category. With reference to the previous example, assume that the choice of a car engine 
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aggregates the choice of an engine type with three other features, such as the maximum power output, 

size, and weight. Manufacturers can refine their representation by replacing this coarse “engine” 

category with two more distinctive categories that aggregate, for instance, engine type and size in one 

category and power output and weight in the other. This example is unrealistic, but the two examples 

of the Comet crashes and the Ford Pinto could be described in similar terms. True choice alternatives, 

such as the presence of sharp corners or the distance from the rear bumper, were perceived as 

inconsequential and neglected until representations were refined. Eventually, these distinctions became 

part of designers’ deliberate choices. 

 

Representation search breadth and agents’ search heuristic 

The objective of this study is to determine the relative advantages of broad and narrow representation 

search strategies. Thus, I focus on identifying the optimal balance between incrementally refining one 

policy category on the one hand and spreading search efforts across all 𝑁𝑁𝑝𝑝 representational categories 

on the other. Representation search breadth increases with the number 𝑏𝑏 of categories of agents’ initial 

representations that are incrementally refined. 

 

I model agents’ search process as follows. At each time step, one representation search iteration 

precedes one policy search iteration. At the beginning of each time step, one policy category is selected 

among the 𝑏𝑏 categories of the initial mental representation defined by agents’ search breadth strategies. 

Either the selected category was never refined before, or it has already been refined a certain number 

of times. In the former case, the chosen category is replaced by two more distinctive categories that 

each aggregate one of the two random subsets of true choice alternatives of the chosen category. For 

instance, an agent chooses a policy category 𝐴𝐴 that has never been refined before, and that aggregates 

five true alternatives and replaces it with policy categories 𝐴𝐴1 and 𝐴𝐴2 that each aggregate 2 and 3 true 

alternatives, respectively. Instead, if the selected category has already been refined, agents know which 

of the more distinctive categories have been obtained by refining the selected category. One of the more 

distinctive categories is randomly chosen and further refined as before. For instance, if policy category 

𝐴𝐴 is chosen again, one among 𝐴𝐴1 and 𝐴𝐴2 is picked at random and replaced with two more distinctive 

categories. If category 𝐴𝐴1 was chosen, it would be replaced by 𝐴𝐴11 and 𝐴𝐴12, while if category 𝐴𝐴2 was 
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chosen, it would be replaced by 𝐴𝐴21 and 𝐴𝐴22. In this example, 𝐴𝐴11 and 𝐴𝐴12 correspond to the highest 

degree of accuracy and cannot be further refined. The states of the true choice alternatives (the values 

of the 0/1 “bits”) do not change either in the former or in the latter case; that is, agents do not “move” 

over the landscape as a result of representation search.  

 

 

After the representation search iteration, search over policies occurs as usual and concludes the time 

step. As anticipated above, policy search occurs by randomly selecting and changing the state of one of 

the available policy categories, including the ones that have just been refined. Payoffs are computed by 

changing the state of a random number of true choice alternatives associated with the selected category. 

The change is retained if performance improves; otherwise, both the perceived and true configurations 

remain the same as they were at the end of the representation search iteration.  

 

Figures 1 and 2 show two examples of narrow and broad representation search strategies. Figure 1 

shows that after five representation search iterations, one policy category is highly accurate (A) and the 

other two are coarse (B and C) as a result of a narrow search strategy (𝑏𝑏 = 1).  

<<Insert Figure 1 about here>> 

 

On the other hand, Figure 2 shows that after the same number of representation search iterations, all 

categories are partially refined as a result of a broad search strategy (𝑏𝑏 = 3), although none of them is 

as accurate as policy category A in Figure 1.  

<<Insert Figure 2 about here>> 

 

To best capture the implications of searching narrowly rather than broadly, representation search stops 

when the narrowest search strategy (𝑏𝑏 = 1) reaches the highest level of accuracy. In fact, this 

modelling choice reflects the fact that decision-makers need to allocate limited representation search 

resources either along one or multiple dimensions. 
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RESULTS 

I set the number of true choice alternatives to 𝑁𝑁 = 16016. Agents’ initial mental representations use 

𝑁𝑁𝑃𝑃 = 10 policy categories; thus, each policy category initially aggregates sixteen true choice 

alternatives. If not mentioned otherwise, I report average performance results for simulations of 𝑟𝑟 =

200 periods based on 200,000 replications. To provide meaningful benchmarks against which I can 

evaluate each representation search breadth strategy, I include two benchmark agents who do not search 

for representations and thus perform only policy search with their fixed initial representations. The first 

benchmark agent is identified as “Simple” and uses a fixed representation with 𝑁𝑁𝑃𝑃 = 10 policy 

categories throughout the entire simulation. The second benchmark agent is identified as “Fully 

Accurate” and uses a fixed representation with 𝑁𝑁𝑃𝑃 = 160 = 𝑁𝑁 policy categories throughout the entire 

simulation – that is, the latter agent uses a policy category for each of the true choice alternatives. The 

other agents search for representations with three different search breadth strategies: a first agent 

searches narrowly for more accurate representations along only one dimension (𝑏𝑏 = 1), a second agent 

searches broadly along all the dimension (𝑏𝑏 = 10), and a third agent searches along an intermediate 

number of dimensions (𝑏𝑏 = 5). 

 

Benchmark results: apparent local peaks of performance 

 

In Figure 3, I report the baseline results for the five agents defined above. The results show the 

performance level on the landscape on the y-axis and the number of simulation time periods on the x-

axis. As usual, performance levels are normalised to 1 therefore all agents’ initial performance is 0.5. 

The five panels from A to E indicate five different values of the complexity K, from relatively low 

complexity (𝐾𝐾 = 15) to high complexity (𝐾𝐾 = 145).  

 

The first result to note is the performance difference between the two benchmark agents who search the 

landscape for the optimal policy configuration but do not search for representations. There is a 

 
16 Since representation search stops when the narrowest breadth strategy (b=1) achieves the highest degree of 
accuracy, this relatively large value for N allows me to simulate a sufficiently large number of representation 
search steps. For instance, by choosing 𝑁𝑁𝑃𝑃 = 10, simulations can compute 15 representation search steps. I 
developed an algorithm for solving search over NK landscape “on-the-fly” that can process values of N and K 
larger than 1,000 quickly and efficiently. 
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substantial performance advantage in using a fully accurate representation (marked red line) as opposed 

to an overly simple representation (marked green line), although the relative advantage decreases for 

higher levels of complexity. Note that in the figure, the performance of the fully accurate agent never 

reaches steady state within the chosen simulation time.  

<<Insert Figure 3 about here>> 

 

This large performance difference is due to apparent local performance peaks that affect agents who do 

not use fully accurate representations. As discussed above, policy search along a policy category that 

aggregates multiple true choice alternatives entails switching the state of a random number of those true 

alternatives. This is equivalent to distant search in traditional NK models, which is known as a 

suboptimal search strategy per se because it is more likely to diminish rather than improve performance 

immediately after a distant search step is performed. That is, when multiple true choice alternatives are 

switched at random, performance is more likely to be inferior and thus agents are more likely to revert 

it. It follows that an agent who uses simplified policy categories is more likely to exhaust all the 

perceived choice alternatives as compared to more accurate representations and she will reach steady-

state sooner, as evident in Figure 1. Put it differently, agents believe to have reached a local peak of the 

performance landscape when their configuration on the true performance landscape does not necessarily 

correspond to a true local perspective peak. The more a representation is simplified, that is, the lower 

the number of perceived dimensions 𝑁𝑁𝑃𝑃, the sooner an agent will stop policy search at an apparent local 

performance peak. 

 

To illustrate, consider again a car manufacturer whose perceived representation of a car design only 

(and unrealistically) accounts for three dimensions, namely engine type, number of seats and quality of 

interiors. As in standard NK models, each policy category has two states or choices, for instance 

combustion versus electric engine, two versus five seats and economy versus luxury interiors, for a total 

of 23 = 8 policy configurations. The car manufacturer wants to innovate her traditional combustion 

engine, five-seater, economy interiors model with known profits and begins by launching an equivalent 

model with electric engine. The new car model is successful, profits are higher than for the traditional 

model and she decides to keep searching for an improved configuration of choices. Thus she 

experiments with a two-seater version of the car, but profits are lower than the five-seater model and 
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this configuration is abandoned. If switching car interiors from economy to luxury also does not 

improve profits, the car manufacturer will believe that she has exhausted her choices and that she has 

found a performance peak on the landscape.  

 

However, the manufacturer’s representation neglects the full range of implications associated with two 

rather than five seats. For instance, a distinct set of features such as the geometry of the internal spaces 

or the presence of back seats (some two-seater cars still have small back seats) are all affected by the 

choice between two and five seats but are not under the manufacturer’s control according to her very 

simple representation. These finer-grained choices will be made by someone else down the design and 

production lines. Yet, the car manufacturer will consider all two-seater versions as equivalent regardless 

of finer-grained choices and simply compare the profits of all the two-seater sales against all the five-

seater sales when deciding whether to retain the two-seater configuration17.  

 

The difference between the Simple and Fully Accurate agents shows that there is an advantage in 

improving the accuracy of representations under these conditions. Agents who use representations that 

have more control on true choice alternatives will less likely encounter apparent local peaks and will 

search for longer, increasing the likelihood of approaching a peak of the true performance landscape. 

In the next sub-sections, I examine whether differences in the ways more accurate representations are 

searched affect the likelihood of encountering apparent local peaks. 

 

The breadth of representation search strategies 

With reference to Figure 3, I examine the performance over time of narrow (green line), intermediate 

(blue line) and broad (red line) representation search strategies. The first result is that the complexity of 

the environment 𝐾𝐾 has a large impact on the efficacy of search breadth strategies. Search breadth has a 

marked effect on performance for low to intermediate levels of complexity, although it vanishes at very 

high levels of complexity.  

 

 
17 Indeed, this line of reasoning must be interpreted from the perspective of the usual assumptions of NK models 
and are unrealistic in real-world settings. Nonetheless, the intuition behind apparent local peaks is captured even 
by this simplified scenario. 
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Second, broad search benefits performance at low complexity, narrow search performs best between 

intermediate and higher levels of complexity (up to 𝐾𝐾 = 110, Panel D), and intermediate breadth search 

strategies are optimal between low and intermediate values. This result can be explained by the fact that 

spreading representation search efforts across multiple dimensions produces sets of policy categories 

that are still relatively too aggregated – i.e. simple – when complexity is higher. Higher complexity 

implies that performance is more likely to be inferior when multiple true choice alternatives are 

switched simultaneously, that is, when random distant search is performed. Hence, it is beneficial to 

focus representation search on fewer dimensions and have more accurate control over the respective 

subset of true choice alternatives rather than having lower increases of accuracy across more 

dimensions. 

 

This rationale also supports the result that search breadth has a relatively low impact on performance in 

highly complex environments. Having accurate control over the true choice alternatives of one or a few 

dimensions is not sufficient to generate relative performance advantages because the performance 

contributions of those alternatives still depend strongly on the state of the true alternatives over which 

agents do not have control. In other words, it does not matter whether agents can control a subset of 

finer-grained features because they depend on other finer-grained features that agents do not control 

and that are changed at random. 

 

As these results show, it is critical to understand the role that the mapping between perceived and true 

policy choice alternatives has on the efficacy of representation search breadth strategies. The mapping 

reflects the essence of mental representation in terms of neglecting the distinctions between true choice 

alternatives. Given that decision-makers do not account for these distinctions, it is reasonable to assume 

that when they switch one of their perceived policy categories, they affect a random number of the true 

choice alternative that the selected perceived policy choice aggregates. Accordingly, the more a 

perceived policy is aggregated and simple, the higher the average number of true choice alternatives 

that are switched at each policy search step and the lower the likelihood that performance can be 

improved. It follows that all else being equal, search strategies will have a differential impact on 

performance if agents could control not only which true choice alternative is switched – which depends 
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on representational accuracy – but also the number of true choice alternatives that are switched within 

a selected policy category.  

 

I examine the implications of a range of values for this parameter of the model in the next section. 

 

Simplified policy search representations and feedback noise 

An implication of making choices by means of simplified representations is that choices’ feedback 

signals can be noisy – i.e., non-deterministic – even when the true payoffs generated by the environment 

for any given choice of policy choices is deterministic. The reason is that decision makers neglect and 

do not have control over finer-grained features of the environment when they implement the policies 

that they choose by means of their simplified representations. Implementation thus affects a random 

number of the neglected features in an uncontrolled way that can have tangible implications for 

performance. From the perspective of search models, the traditional NK model assumes without loss of 

generality that each dimension or policy category has two states or choices (or 0/1 “bits”). Yet, even in 

keeping with this assumption, an agent who repeats twice the same move from the first state “0” to the 

second state “1” may end up in different locations of the landscape even if representation search is not 

performed and other policy choices are not changed. As mentioned above, this occurs because, all else 

being equal, switching the state of the chosen perceived policy from 0 to 1 changes the state of a random 

number of true choice alternatives. In fact, agents neglect the distinctions that there may be between 

two states “1” because they are only interested in experimenting with a state that is different from “0”. 

 

It follows that the number of true choice alternatives that are randomly changed when decision makers 

experiment a new policy choice should be an important contingency affecting the efficacy of 

representation search strategies. In what follows, I will refer to the number of true alternatives that are 

randomly changed as the degree of noise affecting feedback signals.  

 

To illustrate, consider again an aeroplane designer whose simplified representation includes a policy 

category for “window appearance”. This simplified category aggregates, for instance, five true choice 

alternatives given by the total surface area, the number, thickness and material of glass layers, and 

whether the outer shape has sharp corners. In this example, the representational accuracy of this 



84 

84 
 

category is assumed fixed at this level of aggregation (five). The designer wants to experiment a 

different window design. Feedback is characterised by low noise when a different window choice only 

changes one or few of the true choice alternatives. This may occur, for instance, when the designer 

accepts as a valid alternative for experimentation any design that is mostly equal to the original one and 

that differs in only one or a few features. However, by definition of simplified representation, the 

designer neglects or is unaware of at least some of the distinctions among the features that have been 

changed. This implies that while only a few features have changed with respect to the old design, some 

of them will be implemented randomly at each replication of the window because they are not under 

the direct control of the designer. For instance, the designer may select a new window appearance that 

only differs in terms of a larger surface area. As other designers are in charge of integrating the new 

larger window within the structure of the fuselage, they may need to adjust one of the windows’ outer 

shape to make it compatible with some specific location of the fuselage’s structure – e.g., one of the 

emergency exits. This adjustment may involve the inclusion of a sharp corner, which before the Comets 

fatal accidents would have been seen as an inconsequential modification.  

 

In contrast, feedback is characterised by high noise when a different policy choice changes most or all 

the associated true choice alternatives. With reference to the previous example, this may occur when 

the designer accepts as a valid alternative for experimentation only window designs that look very 

different from the original along all features. As the new design is implemented, several design true 

choice alternative are neglect and out of the control of the designer, and implementation of the finer-

grained details will vary randomly at each replication of the design. 

 

Accordingly, I replicate the results of Figure 3 but for different levels of feedback noise. Specifically, 

the previous results were obtained by changing a random number of true choice alternative at each 

policy search step. In this set of results, agents change only one random true choice alternative at each 

policy search step when feedback noise is low, and all but one true alternative when noise is high. 

 

Figures 4 and 5 show the results for low and high feedback noise, respectively. Evidently, feedback 

noise has a large impact on the performance of narrow and broad representation search strategies. The 

first result to note is that the performance of any search strategy, including the performance of the two 
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benchmark agents, is significantly higher when feedback noise is small – approaching to 1 (the global 

peak) in Figure 4 for low complexity and the Fully Accurate agent. This result occurs because agents 

always avoid distant search regardless of degree of simplification of their representations.  

 

Secondly, for low feedback noise, broad search strategies always perform better than intermediate and 

narrow strategies for all levels of complexity. This result can be explained in terms of the amount of 

residual randomisation subsequent to each representation search step. There are two randomised 

elements under low noise conditions, the selection of the policy category to search and of the true choice 

alternative. Narrow search breadth produces, on the one hand, one accurate dimension along which 

policy categories aggregate a progressively smaller number of true choice alternatives. On the other, it 

retains nine highly simplified dimensions, each representing one policy category that aggregates 16 true 

alternatives. It follows that when agents perform a policy search step and choose a policy category at 

random, they are more likely to choose one of the refined categories that aggregate fewer true 

alternatives. In turn, for low feedback noise, only one of those few true alternatives can be chosen for 

experimentation. Thus, all else being equal, agents try fewer true alternatives for narrow breadth than 

for broad breadth and performance is inferior because they experimented fewer policy configurations. 

 

The results of Figure 5 show that the opposite is true when feedback noise is high. That is, narrow 

search strategies perform better than broad strategies for almost all levels of complexity, except for very 

low-complexity environments. Following the above line of argument, this result obtains because agents 

always perform distant search – i.e., they change a large number of true choice alternatives at once – 

when noise is high, except when a policy category is fully accurate and represents only one true choice 

alternative. Akin to the results of Figure 3, Panels C and D, it is beneficial to focus representation search 

efforts along one or fewer dimensions when search is distant because choice alternatives tend to be 

interdependent with multiple other choices. This argument is also supported by the results of Figure 5, 

Panels A and B. When complexity is low and true choice alternatives are less interdependent, distant 

search is less detrimental, and it is more beneficial to use broader representation search strategies. 
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Searching for optimal representations 

The final set of results aim to determine the optimal degree of representational complexity and whether 

the likelihood of achieving optimal representations depends on different representation search 

strategies. Note that I previously defined the optimal representation for a given decision environment 

as the set of representations that maximise the performance attainable via policy search. The main result 

of this section is that simplified representations can outperform more accurate ones, including the fully 

accurate representation that perfectly matches the true performance landscape, and maximize the 

performance attainable by policy search. However, this is true only for broader search strategies (𝑏𝑏 ≥

6), while the optimal representation for intermediate (𝑏𝑏 = 5) and narrow (𝑏𝑏 ≤ 4) search strategies is 

the fully accurate representation. 

 

These results are obtained as follows. I run simulations for narrow (𝑏𝑏 = 1) and broad (𝑏𝑏 = 10) 

representation search strategies according to the baseline search process defined in the previous section, 

with two modifications. First, representation search does not stop when the policy category of the 

narrow search strategy achieves the highest level of accuracy, that is, after 15 representation search 

steps. Instead, representation search continues until agents’ representations achieve the highest level of 

accuracy across all the 10 policy categories, that is, after 150 representation search steps. This allows 

me to determine whether optimal representation exists at all levels of representational accuracy. For the 

narrow search strategy (𝑏𝑏 = 1), full representational accuracy can be achieved by selecting a new policy 

category when the current one has been refined to the highest level of accuracy. That is, the narrow 

representation search strategy proceeds by refining to the highest level of accuracy one policy category 

at the time until full representational accuracy is achieved. In contrast, a broad representation search 

strategy proceeds by picking and refining one of the 10 policy categories at random at each step until 

full representational accuracy is achieved. 

 

Second, after each representation search step and for both breadth strategies, agents perform repeated 

policy search iterations until a performance peak is reached and steady state is achieved. The steady 

state performance value is then compared to the steady state performance value that is obtained 

according to the baseline search process defined in the previous section; that is, by alternating 

representation and policy search steps until full representational accuracy and a performance peak are 
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achieved. The difference between the two steady state performance values indicates whether an 

intermediate degree of complexity exists at which stopping representation search produces higher 

steady state performance than the steady state performance achievable with a fully accurate 

representation.  

 

The results are show in Figure 6 for five values of environment complexity (𝐾𝐾). The above process 

produced a steady state performance value for each level of representational accuracy of agents’ 

representations, which is indicated in the x-axis, and for narrow (𝑏𝑏 = 1) and broad (𝑏𝑏 = 10) 

representation search strategies. The y-axis shows the difference between these values and the steady 

state performance value that is obtained by achieving the fully accurate representation with the 

respective representation search breadth strategy.  

