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Abstract 

Cancer evolution is driven by selection acting on genetic and epigenetic diversity to promote 

the propagation of the fittest subpopulations. This phenomenon is shaped by the tumor 

microenvironment which is often characterized by stressful conditions. Epigenetic regulators 

are frequently mutated during the later stages of tumorigenesis, but the functional impact of 

their inactivation is poorly understood. 

In this thesis, I hypothesize that the disruption of the epigenetic regulatory network increases 

cell fitness in unfavorable environments and thus is selected over time. Through large-scale 

fitness assays in various cancer models, I demonstrate that epigenetic deregulation leads to 

a widespread stress-specific survival advantage. This effect is mediated by mutations in all 

layers of epigenetic regulation, is shared across different stress conditions and is cancer type 

independent. Then, I explore various cellular mechanisms that can underlie this stress-specific 

fitness advantage. Genetic diversity, transcriptional heterogeneity or phenotypic plasticity 

cannot explain the increased survival under stress, as revealed by a combination of reversible 

epigenetic inhibition, live-cell imaging and single-cell transcriptomics. On the contrary, 

epigenetically deregulated cells remain phenotypically inert (less responsive) under stress. 

Transcriptional profiling of cancer populations in hostile conditions, revealed significant 

alterations in fitness and growth-related signatures. Disruption of the epigenetic machinery 

results in a defective stress response, thus decreasing the probability of such cells to surpass 

a stressed threshold and ultimately die. This defective transcriptional rewiring underpins the 

inert phenotype that emerges upon epigenetic deregulation. 

Collectively, by investigating the effect of inactivating mutations in epigenetic regulators on 

cell fitness under environmental stress, I propose that phenotypic inertia is the favorable 

cellular trait that is selected over time. My findings provide a potential explanation for the 

widespread subclonal mutations affecting epigenetic regulators and have significant 

implications for cancer evolution.  
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Chapter 1. Introduction 

 

1.1 Conceptualization of cancer as an evolutionary disease 

More than a century ago, zoologist and anatomist Theodor Boveri studied mechanisms of 

inheritance by observing chromosome segregation during mitosis in sea urchins. In one of his 

latest works, he made several predictions about tumorigenesis, suggesting that cancer cells 

arise from normal cells and that alterations in chromosome number is the root cause of the 

disease (Boveri, 2008). He also proposed that such abnormalities can lead to the loss of 

growth-inhibitory chromosomes and/ or the amplification of growth-promoting chromosomes, 

ultimately driving the uncontrolled proliferation phenotype observed in canner (Boveri, 2008). 

Pioneering studies in the following decades confirmed most of his predictions regarding 

tumorigenesis, focusing on its genetic basis (Wunderlich, 2002). 

In the late 1970s, Peter Nowell proposed the clonal nature of cancer and established it as an 

evolutionary disease. He suggested that tumorigenesis occurs in a linear manner, where 

genetic diversity within a single clone drives the selection and domination of subsequent 

sublines (Nowell, 1976). Nowell also proposed various models that could explain the 

emergence of such genetic alterations, distinguishing among cell-intrinsic events like the 

aberrant activation of genomic loci, and cell-extrinsic factors like environmental mutagens 

(Nowell, 1976). For many years, tumorigenesis was considered a linear process that 

progressed in a stepwise manner through the gradual acquisition within a single dominating 

clone of favorable mutations.  

In the past two decades, technological advances in next-generation sequencing and single-

cell profiling methodologies allowed for a thorough investigation of the mutational landscape 

at different stages during tumor progression. These studies revealed substantial clonal 

heterogeneity within all cancer types (McGranahan & Swanton, 2017; Nam, Chaligne & 

Landau, 2021). Subsequent in silico inference of their evolutionary dynamics demonstrated 

that population heterogeneity can be the result of distinct processes like linear, branched or 

even neutral evolution (Vendramin, Litchfield & Swanton, 2021). In their seminal study, 

Gerlinger et al. performed exome sequencing in multiple regions within the same tumor and 

provided initial evidence of branched evolution, with spatially separated clones carrying 

distinct favorable driver mutations that are selected over time (Gerlinger et al., 2012; 

Vendramin, Litchfield & Swanton, 2021). On the other hand, other studies proposed that the 

detected clonality is a result of early events that drive an explosive increase in intratumor 

heterogeneity, followed by relaxed selective pressures allowing for the propagation of such 
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populations over time (neutral evolution) (Sottoriva et al., 2015). The classification of cancers 

into the above distinct categories can be influenced by the experimental methodology applied 

and the time point used to infer the evolutionary history of a tumor. Thus, the most probable 

scenario is that all modes of evolution co-exist at distinct stages during tumorigenesis (Turajlic 

et al., 2019). 

In summary, over the past century the view of how cancer evolves has significantly shifted. 

The initial notion that cancer progresses linearly has now been replaced by the realization that 

cancer is a collection of highly heterogeneous diseases that can be characterized by distinct 

evolutionary dynamics even within the same patient (Turajlic et al., 2019). Despite this 

variability, the conceptualization of cancer as an evolutionary disease allows its description 

through a framework that examines the key forces that drive evolutionary phenomena in 

asexual populations (Lipinski et al., 2016) [Figure 1], namely: 

I. Population diversification: stemming from genetic and epigenetic alterations along 

with their interaction with the tumor microenvironment. 

II. Selection: acting on population heterogeneity to promote the propagation of the fittest. 

III. Drift: describing alterations in gene variant frequency due to random chance. 

 

Figure 1: Studying cancer through an evolutionary lens 
 
Modified from Lipinski et al (2016)  

The following subchapters of the Introduction will explore the first two forces in greater detail, 

starting with population diversity shaped by genetic alterations. 
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1.2 Genetic alterations as a driver of cancer evolution 

1.2.1 Types, causes and consequences 

The best characterized source of diversity within a cancer population is alterations at the 

genomic level. Sequencing studies have revealed a wide spectrum of abnormalities that 

operate at different scales, affecting single genes and their regulatory elements or larger 

portions of the genome. These include single-nucleotide variations (SNVs), small 

insertions/deletions (indels), copy-number alterations (CNAs) and numerical or structural 

chromosomal alterations (Burrell et al., 2013; McGranahan & Swanton, 2017). The extent of 

the genetic diversity and the nature of the detected mutations across cancer types vary 

significantly, reflecting distinct cell-intrinsic and cell-extrinsic mechanisms at play (Dentro et 

al., 2021). For instance, pediatric and hematological malignancies that often emerge from 

single oncogenic alterations are characterized by a small mutational burden. Conversely, 

melanoma and lung cancer reside on the other side of the spectrum reflecting their 

development after years of exposure to environmental mutagens like UV irradiation and 

tobacco respectively (Burrell et al., 2013; McGranahan & Swanton, 2017; Dentro et al., 2021). 

Aside from such environmental factors, a plethora of cell-intrinsic defects in pathways involved 

in DNA replication, DNA damage repair and chromosomal segregation have been proposed 

as sources of intra- and inter-tumor genetic variability (Burrell et al., 2013). 

While increased genetic diversity is associated with worse clinical prognosis (Morris et al., 

2016), not all mutations in a tumor are functional. Based on their impact on the survival and 

proliferation capacity of cancer cells, these alterations can be classified as passenger (no 

effect) or driver (positive effect). Recent advances in mathematical modelling (Dentro et al., 

2021), multi-region sequencing (Gerlinger et al., 2012) and single-cell genomics (Saadatpour 

et al., 2015) provided insights into the temporal order of their acquisition, identifying mutations 

that are either clonal or subclonal based on their presence in all or a fraction of the cancer 

cells respectively. For example, mutations that inactivate various tumor suppressor genes like 

TP53 and CDKN2A or activate oncogenic drivers like KRAS are frequent clonal events across 

multiple cancer types (Dentro et al., 2021). Upon these strong initiating hits that promote 

malignant transformation, cells acquire further genetic diversity that promotes the acquisition 

of diverse oncogenic related features (Hanahan, 2022) that fuel disease progression and 

relapse upon therapy (McGranahan & Swanton, 2017; Hanahan, 2022). Considering that 

these late-occurring mutations were only recently identified, their functional impact on 

subclonal expansion is largely understudied.  
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1.2.2 Genetic abnormalities cannot explain all aspects of cancer evolution 

Despite the incrimination of hard-wired genetic alterations as drivers of cancer evolution, 

several experimental observations cannot be explained by such events. Genome sequencing 

of normal tissues, like skin and oesophageal epithelium, demonstrated that normal cells can 

carry somatic mutations at comparable levels to cancerous lesions. Additionally, they detected 

significant positive selection and clonal expansion of cells carrying oncogenic mutations in 

various cancer driver genes, including TP53, NOTCH1 and KMT2D (Martincorena et al., 2015, 

2017, 2018). The fact that such mutations did not lead to the acquisition of malignant potential 

suggests that either additional genetic hits are required to initiate tumorigenesis or that non-

genetic / microenvironmental factors play a crucial role in determining the likelihood of this 

event.  

Genomic analysis across various cancer types revealed a lack of driver clonal mutations in 

20% of the examined cases and only a minor fraction of subclones carrying driver events in 

the form of SNVs or indels (Dentro et al., 2021). In pancreatic cancer, comparison of the 

mutational landscape between matched primary and metastatic samples, showed a 

remarkable similarity in the genetic composition, failing to reveal novel drivers of metastasis 

(Yachida et al., 2010; Hu et al., 2020). Similar results were also obtained by a recent pan-

cancer study of metastatic tumors (Priestley et al., 2019). Although these observations may 

reflect the suboptimal detection of low-prevalence genetic drivers within the primary tumor, an 

alternative scenario is that additional non-genetic factors govern these behaviors. 

In the clinical setting, targeted inhibition of EGFR or BRAF in lung cancer and melanoma 

patients respectively, leads to rapid initial remission followed by relapse. Exome sequencing 

of MAPK-treated melanoma samples upon relapse, did not detect any known genetic 

resistance drivers in 40% of such cases (Hugo et al., 2015). On top of that, it has been reported 

that cancer cells can regain their sensitivity to targeted therapy after drug withdrawal for a 

selected period of time (Sun et al., 2014). Such reversible phenotypic behaviors are 

inconsistent with the resistance being genetically encoded. Adding on the notion that 

mutations cannot always explain the respective phenotype of cancer cells, the temporal order 

of acquisition of driver mutations in JAK2 and TET2 in patients suffering from 

Myeloproliferative neoplasms was shown to drastically influence the evolutionary trajectory of 

the disease. Depending on the order in which the mutations were acquired, cells presented 

differences in multiple properties like their capacity to initiate tumorigenesis or resist to therapy 

(Ortmann et al., 2015).  
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Collectively, abnormalities within the genome fall short of explaining various observations 

regarding tumor initiation, maintenance and relapse, suggesting that additional layers of 

regulation are pivotal in shaping the phenotypic behaviors of cells during disease progression. 

Such non-genetic determinants of cancer evolution are explored in the following section. 

 

1.3 The emerging importance of non-genetic mechanisms in 

cancer 

1.3.1 Brief introduction to epigenetic regulation 

From a historical perspective, the field of epigenetics emerged in order to explain a complex 

set of cellular behaviors that generate phenotypic diversity without underlying changes in the 

genotype (Allis & Jenuwein, 2016). The most notable manifestation of epigenetics is found in 

organismal development, where the same DNA sequence gives rise to multiple distinct cell 

types with diverse morphologies and functions. To collectively describe these molecular 

processes that explain the decoupling between genotype and phenotype, in 1942 the 

embryologist Conrad Waddington introduced epigenetics as “the branch of biology which 

studies the causal interactions between genes and their products which bring the phenotype 

into being.” (Waddington, 2012). Since then, multiple variations of the original definition of 

epigenetics emerged, drifting away from its strict association with development, in order to 

describe experimental observations within distinct fields of research that are not necessarily 

overlapping conceptually (Deans & Maggert, 2015). In 1994, Holliday suggested that 

epigenetics reflects “the study of the changes in gene expression, which occur in organisms 

with differentiated cells, and the mitotic inheritance of given patterns of gene expression.” 

(Holliday, 1994). This definition introduced an important aspect of epigenetic regulation, which 

is associated with the establishment of stable gene expression states and cellular inheritance. 

In the early 2000s an updated definition emerged that incorporated elements from all the 

distinct school of thoughts mentioned above. Based on this consensus definition, epigenetics 

reflects the “the study of changes in gene function that are mitotically and/or meiotically 

heritable and that do not entail a change in DNA sequence” (Wu Ct & Morris, 2001; Berger et 

al., 2009). 

The above definition of epigenetics (or epigenetic regulation) is broad as it portrays multiple 

different regulatory layers that can lead to variability in the observed phenotypes that is not 

genetically encoded. Non-genetic or epigenetic mechanisms responsible for such 

diversification include, but are not limited to, signalling, alterations within the chromatin, long 

non-coding RNAs, covalent modification of the transcriptome, splicing, translational regulation 
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and many more. Here, I focus on the core panel of epigenetic regulators that directly act on 

chromatin. 

Chromatin is the substrate upon which epigenetic activities introduce functional and structural 

variation. These activities act on multiple distinct layers, involving DNA methylation, a variety 

of histone modifications, alterations in nucleosome occupancy, histone variants and regulation 

of higher-order conformation [Figure 2]. These properties are not randomly distributed across 

the genome but rather are located in specific locations (e.g. proximal or distal regulatory 

elements, gene body, etc). In a location-dependent manner, the complex interaction of 

chromatin modifications, epigenetic regulators and downstream effectors orchestrates the 

transcriptional output of genes along with packaging of the chromatin fiber itself (Shen & Laird, 

2013; Allis & Jenuwein, 2016). 

The core principle of epigenetic regulation is based on the presence of 3 classes of proteins, 

termed writers, erasers and readers (Allis & Jenuwein, 2016). Writers carry enzymatic 

activities for the deposition of covalent modifications on DNA and histones, while readers 

recognize these modifications and recruit further effector proteins to “translate” or propagate 

the epigenetic state. These modalities make epigenetic information a heritable trait that can 

be maintained over cell duplication (Almouzni & Cedar, 2016). Erasers, on the other hand, 

mediate the removal of these modifications, underpinning the second important aspect of 

epigenetic regulation, its reversibility. The stability of chromatin states is of particular interest 

in cancer as it allows for the selection and propagation of favorable traits that are encoded 

epigenetically. Through their reversible nature, and in contrast to hard-wired mutations, 

epigenetic mechanisms can mediate alterations in the phenotype of cancer cells in response 

to various internal or external stimuli.  
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Figure 2: Layers of core epigenetic regulation 
 
Epigenetic mechanisms include various enzymatic and accessory activities that act on the chromatin. 
Epigenetic proteins belong to distinct functional classes including DNA and histone modifiers, histone 
variants, chromatin remodellers and regulators of higher-order organization. By altering functional and 
structural properties within chromatin, epigenetic regulators orchestrate the transcriptional output from 
specific loci and from a developmental perspective are implicated in establishing cellular identity. 
 
Me: Methylation, Ac: Acetylation, P: Phosphorylation, Ub: Ubiquitylation, K: lysine  
Adapted from Hogg et al (2020)  

 

In the literature, experimental observations that do not have an apparent genetic basis have 

been described as non-genetic or epigenetic, often in an interchangeable manner. Here, the 

term non-genetic describes cases of phenotypic deviation with no detectable genetic basis, 

such as transcriptional variance in genetically identical cells. On the other hand, epigenetic is 

used in a more restricted manner to describe experimental evidence that directly explore 

specific properties within the chromatin fiber, like histone modifications and nucleosome 

occupancy. In the following subchapter, both non-genetic and epigenetic determinants of 

cancer evolution are discussed with an emphasis on the latter. 
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1.3.2 Non-genetic and epigenetic abnormalities in cancer cells 

In addition to mutations, a plethora of epigenetic abnormalities have been described to 

contribute to the heterogeneity observed in cancer cells. The best characterized epigenetic 

alteration in cancer is DNA methylation, a stable modification often associated with gene 

repression. Cancer cells routinely exhibit widespread loss of intergenic DNA methylation along 

with a focal increase of methylation in proximal regulatory elements (Baylin & Jones, 2011). 

Notably, intra-tumor variability within the DNA methylation landscape is predictive of patient 

outcome, suggesting its importance for cancer (Mazor et al., 2016). During tumorigenesis, the 

post-translational modifications of histones get substantially deregulated and are also 

prognostic of patient outcome (Kurdistani, 2007). Compared to DNA methylation, their pattern 

within tumors is less understood. However, emerging data revealed significant variability 

within cancer populations that is important both for tumor progression (McDonald et al., 2017) 

and relapse to therapy (Marsolier et al., 2022). Structural components of the chromatin itself, 

have been also observed to be differentially expressed across cancer cells, with the most 

notable case being H1.0. Torres et al. reported substantial intra-tumor variability in the 

expression levels of this linker histone and demonstrated that its differential regulation leads 

to alterations in various properties, like the self-renewal capacity of cancer cells (Torres et al., 

2016).  Finally, aside from the core epigenetic marks and proteins, recent sequencing studies 

at the single-cell level have uncovered substantial transcriptional heterogeneity even within 

cells with an identical genetic background (Nam, Chaligne & Landau, 2021). 

The emergence of epigenetic and transcriptomic variability within cancer cells can be 

attributed to various cell-intrinsic and extrinsic sources (Li, Seehawer & Polyak, 2022).  First, 

cancer cells have the inherent ability to transit between different states (Brock, Krause & 

Ingber, 2015). For instance, in their pioneering study, Gupta and colleagues separated a 

breast cancer line into its constituents (basal, luminal and stem-like states) and demonstrated 

that each state can give rise through phenotypic switching to a heterogeneous population 

resembling the parental one (Gupta et al., 2011). Second, some cancer types have been 

shown to follow a hierarchical organization, where a fraction of cells demonstrate stem-cell 

like properties and fuel disease progression whereas the rest of the population consists of 

non-tumorigenic differentiated cells (Wainwright & Scaffidi, 2017). As the chromatin state is 

linked with the differentiation status, it is expected that developmental hierarchies in various 

cancers (AML, IDH-mutant glioblastoma, etc) can contribute to the observed diversification of 

the epigenetic and transcriptomic patterns. Third, the chromatin landscape can be influenced 

by other regulatory layers within the cells like genomic and metabolic alterations (Shen & Laird, 

2013; Flavahan, Gaskell & Bernstein, 2017). Finally, tumor cells do not grow in isolation but 

rather in a highly dynamic and heterogeneous environment (TME) that can significantly shape 
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the phenotypic properties within cancer cells (TME is discussed in greater detail in section 

1.4.2).  

 

1.3.3 Non-genetic and epigenetic mechanisms as drivers of cancer evolution 

1.3.3.1 Tumor initiation and progression 

It is now well appreciated that non-genetic and epigenetic alterations can significantly 

contribute to the tumorigenic potential of cells. Here I discuss few representative paradigms 

that act at different scales. 

One characteristic case is the epigenetic silencing of genes. As discussed earlier, imbalance 

within the DNA methylome is a frequent phenomenon in cancer, often manifesting by 

hypermethylation in CpG islands proximal to the transcription start site of genes (Baylin & 

Jones, 2011). As DNA methylation in promoter regions leads to repression, these focal 

enrichment events result in the epigenetic silencing of genes, in an analogy to gene 

inactivation by mutations. Indeed, these events are frequent in cancer and have been reported 

to affect multiple tumor suppressor genes including regulators of the cell cycle (e.g. RB1, 

CDKN2A), lineage-specific transcription factors (GATA4/5 in colon cancer), DNA Damage 

response proteins (e.g. BRCA1, FANCF) and mediators of apoptosis (TRAILR1) (Baylin & 

Jones, 2011; Shen & Laird, 2013). Although some dispute regarding the causality of these 

events exists, epigenetic silencing of genes via DNA hypermethylation or other epigenetic 

activities is considered a widespread phenomenon that fuels both tumor initiation and 

progression (Kazanets et al., 2016). 

On the other hand, focal hypermethylation can indirectly lead to aberrant gene expression 

during tumorigenesis. An example of this is THE methylation of CTCF binding sites, leading 

to loss of insulation along the 3D genome and promiscuous interactions within regulatory 

elements (Chaligne et al., 2021). For example, in IDH-mutant gliomas characterized by 

hypermethylation, Flavahan and colleagues observed an abnormal contact between a 

constitutive enhancer and the regulatory elements of the PDGFRA oncogene. Reversing the 

epigenetic state was sufficient to rescue CTCF binding and repress the oncogenic driver 

(Flavahan et al., 2016). The above phenomenon is representative of cases where local 

alterations in strict epigenetic control may lead to the aberrant expression of singles genes 

that drive tumorigenesis. 

From a systems perspective, stemming from organismal development, epigenetics can be 

considered as the safeguard of cellular identity, a property that is considerably challenged 

during tumorigenesis. In non-cancerous contexts, epigenetic mechanisms act as a barrier to 

the loss of cellular identity and reprogramming (Kim et al., 2021). Thus, in an analogy between 
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cellular reprogramming and tumorigenesis, the epigenetic landscape within a cell can act as 

a barrier to malignancy by affecting the susceptibility to oncogenic stimuli. As a proof of 

principle, in a zebrafish model of tumorigenesis, ectopic expression of BRAFV600E oncogene 

in differentiated melanocytes and their respective progenitors resulted in vastly different 

phenotypes, with the malignant transformation being significantly more probable when the 

oncogene was expressed in stem cells (Baggiolini et al., 2021). Another mechanism via which 

epigenetic abnormalities fuel tumor initiation is by directly hindering the faithful execution of 

proliferation-differentiation decisions in cells. A plethora of mutations in diverse epigenetic 

regulators in both solid and haematological malignancies have been shown to disrupt 

differentiation and stemness related programs, thus providing evidence regarding the causal 

relationship between alterations in epigenetic regulatory layers and the acquisition of 

tumorigenic capacity. Such genetic abnormalities affecting epigenetic proteins are described 

in greater detail in chapter 1.5.1. 

Focusing back on tumor progression, variability within cancer populations is one of the most 

well appreciated properties of cancer cells. Many terms have been used to describe 

experimental observations of diversity like plasticity, transcriptional heterogeneity, lineage 

infidelity, state transitions and many more. Although there are fundamental conceptual 

differences in the above terms (see below), their commonality resides in the description of 

phenotypic diversity within a cancer population that enables the adoption of various malignant-

promoting properties (Hanahan, 2022). The most well studied case of plasticity in cancer is 

the epithelial-to-mesenchymal transition (EMT). EMT is a developmental program that 

involves the acquisition of mesenchymal characteristics from originally epithelial cells. This 

process, along with its intermediate states, is co-opted by cancer cells to drive various aspects 

of cancer evolution (Nieto et al., 2016). 

Significant insights regarding the importance of non-genetic and epigenetic variability in 

cancer progression have emerged from recent studies that take advantage of the 

technological advances in single-cell profiling and lineage tracing (Nam, Chaligne & Landau, 

2021). These studies have provided at least three major advances in the field of cancer 

evolution. First, the simultaneous exploration of DNA, epigenetic and transcriptomic properties 

within individual cells revealed many instances where the detected variability does not have a 

genetic basis, thus suggesting that such variability is an inherent property of cancer cells worth 

further investigation (Fennell et al., 2022). On top of that, similar approaches provided a first 

line of evidence supporting the notion that transcriptomic variability has an epigenetic basis, 

implicating DNA methylation, chromatin accessibility and histone modifications as potential 

drivers (Corces et al., 2016; Pastore et al., 2019; Johnson et al., 2021). However, the 

correlative nature of these studies fails to draw causal links as discussed in greater detail in 
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section 1.5.3. Second, transcriptional variance within the population can be heritable. In their 

pioneering study, Fennel et al. provided evidence of stable non-genetic mechanisms as drivers 

of cancer progression. One of their observations involved the detection of transcriptional 

signatures that could be mitotically inherited and were driving clonal dominance (Fennell et 

al., 2022). A complementary approach detected similar stability of rare transcriptional states 

within cancer populations. Interestingly, these variable signatures were enriched among 

others for response to stress and signalling suggestive of the importance of such fluctuations 

for tumor progression (Shaffer et al., 2020). Third, they provided a methodological advance 

for distinguishing between plastic and transcriptionally variable subpopulations, two distinct 

scenarios that have been largely explored interchangeably so far (Mills, Stanger & Sander, 

2019). The confusion mainly arises from the inability of static data to infer the temporal 

evolution within the system and assess if the observed variability stems from state transitions 

or selection over time from a heterogeneous pool of transcriptionally stable cells. Overlaying 

the single-cell profiling data on the lineage relationships of cells, inferred from the DNA 

methylation history (Chaligne et al., 2021) or evolvable barcodes (Yang et al., 2022), can 

circumvent this problem. By using such an approach, Chaligne et al. demonstrated that two 

distinct categories of brain cancers (IDH-wt and IDH-mutant gliomas) are characterized by 

significantly different state transition dynamics during disease progression. These studies 

provide a framework for future exploration of how cell state transitions contribute to various 

aspects of tumor evolution. 

The above discussion is by no means exhaustive, but rather a selected presentation of 

examples at distinct scales that demonstrate the importance of non-genetic and epigenetic 

mechanisms in defining the malignant properties pivotal for cancer initiation and progression. 

Metastasis and resistance to therapy are two major evolutionary bottlenecks during 

carcinogenesis and thus are explored separately in the following sections. 

 

1.3.3.2 Metastasis 

One major event during disease progression is metastatic dissemination. During this multi-

step process, cells detach from the primary tumor, circulate through the bloodstream, colonize 

new tissues and subsequently after a period of dormancy establish secondary tumors (Fares 

et al., 2020). Lineage tracing of cells during metastasis coupled with single-cell transcriptomics 

revealed cases where cells belonging to the same clone demonstrated drastically distinct 

metastatic potential (Quinn et al., 2021). On top of that, the variable expression of metastasis 

associated gene signatures among these clonal populations suggests the contribution of non-

genetic mechanisms to the process (Nguyen et al., 2016; Quinn et al., 2021). Similarly, the 
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emergence of a rare cancer subpopulation marked by the expression of SEMA3C in 

genetically identical cells has been recently proposed to drive metastasis in a melanoma 

model of tumorigenesis (Kaur et al., 2022). 

Various lines of correlative and functional studies have provided evidence that epigenetic 

alterations in DNA methylation, histone modifications and chromatin accessibility can act as 

key regulators of metastasis (Chen & Yan, 2021). Exome sequencing of matched primary and 

untreated tumors in breast, colorectal and lung cancer patients revealed that the driver 

mutations restricted to metastasis were significantly enriched for enzymes involved in 

chromatin binding and modification, indicating an important role of the epigenetic regulatory 

layer towards metastatic dissemination (Hu et al., 2020). In the case of pancreatic cancer, 

similar studies showed similar genetic landscapes between primary and metastatic lesions. 

(Makohon-Moore et al., 2017). Conversely, comparison of the epigenetic landscape during 

PDAC progression revealed significant alterations in both histone marks (methylation and 

acetylation) and DNA methylation during metastasis (McDonald et al., 2017). Specifically, 

distant metastatic lesions in the lung or liver were characterized by the loss of methylation 

marks both in histones (H3K9me2 and H3K27me3) and the DNA, that facilitated the 

upregulation of signatures affecting diverse cellular traits like metabolism and locomotion. 

Interestingly, a small fraction of cells within the primary tumor presented similar chromatin 

alterations to the metastatic one, indicative of a case where a rare pre-existing epigenetic state 

was selected over time during metastasis (McDonald et al., 2017). In pancreatic cancer, 

alterations in the enhancer activity driven by the pioneer transcription factor FOXA1, allowing 

for the hijacking of pro-metastatic developmental programs, have been proposed as an 

alternative non-genetic route towards metastasis (Roe et al., 2017).  ATAC-sequencing of 

primary and metastatic samples in small-cell lung cancer (SCLC) patients revealed dramatic 

differences in the accessibility of intergenic regions enriched for the binding of NFIB. This 

transcription factor was heterogeneously expressed in the primary tumor and was sufficient to 

drive the “opening” of the chromatin that facilitated the upregulation of genes involved in 

various aspects of the metastatic cascade (Denny et al., 2016). Collectively, alterations within 

the chromatin landscape that allow for the acquisition of various transcriptional programs have 

been proposed as drivers of metastasis. 

 

1.3.3.3 Relapse to therapy 

Building on the observation that cancer cells can naturally transit between distinct cell states 

(Gupta et al., 2011), Sharna and colleagues were the first to demonstrate the presence of a 

slow-cycling cell state in NSCLC cells that survives upon EGFR inhibition and mediates 
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therapy resistance (Sharma et al., 2010). On the other hand, melanoma cells exposed to 

concurrent RAF/MEK inhibition exhibited a gradual transition between distinct transcriptional 

states. This process involved the early emergence of a stress-induced “starved” phenotype, 

followed by the adoption of diverse trajectories towards resistance that were associated with 

the activation of either differentiation or stemness related programs (Rambow et al., 2018). 

The above cases represent two distinct evolutionary frameworks where resistance is 

conferred either by the Darwinian selection of pre-existing resistant states (Sharma et al., 

2010) or by the Lamarckian induction of favorable ones (Rambow et al., 2018). Multiple studies 

have demonstrated that these scenarios are not mutually exclusive, as evident by the 

detection of rare primed cells within cancer populations that are initially selected upon 

exposure to stress and subsequently undergo genetic or epigenetic reprogramming to achieve 

stable resistance to therapy (Shaffer et al., 2017; Hong et al., 2019). Currently, a plethora of 

non-genetic mechanisms has been proposed as mediators of therapy resistance, including 

transition towards a slow proliferation state, alterations in lineage identity or metabolic rewiring 

(Boumahdi & de Sauvage, 2020; Shen, Vagner & Robert, 2020).  

Alterations in chromatin properties and factors have been associated with the emergence of 

drug-tolerant cancer cells. Upon treatment of diverse cancer models with therapy, cells exhibit 

common alterations in various chromatin marks. In detail, the drug-tolerant state is often 

characterized by loss of H3K4me3 and H3K27me3 (active and repressive chromatin marks 

respectively) and a concordant gain in H3K9me3 that resides within heterochromatic regions 

(Sharma et al., 2010; Ravindran Menon et al., 2015; Liau et al., 2017; Emran et al., 2018). 

These alterations are accompanied by differential expression of the respective writers and 

erasers, like for example lysine methyltransferases (KMTs; EZH2, SETDB1, etc) or 

demethylases (KDM; KDM5B, KDM6A, etc). The emergence of the slow-cycling tolerant state 

is also associated with reduced DNA methylation levels, driven by the upregulation of TET2 

(Puig et al., 2018). In their recent study, Marsolier and colleagues detected a fraction of 

treatment-naïve cancer cells that exhibit a similar epigenetic state, driven by alterations in the 

H3K27me3 landscape, to the favorable one upon treatment, providing an example where a 

pre-existing epigenetic state is selected and enriched upon therapeutic intervention (Marsolier 

et al., 2022). Finally, genetic ablation or pharmacological inhibition of distinct epigenetic 

regulators with diverse catalytic activities is sufficient to tune the emergence of the tolerant 

state underscoring the importance of epigenetic mechanisms in the process (Sharma et al., 

2010; Ravindran Menon et al., 2015; Liau et al., 2017; Emran et al., 2018; Puig et al., 2018; 

Marsolier et al., 2022). 