 

The results confirm that broad search strategies (red lines) can generate less accurate representations 

that lead to higher steady state performance values than more accurate ones, including the fully accurate 

representation. In contrast, for narrow search strategies (green lines), less accurate representations lead 

to lower performance peaks than more accurate ones for all values of complexity and representational 

accuracy. This holds for all intermediate to low values of representation search breadth, i.e., for 𝑏𝑏 ≤ 5.  

 

Note that, however, the performance difference between fully accurate and less accurate representations 

is low (< 1%) and constant even for intermediate and narrow search strategies. Interestingly, the level 

of representational accuracy at which the difference is lower than 1% decreases as the complexity of 

the environment 𝐾𝐾 increases. For instance, for intermediate values of complexity 𝐾𝐾 = 80 and for 𝑏𝑏 =

1, the representational accuracy at which representations are nearly optimal is nearly 100 - that is, 66% 

of the highest level of accuracy.  

 

In contrast, for broader search strategies (𝑏𝑏 ≥ 6), both the levels of representational accuracy at which 

the optimal representation is achieved and at which performance equals the performance of the fully 

accurate representation increase as the complexity 𝐾𝐾 increases. Further, in line with the baseline results 

of Figure 3, the difference between the steady state performance values of the optimal and fully accurate 

representations decreases as the complexity 𝐾𝐾 increases.  
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DISCUSSION 

This study examines the performance implications of different representation search breadth strategies 

when decision-makers’ initial representations of a decision task are over-simplified and search efforts 

result in greater representational accuracy. The breadth of representation search shapes policy search 

depending on two contingencies, namely the complexity of the decision task and the noise of feedback 

signals. In the baseline case of random feedback noise, broad representation search is beneficial at low 

levels of complexity, narrow search is beneficial at intermediate and moderately high levels of 

complexity, and search breadth does not affect performance for very high levels of complexity. 

However, broad representation search is beneficial at all levels of complexity for low feedback noise, 

while narrow representation search is beneficial at all levels of complexity for high feedback noise. 

 

This study contributes to the search and learning literatures by offering a reinterpretation of local peaks 

of performance in complex decision environments. While complex environments can indeed be 

described as rugged landscapes characterised by multiple local peaks of performance (Levinthal, 1997), 

there is often a mismatch between what decision makers believe is a local peak and actual local peaks 

of the landscape. That is, decision makers may often stop their process of adaptation via local search at 

locations of the landscape that do not correspond to local optima. Akin to “sticking points” that emerge 

due to organisations’ internal decision structures (Rivkin, Siggelkow, 2002), “apparent peaks” of 

performance result in suboptimal adaptation. Their emergence, however, is due to the almost inevitable 

fact that decision makers’ adaptation is guided by their simplified representations of the performance 

landscape (Simon, 1990; Levinthal, 2011). Specifically, apparent peaks are a consequence of the fact 

that decision makers do not have control over finer-grained features of the environment that their 

simplified representations neglect but that they nonetheless affect by means of local policy changes. In 

this sense, this study extends literature in this stream that explores the performance implications of 

different representations of dimensions of performance (Csaszar and Levinthal, 2016) and of 

interdependencies between policy choices (Martignoni, Menon, and Siggelkow, 2016) by examining 

the implications of the degree of accuracy with which policy choices are represented. 

 

A practical implication of this finding is that experimenting via innovative and distant configurations 

of policy choices is not necessarily the only way to improve over or “escape” local performance optima. 
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What managers perceive as a configuration of choices where all the possibilities for further 

improvements have been exhausted may actually be an apparent local peak of performance. Thus, rather 

than by distant search, opportunities for improvement may be discovered more cheaply in the 

neighbourhood of current configurations by refining the representation of the decision problem in use. 

It is important to note, however, that this study has assumed perfect or ideal representation search 

efforts. That is, representation search always resulted in two finer-grained categories of policy choices 

that perfectly capture the distinctions of the underlying environmental features. Indeed, this assumption 

is most likely unrealistic in organisational settings, where managers or expert advisors may conjecture 

inconsequential or arbitrary refinements of policy choices. In fact, as I argued in the previous chapter, 

the capability to draw meaningful distinctions and devise more sophisticated but useful representations 

might be one of the central features of superior decision competence and domain expertise. 

 

A second contribution of this study is to suggest that noisy feedback signals are not necessarily a 

consequence of non-deterministic characteristics of the environment but also due to how decision 

makers implement policy changes and interpret their outcomes by means of simplified representations. 

While apparent local peaks are a consequence of the fact that multiple finer-grained features of the 

environment are affected at once when decision makers experiment and implement new policy changes, 

noise is a consequence of the randomness with which finer-grained features are selected in an 

uncontrolled way, and increases with their number. The emergence of noise as a consequence of 

simplified representations is analogous to scientific laboratory settings where the experimenter does not 

have perfect control over the experimental environment. A critical requirement of laboratory settings is 

that a same configuration of initial conditions must always produce the same system responses, and this 

can occur only if the experimenter has perfect control over all the features of the environment that may 

affect these outcomes. Noisy response signals are thus observed when the experimenter, akin to the 

simple-minded manager, changes initial conditions and makes unintended changes to the system feature 

over which she has no control18  

 

 
18 Besides measurement errors and time-varying unobservable causes (Pearl, 2009). 
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In line with the motivation for this study, these results also contribute to the literature on knowledge 

specialisation (Teodoridis, Bikard, and Vakili, 2019). As discussed, the distinction between specialists 

and generalists is rooted in a strategic trade-off. Knowledge professionals can either invest their limited 

time across several domains and achieve a more superficial understanding of each; or acquire a deeper 

and more refined understanding of one or few domains. Research has found inconsistent evidence of 

the performance advantages of one type of knowledge specialisation over the other. For instance, 

specialised scientists (Leahey, 2007) and inventors (Conti, Gambardella, and Mariani, 2013) can be 

more successful as they are able to identify very specific and highly consequential gaps in their domains. 

Nonetheless, generalist scientists (Schilling and Green, 2011) and inventors (Reagans and Zuckerman, 

2001) span broader and more distant knowledge domains can produce more creative recombinations. 

The study by Teodorisis, Bikard and Vakili (2019) suggests one way of reconciling these findings by 

identifying the pace of change in a knowledge domain as a key contingency. In particular, they show 

that generalists perform better when the pace of change is slow while specialists have advantages in 

fast-changing environments. 

 

The findings of this chapter suggest that the complexity of the environment is an equally important 

contingency affecting the performance of knowledge specialisation. Generalists benefit from less deep 

but broader understandings of the environment at low levels of complexity, while specialists benefit 

from narrow and deep understanding of one or few domains at intermediate to moderately high levels 

of complexity. These results can be interpreted from the perspective of knowledge recombination and 

depth. When complexity is low, the performance contributions of distant knowledge domains do not 

depend on the configurations of other domains. In this conditions, even moderate levels of refinement, 

attained via representation search, and of experimentation, attained via policy search, are likely to result 

in a broader range of domains that each has a higher-than-average contribution to performance. In 

contrast, representations where one domain is deeply refined and highly performing, and the others 

provide average performance contributions, are expected to have a lower overall performance in low 

complexity environments. On the contrary, as complexity increases, environments demand increasingly 

higher levels of specialisation across all their domains that generalists are less likely to achieve. The 

relative advantage of being a specialist in at least one area of expertise increases in these environments. 
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More broadly, this study shows that the breadth of representation search is an important contingency 

affecting the performance of dual representation and policy search strategies. A counterintuitive result 

is that, in line with recent findings in this research stream, less accurate representations can outperform 

more accurate ones – i.e., that the optimal degree of representational complexity does not necessarily 

match the true complexity of the environment (Csaszar and Levinthal, 2016). However, this study 

shows show that less accurate representations can outperform more accurate ones only for broad rather 

than narrow representation search strategies. Thus, these findings contributes to the literature on the 

role of mental representation in decision-making, which presents conflicting views of the effects of 

representational complexity and is divided between proponents of fast-and-frugal heuristics (Gigerenzer 

and Goldstein, 1996; Sull and Eisenhardt, 2015), of highly complex and accurate representations 

(Kiesler and Sproull, 1982; Weick, Sutcliffe, and Obstfeld, 1999), and of representations that match the 

complexity of the environment (Ashby, 1956). The implication for this research is that performance 

does not only depend on representational complexity per se, but also on how a given level of complexity 

is attained by means of different representation search strategies and of how complexity is distributed 

across the dimensions of a decision problem. 

 

Finally, these findings have implications for the discovery of superior strategies. Behavioural 

perspectives of strategy argue that cognitively distant strategies offer superior performance because 

they are less likely to be discovered and thus competed away (Gavetti, 2011). Although traditional 

search models do not directly account for the effects of competition, they indirectly capture this view 

by showing that global performance peaks are difficult to reach due to the presence of local peaks. 

Specifically, the trajectories of agents adapting via local policy search whose initial locations on the 

landscape are sufficiently distant from the global peak are most likely attracted and most likely end at 

local peaks of the landscape. This study offers a perspective to further characterise what distant superior 

strategies might mean. That is, distance does not only depend on whether agents’ initial configurations 

are closer to local or global peaks, but also on the degree of representational complexity that guides 

adaptive choices and of the representation search strategy used to attain it.  
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FIGURE 1 

Example of five representation search iterations for 𝑵𝑵 = 𝟐𝟐𝟐𝟐 and 𝑵𝑵𝒑𝒑 = 𝟑𝟑, and for narrow search 
breadth 𝒃𝒃 = 𝟏𝟏 
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FIGURE 2 

Example of five representation search iterations for 𝑵𝑵 = 𝟐𝟐𝟐𝟐 and 𝑵𝑵𝒑𝒑 = 𝟑𝟑, and for broad search 
breadth 𝒃𝒃 = 𝟑𝟑 
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FIGURE 3 

Baseline results. Performance over time of representation and policy search for different values 
of complexity, 𝑲𝑲 ∈ [𝟏𝟏𝟏𝟏,𝟐𝟐𝟒𝟒,𝟖𝟖𝟒𝟒,𝟏𝟏𝟏𝟏𝟒𝟒] and for narrow (𝒃𝒃 = 𝟏𝟏), intermediate (𝒃𝒃 = 𝟏𝟏) and broad 
(𝒃𝒃 = 𝟏𝟏𝟒𝟒) representation search strategies. 
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FIGURE 4 

Effect of low feedback noise. Performance over time of representation and policy search for 
different values of complexity, 𝑲𝑲 ∈ [𝟏𝟏𝟏𝟏,𝟐𝟐𝟒𝟒,𝟖𝟖𝟒𝟒,𝟏𝟏𝟏𝟏𝟒𝟒] and for narrow (𝒃𝒃 = 𝟏𝟏), intermediate (𝒃𝒃 =
𝟏𝟏) and broad (𝒃𝒃 = 𝟏𝟏𝟒𝟒) representation search strategies. 
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FIGURE 5 

Effect of high feedback noise. Performance over time of representation and policy search for 
different values of complexity, 𝑲𝑲 ∈ [𝟏𝟏𝟏𝟏,𝟐𝟐𝟒𝟒,𝟖𝟖𝟒𝟒,𝟏𝟏𝟏𝟏𝟒𝟒] and for narrow (𝒃𝒃 = 𝟏𝟏), intermediate (𝒃𝒃 =
𝟏𝟏) and broad (𝒃𝒃 = 𝟏𝟏𝟒𝟒) representation search strategies. 
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FIGURE 6 

Difference between the steady state performance of representations with varying degrees of 
representational accuracy and the steady state performance of the fully accurate representation. 
Results are shows for different values of complexity, 𝑲𝑲 ∈ [𝟏𝟏𝟏𝟏,𝟐𝟐𝟒𝟒,𝟖𝟖𝟒𝟒,𝟏𝟏𝟏𝟏𝟒𝟒] and for narrow (𝒃𝒃 =
𝟏𝟏) and broad (𝒃𝒃 = 𝟏𝟏𝟒𝟒) representation search strategies. 
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CHAPTER 3 
 

 

GROUP EVALUATION ACCURACY: THE ROLE OF EXPERTISE 

DEPTH AND BREADTH IN THE SELECTION OF TECHNOLOGIES 

 

 

 

ABSTRACT 

This study explores the contingencies relating evaluators’ domain expertise to the accuracy of 

group evaluations of technology, focusing on the diversity of expertise among evaluators. 

Research generally assumes that higher diversity of expertise improves the quality of decisions 

by providing access to a broader range of knowledge and information. While group expertise 

diversity is generally characterised in terms of differences between evaluators’ distributions of 

expertise across technology areas – i.e. the group’s breadth diversity – I introduce the group’s 

depth diversity – i.e. evaluators’ differences between their level of expertise in the technology 

being evaluated – as an equally important dimension of diversity. Results from empirical tests 

of a large dataset of group evaluations of patents made by expert evaluators at a Fortune 500 

ITC firm support my arguments and offer two primary findings. I find that groups composed 

of evaluators who all had either high or low expertise in the focal technology – i.e. low depth 

diversity groups - were less likely to evaluate the value of patents accurately than groups 

comprising evaluators with both high and low levels of expertise – i.e. high depth diversity 

groups. Secondly, this positive effect of depth diversity on group accuracy was contingent on 

breadth diversity. That is, the positive effect of depth diversity on accuracy was lower for 

groups composed of evaluators who also differed in their expertise across technology areas – 

i.e. for groups characterized by both high depth and high breadth diversity. However, high 

breadth diversity improved accuracy for low depth diversity groups. These findings support 

my main argument that the role of evaluators’ expertise in group evaluations of technology 

also depends on depth diversity as a distinct dimension of group expertise diversity. One 

implication for the literature on group evaluations and decisions is that, contrary to the general 

assumption, higher diversity of expertise does not improve decision quality when diversity is 

high on both depth and breadth dimensions.  
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INTRODUCTION 

Technology evaluation is a key process for firms as it informs what early-stage technologies 

should be selected for commercialization. Yet, the value of embryonic technologies depends 

on multiple and interdependent dimensions of quality (Wang and Hsieh 2015; Higham, de 

Rassenfosse, and Jaffe, 2021), each of which can only be assessed under conditions of 

uncertainty (Freeman and Soete, 1997). Firms use various practices to reduce the uncertainty 

inherent in technology evaluations, including portfolio approaches (Khanna, Guler, and Nerkar 

2016; Adner and Levinthal, 2004), stage gates (Cooper, 1990), and group decisions processes 

(Csaszar and Eggers, 2013; Brodbeck et al., 2007). 

 

Group evaluations and decisions reflect one of the core functions of organizations as they 

facilitate internal exchanges of knowledge and information among members. Leveraging the 

expertise of multiple individuals is costly but can improve the overall quality of decisions 

(Brodbeck et al., 2007; Csaszar and Eggers, 2013). Firms commonly rely on multiple evaluators 

via committees, panels, or expert boards, among other forms (Li, Rosen and Suen, 2001; 

Criscuolo et al., 2017; Criscuolo et al., 2021; Hackman, 1990; Sundstrom, De Meuse and 

Futrell, 1990), or they encourage evaluators to seek advice from formal or informal networks 

of experts (Borgatti and Cross, 2003; Nebus, 2006). 

 

However, while research generally assumes that aggregating the knowledge of multiple 

evaluators improves the accuracy of evaluations, the boundary conditions of this assumption 

remain understudied. This study examines one of the central tenets of group evaluations, that 

is, that diversity of expertise provides a wealth of knowledge and perspectives that collectively 

improve evaluation accuracy. This argument, generally associated with the “wisdom of 

crowds” logic (Surowiecki, 2004), rests on the assumption that knowledge gaps and individual 

biases cancel out in the average when multiple evaluations are aggregated.  
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While this assumption likely holds for large panels or when a large number of evaluations is 

crowdsourced, I explore its validity in other common organizational settings that only involve 

a limited number of evaluators who contribute to group evaluations through exchanges of 

information and group discussions. The implication for these settings is that diversity of 

expertise among evaluators may not necessarily aggregate in fruitful ways. Aggregation may 

be detrimental to evaluation accuracy because, contrary to situations in which the individual 

biases of a large pool of evaluators are averaged and cancelled out (Surowiecki, 2004), the 

aggregated accuracy of smaller groups is more sensitive to individual biases and evaluators can 

be more easily influenced by others’ perspectives in group discussions. In line with this 

argument, a large number of empirical studies have found negative, positive, or even null 

effects of expertise diversity on various group decision outcomes (Miller et al., 2022) 

 

I address this issue and derive the conditions under which aggregation of expertise can be 

detrimental to evaluation accuracy by noting that diversity among evaluators should be 

characterized across two distinct dimensions of expertise. Research has traditionally examined 

expertise diversity in terms of differences between individuals’ distributions of expertise across 

knowledge domains, that is, the group’s breadth diversity (e.g. Taylor and Greve, 2006; 

Criscuolo et al., 2017). This focus on breadth, commonly measured in terms of differences 

across categories of experience or functional backgrounds, has been motivated by the common 

assumption that group evaluations benefit from a diversity of perspectives and opinions (Miller 

et al., 2022) 

 

I argue, however, that group breadth diversity is insufficient to characterize the effects of 

diversity of expertise and that the group’s depth diversity plays an equally important role. In 

the context of technology evaluations, a group’s depth diversity represents the extent to which 

evaluators differ in their level of expertise in the focal technology19 (Mannucci and Yong, 

 
19 A group’s depth diversity is thus a function of evaluators’ individual expertise depth, defined as the individual 
level of expertise in the technology being evaluated (Mannucci and Yong 2018). High depth diversity implies 
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2018). Breadth diversity induces variation in perspectives derived from a diverse range of 

knowledge domains. Yet, there is no assurance that these perspectives will be biased in 

opposite directions, especially when the group size is limited (Brodbeck et al., 2007). Further, 

research suggests that individuals are more likely to discount or misinterpret perspectives and 

information from unfamiliar knowledge domains (Szulanski, Cappetta, and Jensen, 2004; 

Rader, Larrick, and Soll, 2017), undermining the potential contributions to accuracy of others’ 

expertise. 

 

Differences in the levels of expertise in the focal technology can instead benefit the accuracy 

of group evaluations because they induce perspectives that are systematically biased in 

opposite directions. I will argue that evaluators’ level of expertise is not only associated with 

advanced and deeper knowledge but also with the likelihood of overestimating or 

underestimating the value of that technology (Dane, 2010; Boudreau et al., 2016). It follows 

that evaluators with different expertise in the focal technology contribute to group evaluations 

with perspectives and opinions that are systematically biased in opposite directions.  

 

My main argument is thus twofold. First, the role of expertise diversity in group evaluations 

importantly depends on the group’s depth diversity. Specifically, high depth diversity benefits 

accuracy because evaluators are biased in opposite directions and their biases tend to cancel 

out in group discussions. By the same token, low depth diversity reduces accuracy because it 

promotes the reinforcement of individual biases. Second, the effect of depth diversity on 

evaluation accuracy is contingent on breadth diversity20. When breadth diversity is high, 

evaluators have different interpretations of the focal technology and may fail to understand and 

integrate others’ perspectives (Rader et al., 2017, Gavetti and Warglien, 2015). It follows that 

 
that a group comprises similar numbers of evaluators with high and low levels of expertise in the focal 
technology. On the contrary, low depth diversity implies that almost all evaluators have either high or low levels 
of expertise in the focal technology. 
20 I note that breadth and depth diversity are independent dimensions of group expertise diversity. Evaluators 
may have acquired expertise across very similar sets of knowledge domains and yet have either large or no 
expertise in the technology being evaluated.  



102 

102 
 

breadth diversity attenuates the positive effect of depth diversity on accuracy because it reduces 

the mutual attenuation of biases in group discussions. On the other hand, high breadth diversity 

can also reduce the mutual reinforcement of biases and thus be beneficial to accuracy when 

depth diversity is low.  

 

I find support for my conjectures in the context of patent evaluations and termination decisions 

at a Fortune 500 high-tech firm. The firm’s evaluators, or patent engineers, periodically 

evaluated all patents in the firm’s portfolio and decided whether to renew or terminate them, 

depending on the patents’ forecasted economic prospects. The firm’s standard evaluation 

procedure recommended patent engineers rely on group evaluations by requesting the 

contributions of other evaluators, including the firm’s technology experts and patent inventors, 

when they deemed it necessary. Although patent engineers were normally individually 

responsible for evaluations, nearly 25% of all patent evaluations were made by groups 

comprising between two and 10 expert evaluators. This dataset comprises nearly 20,000 written 

evaluations made by 140 patent engineers for 7,000 patent families between 1996 and 2016, 

including numerical ratings assigned to families at each evaluation and email exchanges 

between patent engineers and other evaluators. I measure evaluation accuracy as the difference 

between evaluations’ ex-ante forecasts and patents’ commercialization outcomes, which I can 

observe ex-post for each patent family and allow us to measure both overestimation (Type I) 

and underestimation (Type II) errors.  

 

This study contributes to research on group evaluations of technology and group decision 

processes within firms. A key implication of these findings is that aggregating more and more 

diverse knowledge from multiple evaluators does not necessarily improve the accuracy of 

evaluations as generally assumed. I introduce an overlooked dimension of a group’s expertise 

diversity – i.e. depth diversity - and show that group accuracy is reduced when diversity is high 

on both depth and breadth dimensions. A second implication is that, counterintuitively, groups 

of evaluators who all specialise in the focal technology would benefit not from the 
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contributions of other experts of the focal technology but from evaluators with less or no 

expertise.  

 

THEORETICAL BACKGROUND 

Forecasts of the value of early-stage technologies are made under conditions of uncertainty. In 

this study, technological uncertainty refers to the unpredictability of the future development of 

a technology and of its economic prospects and builds on the notion of “environmental 

uncertainty” proposed by Packard, Clark and Klein (2017, p. 3). In line with this notion, 

evaluations are made under uncertainty because the outcomes of the future development of a 

technology belong to an open set of possibilities that are impractical or impossible to determine 

ex-ante. It follows that evaluators cannot assign probabilities to future events that may help 

them determine the economic prospects of a technology21 (Knight, 1921). The open set of 

possible outcomes depends on the intrinsic characteristics of the technology (Fleming and 

Sorenson, 2004) and on external environmental factors including the co-evolution of closely 

related technologies (e.g., Kapoor and Furr, 2015), the creation of new business models (e.g., 

Zott and Amit, 2007), fluctuations in demand and user adoption (e.g., Adner and Levinthal 

2001, Rogers, 1995), the competitive environment (e.g., Toh and Kim, 2013), and institutional 

and regulatory change (e.g., Van de Ven and Garud, 1993). 

 

It is important to distinguish between subjective and true technological uncertainty (Packard, 

Clark and Klein, 2017). The characteristics of a technology and of the environment determine 

the true or objective level of technological uncertainty. In turn, evaluators have a subjective 

perception of the true level of uncertainty that depends on their individual expertise in the 

technology and experience with the decision environment (Konlechner and Ambrosini, 2019). 

We should expect that more accurate subjective perceptions of the true level of uncertainty 

 
21 The literature refers to decision-making under risk when outcomes belong to a closed set and can be assigned 
knowable probability distributions.  
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allow evaluators to make more accurate evaluations, at least on average22. Greater domain 

expertise, i.e. greater experience and knowledge of a domain is generally associated with a 

greater understanding of how future outcomes may unfold in that domain and should thus 

afford evaluators with more accurate perceptions of the true level of uncertainty (Chi, Feltovich 

and Glaser, 1981; Dane, 2010).  

 

This distinction emphasizes the fact that even evaluators with expertise in a technology may 

often make inaccurate evaluations. Evaluators may fail to learn from past experiences or build 

overconfidence in their own subjective judgements over time, and thus develop a substantial 

gap between perceived and true uncertainty (Kruger and Dunning, 1999; Zollo, 2009). Further, 

true uncertainty is generally high for early-stage technologies and difficult to characterize. This 

fact is illustrated for instance by the patenting context, where several evaluation criteria and 

dimensions of quality are commonly used to evaluate patented inventions that can only provide 

approximate estimates of their overall value (Wang and Hsieh, 2015; Higham, de Rassenfosse, 

and Jaffe, 2021). Thus, technology evaluations remain challenging even for experienced 

individuals and firms.  

 

Firms broadly use two approaches to manage uncertainty and improve the accuracy of 

evaluations. On the one hand, firms manage the risks associated with unpredictable outcomes 

by adopting diversification and contingency strategies (Milliken 1987, Adner and Levinthal, 

2004; Teece, Peteraf, and Leih 2016; Khanna, Guler, and Nerkar 2016). On the other, they 

attempt to characterize uncertainty by reducing the set of future outcomes they need to take 

into consideration, for instance by ruling out outcomes that seem implausible (Roberts and 

Lattin, 1991). Firm’s knowledge and individuals’ expertise are crucial for this purpose, as they 

determine beliefs about the future development of a technology and the likelihood of future 

environmental states (Packard, Clark and Klein, 2017). Evaluators who do not possess 

 
22  Indeed, this assumption holds for any given level of true uncertainty only in relative terms and all else being 
equal, i.e. when comparing evaluators with accurate vis-à-vis inaccurate perceptions of true uncertainty.  
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knowledge and expertise in a technology area are mostly unaware of possible outcomes and 

would consider known outcomes as equally likely. On the contrary, evaluators with expertise 

possess an understanding of causal relationships between the characteristics of a technology 

and the external environment (Mosakowski, 1997). This knowledge allows them to form 

subjective judgements as to which outcomes are most likely rather than implausible and 

enhances the ability to forecast desirable outcomes (Einhorn and Hogarth, 1986; Csaszar and 

Otler, 2022). Put it differently, evaluators’ expertise reduces the degree of perceived 

uncertainty from a level of total ignorance to a level that reflects more closely the true 

uncertainty of the technology environment.  

 

Accordingly, firms use group evaluation processes to leverage the expertise of multiple 

individuals and improve evaluation accuracy (Csaszar and Eggers, 2013). As individuals 

develop different types of expertise because of specialization and division of labour, one of the 

core functions of organisations is to coordinate and facilitate internal access to advanced 

knowledge in different areas (Cyert and March, 1963; Thompson, 1967; Ren and Argote, 

2011). Group evaluation processes reflect this function and leverage a broader pool of expertise 

to improve the collective understanding of how a technology might evolve in the future (Tindal, 

Kameda, and Hinsz, 2003). For instance, professional service firms commonly rely on panels 

of evaluators with diverse expertise to evaluate projects and make resource allocation decisions 

(Criscuolo et al., 2017).  

 

It is thus important to examine the contingencies that determine the effectiveness of group 

evaluations in aggregating evaluators’ unique expertise and improving evaluation accuracy. 

Evaluating in groups rather than individually demands additional time and resources that vary 

with the number of evaluators involved and with the evaluation process design (Thompson, 

1967; Sah and Stiglitz, 1986). An understanding of how superior accuracy can be achieved in 

groups would thus allow to optimize the benefits-to-costs ratio of group evaluations. 
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To this purpose, I define evaluation accuracy as the difference between the estimated or 

forecasted and the true or realised value of a technology. Evaluation accuracy is low when 

evaluators overestimate (make Type I errors) or underestimate (make Type II errors) the future 

value of a technology. Overestimation leads firms to select technologies that will eventually 

generate less value than they forecasted, potentially resulting in disappointing returns or losses. 

For instance, home TV manufacturers that invested heavily in developing 3D screens likely 

overestimated the demand for this technology. On the contrary, underestimation occurs when 

firms fail to select technologies that will eventually generate higher value than they forecasted, 

potentially resulting in a severe competitive disadvantage. For instance, TV manufacturers who 

missed out on LCD panel technologies and invested instead in OLED and plasma panels found 

themselves at a competitive disadvantage with other market players (Eggers, 2012) 

 

Thus, I examine the assumption that aggregating the expertise of multiple individuals would 

diminish the frequency of Type I and Type II errors. I take on an information aggregation view 

of evaluation and decision-making to analyse how individual evaluations may contribute to 

group evaluation accuracy (Cyert and March, 1963, pp. 19–22; Thompson, 1967). Firms use 

different schemes or decision-making structures for aggregating individual evaluations, 

including averaging, voting, or delegation to one or multiple specialised experts (Owen and 

Grofman, 1986). The central idea that underpins these structures is that aggregating a larger 

and more diverse pool of expertise provides a broader range of information and perspectives 

on the advantages and disadvantages of a technology that reduces the impact of individual 

knowledge gaps and biases (Hollenbeck et al., 1995).  

 

The wisdom of crowds phenomenon illustrates how group evaluations are expected to improve 

evaluation accuracy according to this view. Individual evaluations may present some degree of 

positive or negative bias, that is, they may either over- or underestimate the value of a 

technology. The magnitude of individual bias depends on multiple factors, including 

evaluators’ lack of knowledge and experience, overconfidence, or personal motives and 
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preferences (Kahneman and Tversky, 1979). Individual biases tend to vary in opposite 

directions when multiple evaluations are aggregated, and individuals differ in their knowledge 

and experience. When the number of individuals is sufficiently large and the pool of expertise 

sufficiently diverse, biases are expected to cancel out in the average and the resulting 

aggregated estimate or forecast tends to the true or realized value or outcome (Suroweicki, 

2004). 

 

However, this rationale is less likely to hold when group evaluations are made within firms, 

for two reasons. First, cost limitations suggest that the number of individuals involved in group 

evaluations is relatively limited, especially when evaluations are numerous and frequent. The 

smaller the number of evaluators, the larger the influence of their individual biases on the 

overall evaluation accuracy. Thus, individual biases are less likely to cancel out in the 

aggregate as the number of evaluations gets smaller. 

 

Second, group decisions in organisations are often reached as the result of collective 

discussions rather than by direct averaging or via other algorithms for aggregating independent 

evaluations (Cyert and March, 1963). Evaluators are not necessarily required to provide an 

overall quantitative rating or estimate – e.g. a value from a scale or interval – or binary vote - 

e.g. “accept/reject” – that can be directly used in aggregation schemes such as averaging or 

voting. Instead, they commonly engage in exchanges of opinions and group discussions by 

providing more qualitative assessments that other evaluators need to interpret and reconcile 

with their own perspectives (Boccaccio and Dalal, 2006). It is in this sense that group decisions 

in organisations function as a vehicle for exchanging, combining and integrating information 

from individuals with unique expertise with the purpose of accessing a richer knowledge base 

and building on each other’s perspectives (Brodbeck et al., 2007).  

 

These features of group decisions in firms have two implications. First, evaluators can be 

influenced by others’ biases as a result of interactions and exchanges of opinions. The wisdom 
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of crowds phenomenon is more likely to occur not only when groups are larger, but also when 

individual evaluations are formulated with limited interactions among evaluators (Suroweicki, 

2004). Similar to blind peer review in academia, the latter condition ensures that individual 

evaluations are formulated independently and increases the likelihood that individual biases 

will cancel out in the average23 (Lee et al., 2013). Experts within firms may instead have a 

significant influence on others’ perspectives as they engage in group discussions (Stasser, Kerr 

and Davis, 1989). Research shows that people think their estimates are not influenced by 

others’ estimates when in fact they are (Sherif, 1935; Nolan, Schultz, Cialdini, Goldstein, and 

Griskevicius, 2008) and that they underestimate the influence they have on others (Bohns and 

Flynn, 2013). Hence, interactions among evaluators may skew the distribution of individual 

estimates and prevent that individual biases cancel out in the aggregate. 

 

Second, the benefits of aggregating the unique expertise of multiple evaluators depend on how 

they interpret and integrate others’ perspectives. This point is illustrated by the distinction 

between surfacing and processing information in group decisions (Martins and Sohn, 2022). 

While diversity of expertise likely results in a broader range of information being surfaced and 

exchanged in group discussions, there is no assurance that information will also be processed 

in a constructive way so that individual biases can be exposed and eliminated. Brodbeck and 

colleagues (2007) discuss group- and individual-level processes that affect how information is 

processed in groups and that limit the extent to which individuals’ perspective can be 

integrated. For instance, information shared by a larger number of individuals is judged more 

credible and important than conflicting information shared by a minority of individuals 

regardless of the objective truth of the minority perspective (Stasser and Titus, 1985). 

 

 
23 A further analogy can be made in statistics for the mean of a random sample, which is an unbiased estimate of 
the true value of a population mean as long as elements of the sample, i.e. individual evaluations, are drawn 
randomly and independently.  
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Finally, I note that these effects of interactions among evaluators can have a large impact on 

evaluation accuracy regardless of the aggregation scheme used for their individual evaluations. 

Different aggregation schemes can be more or less effective in reducing the impact of 

individual biases depending on group size and on how biases are distributed among evaluators 

(Tindale et al., 2003, Laughlin, 2011). However, if a subset of evaluators were highly biased 

against or in favour of a technology and could influence most of the other evaluators’ 

perspectives, the aggregated accuracy would reflect the systematic shift of individual biases 

regardless of whether averaging, voting or other schemes were used to aggregate opinions 

(Einhorn et al., 1977). 

 

In the next section, I will focus on technology evaluation contexts where the number of 

evaluators is limited and interactions are important for evaluation accuracy. These conditions 

reflect common organisational settings and allow me to examine how different distributions of 

evaluators’ expertise contribute to the effective aggregation of knowledge. 

 

HYPOTHESES: THE ROLE OF EXPERTISE DIVERSITY 

My main argument is as follows. Diversity of expertise plays a critical role in improving the 

accuracy of group evaluations. However, I argue that the degree of expertise diversity among 

evaluators must be characterized not only in terms of breadth diversity as traditionally 

assumed, i.e. in terms of differences between evaluators’ distributions of expertise across 

technology areas, but also in terms of the group’s depth diversity, i.e. of differences between 

evaluators’ levels of expertise in the focal technology. The reason is that a group’s breadth and 

depth diversity have two distinct effects on group evaluations of limited size and where 

interactions are important. A group’s depth diversity affects the extent to which individual 

evaluations are systematically biased in opposite directions, while a group’s breadth diversity 

affects the extent to which other experts’ perspectives are integrated rather than discounted. I 
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argue below that the degree to which group evaluations improve evaluation accuracy is 

contingent on the interplay between both dimensions of expertise diversity. 

 

It is worth noting that depth and breadth diversity are indeed two distinct and independent 

dimensions of expertise diversity. With reference to Figure 1, evaluators’ expertise can be 

described in terms of their total volume of experience and of how their experience is distributed 

across technologies. The total volume of experience distinguishes novices (Figure 1, Panel a) 

from expert evaluators (Figure 1, Panel b). Evaluators are expected to learn from experience, 

and it is reasonable to assume that experts make relatively more accurate evaluations than 

novices, on average (Levitt and March, 1988; Csaszar and Ostler, 2020).  

 

In fact, this study will focus exclusively on expert evaluators and on the implications for group 

evaluations of different distributions of expertise among them. In the following, I will refer to 

expert evaluators or simply evaluators interchangeably. Similarly, I will refer to evaluators with 

expertise as a shorthand for evaluators with expertise in the technology being evaluated.  

<<Insert Figure 1 about here>> 

 

With reference to Figure 1 Panel (b), low breadth diversity implies that evaluators have similar 

distributions of expertise across the same technologies and is observed in two situations. 

Consider two pairs of evaluators C, D and E, F (bottom left panel). The breadth diversity of 

both two-member groups is low because both C, D and E, F have similar distributions of 

experience across the five technologies in the example. These two groups are also characterised 

by low depth diversity because evaluators C, D and evaluators E, F have similar experience 

with the focal technology (technology 3 in the example). In particular, evaluators C, D have 

large stocks of experience and thus high levels of expertise in the focal technology, while 

evaluators E, F have limited expertise in the focal technology. 

 

Other combinations of distributions of expertise are equally possible and independent from 

each other. The top right panel of Figure 1 Panel (b) illustrates the situation where groups are 
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characterised by both high depth and high breadth diversity, while the off-diagonal panels are 

examples of the two other possible combinations of diversity. High depth diversity implies that 

evaluators have different levels of expertise in the focal technology (top panels), while high 

breadth diversity implies that evaluators’ stocks of experience have different distributions 

across the same technologies or are distributed across different technologies (right panels).  

 

These distinctions are meaningful because depth and breadth diversity affect group evaluations 

in different ways. The discussion of the previous section shows that while breadth diversity 

ensures access to a broader range of information and perspectives, it cannot guarantee on its 

own that the aggregated evaluation will be more accurate. For instance, consider a group 

comprising evaluators with expertise in multiple and different technology areas, that is, for 

whom breadth diversity is high. They will likely contribute to group discussions with a broader 

range of perspectives and arguments against or in favour of the technology being evaluated. 

Arguments will likely differ in terms of their assumptions, domain specific information and 

logical rationales, which depend on evaluators’ unique expertise and are influenced by their 

subjective assessments. However, if the group size is limited, there are no reasons to expect 

that different arguments will also be against or in favour of the focal technology in a balanced 

proportion that ensures that the group is not collectively biased in either direction. Further, 

even if we could assume that different arguments were biased in opposite directions in a 

balanced proportion, there would be no reasons to expect that evaluators will interpret and be 

influenced by them in a way that reduces their biases when they have expertise across different 

areas (Brodbeck et al., 2007, Martins and Sohn, 2022).  

 

I will argue that, contrary to breadth diversity, group depth diversity is systematically 

associated with the degree to which individual evaluations are biased in opposite directions. 

As I mentioned, this fact warrants the emphasis on the distinction between the two dimensions 

of expertise that I propose below.  
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I develop my main argument as follows. First, I argue that evaluators with expertise in a 

technology are positively biased in favour of that technology (H1a) and negatively biased 

against technologies they know less (H1b). Second, group depth diversity induces a mutual 

attenuation of individual biases and is thus associated with higher evaluation accuracy (H2). 

Finally, I show that this positive effect of depth diversity on evaluation accuracy is contingent 

on breadth diversity (H3). 

 

The association between expertise depth and positive bias in evaluations can be explained as 

follows. First, evaluators are subject to the familiarity bias, a cognitive bias in which 

individuals tend to favour known choice alternatives and of which they have previous 

experience (Kahneman and Tversky 1979). This bias is well documented in the finance 

literature, as investors show a large preference for domestic as opposed to foreign investments 

(French and Poterba 1991; Huberman 2001) and for stocks they know well, regardless of 

performance (Biais, Hilton, Mazurier and Pouget 2005) This influence of familiarity on 

individual preferences and choices can be seen as a form of risk aversion. In the context of 

technology evaluations, technologies with which evaluators have limited experience are 

perceived as more uncertain and, all else being equal, are evaluated less positively (Fox and 

Tversky 1995, Boudreau et. al. 2016). On the contrary, evaluators will show lower risk aversion 

and will prefer technologies with which they have greater experience and that they know better.  

 

Second, evaluators who specialise in a technology may have personal interests in promoting 

that technology, especially in the context of portfolio evaluations where different technologies 

compete for investments. Evaluators may want to ensure the survival and relevance of a 

technology among competing others because they want to protect the relevance and value of 

their own expertise within the firm. In other words, evaluators may show an “agency bias” as 

they believe that their reputation and competence within the firm depend on the relevance of 

the technology for which they are internally recognized as experts. By the same token, 
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evaluators may be negatively biased against technologies in which they do not specialise as 

they compete for the same resources. 

 

Third, despite possessing deeper and higher quality knowledge, evaluators with expertise in a 

technology are nonetheless influenced by familiarity and agency biases because of 

overconfidence in their own subjective judgements. It would be reasonable to object to the 

above arguments by arguing that evaluators with expertise possess a more comprehensive 

understanding of the reasons for both the success and failure of the focal technology and that 

they should be more accurate despite the influence of other biases. I argue instead that the 

above biases would still influence evaluators with expertise because high levels of true 

uncertainty make subjective judgements important and subjective judgements are driven by 

overconfidence.  