  



33 
 

1.4 Selective pressures during cancer evolution 

1.4.1 Fitness is a dynamic cellular property 

In the previous chapters, I have explored how cell-intrinsic (genetic and non-genetic) 

alterations contribute to population diversity, upon which selection acts to promote the survival 

and the propagation of the fittest subpopulations. The term cellular fitness can be used to 

describe the ability of a cell to thrive in a given environment (Di Gregorio, Bowling & Rodriguez, 

2016). In quantitative terms, this can be described by the number of surviving offspring in a 

given time frame. The above definition establishes fitness as an intrinsic cell property that is 

dependent on i) the proliferation capacity of a cell per se and ii) the ability of this cell and its 

progeny to survive external challenges.  

Considering its dependency on environmental factors, fitness is not fixed across the 

evolutionary trajectory of the disease but is rather dynamic and dependent on external 

fluctuations. Thus, it is expected that a phenotypic trait, acquired through a genetic or 

epigenetic alteration, can be favorable in a specific timeframe during cancer progression but 

dispensable later. Similar fluidity in cell fitness can be expected also in the spatial dimension. 

During tumor progression, such alterations in the fitness landscape are more prominent during 

significant evolutionary bottlenecks where there is a drastic alteration in the selective forces 

such as during metastatic dissemination or therapeutic intervention (Ciriello & Magnani, 2021). 

In line with that, in their recent study, Salehi et al. utilized genomic analysis of triple-negative 

breast cancers at the single-cell level followed by mathematical modelling to infer fitness from 

clone frequencies at different time points and conditions (Salehi et al., 2021). In response to 

chemotherapy, the thriving subclones were distinct from the ones that were dominating the 

fitness landscape under unperturbed conditions. On top of that, upon withdrawal of the 

stressor, the resistant clones collapsed indicating a fitness cost of resistance to therapy (Salehi 

et al., 2021). Similar shifts in the fitness landscape were also observed in melanoma, where 

multi-colour lineage tracing revealed the presence of distinct cancer subpopulations that drive 

primary growth and metastatic dissemination (Karras et al., 2022).  Accordingly, in a mouse 

model of lung cancer, the metastatic potential was shown to be uncorrelated with the clonal 

size and the proliferative capacity of the cells (Quinn et al., 2021). Aside these major 

evolutionary events, it is reasonable to speculate that milder selective forces within the tumor 

microenvironment can shape what is considered favorable and thus the selective phenomena 

observed within cancer patients.  
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1.4.2 The components of the tumor microenvironment (TME) 

To gain a deeper understanding of the selective forces that shape the evolution within the 

tumor core, it is essential to examine the components that make up the tumor 

microenvironment (TME) [Figure 3]. The TME can be broadly characterized by its cellular 

components along with its physical and chemical properties. The former category describes 

all the non-malignant cells that can be found within a tumor core and includes among others 

stromal, endothelial and infiltrating immune cells. Cancer-associated fibroblasts and immune 

cells present extensive intra- and inter-tumor heterogeneity and a growing body of evidence 

suggests that they can exert both pro- and anti-tumorigenic effects during disease initiation 

and progression (Binnewies et al., 2018; Sahai et al., 2020). Such functional interactions 

between cancer and non-malignant cells are not the scope of this thesis and are not explored 

further. In physiological conditions, cells rely on a well-organized network of vessels to receive 

sufficient amounts of nutrients, oxygen and pro-survival molecules. However, during the 

establishment of solid tumors, the uncontrolled proliferation of cells leads to significant 

disruption of tissue homeostasis (Almagro et al., 2022). The tumor vasculature specifically is 

characterised by poor architecture and functionality, leading to a suboptimal supply of key 

resources. The resulting acellular hallmarks of the tumor microenvironment are hypoxia, 

nutrient scarcity and acidosis (increased extracellular pH as a result of hypoxia and the 

glycolytic activity of cancer cells) (Wei et al., 2020). 

Analysis of hypoxia across various cancer types has revealed significant variability both 

between patients and across cancer types. For instance, squamous cell tumors of the head 

and neck or lung were the most hypoxic, whereas thyroid and prostate adenocarcinomas 

resided on the other side of the spectrum (Bhandari et al., 2019). Even within a single tumor, 

the physicochemical properties are not homogeneous. Indeed, the disorganized and spatially 

heterogeneous vasculature and the metabolic activity of cancer cells can significantly shape 

the regional patterns of oxygen, nutrient availability and acidity (Wei et al., 2020). The most 

notable manifestation of such regional diversity can be found when comparing the outer and 

inner fractions within cancer lesions. The tumor core is often characterized by poor 

vascularization, nutrient scarcity and increased levels of apoptotic or growth-arrested cells. 

Conversely, the tumor periphery is associated with increased oxygen levels, acidic conditions 

and a proliferative phenotype of the cells (Rohani et al., 2019). Thus, regional heterogeneity 

in resources alters the local selectable forces at play and thus may shape subclonal 

expansions observed during tumorigenesis. For example, in a resource-rich region, subclones 

with higher intrinsic proliferative capacity will expand. By contrast, in locations characterized 

by hostile conditions, subclones that are able to survive and adapt to these stressors will 

outcompete their counterparts and become the prevalent population. How the 
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physicochemical properties within the TME change over time is less studied, but it is expected 

that the fitness landscape (what is considered favorable) will also vary in this dimension.  

To sum up, cancer cells do not grow in isolation but rather in complex communities with non-

malignant cells, in an environment characterized by hostile conditions. These properties are 

spatially and temporally heterogeneous posing constant novel challenges to tumor cells. This 

variability within the TME creates diversity in the local selective forces thus shaping what is 

considered a favorable and selectable trait during evolution. Considering the importance of 

TME in tumorigenesis, the effects of genetic or epigenetic perturbations on cellular fitness 

should be explored in various contexts reminiscent of the ecological niche of cancer cells 

(Zahir et al., 2020). 

 

 

 
Figure 3: Fitness is a dynamic property shaped by the tumor microenvironment 
 
The tumor bulk is composed by a heterogeneous population of cells harboring distinct genetic and 
epigenetic profiles (depicted here with diverse colors). Darwinian selection favors the survival of the 
fittest clones (arrows), a notion that is shaped by the tumor microenvironment, which is spatially and 
temporally dynamic.  
Pre-existing or de novo acquired genetic/epigenetic traits fuel disease progression by enabling cells to 
survive and expand within their hostile setting.  
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1.5 Widespread mutations affecting diverse epigenetic regulators 

1.5.1 Overview of the mutational landscape 

Epigenetic regulation operates on multiple layers and involves the stable yet reversible 

modification of various properties within chromatin (section 1.3.1). While this strict regulation 

is important for cellular function, it gets significantly challenged during carcinogenesis with 

functional consequences for disease progression. This deregulation can be the result of both 

non-genetic and genetic insults that directly affect chromatin regulators.  

Multiple sequencing studies have now revealed that epigenetic related factors are commonly 

mutated in cancer (Gonzalez-Perez, Jene-Sanz & Lopez-Bigas, 2013; Shen & Laird, 2013; 

Lawrence et al., 2014). Large-scale genomic analysis of point mutations in thousands of 

samples from distinct cancer types detected multiple epigenetic regulators as putative cancer 

driver genes (Lawrence et al., 2014). Interestingly, this analysis identified both shared 

epigenetic drivers but also ones that are unique to specific cancer types. Characteristic 

examples of universal drivers include factors with distinct epigenetic activities, like chromatin 

remodelling (SMARCA4, ARID1B), histone methyltransferase (KMT2D, SETD2) and histone 

acetyltransferase (EP300). On the other hand, mutations in DNA modifiers like DNMT3A and 

TET2 were highly restricted to lymphocytic leukemia. Interestingly this analysis also revealed 

cases of epigenetic regulators (e.g. EZH1, ARID2, MBD1) that surpassed significance when 

examined across the pan-cancer cohort, agnostic of cancer type. This is in line with further 

data demonstrating that most of the epigenetic regulators are found mutated in low 

frequencies across cancer types (Gonzalez-Perez, Jene-Sanz & Lopez-Bigas, 2013). 

Genomic studies have not revealed a preferential path towards epigenetic deregulation 

[Figure 4] (Brennan et al., 2013; Gonzalez-Perez, Jene-Sanz & Lopez-Bigas, 2013; Shen & 

Laird, 2013; Lawrence et al., 2014). On the contrary, mutations affect all known layers of 

epigenetic regulation (Shen & Laird, 2013), involving among others members of the SWI/SNF 

chromatin remodelling complex (St Pierre & Kadoch, 2017) and various writers, readers and 

erasers of histone modifications (Han et al., 2019). Recently, oncogenic mutations were also 

identified in histones which are the structural constituents of chromatin and act as the 

substrate of epigenetic regulation. These mutations often overlap with known histone 

modifications and are thought to hinder the function of the respective epigenetic writers and 

readers, adding another layer of complexity regarding the potential perturbations that can 

impact epigenetic function in cancer (Allis & Jenuwein, 2016). Interestingly, sequencing in 

glioblastoma patients revealed the existence of low-frequency mutually exclusive mutations 
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across multiple epigenetic regulators, further pointing to the fact that all layers within the 

epigenetic network get disrupted during carcinogenesis (Brennan et al., 2013).  

Fitness altering mutations can in principle result in either gain or loss of the respective protein 

functionality. Gain of function mutations have been reported in a handful of chromatin 

regulators, with the most notable example being the frequent translocations affecting the H3K4 

methyltransferase KMT2A that contribute to the pathogenesis in a subset of leukemias. 

However, analysis at the pan-cancer level revealed that the majority of the mutations in 

epigenetic factors lead to loss of their respective function [Figure 4], suggesting that epigenetic 

regulators act predominantly as tumor suppressors during carcinogenesis (Shen & Laird, 

2013). The recurrent nature of these inactivating mutations along with the fact that the 

respective patients are often characterized by worse prognosis emphasizes their importance 

during cancer evolution (Kapur et al., 2013; Parker et al., 2016).  
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Figure 4: Recurrent inactivating mutations affecting diverse epigenetic regulators across 
multiple cancer types 
 
Summary of genetic alterations across cancer types for a selected panel of epigenetic regulators 
belonging to distinct functional classes. The functional impact of each genetic event is classified as loss 
of function (blue) or gain of function (red). Translocation events are depicted with a dash while copy 
number alterations with a dot. 
 
Figure adapted from Shen & Laird (2013). 

 

Cancer type specific mutations in epigenetic regulators are frequent events and likely 

represent cases where disruption of the respective epigenetic activity promotes tumor 

initiation. One characteristic example comes from mutations in DNMT3A in hematological 

malignancies. DNMT3A and its paralogue DNMT3B are responsible for the de novo deposition 

of methyl marks on DNA, a modification associated with transcriptional repression (Allis & 

Jenuwein, 2016). In acute myeloid leukemia (AML) DNMT3A is recurrently affected by 

mutations and is associated with worse prognosis (Cancer Genome Atlas Research Network 
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et al., 2013). These events have been shown, via mechanisms that are dependent or 

independent of the catalytic activity, to inhibit the differentiation of hematopoietic stem cells 

leading to their expansion and initiation of tumorigenesis (Yang, Rau & Goodell, 2015). 

Interestingly TET2, which encodes for a protein that mediates DNA demethylation, is also 

frequently mutated in AML patients (Delhommeau et al., 2009) and promotes carcinogenesis 

by impairing the expression of myeloid differentiation genes (Tulstrup et al., 2021). This 

represents an interesting example where loss of function mutations on regulators that operate 

in antithetic manners can both result in a functional imbalance within an epigenetic layer (here 

DNA methylation) that is subsequently exploited to promote carcinogenesis. Analogous 

impairment of stemness differentiation programs have been also reported upon inactivation of 

epigenetic regulators in solid cancers, (Lewis et al., 2013; Concepcion et al., 2022) 

underscoring the importance of early mutations in diverse epigenetic regulators in promoting 

the acquisition of uncontrolled proliferation potential. 

 

1.5.2 Epigenetic regulators are frequently mutated in cancer subclones 

Inference of the temporal order in which mutations are acquired during cancer evolution, 

revealed frequent disruption in the epigenetic network across tumor subclones. Through 

sampling of spatially separated subpopulations in lung adenocarcinoma and squamous cell 

carcinoma, Hanjani and colleagues reported that subclonal mutations were enriched for 

specific functionally related genes like chromatin remodellers and histone modifiers along with 

factors involved in DNA damage response and signalling [Figure 5A] (Jamal-Hanjani et al., 

2017). Accordingly, similar experimental approaches in renal carcinoma (Gerlinger et al., 

2014, 2012) and glioma (Suzuki et al., 2015) identified subclonal mutations in genes 

associated with histone methylation (e.g. SETD2, KDM5C) and chromatin remodelling (e.g. 

PBRM1, ARID1A, SMARCA4, SMARCC2, ARID2). Finally, in silico inference of the mutational 

order from whole-genome sequencing data across 38 cancer types, identified enrichment of 

subclonal mutations in chromatin remodellers (e.g. ARID1A, PBRM1) and histone modifiers 

(e.g. KMT2C/D, and SETD2), suggesting that the late inactivating and selection of mutations 

in epigenetic regulators is a widespread phenomenon in cancer (Dentro et al., 2021). It is 

worth mentioning, that the current methodologies to reconstruct the timing hierarchy within the 

mutational landscape depend either on the sampling of a few spatially resolved samples or on 

the in-silico modelling from single biopsies, which both have limitations in uncovering 

subclonal diversity. Hence, the above observations are likely an underestimation of the actual 

prevalence of late mutations in epigenetic regulators. 
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One striking feature from the multi-region sequencing studies was the detection of parallel 

evolution1, where spatially separated subclones within the same tumor core acquired distinct 

inactivating mutations in the same epigenetic regulator [Figure 5B] (Gerlinger et al., 2012, 

2014; Suzuki et al., 2015). In glioma and renal cell carcinoma, this phenomenon extended 

also to cases where distinct populations carried mutations in different subunits (e.g. 

SMARCC2, ARID2) of the same functional complex (pBAF; chromatin remodelling) [Figure 

5B] (Gerlinger et al., 2014; Suzuki et al., 2015). This is in line with previous observations from 

genomic studies showing that selection events can be better explained when epigenetic 

regulators are examined within their functional cohorts (Gonzalez-Perez, Jene-Sanz & Lopez-

Bigas, 2013). Parallel evolution within distinct topological samples was also observed in 

methylation patterns in prostate cancer, further strengthening the connection between loss of 

strict epigenetic regulation and subclonal expansion (Brocks et al., 2014). Of note, the above 

studies examined both primary untreated and treated tumors, arguing that the observed 

patterns are not a result of therapeutic intervention but rather directly extend to the phenomena 

shaping tumor maintenance.  

 

 
1 In evolutionary terms, parallel evolution refers to the acquisition of similar traits in independent biological entities 

that co-exist within the same ecosystem.  
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Figure 5: Subclonal inactivating mutations in core epigenetic regulators 
 
[A] Timing of driver alterations during lung cancer evolution (TRACERx cohort). Data are presented for 
two cancer types, lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). The color within 
the box describes the relative abundance of subclonal to clonal genetic alterations for each gene. 
[B] Phylogenetic trees of selected Clear Cell Renal Cell Carcinoma (ccRCC) tumors. Note the presence 
of parallel evolution events, where spatially distinct subpopulations within the tumor bulk acquire 
inactivating mutations in the same epigenetic regulators (EV001, RMH008) or across regulators 
functioning within the same protein complex (RMH004). 
 
Figures adapted from Jamal-Hanjani et al (2017) and Gerlinger et al (2014).  

 

The recurrent nature of epigenetic deregulation in subclones across various cancer types, 

suggests that epigenetic deregulation results in a phenotypic trait that is strongly favorable 

and thus selected over time. In contrast to the functional impact of early clonal mutations in 

epigenetic regulators, the significance of these late events remains elusive. Understanding 

the underlying mechanisms of these phenomena is crucial, considering that subclone 
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diversification is associated with worse prognosis in cancer patients (Landau et al., 2013; 

Jamal-Hanjani et al., 2017).  

 

1.5.3 Functional impact of a deregulated epigenetic network during tumor 
maintenance 

Examination of the mutational landscape within the epigenetic regulatory network revealed 

three important characteristics. First, in most of the cases mutations in epigenetic regulators 

result in loss of function of the respective protein. Second, the disruption is ubiquitous affecting 

similarly all known layers of epigenetic regulation. Third, during the later stages of 

tumorigenesis subclones preferentially acquire mutations in epigenetic regulators and even 

present extreme cases of parallel evolution.  

What dictates this universal selective advantage of cancer cells that have lost their strict 

epigenetic control? One likely scenario is that inactivation of every single gene results in a 

different tumor-promoting cellular trait. From a systems perspective though, an intriguing 

alternative is that multiple different insults within the epigenetic network may converge to a 

similar phenotypic trait that is strongly favorable in cells during the later stages of 

tumorigenesis and thus is selected over time. Of note, these scenarios can also co-exist as 

epigenetic regulators can exert shared, overlapping and distinct functions within a cell. In the 

rest of this subchapter, I discuss several network-level effects that could emerge upon 

epigenetic deregulation and present data in support of either case.  

 

Epigenetic deregulation and proliferation 

Stemming from the definition of fitness one likely scenario is that disruption of diverse 

epigenetic regulators leads to an increase in the proliferation capacity of cancer cells, 

independent of the microenvironment, thus accounting for their expansion within subclones. 

Genome-wide sequencing studies have now revealed that epigenetic regulators act 

predominantly as tumor suppressors (Shen & Laird, 2013). Interestingly, various well 

characterised tumor suppressor genes, like CDKN2A, TP53 and PTEN, that exert inhibitory 

effects on cell-cycle progression are often found subclonally mutated in cancer (Jamal-Hanjani 

et al., 2017; Dentro et al., 2021). In hepatocellular carcinoma, inactivation of the chromatin 

remodeller subunit ARID2 resulted in derepression of cyclin D1 and cyclin E1, faster G1/S 

transitions and subsequently increased proliferation (Duan et al., 2016). Similar bypassing of 

G1/S checkpoint was also detected in cancer cell lines, upon inactivation of the histone 

acetyltransferase EP300 (Iyer et al., 2007). Finally, truncating mutations in KMT2C, a 
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methyltransferase frequently lost in subclones, resulted in aggressive tumors associated with 

increased expression of MYC targets and a concordant downregulation of cyclin-dependent 

kinase inhibitors (Limberger et al., 2022). Collectively, inactivation of various epigenetic 

regulators has been associated with increased cell-cycle progression, prompting towards 

further investigation.  

 

Epigenetic deregulation and genetic instability 

During the later stages of tumorigenesis, as discussed in 1.4, it is likely that fitness is strongly 

dependent on the ability of the cells to respond and survive to the diverse cues and selective 

pressures within their environment. Genetic diversity fuels disease progression, evident by the 

worse prognosis of patients with increased genetic diversity (Burrell et al., 2013; McGranahan 

& Swanton, 2017). Building on that, the identification of recurrent late mutations in genes 

involved in DNA damage response and repair, suggests that the resulting genomic instability 

is a favorable trait during subclonal expansion (Jamal-Hanjani et al., 2017). 

Epigenetic regulators establish functional and structural alterations within chromatin and are 

involved in various processes including replication, transcription and DNA damage response. 

Thus, from a conceptual perspective epigenetic mechanisms can impact genome integrity, by 

altering both the frequency by which genetic abnormalities emerge (e.g. suppression of 

retrotransposons, chromosome segregation) and the fidelity of their resolution (e.g. DNA 

damage response) (Shen & Laird, 2013). Indeed, it is now well established that the genetic 

and epigenetic layers co-exist and significantly interact with each other to shape cellular 

behaviors during tumorigenesis (Shen & Laird, 2013). In line with that, inference of 

evolutionary histories from DNA methylation and mutational landscapes revealed highly 

similar patterns in both liquid and solid tumors, suggesting a co-dependency of genetic and 

non-genetic alterations during disease progression (Brocks et al., 2014; Oakes et al., 2014; 

Mazor et al., 2015). 

An intriguing observation is that epigenetic regulators that were found to be frequently 

inactivated in cancer subclones have been linked with the emergence of genetic abnormalities. 

For instance, in renal carcinoma loss of SETD2 that catalyzes the deposition of the repressive 

H3K36me3 mark, was associated with alterations in nucleosome occupancy followed by 

increased replication stress and impaired repair of the resulting DNA lesions (Kanu et al., 

2015). Accordingly, cancer cells lacking KMT2D, writer of the “active” H3K4me3 mark, were 

characterised by increased transcriptional stress and mutational burden (Kantidakis et al., 

2016). These studies provide initial evidence that epigenetic regulators that are often 
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subclonally mutated can lead to genomic instability. However, these studies focus on single 

genes, thus extrapolating towards the whole epigenetic network needs caution.  

 

Epigenetic deregulation and transcriptional heterogeneity 

Another favorable trait upon which epigenetic disruption may converge is increased 

transcriptional variability or phenotypic plasticity. These considerations arise from the inherent 

function of epigenetic mechanisms in shaping the transcriptional output of genes and 

subsequently cellular identity. As discussed earlier, in the literature the terms plasticity and 

heterogeneity are highly overlapping and in this subchapter, they will be discussed as such. 

During the experimental procedures in this thesis, further distinctions are made (Chapter 4). 

Transcriptional heterogeneity is important for cancer evolution (Fennell et al., 2022), 

metastasis (Nguyen et al., 2016; Quinn et al., 2021) and resistance to therapy (Sharma et al., 

2010; Shaffer et al., 2017). The fact that splicing factors are recurrently mutated in subclones, 

provides a first line of evidence from the clinic regarding the importance of transcriptomic 

variability during subclone expansion (Dentro et al., 2021). Accordingly, in their recent study 

Fennell and colleagues observed that within competing clones, the ones demonstrating a 

selective advantage were characterized by increased transcriptional variance, further 

strengthening the notion that this trait is important for subclonal diversification (Fennell et al., 

2022).  

The identification of transcriptional heterogeneity in the absence of genetic drivers, pinpoints 

to an epigenetic underpinning. In line with that, single cell profiling studies have uncovered an 

association between DNA methylation (Johnson et al., 2021), chromatin accessibility (Corces 

et al., 2016) and discordance among different epigenetic modifications (Pastore et al., 2019) 

with transcriptional variability among individual cancer cells. Interestingly, Johnson and 

colleagues through multi-omics profiling of individual glioma cells observed significant disorder 

in the DNA methylation in regulatory elements of genes associated with cell identity and stress 

response, thus proposing an epigenetic underpinning of transcriptional variance that can be 

useful during tumor maintenance for example by aiding adaptation to stress (Johnson et al., 

2021). However, the majority of these studies are descriptive, thus failing to uncover causal 

links within the examined properties of the system. In particular, without functional 

perturbation, it remains unclear if epigenetic disorder within cancer cells is a driver of 

transcriptional heterogeneity and if this is relevant for adaptation to hostile settings during 

subclone expansion. Another limitation of such correlative studies stems from the nature of 
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the epigenetic marks themselves, as their deposition within DNA and histones can be the 

result of transcriptional activity and not the causal driver of it. 

In line with the need for functional interrogation, various studies within the field of therapy 

resistance have offered some initial insight into the causal contribution of epigenetic 

mechanisms towards favorable diversity. For instance, genetic or pharmacological inactivation 

of KDM5A/B methyltransferase altered the transcriptional variability within breast cancer cells, 

inhibiting their ability to adapt to therapeutic intervention (Hinohara et al., 2019). As discussed 

in 1.3.3.3 abrogation of other epigenetic regulators in diverse cancer models can shape the 

survival to therapeutic intervention that has been associated with transcriptional variability 

(Sharma et al., 2010; Ravindran Menon et al., 2015; Liau et al., 2017; Emran et al., 2018; Puig 

et al., 2018; Marsolier et al., 2022). It is worth noting that the perturbation of single epigenetic 

regulators fails to provide an overview regarding the importance of the epigenetic regulatory 

network to these processes. In their elegant study, Torre et al perturbed various regulatory 

networks (including the epigenetic layer), aiming to identify genes that can tune the emergence 

of transcriptionally distinct “primed” cells that drive resistance to targeted therapy (Torre et al., 

2021). To do so, they focused on a well characterised model of melanoma adaptation to BRAF 

inhibition (Shaffer et al., 2017) and performed a pooled CRISPR screen targeting genes 

belonging to various regulatory layers (Torre et al., 2021). Their dual readout consisted of 

assessing both transcriptional variability and the number of resistant colonies, thus allowing 

for an observational dichotomy between transcriptional variability and actual resistance to 

stress. Targeting of various transcription factors, kinases and epigenetic regulators altered the 

resistance phenotype in melanoma cells, without a significant bias on fitness directionality or 

enrichment in the examined gene sets. Focusing on epigenetic regulators, revealed a handful 

of KO populations belonging to functionally distinct classes (histone modifiers and readers) 

that increased stress resistance. The authors also detected cases (e.g. cells KO for KMT2D 

and ΚΜΤ5Β methyltransferases) that exhibited increased resistance to therapy in the absence 

of any alteration in the number of primed cells. This raises the intriguing possibility that 

mutations in epigenetic regulators can favor survival via other mechanisms downstream of 

transcriptional priming that could be linked to the actual response of cancer cells to stress 

(Torre et al., 2021). 
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Epigenetic deregulation and response to stress 

As stated earlier the conditions within the tumor microenvironment create a hostile setting that 

challenges cell fitness and survival. Despite the variability in the environmental conditions 

(Bhandari et al., 2019) and the fundamentally distinct properties that describe diverse cancer 

types, stress is considered a major component of tumorigenesis as reflected by the recurrent 

emergence of a stressed transcriptional state across cancer types (Baron et al., 2020; Barkley 

et al., 2022). To cope with potential stressors, cells have evolved complex systems that 

perform the following three functions: sensing unfavorable conditions, transmitting this 

information through signalling pathways and executing effector processes that promote 

adaptive behaviors to counteract stress (de Nadal, Ammerer & Posas, 2011). In response to 

diverse stimuli, cells can exhibit both common and stress-specific phenotypic alterations. In 

the majority of the cases, these stress responses converge to translational and transcriptional 

reprogramming in cells in order to halt the expression of growth-related genes and 

concomitantly favor the upregulation of stress-relates signatures (López-Maury, Marguerat & 

Bähler, 2008). This reprogramming allows a) the conservation of biomass until the stressor is 

resolved and b) the direction of resources towards transcriptional rewiring that can mediate 

adaptive behaviors. It is worth mentioning that the activation of the stress response can have 

both pro-survival and pro-death effects, mainly dependent on the severity of the stressor. Upon 

prolonged or harsh hostile conditions, the cells surpass a stress threshold and commit to 

apoptosis, a process mainly driven by the members of p53 family (Pflaum, Schlosser & Müller, 

2014). 

Although factors like cellular context, nature and duration of stress can elicit overlapping cell 

responses, it is well appreciated that the global downregulation of fitness genes is a point of 

convergence (López-Maury, Marguerat & Bähler, 2008). Indeed, this phenomenon has been 

observed in response to various stressors including nutrient deprivation, heat-shock, UV 

irradiation and therapeutic intervention (Emran et al., 2018; Gameiro & Struhl, 2018; Tufegdžić 

Vidaković et al., 2020; Cugusi et al., 2022). Considering the role of epigenetic regulators as 

mediators of environmental response and the fact that stress elicits changes at the 

transcriptomic level, a plausible scenario is that mutations in epigenetic regulators can hinder 

this process. Under harsh conditions, such inability may lower the probability of apoptotic 

induction thus providing a temporal competitive advantage to cells. It is worth noting that 

inactivating mutations in signalling pathways (e.g. MTOR) along with genes involved in 

oxidative stress response are enriched in subclones, suggesting that the inability of cells to 

respond to various internal and external stressors may be a beneficial trait during disease 

progression (Gerlinger et al., 2014; Suzuki et al., 2015; Jamal-Hanjani et al., 2017). Several 

lines of evidence from lower eucaryotes have demonstrated a strong contribution of epigenetic 
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regulators in stress response, involving alterations in chromatin occupancy at the proximal 

elements of stress genes, chromatin remodelling at gene bodies, modifications at various 

histone tail residues and interaction between stress-responsive transcription factors and 

chromatin modifiers (de Nadal, Ammerer & Posas, 2011). Overall, the widespread 

transcriptomic alterations that take place under stress and the implication of chromatin 

remodellers and modifiers in such responses, necessitate the investigation of a potential 

relationship between broad epigenetic deregulation and the ability of cancer cells to withstand 

various stressors within their niche. 

 

Conclusion 

The above alternate scenarios that could explain the selective advantage of epigenetically 

disrupted cancer cells are not mutually exclusive. Cancer is a complex evolving ecosystem 

where diverse favorable events can fuel disease progression at different time scales. This is 

partly attributed to the heterogeneous nature of the selective pressures imposed upon cancer 

cells that can range from transient environmental alterations to sustained chronic stress or 

therapy. For example, if the kinetic of the generation of de novo mutations is much smaller 

compared to the stressful environmental fluctuations it is expected that alternate mechanisms 

(like adaptation or resistance to stress) may drive events at the time. On the other hand, the 

gradual increase in genetic abnormalities may generate favorable diversity that can prove 

beneficial at later selective bottlenecks like metastatic dissemination and disease relapse.  

Overall, during the later stages of cancer evolution disruption of the epigenetic network is a 

recurrent event that is strongly favorable and selected over time. Stemming from their ability 

to orchestrate events that are mediated through the chromatin (Transcription, DNA damage 

response, response to environmental stimuli, etc), alternate mechanisms could underpin the 

selective advantage upon their loss [Figure 6]. Large-scale correlative studies are limited in 

providing a causal link between the examined cellular properties. On top of that, most of the 

functional interrogations have so far focused primarily on single genes, thus providing limited 

insight into potential network-level effects upon epigenetic disruption. Further studies are 

required to explore in depth the functional consequence of disrupting the epigenetic network 

in various aspects of cancer evolution like survival in fluctuating stressful environments or 

resistance to therapy. 
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Figure 6: Potential network-level effects as a result of the widespread inactivation of epigenetic 
regulators during the later stages of tumorigenesis  
 
As a network-level effect could be considered cases where perturbations in multiple and diverse nodes 
within the epigenetic network would converge to the same phenotypic outcome.  

 

1.6 Synthesis of key introductory points and project aims 

A dense synthesis of the key observations and concepts presented in the introductory sub-

chapters can be found below: 

Cancer is an evolutionary process governed primarily by selective forces that act on population 

heterogeneity to promote the propagation of the fittest. Heterogeneity arising from multiple 

different genetic and non-genetic mechanisms is pivotal for disease progression providing a 

plethora of diverging phenotypic traits upon which selection can act. Multiple lines of evidence 

suggest that the selectable unit is not gene mutations per se but rather the phenotypic traits 

that these events confer to malignant cells. Fitness is a quantitative trait that is not fixed but 

rather dynamic and is dependent on the context of cancer cells, namely the tumor-

microenvironment (TME). TME consists of cellular and acellular components, is temporally 

and spatially heterogeneous and constantly poses new challenges to cells. 

Epigenetic proteins are recurrently affected by inactivating mutations in cancer. Aside from 

high-frequency clonal mutations that represent initiating events during carcinogenesis, 

disruption of the epigenetic network is a phenomenon that is frequent in cancer subpopulations 

across various cancer types. This deregulation is broad, affects all known classes of 

epigenetic regulation and can even manifest in extreme cases of parallel evolution where the 

same regulator is affected by distinct inactivating mutations within the same tumor. Besides 

gene-level effects, these observations raise the intriguing possibility that diverse insults within 

the epigenetic network may converge to a common molecular trait that is favorable and thus 
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selected over time. Upon epigenetic deregulation, such a trait could be increased 

heterogeneity at the genomic or transcriptomic level or altered response to stressful 

environmental stimuli. Although there is initial evidence in favor of all the above scenarios, 

most of the current studies are either correlative or are limited to single perturbations within 

the network, thus failing to uncover general causal patterns. 