 

Specifically, an implication of high levels of true uncertainty is that it is difficult to quantify 

the relative importance of all the possible reasons that would determine either the future success 

or failure of a technology. Although evaluators with expertise in that technology may be aware 

of those reasons, they still need to rely on their subjective judgement to decide which set of 

reasons prevails on the other and formulate an estimate of the most likely future outcome 

(Knight, 1921, Packard et al 2017). Thus, familiarity and agency biases influence evaluators 

with expertise by influencing their subjective assignment of weights to reasons for success 

rather than for failure. Overconfidence, in turn, plays a role in amplifying the influence of these 

biases. Research shows that individuals tend to build overconfidence with experience, 

especially in tasks and areas that they perceive as familiar (Kahneman and Tversky 1979; 

Glaser, Langer, and Weber 2007). Thus, although unsure of objective and quantifiable 

rationales for assigning higher weights to reasons for success rather than failure, evaluators 

with expertise will have confidence in their biased subjective assessments and formulate overly 

positive judgements.  
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In sum, while expertise furnishes a more comprehensive understanding of a technology, it also 

boosts experts’ overconfidence in their subjective assessments, which are influenced by 

familiarity and agency biases. For instance, Hall, Ariss and Todorov (2007) offer experimental 

evidence that individuals with more information and knowledge on a topic have greater 

overconfidence in their own judgments. When asked to provide estimates pertaining to that 

topic, participants with more information were less accurate than less informed individuals as 

they used information to confirm their pre-existing subjective beliefs and preferences (Hall, 

Ariss and Todorov 2007). 

 

In contrast, a lack confidence in their subjective assessments and limited knowledge of the 

focal technology have the opposite effect on expert evaluators with less expertise in the 

technology, who tend to be negatively biased. As I argued above, lack of relevant knowledge 

and higher perceived uncertainty induce more negative subjective judgements due to risk 

aversion (Fox and Tversky 1995, Boudreau et al 2016). Evaluators’ lack of confidence in their 

own assessments likely increases their perceptions of uncertainty and thus exacerbates their 

aversion to risk.  

 

Finally, it is worth noting that positively (negatively) biased evaluations are associated with 

higher (lower) likelihood of overestimation and lower (higher) likelihood of underestimation. 

For instance, evaluators may be required to assign ratings to a portfolio of R&D proposals that 

their firm will use to prioritize investments. Positively biased evaluators will systematically 

assign higher ratings controlling for proposals’ quality and other proposal characteristics. 

Hence, ratings that are systematically higher all else being equal will necessarily result in more 

frequent overestimation and less frequent underestimation of the future returns or outcomes of 

the proposals. The opposite holds for negatively biased evaluators. For these reasons, I posit: 

 
H1a: Evaluators with greater depth of expertise in a technology are more likely to 
overestimate its value. 



115 

115 
 

H1b: Evaluators with greater depth of expertise in a technology are less likely to 
underestimate its value. 

 

In turn, evaluators can influence other evaluators’ subjective judgements. As discussed, the 

mutual influence that evaluators can have on each other is one of the central features of group 

evaluations within firms. The literature on group decisions-making identifies two motives that 

explain the mutual influence among participants, namely normative versus informational 

influence (Deutsch and Gerard 1955). Under normative influence, individuals tend to conform 

with, satisfy or support others in order to gain social approval (MacGeorge, Feng, and 

Guntzviller 2016) or to avoid potential confrontations and rejections (Wood 2000). In contrast, 

under informational influence, individuals’ judgements change as they learn new information 

and perspectives from others and update their beliefs accordingly (Ecken and Pibernik 2016). 

Both motives emphasize the importance of exchanges of information and interactions among 

evaluators in changing their own subjective judgements as a result of being exposed to the 

judgements of others (Rader, Larrick and Soll 2017). In fact, as mentioned, individuals would 

think their estimates are not influenced by the estimates of others when in fact they are (Nolan 

et. al. 2008) and they would underestimate the influence they have on others (Bohns and Flynn 

2013). 

 

The above discussion sets the stage for the first part of my argument that differences among 

evaluators in their level of expertise in the focal technology have a systematic effect on the 

accuracy of group evaluations. When depth diversity is low and expert evaluators have similar 

degrees of expertise with the focal technology, individual biases tend to mutually reinforce and 

to increase their influence on group accuracy. On the contrary, when depth diversity is high, 

individual biases tend to cancel out and their influence on group accuracy is diminished. 

 

Before I examine the relationship between depth diversity and evaluation accuracy, it is worth 

comparing depth diversity with the effects of breadth diversity discussed in the previous 
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section. I previously argued that there are no reasons to expect that evaluators with different 

distributions of expertise will make subjective judgements of a technology that are biased in 

opposite directions. While breadth diversity is associated with the range of different 

information and arguments that evaluators surface in group discussions, the way in which they 

use their unique information and knowledge to support their subjective positive or negative 

judgements depends primarily on their level of expertise. This distinction is important because, 

contrary to what it is generally assumed, it is not breadth diversity but rather depth diversity 

that has a systematic effect on the mutual influence between individual biases and thus on the 

accuracy of group evaluations. 

 

The effect that depth diversity has on the mutual reinforcement and attenuation of biases 

depends on the confidence that evaluators have on their subjective judgements and on the 

influence exerted by other evaluators’ judgements. To illustrate, I first examine the case in 

which depth diversity is low as evaluators all have high expertise in the focal technology. As 

previously argued, evaluators with expertise possess more and more detailed information and 

knowledge of the focal technology, including knowledge of different causal paths or rationales 

for its future success or failure (Fiske and Taylor 1984, Dane 2010). Despite their deeper 

knowledge, even evaluators with expertise must rely on their subjective judgement to assess 

the importance of each causal path and formulate their own assessments of the technology 

because true technological uncertainty is generally high (Knight, 1921). This fact has two 

implications. Although, as previously discussed, evaluators with expertise develop 

overconfidence and a positive bias in favour of the focal technology, they are still aware of 

rationales and potential arguments against its future success. This awareness partially limits 

the degree to which overconfidence and positive biases would make them support the 

technology if they evaluated it individually.  

 

Secondly, evaluators must rely on their subjective judgement also to assess other evaluators’ 

information and arguments. That is, familiarity and agency biases will also influence how 
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evaluators filter and interpret others’ evaluations. This effect thus compounds to the fact that 

the arguments that surface in group discussions are already filtered and positively framed 

themselves under the influence of familiarity and agency biases. The result is a further increase 

in evaluators’ confidence in their biased assessments. These biases are thus mutually reinforced 

by other evaluators with expertise and the aggregated evaluation will be even more positively 

biased. 

 

The opposite reinforcement occurs when depth diversity is still low, but evaluators do not have 

expertise in the focal technology. In this case, evaluators possess less detailed information and 

more superficial knowledge of causal paths and rationales for the success or failure of the 

technology, and they are relatively less confident about their subjective judgements. Risk 

avoidance and a tendency to favour other competing technologies in which evaluators have 

competence result in a negative bias towards the focal technology. Nonetheless, self-awareness 

of possessing more superficial knowledge in this area partially limits the degree to which 

evaluators with no expertise would discount the technology if they evaluated individually. 

Similar to the previous case, this negative bias will both influence which arguments are 

surfaced in group discussions and how others’ arguments are interpreted by evaluators. 

Additionally, risk aversion due to unknown outcomes is further reinforced when evaluators 

realise that none of them has more detailed information and knowledge of the technology. 

Hence, akin to the previous case, individual biases are mutually reinforced when depth 

diversity is low, although in this case the aggregated evaluation will be more negatively biased. 

 

The effect of high depth diversity on group accuracy follows from the previous two cases. 

When depth diversity is high, evaluators with both high and low expertise contribute to group 

discussions and support arguments that are respectively positively and negatively framed. 

While research suggests that individuals tend to partially discount distant perspectives held by 

others and will not be fully influenced by them (Eagly and Chaiken 1984), evaluators’ 

individual biases are nonetheless attenuated as a consequence of the exposure to others’ 
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opposite opinions (Brodbeck et al 2007). Evaluators with expertise tend to be overconfident 

and positively biased but are aware that counterarguments exist. Although evaluators without 

expertise put forward counterarguments that might be less detailed and compelling, they still 

have an influence on the former, who are induced to reassess and adjust their judgements. 

Indeed, an equivalent adjustment occur for evaluators without expertise, who are also less 

confident of their knowledge of the focal technology and are more likely to trust the expertise 

of others. 

 

The result is that individual biases tend to be attenuated or cancel out when the group’s depth 

diversity is high, improving group evaluation accuracy. While the overall effect on the 

aggregate evaluation depends on the balance between the number of evaluators and their level 

of expertise, the influence of individual biases tends to diminish as depth diversity increases. 

Importantly, high depth diversity also ensures that at least some evaluators possess specialised 

knowledge of the focal technology, and that more detailed and compelling arguments are 

surfaced and considered in group discussions. This is important because the fact that individual 

biases are attenuated does not necessarily imply that the aggregated evaluation accuracy has 

improved. Despite being collectively less biased, evaluators may overlook important causal 

paths to the future success or failure of a technology, or be aware of only superficial ones that 

suggest incorrect conclusions. The attenuation of individual biases implies that these causal 

paths are assessed more objectively and used correctly in arguments that are surfaced in group 

discussions. This latter point is important because one may assume that an intermediate level 

of expertise exists at which evaluators are neither positively nor negatively biased. A group 

where all evaluators possess this optimal level of expertise would thus have low depth diversity 

and not be influenced by individual biases. However, higher depth diversity would still be more 

beneficial to accuracy because it ensures that important casual paths are considered in group 

discussions and that they are used in arguments more objectively. Therefore, I posit: 
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H2: There is a positive relationship between depth diversity among evaluators and the accuracy 

of group evaluations. 

 

The second part of our argument is that the foregoing relationship is contingent on group 

breadth diversity. The key effect of breadth diversity when groups are of limited size and 

interactions are important is that differences between evaluators’ distributions of expertise 

across technologies affect the degree to which they are influenced by the exposure to others’ 

perspectives. All else being equal, larger differences between evaluators’ distributions of 

expertise make it more difficult for them to interpret and integrate others’ arguments and 

diminishes the influence that they have on others’ perspectives.  

 

Before I analyse this mechanism in more detail, it is worth emphasizing its implications for 

group accuracy, which are twofold. High breadth diversity reduced the benefits of high depth 

diversity because it reduces the mutual attenuation of individual biases. High breadth diversity 

is thus detrimental to accuracy when depth diversity is high. By the same token, however, 

breadth diversity also reduces the mutual reinforcement of individual biases when depth 

diversity is low. That is, high breadth diversity is beneficial to accuracy when depth diversity 

is low. As previously mentioned, this interplay between depth and breadth warrants a 

distinction between the two dimensions of expertise diversity and shows that higher breadth 

diversity is not necessarily beneficial when interactions are important.  

 

The implications of breadth diversity for group accuracy are based on the effects of expertise 

depth and breadth at the individual level, which determine how evaluators understand and 

interpret arguments and opinions. As discussed, expertise depth is related to the amount and 

quality of information evaluators have on a technology, and to the comprehensiveness and level 

of detail of their knowledge of causal paths to its future success or failure. In turn, expertise 

breadth is related to the range of distinct knowledge domains or technologies in which 

evaluators have expertise. The important implication of individuals’ expertise breadth is that it 



120 

120 
 

facilitates connections and analogies between domains of expertise. Having expertise in two 

distinct domains allows evaluators to interpret one area from the perspective of the other and 

to see interdependencies between them. Put it differently, evaluators would not be able to use 

their knowledge of a technology to understand another technology in which they don’t have 

expertise.  

 

In turn, the depth of expertise in each technology covered by one’s breadth generates a unique 

distribution of expertise that determine whether evaluators are equipped to understand and 

integrate the arguments offered by others. Each distribution of expertise furnishes knowledge 

from a range of domains at different level of detail that individuals organise in their unique 

knowledge structures – i.e. in their representations of the knowledge contents pertaining to a 

domain and of the linkages between domains24 (Dane, 2010). Knowledge structures determine 

how decisions are made, experience and past observations are organised, and information is 

processed and communicated (Bower and Hilgard 1981, Fiske and Taylor 1984). Importantly, 

this also includes a central role in informing the arguments and rationales with which evaluators 

contribute to group discussions and in interpretating others’ arguments and rationales. In 

particular, interpreting arguments based on unfamiliar knowledge demand greater cognitive 

costs due to the tacitness of knowledge contents and to an insufficient understanding of the 

linkages between familiar and unfamiliar domains. Hence, evaluators with very different 

distributions of expertise and knowledge structures are less likely to assimilate and process the 

information and arguments that they provide to each other (Cohen and Levinthal 1990, 

Szulanski, Cappetta, and Jensen, 2004). 

 

The key implication is that larger difference between evaluators’ distributions of expertise 

reduce the extent to which they can influence or convince each other with their own arguments. 

 
24 Knowledge contents include information that has meaning specific to the knowledge domain, causal 
relationships and paths, and specific ways of processing information and causal relations, which are all acquired 
through experience or learned over time from others (Thagard 2010).  
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The additional cognitive costs needed to interpret unfamiliar arguments can have two 

consequences. On the one hand, research shows that individuals tend to discount information 

and advice that they cannot interpret and understand (Eagly and Chaiken 1984, Borgatti and 

Cross, 2003). On the other, they force evaluators to rely on subjective interpretations of 

information and arguments to fill in assumptions and causal connections they cannot fully 

understand. The implication for group accuracy is the same in both cases. When breadth 

diversity among evaluators is high, group discussions are less effective as a vehicle for the 

mutual adjustment of subjective judgements and for reaching a balanced collective 

interpretation of the technology (Gavetti and Warglien 2015). 

 

For instance, a laptop manufacturer may have the opportunity to invest in multiple 

technologies, including display, moving parts such as hinges and locking mechanisms, 

manufacturing processes, software and CPU components. A group of evaluators characterized 

by high depth and breadth diversity and tasked with the evaluation of a display technology may 

include specialised experts with expertise in display, moving parts and manufacturing 

technologies and less specialised experts with expertise in software and CPU components. 

Besides being less positively biased towards investing in displays, the contribution of the 

different perspectives that the latter evaluators can bring to a group discussion is derived from 

their expertise in software and CPU technologies. Evaluators specialised in displays may be 

receptive to arguments based on knowledge of technologies that they perceive as adjacent and 

relevant to display – in this case, moving parts and manufacturing – while they may fail to see 

the connections with other areas. 

 

Finally, we need to distinguish this effect of breadth diversity on group discussions in the two 

cases where depth diversity is respectively high and low. As discussed above, group accuracy 

benefits from high depth diversity because subjective judgements are influenced by both 

positive and negative biases that tend to cancel out through interactions and mutual 

adjustments. All else being equal, high breadth diversity creates greater barriers to mutual 
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interactions and diminishes the mutual attenuation of biases. Thus, all else being equal, breadth 

diversity reduces the positive effect of high depth diversity on group accuracy. In contrast, high 

breadth diversity can be beneficial when the result of interactions among evaluators is to 

reinforce their individual biases – that is, when depth diversity is low.  

Thus, I posit: 

 

H3: Breadth diversity among evaluators negatively moderates the positive relationship 

between depth diversity and group evaluation accuracy. 

 

EMPIRICAL CONTEXT: MANAGING THE PATENT PORTFOLIO AT ALPHA 

To test my hypotheses, I require a context where expert evaluators in an organization: (a) 

evaluate different technologies to decide whether to continue or terminate ongoing 

investments; and (b) engage in evaluations with a limited number of other evaluators who can 

interact by sharing information and opinions. These conditions are satisfied in the context of 

the management of the patent portfolio of Alpha, a multinational, Fortune-500 ITC firm 

(pseudonym). 

 

As many other large firms, Alpha regularly reviews all active portfolio patents to both identify 

opportunities for value creation and save on maintenance costs. The regular re-evaluation of 

patent portfolios is necessary because the potential value that a patent can generate changes 

over time, as new competing technologies are developed or new market opportunities arise 

(Guler 2007; Khanna, Guler, and Nerkar 2018). Patent rights can be renewed with the 

respective patent offices for up to 20 years, subject to the payment of recurring maintenance 

fees. Maintenance costs can be reduced by terminating patents, frequently by reducing the size 

of a given patent family rather than by terminating the entire family at once. Serrano (2010) 

estimates that nearly 50% of all patents are terminated before their legal term by their owners. 
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In order to better understand the patent evaluation process at Alpha, I conducted interviews 

with employees and with Alpha’s director of IP, and analysed evaluation guidelines and other 

internal documents. I conducted one-hour interviews with 16 evaluators based in 7 locations 

worldwide and collected 10 responses from evaluators to a 15-question survey. 

 

At Alpha, patent evaluations were performed by patent engineers, often with the contribution 

of other patent engineers, technology experts and patent inventors. Alpha granted individual 

decision authority over evaluations to patent engineers but encouraged them to rely on group 

evaluations with other expert evaluators, including patent inventors, as they deemed it 

necessary. Patent engineers also had discretion on whom to involve in group evaluations, which 

they likely decided depending on their workload, experience with the focal technology, 

knowledge of who had expertise in the area and on their availability, among other factors. 

 

For each patent evaluation, patent engineers were responsible for writing an evaluation 

statement, assigning a rating, and terminating one or more family members as deemed 

necessary. Other evaluators were also formally required to write their own evaluation 

statements and, optionally, to provide rating and termination recommendations. The statements 

were meant to describe a patent’s limitations and highlight opportunities for value creation that 

the firm could potentially exploit and to provide useful information for future re-evaluations. 

The patent engineers with decision authority coordinated group discussions via email and were 

responsible for assigning ratings and making renewal or termination recommendations that 

aggregated the group’s perspectives. Ratings were numerical ranging from 0 (low) to 5 (high) 

according to broad evaluation guidelines. Patent engineers could also add identifiers to the 

numerical ratings to identify patents that could potentially become part of a technology 

standard or be implemented in Alpha’s products.  

 

Written evaluations and email exchanges among evaluators were stored in a software system 

to which patent engineers had access. The system was also accessible to Alpha’s 
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commercialization units, such as standardization, infringement and litigation, or the product 

implementation units, that used the ratings and the evaluation statements to guide their 

commercialization efforts. 

 

Alpha’s patents were categorized according to internal technology classes and grouped under 

distinct patent boards. Each patent board was responsible for managing the filing, prosecution 

and maintenance of the patents for its respective technology classes. Patent engineers could be 

assigned to the evaluations of patents from any patent board depending on workloads and 

upcoming prosecution and renewal deadlines, although some of them could specialise in one 

or few areas. This could happen especially as they developed an internal reputation for having 

expertise in certain technologies and other patent engineers sought their expertise in group 

evaluations of related patents.  

 

The interviews confirmed that the decision to consult other evaluators was primarily driven by 

the fact that evaluations were generally highly uncertain. Alpha did not provide specific criteria 

or rules for making evaluations, and patent engineers had significant discretion over ratings 

and termination decisions. Internal documents and evaluation guidelines mention broad 

dimensions of quality or evaluation factors against which patents’ future economic prospects 

could be evaluated, such as ‘legal protection’ or ‘business value’. However, Alpha did not 

provide specific training or instructions on how the specific characteristics of patents could be 

assessed and mapped into these broad criteria. Evaluators relied instead on their own 

knowledge and subjective judgement. They admitted that it was often difficult to identify 

factors that could clearly indicate whether patents had potential for commercialization. Patent 

engineers also confirmed that these patents were given intermediate ratings (2 and 3) and that 

were the “most difficult to evaluate”. This substantial level of uncertainty is reflected by the 

longstanding challenges of assessing patent value, as discussed in the patent literature (Wang 

and Hsieh, 2015; Higham, de Rassenfosse, and Jaffe, 2021). 
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The evaluation process at Alpha is thus suitable for testing my hypotheses. Patent engineers 

accumulate experience with a range of different technologies and acquire higher level of 

expertise in some of them. As evaluations are highly uncertain, they may leverage the expertise 

of other expert evaluators in group evaluations. These evaluators include other patent 

engineers, technology experts and patent inventors, who have their own degree of 

specialisation with the focal technology and unique distributions of expertise across other 

technologies. They are required to provide written evaluations and qualitative 

recommendations, thus their contribution to the evaluations depends on how individual 

arguments and perspectives are interpreted and integrated.  

 

DATA AND METHODS 

Data 

I constructed a dataset with information drawn from Alpha’s patent portfolio management 

system, matched with archival data on patents obtained from external sources. I collected 

nearly 18,000 written evaluation statements and ratings pertaining to approximately 9,000 

patent families that Alpha filed between 1988 and 2006. Most of the evaluations were made 

within the first ten years of patents’ life (92%), and each family was evaluated nearly three 

times on average. The statements were produced by 146 Alpha patent engineers, who each on 

average evaluated 161 patent families and made 150 evaluations between 1990 and 2016. 

Alpha used 166 3-digit technology classes to identify their patents. Patent engineers evaluated 

an average of 54 technology classes, up to 113, and made an average of 24 evaluations per 

technology class, up to 600. 

 

My main sample consists of the nearly 4,000 (25%) evaluations made in group evaluations 

with other patent engineers, technology experts or patent inventors. These other evaluators, on 

average, contributed to 53 group evaluations; evaluated 19 technology classes, up to 88; and 

made 33 evaluations per technology class, up to 450. 
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I used Alpha and external data sources to collect information about successful patent 

commercialization outcomes, which include licensing agreements, sales, patent 

standardizations, litigations, and implementations in products. Alpha’s commercialization 

units recorded dates and details of commercialization events. I complemented and validated 

this information with data collected from two external databases. I collected data on transfers 

of ownership and litigation legal actions from Google Patents, and additional data on litigation 

legal actions and infringements from Clarivate’s Darts-IP database. More than 3,700 (23%) 

patents of the full sample and more than 800 (21%) of my main sample were successfully 

commercialized during the observation period. Commercialization occurred with 

approximately equal frequency between five and fifteen years after filing, while the rate of 

commercialization sharply decline sixteen or more years after filing. 

 

Variables and Measurements 

Overestimation, Underestimation and Accurate Evaluations 

The variables describes whether patent engineers correctly estimated the future value of patents 

and accounts for both overestimation (Type I errors) and underestimation (Type II errors). I 

used changes in engineers’ patent family ratings as indicative of positive or negative 

evaluations. The guidelines recommended, but did not prescribe, reducing or “trimming” the 

number of active members for a patent family with lower ratings (ratings 0 and 1), and 

renewing or expanding active members for families with higher ratings (ratings 4 and 5). 

Additionally, as previously mentioned, ratings guided commercialization units’ search for 

valuable patents in the portfolio. Hence, ratings were meaningful indicators of the value that 

patent engineers attributed to patents, and ratings’ increases or decreases reflected patent 

engineers’ positive or negative forecasts of patents’ future prospects25. 

 
25 The average rating assigned to a patent was 2.54 (SD 1.01). Intermediate ratings 2 and 3 were assigned 
respectively, 42% and 38% of the times and ratings 1 and 4 were assigned respectively, 6% and 8% of the times. 
Nearly 65% of all evaluations confirmed the most recently assigned rating, whereas ratings were upgraded or 
downgraded by one unit respectively, 16% and 11% of the times and by two units nearly 4% and 3% of the times. 
Most upgrades by one unit occurred for families rated 2 (58%) and 3 (24%), while downgrades by one unit 
occurred for families rated 3 (55%) and 2 (27%). 
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Considering changes in ratings, I defined overestimation and underestimation in the following 

way. Overestimation occurs when patent engineers increased or maintained the ratings of 

patents they believed had positive future prospects and that subsequently expired without being 

commercialized; while underestimation occurs when they decreased the ratings of patents they 

believed had negative future prospects and that were subsequently commercialized. See 

Appendix A for an example of how I computed overestimation and underestimation. 

 

Consequently, evaluations are inaccurate when either overestimation or underestimation 

occurs, and accurate otherwise. Specifically, evaluations are accurate when patent engineers 

increased or maintained the ratings of patents they believed had positive future prospects and 

that were subsequently commercialized; and when they decreased the ratings of patents they 

believed had negative future prospects and that subsequently expired without being 

commercialized. 

 

This measure of evaluation accuracy has at least three desirable characteristics. It is an 

objective measure of the accuracy of patent engineers’ estimates (Zollo, 2009). Second, it 

accounts symmetrically for both the objectives of the patent evaluation process at Alpha. That 

is, it captures the accuracy of evaluations in terms of identifying both high value patents for 

commercialization and low value patents for saving on maintenance and management costs. 

Finally, this measure avoids issues of manipulability (Zollo, 2009), because commercialization 

decisions did not depend on patent engineers but on the business units and other parties. 

 

As a caveat, I cannot measure the accuracy of evaluations in which it was decided to terminate 

all the active members of a patent family, because it is not possible to know whether 

commercialization could have occurred had the patent engineers not decided to abandon these 

families. However, this issue has limited consequences in this setting because full abandonment 

decisions were made for less than 6% of the families in the portfolio. 
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I operationalize overestimation and underestimation, the dependent variables of H1, and 

accurate evaluation, the depend on variable of H2 and H3, as follows: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑟𝑟𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑎𝑎𝑝𝑝𝑝𝑝

= �1        if 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎 𝑝𝑝𝑝𝑝𝑟𝑟𝑎𝑎𝑝𝑝𝑎𝑎 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎 𝑝𝑝𝑝𝑝𝑟𝑟𝑎𝑎𝑝𝑝𝑎𝑎 ≥ 0 and  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑐𝑐𝑎𝑎𝑐𝑐𝑝𝑝𝑟𝑟𝑎𝑎𝑝𝑝𝑝𝑝 = 0 
0        otherwise

 

𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑟𝑟𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑎𝑎𝑝𝑝𝑝𝑝

= �1        if 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎 𝑝𝑝𝑝𝑝𝑟𝑟𝑎𝑎𝑝𝑝𝑎𝑎 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎 𝑝𝑝𝑝𝑝𝑟𝑟𝑎𝑎𝑝𝑝𝑎𝑎 < 0 and  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑐𝑐𝑎𝑎𝑐𝑐𝑝𝑝𝑟𝑟𝑎𝑎𝑝𝑝𝑝𝑝 = 1 
0        otherwise

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑟𝑟𝑎𝑎𝑝𝑝𝑝𝑝 = �1        if 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑟𝑟𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑎𝑎𝑝𝑝𝑝𝑝 = 0 and 𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑟𝑟𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑎𝑎𝑝𝑝𝑝𝑝 = 0
0        otherwise  

The variable 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑐𝑐𝑎𝑎𝑐𝑐𝑝𝑝𝑟𝑟𝑎𝑎𝑝𝑝𝑝𝑝 is equal to 1 if patents were eventually commercialized and 

equal to 0 if patents expired without being commercialized, while assigned rating and previous 

rating were, respectively, the rating assigned by the patent engineer as a result of the focal 

evaluation and the rating assigned to the patent as a result of the most recent evaluation26.  

 

 

Experience, Expertise Depth, and Expertise Breadth 

These variables describe the depth and breadth of evaluators’ expertise in terms of the 

experience they accumulated with Alpha’s technology classes. As discussed, patent engineers, 

Alpha’s technology experts and patent inventors contributed to group evaluations. I counted 

the distribution of evaluations made across Alpha’s technology classes prior to the focal 

evaluation, including the evaluations that patent engineers made individually. For patent 

inventors, I additionally counted the inventions they disclosed internally prior to the focal 

evaluation to better characterize their expertise across technology classes. As I discuss below, 

the positive bias associated with specialisation tends to be even more pronounced for inventors 

as they are additionally subject to an “ideator’s bias”, i.e. they prefer their own inventions over 

competing ones (Fuchs et al 2017). 

 
26 Each patent entered Alpha’s portfolio with a preassigned rating. 
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I measure expertise breadth by counting the number of technology classes in which an 

evaluator accumulated experience prior to the focal evaluation (Taylor and Greve, 2006; 

Mannucci and Yong, 2018).  

 

I measure expertise depth as the proportion of experience accumulated by an evaluator in the 

focal technology class to the total experience accumulated by the evaluator prior to the focal 

evaluation. Formally, I indicate with 𝑝𝑝𝑖𝑖,𝑡𝑡 the experience accumulated by individual 𝑎𝑎 in the 

technology area 𝑟𝑟 prior to the focal evaluation 𝑝𝑝. The total prior experience accumulated by 

individual 𝑎𝑎 across all 𝑇𝑇 Alpha’s technology classes is: 

𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 = �𝑝𝑝𝑖𝑖,𝑡𝑡

𝑇𝑇

𝑡𝑡=1

 

Thus, the depth of expertise of individual 𝑎𝑎 with respect to technology area 𝑟𝑟 at the time of 

evaluation is given by: 

𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ𝑖𝑖,𝑡𝑡 = �
𝑝𝑝𝑖𝑖,𝑡𝑡

∑ 𝑝𝑝𝑖𝑖,𝑡𝑡𝑇𝑇
𝑡𝑡=1

=
𝑝𝑝𝑖𝑖,𝑡𝑡

𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖
    if   𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 > 0

0      otherwise
 

 

Alternatively, prior research has measured depth as the experience accumulated in each 

domain, i.e. technology class, 𝑝𝑝𝑖𝑖,𝑡𝑡,𝑓𝑓 (Mannucci and Yong, 2018). However, this measure 

emphasises the level of expertise in the focal technology relative to other technologies and is 

better suited to capture the influence of familiarity and agency biases. For instance, consider 

two evaluators who both evaluated technology A 50 times but have made respectively a total 

of 65 and 200 evaluations across all technology classes. Even if they have the same experience 

with technology A, class A constitutes respectively around 75% and 25% of the stock of 

experience of the two evaluators as the second evaluator accumulated most of her experience 

in technologies other than A. Even if class A was the class that the second evaluator evaluated 

the most, she would less likely prefer A for a lack of familiarity with other technologies and 
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have less incentives to penalise other technologies in favour of A. The former evaluator, in 

contrast, would be more likely influenced by the perception that her expertise within the firm 

depends on the relevance of technology A. 

 

In robustness tests, I limited both measures to the experience accumulated over a time period 

of 6 or 3 years prior to the evaluation or counted only technology classes for which at least 5 

or 10 evaluations were made. Further, I measure experience breath by excluding the focal 

technology and using the Herfindahl–Hirschman index as an alternative operationalisation 

(Bunderson and Sutcliffe 2002, Lee and Csaszar 2017). These alternative sets of measures 

provide results that are consistent with my chosen measures. 

 

Depth and Breadth Diversity 

A group’s breadth diversity measures the differences between evaluators’ distributions of 

expertise across technology classes. I derive a variable based on the cosine difference between 

evaluators’ expertise distributions (Criscuolo et al; 2017). The expertise distribution of 

evaluator 𝑎𝑎 is a vector 𝒙𝒙𝑖𝑖 of 166 elements, where each element is the number of evaluations of 

the corresponding technology class prior to evaluation 𝑝𝑝. The breadth diversity of evaluator i 

is the average cosine distance between 𝑎𝑎’s expertise distribution and the expertise distribution 

of all the other 𝑝𝑝 − 1 evaluators 𝑗𝑗 contributing to a group evaluation: 

𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑟𝑟ℎ 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑟𝑟𝑦𝑦𝑖𝑖 =
∑ �1−< 𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗 > �𝑚𝑚−1
𝑗𝑗=1

𝑝𝑝 − 1
 

where < 𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗 >= 𝒙𝒙𝑖𝑖∙𝒙𝒙𝑗𝑗
‖𝒙𝒙𝑖𝑖‖�𝒙𝒙𝑗𝑗�

 is the cosine similarity between 𝒙𝒙𝑖𝑖 and 𝒙𝒙𝑗𝑗.  

The group’s breadth diversity is thus given by the average individual breadth diversity: 

𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑟𝑟ℎ 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑟𝑟𝑦𝑦 =
∑ 𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑟𝑟ℎ 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑟𝑟𝑦𝑦𝑖𝑖𝑚𝑚
𝑖𝑖

𝑝𝑝
=
∑ ∑ �1−< 𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗 > �𝑚𝑚

𝑗𝑗=1,𝑗𝑗>𝑖𝑖
𝑚𝑚
𝑖𝑖

𝑝𝑝(𝑝𝑝 − 1)/2
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which, as the formula shows, is bounded between 0 and 1. For instance, when patent engineers 

involve only one expert evaluator, breadth diversity is simply the cosine difference of the 

expertise distributions of the two evaluators.  

 

A group’s depth diversity measures the differences between evaluators’ expertise in the focal 

technology. With reference to the individual variable 𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ𝑖𝑖,𝑡𝑡 defined above, the depth 

diversity of evaluator i with respect to technology t prior to the focal evaluation is the average 

absolute difference between 𝑎𝑎’s level of expertise in technology t and the degrees of 

specialisation in technology t of all the other 𝑝𝑝 − 1 evaluators 𝑗𝑗 contributing to the group 

evaluation: 

𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑟𝑟𝑦𝑦𝑖𝑖,𝑡𝑡 =
∑ �𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ𝑖𝑖,𝑡𝑡 − 𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ𝑗𝑗,𝑡𝑡�𝑚𝑚−1
𝑗𝑗=1

𝑝𝑝 − 1
 

This variable is bounded between 0 and 1 and approaches 1 when evaluator i has either a very 

high (close to 1) or very low (close to 0) level of expertise in technology t while all the other 

𝑝𝑝 − 1 evaluators have respectively very low (close to 1) or very high (close to 0) expertise in 

the technology.  

 

I measure the group’s depth diversity with respect to technology t by computing the average 

individual depth diversity multiplied by a corrective factor 1/𝑁𝑁�: 

𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑟𝑟𝑦𝑦𝑡𝑡 =
1
𝑁𝑁�
∑ 𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑟𝑟𝑦𝑦𝑖𝑖𝑚𝑚
𝑖𝑖

𝑝𝑝
=

1
𝑁𝑁�
∑ ∑ �𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ𝑖𝑖,𝑡𝑡 − 𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ𝑗𝑗,𝑡𝑡�𝑚𝑚

𝑗𝑗=1,𝑗𝑗>𝑖𝑖
𝑚𝑚
𝑖𝑖

𝑝𝑝(𝑝𝑝 − 1)/2
 

where 𝑁𝑁� is given by: 

𝑁𝑁� =

⎩
⎪
⎨

⎪
⎧
𝑝𝑝 − 1

2 �𝑝𝑝 + 1
2 �

𝑝𝑝(𝑝𝑝 − 1)/2
=

1
2
𝑝𝑝 + 1
𝑝𝑝

        if 𝑝𝑝 is odd

�𝑝𝑝2�
2

𝑝𝑝(𝑝𝑝 − 1)/2
=

𝑝𝑝
2(𝑝𝑝 − 1)

           if 𝑝𝑝 is even

 

and ensures that 𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑟𝑟𝑦𝑦𝑡𝑡 is bounded between 0 and 1. For instance, when patent 

engineers consult only one expert evaluator, 𝑁𝑁� = 1 and depth diversity is simply the absolute 
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difference between the individual level of expertise of the two evaluators. As the number of 

evaluators increases, 𝑁𝑁� tends to 1/2  and so would do the upper bound of 𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑟𝑟𝑦𝑦𝑡𝑡 

without the corrective factor 1/𝑁𝑁�. 

 

In fact, my measure of depth diversity can be seen as a measure of group polarization (Bramson 

et al 2022). Suppose that the individual variables 𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑟𝑟𝑦𝑦𝑖𝑖,𝑡𝑡 are distinct and sorted in 

ascending order such that 𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑟𝑟𝑦𝑦𝑖𝑖,𝑡𝑡 < 𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑟𝑟𝑦𝑦𝑗𝑗,𝑡𝑡 for each pair of indexes 

𝑎𝑎 < 𝑗𝑗. The group 𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑟𝑟𝑦𝑦𝑡𝑡 can be rewritten as: 

𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑟𝑟𝑦𝑦𝑡𝑡 =

⎩
⎪⎪
⎨

⎪⎪
⎧ ∑ (𝑝𝑝 + 1 − 2𝑎𝑎)(𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ𝑚𝑚+1−𝑖𝑖,𝑡𝑡 − 𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ𝑖𝑖,𝑡𝑡)

𝑚𝑚+1
2

𝑖𝑖=1
𝑝𝑝 − 1

2 �𝑝𝑝 + 1
2 �

        if 𝑝𝑝 is odd

∑ (𝑝𝑝 + 1 − 2𝑎𝑎)(𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ𝑚𝑚+1−𝑖𝑖,𝑡𝑡 − 𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ𝑖𝑖,𝑡𝑡)
𝑚𝑚
2
𝑖𝑖=1

�𝑝𝑝2�
2            if 𝑝𝑝 is even

 

Suppose now that 𝑝𝑝 = 6 and that there are two subgroups of evaluators with high and low 

expertise in the technology t, respectively equal to 0, 0.1, 0.2 for evaluators 1, 2, 3 and equal 

to 0.8, 0.9, 1 for evaluators 4, 5, 6. In this example, group depth diversity is: 

𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑟𝑟𝑦𝑦𝑡𝑡 =
5(1) + 3(0.9) + 1(0.8) − 1(0.2) − 3(0.1) − 5(0)

9

=
5 + 2.7 + 0.8 − 0.2 − 0.3

9
=

8
9
≈ 0.89 

The high value of depth diversity indicates that this group is clustered or “polarized” at the 

extremes of the distribution of specialisation in technology t. The literature on opinion 

polarization in social groups discusses various measures of polarization, including dispersion, 

i.e. the average absolute difference between the individual measure and the group average, and 

spread, i.e. the difference between the group maximum and the minimum (Bramson et al 2022). 

My measure is similar to dispersion as it captures the extent to which evaluators’ individual 

depth is different form the group’s average; and it is closely related to spread, as it gives a 
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larger weight (the factor 5 in the example) to the highest and lowest values of evaluators’ 

individual depth.  

 

In robustness tests, I limited both measures to the experience accumulated over a time period 

of 6 or 3 years prior to the evaluation, counted only technology classes for which at least 5 or 

10 evaluations were made, and excluded the focal technology from the measure of breadth. 

Further, in line with prior work, I measured group breadth diversity by aggregating the 

experience of all the group members and counting the number of technology classes with which 

the group accumulated experience (Taylor and Greve, 2006). These sets of measures provide 

results that are consistent with my chosen measures. 

 

Control variables 

I included control variables pertaining to both evaluation and patent family levels. First, I 

included variables to account for different features across evaluations. The uncertainty variable 

accounts for the perceived technological uncertainty related to the focal evaluation. In line with 

the decision under uncertainty literature, I operationalize this variable as a linearly decreasing 

function of the focal patent’s age, which I scale so that it ranges from 1 (high) to 0 (low) 

(Mosakowski, 1997; Konlechner and Ambrosini, 2019). Patents’ age is the difference between 

the family’s earliest filing year and the year at the time of evaluation. Age is inversely related 

to the residual uncertainty perceived by patent engineers because information on future value 

creation opportunities is disclosed over time and the likelihood of positive outcomes decreases 

over time (Mosakowski, 1997). I included the dummy variable, flagged patent, which equals 1 

if the focal family was identified as potentially relevant to technology standards or product 

implementation in Alpha prior to the focal evaluation. To control for attention and cognitive 

capacity, I computed the number of evaluations made by the focal patent engineer in the 

previous seven days (workload). I constructed a dummy variable, transferred case, which 

accounts for whether previous evaluations of the focal patent were performed by another patent 
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engineer. This variable distinguishes cases where patent engineers previously evaluated the 

focal patent and should thus already possess information and prior beliefs at the time of 

evaluation. 