Based on the above observations the aim of the current thesis is two-fold [Figure 7]:  

i. Systematically inactivate multiple core epigenetic regulators and assess if this 

perturbation increases the survival of cancer cells in stressful environmental 

conditions, reminiscent of their tumor microenvironment [Chapter 3]. 

ii. If this is the case, then explore various molecular traits that could underpin the 

phenotypic deviation conferred by the broad disruption of the epigenetic network 

[Chapter 4]. 

 
Figure 7: Schematic representation of the conceptual approach followed in this PhD thesis 
 
The aim is to investigate the effect of epigenetic deregulation in the fitness of cancer cells under 
environmental stress [Chapter 3] and to explore potential molecular mechanisms that could underly 
such a dependency [Chapter 4] 
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Chapter 2. Materials and Methods 

 

Note: Several parts of this chapter are already published (Loukas et al., 2023; Simeoni et al., 

2023). Selective advantage of epigenetically disrupted cancer cells via phenotypic inertia © 

2023 by Ioannis Loukas et al is licensed under CC BY 4.0. CRISPR-based large-scale 

modeling of loss-of-function mutations to investigate mechanisms of stress resistance in 

cancer © 2023 by Fabrizio Simeoni is licensed under CC BY 4.0. The researchers that 

contributed to this chapter are acknowledged accordingly at the beginning of the respective 

subchapters.  

 

2.1 Experimental models 

2.1.1 Cellular models and culture conditions 

All the cell lines used in this study are listed in Table 2. Parental lines and their de novo 

generated derivatives were cultured in RPMI 1640 (ThermoFisher Scientific, #52400025) 

supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin, and 100 μg/ml 

streptomycin at 37 °C in 5% C02. Patient-derived xenografts MEXF 2090 and LXFL 1674 were 

obtained from the Charles Rivers tumor model compendium (for their characteristics see Table 

3). To enable efficient CRISPR-Cas9 mediated KO of the desired genes under study, cell lines 

expressing an inducible form of Cas9 were generated by a former member of the Scaffidi lab 

(Louise Richardson, MSc thesis, 2017). Briefly, MEXF 2090 and LXFL 1674 cells were 

transduced with a lentiviral pCW-Cas9 vector (Wang et al., 2014; Monserrat et al., 2021). 

Following a 7-day selection with 600 μg/mL hygromycin B (ThermoFisher Scientific, 

#10687010), clones with minimal background levels of Cas9 and responsive to induction with 

1 μg/mL doxycycline (Sigma-Aldrich, #D9891) were isolated. The clonal lines derived from 

PDX MEXF 2090 and PDX LXFL 1674 were named PDX MeA5a and L1C5c respectively. 

Throughout this thesis the initial parental names are used. 

 

2.1.2 Mice models 

Male NSG Mice (NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ) used in this study for the in vivo competition 

experiment were obtained from the common Crick colony. Mice were used at 11-13 weeks of 

age for the experiment. The mice were housed in well-ventilated cages at a constant 

temperature and humidity (23 °C ± 2 °C, 50–60%) in a pathogen-free controlled environment, 

with a standard 12 h-12 h light-dark cycle, and unrestricted access to water and food. The 

weight and signs of diseases were monitored at regular intervals. 
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All the in vivo experiments were approved by the Francis Crick Institute’s Animal Welfare and 

Ethical Review Body and conformed to UK Home Office regulations under the Animals 

(Scientific Procedures) Act 1986 including Amendment Regulations 2012. For subcutaneous 

transplantation experiments, the maximum tumor size did not exceed a mean diameter of 

1.2 cm, in compliance with project license 70/8931 and PP9490916. 

 

2.2 DNA and RNA analysis 

2.2.1 Plasmid extraction 

A list of all the plasmids used in this study (purchased and de novo generated) along with a 

brief description of their applications and growth conditions is presented in Table 4. For 

plasmid extraction, depending on the desired scale, mini or maxi bacterial preparations with 

the respective antibiotic were generated followed by isolations using QIAGEN® Plasmid Mini 

Kit (#12123) or QIAGEN® Plasmid Maxi kit (#12165) as per the manufacturer’s instructions. 

For the lentiviral packaging plasmids, an additional purification step was performed, via 

phenol/chloroform purification. Briefly, the eluted plasmids were mixed with an equal volume 

of phenol:chloroform:isoamyl alcohol (25:24:1, v/v) and vortexed thoroughly for 30 sec. After 

centrifugation at 18000 g for 5 min, the upper aqueous phase was extracted and mixed with 

1/10 volume of 3M Sodium acetate (CH3COONa) and three volumes of 100% ethanol.  After 

incubation of the mixture for 30 min at -80 °C, the plasmid was precipitated by centrifugation 

at 18000 g for 15 min at 4 °C. Finally, the pellet was washed with 70% ethanol, to achieve salt 

removal, dried at room temperature and resuspended in nuclease-free H2O.   

The concentration and purity of the isolated plasmid were assessed by measuring the 260/280 

and 260/230 ratios in a NanoDrop™ 2000/2000c Spectrophotometer (ThermoFisher 

Scientific, #ND-2000). All isolated plasmids were stored at -20 °C. To ensure long-term 

maintenance for all plasmids, also glycerol stocks (25% v/v glycerol) were generated and 

maintained at -80 °C. 

 

2.2.2 Genomic DNA extraction (gDNA) 

For gDNA isolation two distinct methodologies were applied depending on the format and 

scale of the respective experiment. gDNA extraction was performed using the DNeasy Blood 

& Tissue kit (Qiagen, #69506) following the standard manufacturer’s protocol. For gDNA 

isolation for tumor xenografts refer to section 2.13. For high-throughput gDNA isolation from 

96-well plates (like the one performed for exome-sequencing) a kit-free protocol was applied 
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by using the Bradley lysis buffer followed by ethanol precipitation. For the production of the 

lysis buffer see the table below.   

 

Bradley Lysis Buffer 

Stock Solutions Final Concentration For 500mL 

1M Tris‐HCl (pH 7.5) 10mM 5 mL 

0.5M EDTA 10 mM 10 mL 

10% SDS 0.5% 25 mL 

5M NaCl 10 mM 1 mL 

H2O N/A bring up to 500ml 

 

Briefly, MEXF 2090 and LXFL 1674 cells grown in 96-well plates were washed once with PBS, 

lysed with 50 μl Bradly Lysis buffer supplemented with 1 mg/ml Proteinase K (Qiagen, #19131) 

and incubated overnight at 60 °C. DNA was precipitated by the addition of 100 μl of ice-cold 

EtOH/NaCl (75 mM NaCl in 100% EtOH) followed by vigorous mixing, incubation at room 

temperature for 30 min and centrifugation at 3000 g for 20 min. The pellet was washed twice 

with 100 μl of 70% EtOH followed by centrifugation at 3000 x g for 10 min. DNA was 

resuspended in 30 μl of warm TE pH 8.0 after incubation at 56 °C for 10 min. Sample 

concentration and purity were assessed by measuring the 260/280 and 260/230 ratios in a 

NanoDrop™ 2000/2000c Spectrophotometer (ThermoFisher Scientific, #ND-2000). 

 

2.2.3 Polymerase Chain Reaction (PCR) 

All the PCR reactions described in this study were performed using the high-fidelity Herculase 

II Fusion Polymerase (Agilent Technologies, #600679). All the primers used in this study can 

be found in Table 5. 

For the PCR amplification of mCherry-NLS from pUAS-mCherry-NLS (Addgene, #87695) the 

following experimental conditions were used (see also Methods section 2.3.1). 

Reagent Quantity per rxn Temperature and Cycles 

Plasmid vector 25 ng 95 °C for 2 min (activation) 

dNTP mix (25 mM each dNTP) 0.5 μl 95 °C for 30 sec (denaturation) 

Herculase II reaction buffer (5X) 10 μl 55-69 °C for 30 sec (annealing) 

Primer mix (10 μM each) 1.25 μl 72 °C for 30 sec (extension) 

Herculase II fusion DNA polymerase 0.5 μl Return to denaturation, 35X 

DMSO 2 μl (4% final conc) 72 °C for 3 min (extension) 

H2O Up to 50 μl Hold at 4 °C 
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For the PCR amplification of sgRNA loci from genomic DNA the following nested PCR set-up 

was applied (see also Methods section 2.13).   

Step 1 of 2 for nested PCR (PCR1) 

Reagent Quantity per rxn Temperature and Cycles 

Genomic DNA 2 μg 98 °C for 3 min (activation) 

dNTP mix (25 mM each dNTP) 1 μl 98 °C for 20 sec (denaturation) 

Herculase II reaction buffer (5X) 20 μl 60 °C for 20 sec (annealing) 

Primer mix (10 μM each) 1.25.μl 72 °C for 30 sec (extension) 

Herculase II fusion DNA polymerase 1 μl Return to denaturation, 20X 

DMSO 4 μl (4% final conc) 72 °C for 3 min (extension) 

H2O Up to 100 μl Hold at 4 °C 

 

Step 2 of 2 for nested PCR (PCR2) 

Reagent Quantity per rxn Temperature and Cycles 

PCR1 clean product (1/50 diluted) 10 μl 98 °C for 3 min (activation) 

dNTP mix (25 mM each dNTP) 2 μl 98 °C for 20 sec (denaturation) 

Herculase II reaction buffer (5X) 40 μl 58 °C for 20 sec (annealing) 

Primer mix (10 μM each) 2.5.μl 72 °C for 30 sec (extension) 

Herculase II fusion DNA polymerase 2 μl Return to denaturation, 282X 

DMSO 8 μl (4% final conc) 72 °C for 3 min (extension) 

H2O Up to 200 μl Hold at 4 °C 

 

2.2.4 PCR amplicon purification 

Before using PCR products for subsequent experiments (sequencing, digestion with restriction 

enzymes, etc), the amplicons were further purified using QIAquick PCR Purification Kit 

(#28106) as per the manufacturer’s instructions. Briefly, five volumes of buffer PB (binding 

buffer) were mixed with one volume of PCR reaction. To bind DNA, the mixture was applied 

to a silica-based column and centrifuged for 60 sec at 18.000 g. The column was then washed 

with 750 μl buffer PE, followed by dry centrifugation and elution in nuclease-free H2O. 

 

 

 
2 To define the least number of cycles that provide maximal amplicon output, a titration of PCR cycles was 

performed ranging from 7 to 31 cycles in 3-cycle increments. At cycle 28 the amplicon production started to plateau 
as indicated by the band intensity in an agarose gel. 
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2.2.5 Gel electrophoresis and extraction 

Analysis of plasmids, RNA and PCR products was performed via agarose gel electrophoresis. 

Samples were mixed with 10x loading dye (ThermoFisher Scientific, #10816015) and run on 

gels composed of 0.6-2% agarose in 1X TBE (Tris-Borate-EDTA), supplemented with 1X 

ethidium bromide (Promega, # H5041). To estimate band size either Quick-Load Purple 50 bp 

DNA Ladder (NEB, #N0556S) or GeneRuler 1kb DNA ladder (ThermoFisher Scientific, 

#SM0312) were used depending on the analytical purpose. The samples were run under 2-4 

V/cm voltage and after sufficient separation the electrophoretic pattern was visualized under 

exposure to UV light. 

For the isolation of specific DNA fragments of interest (for example during cloning), the desired 

band was excised using a scalpel, under minimal UV illumination, and subsequently purified 

by using QIAquick Gel Extraction Kit (#28706) as per the manufacturer’s guidelines. Sample 

concentration and purity were assessed vis spectroscopic analysis in NanoDrop™ 

2000/2000c (ThermoFisher Scientific, #ND-2000). 

 

2.2.6 Total RNA extraction 

For transcriptomic analysis, total RNA was isolated from the indicated cell populations by using 

Qiagen RNeasy Plus Micro kit (#74034) as per the manufacturer’s protocol. To achieve 

substantial starting material from experimental setups that were performed in 96-well plates, 

4 to 6 replicate wells were pooled depending on cellular density. Briefly, lysis buffer (RLT) was 

added to a maximum of 500.000 cells, incubated for 5 min and then transferred through a 

column that binds genomic DNA. The flow-through was then mixed with an equal volume of 

70% ethanol and loaded into the silica-based membrane for RNA binding. The column was 

subsequently washed 3 times with a sequence of respective buffers and 80% ethanol followed 

by elution in RNAse-free H2O. Total RNA concentration and purity were estimated by 

measuring the 260/280 and 260/230 ratios in a NanoDrop™ 2000/2000c Spectrophotometer 

(ThermoFisher Scientific, #ND-2000). All samples were stored at -20 °C (short term; <1 week) 

or -80 °C (long-term storage). 
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2.2.7 Generation of complementary DNA (cDNA) 

Generation of cDNA from total RNA was achieved by using a High-Capacity cDNA Reverse 

Transcription Kit (ThermoFisher Scientific, #4368814) following the manufacturer’s 

instructions. In all the experiments described in this study 0.5 μg of total RNA was used as an 

input for cDNA synthesis. The quantities of the respective reagents and the reaction conditions 

in the C1000 Touch Thermal Cycler (Biorad, #1851148) are described in the table below. 

 

Reagent Quantity per rxn Temperature 

RNA 500 ng 25 °C for 10 min 

10X RT buffer 2 μl  37 °C for 120 min 

25X dNTP 0.8 μl  85 °C for 5 min 

10X primers 2 μl  Hold at 4 °C 

Enzyme 1 μl   

Nuclease-free H20 Up to 20 μl  

 

2.2.8 Quantitative PCR (qPCR) 

For quantification of transcript levels, cDNA from 0.5 μg of total RNA was diluted 1/10 and 

used as input for RT–qPCR using SsoAdvanced™ Universal SYBR® Green Supermix (Bio-

Rad, #172-5274) on a CFX96 real-time PCR detection system (Bio-Rad). PPIA was used as 

a reference gene for normalization. Primers used for RT–qPCR in this study are listed in Table 

5. The reaction conditions along with the cycling set-up can be found in the table below. 

 

Reagent Quantity per rxn Temperature and Cycles 

Universal Green Supermix (2X) 10 μl 95 °C for 30 sec (activation) 

Primers (5 μM) 2 μl 98 °C for 10 sec (denaturation) 

cDNA (1/10 from 500ng) 
2 μl 

60 °C for 30 sec (annealing/ 

extension/ plate reading) 

Nuclease-free H20 6 μl Return to denaturation, 35X 

Total volume 

20 μl 

65 to 95 °C in 0.5 °C 

increments at 5 sec / step (Melt 

Curve analysis) 
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2.3 Molecular Cloning 

2.3.1 Generation of pTRIP-SFFV-mCherry-NLS 

To generate a plasmid vector expressing a nuclear restricted form of mCherry fluorophore 

(pTRIP-SFFV-mCherry-NLS), the following plasmids were purchased; pTRIP-SFFV-EGFP-

NLS (Addgene, #86677) and pUAS-mCherry-NLS (Addgene, #87695) with the scope being to 

substitute EGFP for mCherry in the former vector. To do so, primers with overhangs carrying 

sequences for the restriction enzymes BamHI and XhoI were used to amplify mCherry-NLS 

from the pUAS vector. Subsequently, both the PCR amplicon and the destination vector 

(pTRIP-SFFV-EGFP-NLS) were digested by BamHI and XhoI in FastDigest Buffer 

(ThermoFisher Scientific, #FD0055, #FD0694 and #B64 respectively) for 1 hour at 37 °C. For 

the primer set used and the respective reaction conditions refer to Table 5 and section 2.2.3 

respectively. The products of the above digestions were separated via electrophoresis in an 

1% agarose gel and the desired fragments (insert and vector without EGFP) were excised and 

purified via gel extraction using QIAquick Gel Extraction Kit (Qiagen, #28706). 

Based on their size, insert and vector were mixed in a 9:1 molecular ratio and ligated using 

the Quick Ligation™ Kit (NEB, #M2200S), as per the manufacturer’s guidelines. After a 15 

min incubation at room temperature, the ligation mixture was transformed into One Shot™ 

Stbl3™ Chemically Competent E. coli (ThermoFisher Scientific, #C737303). Briefly, the 

mixture was incubated on ice for 30 min, followed by a heat shock at 42 °C for 45 sec. Bacteria 

were recovered on ice for 2 min, cultured in S.O.C. media (NEB, #B9020S) for 1 hour at 30 

°C and then plated in ampicillin containing Luria broth (LB) agar plates. After 24 h of growth at 

30 °C, single colonies were picked, incubated overnight in LB media with 100 μg/mL Ampicillin 

and the plasmids were isolated via QIAGEN® Plasmid Mini Kit (#12123). 

The successful generation of pTRIP-mCherry expressing constructs was verified by both test 

digestions with restriction enzymes and after transfection of HEK293T with the putative 

isolated plasmids. 48 h post transfection, cells were imaged in IncuCyte S3. The plasmid 

generating the best nuclear to cytoplasmic intensity ratio was selected to move forward. 

 

2.3.2 Generation of pLenti-BSD-sgRNA-Capture_seq_1E 

For the multiplexed single-cell transcriptomics experiment (refer also to sections 2.15.3 and 

4.3.3.1), it was required to generate a pLenti-BSD-sgRNA vector with a modified sgRNA 

construct carrying a unique oligonucleotide sequence (Capture Sequence 1) that can be 



58 
 

recognized by the 10X Genomics pipeline3. To generate this vector, the following plasmids 

were used; pLenti-BSD-sgRNA and PUC57-Capture_sequence_1 (Synthetic sgRNA 

construct purchased from Genscript) with the scope being to substitute the conventional 

sgRNA scaffold for the modified one in the pLenti vector. Both plasmids were digested with 

BstBI (NEB, #R0519S) and NsiI (NEB, #R0127L) in NEBuffer 2.1 (NEB, #B6002SVIAL) for 1 

hour at 37 °C and the products were analyzed in an agarose gel (0.6 and 2% for vector and 

insert respectively). The desired bands (insert from PUC57 and pLenti vector without sgRNA 

scaffold) were excised and purified via gel extraction using QIAquick Gel Extraction Kit 

(Qiagen, #28706). 

Based on their size, insert and vector were mixed in a 9:1 molecular ratio and ligated using 

the Quick Ligation™ Kit (NEB, #M2200S), as per the manufacturer’s guidelines. After a 15 

min incubation at room temperature, the ligation mixture was transformed into One Shot® 

ccdB Survival™ 2 T1R Chemically Competent Cells (ThermoFisher Scientific, #A10460). 

Briefly, 10 μl from the mixture was incubated on ice for 30 min, followed by a heat shock at 30 

°C for 42 sec. Bacteria were recovered on ice for 2 min, cultured in S.O.C. media (NEB, 

#B9020S) for 1 hour at 30 °C and then plated in ampicillin containing Luria broth (LB) agar 

plates. After 36 h of growth at 30 °C, single colonies were picked, incubated overnight in LB 

media with 100 μg/mL Ampicillin and 25 μg/mL chloramphenicol and the plasmids were 

isolated via QIAGEN® Plasmid Mini Kit (#12123). 

The success of the cloning procedure was verified by the electrophoretic pattern after test 

digestions and via Sanger sequencing (Illumina outer 1R: CCTCGACCTGCTGGAATCTC) 

performed by the Genomics Equipment Park facility at the Francis Crick Institute. 

 

2.3.3 Cloning sgRNAs into pLenti-BSD-sgRNA-Capture_seq_1E 

For the generation of individual sgRNAs, primers containing the sgRNA sequence and a 

restriction site against BsmBI were hybridized in the presence of an annealing buffer (10 mM 

TRIS + 1 mM EDTA). Then the solution was incubated at 95 °C for 5 min followed by a 

reduction to 25 °C in increments of 0.1 °C / sec. The annealed oligos were then diluted 1/200 

and 2 μl were used as input for cloning into the pLenti-BSD-sgRNA-Capture_seq_1E plasmid 

via Golden Gate (GG) assembly technology (NEB). The BsmBI restriction site is eliminated 

 
3 For additional details regarding the sgRNA scaffold refer to the 10X Genomics’ technical note 
regarding the “Guide RNA Specifications Compatible with Feature Barcoding technology for CRISPR 
Screening”(https://cdn.10xgenomics.com/image/upload/v1660261286/support-
documents/CG000197_GuideRNA_SpecificationsCompatible_withFeatureBarcodingtechnology_forC
RISPRScreening_Rev-A.pdf) 

https://cdn.10xgenomics.com/image/upload/v1660261286/support-documents/CG000197_GuideRNA_SpecificationsCompatible_withFeatureBarcodingtechnology_forCRISPRScreening_Rev-A.pdf
https://cdn.10xgenomics.com/image/upload/v1660261286/support-documents/CG000197_GuideRNA_SpecificationsCompatible_withFeatureBarcodingtechnology_forCRISPRScreening_Rev-A.pdf
https://cdn.10xgenomics.com/image/upload/v1660261286/support-documents/CG000197_GuideRNA_SpecificationsCompatible_withFeatureBarcodingtechnology_forCRISPRScreening_Rev-A.pdf
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from the ligated product, so digestion and ligation can be carried out simultaneously. The 

relative quantities of the reagents and the reaction conditions are listed below. 

 

Reagent Quantity per rxn Temperature and Cycles 

BsmBI (5 units) 0.5 μl 45 °C for 2 min (Digestion) 

Annealed oligos (1.2ng) 2 μl 20 °C for 2 min (Ligation) 

pLenti_BSD_sgRNA (50ng) 1 μl Return to Digestion, 25X 

T7 DNA Ligase (1500 units) 
0.5 μl 

60 °C for 10 min 

(Linearise residual vector) 

10X PNK Buffer (+66μM ATP) 
1 μl 

80 °C for 10 min  

(Enzyme heat inactivation) 

Nuclease-free H20 Up to 10 μl Hold at 4 °C 

 

1 μl from the GG reaction was used as input for transformation of One Shot™ Stbl3™ 

Chemically Competent E. coli (ThermoFisher Scientific, #C737303). Briefly, the mixture was 

incubated on ice for 30 min, followed by a heat shock at 42 °C for 45 sec. Bacteria were 

recovered on ice for 5 min, inoculated in Luria broth (LB) supplemented with 100 μg/mL 

Ampicillin and grown overnight at 37 °C.  

The successful cloning of the desired sgRNAs into pLenti-BSD-sgRNA-Capture_seq_1E was 

verified by the electrophoretic pattern after test digestions and via Sanger sequencing 

(Universal U6 promoter) performed by the Genomics Equipment Park facility at the Francis 

Crick Institute. The newly generated pLenti-BSD-sgRNA-Capture_seq_1E plasmids carrying 

the desired sgRNAs were then transduced into MEXF 2090 cells and KO of the targeted genes 

was induced as described in 2.5. The cutting efficiency was assessed a) directly by Sanger 

sequencing of the targeted loci and b) indirectly by assessing the phenotypic behavior of the 

KO populations under nutrient starvation. Quantitative assessment of genome editing by 

Tracking of Indels by DEcomposition (TIDE) analysis (Brinkman et al., 2018) revealed minimal 

activity across the majority of the tested single sgRNAs. In line with that, under nutrient 

starvation most of the KO populations demonstrated no or mild fitness advantage compared 

to control populations (in contrast to the detected behaviors in the large-scale fitness assays). 

Based on these observations I concluded that the newly generated plasmids were not 

functional. Notably, this inactivity was observed in single sgRNAs that were validated in other 

studies within the lab (Mortimer et al., 2019), thus indicating that the inactivity is not a result of 

selecting a non-functional sgRNA out of the library pool. Therefore, for the multiplexed scRNA-

seq experiment, I used these non-functional sgRNAs to barcode MEXF 2090 cells that were 

already KO for the desired epigenetic regulators (also refer to section 2.15.3).  
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2.4 Production of lentiviral particles 

To generate viral particles, a second-generation lentiviral production system was used 

consisting of the following three plasmids: 1) packaging plasmid (psPAX2; Addgene, #12260), 

2) envelope expressing plasmid (pMD2.G, Addgene, #12259) and 3) transfer plasmid (pLenti 

or pTRIP vectors for expression of sgRNAs or fluorophores respectively). To achieve higher 

lentiviral titers, pAdvantage (Promega, #E1711) was also included in the aforementioned 

plasmid mixture. For viral production, 90% confluent HEK293T cells (Cell Services, Francis 

Crick Institute) were transfected with the plasmid mixture by using FuGENE® HD (Promega, 

#E2311), at a ratio of 3:1 FuGENE® HD to DNA. The viral productions were optimized and 

performed in large-scale in 96-well plates. Wherever other formats were used, the reagent 

quantities listed below were scaled accordingly based on the relative working surface area. 

 

Transfection in a 96-well (1x rxn) 

Reagent Quantity 

pLenti-sgRNA or pTRIP vector (Transfer) 68 ng 

psPax2 (packaging) 50.6 ng 

pMD2.G (envelope) 16.8 ng 

pAdvantage (Increased yield) 15 ng 

Total DNA 150 ng 

FuGENE HD 0.45 μl 

 

24 and 48 h post transfection, the supernatant containing the viral particles was collected, 

pooled and filtered through a 0.45 μm filter plate (Millipore, #MSHVS4510) after centrifugation 

at 3000 g for 1 min. The collected virus was then stored at -80 °C. To define the best viral 

dilution for subsequent experiments, 5000 melanoma or 8000 lung cancer cells in 96-well 

plates were infected with a titration of GFP expressing virus in the presence of 5 μg/mL 

Polybrene (Santa Cruz, #sc-134220), used as a proxy to estimate the infection efficiency. In 

most of the cases the lowest viral titration that yielded maximal infection efficiency and no 

significant growth deficit was used.  
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2.5 Generation of KO cell lines 

To generate CRISPR-Cas9 mediated KO populations, cells inducibly expressing Cas9 upon 

doxycycline induction (1 μg/mL) were transduced with lentiviral particles expressing individual 

sgRNA constructs (For viral production refer to section 2.4). To select for the infected cells, 

48 h post transduction, blasticidin (6 μg/mL) was added to the media. The successful selection 

was confirmed by the elimination of replicate populations grown in parallel but not infected. 

The above procedure was performed in various scales (generation of individual KOs for fitness 

validations or KO libraries for large-scale fitness assays) and in various cellular models (MEXF 

2090, LXFL 1674, MEXF 2090 EGFP-NLS, MEXF 2090 mCherry-NLS). The desired sgRNA 

plasmids were sourced from an available arrayed lentiviral sgRNA library (Henser-Brownhill, 

Monserrat & Scaffidi, 2017). 

After selection, expansion and induction of KO cells for 10 days, individual populations were 

frozen in FBS supplemented with 10% DMSO and stored in liquid nitrogen. On the other hand, 

the libraries of the KO cells were frozen at -80 °C in multiple aliquots. To freeze populations 

in 96-well format, cells were detached from the plate using 30 μl trypsin per well. Following 

the addition of 80 μl of FBS containing 10% DMSO, plates were sealed and stored at -80 °C 

for up to 4 weeks. For long-term preservation copies of the libraries were thawed, propagated 

and frozen again. To thaw cells, plates were placed in a water bath at 37 °C for a few seconds 

and spun for 5 min at 4 °C after the addition of 50 μl of medium to each well. Fresh medium 

(100 μl) was finally added to each well after removal of 120 μl of freezing medium. 

 

2.6 Large-scale and validation fitness assays  

2.6.1 Plate layout 

Also refer to Loukas et al (2023) and Simeoni et al (2023).  

From the available sgRNA library (Henser-Brownhill, Monserrat & Scaffidi, 2017), constructs 

targeting 318 genes, encoding core epigenetic regulators were selected and arranged in eight 

96-well plates (Corning, #3596). For the full list of the targeted regulators and their 

classification to respective epigenetic families refer to Table 1 and Table 8. Each plate 

consisted of 40 KO populations in which distinct epigenetic regulators were inactivated, along 

with 20 negative control populations transduced with sgRNAs targeting 5 non-expressed 

genes, four replicates each. Multiple negative controls per plate were included to account for 

technical variability and well-effects, and to enable robust normalization of the observed 

phenotypes across plates and experiments. Each plate contained a well with ARID2-targeting 
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sgRNAs as an inter-plate standard. External wells were excluded and filled with PBS to avoid 

edge effects.  

 

2.6.2 Assay pipeline 

During the plating step for the large-scale fitness assays, multiple identical replicates, sufficient 

for the different treatments, were generated from each library plate. To do so, in each plate 

the medium was discarded and cells were washed with PBS followed by addition of 30 μl of 

trypsin and incubation at 37 °C for 5 min. Then, 170 μl were added in each well and cells were 

resuspended by vigorous pipetting. The cell suspension transferred to a 2 ml deep well block 

and mixed with a specific volume of RPMI medium to achieve the desired dilution. Finally, 50 

μl per population were seeded into the 96-well plates, already containing 50 μl of fresh 

medium. The plates were shacked to achieve homogeneous plating and then incubated at 37 

°C. Approximately 24 hr post seeding, when the median cell count/well across plates reached 

~4000 cells, the plates were either grown under stressful conditions (see below) or maintained 

in unperturbed conditions. Over the course of the experiment one representative plate was 

monitored by time-lapse imaging to confirm that the growth kinetics were as expected based 

on pilot experiments. At the indicated endpoints for each condition (see below) the population 

fitness was assessed by quantification of cell count. To do so, cells were fixed with 4% 

paraformaldehyde (PFA, Alfa Aesar, #43368) followed by permeabilization with 0.5% Triton 

X-100 in PBS and nuclei staining with SYTOX™ Green Nucleic Acid Stain (ThermoFisher 

Scientific, #S7020). Imaging and quantification were performed using an Incucyte® S3 Live-

Cell Analysis System. 

 

2.6.3 Stress conditions 

KO and control populations were cultured in the following conditions: a) unperturbed b) 

glutamine starvation c) acidic environment and d) replication stress, with each stress applied 

at two distinct strengths. Glutamine deprivation was sustained for 3 or 7 days after glutamine 

removal. Media acidification was induced by addition of HCl to a final pH of 6.7 or 6.5, which 

resulted in a 40-60% reduction in cell counts after 2 days compared to untreated cells. To 

induce replicative stress, cells were cultured in the presence of 200 μM or 250 μM hydroxyurea 

(Sigma-Aldrich, #H8627) which resulted in 40% or 60% in cell counts after 2 days compared 

to untreated cells. Cell count for populations grown in unperturbed conditions was quantified 

at day 2. The endpoint of each treatment was determined by when the fittest population 

reached confluence (to maintain linearity of comparisons across populations) and depended 

on how severely cells were affected by each stress, with deprivation of L-glutamine being the 
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most deleterious stress. A survival benefit in at least one strength condition for each stress 

was considered as enhanced fitness. 

 

2.6.4 Data filtering 

Before quantifying  stress-specific fitness, various parameters were assessed to remove: 1) 

wells containing cell clumps that would affect the  measurement, identified by visual inspection 

of all plates;  2) outliers among replicates; 3) epigenetic regulators that are lowly expressed in 

PDX MEXF 2090 (Log10 pseudocounts < 1) or PDX LFXL 1674 (Log10 TPM < 0.5) cells;  4) 

KO populations with severely compromised fitness in the unperturbed condition (20% 

reduction compared to the plate median for PDX MEXF 2090 and less than 20,000 cells at 

endpoint for PDX LFXL 1674). The last step was performed to avoid inflated 

stress/unperturbed ratios. 