 

Second, in line with previous work (Khanna, Guler, and Nerkar, 2018; Higham, de 

Rassenfosse, and Jaffe, 2020), I included several patent family level variables that could 

influence patent engineers’ perception of future patent value. Family size and number of claims 

can be associated with the scope of patent protection and, thus, with patent value. Family size 

is the number of jurisdictions where patent applications were submitted, while number of 

claims is the maximum number of independent claims across the patents of the family. I 

counted the maximum number of forward and backward citations across the family to account 

for potential signals of quality. The number of granted and abandoned family members at the 

time of evaluation could have respectively been perceived as positive and negative quality 

signals by patent engineers. Accordingly, granted ratio and abandoned ratio are the 

proportions of respectively granted and abandoned family members to the family size at any 

time up to the evaluation. I included filing year dummy variables to control for variations in 

patent quality due to time trends and 14 technology dummy variables corresponding to one-

digit technology classes at Alpha. 

 

Estimation Strategy 

I test my hypotheses using Logit models to estimate the likelihood of overestimation and 

underestimation for my main sample of group evaluations. In robustness tests, I use 

endogenous treatment-regression models with binary treatment and outcomes to control for 

potential estimation bias due to self-selection of patent engineers into the decision to rely on 

group evaluations (Heckman, 1979; Woolridge, 2010). The results indicate no evidence of 

correlation between the treatment-assignment errors and the outcome errors, that is, the 

unobservables that may affect the likelihood of over- and underestimation are not correlated 

with the unobservables that may affect patent engineers’ decision to consul other experts. Thus, 
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the coefficient estimates in my main sample are unlikely affected by self-selection or selection 

on unobservable bias.  

 

In Appendixes B and C, I report results from the endogenous treatment-regression models and 

from choice models of the selection of which evaluators to involve among the ones available 

at the time of evaluation. The latter set of models estimate evaluator level factors that likely 

determined patent engineers’ choices, including other evaluators’ experience, tenure, expertise 

depth and breadth, depth and breadth diversity relative to the focal patent engineer, and number 

of previous evaluations made with the focal patent engineer.  

 

I use a panel dataset with 141 patent engineers (units) and fixed effects models at the patent 

engineer, patent filing year and technology level. I estimate robust standard errors clustered by 

patent engineer. Since I am interested in examining the effects on group evaluations of different 

distributions of expertise among expert evaluators, I included patent engineers who evaluated 

15 or more patents. This threshold reduced the patent engineers in my main sample from 161 

to 141 but did not exclude any of the other evaluators, indicating that patent engineers tended 

to consult relatively experienced evaluators (see also Appendix C). 

 

To assess the possibility of multicollinearity, I derive the variance-inflated factors and find that 

the largest value is 3, which is less than the threshold value of 10. Finally, to facilitate the 

interpretation and graphical illustration of my moderator hypothesis, I standardize the 

continuous moderator variables by subtracting the mean and dividing by the standard deviation. 

 

RESULTS  

Table 2 reports summary statistics and pair-wise correlations for the variables used in my 

models. Most of the correlation coefficients are low. I derived variance inflation factors (VIF) 

for all models (Greene, 2003). All the computed values were less than 3 and the mean VIF was 

less than 1.6, indicating that multicollinearity is not a concern in the regressions. 
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--- INSERT TABLE 2 & 3 ABOUT HERE --- 

The low correlations between expertise breadth and depth for both patent engineers and the 

other evaluators confirm that, as discussed above, the two dimensions of expertise are indeed 

independent. Table 3 reports the frequency counts of expertise breadth and depth for patent 

engineers and other evaluators for high (above average) and low (below average) values of the 

two variables. The figures show that the sub-groups of observations are relatively balanced, 

although the distribution of expertise depth is more skewed towards lower values for the patent 

engineers with decision authority than for other evaluators. Additionally, Table 2 shows that 

evaluators tend to have a higher expertise in the focal technology (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.56) than patent 

engineers (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.21). Indeed, expertise in the technology is one of the key drivers of 

patent engineers’ choice of expert evaluators – see also Appendix C for a more detailed 

analysis. 

 

In Tables 4, 5 and 6, I report the coefficient estimates of the Logit models. Models 1 and 5 are 

the baseline models, including only control variables. These models show moderate learning 

effects as the total experience of both patent engineers and evaluators is negatively associated 

with both overestimation and underestimation. 

 

Hypothesis 1: Expertise Depth 

 

Hypotheses 1a,b are supported. Hypothesis 1 theorizes that patent engineers with greater 

expertise in the focal technology are more likely to overestimate and less likely to 

underestimate its value. To test Hypothesis 1, I introduce patent engineers’ expertise depth in 

Models 2 to 4 (H1a) and Models 6 to 8 (H1b) of Table 4; and evaluators’ expertise depth in 

Models 9 to 11 (H1a) and Models 13 to 15 (H2) of Table 5. Models 12 and 16 in Table 5 are 

the full models, which include patent engineers’ and evaluators’ expertise depth and breadth.  
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The coefficients of the patent engineers’ and evaluators’ expertise depth variables are positive 

for overestimation (𝐵𝐵 = 0.75, 𝑝𝑝 < 0.01, 𝐵𝐵 = 0.47, 𝑝𝑝 < 0.05) and negative for 

underestimation (𝐵𝐵 = −1.73, 𝑝𝑝 < 0.05, 𝐵𝐵 = −0.87, 𝑝𝑝 < 0.05), providing support for 

Hypothesis 1. 

 

It is worth noting that the coefficients of the patent engineers’ and evaluators’ expertise breadth 

variable are not statistically significant in all models, including in the full sample. As I discuss 

in the robustness tests section, this result was confirmed by alternative operationalizations of 

expertise breadth. 

 

Table 6 reports effect size estimates for patent engineers’ and evaluators’ expertise depth and 

breadth. The results show that the changes in the probabilities of over- and underestimation for 

a change in depth of expertise are larger for patent engineers than other evaluators. This result 

was expected since patent engineers have decision authority over evaluations. One standard 

deviation increase in expertise depth correspond to a 5.2% increase in the probability of 

overestimation and a 6.3% decrease in the probability of underestimation for patent engineers, 

and a 2.5% increase in overestimation and a 3.4% decrease in underestimation for other 

evaluators.  

 

--- INSERT TABLE 6 ABOUT HERE --- 

 

Hypotheses 2 and 3: Depth and Breadth Diversity 

Hypotheses 2 and 3 are supported. Hypothesis 2 theorizes that higher group depth diversity is 

associated with greater evaluation accuracy. Hypothesis 3 theorizes that the positive 

relationship between depth diversity and evaluation accuracy is negatively moderated by 

breadth diversity. To test these Hypotheses, I introduce the depth and breadth diversity 

variables to the baseline Model of evaluation accuracy in Models 18 to 21 of Table 7. The 
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coefficient estimates for depth diversity are positive and significant (𝐵𝐵 = 1.57, 𝑝𝑝 < 0.01), 

providing support to Hypothesis 3. Models 19 and 20 show that the coefficient estimates of 

breadth diversity are not statistically significant. However, breadth diversity shows a 

statistically significant interaction with depth diversity. The coefficient estimate for the 

interaction term is negative and significant (𝐵𝐵 = −2.02, 𝑝𝑝 < 0.01), suggesting that breadth 

diversity negatively moderates the relationship between depth diversity and evaluation 

accuracy. 

 

I follow established best practice to interpret the significance of the interaction term in 

nonlinear models and to conduct post hoc analyses of the significance of the moderation effects, 

since the effect of the interaction between two variables cannot be assessed simply by looking 

at the sign or statistical significance of the interaction term coefficient (Zelner, 2009; Criscuolo 

et al 2017). To this end, I use the simulation-based procedure proposed by King, Tomz, and 

Wittenberg (2000) in the field of political science, which Zelner (2009) has advocated for use 

in management research. The approach consists of repeatedly drawing estimates from the 

multivariate normal distribution of the estimated coefficients and the variance matrix through 

repeated statistical simulation. Using these simulated coefficients, I can derive the change in 

the predicted probability of the evaluation being accurate, as well as the confidence interval of 

this change, at two levels of the breadth diversity variable over the entire observed range of 

depth diversity, while holding all other continuous explanatory variables at their mean. 

--- INSERT TABLE 7 & FIGURE 2 ABOUT HERE --- 

 

Figure 2a illustrates the effect of an increase in breadth diversity from its mean value to one 

standard deviation above the mean on the probability of the evaluation being accurate. In line 

with my third hypothesis, an increase in breadth diversity reduces the positive effect of depth 

diversity on evaluation accuracy. Specifically, the slope of the curve becomes negative for 

higher values of breadth diversity. The curves for low and high breadth diversity cross over 
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near the mean value of depth diversity, suggesting that higher breadth diversity improves 

evaluation accuracy at low values of depth diversity. This is confirmed in Figure 2b, which 

reports the difference in the predicted probability of the evaluation being accurate and the 90% 

confidence interval associated with one standard deviation increase in breadth diversity from 

its mean value. The interaction effect of breadth diversity is statistically significant across for 

low (𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑟𝑟𝑦𝑦 <  0.2) and high (𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟ℎ 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑟𝑟𝑦𝑦 > 0.57) values of the depth 

diversity variable. That is, the confidence interval surrounding the difference in predicted 

shares does not contain zero for low and high values of the depth diversity variable. 

 

The estimates for the other controls are consistent across specifications and confirm our 

expectations. The total experience for both patent engineers and other evaluators is negatively 

associated with is overestimation and underestimation and thus positively associated with 

evaluation accuracy in all models, indicating a learning effect. The workload allocated to the 

patent engineers at the time of evaluation is negatively associated with evaluation accuracy, 

although the coefficient for the workload variable is positive and significant only in models of 

overestimation but not significant in model of underestimation.  

 

Robustness tests 
 

I perform a number of robustness tests to explore some of these findings and assess the validity 

of the results using alternative specifications of the explanatory variables. In line with my 

arguments for Hypothesis 1, I expect patent engineers’ expertise depth to be associated with 

over- and underestimation regardless of whether they made evaluations individually or in 

groups. I estimate Logit models of overestimation and underestimation for the entire sample of 

evaluations that patent engineers made both individually and in groups (N=17,883), where I 

include only variables at the patent engineer and patent level. Due to patent engineers’ 

endogenous decision to evaluate in groups, I also estimate Probit models with endogenous 

binary treatment effects to control for self-selection and selection on unobservables bias – see 
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Appendix B for more details. The results confirm the results that I obtained for my main 

sample. The coefficients of the patent engineers’ expertise depth variable are positive and 

significant for overestimation (𝐵𝐵 = 0.69, 𝑝𝑝 < 0.01) and negative and significant for 

underestimation (𝐵𝐵 = −1.73, 𝑝𝑝 < 0.05), providing additional support for Hypothesis 1. 

 

I argued that depth of expertise has relationships of opposite sign with overestimation and 

underestimation because it is associated with patent ratings. Specifically, if evaluators with 

greater expertise assign higher ratings all else being equal, they must also be more likely to 

overestimate and less likely to underestimate the future outcomes of patents. Thus, I test linear 

models of patent ratings with patent engineers, evaluators and patent level variable equivalent 

to Models 9 to 12. In line with my expectations, the coefficients of both patent engineers’ and 

evaluators’ expertise depth variables are positively and significantly associated with patent 

ratings (𝐵𝐵 = 0.34, 𝑝𝑝 < 0.01, 𝐵𝐵 = 0.14, 𝑝𝑝 < 0.01).  

 

Contrary to expertise depth, the breadth of expertise of both patent engineers and other 

evaluators was not associated with patent ratings and with over- or underestimation in all our 

models. Further, the variable did not have statistically significant interactions effects with 

expertise depth. I tested alternative operationalisation of expertise breadth. I counted only 

technology classes with which experience was accumulated over a time period of 6 or 3 years 

prior to the evaluation, or for which at least 5 or 10 evaluations were made. In line with prior 

work, I also used the Herfindahl–Hirschman index to derive a measure of individual breadth 

(Bunderson and Sutcliffe 2002; Lee and Csaszar 2017). None of these alternative 

operationalisations showed statistically significant relationships with the dependent variables. 

 

Additionally, I constructed a measure of expertise breadth at the group level by aggregating 

the experience of all the group members. In line with Taylor and Greve (2006), I counted all 

the technology classes that patent engineers and evaluators evaluated prior to evaluation, 

omitting double counts of classes. Further, I used the aggregated distribution of experience 
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across classes to compute the Herfindahl–Hirschman index at the group level. These two 

variables did not show statistically significant relationships with the dependent variables, 

providing additional support to my argument that group depth diversity plays an equally if not 

more important role than breadth diversity in contributing to the accuracy of evaluations.  

 

Finally, one of my main arguments for Hypothesis 1 is that evaluators’ subjective judgements 

are influenced by an agency bias, i.e. by self-interested motives for favouring technologies in 

which they have expertise and for penalizing others. I expect this bias to be more pronounced 

for the inventors of the focal patent. Indeed, inventors have even stronger incentives to favour 

their own inventions over competing patents in the portfolio (Fuchs et al 2019). Thus, I 

introduce a dummy variable in Model 9 to 16 for whether the focal patent inventors contributed 

to the evaluations. As expected, the coefficients of variable are positive and significant for 

overestimation (𝐵𝐵 = 0.18, 𝑝𝑝 < 0.05) and negative and significant for underestimation (𝐵𝐵 =

−0.3, 𝑝𝑝 < 0.05).  

 

DISCUSSION AND CONCLUSIONS 

I examined the effects of differences among the types of expertise of expert evaluators 

contributing to group evaluations in the context of the management of the patent portfolio of a 

Fortune 500 ITC firm. My main results are twofold. First, evaluators’ individual level of 

expertise in the focal technology was associated with higher likelihood of overestimation and 

lower likelihood of underestimation of the value of the technology. In contrast, evaluators’ 

breadth of expertise was not associated with the likelihood of overestimation or 

underestimation and thus with evaluation accuracy. 

 

Second, evaluations were more likely accurate for larger differences between evaluators’ level 

of expertise in the focal technology, that is for higher depth diversity. Differences between 

evaluators’ distributions of expertise across technologies, i.e. the group’s breadth diversity, was 
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not associated with evaluation accuracy. Breadth diversity, however, negatively moderated the 

relationship between depth diversity and accuracy. Higher breadth diversity decreased the 

likelihood of evaluations being accurate at high levels of depth diversity and increased the 

likelihood of being accurate at low levels of depth diversity. 

 

Scholars of organisations generally attribute the advantages of group decisions to the 

possibility to aggregate broader and richer knowledge from the unique expertise of group 

members, that is, to the group’s breadth diversity (Brodbeck et al 2007; Csaszar and Eggers, 

2013). These results indicate that breadth diversity is not beneficial per se, and that it can even 

diminish the accuracy of evaluations when evaluators have very different levels of expertise in 

the focal technology. Breadth diversity can improve evaluation accuracy when all evaluators 

have either high or low levels of expertise in the focal technology. These findings suggest that 

research on group decisions in organisations should distinguish and emphasize the role of both 

dimensions of expertise diversity in contributing to the performance of group evaluations. 

 

These findings have two main implications. First, expanding access to unique and more diverse 

expert knowledge via group evaluations does not necessarily improve the performance of 

decisions as generally assumed (cf Stasser and Birchmeier 2003). This is a consequence of the 

fact that high or low levels of expertise in the technology being evaluated induce biased 

subjective judgements in favour or against the focal technology. My theory and findings 

suggest that individual biases of opposite sign cancel out as long as evaluators share common 

knowledge bases that enable the reciprocal heeding of others’ perspectives (Gavetti and 

Warglien, 2015). On the contrary, evaluators with different distributions of expertise tend to 

hold different representations of the focal technology that create barriers for the interpretation 

and integration of others’ perspectives. It follows that a broader pool of expertise can have the 

detrimental effect of deterring the mutual attenuation of individual biases on the aggregate 

evaluation. 
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A second counterintuitive implication is that increasing access to more advanced knowledge 

by aggregating the contributions of a larger number of evaluators with expertise does not 

necessarily improve the performance of evaluations. On the contrary, evaluators with greater 

expertise would benefit from the contributions of expert evaluators with less or no expertise in 

the technology. These are further consequences of the relationship between expertise depth and 

bias and of the role that group evaluations play in attenuating and reinforcing individual biases. 

 

In fact, my findings imply that expanding access to knowledge and attenuating individual 

biases are two distinct and interdependent mechanisms by which superior evaluation accuracy 

can be achieved in groups rather than individually. I argued that group evaluations can add 

value by exposing evaluators to others’ perspectives and by inducing the reciprocal updating 

of their subjective judgements. Importantly, these findings imply that evaluators may update 

they judgements regardless of the quality of the knowledge and information possessed by 

others. Even if evaluators without expertise may not be able to provide any additional valuable 

information to experts of the focal technology, the less positive perspectives of the former can 

induce the latter to consider a more balanced common ground between opposite opinions. Put 

it differently, evaluators with expertise who make decisions individually tend to give 

importance exclusively to the arguments that support their own biased views and do not have 

an opportunity to reassess or reconcile their subjective judgements with other perspectives.  

 

This study also contributes to the literature on the role of different types of expertise in 

organisations and on evaluations under uncertainty by examining the link between accuracy 

and depth and breadth of expertise. Research has examined how dimensions of expertise, such 

as individual depth or individual and team breadth, influence outcomes such as evaluation 

ratings (Boudreau et al., 2016, Li, 2017) and project funding (Criscuolo et al, 2017). However, 

with the exception of formal and conceptual work (Knudsen and Levinthal, 2007; Csaszar and 

Eggers, 2013), studies of the actual performance of evaluations in organisational contexts are 

notably missing from the literature. I contribute in two main ways. First, although the total 
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experience of evaluators is positively related to accuracy as expected, their degree of 

specialisation in the focal technology has a positive effect in reducing underestimation but also 

a negative effect in increasing overestimation. The net effect of evaluation accuracy is thus 

very limited or null as the two effects tend to compensate each other. Second, expertise breadth 

at both the individual and group level was not associated with over- or underestimation and 

thus with evaluation accuracy in this setting. Future work could explore the relationship 

between breadth and accuracy in more detail, for instance in different settings where evaluators 

are less likely subject to agency biases. 

 

Further, these findings have practical implications for the design of group evaluations and 

decision processes. First, I show how the distribution of expertise across group members can 

be chosen to optimize the efficacy of group evaluations against their costs. My theory and 

results suggest that group accuracy is optimized when depth diversity is high and breadth 

diversity is low. Thus, firms could assign evaluation tasks to groups of evaluators in a 

controlled way such that they maintain both similar distributions of expertise across 

technologies (low breadth diversity) and subgroups of evaluators respectively with high and 

low expertise in selected technologies (high depth diversity). Indeed, this may be difficult to 

achieve for all the technologies of the portfolio, thus firms may want to ensure that groups with 

these characteristics exist for the technologies they want to prioritise.  

 

Second, firms may be differentially interested in avoiding overestimation vis-à-vis 

underestimation and group distributions of expertise can be chosen to satisfy different 

objectives in this sense. Specifically, cost sensitive firms may be prefer underestimating rather 

than overestimating the value of technologies to avoid overinvesting. On the contrary, firms 

with more slack resources may prefer overinvesting and avoiding missing out on valuable 

opportunities. This approach is analogous to the design of appropriate loss functions in decision 

theoretic approaches to statistical inference (Casella and Berger, 2010). That is, the balance 

between degrees of specialisation in the technologies being evaluated and the level of breadth 
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diversity among evaluators can be adjusted as to minimize the likelihood of one type of errors 

at the expense of increasing the likelihood of the other. 

 

Finally, it is worth noting how the above findings depend on some of the main features of this 

study’s empirical settings. First, technology evaluations were made for a large patent portfolio 

with the objective to identify opportunities for commercialisation but also to save on 

maintenance costs. As I discussed, the need to save on costs and to drop technologies from the 

portfolio likely created incentives for evaluators with expertise to favour the technologies for 

which their expertise was recognized and valued within the firm. While I would expect the 

familiarity bias to affect individual preferences across a broad range of contexts, this feature of 

my setting might exacerbate the influence of the agency bias. In contrast, other settings such 

as peer review of research grant proposals are less likely to create similar incentives for 

evaluators (Boudreau et al, 2016, Li, 2017).  

 

Second, my theory and findings depend on the fact that group evaluations were made by a 

limited number of evaluators who could interact and exchange opinions and recommendations. 

This study thus extends research on the performance of different aggregation structures 

(Tindale et al, 2003) and on the wisdom of the crowds phenomenon (Surowiecki, 2004), which 

generally assume independence of opinions and absence of interactions among group members 

(Oinas-Kukkonen, 2008). I contribute by examining both effect of interactions among 

evaluators; and the role that different distribution of knowledge and expertise plays in group 

evaluations, which, besides a few exceptions (Csaszar and Eggers, 2013), are not discussed or 

assumed as homogenous in this literature. Future work could further explore the effects of 

interactions by examining contingencies that may facilitate or compromise exchanges of 

knowledge among group members. For instance, research could explore the effects of different 

group hierarchies or communication networks, of relationships of power or conflicts among 

members, or of the learning of others’ competence and biases that may occur after repeated 

interactions (Christensen and Knudsen, 2010; Nebus, 2006).  
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FIGURE 1 

Illustration of Evaluators’’ Distributions of Expertise and of Depth and Breadth Diversity 

Notes. Panel (a) and Panel (b) show illustrative distributions of expertise of novice and expert 
evaluators, respectively. In this example, eight evaluators identified by the letters A to H are sorted in 
six two-member groups and accumulated experience across five technology classes. This study does 
not examine novice evaluators, i.e. evaluators whose total volume of experience is small – see Panel 
(a). It will instead focus on expert evaluators, i.e. evaluators who accumulated medium to large stocks 
of experience – see Panel (b). In Panel (b), each group is characterized by high or low values of depth 
and breadth diversity and represented in the diagram accordingly. Depth diversity is measured relative 
to the focal technology 3. For instance, Groups 2, 3 and 4 are characterized by low depth diversity 
because, respectively, evaluators C and D, evaluators E and F, and evaluators I and G have similar 
experience with technology 3; while Groups 4 and 6 are characterized by high breadth diversity because, 
respectively, evaluators I and G, and evaluators I and E have similar distributions of experience across 
technologies. 
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TABLE 1 

Descriptive of Variables 
 

Accurate Evaluation Binary variable for whether the evaluation correctly estimated 
future patent commercialization outcomes. It equals 0 when either 
the overestimation or underestimation variables equal 1. 

Breadth Diversity Average of the cosine distanced between the expertise breadth of 
each pair of evaluators who contributed to the evaluation.  

Depth Diversity Average of the absolute differences between the expertise depth of 
each pair of evaluators who contributed to the evaluation.  

Evaluators: Experience Average of the number of evaluations made by expert evaluators 
and inventors prior to evaluation date, and of the number of 
inventions disclosed by the inventors prior to evaluation date. 

Evaluators: Expertise Depth Average of the proportion of evaluations of the patent’s technology 
class to total number of evaluations made by expert evaluators and 
inventors prior to evaluation date, and of the proportion of 
inventions disclosed for the patent’s technology class to total 
number of inventions disclosed by the inventors prior to evaluation 
date. 

Evaluators: Expertise Breadth Average of the number of technology classes that expert evaluators 
and inventors evaluated 5 or more time over the 3 years prior to 
evaluation date, and of the number of technology classes in which 
the inventors disclosed inventions over the 3 years prior to 
evaluation date. 

Evaluators: Opinion Requested Binary variable for whether evaluators’ opinions were requested by 
the patent engineer and obtained at the time of evaluation. 

Evaluators: Total Available Opinions Number of opinions given by evaluators for the patent prior to 
evaluation date 

Evaluators: Pool size Number of experts whom patent engineers can request opinions to 
at the time of evaluation 

Inventor: Team Size Number of patent’s inventors 
Inventor: Team Tenure Average number of years since the year of the first invention 

disclosure of each inventor on the team at the time of evaluation 

Inventor: Opinion Requested Binary variable for whether inventors’ opinions were requested by 
the patent engineer and obtained at the time of evaluation 

Inventor & Expert: Opinion Requested Binary variable for whether both experts’ and inventors’ opinions 
were requested by the patent engineer and obtained at the time of 
evaluation 

Inventor: Prior Opinions to Patent Engineer  Average across the inventors team of number of opinions requested 
and obtained by the patent engineer for the focal and any other 
patent prior to evaluation date 
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Overestimation Binary variable, indicates whether a Type I error was committed, 
i.e. whether the patent engineer maintained or increased the patent’s 
rating, and the patent was not commercialized by the end of its life 

Patent: Abandoned Proportion of abandoned to total number of patent applications filed 
for the patent family at the time of evaluation 

Patent: Age Number of years since filing at the time of evaluation 

Patent: Backward/Forward Citations Number of patent’s backward/forward citations 

Patent: Claims Number of patent claims 

Patent: Flagged Binary variable for whether the patent has been identified as having 
potential for standardization or implementation prior to evaluation 
date 

Patent: Granted Proportion of granted to total number of patent applications filed 
for the patent family at the time of evaluation 

Patent: Transferred Case Binary variable that equals 1 if the patent has been evaluated by 
other patent engineers at the time of evaluation 

Patent: Uncertainty Binary variable for whether the patent’s rating prior to evaluation 
date is 2 or 3 (out of 5) 

Patent Engineer: Experience Number of evaluations made by the patent engineer prior to 
evaluation date 

Patent Engineer: Expertise Breadth Number of technology classes that the patent engineer evaluated 5 
or more time over the 3 years prior to evaluation date.  

Patent Engineer: Expertise Depth Proportion of evaluations of the patent’s technology class to total 
number of evaluations made by the patent engineer prior to 
evaluation date 

Patent Engineer: Workload Number of evaluations made by the patent engineer during the focal 
week, including the focal evaluation. 

Underestimation Binary variable, indicates whether a Type II error was committed, 
i.e. whether the patent engineer decreased the patent’s rating, and 
the patent was successfully commercialized by the end of its life 
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TABLE 2 

Descriptive Statistics and Correlation Matrix (N=3,819) 
  

VARIABLE MIN MAX MEAN (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
1 Overestimation 0 1 0.24 

          

2 Underestimation 0 1 0.14 -0.2* 
         

3 Patent Engineer: 
Experience 

15 578 115.01 0.07* -0.03* 
        

4 Evaluators: Experience 23 742 75.86 0 -0.01 0.13* 
       

5 Patent Engineer: Expertise 
Depth 

0 1 0.21 0 -0.01 0 0.06* 
      

6 Patent Engineer: Expertise 
Breadth 

1 102 52.33 0.08* -0.06* 0.39* 0.01 -0.27* 
     

7 Evaluators: Expertise 
Depth 

0 1 0.56 -0.02* -0.01 -0.07* -0.19* 0.26* -0.1* 
    

8 Evaluators: Expertise 
Breadth 

1 86 20.4 0.03* -0.02* 0.19* 0.39* 0.04* 0.14* -0.35* 
   

9 Depth Diversity 0 272 15.26 0.07* -0.05* 0.18* 0.05* 0.32* 0.03* 0 -0.02* 
  

10 Breadth Diversity 0 0.99 0.4 0.05* -0.01 -0.02* -0.18* -0.59* 0.13* -0.11* -0.17* -0.16* 
 

11 Inventors’ Opinions 
Requested 

0 1 0.78 0.0 0 -0.07* 0.02* 0.01 -0.05* 0.27* 0.1* -0.03* -0.08* 

12 Patent: Transferred Case 0 1 0.39 0.04* -0.03* 0.19* 0.11* 0.01 0.08* -0.04* 0.16* 0 0.02* 
13 Patent: Uncertainty 0 1 0.85 0.02* 0.03* 0.02* 0.01 0.01 0.04* -0.01 0.01 0.04* -0.01 
14 Patent Engineer: Workload 1 58 2.84 -0.04* 0.02* 0 -0.06* 0 -0.02* 0.01 -0.1* 0 0 
15 Patent: Granted 0 1 0.12 -0.02* 0.07* 0.13* -0.1* -0.08* 0.02* -0.04* -0.1* 0.01 0.12* 
16 Patent: Claims 1 82 21.47 0.05* -0.03* 0.05* 0.09* 0.04* 0.05* -0.03* 0.14* 0.05* -0.03* 
17 Patent: Forward Citations 0 477 31.57 0.02* 0.01 0.04* 0.06* 0.02* 0.06* -0.05* 0.17* -0.03* 0.01 
18 Patent: Backward Citations 0 249 14.75 0.07* -0.02 0.07* 0.05* 0.01 0.09* -0.06* 0.15* 0.01 0.02* 
19 Patent: Age 0 17 4.63 0 0.04* 0.27* -0.03* -0.07* 0.12* -0.09* 0 0.02* 0.13* 
20 Patent: Abandoned 0 1 0.12 -0.02* 0.02* 0.19* -0.02 -0.02* 0.09* -0.03* 0.01 0.01 0.05* 
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TABLE 2 
(Continued) 

  
VARIABLE MIN MAX MEAN (11) (12) (13) (14) (15) (16) (17) (18) (19) 

12 Patent: Transferred 
Case 

0 1 0.39 -0.02* 
        

13 Patent: Uncertainty 0 1 0.85 0.07* -0.08* 
       

14 Patent Engineer: 
Workload 

1 58 2.84 -0.11* -0.07* -0.06* 
      

15 Patent: Granted 0 1 0.12 -0.13* 0.14* -0.14* 0.14* 
     

16 Patent: Claims 1 82 21.47 0.02* 0.04* 0.02* -0.08* -0.16* 
    

17 Patent: Forward 
Citations 

0 477 31.57 -0.05* 0.05* -0.06* -0.03* 0.07* 0.15* 
   

18 Patent: Backward 
Citations 

0 249 14.75 -0.03* 0.05* -0.03* -0.03* -0.05* 0.15* 0.32* 
  

19 Patent: Age 0 17 4.63 -0.15* 0.32* -0.16* 0.1* 0.72* -0.15* 0.09* -0.01 
 

20 Patent: Abandoned 0 1 0.12 -0.06* 0.23* -0.06* 0.05* 0.28* -0.08* 0 -0.02* 0.51* 
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TABLE 3 
Frequency Counts of Expertise Depth and Breadth for Patent Engineers and Evaluators 

  
Patent Engineer: Expertise Breadth   Evaluators: Expertise Breadth  

Patent Engineer:  
Expertise Depth 

   
 Evaluators:  

Expertise Depth  
   

 
Low (<mean) High 

(>mean) 
Total   Low (<mean) High (>mean) Total 

    
     

Low (<mean) 1,636 1,518 3,154  Low (<mean) 1,122 984 2,106  
52 48 100   53.28 46.72 100  
79.57 86.1 82.59   54.92 55.41 55.15     

     
High (>mean) 420 245 665  High (>mean) 921 792 1,713  

63 37 100   53.77 46.23 100  
20.43 13.9 17.41   45.08 45.59 44.85     

     
Total 2,056 1,763 3,819  Total 2,043 1,776 3,819  

53.84 46.16 100   53.5 46.5 100  
100 100 100   100 100 100 
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TABLE 4 
Logit Models on Overestimation and Underestimation (N=3,819) 

 
  Overestimation (Type I) Underestimation (Type II) 

VARIABLES 1 2 3 4 5 6 7 8 
   

    
 

  

Hypothesis 1: Patent Engineer: 
Expertise Depth 

 0.62**   0.70**  -1.94**   -2.19** 

   (0.24)   (0.28)  (0.95)   (0.97) 

Patent Engineer: Expertise Breadth      0.08 0.29     -0.21 -0.45 

      (0.18) (0.21)     (0.32) (0.35) 

Patent Engineer: Experience -0.06*** -0.06*** -0.06*** -0.06*** -0.01*** -0.01*** -0.01*** -0.01*** 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Expert: Experience -0.00*** -0.00*** -0.00*** -0.00*** -0.01* -0.01* -0.01* -0.01* 
 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Patent: Transferred Case 0.05 0.05 0.06 0.06 -0.41** -0.41** -0.41** -0.42** 

  (0.09) (0.09) (0.09) (0.09) (0.19) (0.19) (0.19) (0.19) 

Patent: Prior Evaluations (#) 0.03 0.03 0.04 0.03 -0.04 -0.04 -0.05 -0.05 

  (0.03) (0.03) (0.03) (0.03) (0.07) (0.07) (0.07) (0.07) 

Patent: Uncertainty 0.04 0.04 0.04 0.04 0.29 0.29 0.29 0.28 

  (0.10) (0.10) (0.10) (0.10) (0.20) (0.20) (0.20) (0.20) 

Patent Engineer: Workload 0.02** 0.02** 0.02** 0.02** 0.01 0.01 0.01 0.01 

  (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Patent: Granted 0.35* 0.33* 0.34* 0.31 0.28 0.28 0.19 0.32 

  (0.20) (0.20) (0.20) (0.20) (0.36) (0.36) (0.36) (0.37) 

Patent: Forward Citations -0.00 -0.00 -0.00 -0.00 0.00 0.00 0.00 0.00 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 
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Patent: Backward Citations 0.01*** 0.01*** 0.01*** 0.01*** 0.01** 0.01** 0.01** 0.01** 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

 
TABLE 4 

(Continued) 
 

  Overestimation (Type I) Underestimation (Type II) 

VARIABLES 1 2 3 4 5 6 7 8 
   

    
 

  

Inventors’ Opinions Requested 0.04 0.04 0.05 0.04 -0.02 -0.01 -0.02 -0.01 

  (0.09) (0.09) (0.09) (0.09) (0.18) (0.19) (0.19) (0.19) 

Patent: Abandoned -0.53** -0.54** -0.52** -0.54** 0.29 0.26 0.29 0.27 

  (0.25) (0.25) (0.25) (0.25) (0.48) (0.48) (0.48) (0.48) 

Constant -1.97*** -1.91*** -1.86** -2.07*** -1.95** -1.89** -1.78** -1.73** 

  (0.74) (0.74) (0.74) (0.74) (0.74) (0.74) (0.75) (0.75) 

Patent Engineer Dummies Yes Yes Yes Yes Yes Yes Yes Yes 

Filing Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes 

Technology Dummies Yes Yes Yes Yes Yes Yes Yes Yes 

Notes: Robust standard error clustered by patent engineer. 
*p<0.1, **p<0.05, ***p<0.01 
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TABLE 5 
Logit Models on Overestimation and Underestimation (N=3,819) 

 
  Overestimation (Type I) Underestimation (Type II) 

VARIABLES 9 10 11 12 13 14 15 16 
   

    
 

  

Hypothesis 1: Patent Engineer: 
Expertise Depth  

   0.75***    -1.73** 

     (0.29)    (1.00) 

Patent Engineer: Expertise Breadth      0.33     -0.40 

      (0.21)     (0.35) 

Patent Engineer: Experience -0.06*** -0.06*** -0.06*** -0.06*** -0.01*** -0.01*** -0.01*** -0.01*** 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Hypothesis 1: Evaluators: Expertise 
Depth 

0.41*   0.43** 0.47** -0.99***   -0.96*** -0.87** 

  (0.29)   (0.23) (0.23) (0.38)   (0.51) (0.51) 

Evaluators: Expertise Breadth   0.81 0.69 1.11   1.04 0.01 -0.19 

   (0.27) (0.21) (0.36)   (0.57) (0.76) (0.77) 

Evaluator: Experience -0.00*** -0.00*** -0.00*** -0.00*** -0.01* -0.01* -0.01* -0.01* 
 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Patent: Transferred Case 0.07 0.06 0.07 0.07 -0.44** -0.42** -0.43** -0.43** 

  (0.09) (0.09) (0.09) (0.09) (0.19) (0.19) (0.19) (0.19) 

Patent: Prior Evaluations (#) 0.04 0.04 0.04 0.04 -0.05 -0.05 -0.05 -0.05 

  (0.03) (0.03) (0.03) (0.03) (0.07) (0.07) (0.07) (0.07) 

Patent: Uncertainty -0.05 -0.05 -0.06 -0.06 0.29 0.28 0.28 0.27 

  (0.10) (0.10) (0.10) (0.10) (0.20) (0.20) (0.20) (0.20) 

Patent Engineer: Workload 0.02*** 0.02** 0.02** 0.02** 0.01 0.01 0.01 0.01 

  (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 
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Patent: Granted 0.35* 0.38* 0.39** 0.39** 0.19 0.21 0.19 0.31 

  (0.20) (0.20) (0.20) (0.20) (0.36) (0.36) (0.36) (0.37) 

 
TABLE 5 

(Continued) 
 

  Overestimation (Type I) Underestimation (Type II) 

VARIABLES 9 10 11 12 13 14 15 16 
   

    
 

  

Patent: Forward Citations 0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.00 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Patent: Backward Citations 0.00 -0.00 0.00 -0.00 0.00 0.00 0.00 0.00 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Inventors’ Opinions Requested 0.04 0.04 0.05 0.04 -0.02 -0.01 -0.02 -0.01 

  (0.09) (0.09) (0.09) (0.09) (0.18) (0.19) (0.19) (0.19) 

Patent: Abandoned -0.48* -0.49** -0.48** -0.47** 0.31 0.31 0.31 0.30 

  (0.25) (0.25) (0.25) (0.25) (0.48) (0.48) (0.48) (0.48) 

Constant -1.83** -1.87** -2.45*** -3.11*** -1.54** -2.60*** -1.56*** -1.32*** 

  (0.73) (0.74) (0.77) (0.83) (0.74) (0.85) (0.99) (1.00) 

Patent Engineer Dummies Yes Yes Yes Yes Yes Yes Yes Yes 

Filing Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes 

Technology Dummies Yes Yes Yes Yes Yes Yes Yes Yes 

Notes: Robust standard error clustered by patent engineer. 
*p<0.1, **p<0.05, ***p<0.01 
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TABLE 6 
Effect sizes 

 

xtlogit: Changes in Pr(y) Number of obs = 3819       

Expression: Pr(Overestimation=1), predict(pr) Pr(Underestimation=1), predict(pr)       
 

Change p-value Change p-value 
Expert: Depth Expertise 

     

+1 0.173 0.015 -0.210 0.031 
 

+1SD 0.025 0.015 -0.034 0.047 
 

Marginal 0.165 0.014 -0.192 0.052 
 

Patent Engineer: Breadth Expertise 
     

+1 0.086 0.179 0.073 0.513 
 

+1SD 0.017 0.172 0.012 0.457 
 

Marginal 0.083 0.168 0.033 0.445 
 

Evaluators: Breadth Expertise 
     

+1 0.092 0.097 -0.032 0.482 
 

+1SD 0.020 0.092 -0.001 0.612 
 

Marginal 0.089 0.089 -0.046 0.624 
 

Patent Engineer: Depth Expertise 
     

+1 0.226 0.006 -0.255 0.000 
 

+1SD 0.052 0.008 -0.063 0.008 
 

Marginal 0.216 0.008 -0.248 0.010 
 

      

Average prediction 0.373 
 

0.164 
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TABLE 7 
Logit Models on Accurate Evaluation (N=3,819) 

 

 
 Accurate Evaluation 
VARIABLES 17 18 19 20 21 
      
H2: Depth Diversity  1.47***  1.57*** 1.74*** 
  (0.39)  (0.41) (0.59) 
Breadth Diversity   -0.26 -0.26 0.59** 
   (0.14) (0.14) (0.17) 
H3: Depth Diversity # Breadth Diversity     -2.02*** 
     (0.68) 
Evaluator: Experience 0.00** 0.01** 0.01** 0.01** 0.01** 
 (0.00) (0.00) (0.00) (0.00) (0.00) 
Patent Engineer: Experience 0.06*** 0.06*** 0.06*** 0.01*** 0.01*** 
 (0.00) (0.00) (0.00) (0.00) (0.00) 
Inventor: Opinion Requested -0.04 -0.04 -0.05 -0.05 -0.05 
 (0.09) (0.09) (0.09) (0.09) (0.09) 
Patent: Transferred Case 0.11 0.11 0.11 0.11 0.11 
 (0.10) (0.10) (0.10) (0.10) (0.10) 
Patent: Abandoned 0.40* 0.40 0.40 0.39 0.38 
 (0.24) (0.24) (0.24) (0.24) (0.24) 
Patent: Uncertainty -0.06* -0.06* -0.05* -0.05 -0.05 
 (0.10) (0.10) (0.10) (0.10) (0.10) 
Patent Engineer: Workload -0.02** -0.02** -0.02** -0.02** -0.02** 
 (0.01) (0.01) (0.01) (0.01) (0.01) 
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TABLE 7 
(Continued) 

 
 Accurate Evaluation 
VARIABLES 17 18 19 20 21 
      
 (0.01) (0.01) (0.01) (0.01) (0.01) 
Patent: Granted -0.39* -0.39* -0.39* -0.39* -0.38 
 (0.23) (0.23) (0.23) (0.23) (0.23) 
Patent: Abandoned 0.40* 0.40* 0.40* 0.39 0.38 
 (0.24) (0.24) (0.24) (0.24) (0.24) 
Patent: Claims -0.00 -0.00 -0.00 -0.00 -0.00 
 (0.00) (0.00) (0.00) (0.00) (0.00) 
Patent: Forward Citations -0.00 -0.00 -0.00 -0.00 -0.00 
 (0.00) (0.00) (0.00) (0.00) (0.00) 
Patent: Backward Citations -0.01*** -0.01*** -0.01*** -0.01*** -0.01*** 
 (0.00) (0.00) (0.00) (0.00) (0.00) 
Constant -1.80** -2.04*** -1.15 -1.67** -1.52** 
  (0.74) (0.74) (1.09) (0.74) (0.77) 
Patent Engineer Dummies Yes Yes Yes Yes Yes 
Filing Year Dummies Yes Yes Yes Yes Yes 
Technology Dummies Yes Yes Yes Yes Yes 

Notes: Robust standard error clustered by patent engineer. 
*p<0.1, **p<0.05, ***p<0.01 
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FIGURE 2 
A and B: Moderation Effect of Breadth Diversity on Depth Diversity 

 

 
Notes: These graphs show the moderating effect of breadth diversity associated with an increased level of breadth diversity from its mean value (dashed 
line) to one standard deviation above the mean (continuous line). I obtained the graphs using coefficient estimates from Model 21 of Table 7, 
considering an evaluation with mean values for all other continuous variables. Dashed lines in Figure 2B show 90% confidence intervals for the 
difference in the predicted probability of the evaluation being accurate. 
 