0.8% of the total imaged wells were discarded from the subsequent analysis and in more than 

90% of the cases that was due to the presence of visible cellular clumps.  

 

2.6.5 Data analysis 

For each KO or control population the stress-specific fitness was derived from the 

stress/unperturbed ratio in cell count at endpoint. KO populations with enhanced or reduced 

fitness were defined based on the formula:  Z=(χ-μ)/σ, where χ is the fitness of individual KO 

populations, μ is the mean fitness of negative controls, σ is the standard deviation of the fitness 

of negative controls. Populations exhibiting enhanced or reduced fitness were defined as 

those with a z-score > 1.645 or <-1.645 (90% confidence interval), respectively. Validation 

fitness assays were performed in a similar way, either measuring cell count over time using 

replicates fixed at various time points, or at endpoint. Population growth was quantified by 

normalizing the average cell count at each time point to the pre-treatment count (d0). In 

experiments where the population growth was monitored over several weeks, smoothing was 

applied to the curves to account for technical noise introduced by media change. 

 

2.7 Treatment with epigenetic inhibitors 

To identify drug concentrations 2-fold and 10-fold titrations were performed ranging from 20 

μM down to 1 nM. A list of all the drug inhibitors used in this study along with their defined 

working concentrations can be found in Table 6. In the respective fitness assays and the FRET 

sensor live-cell imaging experiment [Figures 14, 32, 41, 42 and 43], cells were pre-treated for 
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3 days before being exposed to stress and drugs and media were replaced every 3 days to 

maintain efficient target inhibition over the course of the experiment. When assessing the 

reversibility of the stress-resistant phenotype [Figure 32], cells were grown for 9 days in the 

presence of the inhibitors and for an additional 9 days in the absence of the compounds. 

2.8 Quantification of proliferative and apoptotic fractions 

Two hours before the endpoint, populations were pulsed with 10 μM EdU and 5 μM of Ac-

DEVD-NucView488 (Cen et al., 2008). Live cell imaging and quantification of Caspase 3 

activity was performed using an Incucyte® S3 Live-Cell Analysis System. Subsequently, cells 

were fixed in 4% PFA stained for EdU by using the Click-iT™ EdU Cell Proliferation Kit 

(ThermoFisher Scientific, #C10340) as per manufacturer’s protocol. Nuclei were labeled by 

adding SYTOX™ Green Nucleic Acid Stain (ThermoFisher Scientific, #S7020). Imaging and 

quantification were performed in Incucyte® S3. 

 

2.9 In vitro clonogenic assays 

For qualitative assessment, 1500 cells were plated in 6-well plates, while for quantification 10 

cells/well were seeded in 96-well plates. After 24 hours, the medium was refreshed to RPMI 

1640 without glutamine and cells were grown for 12 days until visible colonies appeared. 

Media was refreshed every 3 days. To achieve colony quantification, cells were fixed with 4% 

PFA, permeabilized with 0.5% Triton X-100 in PBS, stained with SYTOX™ Green Nucleic Acid 

Stain (ThermoFisher Scientific, #S7020) and imaged using an Incucyte® S3 Live-Cell Analysis 

System. 

 

2.10 In vitro competition assays 

2.10.1 Generation of MEXF 2090 cell lines stably expressing fluorescent 

proteins 

MEXF 2090 cells were transduced with lentiviral constructs expressing GFP-NLS (pTRIP-

SFFV-EGFP-NLS), or mCherry-NLS (pTRIP-SFFV-mCherry-NLS) (see also section 2.3.1). 

Seven days after infection, cells expressing similar levels of the fluorescent proteins were 

isolated by flow cytometry (see also section 2.12). mCherry-labelled lines were transduced 

with sgRNA constructs targeting the indicated epigenetic regulators, while GFP-labelled cells 

with sgRNAs targeting the non-expressed gene TNP2. KO populations were generated as 

described in section 2.5.  
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2.10.2 Co-culture of KO populations in nutrient deprivation 

For the co-culture experiment, mCherry-labelled KO populations were mixed with GFP-

labelled control cells in equal quantities and seeded in 96-well plates at a final density of 3000 

cells per well. A mix of GFP- and mCherry labelled control cells was used as a baseline to 

account for possible differential fitness of the two labelled lines. Twenty-four hours after 

plating, the medium was refreshed with phenol-free RPMI lacking L-glutamine (ThermoFisher 

Scientific, #32404014). Live-cell imaging was performed at 12-hour intervals using an 

Incucyte® S3 Live-Cell Analysis System. During the experiment, the media was refreshed 

every 3 days. After 12 days under nutrient starvation, the mCherry to GFP ratio was calculated 

and normalized to the one before treatment. 

 

2.11 Immunofluorescence microscopy 

Note: Embedding of tumors in paraffin, subsequent sectioning and H&E staining was 

performed by the Experimental Histopathology Facility at the Francis Crick Institute. 

 

Immunostaining of cultured cells was performed using standard protocols as described in 

(Monserrat et al., 2021) using anti-Lamin A/C (Santa Cruz Biotechnology, #sc-7292, 1:200), 

anti-H3K27me3 (EMD Millipore, #07-449, 1:400), anti-H4K16ac (Cell Signalling Technology, 

#2591S, 1:500) primary antibodies and relevant fluorescent secondary antibodies. Imaging 

was performed using either an IncuCyte® S3 system or an Axiovert Zeiss confocal 

microscope. For analysis of tumors, portions of tumors harvested from mice were fixed in 10% 

formalin and embedded in paraffin. Sections were deparaffinized with xylene and rehydrated 

in an ethanol gradient. Antigen-retrieval was performed for 20 minutes at 95 °C in citrate buffer.  

Slides were then blocked, incubated overnight with anti-H3K27me3 antibody (1:200) or 

phospho-S6 Ribosomal Protein (Ser235/236) (Cell Signaling Technology, #2211) at 4 °C, 

washed, incubated with the secondary antibodies (ThermoFisher Scientific, anti-rabbit Alexa 

flour 488, #A-21206 or anti-rabbit Alexa flour 568, #A10042) for 1 hour at room temperature, 

washed 3 times with PBS, incubated with DAPI and mounted with ProLong Gold Antifade 

Mountant (ThermoFisher, #P36934). Slides stained with only the secondary antibody were 

used as a negative control. Stained slides were imaged using an Olympus VS120 Slide 

Scanner and images were processed with QuPath-0.2.2 and quantified image J 1.45s. 
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2.12 Flow cytometry cell sorting (FACS) 

For FACS sorting of melanoma cells to generate a) PDX MEXF 2090 GFP-NLS b) PDX MEXF 

2090 MCHERRY-NLS and c) PDX MEXF GLUCOSE FRET SENSOR the following protocol 

was applied. Initially cells from a full confluent 15cm plate were trypsinized, counted and 

pelleted via centrifugation at 300g for 3min.The cell pellet was then resuspended in sorting 

media to a density of 5 million cells / mL. Sorting media consists of 15 mM HEPES buffer, 1% 

BSA, 2 mM EDTA, 100 U/mL DNase, 100 U/mL penicillin and 100 μg/mL streptomycin in PBS. 

Cell suspension was filtered through a 40 μM nylon mesh (Corning, #352340) to discard cell 

clumps and ensure that cells are in a single cell suspension. FACS sorting was performed 

using a FACSAria II (BD Biosciences) or S3e Avalon (Propel labs) flow cytometer and cells 

were isolated in 5 mL polypropylene tubes (Corning, #352063) containing recovery media 

(50% sorting media:50% FBS). All sorted populations were pelleted via centrifugation at 300 

g for 5 min and plated in fresh RPMI media for a minimum of 24h prior to any experimental 

use.  

 

2.13 In vivo competition assays  

Note: Intradermal injections of cancer cells were performed with the help of Cristina Morales 

Torres (Scaffidi lab). Subsequent injections and handling of the mice were carried out by the 

Biological Research Facility at the Francis Crick Institute. Next-generation sequencing was 

performed by the Advanced Sequencing Facility and processing of the generated raw data by 

Harshil Patel. Subsequent analysis was performed by Ioannis Loukas. Part of this methods 

section was written by Harshil Patel (Loukas et al., 2023). 

 

MEXF 2090 cells transduced with sgRNAs targeting either EZH2 or TNP2 (non-expressed 

control gene) and treated with doxycycline for 10 days were mixed at equal ratio and injected 

in NSG mice obtained from the common Francis Crick colony. 5 x 105 cells from the mix were 

intradermally injected in both flanks of 11-13 week-old male NSG mice in 50 μl of PBS. 

Approximately 3 weeks after injection mice were randomly segregated in two groups and 

treated with either Bevacizumab (Stratech, #A2006-SEL-5mg; twice a week i.p. at the dose of 

2 mg/kg or 8 mg/kg) or vehicle. Tumor volume was measured twice a week using electronic 

calipers until animals were humanely killed approximately 5 weeks after the first injection. At 

the endpoint, tumors were harvested and the relative abundance of EZH2-KO and TNP2-KO 

cells was estimated by next-generation sequencing of the sgRNAs amplified from tumors. 
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Before lysing the tumors for the subsequent analysis some representative slices where 

isolated for immunocytochemistry analysis (see section 2.11). The remaining parts of the 

tumors were then cut into small pieces of ~2–3 mm in length, transferred into gentleMACS M 

tubes (GentleMACS, #130-096-335) containing two volumes of ATL buffer supplemented with 

1:10 proteinase K (Qiagen, #69506) and blended at high speed with a gentleMACS dissociator 

(RNA_01.01 Program). Subsequently, gDNA from tumors and the injected cells was extracted 

using a DNeasy Blood & Tissue kit as per manufacturer’s protocol (Qiagen, #69506). NGS 

libraries were prepared by performing a two-step nested PCR using Herculase II Fusion 

Enzyme Kit (Agilent Technologies, #600679). The primers used are listed in Table 5. To 

ensure efficient amplification of the sgRNAs, multiple PCR reactions were run for each sample, 

using a maximum of 1 μg gDNA in 50-μl reactions with 20 cycles of amplification. Following 

the first round, the PCR product was cleaned using QIAquick PCR Purification Kit (Qiagen, 

#28104) and 1/50 of the reaction was used as template for the second PCR, run for 28 cycles. 

Final products were run on a 2% agarose gel and purified using a QIAquick gel extraction kit 

(Qiagen, #28706). 

Libraries were sequenced on the Illumina MiSeq using the MiSeq Reagent Nano Kit V2 

(Illumina, #MS-102-2001) with 250 bp paired end reads and generated approximately 6000 

251bp reads per sample. Raw reads were trimmed with the fastx_trimmer tool available within 

the FASTX-Toolkit (version 0.0.14) http://hannonlab.cshl.edu/fastx_toolkit using the 

parameters "-f 122 -l 141 -m 20" to extract the sgRNA sequence. These were then mapped to 

a reference consisting of the 14 guide sequences of interest using BWA (version 0.5.9-r16) 

with the parameters “-l 20 -k 4 -n 4”. sgRNA counts were obtained after filtering the mapped 

reads for those that had zero mismatches and mapped to the sense strand of the guide 

sequence. To quantify the relative abundance of sgRNAs in each condition, raw reads for 

each sgRNA were normalized to the overall read counts. It is worth mentioning that similar 

sgRNA ratios were observed after allowing for 0, 1, 2, or 3 mismatches (data not shown).  

 

2.14 Live-cell imaging of metabolic states 

2.14.1 Generation of MEXF 2090 FRET-sensor line 

MEXF 2090 were modified to stably express the FRET-based glucose biosensor, which 

signals the presence of intracellular levels of glucose and has previously been reported as a 

solid indicator of the relative preference between glycolysis and OXPHOS in living cells 

(Kondo et al., 2021). The PiggyBac transposon containing the FRET biosensor was co-

transfected with a plasmid expressing the PB transposase (PBase) (Liang et al., 2009) at a 

1:3 ratio using the FuGENE® HD reagent as per manufacturer’s protocol (Promega, #E2311). 

http://hannonlab.cshl.edu/fastx_toolkit
http://hannonlab.cshl.edu/fastx_toolkit
http://hannonlab.cshl.edu/fastx_toolkit
http://hannonlab.cshl.edu/fastx_toolkit
http://hannonlab.cshl.edu/fastx_toolkit
http://hannonlab.cshl.edu/fastx_toolkit
http://hannonlab.cshl.edu/fastx_toolkit
http://hannonlab.cshl.edu/fastx_toolkit
http://hannonlab.cshl.edu/fastx_toolkit
http://hannonlab.cshl.edu/fastx_toolkit
http://hannonlab.cshl.edu/fastx_toolkit
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The levels of cintrine expression were monitored over the next days in Incucyte® S3 Live-Cell 

Analysis System. A significant drop was detected after 7 days due to the fading of transient 

overexpression. To enrich for stable integration events, citrine-expressing cells were isolated 

by flow cytometry (for a detailed description of FACS sorting refer to section 2.12).  

 

2.14.2 Imaging and quantification 

Note: Image acquisition was performed in collaboration with Colin D.H. Ratcliffe (Sahai Lab, 

The Francis Crick Institute). Subsequent image analysis and quantification was performed by 

Ioannis Loukas. Part of this methods section was written by Colin D.H. Ratcliffe (Loukas et al., 

2023). 

 

For live-cell imaging, cells were plated in optical grade 96-well microplates (GBO, #655090).  

Two hours before imaging, the media was replaced with phenol-free RPMI with or without L-

glutamine (ThermoFisher Scientific, #11835063 and #32404014, respectively). Cells were 

imaged at 15-minute intervals for 24 hours using an inverted Zeiss LSM 880 confocal 

microscope and Zeiss Zen software (v2.3). A Plan-Apochromat 20x/0.8 NA objective lens was 

used and the emission signals were detected using the internal 32-channel GaAsP detector. 

Excitation light from an argon ion laser set to 3.5% was passed through a 458/514/561/633 

multiple beam splitter and emission light was detected between 464-506 nm for eCFP and 

517-571 nm for sensitized emission (FRET). Image acquisition settings were set to 512 x 512 

pixels, zoom 0.6, 8.24 μs pixel dwell and line 4 averaging. Master gain for eCFP detection was 

set to 850 and 750 for citrine detection. Digital gain was set to 1.0 for both and digital offset 

was set to 0 for both. 3 x 2 tiling with 5% overlap followed by stitching was used to capture a 

rectangular field of view. The FRET ratio per cell was calculated from perinuclear areas (4x4 

pixels) by dividing the total intensity in the FRET channel by the total intensity in the eCFP 

channel. For time-lapse single cell analysis, individual cells were manually tracked over time 

and the FRET ratio at each time point was calculated as described above. The measurements 

from time points overlapping with active cell divisions were discarded and replaced with the 

average of 6 time points (three prior and three after) flanking mitosis. 

To assess mitochondrial activity, cells were pulsed with 100 nM of Tetramethylrhodamine ethyl 

ester perchlorate (TMRE, ThermoFisher Scientific, #T669). After 30 minutes, TMRE 

fluorescence was imaged and quantified using an Incucyte® S3 Live-Cell Analysis system. 
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2.15 Next-generation sequencing (experimental set-up) 

2.15.1 Exome-seq 

Note: Exome sequencing was performed by the Advanced Sequencing Facility at the Francis 

Crick Institute. This methods section was written by Robert Goldstone (Loukas et al., 2023). 

 

For whole exome sequencing, gDNA samples were quantified using a QuantiFluor dsDNA 

system (Promega, #E2670) on the GloMax Multi Detection System following the 

manufacturer’s guidelines. Sample quality was assessed using the Genomic DNA 

ScreenTape System run on the TapeStation 4200 according to the manufacturer’s instructions 

(Agilent Technologies, #5067-5365; #5067-5366). Subsequently, gDNA was fragmented 

using Covaris LE220-plus focused ultrasonicator and then prepared into libraries using the 

NEBNext Ultra II DNA library prep kit (NEB, #E7645S) according to manufacturer’s 

instructions.  Libraries were then combined in 8-plex and exonic regions enriched via 

hybridization using the Twist Human Core Exome kit according to the manufacturer's 

instructions (#100578; #101174; #100254).  Libraries were sequenced on the HiSeq 4000 

using paired end 100 bp reads. 

 

2.15.2 Bulk RNA-seq 

Note: Bulk RNA sequencing was performed by the Advanced Sequencing Facility at the 

Francis Crick Institute. This methods section was written by Robert Goldstone (Loukas et al., 

2023). 

 

Bulk RNA sequencing was performed in biological triplicates of 6 different KO populations of 

MEXF 2090 cells in which EED, EZH2, HIST1H1B, SMARCD1, SUZ12 and the non-expressed 

gene TNP2 were targeted and that were grown under nutrient deprivation for 12 days. Four 

and six replicates of unperturbed and nutrient-deprived cells, respectively, grown in distinct 

wells of 96-well plates were pooled and total RNA extraction was performed using a RNeasy 

Plus Micro kit (#74034). Total RNA was quantified using an RNA QuantiFluor RNA system 

(Promega, #E3310) on the GloMax Multi Detection system following the manufacturer's 

guidelines. RNA quality was assessed via the High Sensitivity RNA ScreenTape using the 

TapeStation 4200 (Agilent Technologies, #5067-5579).  RNA was normalized to 30 ng and 

used for cDNA synthesis and library preparation using the QuantSeq 3’ mRNA-Seq FWD kit 
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(Lexogen, #015) according to the manufacturer’s instructions.  Libraries were sequenced on 

the Illumina HiSeq 4000 with single ended reads. 

 

2.15.3 scRNA-seq  

Note: The single cell RNA sequencing experiment was performed by the Advanced 

Sequencing Facility at the Francis Crick Institute. 

 

MEXF 2090 cells were transduced with lentiviral constructs expressing sgRNAs whose 

scaffold was modified to contain the Capture Sequence 1 that is compatible with the 10x 

Genomics Feature barcoding technology (Table 5). To maximize editing efficiency, the KO 

populations also contained the respective pools of unmodified sgRNAs sourced from the 

available sgRNA-library (Henser-Brownhill, Monserrat & Scaffidi, 2017). Six replicates for 

each KO population, grown in different wells of 96-well plates, were cultured under nutrient 

deprivation for 12 days and pooled at end point. A reverse time-course scheme was followed 

to allow simultaneous collection of d0 (unperturbed) and d1, d2 and d12 samples (nutrient-

deprived) (Supplementary Fig. 7a).  Control and KO populations from each timepoint were 

pooled together prior to the library preparation step to minimize technical variability. Single cell 

mRNA-Seq was carried out using the 10x Single Cell Gene Expression kit v3.1 with Feature 

Barcoding technology for CRISPR Screening according to the manufacturer’s instructions 

(10x Genomics, #CG000205). Briefly, cell suspension was counted and assessed for viability 

using an EVE automated cell counter (NanoEntek).  Approximately 10,000 cells (mix of control 

and KO populations), per time point, were loaded into the 10x Chromium chip.  GEM 

generation, barcoding, cDNA synthesis and clean-up was carried out as per the 10X protocol.  

Subsequently, the gene expression and feature barcoding libraries were separated by size 

selection and sequenced on the HiSeq 4000 according to the 10x guidelines. For the gene 

expression and the CRISPR libraries, approximately 336 and 268 million reads were acquired, 

respectively (mean values per time point). This resulted in a sequencing depth of ~87.000 

reads/cell and subsequent detection of ~ 5800 genes/cell. Multiple sequencing runs were 

performed and aggregated using the built-in pipeline of 10x Genomics’ software (CellRanger 

3.0.2). 
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2.16 Computational analysis 

2.16.1 Exome-seq analysis 

Note: Processing of the raw data generated by the Exome-seq experiment was performed by 

Phil East. Subsequent analysis was performed by Ioannis Loukas. This methods section was 

written by Phil East (Loukas et al., 2023). 

 

Trimmed (Trim Galore v0.6.4_dev) 101 basepair paired-end reads were aligned to human 

genome reference sequence GRCh38 using BWA mem (v0.7.17-r1188) (Vasimuddin et al., 

2019). A mean alignment rate of 68,686,981 properly paired read pairs per sample was 

obtained across the 10 samples (SD 17,806,612) with a mean insert size of 175.14 (mean SD 

69.13). The mean coverage across at least 50% of the exome was 176.8. Duplicates were 

marked using GATK MarkDuplicatesSpark (v4.1.7.0) (Van Der Auwera et al., 2013) and base 

quality scores recalibrated using GATK BaseRecalibrator and ApplyBQSR (GATK v4.1.7.0). 

SNVs and indels were called using Strelka2 (v2.9.10) (Saunders et al., 2012). Genome 

sequence, indices and dbSNP calls were obtained from the GRCh38 GATK bundle. SNVs and 

Indels were annotated using SnpEff (v4.3t, SnpEff DB version GRCh38.86) (Cingolani et al., 

2012). The nfcore/sarek pipeline (v2.6.1) (Ewels et al., 2020; Garcia et al., 2020) with Nextflow 

(v20.11.0-edge) (Di Tommaso et al., 2017) was used to run the analysis end to end. Read 

depth varied from 3 to 671 per gene. Mutations with a read count < 50 reads (lower 10%) for 

either allele were excluded due to low coverage.    

 

2.16.2 Bulk RNA-seq analysis 

Note: Processing of the raw data generated by the bulk RNA-seq experiment was performed 

by Harshil Patel. Subsequent analysis was performed by Ioannis Loukas. This methods 

section was written by Harshil Patel (Loukas et al., 2023). 

 

RNA sequencing was carried out on the Illumina HiSeq 4000 platform in multiple runs and 

typically generated ~11 million 76/101bp strand-specific single-end reads per sample. Adapter 

trimming was performed with cutadapt (version 1.9.1) (Martin, 2011) with parameters “--

minimum-length=25 --quality-cutoff=20 -a AGATCGGAAGAGC”. The RSEM package 

(version 1.2.31) (Li & Dewey, 2011) in conjunction with the STAR alignment algorithm (version 

2.5.2a) (Dobin et al., 2013) was used for the mapping and subsequent gene-level counting of 

the sequenced reads with respect to hg19 RefSeq genes downloaded from the UCSC Table 
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Browser (Karolchik, 2004) on 7th June 2017. The parameters used were “--star-output-

genome-bam --forward-prob 1”. Differential expression analysis was performed with the 

DESeq2 package (version 1.12.3) (Love, Huber & Anders, 2014) within the R programming 

environment (version 3.3.1). An adjusted p-value lower than 0.01 was used as the significance 

threshold for the identification of differentially expressed genes. Pseudocount values 

estimated with the DESeq2 package were used to identify non- and lowly-expressed genes in 

MEXF 2090 cells, as transcript per million (TPM) values normalized to gene-length are not 

suitable for 3’-mRNAseq datasets. Expression values (TPM) for LXFL 1674 cells were sourced 

from the publicly available Oncotest-Charles River dataset. 

 

2.16.3 scRNA-seq analysis 

Note: Paolo Inglese performed a) pre-processing of the raw data, b) cell clustering and 

identification of KO-enriched or control-enriched subpopulations and c) run the txburst to 

estimate the bursting properties. Phil East applied the SCDE/PAGODA algorithm. The 

subsequent analysis was performed by Ioannis Loukas and Paola Scaffidi. 

The detailed methods regarding the single-cell RNA seq experiment can be found in Loukas 

et al (2023). In the following subchapter the key steps of the analysis are summarized. 

 

2.16.3.1 Pre-processing 

a. Assigning cells to KO populations:  

As stated earlier, the single-cell transcriptomics experiment was multiplexed, meaning that all 

the profiled KO populations were mixed before sequencing. Naturally, the first step during data 

processing was to remove cells where sgRNAs were not detected, as these cells could not be 

allocated to specific KO populations. For the remaining cells, the normalized sgRNA counts 

were used to fit a logistic regression model and cells with a predicted probability greater than 

95% were assigned to the corresponding label. At this stage, 2632 cells with ambiguous cell 

identities were discarded (out of the total 15722 profiled cells). 

b. Filtering:  

To minimise the impact of technical noise on the subsequent analysis and interpretation of the 

results, the dataset was filtered for a) genes detected in less than 20 cells across all time 

points b) cells with overall small number of detected genes and c) cells with a high percentage 

of mitochondrial genes counts, an established indicator of low-quality cells in single-cell 

transcriptomics experiments. 467 cells were removed from the dataset at this stage. 
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c. Normalization:  

The last step of the processing involved scaling normalization of the data to remove bias 

generated by technical differences in cDNA capture or PCR amplification per cell. Based on 

the assumption that such artefacts should affect all detected genes equally, a scaling factor 

was calculated per cell and subsequently used to normalize gene counts. The process 

affected the dataset minimally, confirming that the experimental design minimized the 

technical variance.  

 

2.16.3.2 Differential gene expression analysis 

To identify differentially expressed genes among samples of interest, cell-cycle corrected data 

were processed through relevant Seurat pipelines. Pairwise comparisons were performed 

across all dimensions of the dataset (KO vs Control populations at each time point and each 

population across time points). Statistical significance of the observed differences in gene 

expression was assessed by non-parametric Wilcox test followed by correction for multiple 

testing. FDR < 0.01 was used as the threshold to classify genes as differentially expressed. 

 

2.16.3.3 Cell clustering and identification of KO-enriched or control-enriched 

subpopulations 

To dissect population heterogeneity at the latest time point (day 12; d12) the following steps 

were performed [Figure 51]: 

i) Pairwise clustering: a KO and the control population at d12 were clustered based on 

the expression of the most variable genes (VGs) within the merged cell populations. 

Principal Component Analysis (PCA) dimensionality reduction was applied to the 

merged cell cycle corrected VG data. Clustering was performed via the nearest-

neighbors method through the relevant functions available in Seurat. 

ii) Enrichment analysis: Quantification of the relative enrichment of KO and control cells 

in each defined cluster was performed by hypergeometric test for each cell type. Only 

clusters significantly enriched for at least one cell population were used in the 

following steps of the analysis. Selecting clusters that are only enriched for either 

control or KO populations, was based on the assumption that these differentially 

enriched clusters should be the ones driving the phenotypic differences observed in 

the fitness assays. 

iii) Extraction of cluster-specific gene sets: for each KO- or control-enriched clusters the 

DEGs were identified against all other cells of the merged dataset. Genes with FDR 
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< 0.05 were considered differentially expressed and used to characterize the 

transcriptional identity of each cluster.  

iv) The above steps were repeated for all pairwise comparisons at d12 (all KO 

populations vs control cells) 

v) Defining shared signatures across subpopulations: hierarchical clustering of all the 

above signatures to identify gene signatures shared by KO- or control-enriched 

subpopulations. Signatures consisting of less than 50 DEGs or that corresponded to 

cell clusters with a size smaller than 5% of the pooled set size were removed. 

vi) Meta-signature extraction: After defining the optimal number of clusters, the gene 

sets characteristic of these meta-clusters were extracted. These gene sets were 

denoted as meta-signatures to distinguish them from the cell cluster-specific 

signatures defined earlier (step iii) 

vii) GSEA: Genes defining the KO-enriched or control-enriched meta-signatures were 

finally analyzed by GSEA to identify affected pathways. 

 

2.16.3.4 Pathway-score estimation 

Fitness and stress signatures were retrieved from the respective Hallmark gene sets in the 

MSigDB database. Genes present in all time points within the dataset were used for the 

analysis. Pathway scores were estimated as the first principal component scores of the cell 

cycle corrected counts of the whole dataset, comprising all cell populations and time points. 

 

2.16.3.5 Gene set enrichment analysis (GSEA) 

Gene set enrichment analysis of pre-ranked gene lists of either whole transcriptomes or 

identified meta-signatures was performed, focusing on MSigDB (version 7.4) hallmark, 

curated and GO gene sets. All parameters were kept as default except for enrichment statistic, 

which was set to classic. To assess the enrichment of signatures in HVGs and HFGs, the 

“compute overlaps” function of MSigDB was used, focusing on the hallmark gene sets and 

setting a threshold for biological significance at p-value ≤ 10-10. 

 

2.16.3.6 Analysis of gene expression variance 

In this thesis, expression variance of single genes was quantified by using coefficient of 

variation (CV2) as a metric. Within the generated dataset from the single cell transcriptomics 

experiment, CV is strongly anticorrelated with the mean expression, biasing the detection of 
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variable genes towards the ones that are lowly expressed (noisy). To remove this genome-

wide trend and correct for additional technical (e.g. gene length) and cell-cycle related bias 

that affect inference of variance, the SCDE/PAGODA algorithm was applied to the raw dataset 

(Fan et al., 2016). The generated matrix contained for each gene the mean expression, the 

normalized variance and the percentage of expression across cells. Lowly-expressed genes 

with low mean expression (Avmodes < 10) in a given sample were discarded to avoid 

unreliable variance values. Finally, to define highly-variable genes (HVGs) a normalized 

variance threshold of 1.21 was used (top 5% in unperturbed control cells). 

 

2.16.3.7 Transcriptional burst analysis 

Burst kinetics were estimated using the approach described in Larsson et al (2019). As an 

input the raw RNA counts from the scRNA-seq experiment were used. A two-state model of 

stochastic gene expression was used to model the expression distribution at each gene and 

estimate the parameters (frequency and size) of the transcriptional bursts. In this model, each 

gene can fluctuate between two distinct states, that are either permissive or refractory towards 

transcription, ON and OFF respectively. Maximum likelihood (ML) inference was used to 

obtain estimates and confidence intervals on bursting parameters. The generated parameters 

are Kon, koff and ksyn. kon and koff are indicative of the time (in units of mRNA degradation) of 

the ON and OFF state respectively, while ksyn represents the transcription rate when the gene 

is in the ON state. Burst frequency is represented by kon and burst size is defined as the ksyn/koff 

ratio. 

While a two-state model likely does not capture all the variables affected by the complex 

biological perturbation induced by nutrient deprivation (Tunnacliffe & Chubb, 2020), I assumed 

that pairwise comparisons between cell populations are not affected by possible artifacts. It is 

important to state that the scRNA-seq dataset generated in this thesis does not have allele 

resolution. However, I assumed that any over- or under-estimation of the kinetics parameters 

would equally affect all compared samples. This is particularly relevant as the aim of this 

analysis was not to estimate absolute kinetic parameters, but to semi-quantitatively assess 

relative changes across conditions. In line with this assumption, the bursting parameters from 

the two distinct alleles profiled by Larsson et al. were highly correlated (R2 = 0.79) [Figure 8], 

indicating that estimates from the combined alleles should not substantially affect comparisons 

across conditions (Larsson et al., 2019).  
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Figure 8: Allele specific correlation of burst frequencies 
  
Correlation of burst frequencies as inferred via allele-specific single cell transcriptomics in primary 
mouse fibroblasts. Each dot represents a gene and its coordinates the burst frequency (kon) as inferred 
in the CAST and C57 mice backgrounds. R-squared correlation from linear regression is shown. Raw 
data sourced from Larsson et al (2019).  

 

The inference of the bursting properties was done for each sample (Cell type x time point) 

separately. The txburst algorithm returned accurate estimates of the bursting properties for at 

least 2000 genes in each sample (min: 2016, max: 3666). It is worth noting that these cohorts 

of genes were partially overlapping between samples (common genes in addition to genes 

where their estimate was possible only in one sample). For pairwise comparisons of the 

bursting parameters across the time trajectory only common genes sets were used. In the rest 

of the comparisons all the available accurately estimated genes were considered. High-

frequency genes (HFGs) were defined in the control population (TNP2-KO cells) as genes 

with Kon > 4 (top 33%).  