 
 

A  B  Predicted probability of the evaluation being accurate for low 
(−) and high (---) breadth diversity 

Delta predicted probability of the evaluation being accurate 
for low vs and high breadth diversity 
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APPENDIX A 
TABLE 1A 

Definition of Overestimation, Underestimation, and Accurate Evaluation 
 

 

 

 

 

 

 

 

FIGURE 1A 
Example of how I compute Overestimation, Underestimation, and Accurate Evaluation. 

 

Patent engineer’s decision (ex-ante) 
Patent outcome (ex-post) 

A. Positive outcome B. Negative outcome 

Rating confirmed or 
increased 

1. Positive prospect Accurate Overestimation 
(Type I Error) 

Rating decreased 2. Negative prospect Underestimation 
(Type II Error) Accurate 

  1st evaluation 2nd evaluation 3rd evaluation n-th evaluation 

Group 1 

Rating change 
(∆𝑅𝑅) 

1 0 -1  

Overestimation 0 0 0  

Underestimation 0 0 1  

Accurate 1 1 0  

Group 2 

Rating change 
(∆𝑅𝑅) 

1 0 -1 -1 

Overestimation -1 -1 0 0 

Underestimation 0 0 0 0 

Accurate 0 0 1 1 
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In this example, patent engineers 1 and 2 are responsible for periodic re-evaluations of Patents 1 

and 2, respectively. The timeline shows that both patents were granted 5 years after filing and that the first 

two evaluations were made while patents were still under prosecution. Patent 1 was successfully licensed 

to a third party after grant, while Patent 2 expired at the end of its legal life without being commercialized. 

That is, the eventual outcomes for Patents 1 and 2 were positive and negative, respectively. For illustrative 

purposes, both patent engineers evaluated their respective patents at equal time periods after filing and 

always involved other evaluators. Groups did not necessarily involve the same evaluators when patents 

were re-evaluated, but both patents were assigned the same ratings by the respective groups. Both ratings 

increased from 2 to 3 at the first evaluation, were confirmed at 3 at the second evaluation, and decreased to 

2 at the third evaluation. Patent 1 was removed from the first patent engineer’s list of assigned patents 

because it was commercialized, and additional evaluations were no longer necessary. Patent 2, instead, was 

periodically re-evaluated until its expiration date. The table shows the values taken by the dummy variables 

as the ratings were changed or confirmed. For instance, the rating decrease decided at the third evaluation 

corresponds to underestimation for Group 1 and to an accurate evaluation for Group 2. 
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APPENDIX B 
Table 1B 

Probit Models with Endogenous Binary Treatment Effects (N=17,883) 
 

  Group Evaluation Overestimation (Type I) Underestimation (Type II) 

VARIABLES Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 
    

      

Patent Engineer: Expertise Depth  -0.24* 0.62**   0.70** -1.94**   -2.19** 

  (0.14) (0.24)   (0.28) (0.95)   (0.97) 

Patent Engineer: Expertise Breadth  0.00   0.08 0.29   -0.21 -0.45 

  (0.00)   (0.18) (0.21)   (0.32) (0.35) 

Patent Engineer: Experience -0.01 -0.06*** -0.06*** -0.06*** -0.01*** -0.01*** -0.01*** 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Expert: Experience 0.00 -0.00*** -0.00*** -0.00*** -0.01* -0.01* -0.01* 
 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Inventor: Team Size 0.03*** 0.00 0.00 0.00 0.04 0.04 0.04 

  (0.01) (0.00) (0.00) (0.00) (0.23) (0.23) (0.23) 

Expert: Available Pool Size 0.03* 0.31 0.31 0.31 0.52 0.52 0.52 

  (0.02) (0.01) (0.01) (0.01) (0.03) (0.03) (0.03) 

Patent: Transferred Case 0.10*** 0.05 0.06 0.06 -0.41** -0.41** -0.42** 

  (0.04) (0.09) (0.09) (0.09) (0.19) (0.19) (0.19) 

Patent: Prior Evaluations (#) -0.06*** 0.03 0.04 0.03 -0.04 -0.05 -0.05 

  (0.02) (0.03) (0.03) (0.03) (0.07) (0.07) (0.07) 

Patent: Uncertainty 0.11*** 0.04 0.04 0.04 0.29 0.29 0.28 

  (0.04) (0.10) (0.10) (0.10) (0.20) (0.20) (0.20) 

Patent Engineer: Workload -0.02*** 0.02** 0.02** 0.02** 0.01 0.01 0.01 

  (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 
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Patent: Granted -0.06 0.33* 0.34* 0.31 0.28 0.19 0.32 

  (0.06) (0.20) (0.20) (0.20) (0.36) (0.36) (0.37) 

Patent: Forward Citations -0.00 -0.00 -0.00 -0.00 0.00 0.00 0.00 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Patent: Backward Citations 0.00 0.01*** 0.01*** 0.01*** 0.01** 0.01** 0.01** 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Expert Opinion Requested   0.30 0.30 0.30 -0.05 -0.05 -0.05 

    (0.09) (0.09) (0.09) (0.13) (0.13) (0.13) 

𝝆𝝆  -0.94 
      

  (0.06) 
      

𝝈𝝈  -1.31 
      

  (0.04) 
      

Constant 0.30 -1.91*** -1.86** -2.07*** -1.89** -1.78** -1.73** 
 

(0.19) (0.74) (0.74) (0.74) (0.74) (0.75) (0.75) 

Patent Engineer Dummies Yes Yes Yes Yes Yes Yes Yes 

Filing Year Dummies Yes Yes Yes Yes Yes Yes Yes 

Technology Dummies Yes Yes Yes Yes Yes Yes Yes 

Notes: Robust standard error clustered by patent engineer. 
*p<0.1, **p<0.05, ***p<0.01 
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Patent engineers have decision authority over evaluations and over the decision to evaluate 

individually or in groups. The decision to consult other evaluators is likely not random and may be 

influenced by individual, evaluation- or patent-level characteristics. These include unobservable 

variables that may simultaneously influence both the decision to consult other evaluators and evaluation 

accuracy. This self-selection and selection on unobservables could lead to biased estimates if not 

properly accounted for, as it violates the assumption of exogeneity necessary for ordinary least squares 

regression.  

 

To address this issue, I estimate endogenous treatment-regression models with binary treatment and 

outcomes that include two instrumental variables. These use a Probit model for the outcome and a normal 

distribution to model the deviation from the conditional independence assumption imposed by the 

estimators (Heckman, 1979; Woolridge, 2010). Coefficient estimates are obtained for two sets of 

regression equations, namely the treatment equation and the outcome equation. In this setting, the 

treatment equation provides coefficient estimates of the treatment variable group evaluation, while the 

two outcome equations provide coefficient estimates of overestimation and underestimation.  

 

My chosen instrumental variables are the number of other patent engineers and technology experts 

available to contribute to the evaluations and the size of the patent inventor team. Both variables are 

likely related to patent engineers’ choice as to whether to consult other evaluators and unrelated to the 

outcomes of evaluations. I measure the number of available evaluators by counting the number of 

evaluators who contributed to group evaluations and who were nominated by inventors and patent boards 

to contribute to patenting decisions during the three months prior to evaluation date. I compute the same 

variable for time periods of 1 and 6 months as alternative operationalisations. There were a minimum of 

6 and up to 279 available evaluators at any time, and 103 on average (SD=76). Variations of the number 

of available evaluators were seasons (e.g. due to holyday periods) or due to periods of heavier workloads 

at Alpha. The second instrument, the focal patent’s inventor team size, ranged between 1 and 8 (88 teams 
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(<1%) had up to 16 inventors), for an average of 2.14 (SD=1.4). Patent engineers often did not consult 

the entire team but only chose one or a few of them.  

 

Table 1B shows the coefficient estimates for the treatment equation, i.e. for the variable Group 

Evaluation, and for the outcome equations, i.e. for the variables Overestimation and Underestimation. 

The main result is that unobservables that may affect the decision to consult other evaluators are not 

associated with unobservables that affect overestimation or underestimation. Specifically, the 

likelihood-ratio test indicates that I cannot reject the null hypothesis of no correlation between the 

treatment-assignment errors and the outcome errors. The estimated correlation between the treatment-

assignment errors and the outcome errors, 𝜌𝜌, is not statistically significant. Thus, the coefficient 

estimates in my main sample are unlikely affected by self-selection or selection on unobservable bias.  

 

The other estimates offer interesting insights on the determinants of patent engineers’ decision to rely 

on group evaluations rather than on their judgement. All else being equal, it is reasonable to expect that 

patent engineers with more experience or greater expertise in the focal technology are more likely to 

rely on their own judgement. The coefficient for the patent engineers’ experience variable was negative 

but not statistically significant, while the coefficient for the patent engineers’ expertise depth is negative 

and statistically significant (𝐵𝐵 = −0.01,𝑝𝑝 < 0.01). This result provides indicative support to my 

assumption that evaluators with expertise tend to develop (over)confidence in their own judgement 

especially in the technologies in which they have greater expertise. Further, the coefficient for the patent 

engineers’ experience variable coefficient is negative and highly significant in additional unreported 

models where I estimate the decision to consult only patent inventors (𝐵𝐵 = −0.01,𝑝𝑝 < 0.01). This result 

may suggest that patent engineers gradually learned that inventors were overly optimistic about their 

own inventions. Finally, patent engineers’ expertise breadth was not associated with the decision to 

consult other experts. 

 

The instrumental and control variables are in line with my expectations. The coefficient estimates of 

inventor team size and expert available pool size are positive and significant, while they were not 
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significant in all models of overestimation and underestimation. The likelihood of relying on group 

evaluations was higher in conditions of greater uncertainty. The coefficient estimate of patent 

uncertainty is positive and highly significant. Similarly, I expect that evaluations were more uncertain 

when patent engineers had less information from previous evaluations of the focal patent. Patent 

engineers had less information about patents that were originally evaluated by other patent engineers 

and that were subsequently transferred to them (patent: transferred case); and that they had more 

information the higher the number of previous re-evaluations of the focal patent (Patent: Prior 

Evaluations (#)). Accordingly, the coefficient estimates of these variables are significant and 

respectively positive and negative. Finally, the coefficient estimate of the patent engineers’ workload 

variable is negative and highly significant. This is in line with one the premises of this study that group 

evaluations are costly and that it is important to examine the conditions under which they are more or 

less likely to improve evaluation accuracy. 
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APPENDIX C 
Table 1C 

Rare-event Logit Models of Patent Engineers’ Choice of Evaluators (N=42,015) 

 

VARIABLES 1 2 3 4 5 
            
Evaluators: Depth Expertise   1.90*** 2.64***     

    (0.06) (0.06)     
Evaluators: Breadth Expertise     -0.05***     
      (0.00)     
Patent Engineer – Evaluator Depth Diversity       1.23 1.47 
        (0.05) (0.06) 
Patent Engineer – Evaluator Breadth Diversity         -1.80*** 
          (0.08) 
Inventor: Consulted -0.36*** -0.94*** -0.69*** -0.93*** -0.89*** 
  (0.05) (0.06) (0.06) (0.06) (0.06) 
Evaluators: Experience -0.01*** -0.01*** -0.01*** -0.01*** -0.01*** 
  (0.00) (0.00) (0.00) (0.00) (0.00) 
Patent Engineer: Prior Interactions with Evaluator 0.65*** 0.60*** 0.59*** 0.60*** 0.52*** 
  (0.01) (0.01) (0.01) (0.01) (0.01) 
Constant -63.64*** -36.68*** -74.91*** -37.77*** -60.78*** 
  (3.48) (3.62) (2.28) (1.49) (3.47) 
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I am interested in obtaining an econometric model of patent engineers’ choices 

of which evaluators to involve in group evaluations among a relatively high number of 

available expert evaluators at Alpha. I follow the estimation strategy used by Haas, 

Criscuolo and George (2015). 

 

The unit of analysis is a patent engineer-evaluator dyad. I constructed a matrix of all 

patent engineer-by-evaluator dyads in which the i,j cell is 1 if patent engineer i consulted 

evaluator j (realized dyad) or 0 otherwise (non-realized dyad). The patent engineers in 

these dyads included all the 140 individuals who chose at least one evaluator for group 

evaluations during the observation period. I defined the risk set of evaluators to include 

all possible evaluators that were available to be consulted at the time of evaluation. That 

is, I measure the number of available evaluators by counting the number of evaluators 

who contributed to group evaluations and who were nominated by inventors and patent 

boards to contribute to patenting decisions during the three months prior to evaluation 

date. I compute the same variable for time periods of 1 and 6 months as alternative 

operationalisations. There were a minimum of 6 and up to 279 available evaluators at any 

time, and 103 on average (SD=76). Variations of the number of available evaluators were 

seasonal (e.g. due to holyday periods) or due to periods of heavier workloads at Alpha.  

 

The resulting dataset consisted of 542,145 possible patent engineer-evaluator dyads, of 

which 1,742 were coded 1 (realized dyads) and 540,403 were coded 0 (non-realized 

dyads). Constructing the dataset in this way enabled me to compare realized dyads to 

non-realized dyads, following the analytic approach taken in previous studies of tie 

formation between firms (e.g. Gulati, 1995). However, the dataset was characterized by 

a preponderance of zeros due to the large number of non-realized dyads. The analysis of 
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a dataset with very few positive events (less than 1%) cannot be undertaken using a 

standard logit model because it will underestimate the probability of a positive outcome 

(i.e., a match between a patent engineer and an evaluator) (King and Zeng, 2001). The 

dataset was also characterized by non-independence in the error terms arising from the 

fact that both patent engineers and evaluators could appear many times in the dataset. 

This issue of network autocorrelation could lead to underestimation of standard errors 

(Krackhardt, 1988). To address these concerns, I followed previous studies of tie 

formation in sparse networks (e.g. Hallen, 2008) by using a choice-based sampling 

technique and testing our hypotheses using a rare-event Logit model. The choice-based 

sampling technique included all the realized dyads and a randomly extracted sample of 

corresponding non-realized dyads. For each realized dyad in which patent engineer i 

consulted evaluator j, I randomly selected 10 non-realized dyads from the sample of 

evaluators whom patent engineer i could have consulted but did not (i.e., those among 

the available evaluators prior to evaluation date). While this choice-based sampling 

technique resolves concerns created by a preponderance of zeros in the dataset, it can 

bias the logit estimates because the proportion of positive outcomes in the sample is 

different from that in the underlying population of potential dyads. To correct this bias, I 

used weighted exogenous sampling maximum-likelihood estimation (WESMLE), an 

approach that weights the contribution of each dyad to the likelihood function and is 

better than alternative approaches for large samples (King and Zeng, 2001). Additionally, 

I clustered the standard errors on the patent engineer (Hallen, 2008), since each patent 

engineer appears in one realized dyad and ten unrealized dyads (i.e., the patent engineer 

is constant across eleven observations). I used Tomz’s (2003) ReLogit Stata procedure 

to estimate the Logit models. Finally, I utilized the longitudinal nature of the dataset by 
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constructing the explanatory and control variables to minimize reverse causality by 

measuring them in the period prior to the focal match/non-match.  

 

The results are in line with my expectations. The coefficients of the evaluators’ expertise 

depth variable are positive and significant (𝐵𝐵 = 2.64,𝑝𝑝 < 0.01). As expected, patent 

engineers consulted evaluators with greater expertise in the focal technology. Relatedly, 

the absolute difference between patent engineers’ and evaluators’ expertise in the focal 

technology – i.e. Patent Engineer – Evaluator Depth Diversity was not associated with 

evaluator choice. In additional underreported analyses, I computed Patent Engineer – 

Evaluator Depth Diversity as the raw difference (as opposed to the absolute value of the 

difference) between evaluators’ and patent engineers’ expertise, which resulted 

positively and significantly associated with evaluator choice. That is, patent engineers 

tended to consult other evaluators with greater expertise than their own in the focal 

technology.  

 

Interestingly, patent engineers also preferred evaluators with similar distributions of 

expertise relative to their own. The coefficients of the Patent Engineer – Evaluator 

Breadth Diversity variable is negative and significant (𝐵𝐵 = −1.80,𝑝𝑝 < 0.01). This 

provides additional support to one of my main arguments that evaluators are more likely 

to integrate and heed the opinions of similar others. Relatedly, patent engineers were 

more likely to consult evaluators with whom they had a higher number of previous 

interactions; the coefficient of the Patent Engineer: Prior Interactions with Evaluator 

variable is positive and significant (𝐵𝐵 = 0.52,𝑝𝑝 < 0.01). However, this might have not 

been the case for patent inventors. As I argued in Appendix B, patent engineers were less 

likely to consult only patent inventors as they accumulated evaluation experience; while 
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these results show that they preferred evaluators over inventors as the coefficient of the 

Inventor: Consulted dummy variable is negative and significant.  

 

Finally, two interesting results are related to evaluators’ two other dimensions of 

expertise besides depth. The coefficients of the evaluators’ total experience and 

experience breadth are negative and significant (𝐵𝐵 = −0.01,𝑝𝑝 < 0.01, 𝐵𝐵 = −0.05,𝑝𝑝 <

0.01). Regarding evaluators’ total experience, I could speculate, on the one hand, that 

patent engineers may regard their contributions to evaluations more valuable as 

evaluators acquire experience and, supposedly, competence. On the other hand, 

evaluators may also have acquired an internal high level of reputation or status that might 

add to the social costs that patent engineers incur when they ask the contributions of other 

evaluators (Nebus, 2006). Regarding evaluators’ expertise breadth, I could instead 

speculate that patent engineers perceive distributions of expertise characterized by 

greater breadth as being more diluted across knowledge domain and less focused on the 

focal technology. Indeed, these results are worth a deeper analysis that is beyond the 

scope of this study. 
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