 

2.16.4 Statistical analysis 

The type of statistical tests performed in this study, the value of N, and what N represents are 

indicated in the figure legends. Unless otherwise stated, all values are the average of 

individual values ± standard error of the mean (SEM) from at least three biological replicates. 

Statistical analysis was performed using either NGS-related packages or GraphPad software. 

The choice among the different statistical test used throughout the thesis (e.g. T-test, ANOVA, 

Mann-Whitney, Kolmogorov-Smirnov, Wilcoxon signed-rank test, etc.) was determined per 

experiment based on the biological question and the nature of the dataset. The main 
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considerations that dictated the choice were i) the number of groups under examination, ii) if 

the groups are matched or unmatched iii) if the data follow a Gaussian distribution and iv) if 

the exploration within the samples focuses on detecting differences on the median or the 

overall distribution. In cases that I was exploring alterations in the mean behavior among two 

samples I used student’s T-test. Characteristic examples are the difference in growth or 

apoptosis between cells cultured in unperturbed conditions or under nutrient starvation 

[Figures 11 and 14]. In other cases, I was interested in assessing alterations in the overall 

distribution of two unmatched groups and thus performed either Mann-Whitney or 

Kolmogorov-Smirnov (KS) tests. Examples of this, are the comparison of the FRET ratios 

between DMSO and EZH2i populations in response to stress [Figure 42] or the assessment 

of distribution changes in the expression of singles genes among different KO populations 

growing under nutrient starvation [Figures 53 and 63]. Finally, there were cases where I 

explored across multiple groups the overall effect between two variables (e.g. genotype and 

fitness under stress). In these cases, I used one-way ANOVA [Figures 22, 25, 26 and 58].  
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Chapter 3.  

Selective advantage of epigenetically disrupted cancer cells 

under environmental stress 

 

3.1 Introduction 

Tumor progression can be considered an evolutionary process that is governed mainly by the 

following forces: a) diversity of biological properties b) selection that acts on diversity to 

promote the propagation of the fittest and c) genetic drift (Lipinski et al., 2016). Genetic and 

non-genetic alterations, along with their functional interplay, have been implicated in 

establishing intratumor heterogeneity in biological properties that ultimately fuels disease 

progression and relapse to therapy. Genome-wide sequencing studies of tumor specimens 

have detected recurrent loss-of-function mutations in epigenetic regulators. This disruption of 

the epigenetic network a) is a common phenomenon across different cancer types b) is 

affecting all functional classes of epigenetic regulation and c) is affecting multiple epigenetic 

regulators with varying recurrence (Brennan et al., 2013; Shen & Laird, 2013; Lawrence et al., 

2014). On top of that, recent advances in our ability to infer when mutations are acquired 

during tumorigenesis demonstrated that epigenetic regulators are frequently inactivated in 

cancer subpopulations, uncovering an important role of epigenetic deregulation during 

subclonal expansion (Jamal-Hanjani et al., 2017; Dentro et al., 2021). Aside from potential 

gene-centric effects, the above patterns are suggestive of a model where disruption of multiple 

diverse components of the epigenetic machinery, at the network level, may converge towards 

similar cellular traits that are favorable and thus selected over time during the later stages of 

cancer evolution.  

One important aspect of cancer evolution worth mentioning, is that cell fitness (what is 

considered favorable) is not a fixed property but is rather fluid and dependent on the specific 

context in which cancer cells grow, namely the tumor microenvironment (TME). This 

environment is characterized by the presence of hostile acellular properties (e.g. limited 

nutrients) and cellular components (e.g. immune cells) that are both spatially heterogeneous 

and dynamic over time (Junttila & de Sauvage, 2013; Wei et al., 2020). This spatial and 

temporal variability of unfavorable conditions creates the necessity for cancer cells to 

constantly survive and adapt to their changing environments in order to sustain uncontrolled 

proliferation that fuels tumor progression. Epigenetic regulators are among those regulatory 

layers that mediate the response of cells to external environmental stimuli, by dictating their 

transcriptional output. Thus, it is worth exploring whether their frequent inactivation can affect 
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the interactions of cancer cells with the tumor microenvironment and subsequently their ability 

to survive in this hostile milieu. 

 

3.2 Aim 

In this Chapter, I describe the steps taken to interrogate whether disruption of the epigenetic 

network alters the fitness of cancer cells under stress. Initially, I identify suitable cellular 

models that are devoid of mutations in epigenetic regulators and explore their response to 

various environmental challenges relevant to cancer cells. Next, I demonstrate in detail the 

optimization steps towards the successful completion of the large-scale fitness assays and 

the subsequent analysis of the generated data. Finally, I present the major observations, 

validate the identified gene-stress fitness relationships, and perform additional experiments to 

strengthen the emerging link between epigenetic deregulation and increased fitness of cancer 

cells under stress. 

 

Note: Several data presented in this chapter are already published (Loukas et al., 2023). 

Selective advantage of epigenetically disrupted cancer cells via phenotypic inertia © 2023 by 

Ioannis Loukas et al is licensed under CC BY 4.0. The researchers that contributed to this 

chapter are acknowledged accordingly at the beginning of the respective subchapters.  

 

 

3.3 Results 

3.3.1 Establishing experimental models of cancer cell survival to 

environmental challenges 

3.3.1.1 Selecting distinct cancer models with minimal disruption in the epigenetic 

machinery 

The first step towards assessing the effect of epigenetic deregulation in cancer cell survival 

under stress was to identify cancer models that are devoid of mutations in epigenetic 

regulators. The models used in this thesis are cell lines derived from Patient-Derived 

Xenografts (PDXs) from various cancer types. These populations more faithfully recapitulate 

genetic, histological and phenotypic features of the original tumors compared to the 

conventional cancer cell lines (Tentler et al., 2012). The available PDX-derived lines in our lab 
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are characterized by inactivating mutations in Tp53 and oncogenic driver mutations in 

KRAS/NRAS (KP cancer models, Table 3). 

To explore fitness relationships and subsequent molecular mechanisms that are shared 

across cancer types, I selected two distinct cancer cell models: melanoma, of melanocytic 

origin and NSCLC lung carcinoma, of epithelial origin (MEXF 2090 and LXFL 1674 

respectively). The above lines express 278 and 275 core epigenetic regulators respectively 

[Figure 9]. Their expression is significantly correlated between the two cell lines (R2=0.54), 

with a small fraction being specific for either cancer type. Analysis of whole exome sequencing 

data obtained from MEXF 2090 and LXFL 1674 revealed that the epigenetic regulators 

investigated in this study are unaffected by loss-of-function mutations (gain of stop codon), 

making them suitable systems to dissect the functional consequences of disrupting the 

network through experimental gene inactivation. 

 

 

Figure 9: Transcriptomic characteristics of epigenetic regulators in MEXF 2090 and LXFL 1647 
cells 
 
Expression levels of epigenetic regulators in the indicated cancer models. Each dot is a gene. Genes 
selected as negative controls for CRISPR-induced editing are labelled in red. TPM: Transcripts per 
million. 
KO control genes: non-expressed genes, targeted in the large-scale fitness assays as control 

 

Disruption of specific genes will be achieved by inducing loss-of-function mutations in 

epigenetic regulators (ERs) through CRISPR-Cas9 gene targeting (see section 3.3.2.1). This 

creates the requirement for Cas9 expressing cancer populations. A previous member in the 

Scaffidi lab (Louise Richardson) generated clonal populations from the above PDX cell lines, 

inducibly expressing Cas9 nuclease upon treatment with Doxycycline. Gene knock-out (KO) 

is induced by transduction of sgRNA-expressing lentiviral constructs into Cas9-expressing 

cells. Despite the selection of transduced cells by antibiotic treatment, gene KO may not occur 

in all cells within the population. To estimate the KO efficiency, melanoma and lung cancer 

cells were transduced with an sgRNA targeting LMNA, a non-essential gene, whose protein 
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levels are easily quantifiable by immunofluorescence. 10 days after infection more than 65% 

of cells in both lines were negative for Lamin A/C, indicating efficient KO within the population 

and the existence of a clear window to detect phenotypic differences [Figure 10A]. To provide 

proof of principle of successful gene editing towards epigenetic regulation in the cancer 

models used, I next focused on Male Specific Lethal 3 (MSL3) which is a subunit of the MSL 

complex that catalyzes the acetylation of H4 at Lys-16. Quantifying the levels of H4K16Ac in 

MSL3-KO melanoma cells revealed similar KO efficiency to the one observed with Lamin A/C 

[Figure 10B]. It is worth noting that the presence of ~30% of cells escaping KO suggests an 

underestimation of the actual differences that will be detected between knock-out and control 

populations in the subsequent experiments.  

 

 

Figure 10: Robust gene inactivation in MEXF 2090 and LXFL 1647 cells 
 
[A] Quantification of KO efficiency in the indicated cell lines transduced with LMNA-targeting sgRNAs 
as assessed by loss of Lamin A/C staining. 
[B] Immunofluorescence microscopy detecting loss-of-function of the histone acetyltransferase MSL 
though loss of H4K16ac in polyclonal populations of MEXF 2090 cells transduced with MSL3-targeting 
sgRNAs. Scale bar: 10 μm 

 

In summary, I selected two distinct cancer models (Melanoma and Large Cell Carcinoma) for 

the subsequent experiments. Their common driver mutations, clonal nature and the fact that 

they are devoid of major lesions in epigenetic regulators, make them suitable models to assess 

the effect of epigenetic deregulation. 

 

3.3.1.2 Characterizing the response of cancer cell lines to nutrient starvation 

Decreased cancer cell fitness under nutrient starvation 

Aiming to probe how epigenetic deregulation affects cancer cell survival to unfavorable 

conditions, the next step was to incorporate into the experimental setup a stress condition 

relevant to cancer cells. During tumor progression, uncontrolled proliferation of cells is 

accompanied by suboptimal vascularization. This results in an imbalance between supply and 
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demand for resources, thus creating tumor species that face a substantial shortage in both 

oxygen and nutrients (Wei et al., 2020). One of the most limited nutrients within solid tumors 

is glutamine, a non-essential amino acid that plays a crucial role both in protein and nucleic 

acid biosynthesis (Kamphorst et al., 2015; Pan et al., 2016; Yoo et al., 2020). 

To mimic the nutrient scarcity faced by proliferating cancer cells, I starved melanoma and lung 

cancer cells from L-glutamine and followed their behavior over time through time-lapse 

imaging. Both cell lines suffering glutamine deprivation exhibited a striking decrease in 

proliferation over 3 days [Figure 11A-B]. The observed growth inhibition was similar when 

glucose was depleted from the media of melanoma cells, suggesting that limiting levels of 

distinct nutrients can elicit similar cellular responses [Figure 11C]. This phenotypic similarity 

is in line with previous reports, demonstrating that diverse nutrient stressors can lead to highly 

similar and overlapping molecular effects (Gameiro & Struhl, 2018). To further characterize 

the behaviors underlying the decreased fitness of cancer cells during nutrient starvation4 I 

employed a live-cell Caspase-3 fluorescent indicator along with EdU incorporation to directly 

assess the rates of apoptosis and proliferation respectively (Cen et al., 2008). Early response 

to nutrient starvation consisted of a gradual decrease in proliferation along with a respective 

increase in apoptosis. After 3 days under stress, these antithetic trends stabilized, reaching 

an equilibrium where approximately 20% of proliferating cells counteracted the death of a 

significant fraction of the population [Figure 11D], in accordance with the absence of 

population growth during the first week under starvation [Figure 12B]. Monitoring the cancer 

cells under chronic starvation (more than 3 weeks), revealed the presence of resistant 

colonies, likely due to the selection of favorable underlying traits, that could combat starvation 

and drive population growth under this unfavorable condition [Figure 11E]. 

Overall, nutrient deprivation poses a significant challenge for cancer cells. The initial reduction 

in proliferation is accompanied by a significant increase in apoptosis that plateaus over time. 

After prolonged culture, spontaneously stress-resistant colonies emerge able to reconstitute 

growing populations.  

 

 
4 Hereafter in this chapter, nutrient starvation refers to experimental procedures where cancer cells are deprived 
of the non-essential amino acid  L-glutamine. 
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Figure 11: Nutrient starvation halts growth of cancer cells  
 
[A] Growth kinetics of MEXF 2090 melanoma cells in unperturbed conditions or under glutamine 
deprivation. Values represent mean ± SEM from eighteen biological replicates. P-value from two tailed 
Student’s t-test calculated at the last time point. 
[B-C] Growth kinetics of the indicated cells in unperturbed conditions or under glutamine deprivation (B) 
or glucose-deprivation (C). Values represent mean ± SEM from twelve and eighteen biological 
replicates, respectively. P-value from two-tailed Student’s t-test calculated at the last time point. 
[D] Representative images and quantification of proliferating (EdU+) and apoptotic (Caspase-3+) MEXF 
2090 cells grown under glutamine deprivation. Values represent mean ± SEM from three biological 
replicates. P-value comparing values at d0 and d12 for each curve from two-tailed Student’s t-test. The 
fluorescent signal is overlaid on phase contrast. Scale bar: 50 μm. 
[E] Phase contrast image showing expansion of a stress-resistant subpopulation of LXFL 1674 cells 
after 22 days of growth under glutamine deprivation. The outline of the IncuCyte cell mask is indicated 
by a yellow line. Scale bar: 400 μm 

 

 

Absence of mutational events mediating the phenotype of stress-resistant populations 

Note: Exome sequencing was performed by the Advanced Sequencing Facility at the Francis 

Crick Institute. Processing of the generated raw data was performed by Harshil Patel. 

Subsequent analysis was performed by Ioannis Loukas. 

 

To explore in greater depth the capacity of cancer cells to survive under chronic starvation 

and interrogate the extent, probability and the time-frame of such behavior I generated 120 

replicates, by seeding 3000 cells at the start of the treatment, and examined their response to 
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starvation over several weeks [Figure 12A]. While the initial response was homogeneous, at 

the latest time points (after 10 days under stress) the behavior varied significantly with some 

replicates displaying severely compromised growth, some showing early emergence of stress-

resistant populations and others characterized by an intermediate phenotype [Figure 12B-C]. 

The difference in the mean response between the two cancer models can be attributed to the 

significantly lower overall proliferation rate that characterizes the lung cancer cells [Figure 

12D]. Of note, a correlation was observed between the number of resistant colonies and 

overall population fitness, suggesting that the phenotypic differences observed within the 

replicates can be attributed to the selection of rare subclones [Figure 12E]. 

 

 

Figure 12: Variable response of cancer cells under prolonged nutrient starvation 
 
[A] Schematic representation of the experimental procedure 
[B-C] Growth kinetics of 60 replicates of LXFL 1674 (B) or MEXF 2090 (C) cells under the indicated 
conditions. 
[D] Population density of individual replicates of the indicated cell lines after 22 days of growth under 
nutrient deprivation. 
[E] Growth kinetics of three biological replicates of LXFL 1674 cells under nutrient deprivation, and 
corresponding images. IncuCyte mask capturing confluence within the wells (phase contrast imaging) 
is shown in yellow. Scale bar: 800 μm 

 

The aforementioned heterogeneity can have either a genetic or non-genetic basis. The clonal 

nature of the lines used, the distinct behavior of the replicates and the stochastic emergence 

of stress-resistant subpopulations argue against a scenario where the selection of pre-existing 
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genetic events mediates the the observed phenotypes. To directly assess the potential 

contribution of mutations in the emergence of resistance to stress, I selected populations that 

managed to recover growth under nutrient deprivation and compared their mutational 

landscape via exome sequencing to the one before treatment [Figure 13A]. After accounting 

for technical noise, analysis of the mutational landscape detected few genetic alterations in 

the examined populations (min: 3, max: 18). However, none of these alterations were clonal. 

To the contrary, they were characterised by low frequency within the surviving populations 

and their abundance after exposure to stress correlated with the one in the treatment naïve 

parental populations [Figure 13B]. Further examination of these sub-clonal SNVs did not 

reveal any recurrent mutational events shared across different replicates of the same cancer 

type, limiting the ability to assign biological significance to these events [Figure 13C]. 

Although the above data cannot exclude the possibility that every single population acquires 

a different mutation (or combinations of them in different surviving subclones) that confers a 

survival advantage to starvation, they suggest that non-genetic events may be important for 

the observed phenotypes and are worth exploring. 

 

 

Figure 13: Absence of clonal or shared subclonal mutations in cancer populations surviving 
under nutrient starvation 
 
[A] Population density of individual replicates of the indicated cell lines after 22 days of growth under 
nutrient deprivation. 
[B] Clonality of the detected SNVs. The variant allele frequency (VAF) of each mutation in the parental 
population is indicated by colours, showing that detected mutations were already present at higher 
frequency before bottleneck selection. SNV: Single Nucleotide Variation 
[C] Venn diagrams showing the number of subclonal mutations shared by the indicated stress-resistant 
subpopulations as indicated in B. 
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Inhibition of selected epigenetic regulators enhances cell survival under nutrient starvation 

 To get a first indication regarding the potential role of epigenetic regulation in the response to 

stress, I treated cancer cells with a panel of chemical compounds that inhibit the function of a 

variety of epigenetic regulators including histone deacetylases, methyltransferases and 

demethylases, with either repressive or activating functions. More specifically, melanoma cells 

(PDX MEXF 2090) were pre-treated for 3 days with the drugs. Considering that these cells 

are fast cycling (approximately doubling every 18 hours), this timeframe provided enough time 

for robust resetting of the epigenetic network (e.g. loss of histone marks upon inhibition of the 

respective enzymes, etc). Cells were then cultured either in the absence of stress or in 

starvation (L-glutamine deprivation) and their fitness was monitored over time. Multiple 

compounds increased cell fitness under nutrient deprivation, with treated populations showing 

up to 5-fold more cells than control populations after 9 days [Figure 14]. In the unperturbed 

conditions most of the treated populations exhibited comparable proliferation rates, with the 

exceptions of populations where HDACs were inhibited that demonstrated decreased growth 

[Figure 14]. This reduction in the proliferation rate was accompanied by an alteration in cellular 

morphology from a mesenchymal to an epithelial state. Overall, selective epigenetic inhibition 

can increase the fitness of cancer cells, and this advantageous effect is specific only under 

stress.  

 

 

Figure 14: Chemical inhibition of epigenetic proteins enhances survival of MEXF 2090 cells 
under  nutrient starvation 
 
[A-B] Representative images of endpoint populations (A) and growth kinetics of MEXF 2090 cells 
treated with the indicated compounds and grown under the indicated conditions. Values represent mean 
± SEM from three biological replicates. P-values from two-tailed Student’s t-test (*p < 0.05 and **p < 
0.01). 
1: RGFP966, 2: GSK126, 3: Tubastatin A; 4: Quisinostat; 5: EPZ004777; 6: WM-8014; 7: EX527; 8: 
DMSO, 9: JIB-04; 10: MM102. Nuclei are visualized with SYTOX green nucleic acid stain. Scale bar: 
50 μm 
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In summary, the data presented in this subchapter confirm that nutrient starvation poses a 

major challenge for cancer cells. Cancer populations devoid of inactivating mutations in 

epigenetic regulators exhibit significant phenotypic variability when grown under nutrient 

deprivation. While the majority of the cells suffer and die under stress, there is a small fraction 

that survives and drives long-term population growth under stress. Mutational analysis of these 

rare survivors failed to detect any genetic basis for their behavior. Finally, initial evidence 

suggests that interfering with epigenetic regulation can promote cancer cell survival under 

stress, hinting towards further investigation of this functional relationship. 

 

3.3.2 Systematic disruption of the epigenetic regulatory network under 

nutrient starvation 

Having selected the cancer cell lines and assessed their response to a characteristic property 

of the tumor microenvironment, nutrient scarcity, I then systematically disrupted the epigenetic 

network in both melanoma and lung cancer cells and looked for alterations in the capacity of 

the cells to survive under stress. The fitness of cancer cells is dependent both on their intrinsic 

proliferative capacity but also on their ability to withstand environmental challenges. A 

perturbation may lead to increased survival because it affects the intrinsic cycling capacity of 

the cells irrespective of the stress condition per se. In an alternative scenario, a mutation may 

exert an effect only under nutrient starvation, without affecting the proliferation of the cells in 

the absence of stress. To account for the above scenarios, I explored the behavior of the cells 

both in unperturbed and stressed conditions and quantified the stress-specific fitness. The 

scope of this approach was not to identify top hits, for example gene KOs that have the 

strongest effect on survival under stress, but rather explore patterns across the dataset to 

reveal potential network-level effects. This creates the necessity of detecting even mild 

phenotypes among the interrogated populations. Such cases could be masked in approaches 

involving pooled CRISPR screens, thus I opted for an experimental setup consisting of the 

inactivation of epigenetic regulators in an arrayed format. In the next subchapter, I am 

presenting the experimental procedure followed during the large-scale fitness assays along 

with the subsequent steps taken to ensure the quality of the generated dataset. 

 

 

 

 



89 
 

3.3.2.1 Large-scale fitness assay: design and experimental pipeline 

Plate design 

To induce loss-of-function mutations in the epigenetic machinery, I utilized an arrayed lentiviral 

CRISPR/Cas9 library that was previously developed in the lab (Henser-Brownhill, Monserrat 

& Scaffidi, 2017). This library targets 450 genes broadly involved in phenomena related to 

chromatin structure and function. On top of core epigenetic activities, the library contains 

genes that present sequence and functional domain similarity to epigenetic regulators along 

with genes involved in DNA Damage response and repair. Considering the scope of the 

current thesis, I selected 318 core epigenetic regulators to inactivate, belonging to 16 distinct 

functional classes [Figure 15A] (Table 1) 

Pilot experiments in 96-well format, where the growth of control populations under nutrient 

starvation was examined, highlighted the need to include multiple control populations to 

account for technical variability in the large-scale experiments. Each library plate was therefore 

designed such that [Figure 15B]:  

A. Outer wells are excluded to avoid the edge effect. Pilot experiments where replicates 

of identical populations were grown in unperturbed conditions, revealed that the 

phenotype obtained by populations in the outer wells of a 96-well plate was recurrently 

lower compared to the rest. This effect was magnified when replicate populations were 

cultured under stressful conditions (data not shown). Aiming to minimize such bias and 

increase the reliability of the detected phenotypes, I decided to exclude these wells 

from the final format.  

B. Control populations occupy 1/3 of each 96-well plate. This substantial number of 

control wells allows for filtering out technical outliers during downstream analysis. The 

presence of non-targeting sgRNAs, commonly used as control samples in CRISPR 

screens, can exacerbate promiscuous editing thus significantly biasing the detected 

phenotypes. To minimize the introduction of such errors in the system, cells carrying 

sgRNAs against non-expressed genes were used as negative controls (Chen et al., 

2018). 

C. The selected negative controls carry sgRNAs against TNP1, TNP2, HMGB4, SMC1B 

or DNMT3L. Analysis of RNA-seq data revealed that the above genes are not 

expressed in either MEXF 2090 or LXFL 1647 cancer populations [Figure 9]. For each 

control population, four intra-plate replicates are assigned, to control for variability 

attributed to technical factors like disparities in initial plating, position effect within the 

plate and others. The inclusion of 5 distinct genes as controls buffers potential outlier 

effects in the phenotype of control populations (e.g. off target effects). The overall 
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number of negative controls per plate (20) provides a substantial amount of data 

regarding the mean behavior of control populations, accounts for potential outliers and 

thus allows for robust exploration of phenotypic deviations from the norm. 

D. 1 well in each plate is occupied by ARID2-KO cells, which demonstrated significant 

fitness deviation under stress in the pilot experiments. The phenotype observed in 

these ARID2-KO populations across different plates is used as an indicator of 

reproducibility between different experiments. 

Based on the above plate design, the PDX MEXF 2090 or LXFL 1647 KO library was 

distributed across eight distinct plates. After having refined the plate design and optimized 

step by step the high-throughput production of KO cells in 96-well format, I generated the 

libraries of KO populations for both melanoma and lung cancer models [Figure 15C]. Of note, 

I avoided prolonged culture of the newly generated KO populations (10 days from induction to 

fitness assays) to minimize the potential population diversification. The goal is to culture these 

plates in unperturbed or nutrient-starved conditions and ask if the epigenetically deregulated 

cells exhibit differential fitness under stress compared to the control populations [Figure 15D].  
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Figure 15: Systematic disruption of epigenetic regulators in MEXF 2090 or LXFL 1647 cells 
 
[A] Representation of functional classes of epigenetic regulators among the genes targeted by the 
arrayed CRISPR library. E: eraser; R: reader; W: writer; Ac: acetylation; Me: methylation; P: 
phosphorylation; Ub: Ubiquitination. 
[B] Library plate format. KO populations for epigenetic regulators occupy 66% of the plate while the rest 
is populated by control samples. Each plate carries an ARID2-KO population as an indicator of 
phenotypic reproducibility across plates. 
[C] Schematic representation of the workflow followed for the generation of the melanoma or NSCLC 
KO library. 
[D] Schematic of the experimental approach used to explore the effect of epigenetic deregulation on 
cancer cell fitness under stress. 
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Assay pipeline 

The KO library (318 targeted genes) consists of eight plates. Based on the assay format, each 

library plate needs to be cultured in three different conditions (two different durations under 

nutrient deprivation and unperturbed). The scope behind selecting two distinct durations under 

stress is to be inclusive and capture both early responders but also detect survivors that 

deviate from the norm at later stages. To do so, during each experiment I generated multiple 

replicate plates from each library plate (> 15). Due to the scale of the experiments, during this 

seeding step it is not possible to count cells for each KO population. Thus, I opted to let the 

library plates reach confluence, allowing for different populations across the plate to reach 

similar densities. During splitting, a uniform dilution factor was applied across the plate aiming 

for approximately 10% density. This approach resulted in comparable plating density across 

the different populations within a library plate [Figure 16]. Approximately 24 hours post 

seeding, when the median cellular density of the plates reached the designated density of 

approximately 4000 cells, I exposed the cells to the defined stress conditions. Throughout the 

experiment, one representative plate was monitored by time-lapse imaging, to confirm that the 

growth kinetics was similar to the ones expected based on pilot experiments and also dictate 

the respective endpoint where the cells are quantified by nuclei staining. Finally, I processed 

the raw data to assess the fitness of each knock-out population in the different contexts relative 

to control populations, normalizing for potential stress-independent growth changes induced 

by gene KO (growth under stress/growth under unperturbed conditions) [Figure 16]. 
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Figure 16: Experimental pipeline followed during the arrayed large-scale fitness assays 

 

 

3.3.2.2 Inferring the stress-specific phenotype 

The generated data from the large-scale fitness assays were then processed through a quality 

control pipeline, to ensure their validity before any further data analysis. Filtering of data 

included the following steps: a) removal of outlier replicate wells that are often characterized 

by cellular clumps that hinder accurate quantification of population phenotype b) removal of 

populations with severely reduced growth in unperturbed conditions, that would inflate the 

ratios of the inferred stress-specific fitness (see below) c) exclusion from the analysis of genes 

that are not expressed in the respective cancer models and thus their inactivation is not 

expected to result in phenotypic deviation. For greater details refer to Methods section 2.6.4. 

It this worth mentioning that the filtered data from step a represented less than 1% of the total 

imaged wells with the majority of the cases (>85%) being excluded due to the presence of 
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visible cell clumps. 262 and 250 populations of MEXF 2090 and LFXL 1674 respectively 

passed the filtering from steps b and c and were then used for downstream analysis.  

Having confirmed the good quality of the raw data, I then went on to calculate the stress-

specific phenotype for each KO population. To do so, in the first step of data processing, I 

divided the cell count of each population obtained under nutrient starvation over the mean of 

its untreated counterpart to determine the stress-specific fitness [Figure 17A-B]. This step 

corrects for technical variance irrespective of the stress condition. More specifically, all the 

experiments are characterized by technical noise as a result primarily of the variable pre-

treatment density across different populations. This can be attributed to the way the seeding 

of the populations during the large-scale fitness assays was performed (see above). 

Importantly, nutrient starvation exerts its effect on cells in a density-independent manner. In 

pilot experiments where different numbers of parental melanoma cells were seeded and then 

exposed to nutrient starvation, normalization over the mean growth of unperturbed populations 

could correct for this discrepancy, allowing for solid comparison between samples (data not 

shown). 

By definition, the control populations should demonstrate the same phenotype, thus observed 

differences among them indicate the presence of technical artifacts. By normalizing over the 

growth in the unperturbed condition, I correct for such technical discrepancies, evident by the 

narrow distribution of the negative controls after this step of data processing [Figure 17B]. It is 

worth mentioning that this approach was selected based on initial pilot experiments, where 

different normalization methods were assessed. It primarily corrects for differences that 

emerge from the variability in the initial plating density across the different populations within 

the plates. To avoid inflated ratios that could bias the analysis, populations within significant 

deviation from the norm in unperturbed conditions were excluded from the downstream 

analysis (See Methods Section 2.6.4 for more details). Next, I searched for populations that 

demonstrate stress-specific fitness above or below the scatter of the control samples, 

characterizing them as advantageous or disadvantageous respectively [Figure 17B]. To 

mathematically estimate if and how different is the phenotype of each KO population 

compared to the behavior of the controls I employed the z-score metric. Z-score describes 

how far a raw measurement is (number of standard deviations) from the mean of a group of 

measurements and acts on the assumption that the data are sampled from a normal 

distribution. Thus, based on the distribution built from the data of the control populations I 

defined a threshold (90% confidence interval) that could be used to classify the observed 

fitness deviations as neutral, positive, or negative. [Figure 17C]. To ease inspection of the 

generated dataset, I finally visualized the stress-specific fitness for each gone as a heatmap 

[Figure 17D]. 
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Figure 17: Inferring the stress-specific phenotype 
 
[A] Dot plots of nuclei count in unperturbed (left) or nutrient starved conditions (right). Each dot indicates 
the nuclei count per KO population (Mean ± SEM). 
[B] Normalization of the quantification obtained in a stress context over the unperturbed one infers the 
stress-specific phenotype. 
[C] Stress-specific fitness of distinct KO populations under nutrient starvation. Green and red lines 
indicate the z-score thresholds used to define populations with enhanced or decreased fitness, 
respectively. 
[D] Heatmap visualization of the stress-specific fitness. 

 

3.3.2.3 Consistency and reproducibility of the dataset from the large-scale fitness 

assays 

I conducted in total eight different large-scale fitness assays, one per library plate, following 

the above experimental and data analysis pipelines. Within each experiment, the technical 

reproducibility was satisfactory, evident by the negligible deviation between replicate 

measurements in the presence or absence of stress [Figure 18A]. This minimal variance 
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ensures high sensitivity of the assay allowing the detection of even subtle phenotypic 

deviations. Across different experiments, the phenotype exhibited by the control populations 

revealed a) overall consistency across plates, b) the presence of technical outliers in each 

plate that diverge from the norm, in line with initial observations in pilot experiments c) 

differential scatter of the controls across plates. These observations reinforce the importance 

of incorporating a substantial amount of control populations within each library plate, to 

robustly normalize for technical variability [Figure 18B]. 

Despite this intrinsic variability, multiple lines of evidence suggest that the detected 

phenotypes are biologically meaningful.  

A. Inter-plate phenotypic reproducibility. 

ARID2-KO populations demonstrated a strong fitness disadvantage under nutrient 

starvation and an advantage in conditions where cells are challenged by induction of 

replication stress (an additional stressor that is presented in greater detail at section 

3.3.3.5). Thus, it was selected as an inter-plate standard (present at the same position 

in each library plate), to assess phenotypic reproducibility. A similar pattern was 

observed in the majority of library plates indicating that the assay pipeline can robustly 

detect phenotypes in a reproducible way. It is important to note though that the extent 

of the detected fitness leap can vary, arguing that technical aspects can affect the 

degree of the detected phenotypic outcome [Figure 18C].  

 

B. Members of the same protein complex demonstrate similar phenotypes.  

EZH2, SUZ12, and EED are components of the Polycomb repressive complex 2 

(PRC2). The phenotype detected in populations KO for either of these subunits was 

highly similar [Figure 18D]. Comparable patterns were also observed in other sets of 

interacting proteins, like the members of NuRC and WCRF/CHRAC complexes. 

Although such relationships could emerge by chance when sampling from a pool of 

more than 300 different KO populations, they represent good indications of phenotypic 

reproducibility. 

 

C. Neutral fitness upon inactivation of non-expressed genes. 

Genes that are not expressed in MEXF 2090 cells demonstrated phenotypes 

comparable to the control populations [Figure 18D]. In line with the above observation, 

genes that did not present any deviating phenotype from the norm in any stress 

condition (Neutral) have significantly lower expression levels compared to the ones 

that exhibited fitness advantage or disadvantage in at least one condition (Non-neutral) 

[Figure 18E]. The above observations are correlative in nature. Thus, it is important to 
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note that they represent indications and not proof of the robustness of the large-scale 

fitness assays. 

 

Comparable results were also obtained from the large-scale assay performed in LXFL 1674 

cells. Overall, this initial interrogation of the data, suggests that the large-scale assays in both 

melanoma and lung cancer cells represent a solid source of information worth further 

investigation. 

 

 

Figure 18: Reproducibility of the data generated by the large-scale fitness assays 
 
[A] Correlation between biological replicates of MEXF 2090 cells in the indicated conditions. The 
coefficient of determination R2 is indicated. 
[B] Phenotypic scatter of control populations across different library plates. Dots represent the mean 
stress-specific phenotype of a control sample. 
[C] Quantification of stress-specific fitness for ARID2-KO replicates of MEXF 2090 cells for the indicated 
library plates under nutrient starvation and replication stress.  
[D] Quantification of stress-specific fitness for the indicated KO populations of MEXF 2090 cells. 
Members of the same protein complex are color-coded. 
Green and red lines indicate the z-score thresholds used to define populations with enhanced or 
decreased stress-specific fitness, respectively. 
[E] Distribution of the expression levels of various epigenetic regulators assigned in the indicated sub-
categories. Whiskers indicate the 10th and 90th percentiles, with outliers omitted for clarity. P-value 
from two-tailed Mann-Whitney test. 

 



98 
 

3.3.3 Epigenetic deregulation enhances cancer cell fitness under stress 

3.3.3.1 Dichotomous effect of epigenetic deregulation on proliferation in unperturbed 

conditions 

Initially, I explored how epigenetic deregulation affects the fitness of cancer cells growing in 

unperturbed conditions. 82% of the KO populations in melanoma cells displayed similar fitness 

to the negative controls, indicating that in most of the cases proliferation rates were unaffected 

[Figure 19]. Conversely, a shift in the distribution in proliferation rates was observed upon 

epigenetic deregulation in lung cancer cells, with more than 80 KO populations exhibiting 

growth retardation [Figure 19]. The above data reveal a dichotomous behavior where the effect 

of epigenetic deregulation on proliferation is dependent on the cancer type and probably on 

underlying global molecular characteristics of those cells (e.g. genomic instability). Similar 

experimental approaches need to be performed in additional cancer cell models that are 

characterized by diverse signalling, mutational and differentiation status to dissect the effect 

of epigenetic deregulation in unperturbed conditions. It is worth mentioning that during data 

processing, populations with severely decreased fitness in unperturbed conditions (like in the 

case of lung cancer cells) were discarded from the dataset to minimize potential inflation of 

the ratios during the calculation of the stress-specific phenotype. 

Only a minimal fraction of either melanoma or lung cancer KO populations exhibited increased 

fitness suggesting that at least in these two cancer models interference with cell cycle 

checkpoints and enhanced proliferation are not broad consequences of loss-of-function 

mutations in core epigenetic regulators (Barnum & O’Connell, 2014). 
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Figure 19: Fitness of epigenetically disrupted cancer cells in unperturbed conditions 
 
Distributions of fitness from the large-scale assays in unperturbed conditions for the KO libraries of 
MEXF 2090 or LXFL 1674 cells. White circles show the medians; box limits indicate the 25th and 75th 
percentiles and whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles. 

 

3.3.3.2 Numerous mutations in diverse epigenetic regulators promote cancer cell 

survival in nutrient starvation 

Next, I went on to explore the stress-specific fitness. In melanoma cells, a broad increase in 

survival was observed upon epigenetic deregulation. Specifically, 91 KO populations exhibited 

increased fitness after three or seven days of growth under nutrient starvation [Figure 20A]. 

This behavior consisted of varying degrees of fitness advantage, ranging from top hits (e.g. 

KOs for either member of the PRC2 complex) to subtle responses that were consistently 

different from the negative controls (e.g. HIST1H1B-KO). Similar behaviors were also 

observed in the lung cancer cells, albeit to a lesser extent, where gene inactivation of 38 genes 

conferred an advantage to cells under stress [Figure 20B]. One possibility explaining the 

milder phenotype is the slow proliferation rate that characterizes the lung cancer cells along 

with the increased sensitivity of this model to mutations in epigenetic regulators.  The detected 

broad increase in fitness is specific under stress, as disruption of the epigenetic machinery 

resulted in either neutral or decreased fitness in melanoma and lung cancer cells respectively 

[Figure 19]. As mentioned earlier both cancer models used in this study exhibit a maximal KO 

efficiency of approximately 70% [Figure 10]. The presence of a fraction of cells that remain 

unedited and the short time frame of the time points where the fitness was interrogated both 

suggest that the detected phenotypes are a potential underestimation of the actual effects 

imposed upon epigenetic deregulation. Follow-up experiments by Fabrizio Simeoni (Scaffidi 
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lab) in PDX models from colorectal, pancreatic and bladder carcinomas, demonstrated 

increased fitness of cancer cells upon inhibition of various epigenetic catalytic activities, further 

establishing confidence that the stress-resistance phenotype is not cancer type specific.  

Notably, the favorable phenotypes were distributed across all examined layers of epigenetic 

regulation in both cancer models, indicating that the acquired resistance to stress is 

independent of specific catalytic activities and molecular functions [Figure 20C]. Comparison 

of the fitness behaviors of KO populations that were profiled in both cancer models revealed 

both shared and cancer type specific effects [Figure 20D-E]. Epigenetic regulators have 

variable expression patterns across different cancer models and possibly differential 

dependencies upon gene inactivation, thus differences are expected. An additional reason 

that could contribute to the observed differences, is the presence of some false negatives 

mainly in the slow-growing lung cancer cells. 

 

Figure 20: Widespread selective advantage of epigenetically disrupted cells under nutrient 
starvation 
 
[A-B] Heatmap visualizing z-scores for the KO populations of MEXF 2090 (A) or LXFL 1674 (B) cells 
grown under nutrient starvation. KO populations in which non-expressed genes were targeted or that 
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exhibited reduced fitness under unperturbed conditions are not shown (see methods). The number of 
populations with enhanced fitness (green) is indicated. 
[C] Representation of functional classes of epigenetic regulators among the genes exhibiting enhanced 
fitness in the indicated cell lines, compared to the representation among all targeted genes. 
[D] Venn-diagram showing the number of KO populations that demonstrated fitness advantage in MEXF 
2090 or LXFL 1674 cells. 
[E] Quantification of stress-specific fitness for the indicated KO populations for both cancer models. The 
p-value of the Spearman correlation is shown 

 

3.3.3.3 Robust validation of phenotypes from the large-scale fitness assay 

Although the technical noise in our system is minimal and accounted for, it is still possible that 

some phenotypes were falsely classified as positive or negative in the large-scale fitness 

assays [Figure 18]. In line with that, it is worth reminding that the assessment of the fitness 

relationships was performed in fixed time points relatively early during the response to stress 

(3 and 7 days in starvation), where milder phenotypes can still fluctuate around the threshold 

of significance. To i) confirm the validity of the selected fitness threshold and the respective 

classification and ii) better understand the kinetics of response at longer time scales I selected 

38 distinct populations (and 5 as controls) that exhibited survival advantage in the fitness 

assays. The selection of the different populations was done based on the following criteria: a) 

all KOs demonstrate increased survival under stress as assessed in the large-scale fitness 

assays, b) the extent of the phenotypic advantage varies and is inclusive of both top 

performers but also cases of subtle deviations from the controls. c) the selected panel of 

populations carries mutations in genes distributed across all the functional classes of the 

epigenetic network (Table 8). Along this thesis, except if stated otherwise, similar principles 

were followed for the selection of subsets of KO populations for specific experiments. 

The validation fitness assay confirmed the robust detection of phenotypes, as at the later time 

points the majority of the KO populations demonstrated increased cell count compared to the 

negative controls [Figure 21A]. On top of that, monitoring those relationships over time 

revealed cases of shifting in the relative ranking among the examined populations, suggesting 

that early response is not an absolute predictor of the endpoint phenotype [Figure 21B]. For 

example, 2 days after exposure to stress SIRT5-KO cells exhibited a stronger resistance to 

stress compared to the ones where the chromatin remodeller SMARCD1 was inactivated. At 

the latest time point, this relationship was reversed with SMARCD1-KO cells being a top 

performer while the former population exhibited a much subtler phenotype. Such cases are 

suggestive of a complex response to stress where the final cell count of each population is the 

result of both the initial resistance to starvation but also the presence of potential 

compensatory mechanisms that emerge (and/ or are enriched for) during the later time points 

enabling the long-term survival of cells under chronic stress. 
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Figure 21:Validation of gene-stress relationships identified in the large-scale fitness assays 
 
[A] Growth kinetics of 38 KO and 5 control populations of MEXF 2090 cells selected for validation of the 
results from the large-scale assay. Values represent mean from two biological replicates. Black boxes 
indicate the examined time points presented in B. 
[B] Scatter plot of the relative cell count of epigenetically deregulated cells in the indicated time points. 
Each dot is a KO population.  

 

3.3.3.4 Epigenetic deregulation increases the relative abundance of proliferating to 

apoptotic cells under nutrient starvation 

To get a better understanding of how disruption of the epigenetic network benefits cancer cells 

under conditions of nutrient scarcity, I selected 17 KO populations and monitored their 

apoptosis and proliferation under glutamine starvation by probing Caspase-3 activity and EdU 

incorporation, respectively. In line with previous observations in the parental melanoma cells, 

three days after exposure to stress proliferation was severely halted in control populations 

accompanied by increased cell death. Notably, all epigenetically disrupted populations 

retained higher proliferation/apoptosis ratios, thus explaining their increased fitness in the 

early response to starvation [Figure 22B]. Some KO populations with similar cycling capacity 

under stress, demonstrated different levels of apoptosis (MTA2-KO and MBD3-KO cells). This 

suggests that the despite the overall antithetic trends in apoptosis and proliferation, these 

cellular behaviors are not necessarily entangled [Figure 22B]. Following those patterns over 

time, revealed a gradual increase in the detected differences, in line with the phenotypic 

deviation observed at later time points in the fitness assays [Figures 21A and 22A]. 
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Figure 22: Epigenetically disrupted cells retain higher proliferation/apoptosis ratio during their 
immediate response to nutrient starvation 
 
[A] Fitness assay comparing selected KO populations of MEXF 2090 cells after 12 days of growth under 
nutrient deprivation. The gene targeted in each population is indicated. Cntr: control population 
expressing sgRNAs targeting the non-expressed gene TNP2. Values represent mean ± SEM from three 
biological replicates. Two independent sets of control cells are shown, with the dashed line indicating 
their mean value. P-value from one-way ANOVA assessing overall differences among genotypes. 
[B] Quantification of proliferative (left) and apoptotic (right) fraction in the indicated KO populations 
assessed in A, at the indicated time points. Values in the bar graphs represent mean ± SEM from three 
biological replicates. The dashed line indicates the average value of the two sets of control cells. P-
value from one-way ANOVA. The mean value of the three replicates is visualized in the heatmaps. The 
heatmap colours are reversed for the two markers so that fit cells (high proliferative fraction and low 
apoptotic fraction) are green. 

 

During the initial experiments exploring the parental response of melanoma and lung cancer 

cells under nutrient starvation, I observed the emergence of stress-resistant colonies after 

prolonged exposure to stress [Figure 11E]. To directly assess if epigenetic deregulation can 

alter the fraction of cells that can survive under stress, I selected a few representative KO 

populations and plated them sparsely followed by quantification of the surviving colonies after 

12 days under starvation [Figure 23A]. All the examined KO populations showed a higher 

number of independent stress-resistant subpopulations compared to the control [Figure 23B]. 

Thus, the enhanced fitness detected at the population level reflects, to some extent, a higher 

fraction of cells that survive and continue to proliferate under stress. This correlation though 

is not absolute. In the large-scale assays and the validation experiments HIRA-KO cells 

exhibited a smaller survival advantage under starvation compared to SMARCD1-KO cells. 

This relationship was inverted in the clonogenic assays with more resistant colonies being 

present upon the inactivation of the chromatin remodeller SMARCD1. Although fitness 

advantage is overall correlated with the number of resistant colonies, the above observation 

suggests that additional factors contribute to the extent of the phenotypic advantage such as 

the emergence and selection of adaptive behaviors that can drive the proliferation of each 

colony in the long run (in line also with the observations in the validation fitness assays, where 

the ranking of fitness relationships changed over time, Figure 21). 
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Figure 23: Increased stress-resistant colonies in epigenetically disrupted cells under nutrient 
starvation 
 
[A] Schematic representation of the clonogenic assays. 
[B] Representative images and quantification of stress-resistant subpopulations in the indicated KO 
populations after 12 days of growth under nutrient deprivation. Scale bar: 5 mm 

 

Collectively, the data presented in the above subchapter (3.3.3.1-3.3.3.4) from the large-scale 

fitness assays and the subsequent experiments in selected panels of KO populations support 

the notion that the inactivation of numerous and diverse epigenetic regulators results in the 

acquisition of a stress-resistant phenotype that enables cancer cells to survive and proliferate 

under nutrient starvation. 

 

3.3.3.5 Defining additional stress conditions for large-scale fitness assays in MEXF 

2090 cells 

One scenario that could explain the data presented so far, is that epigenetic deregulation leads 

to a specific metabolic rewiring that lowers the dependence of cancer cells on glutamine. A 

first indication against this scenario stems from the broad selective advantage observed in 

starvation, as it is unlikely that the disruption of highly diverse enzymatic activities would create 

the same dependency in a single amino acid [Figure 20A-C]. Nevertheless, if differential pre-

existing sensitivity to glutamine starvation was underpinning the survival advantage, it is 

unlikely that the same cells would be able to survive a distinct type of stress condition that 

requires the activation of alternate molecular pathways during response and adaptation. Thus, 

I explored the response of cancer cells to additional stressors in order to identify specific 

conditions that could be used in fitness assays, similar to the ones presented so far. Having 

established that the phenotype is not dependent on the cancer type, I focused on MEXF 2090 

cells for the subsequent analysis. In detail, varying densities of melanoma cells were cultured 

in diverse unfavorable contexts and growth kinetics were monitored over time. The examined 
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contexts mimic intracellular or environmental challenges that cancer cells commonly 

experience during tumor evolution. 

 

Intracellular stress conditions 

To induce either oxidative or replicative stress, I cultured melanoma cells under increasing 

concentrations of hydrogen peroxide (H2O2) and hydroxyurea (HU) respectively. The effect on 

cell fitness induced by H2O2 was significantly variable depending on the initial cell density 

indicating that the linearity of comparison is lost within a small window of initial technical 

variability. This can pose a significant challenge in large-scale experiments where such 

variability is an inherent aspect of the experimental setup. Additionally, exposure to H2O2 

induced the formation of big cellular clumps that hindered the subsequent image acquisition 

and data analysis [Figure 24A]. Thus, oxidative stress was excluded from the subsequent 

assays. In contrast to H2O2, no variability was observed among different initial cell densities 

when cells were exposed to HU. Two concentrations of this stress agent were selected to 

induce replicative stress, resulting in 40% or 60% growth retardation respectively [Figure 24B].  

 

Extracellular stress conditions 

The tumor microenvironment is often characterized by a limited supply of nutrients 

accompanied by hypoxia and local acidification. To define acidic conditions suitable for 

downstream experiments, I exposed melanoma cells to increasing concentrations of 

hydrochloric acid (HCl). Similar to what was observed upon HU treatment, initial cell density 

did not affect the response of cells to acidosis. Two concentrations of HCI were selected, 

leading again to a 40% and 60% growth delay, respectively [Figure 24B]. Finally, I was unable 

to find a suitable O2 concentration that affected the growth kinetics of melanoma cells. Cells 

cultured in decreasing concentrations of O2, ranging from 1% to 0.1% combined with varying 

exposure times, propagated at identical rates compared to cells growing in unperturbed 

conditions. Hypoxia was thus not included among the stress conditions probed in subsequent 

experiments [Figure 24C].   

Collectively, multiple different stress contexts were explored in MEXF 2090 cells, and two of 

them were selected for downstream large-scale fitness assays, namely environmental 

acidification and replicative stress. 
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Figure 24: Titration of various stress conditions in MEXF 2090 cells 
 
[A-B] Different densities of MEXF 2090 cells were seeded in 96-well plates. 24 hr later, increasing 
concentrations of stress agents were administered followed by time-lapse monitoring of their growth 
kinetics. The stress depth was estimated at the time point where the untreated cells reached plateau. 
[C] Growth kinetics of cells growing in various hypoxic conditions, or in normoxia as a control. 
Asterisk: big cellular clumps present when cells are exposed to H2O2. 
Box: variable stress depth achieved in cells with different plating densities. 
Arrow: the stress conditions that were selected for the subsequent large-scale assays. 
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3.3.3.6 Numerous mutations in diverse epigenetic regulators promote cancer cell 

survival in acidic conditions 

Having explored the response of melanoma cells to additional stress conditions, I then asked 

if the broad stress-specific advantage upon epigenetic deregulation is restricted to nutrient 

starvation or shared across other conditions. To that end, I utilized the MEXF 2090 KO library 

and explored its response in acidic conditions, which have opposing effects on cellular 

metabolism compared to glutamine deprivation (Yoo et al., 2020). More specifically, 

environmental acidification rewires the metabolism of cancer cells from glycolysis to increased 

glutamine utilization, a switch that is dependent on HIF-2a activity (Corbet et al., 2014). 

Comparable to nutrient starvation, 97 epigenetically disrupted cancer populations distributed 

across all functional classes demonstrated increased fitness [Figure 25A-B]. Validation 

experiments in a selected panel of KO populations confirmed the accurate phenotypic 

detection from the large-scale fitness assays [Figure 25C]. On top of that it confirmed the 

presence of KO populations with increased resistance to both nutrient deprivation and 

environmental acidification supporting the notion that epigenetic deregulation provides a 

general advantage to cancer cells to withstand stress in hostile settings [Figures 22A and 

25C]. 

 

 

Figure 25: Widespread selective advantage of epigenetically disrupted cells in acidic conditions  
 
[A] Heatmap visualizing z-scores for 262 KO populations of MEXF 2090 cells grown in acidic 
environment. KO populations in which non-expressed genes were targeted or that exhibited reduced 
fitness under unperturbed conditions are not shown (see methods). The number of populations with 
enhanced fitness (green) is indicated. 
[B] Representation of functional classes of epigenetic regulators among the genes exhibiting enhanced 
fitness in the indicated cell line, compared to the representation among all targeted genes. 
[C] Fitness assay comparing the indicated KO populations of MEXF 2090 cells after 6 days of growth 
in acidic conditions. Cells were split at d3 after reaching confluence. Values represent mean ± SEM 
from three biological replicates. Two independent sets of control cells are shown, with the dashed line 
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indicating their average value. P-value from one-way ANOVA assessing overall differences among 
genotypes. 

 

The phenotype of the MEXF 2090 KO library was also assessed in a third unfavorable 

condition, where cells were challenged by hydroxyurea treatment leading to replicative stress. 

Inactivation of epigenetic regulators only had minor effects on the response to this type of 

internal stress (median z-score: 0.24 vs 0.84 for nutrient deprivation and 0.86 for acidity), 

suggesting that disruption of epigenetic control mainly increases the ability of cells to cope 

with cell-extrinsic challenges (Table 8). 

The data obtained so far demonstrate that damaging mutations in a wide range of chromatin 

and DNA regulators enhance the survival of cancer cells in distinct hostile conditions, 

independently of the tissue of origin. Nutrient deprivation and environmental acidification exert 

antithetic effects on cellular metabolism; thus, it is not expected that survival in these 

conditions will be conferred by the same pathways. The broad survival advantage detected in 

both conditions is indicative of a more universal underlying mechanism. This is corroborated 

also by the significant numbers of fit KO populations, as it is highly unlikely that more than 90 

distinct KO populations would acquire the same specific metabolic or transcriptomic rewiring 

towards survival. On top of that, the observation that the genes conferring survival advantage, 

upon their inactivation, belong to all examined epigenetic layers, confirms that the broad 

survival advantage is not dependent on specific epigenetic activities (e.g. methylation or 

acetylation of histones, etc). Altogether the above observations are indicative of a network-

level effect, where multiple and distinct perturbations within the epigenetic regulatory layer, 

converge towards a common underlying mechanism of resistance to stress, that can be 

advantageous in diverse hostile settings.  

 

3.3.3.7 Competitive advantage of epigenetically disrupted cells in stressful TMEs 

In vitro competition assay 

The established fitness relationships presented so far were identified through in vitro 

experiments where each population grows independently. Thus, I asked if similar phenotypic 

relationships can be detected in epigenetically disrupted populations in the presence of 

competing control cells. To that end, I generated two MEXF 2090 cell lines, stably expressing 

either GFP or mCherry (see also Methods section 2.10.1). Then I generated a panel of 18 KO 

populations in diverse epigenetic proteins via lentiviral transduction of the respective targeting 

sgRNAs (similar pools to the ones used for the large-scale fitness assays). After generating 

the KO lines, I co-cultured the epigenetically disrupted mCherry populations with control GFP 
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cells under glutamine starvation. To account for potential differences in the growth of the 

parental fluorescent cell lines, I also included as a control a co-culture of wild-type cells 

labelled with GFP and mCherry. 

After a 12-day growth period under nutrient deprivation, the majority of the epigenetically 

deregulated cells exhibited positive selection, at varying degrees in line with the observations 

from the large-scale fitness assays [Figure 26A-B]. The simultaneous monitoring of the 

fluorophores allows for the estimation of the normalized growth of each population in the 

competing conditions. In the case of competing control-GFP and control-mCherry cells, it is 

expected that the cells will get equally stressed in response to nutrient starvation. Thus, the 

normalized growth for either fluorophore should be similar. If an epigenetically disrupted 

population exhibits fitness advantage through a cell-intrinsic mechanism (i.e. that does not 

affect the conditions for the surrounding cells) this should result in an increased mCherry 

normalized growth while the GFP growth remains unaltered (or slightly decreased if there is 

indirect competition for limiting resources). On the other hand, if the fitness advantage is 

conferred through a non-cell-autonomous mechanism (e.g. secretion of pro-survival 

molecules) then the expectation is that the normalized growth of the control-GFP cells will also 

be indirectly enhanced [Figure 26C]. Inspection of the relative growth of either fluorophore 

revealed a variable response, with the majority of the KO populations exhibiting a fitness 

advantage that is in line with cell-intrinsic underlying properties [Figure 26D]. In contrast to the 

tight clustering of the control replicates (black), most of the replicates within the epigenetically 

disrupted cancer cells exhibited significant variability. A notable example is EED-KO cells, 

where the replicates demonstrated drastically different behaviors in line with either non-cell 

autonomous or cell-intrinsic modes of survival under nutrient starvation. Similar behaviors 

were also detected in other epigenetically deregulated populations, like KO cells for CHRAC1, 

HDAC6, MTA2 or SETD2 [Figure 26D]. This observation explains the significant deviation 

observed in the fraction of mCherry+ cells in Figure 26B.  

It is intriguing to speculate that disruption of the epigenetic function enhances fitness via a 

universal underlying mechanism that promotes resistance to stress in the short term thus 

providing cells with critical time to acquire distinct secondary traits that increase the potential 

for long-term survival in stress. This scenario predicts the stochastic emergence of different 

cellular behaviors and is in line with the variable phenotypes in replicate populations observed 

in the competition experiment.  
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Figure 26: Competitive advantage of epigenetically disrupted cells under nutrient starvation 
 
[A-B] Representative images (A) and quantification (B) of in vitro competition assays in which equal 
numbers of mCherry-labelled KO and GFP-labelled control populations of MEXF 2090 cells were 
seeded in the same wells and grown under nutrient deprivation for 12 days. Values represent mean ± 
SEM from three biological replicates. P-value from one-way ANOVA assessing overall differences 
among genotypes. Cntr indicates co-cultures in which mCherry- and GFP-labelled control cells were 
mixed. Scale bar: 200 μm. 
[C] Schematic illustrating the potential models underlying the fitness relationships between competing 
populations. 
[D] Scatter plot of the normalized growth of control GFP+ or mCherry+ KO populations. Each dot 
represents a different replicate within the examined populations. Three different replicates are included 
in each comparison. The different colours represent the pair-wise competitions.   
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In vivo competition assay 

Note: Intradermal injections of cancer cells were performed with the help of Cristina Morales 

Torres (Scaffidi lab). Subsequent injections and handling of the mice were carried out by the 

Biological Research Facility at the Francis Crick Institute. Next-generation sequencing was 

performed by the Advanced Sequencing Facility and processing of the generated raw data by 

Harshil Patel. Subsequent analysis was performed by Ioannis Loukas. Embedding of tumors 

in paraffin, subsequent sectioning and H&E staining was performed by the Experimental 

Histopathology Facility at the Francis Crick Institute. Imaging was performed by Ioannis 

Loukas. 

 

The stress-dependent selective advantage of epigenetically deregulated cells was detected in 

in vitro experimental settings. However, within a growing tumor many additional factors can 

shape the fitness landscape, thus necessitating further exploration of the identified 

relationships in the in vivo setting. Aiming to assess if similar phenotypic behaviors can be 

observed in evolving tumors, I selected EZH2-KO cells and performed in vivo competition 

assays. To do so, I injected equal fractions of control and EZH2-KO cells into NOD.Cg-

PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice and allowed induced tumors to grow for approximately five 

weeks. Naturally occurring tumors are often characterized by hostile environmental properties, 

like limited supply of nutrients and oxygen, due to the impaired architecture and functionality 

of their vasculature. To further deteriorate the properties within the tumor microenvironment, I 

treated established cancers (approximately three weeks after the injection) with Bevacizumab, 

an antibody against VEGF-A that inhibits angiogenesis [Figure 27A] (Ferrara, 2005). At 

endpoint I extracted the tumor specimens from the mice and subsequently quantified the 

relative fraction of control or EZH2-deficient cells via next-generation sequencing of the 

retrieved sgRNAs (TNP2-targeting or EZH2-targeting guides integrated into controls cells and 

KO cells) [Figure 27A]. To confirm the success of the anti0angiogenic treatment, I stained 

tumor sections with an antibody against phosphorylated S6 ribosomal protein (pS6), an 

indicator of mTOR activity that is dependent on the levels of available nutrients. Indeed, 

treated tumors were characterized by low levels of this marker, confirming the emergence of 

tumors with a hostile setting, that is suitable for exploring the potential phenotypic differences 

between control and EZH2-KO cells [Figure 27B].  
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Figure 27: In vivo competition assay with manipulation of the tumor microenvironment 
 
[A] Schematic illustrating the experimental pipeline followed for the in vivo competition assay. Circles 
represent MEXF 2090 cells with integrated sgRNAs, which were used to quantify the relative abundance 
of the two subsets of cells in tumors. 
[B] Immunofluorescence microscopy section of a tumor treated with Bevacizumab. Magnified versions 
of the boxed regions are shown on the right. The percentage of pS6high tumor area is indicated (mean 
± SEM from four regions). 

 

In agreement with the results from the in vitro assays, EZH2-KO cells consistently 

outcompeted control populations in all Bevacizumab-treated tumors, with some samples 

consisting almost exclusively of EZH2-KO cells [Figure 28A]. Immunostaining of tumor 

sections for H3K27me3, a histone modification that is mediated by the PRC2 complex, 

revealed complete loss of the mark in bevacizumab-treated specimens confirming the 

selection of EZH2-deficient cells in evolving tumors [Figure 28B]. 
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Figure 28: Stress-dependent selection of EZH2-KO cells in evolving tumors 
 
[A] Quantification of the changes in the fraction of EZH2-KO cells in the Bevacizumab treated tumors 
relative to the injected cells, as assessed by next-generation sequencing of the sgRNAs. P-value 
comparing the number of EZH2-KO enriched tumors in Bevacizumab- and vehicle-treated tumors from 
two-tailed χ2 test. 
[B] Immunofluorescence microscopy of tumors treated with the indicated substances. Depletion of 
H3K27me3 in nuclei identifies EZH2-KO cells. Boxed regions are shown as magnified. Scale bars, 200 
mm. 

 

Contrary to the above homogeneous pattern, unperturbed tumors demonstrated a 

dichotomous behavior. In half of the cases EZH2-KO cells were enriched at the expense of 

the control population, while in the rest of the cases the detected fractions were comparable 

[Figure 29A]. One possible explanation for this heterogeneity is that the examined tumors are 

characterized by varying basal levels of nutrient availability and environmental acidification, 

thus creating different selective pressures on the competing populations. Indeed 

immunostaining for pS6, revealed that the vehicle-treated tumors that consist of equal 

fractions of both control and KO populations are characterized by high levels of pS6, indicative 

of a nutrient-rich tumor mass, whereas the ones occupied predominantly by epigenetically 

disrupted cells showed reduced levels of this marker [Figure 29B].  

This observation from the in vivo setting corroborates the findings from the large-scale fitness 

assays where EZH2 inhibition resulted in increased fitness only in the presence of stress. 
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Figure 29: Basal levels of nutrient availability dictate the selective advantage of EZH2-KO cells 
in unperturbed tumors 
 
[A] Quantification of the changes in the fraction of EZH2-KO cells in the vehicle treated tumors relative 
to the injected cells, as assessed by next-generation sequencing of the sgRNAs.  
[B] Immunofluorescence microscopy of vehicle treated tumors. The percentage of pS6high tumor area is 
indicated (mean ± SEM from four regions). 

 

Overall, the above data demonstrate that disruption of epigenetic control provides a 

competitive advantage under nutrient starvation. Initial evidence from in vivo models suggests 

that this notion can hold true in the more complex setting of evolving tumors. Further 

experimental investigation is required to explore the extent of the functional link between 

epigenetic deregulation and increased survival of cancer cells in vivo (See section 5.2.3 for 

further discussion on the matter). 
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3.4 Conclusion 

The scope of this chapter was to assess if disruption of the epigenetic network can alter the 

fitness of cancer cells under unfavorable conditions. To that end, I selected two distinct cancer 

models, melanoma and NSCLC cells, that are devoid of nonsense mutations in epigenetic 

regulators and explored their response to various stress conditions that are relevant for cancer 

cells. I then optimized the steps towards the successful completion of large-scale fitness 

assays where I systematically inactivated hundreds of epigenetic-related genes in both cancer 

cell models, mimicking the frequent loss-of-function mutations observed in cancer patients, 

and assessed cell fitness under diverse environmental conditions. Finally, selected in vitro and 

in vivo experiments confirmed the validity of the detected fitness relationships and elucidated 

how epigenetic deregulation affects specific aspects of the cellular response to stress [Figure 

30]. 

The key data presented in this chapter are summarized below [Figure 30]:  

✓ Selection of two distinct cancer models with a functional epigenetic regulatory network, 

and characterization of their response to nutrient starvation, a hallmark of the tumor 

microenvironment [Figures 9 and 11]. 

✓ Cancer cells exhibit functional heterogeneity in response to limiting nutrients, a key 

feature of tumor microenvironments. In this setting, favorable phenotypes can 

spontaneously emerge in the absence of underlying genetic events [Figures 12 and 13]. 

✓ Systematic disruption of more than 300 core epigenetic regulators revealed widespread 

survival advantage of KO populations under nutrient starvation or environmental 

acidification [Figures 20 and 25]. 

✓ The stress-resistant phenotype is cancer-type independent and is conferred by 

inactivating mutations in multiple genes, distributed across all layers of epigenetic 

regulation [Figures 20 and 25]. 

✓ In depth analysis of cellular behaviors under nutrient starvation revealed that disruption 

of diverse epigenetic proteins converges in a cellular state that enables cells to resist 

stress-induced cell death and retain higher proliferation thus increasing the probability of 

long-term survival, through the selection of pre-existing or de novo acquisition of favorable 

traits [Figures 21, 22, 23 and 26].  

✓ Manipulation of the tumor microenvironment in vivo, provided initial evidence for the 

competitive stress-dependent selection of epigenetically disrupted cancer cells in evolving 

tumors [Figures 27, 28 and 29]. 
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Figure 30: Summary of the experimental methodologies and key observations reported in 
Chapter 3 

 

Collectively, the above data establish a link between epigenetic deregulation and increased 

fitness of cancer cells under stress. A plethora of questions emerges from the above 

observations. To name a few: 

• How are the qualitative (functional classification of fit KOs) and quantitative (number of fit 

KOs) aspects of the broad resistance affected by distinct driver mutations, signalling 

pathways and other systematic factors?  

• Is the stress-resistant phenotype shared in other extracellular conditions that are not 

directly related to cellular metabolism? Could it be relevant for resistance to therapy? 

• Are there contexts where disruption of the epigenetic regulatory network is detrimental? 

 

Exploration of such questions along with future experimental directions to tackle them are 

presented in detail in Discussion section 5.2. The most interesting question though is the 

identification of the underlying mechanism that mediates the resistant phenotype of KO cells. 

Is there a shared molecular outcome of epigenetic deregulation that enables cells to survive 

in diverse stress conditions? In the next chapter of my thesis, I am extensively exploring 

various candidates trying to answer this exact question. 
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Chapter 4.  

Phenotypic inertia underpins the stress resistance of 

epigenetically disrupted cells 

 

4.1 Introduction 

The data presented in Chapter 3 of my thesis revealed a link between disruption of the 

epigenetic network and enhanced fitness of cancer cells under unfavorable conditions. This 

advantageous phenotype could be the result of various underlying cellular mechanisms 

[Figure 31]. 

a) Genetic diversity 

Epigenetic mechanisms can affect events within the genome in various and diverse ways 

(Shen & Laird, 2013). For example, the faithful repair of genetic lesions, mediated by the 

DNA Damage Response (DDR) pathway, is dependent on tightly regulated alterations in 

the chromatin state (Sulli, Di Micco & d’Adda di Fagagna, 2012). Considering this 

functional link between genome and epigenome, one possibility worth exploring is that 

epigenetic deregulation increases the generation of genetic abnormalities and/or hinders 

the fidelity of their resolution, thus ultimately leading to increased mutational burden and 

subsequently genetic and subclonal diversity. As a result, cancer cells have an increased 

probability to acquire an advantageous mutation that confers resistance to stress. 

 

b) Transcriptional diversity (Bet-hedging) 

Epigenetic mechanisms act as a regulatory layer promoting selective and faithful 

transcription in various contexts. Disruption of this regulation may lead to promiscuous 

transcription that increases the chance of expressing gene sets that could provide a 

survival advantage under specific stress conditions. Indeed, the emergence of rare 

subpopulations with distinctive transcriptional output has been reported to be important in 

the adaptation of cancer cells to targeted therapy (Shaffer et al., 2017). Conceptually, this 

mechanism is the equivalent at the transcriptional level of the genetic diversity model 

discussed above, with the major difference residing in the reversibility of such alterations 

(genetic vs non-genetic events).  

 

c) Phenotypic plasticity 

From a developmental perspective, epigenetic regulators have been implicated in defining 

cellular identity by establishing the faithful expression of specific transcriptional programs. 
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Disruption of the epigenetic network may lead to a more permissive chromatin state that 

enhances the capacity of cells to transit between distinct states in response to their 

environmental stimuli (Flavahan, Gaskell & Bernstein, 2017). In the context of stress 

resistance, which is the focus of this thesis, such fluidity in the cellular states could 

manifest as cells being able to more robustly (i) acquire an alternative cellular state that 

promotes survival in the respective stressor or (ii) fluctuate back to the initial state after 

the exposure to stress, thus lowering the probability of cell death [Figure 31]. 

It is worth mentioning that there is significant overlap between the transcriptional diversity 

and the plasticity models. This primarily stems from the fact that a more “plastic” cellular 

population can, but not necessarily will, provide a more heterogenous gene expression 

output. Along this thesis, I employ diverse experimental setups to dissect among these 

two scenarios. 

 

d) Phenotypic inertia 

Epigenetically disrupted cells could be unable to sense or respond to alterations in their 

stressful environment and subsequently promote an apoptotic program leading to cell 

death.  Thus, their ability to tolerate stress in the short term may allow for increased 

survival in case of transient challenges or provide a critical time window for the acquisition 

of secondary adaptive behaviors under chronic stress.  
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Figure 31: Distinct models of resistance to stress in epigenetically disrupted cancer cells 
 
Alternative models of stress-resistance in epigenetically disrupted cells. For phenotypic plasticity, (i) 
indicates the transition to a transcriptionally rewired cellular state before or after reaching a stressed 
state and (ii) indicates restoration of the initial state. 

 

4.2 Aim 

In Chapter 4, I describe the steps taken to investigate the aforementioned models mediating 

the increased resistance of epigenetically disrupted cancer cells under stress. Based on the 

predictions created by each mechanism, I employ a variety of methodologies ranging from 

reversible drug administration to live-cell imaging and single-cell transcriptomics to dissect 

among them. Initially, I present data that interrogate the reversibility of the stress-resistant 

phenotype. Then, I directly assess cell state transitions in response to stress by employing a 

FRET based biosensor. Next, I describe the response of cancer cells to nutrient starvation 

and assess how epigenetically deregulated cells act differently at the transcriptional level. I go 

on to interrogate multiple aspects of the system like sub-population heterogeneity, gene 

expression variance and global alterations in transcriptional burst kinetics and assess how 

these parameters are affected by stress and mutations in epigenetic regulators. Finally, I 

propose that phenotypic inertia underlies the stress-dependent fitness advantage of 

epigenetically disrupted cells.  
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Note: Several data presented in this chapter are already published (Loukas et al., 2023). 

Selective advantage of epigenetically disrupted cancer cells via phenotypic inertia © 2023 by 

Ioannis Loukas et al is licensed under CC BY 4.0. The researchers that contributed to this 

chapter are acknowledged accordingly at the beginning of the respective subchapters. 

 

4.3 Results 

4.3.1 Interrogating the reversibility of the stress-resistant phenotype 

4.3.1.1 The stress-specific selective advantage of epigenetically disrupted cells is not 

genetically encoded 

To begin to dissect among the possible mechanisms underlying the fitness advantage of 

epigenetically disrupted cells, I first examined whether their behavior has a genetic basis 

[Figure 31]. Several lines of evidence argue against the contribution of genetic abnormalities 

to the stress-resistant phenotype. As stated in Chapter 3, the cellular models used in this study 

are clonal lines derived from PDXs, thus the pre-existing diversity at the genomic level is 

minimal. Additionally, after generating the KO populations, I avoided prolonged culture of the 

cells to minimize potential divergence (genetic and non-genetic). Finally, in the large-scale 

fitness assays the phenotype of various KO populations was assessed after short exposure 

to environmental challenges (3 days in acidic conditions, 3 and 7 days in nutrient starvation). 

This narrow timeframe is in discordance with a model where de novo acquisition and selection 

of rare favorable genetic events underlies the observed stress resistance. 

Aside from these initial indications I went on to directly assess the genetic diversity model. 

Let’s assume that disruption of the epigenetic landscape promotes genomic instability and 

subsequently the generation of subclonal populations with favorable mutations. In that case, 

reverting to the original epigenetic state after the initial perturbation should not affect the 

presence of the genetically distinct subpopulations and thus the detected survival advantage. 

To explore this dependency, I utilized the chemical compounds that were previously shown to 

promote cancer cell survival to nutrient starvation [Figure 14] and I performed a wash out 

experiment. More specifically, pre-treated melanoma cells were cultured in nutrient starvation 

and monitored for 9 days, confirming the advantageous behavior upon inhibition of diverse 

epigenetic functions [Figure 32]. Subsequently, the stress-resistant populations were 

recovered in media containing L-glutamine either in the presence or absence of the drugs 

followed by a second round of growth in starvation. Notably, in all cases the emerged 

resistance to stress was completely lost upon drug withdrawal, suggesting that the detected 

phenotype does not have a genetic basis [Figure 32]. 
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Altogether, the above data directly demonstrate that the stress-specific survival advantage of 

epigenetically disrupted cancer cells is not genetically encoded. It is worth noting that this does 

not mean that epigenetic deregulation cannot lead to genomic instability, but rather implies 

that there are contexts, like the one examined here, and time scales during cancer evolution 

where alternative mechanisms can mediate the advantageous behaviors emerging upon 

epigenetic deregulation. 

 

Figure 32: The stress resistant phenotype of epigenetically disrupted cells is not genetically 
encoded 
 
Fitness assay using MEXF 2090 cells treated with the indicated epigenetic inhibitors and grown under 
nutrient starvation following the protocol indicated above. Cells were grown for 9 days in the presence 
of inhibitors, split and grown for an additional 9 days in the presence or absence of the inhibitors. At 
each seeding (arrowhead), cells were pleated at identical density. Values represent mean ± SEM from 
three biological replicates measured at the time point indicated in brackets. P-value from two-way 
ANOVA assessing the effect of genotype in the comparison + inhibitor vs withdrawal at d18. The p-
value of the differences between matching samples in the two conditions is p < 0.01 for all KO 
populations and non-significant for DMSO. 

 

4.3.1.2 Increased survival of epigenetically disrupted cells in fluctuating 

environmental conditions 

Having provided evidence against the genetic diversity model, I then examined if enhanced 

cellular plasticity could explain the stress-resistant phenotype. A first prediction of the plasticity 

model is that cells should be able to reversibly transit between distinct cellular states in 

response to their fluctuating environmental conditions. To test this, I exposed a panel of 

diverse KO populations to multiple rounds of nutrient starvation alternated with growth in 

unperturbed conditions. Monitoring the cellular behavior over time revealed that epigenetically 

disrupted cells are not locked in the favorable state dictated by starvation but can rather 
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reversibly transit between states in response to their environmental stimuli [Figure 33A]. 

Interestingly, the fitness of all examined populations in the second exposure to starvation was 

increased, suggesting that cells may retain a form of molecular memory that entails a more 

robust response during the second exposure to the stressor. 

A second prediction of the plasticity model is that cells should have the capacity to alter their 

cellular behavior continuously thus being able to adapt to distinct sequential stress conditions. 

After challenging the same panel of KO populations in nutrient starvation, the cells were 

recovered and cultured in acidic conditions, another relevant stress for cancer cells (Wei et 

al., 2020). At the second challenge, all populations were seeded at identical numbers to allow 

for a robust comparison of the fitness in acidic conditions, irrespective of any fitness 

differences in nutrient starvation. All the examined epigenetically disrupted populations 

demonstrated increased capacity to tune their response based on the stress they experience 

and subsequently achieved enhanced fitness compared to control5 cells in both stress 

conditions [Figure 33B].  

 

Figure 33: Epigenetically disrutped cells exhibit increased survival to fluctuating environmental 
conditions 
 
Fitness assay using the indicated KO populations of MEXF 2090 cells grown following the protocols 
indicated above. Cells were grown for 2 days in unperturbed conditions (U), for 8 (Α) or 14 (Β) days 
under nutrient starvation (ND) and for 3 days in acidic environment (AE). The endpoint of each treatment 
was determined by when the fittest population approached confluence and depended on how severely 
cell growth was affected in each condition. At each environmental change, cells were seeded at identical 
density as the initial seeding (arrowheads). Values represent mean ± SEM from three biological 
replicates measured at the time point indicated in brackets. P-value from two-way ANOVA assessing 

 
5 Throughout this Chapter “control” cells describe MEXF 2090 populations that are either KO for TNP2 (non-
expressed gene) or are treated with DMSO, depending if the experimental approach involves genetic ablation or 
pharmacological inhibition of epigenetic regulators respectively. 
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the effect of genotype across conditions. The p-value of the differences between matching samples in 
two consecutive conditions is p < 0.01 for all populations, indicating that cells adjust their behavior to 
fluctuating environments. 

 

The ability of epigenetically disrupted cancer populations to survive within fluctuating 

environmental conditions (even when normalizing the effect of the first stressor) is a strong 

indicator of phenotypic switching and is in line with the predictions made by the plasticity 

model. In an alternative scenario, if epigenetically disrupted cells are characterized by an 

increased tolerance to stress, they would still be able to more robustly survive after both the 

first and the second exposure to hostile conditions. However, the advantage in this case is not 

provided by the ability of cells to switch their phenotypic state and adapt to the stress 

(plasticity), but rather through the selection of a stress-tolerant state (inertia) [Figure 31]. This 

observation provides an interesting example where conceptually distinct mechanisms that rely 

on antithetic cellular behaviors can result in the same phenotypic outcome (increased survival) 

and cannot be distinguished by approaches that solely rely on fitness quantification. Thus, 

additional experimental methodologies are required to discriminate between these two 

alternative mechanisms that may underpin the fitness advantage of epigenetically disrupted 

cells. 

 

4.3.2 Disruption of epigenetic control does not promote cell state transitions 

4.3.2.1 Characterizing the transcriptional response to nutrient starvation 

Note: Bulk RNA sequencing was performed by the Advanced Sequencing Facility at the 

Francis Crick Institute. Processing of the generated raw data was performed by Harshil Patel. 

Subsequent analysis was performed by Ioannis Loukas. 

 

Considering that phenotypically inert and plastic cells could not be distinguished by their 

behavior in the fitness assays, I explored other aspects of the system that could discriminate 

between the two models. If epigenetically deregulated cells are characterized by increased 

plasticity (or transcriptional heterogeneity), it is expected that they will adopt a favorable 

expression state after exposure to stress, which will gradually be enriched by positive 

selection. By comparing the transcriptomic profiles of control and KO cells after prolonged 

culture under nutrient starvation, I speculated that such “adaptive” signatures would be 

detectable. On top of that, comparing the transcriptomes of cells in unperturbed or nutrient-

deprived conditions would also reveal the overall gene signatures that are responsive to 

stress. Such stress-responsive genes could be then used to directly assess state transitions 
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relevant to my system and further ask how epigenetic deregulation can affect this 

phenomenon. Finally, by examining the transcriptional alterations induced by inactivating 

diverse epigenetic regulators (in the absence of stress), I would explore the presence of pre-

existing differences in gene expression that could prime these populations for a better 

response to stress. 

I began by characterizing the transcriptional alterations, using 3’mRNAseq, induced by 

nutrient starvation in both control MEXF 2090 melanoma cells and in a selected panel of KO 

populations. Similar to previous experiments presented in this thesis, the selection of KO 

populations was based on the following criteria: i) selection of KO populations for genes 

belonging to distinct epigenetic functional classes, ii) selection of KO populations with varying 

extent of survival advantage under stress, as determined in the respective fitness assays and 

iii) the targeted genes are frequently inactivated in cancer. 

More specifically, I genetically inactivated the chromatin remodeller SMARCD1 (Carlson & 

Laurent, 1994), the linker histone HIST1H1B – an integral component of chromatin (Scaffidi, 

2016) and the three core subunits of the Polycomb repressive complex 2 (PRC2), namely 

EZH2, EED and SUZ12 (Piunti & Shilatifard, 2021). The PRC2 members and SMARCD1 have 

antithetic effects on gene expression leading to transcriptional attenuation or activation 

respectively. In line with this notion, inactivation of any PRC2 subunit resulted predominantly 

in gene upregulation in unperturbed conditions whereas the opposite effect was observed in 

the case of SMARCD1-KO cells [Figure 34A]. The inclusion of all three PRC2 members served 

as a means to assess the biological significance and validity of the observed patterns since 

its two structural components (EED and SUZ12) were expected to have nearly identical 

phenotypic effects. Indeed, a striking similarity was observed between EED- and SUZ12-KO 

populations, with only a trivial number of transcriptional changes detected between them 

[Figure 34B]. The phenotype observed in EZH2-KO cells was highly similar but diverged from 

the rest of the complex components, which can potentially be attributed to the reported non-

canonical functions of EZH2 in cancer cells (catalytic activity independent of PRC2 complex) 

(Huang et al., 2021). 
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Figure 34: Differentially expressed genes among KO populations in unperturbed conditions 
 
[A] Number of upregulated (orange) or downregulated (blue) genes in the indicated pair-wise 
comparisons among the KO populations. 
[B] Number of upregulated (orange) or downregulated (blue) genes in the indicated pair-wise 
comparisons among the PRC2 subunits.  
A threshold of FDR<0.01 was used to define differentially expressed genes. 

 

For each population I compared the global transcriptomic profile of cells before the application 

of stress (unperturbed conditions, d0) and after 12 days of growth in nutrient starvation (d12), 

where all the KO populations demonstrate varying degrees of survival advantage [Figure 35]. 

 

 

Figure 35: Fitness under nutrient starvation of the indicated KO populations of MEXF 2090 cells 
selected for bulk RNA-seq analysis 

 

Hierarchical clustering of the analyzed populations revealed robust grouping of the biological 

replicates confirming the good technical quality of the generated dataset [Figure 36]. A 

dichotomous segregation of the KO populations was observed between samples cultured in 
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unperturbed conditions and under nutrient deprivation, suggesting that the challenge imposed 

by the stress and the subsequent transcriptomic alterations are dominant over KO-specific 

effects. Finally, the transcriptomic profiles from the PRC2 members diverged from the rest of 

the populations in the unperturbed conditions in line with the significant gene expression 

alterations that were detected in the pair-wise comparisons [Figure 34A]. Those alterations 

occurred predominantly in developmentally relevant genes, as expected by earlier studies of 

these proteins, and are irrelevant to the gene sets that are responsive to stress in the system 

under examination (data not shown).  

 

Figure 36: Hierarchical clustering of the assessed populations in unperturbed conditions or 
under nutrient starvation 
 
The colour scale reveals the similarity among the different samples. For each KO population 3 distinct 
replicates (R1, R2, R3) are presented in two different conditions, unperturbed (d0) or under nutrient 
starvation (d12). Note that the stress treatment dictates the segregation of the samples. 
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4.3.2.2 Identification of stress responsive pathways 

The transcriptomic response to nutrient starvation involved the differential regulation of 

thousands of genes [Figure 37A]. The downregulated genes are highly expressed and are 

significantly enriched in gene signatures related to the fitness of cancer cells, including cMYC 

target genes, cell-cycle regulators, genes involved in mTORC1 signalling and components of 

the oxidative phosphorylation pathway that acts as the predominant source of energy within 

the cells [Figure 37B-C]. At the same time, pathways associated with apoptosis and signatures 

associated with stress such as the NFkb target genes were significantly upregulated [Figure 

37C]. On top of that, nutrient deprivation resulted in a strong inflammatory response, in line 

with previous reports on other cancer models, strengthening the confidence in the generated 

dataset (Gameiro & Struhl, 2018). From here on, I refer to the above identified signatures 

collectively as fitness or stress genes6. Wherever subdivisions of those gene sets are used 

this is indicated.  

 

 

Figure 37: Identification of stress responsive pathways 
 
[A] Number of upregulated (red) or downregulated (green) genes in control MEXF 2090 cells after 12 
days of growth under nutrient starvation. A threshold of FDR<0.01 was used to define differentially 
expressed genes. 
[B] Distribution of expression levels of the indicated groups of genes in unperturbed conditions. P-value 
from two-tailed Mann–Whitney U-test. 
[C] GSEA analysis of stress-responsive genes (d12 vs d0 DEGs) identified in control cells. 

 

The aforementioned transcriptomic alterations were identified in the context of nutrient 

starvation. To assess if these changes could be relevant for other unfavorable conditions, I 

cultured control MEXF 2090 cells in an acidic environment and assessed after 2 days the 

 
6 The classification of a gene as fitness or stress is specific to this study and was defined by the alteration the 

expression levels after exposure of melanoma cells to nutrient starvation. Generally, fitness genes are highly 
expressed in unperturbed cells and are involved in various aspects of proliferation, metabolism, biomass and 
energy production. On the other hand, stress genes are upregulated in unfavourable conditions and are associated 
with apoptosis, inflammation, p53 signalling, etc. 
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expression of key fitness and stress genes compared to their levels before the application of 

stress. Similar to nutrient starvation, representative stress genes underwent significant 

upregulation while the expression of fitness genes was attenuated, suggesting that diverse 

triggers can lead to a common cellular phenotype that characterizes cancer cells experiencing 

stress [Figure 38].  It is worth mentioning that similar alterations in grow-related and stress 

genes have been observed in cancer cells exposed to various extrinsic and intrinsic stressors 

(Emran et al., 2018; Gameiro & Struhl, 2018) 

 

 

Figure 38: Differential regulation of fitness and stress related genes in response to environment 
acidification 
 
qRT-PCR quantifying the changes in expression levels for the indicated stress and fitness genes in 
control MEXF 2090 cells after 2 days of growth in acidic environment. Values are shown as relative to 
the levels detected in unperturbed conditions. P-values from two-way ANOVA comparing the group of 
stress or fitness genes in unperturbed or treated cells. 

 

I then explored the behavior of the epigenetically deregulated cells. Analysis of their 

transcriptomic response did not detect any adaptive signatures (at the bulk level) that could 

mediate their stress-dependent fitness advantage. On the contrary, similar patterns of 

transcriptomic changes in fitness and stress signatures were observed in the epigenetically 

disrupted cells after 12 days under nutrient starvation [Figure 39A-B]. However, the extent of 

these alterations was milder in the KO populations and was inversely correlated with the 

degree of survival advantage observed in the fitness assays [Figure 35]. Examination of the 

basal levels (day 0) of stress-responsive genes failed to detect any differences prior to stress 

application among the distinct populations, ruling out the possibility that the observed milder 

response could be attributed to pre-existing differences in those pathways [Figure 39C].  
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Figure 39: Epigenetically disrupted cells exhibit milder alterations to the stress responsive 
pathways 
 
[A] Heatmap visualizing the changes in expression levels for stress-responsive genes defined in control 
MEXF 2090 cells, in the indicated cell populations. 
[B-C] Distribution of the fold-changes (d12 vs d0) (B) or expression levels in unperturbed conditions 
(d0) (C) for stress-responsive genes defined in control cells. Whiskers of boxplots indicate the 10th and 
90th percentiles, with outliers omitted for clarity. P-value relative to control cells from one-way ANOVA 
followed by Dunnett’s test. 

 

In summary, the above data indicate that epigenetically disrupted cancer cells acquire a less 

stressed phenotype in response to nutrient starvation, in line with the phenotypic deviation 

observed in the fitness assays. This initial interrogation of the transcriptomic response at the 

population level (bulk analysis) did not detect the activation of favorable transcriptional 

programs indicative of a rewired state that would be able to promote survival in nutrient 

shortage. Such alterations would include activation of alternate compensatory metabolic 

pathways, utilization of micropinocytosis or other forms of reported adaptation of cancer cells 

to L-glutamine starvation (Zhang, Pavlova & Thompson, 2017). 
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4.3.2.3 Assessing cell state transitions via a FRET biosensor 

Note: Live-cell imaging was performed in collaboration with Colin D.H. Ratcliffe (Sahai Lab, 

The Francis Crick Institute). Subsequent image analysis and quantification were performed by 

Ioannis Loukas. 

 

The absence of adaptive signatures from the bulk transcriptomics experiment provided a first 

line of evidence against the plasticity and the bet-hedging models. As stated earlier one 

possibility that could characterize the behavior of plastic cells, is their enhanced capacity to 

fluctuate back to the initial state after exposure to stress which in turn lowers the probability of 

cell death [Figure 31]. The identification of gene sets that are responsive to stress provides a 

framework for studying cell state transitions that are relevant for survival in our system. In 

particular, the transcriptomic analysis revealed a significant downregulation of genes involved 

in mitochondrial respiration (Oxidative phosphorylation; OXPHOS) in response to nutrient 

deprivation [Figure 37C]. To examine such transitions within the OXPHOS state I utilized a 

FRET-based biosensor that can monitor the metabolic state of living cells (Kondo et al., 2021). 

Monitoring of the OXPHOS state in response to stress in control and KO populations can 

uncover if the survival advantage of the latter is associated with increased fluctuations of 

stressed cells back to a non-stressed state (plasticity) or increased resistance to stress-

induced alterations (inertia). 

How does the FRET biosensor work? The sensor carries two distinct fluorophores with 

spectral overlap, namely eCFP (donor) and Citrine (acceptor). In the absence of glucose, 

excitation of the system results in emission of signal from eCFP. However, when intracellular 

glucose increases it induces a conformational change to the sensor that brings the two 

fluorophores in proximity, leading to energy transfer between them and the subsequent 

emission of fluorescence from Citrine at a different wavelength (FRET signal) [Figure 40A]. By 

quantifying the relative ratio of the FRET to eCFP signal, indirect but robust estimation of the 

oxidative phosphorylation activity (OXPHOS) of living cells can be achieved (Kondo et al., 

2021). To generate a cell line stably expressing the FRET sensor, I transfected MEXF 2090 

cells with plasmids encoding a) the glucose FRET biosensor and b) the PiggyBack 

transposase that mediates the stable integration of the sensor into the genomic DNA. 7 days 

post transfection, the melanoma cells were FACS sorted based on Citrine expression and a 

viable stable line was obtained [Figure 40B-C].  
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Figure 40: A FRET-based biosensor to monitor metabolic state transitions 
 
[Α] Schematic representation of the FRET biosensor used to monitor the metabolic state of cells.  
Adapted from (Kondo et al., 2021) 
[Β] FACS plot of the gates used to isolate a MEXF 2090 cell line stably expressing the FRET biosensor. 
[C] Live-cell imaging of the MEXF 2090 cell line stably expressing the FRET biosensor. 

 

The quantification of the metabolic state is done by measuring the fluorescence from 

perinuclear foci in individual cells [Figure 41A]. The FRET signals obtained by multiple foci in 

the same cell were highly correlated, suggesting that monitoring a single area per cell is 

sufficient to robustly infer the metabolic state of a cell [Figure 41A]. Additionally, no correlation 

was observed between the total expression levels of the biosensor and the detected FRET 

signal, indicating that there is no bias in quantifying the phenotype among cells that are 

characterized by heterogeneous expression of the sensor [Figure 41B]. To confirm that this 

FRET biosensor can be an indicator of the OXPHOS state within the cells, I cultured pre-

treated DMSO and EZH2-inhibited cells under nutrient starvation and examined after 24 hours 
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both the FRET signal and the level of oxidative phosphorylation, as inferred by TMRE7 

staining. In line with what Kondo and colleagues previously reported in other cancer models, 

high FRET signal anticorrelated with the levels of oxidative phosphorylation, confirming the 

usability of this biosensor in our system [Figure 41C-D] (Kondo et al., 2021). Overall, I 

successfully generated a MEXF 2090 cell line stably expressing a FRET biosensor that can 

be utilized to monitor the metabolic state of living cancer cells. 

 

Figure 41: The FRET-based biosensor can robustly infer the metabolic state within living cells 
 
[A] Scatter plot of the FRET signal obtained from 2 perinuclear foci in each cell. R-squared correlation 
from linear regression is shown. 
[B] Scatter plot of the FRET signal and the expression level of the biosensor. Each dot reflects the 
quantifications obtained from a single cell. R-squared correlation from linear regression is shown. 
[C] Imaging of MEXF 2090 cells treated with the indicated substances and grown under nutrient 
starvation for 24 hours. Mitochondrial activity is visualized by TMRE staining. A higher magnification of 
the regions boxed in yellow is shown on the right. Scale bar: 50 μm 
[D] Quantification of TMRE staining and FRET signal in MEXF 2090 cells treated with the indicated 
substances. TMRE integrated intensity values represent mean ± SEM from 9 fields. FRET signal values 
represent mean ± SEM from 137 and 330 cells. P-value from two-tailed Student’s t-test. 

 

 
7 Tetramethylrhodamine, ethyl ester (TMRE) is a cell-permeant, positively-charged dye that accumulates in active 
mitochondria due to their negative charge 
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Having optimized the technical aspects of the generated stable cell line, I went on to compare 

the relative OXPHOS levels in epigenetically deregulated and control cells. As described 

earlier the level of CRISPR-Cas9 mediated KO efficiency achieved in MEXF 2090 cells is 

~70% [Figure 10]. To avoid the presence of unedited cells that could hinder the quantification 

at the single cell level, a chemical compound against EZH2 was used that leads to 

homogeneous inhibition of its function (EZH2i). Thus, I pre-treated cells with EZH2i or DMSO 

as a control and monitored their metabolic state during their initial response to starvation. 

Depriving cells of glutamine resulted in a significant decrease in OXPHOS levels that 

characterizes the stressed phenotype. On the other hand, EZH2i cells displayed milder 

alterations in response to starvation in line with the data obtained from the bulk transcriptomic 

analysis [Figure 42, also refer to Figure 37 and 39]. It is worth noting that in the absence of 

stress there was a subtle difference detected in the FRET ratio of the examined populations. 

However, follow-up experiments by Marta Milan (Scaffidi Lab) that directly examined 

OXPHOS levels in these populations in unperturbed conditions did not reveal any pre-existing 

differences, suggesting that the detected difference in the FRET ratios could be an artifact 

emerging from differences in the initial cell density or other technical factors (Loukas et al., 

2023). 

 

 

Figure 42: Epigenetically disrupted cells resist to the pressure posed by nutrient starvation 
 
Quantification of oxidative phosphorylation (OXPHOS) levels in living MEXF 2090 cells grown for 24h 
under nutrient starvation using the FRET-based biosensor. 126 < N < 330 cells. P-value from two-tailed 
Mann–Whitney U-test. 

 

Aiming to directly assess cell state transitions at the single cell level, I manually tracked the 

metabolic state of individual cells via time-lapse imaging in 15-minute intervals during their 

early response to starvation (24h). It is worth noting that this time frame represents the initial 

stress response and precedes any detectable phenotypic alterations like halting of 
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proliferation and cell death. Over the first 24 hours post exposure to starvation, DMSO treated 

cells gradually transitioned towards a stressed OXPHOSlow state, while EZH2i treated cells at 

some point diverged and retained higher mitochondrial activity [Figure 43A-B]. The detection 

of overall similar patterns between the single cell and population analysis further solidifies 

these observations as it suggests that the sampling of a limited number of individual cells did 

not bias the observed cellular behaviors. 

 

 

Figure 43: Unaltered plasticity of single cells upon disruption of the epigenetic network 
 
[A-B] Time-lapse imaging of the indicated cells. Values in A represent mean ± SEM from 10 cells, shown 
separately in the heatmap in B. P-value from two-tailed Student’s t-test calculated at the last time point. 
White squares in B represent time points where cells could not be tracked. 

 

Overall, the data obtained by monitoring of metabolic state transitions in response to nutrient 

starvation provide initial evidence against the model of enhanced phenotypic plasticity in 

epigenetically disrupted cancer cells. On the contrary, EZH2i cells were less responsive to 

their changing environment.  

 

4.3.3 Phenotypic inertia of epigenetically disrupted cells 

Note: The single-cell RNA sequencing experiment was performed by the Advanced 

Sequencing Facility at the Francis Crick Institute. Paolo Inglese performed a) pre-processing 

of the raw data, and b) cell clustering and identification of KO-enriched or control-enriched 

subpopulations. The subsequent analysis was performed by Ioannis Loukas and Paola 

Scaffidi. 
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4.3.3.1 Multiplexed single-cell RNA-seq in unperturbed conditions and under nutrient 

starvation 

The data presented so far suggest that genomic instability cannot explain the stress resistance 

of epigenetically disrupted cells. On top of that, initial evidence from live-cell imaging along 

with transcriptomic analysis at the population level argue against the phenotypic plasticity or 

bet-hedging model. Aiming to further explore aspects of the system in greater detail and gather 

data in favor of the potential remaining models I decided to perform single-cell transcriptomic 

analysis (scRNA-seq), comparing the alterations induced by nutrient starvation in control and 

epigenetically deregulated cells at distinct time points. 

To minimize the inherent technical noise of scRNA-seq experiments that can lead to significant 

batch effects, I decided to perform multiplexed transcriptomic analysis via the 10X Genomics’ 

Feature barcoding technology. This approach allows for the simultaneous interrogation of the 

transcriptome of multiple populations that are subsequently demultiplexed based on the 

distinct sgRNA transcripts that they express. Such resolution is achieved via the presence of 

two different classes of oligonucleotides on the 10X Genomics gel beads that can 

simultaneously capture both the total polyadenylated mRNA and the sgRNA transcripts from 

individual cells [Figure 44A]. In greater detail, the profiling of the sgRNAs is mediated through 

the hybridization of specialized oligonucleotides on the surface of the beads that carry a 

capture sequence that is complementary to the sgRNA scaffold [Figure 44B]. The scaffold 

within the sgRNA library that I have used so far does not carry this sequence (Henser-

Brownhill, Monserrat & Scaffidi, 2017) and thus it is not compatible with such a single-cell 

transcriptomic pipeline. To generate new sgRNA scaffolds, I used synthetic constructs and 

cloned them into the pLenti-sgRNA plasmid that drives the expression of the sgRNAs once 

inserted into the cells (For more details see Methods section 2.3.2). The successful cloning of 

the engineered scaffold was confirmed by sanger sequencing [Figure 44C]. Finally, I selected 

the KO populations used earlier for the bulk RNA-seq and after lentiviral transduction with the 

engineered scaffolds, I generated sgRNA barcoded populations compatible with the 

subsequent experimental pipeline.  
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Figure 44: Cloning of a modified sgRNA scaffold that is compatible with 10X Genomics’ Feature 
barcoding technology 
 
[A] Schematic representation of a 10X Genomics gel bead. Note the presence of two distinct classes 
of oligos which provide the capacity to capture per cell both poly(A) transcripts and sgRNAs. UMI: 
Unique molecular identifier.  
[B] Schematic representation of the sgRNA scaffold carrying the Capture sequence 1 at the 3’end of 
the sequence, immediately before the termination signal.  
[C] Sanger sequencing confirming the successful generation of the engineered sgRNA scaffold carrying 
the Capture sequence 1. 

 

The transcriptomic analysis was performed at 4 different time points: 

o Day 0 [do]: before the application of stress (unperturbed condition) 

o Day 1 [d1]: early response to starvation before the detection of any phenotypic 

alterations on proliferation or viability induced by nutrient deprivation [Figure 45A].  

o Day 2 [d2]: early response to starvation where the first indication of impaired growth is 

visible, but no significant effect on cell viability [Figure 45A]. 

The absence of cell death in the first two time points, suggests that any detected 

alterations are the result of transcriptomic rewiring rather than selection.  

o Day 12 [d12]: Late response to starvation and selection of resistant or adapted 

subpopulations. At this time point, all the epigenetically disrupted cells demonstrate 

increased fitness at varying degrees compared to the control cells [Figure 45B]. 

To further minimize the potential technical noise, the experimental set-up included a reverse 

time-course, where all the samples to be analyzed were sequenced at the same time [Figure 

45C]. 
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Figure 45: Multiplexed scRNA-seq via sgRNA barcoded populations in unperturbed and nutrient 
starved conditions 
 
[A] Growth kinetics of MEXF 2090 cells stably expressing GFP in unperturbed conditions (grey) or under 
nutrient starvation (blue). Red line indicates the relative cell death observed in nutrient starvation, as 
assessed by monitoring apoptosis via a Caspase-3+ fluorescent indicator. Values represent mean ± 
SEM from three biological replicates. 
[B] Growth kinetics of the KO populations of MEXF 2090 cells analyzed by scRNA-seq under nutrient 
starvation. The time points selected for analysis, in addition to unperturbed cells at d0, are indicated. 
[C] Schematic representation of the experimental design (reverse-time course) followed during the 
single-cell transcriptomics analysis of MEXF 2090 cells grown under nutrient starvation for the indicated 
number of days. 

 

Considering that one of the main objectives of the subsequent analysis was to assess 

transcriptional heterogeneity within the populations (for the plasticity and bet-hedging models), 

I went on to sequence the samples at a significant depth, reaching ~87.000 reads/cell, which 

resulted in the detection of ~5800 genes/cell (The above values represent mean estimates 

across all samples and time points). For each KO population at each time point, the profiled 

cells ranged between 270 and 670. The generated datasets from single-cell transcriptomics 

experiments often contain “low-quality” cells that are the by-product of the stochastic Poison 

sampling from the population along with the capturing of stressed, broken, or dead cells. 

These cells can be identified through a combination of criteria such as the low number of 

detected transcripts and enriched mapping of sequencing reads to mitochondrial-DNA genes 

(See also Methods section 2.16.3.1). Quantification of such low quality / stressed cells (from 

here on referred to as LQ cells) failed to detect any changes in the number during the 

immediate response to starvation (d1 and d2), in line with previous observations where no 

differences in viability were detected during the first 48 hours in starvation [Figures 45A and 

46]. On the contrary, at d12 there was a significant increase in stressed LQ cells, with more 

than 20% of the low-quality cells belonging to control MEXF 2090 cells. Epigenetically 

disrupted populations maintained lower fractions of stressed cells, in correlation with the extent 

of survival advantage observed in the fitness assays [Figures 45B and 46]. Low quality cells 

can hinder the downstream analysis in various ways, thus they were discarded from the 

dataset. Consequently, the detected differences among the control and the KO populations 
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are an underestimation of the actual effects, especially in the case of HIST1H1B-deficient cells 

that exhibit only a mild fitness advantage compared to the control population. Overall, the 

above data suggest that the generated dataset is of good quality, faithfully recapitulates the 

detected differences from the fitness assays and is worth further investigation.  

 

 

Figure 46: Detection of low quality (LQ) stressed cells per time point and KO population 
 
[A] Quantification of genes detected in all cell populations (merged samples) at the indicated times, 
showing an enrichment of highly stressed, low-quality (LQ) cells at d12. 3112 < N < 4799 cells. 
[B] Quantification of LQ cells in the indicated KO populations. 518 < N < 799 cells. 

 

4.3.3.2 Dissecting the transcriptomic response to starvation at different time points 

I first explored the stress response of control MEXF 2090 cells to nutrient starvation. UMAP 

based dimensionality reduction revealed that cells from different time points grouped in distinct 

clusters organized in a stepwise manner along the time trajectory [Figure 47]. This clear 

separation among the clusters suggests that the selected time points can robustly infer the 

distinct cellular behaviors of cancer cells that face starvation, from sensing and early response 

to stress to the subsequent alterations in cellular behavior that mediate the survival and 

propagation under chronic nutrient starvation.  
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Figure 47: UMAP illustrating the changes induced by nutrient starvation in control MEXF 2090 
cells 

 

Assessment of the genes that get differentially regulated upon stress showed a gradual 

increase in the number of DEGs, in line with the above observations [Figure 48A]. To better 

understand the nature of such alterations I selected the 2340 genes that get differentially 

expressed during the first 48 hours in nutrient starvation (d0 vs d2) and explored their nature 

through GSEA analysis. In line with the results from the bulk RNA-seq experiment, the early 

response to starvation involved a significant downregulation of fitness related signatures 

(cMYC targets, oxidative phosphorylation and cell cycle genes) and the simultaneous 

upregulation of stress related pathways (p53 and NFkB target genes) [Figure 48B]. At the 

latest time point (DEGs between d2 and d12), a strong inflammatory response was observed 

along with additional upregulation of stress signatures (e.g. apoptosis), but also a partial 

reversal of transcriptomic changes that were detected at d2. The reversed genes include the 

re-expression of mTOR targets along with the attenuation of the p53 response [Figure 48C]. 

The latter is in line with previous observations that p53 mediated signalling is important for the 

early but not the late response to nutrient starvation (Tajan et al., 2018). The reversal of some 

early transcriptomic changes induced by the stress is a hint towards the enrichment of cells 

with the capacity to combat stress either as a result of de novo adaptation/rewiring or through 

selection of pre-existing stress-resistant subpopulations.  
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Figure 48: Dissecting the early and late transcriptomic changes in response to nutrient 
starvation 
 
[A] Quantification of upregulated (up) or downregulated (down) genes in control cells at the indicated 
times after stress. DEGs are defined based on comparisons with cells at d0. 
[B] GSEA analysis of early (d2 vs d0) and late (d12 vs d2) DEGs detected in control cells. The heatmap 
visualizes the significance of the enrichment of the indicated signatures. Signatures with FDR ≤ 10-10 
are considered enriched.  
[C] Quantification of genes showing progressive upregulation or downregulation from d0 to d2 and from 
d2 to d12, or reversal of the trend between d2 and d12. 

 

To better understand the observed heterogeneity within the control populations in response to 

starvation, I calculated the pathway scores (i.e. weighted estimate of the expression of a 

specific gene set in individual cells) from the previously identified stress responsive signatures. 

This analysis revealed a) extensive cell to cell heterogeneity in both stress and fitness 

pathways b) a combination of both progressive and partially reversing trends and c) signs of 

resumed proliferation in a fraction of cells, as indicated by a higher median value of cMYC 

signature score at d12 [Figure 49]. These observations are in line with the results from the 

fitness assays and provide molecular evidence that even at d12 the majority of the control 

population succumb to stress but a few stress-resistant, proliferating cells are selected over 

time [Figures 45B, 48C and 49]. 
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Figure 49: Pathway scores of fitness and stress signatures 
 
Distribution of pathway scores in individual cells for the indicated gene signatures in control cells at the 
indicated times. P-values from one-way ANOVA assessing overall difference over time. 270 < N < 653 
cells. 

 

4.3.3.3 Absence of shared adaptive signatures in stress-resistant epigenetically 

disrupted cells 

Inspection of the trajectories followed by the epigenetically disrupted populations in response 

to starvation, as defined through UMAP dimensionality reduction, revealed comparable 

patterns with the control cells [Figure 50]. Thus, most of the cells within the epigenetically 

disrupted populations also suffer under stress. Visually, the only significant difference between 

control and KO populations was detected at d0 (unperturbed conditions) where PRC2 cells 

cluster separately due to the de-repression of hundreds of developmental genes [Figures 34 

and 50]. These genes constitute canonical PRC2 targets and have minimal overlap (1.9%) 

with the stress responsive genes, suggesting that they are irrelevant to the phenotypes 

observed during nutrient starvation. The above observations agree with the bulk RNA-seq 

analysis and reinforce the notion that stress-induced gene expression changes are dominant 

over regulator-specific effects induced by KO of specific genes [Figure 36]. 
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Figure 50: UMAP illustrating the trajectories of KO populations in response to nutrient starvation 

 

Having established that all populations after prolonged growth in nutrient starvation (d12) 

contain a mixture of stressed and resistant cells in varying ratios [Figures 49 and 50], I went 

on to further dissect this heterogeneity. To do so, I focused on the latest time point (where we 

can observe the maximal phenotypic differences between the examined populations) and 

employed a clustering analysis looking for groups of cells that are either enriched for 

epigenetically disrupted cells (expected to consist mostly of resistant subpopulations) or for 

control cells (expected to contain stressed subpopulations). This approach involves pair-wise 

comparisons between control and epigenetically disrupted populations [Figure 51]. In brief, 

cells are mixed (irrespective of their KO status) and undergo unbiased clustering to identify 

groups of cells with distinct transcriptional behaviors. For each defined cluster a ratio of control 

over KO cells is calculated. The clusters that are differentially enriched for control or KO cells 

are the ones expected to drive the phenotypic differences observed in the fitness assays. 

Thus, for such clusters a differential gene expression analysis is performed to identify gene 

signatures specific to these groups of cells. After repeating this pipeline for all the relevant 

comparisons (each KO vs control), the extracted gene signatures are undergoing again 

unbiased clustering to explore the possibility that common meta-signatures are shared among 

different subpopulations of cells. The above analysis aimed to dissect the population 

heterogeneity and explore the presence of subsets of cells that display activation of common 

pathways that could provide cells with the capacity to propagate under stress. It is worth noting 
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that such adaptive signatures were not detected by the bulk RNA-seq analysis described 

earlier (see section 4.3.2.2). 

 

 

Figure 51: Dissecting population heterogeneity through meta-signature analysis 

 

Unbiased clustering of the extracted signatures revealed the presence of two major meta-

clusters. Each of them is predominantly occupied by either KO-enriched or control-enriched 

subpopulations [Figure 52A]. This dichotomous segregation suggests that distinct KO 

populations contain subsets of cells that are characterized by common transcriptional traits 

that are not shared by control cells. However, I did not detect the expression of any gene 

signature that could promote the adaptation of cancer cells to nutrient starvation, such as 

reprogramming to alternative differentiation states with differential sensitivity to glutamine 

deprivation or upregulation of other metabolic pathways that could act in a compensatory way 

or alternative mechanisms irrespective of metabolic rewiring like the activation of 

micropinocytosis (Zhang, Pavlova & Thompson, 2017). It is worth noting that the above 

analysis cannot exclude the possibility that the fitness advantage of the KO populations is 

conferred by distinct small sets of genes that are different in every single population. 

To better understand the nature of the emerging meta-clusters, I curated gene sets that are 

highly correlated with either of them and interrogated their nature through GSEA analysis. The 

KO-enriched subpopulations were characterized by elevated expression of fitness signatures 

and simultaneously decreased levels of stress associated pathways, suggesting that they 

represent stress-resistant cells. Conversely, the control-enriched meta-cluster was 

characterized by an antithetic pattern of gene expression [Figure 52B]. The above data 

strengthen the notion that after prolonged culture in nutrient starvation epigenetically disrupted 

cells retain a greater fraction of stress-resistant subpopulation.  
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Figure 52: KO-enriched and control-enriched subpopulations occupy distinct transcriptional 
states 
 
[A] Unbiased clustering of gene signatures defining the indicated KO- or control-enriched 
subpopulations at d12. Multiple enriched subpopulations identified in each pairwise comparison are 
indicated by progressive numbers. 
[B] GSEA analysis of meta-signatures identified in A, showing a more fit and less stressed phenotype 
of epigenetically disrupted cells. 

 

There are two distinct scenarios that could explain such behavior. One possibility is that 

epigenetically disrupted cells elicit a full stress response and then they manage (through 

secondary mechanisms) to revert to a less stressed state (in line potentially with a more 

phenotypically plastic population). Alternatively, they could be characterized by pre-existing 

increased tolerance to stress, enabling them to never reach a stress maximum as defined in 

the control cells, thus lowering the probability of cell death. Following the behavior of 

representative stress (IL1B) or fitness (RPS26) related genes over the time trajectory revealed 

that the latter is the case [Figure 53A]. Accordingly, a similar pattern was observed when the 

fitness signatures OXPHOS and Myc targets were examined along the time trajectory [Figure 

53B]. 
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Figure 53: Trajectories of stress responsive genes / pathways in control and epigenetically 
disrupted cells 
 
[A] Expression levels of a stress gene (IL1B) and a Myc-target (RPS26) in individual cells in the 
indicated populations, at the indicated times after nutrient starvation. P-values from Kolmogorov-
Smirnov test. One and two asterisks indicate p < 0.05 and p < 0.01, respectively. 270 <N < 654 cells. 
[B] Quantification of the relative changes in the indicated pathway scores over time upon stress in the 
indicated cell populations. The median value is plotted for each cell population. 

 

Overall, dissecting the population heterogeneity of control and KO populations failed to detect 

the presence of adaptive signatures that can promote survival under nutrient starvation. This 

is in line with the observations from the live-cell imaging experiments and altogether indicate 

that the stress dependent advantage of epigenetically deregulated cells is not a result of a 

more efficient rewiring of cellular states. On the contrary, KO cells seem to be less responsive 

to the alterations induced by stress, consistent with the possibility that pre-existing stress-

tolerant cells may be selected over time. Altogether the data presented so far argue against 

the model of increased plasticity or transcriptional variability of epigenetically disrupted cells 

and provide evidence that they are more inert when exposed to stress.  

 

4.3.4 Diversification bet-hedging is not enhanced in epigenetically disrupted 

cells 

Note: Phil East applied the SCDE/PAGODA algorithm to the data in order to estimate the 

transcriptional variance per gene. The subsequent analysis was performed by Ioannis Loukas 

and Paola Scaffidi. 
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4.3.4.1 Robust inference of highly-variable genes from scRNA-seq data 

One of the most interesting aspects of single-cell transcriptomics is that it allows the dissection 

of the transcriptomic variance within a seemingly homogenous population, an important 

aspect of many biological contexts that is lost during bulk analysis. The presence of such cell-

to-cell variability in gene expression increases the probability that a subset of cells expresses 

advantageous genes that leads to the acquisition of a favorable phenotype in specific contexts. 

This variability is the molecular underpinning of bet-hedging, a strategy employed by various 

organisms to promote phenotypic diversity and thus maximize their potential to survive in 

unpredictable environments. Conceptually, in the context of cancer bet-hedging can be 

considered the transcriptomic equivalent of genomic instability, which leads to intratumor 

phenotypic diversity upon which selection can act. Such transcriptomic variability has been 

previously implicated as an important driver of resistance to stress (Shaffer et al., 2017).  

So far, the analysis presented in this chapter has failed to detect evidence of such a 

transcriptomic state, that emerges upon epigenetic deregulation and is strongly favorable 

during the stress response. It is worth noting though, that this analysis has primarily focused 

on the latest time point (day 12), based on the assumption that after chronic exposure to stress 

this rare favorable transcriptional state would be selected, enriched and thus detected by 

single-cell transcriptomics. To directly assess if epigenetic deregulation affects the 

transcriptional variance of cess, I next focused on the early time points and specifically before 

the application of stress (day 0). In greater detail, I compared the gene expression variability, 

as quantified by the calculation of the coefficient of variation (CV2) for each gene, between 

control and epigenetically disrupted cells in unperturbed conditions. Genes that are lowly 

expressed (noisy) are characterized by increased coefficient of variation while highly 

expressed genes exhibit the opposite behavior. To correct this dependency, I utilized the 

SCDE / PAGODA algorithm that can normalize on a gene-by-gene basis the observed 

variance to the expected one based on the genome-wide properties. On top of that, PAGODA 

corrects for additional factors that can hinder the faithful estimation of expression variance like 

gene length (Fan et al., 2016; Faure, Schmiedel & Lehner, 2017). 

Initially, I focused on control cells growing in unperturbed conditions and curated a list of 428 

highly-variable genes (HVGs), by selecting the 95th percentile of normalized variance as a cut-

off (genes with top 5% variance)8. These genes were characterized by relatively high mean 

 
8 The rationale behind this approach was to mathematically define in control cells a threshold that characterises 

genes with large variance in their expression levels and then use this numerical value as a cut-off to explore 
potential differences (quantitative and qualitative; number and nature of HVGs respectively) across different 
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expression and were detected in the majority of the cells, suggesting that the defined genes 

are the ones with significant expression variability within the population rather than rare noisy 

expression [Figure 54A-B]. GSEA analysis revealed that HVGs are significantly enriched for 

stress signatures (NFkB targets, Apoptosis, etc) and genes involved in cellular plasticity 

(EMT), in line with the idea that priming subsets of cells for prompt reaction to unfavorable 

environments enables an efficient response at the population level [Figure 54C]. On the 

contrary, fitness pathways were characterized by even higher mean expression but minimal 

variability. This segregation among stress and fitness signatures reflects an underlying 

selective pressure to evolve common regulatory traits ensuring that functionally related gene 

sets behave in similar ways (expression level, variability, etc.) [Figure 54D].  

 

 

Figure 54: Characteristics of highly-variable genes (HVGs) 
 
[A] Distribution of mean expression levels of HVGs compared to all other genes (rest) in control 
unperturbed cells. The bottom and top of boxes indicate the 25th and 75th percentiles, respectively, 

 
populations (e.g., control vs epigenetically deregulated cells). Other metrics of variability (cell-based) were also 
assessed that are not presented in this thesis (for more information refer to Discussion section 5.4). 
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and middle lines indicate medians. Whiskers indicate the 5th and 95th percentiles. Pagoda-normalized 
values are used. P-value from two-tailed Mann-Whitney U-test. N = 428 (HGVs), 8133 (rest) genes. 
[B] Relationship between mean expression levels and percentage of cells expressing a given gene, 
with HGVs labelled in red. 
[C] GSEA analysis of HVGs. Signature with FDR ≤ 10-10 are considered enriched. 
[D] Features of the indicated gene signatures showing distinct patterns for stress and fitness signatures. 
The bottom and top of boxes indicate the 25th and 75th percentiles, respectively, and middle lines 
indicate medians. Whiskers indicate the 10th and 90th percentiles, with outliers omitted for clarity. 

 

4.3.4.2 Epigenetic deregulation does not affect transcriptional variance 

Having confirmed the robust inference of highly-variable genes from the single-cell 

transcriptomics dataset, I then asked if epigenetic deregulation could alter the properties of 

HVGs and more specifically look for indications of greater phenotypic diversity in the absence 

of stress. Thus, by using the variance cut-off defined in the control cells in unperturbed 

conditions I quantified HVGs in the KO populations. No significant difference was observed in 

the number of HVGs in epigenetically deregulated cells upon epigenetic deregulation [Figure 

55A-B]. When quantifying the extent of the variance of HVGs I observed a slight deviation 

towards higher variance in two of the three components of the PRC2 complex [Figure 55C]. 

In most of the analysis that I have presented so far EDD- and SUZ12-KO populations behave 

in an identical manner. Thus, the observed inconsistency challenges the biological importance 

of the observed difference. Considering that the number and the variance are not altered, I 

then asked if the nature of these genes is different among the populations. I observed a 

significant overlap where more than 40% of the HVGs were shared among control and KO 

cells [Figure 55D]. Notably, GSEA analysis of these genes revealed the enrichment of the 

same signatures, suggesting that the KO populations express in a variable manner common 

but also distinct components of the same pathways (data not shown).  

While I cannot rule out the possibility that specific genes relevant for survival under nutrient 

starvation acquire higher variability in a KO specific manner, it is unlikely that the increased 

phenotypic diversification in unperturbed conditions via bet-hedging is the underlying 

mechanism mediating the selective advantage of epigenetically disrupted cells under 

unfavorable conditions.   
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Figure 55: Unaltered transcriptional variance in epigenetically disrupted cells under 
unperturbed conditions 
 
[A] Normalized variance of gene expression levels in the indicated populations. Each dot is a gene, with 
HVGs indicated in red. 
[B-C] Quantification of the number of HVGs (B) and their normalized variance (C) in the indicated 
samples in unperturbed conditions. P-value relative to control cells from two-tailed Fisher test (B) or 
Mann-Whitney U-test (C). 
[D] Venn diagram showing the overlap of HVGs in the indicated populations. 

 

 

4.3.5 Chromatin-mediated changes in global transcriptional activity in 

response to stress 

Note: Paolo Inglese run the txburst algorithm to estimate the bursting properties. The 

subsequent analysis was performed by Ioannis Loukas and Paola Scaffidi. 

 

4.3.5.1 Inference of transcriptional burst properties from scRNA-seq data 

How is it possible that mutations in epigenetic regulators with distinct functional and structural 

roles within the chromatin can result in the same outcome, phenotypic inertia? The analysis 

presented so far has revealed that nutrient starvation induces significant alterations in the 
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transcriptional patterns of melanoma control cells, involving changes in functionally related 

fitness and stress signatures. Epigenetically disrupted populations follow the same pattern but 

exhibit a milder phenotype. One possibility is that the KO populations cannot elicit a strong 

stress response at the transcriptional level, thus preventing them from halting proliferation and 

committing to apoptosis and subsequently cell death. Considering that the fitness advantage 

is observed in populations KO for distinct chromatin regulators, it is doubtful that the 

misregulation of specific gene sets mediates their behavior. Thus, I explored more universal 

features of transcriptional activity that could be broadly affected by the disruption of diverse 

members of the epigenetic network. 

Transcription is not continuous but rather happens in episodic bursts (Levine, Lin & Elowitz, 

2013). The stochasticity of the phenomenon is a result of the spontaneous interaction of the 

participating factors that are required to initiate transcription along with the limiting nature of 

the substrate (gene locus to be transcribed). While seemingly random, biological systems 

have developed mechanisms to tune its kinetics and thus alter the probability of the reaction 

taking place. These mechanisms involve fixed traits that emerged during evolution, such as 

sequence encoded elements within the promoter region. On top of that, the packaging of the 

DNA into chromatin can alter the accessibility to the substrate and or the effective 

concentration of the participating regulators thus providing another regulatory layer to 

transcription (Rodriguez & Larson, 2020; Tunnacliffe & Chubb, 2020).  

The above fixed and dynamic regulatory traits result in a complex setting where every single 

gene can have a varying probability to fire. Each firing event is characterized by its frequency 

(i.e. how often a gene is transcribed) and its size (i.e. the amount of the mRNA produced in 

each burst). These parameters can be estimated from static scRNA-seq data, assuming a 

two-state model of transcription where promoter elements shuttle between an active and an 

inactive state at gene specific rates (Burst frequency: Kon, in mRNA degradation units; burst 

size: Ksyn/Koff) [Figure 56] (Larsson et al., 2019).  

 

Figure 56: A two-state model of transcriptional activity used to infer transcriptional burst 
parameters from static scRNA-seq data 

  

I went on to employ an approach that uses profile likelihood to estimate the transcriptional 

burst parameters (Larsson et al., 2019). Of note, there are some limitations associated with 
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applying this pipeline in my experimental dataset. Firstly, the approach described by Larsson 

et al. has been developed to infer burst kinetics from scRNA-seq experiments with single allele 

resolution, not in line with the nature of my dataset. After analyzing the data from Larsson et 

al, I observed a significant correlation between the quantifications obtained from the different 

alleles of the same genes, suggesting that merging of the data can only over or underestimate 

the properties but not distort their relative ranking [Figure 8] (Larsson et al., 2019). Secondly, 

it is worth noting that in response to a strong environmental stimulus, a two-state model of 

transcription may fall short to capture all the complex variables at play (Tunnacliffe & Chubb, 

2020). On top of that, stress per se can significantly affect the RNA turnover, a factor that is 

important for the accurate estimation of the bursting parameters. However, the analysis 

presented in this chapter is not meant to infer absolute estimates of bursting but rather explore 

relative alterations and use them as a proxy of global transcriptional activity across 

populations. Thus, acknowledging the potential limitations, I applied this algorithm to my 

dataset aiming to a) characterize changes in transcriptional burst properties induced by stress 

and b) ask if the disruption of epigenetic control can affect this response. 

The relationship observed between the expression and the inferred burst parameters at the 

global scale under unperturbed conditions recapitulated what was previously reported by other 

groups, confirming the reliability of the generated dataset [Figure 57A] (Larsson et al., 2019; 

Ochiai et al., 2020). Notably, burst frequency is a stronger predictor of gene expression levels 

[Figure 57B-C]. This can be attributed to the presence of a dichotomous relationship between 

size and expression where a fraction of genes exhibits high burst sizes that do not lead to 

significant expression levels. GSEA analysis of these genes failed to detect any significant 

enrichment within known gene signatures (data not shown).  

 

 

Figure 57: Relationship between gene expression and transcriptional burst parameters in 
unperturbed cells. 
 
[A-C]Relationship between mean expression levels and transcriptional burst parameters in unperturbed 
control cells. Each dot is a gene. The Spearman correlation coefficient r is indicated. 
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4.3.5.2 Altered transcriptional burst properties induced by nutrient starvation 

Having established confidence in the estimated burst properties, I then explored how nutrient 

starvation can affect the aforementioned relationships. Substantial alterations were detected 

in control cells after two days of growth in nutrient deprivation. Such stress induced global 

alterations in transcriptional activity, involved mainly a striking decrease in the transcriptional 

burst frequencies [Figure 58A]. Monitoring the frequency pattern over the time trajectory 

revealed a gradual decrease that reached a maximum after 48 hours under starvation followed 

by a partial reversal of the phenotype at the latest time point [Figure 58B]. The latter is in line 

with previous observations from fitness assays and the heterogeneity analysis of the scRNA-

seq dataset indicating that control cells can rarely combat the effect of starvation leading to a 

less stressed state (potentially as a result of selection during the long-term exposure to stress).  

Pairwise comparison of the burst frequencies among the distinct time points revealed that the 

genes mainly affected are the ones characterized by high burst frequency [Figure 58D]. In 

contrast to the above changes, the distribution of burst size remained largely unaffected along 

the time trajectory except for 24 hours after stress exposure (day 1) where a minor increase 

was detected [Figure 58C].  
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Figure 58: Global alterations in transcriptional burst properties upon nutrient starvation 
 
[A] Visualization of the changes in transcriptional activity induced by nutrient starvation in control cells. 
Each dot is a gene. 
[B-C] Distributions of transcriptional burst frequency [B] or size [C] for individual genes in control MEXF 
2090 cells at the indicated time points under nutrient starvation. Whiskers indicate the 10th and 90th 
percentiles, with outliers omitted for clarity. P-value relative to d0 from one-way ANOVA followed by 
Dunnett’s test for multiple comparisons (**p < 0.01 and ****p < 0.0001). 2814 < N < 3407 genes. 
[D] Pair-wise comparison of transcriptional burst frequencies in control cells at the indicated times. Each 
dot is a gene. P-value from Wilcoxon test 

 

To begin to understand how these alterations affect cellular behaviors I curated a list of high-

frequency genes (HFGs, Kon > 4; top 33%) and explored their identity through GSEA analysis. 

Interestingly the HFGs were strongly enriched for Myc V1 target genes and components of 

the oxidative phosphorylation pathway and to a lesser extent for cell cycle related genes 

[Figure 59A]. The distribution of the burst frequencies of the above fitness signatures followed 

the same pattern, with a gradual decrease in response to stress being followed by a late 

reversal [Figure 59B]. Since the burst size remains unaffected, this plummeting in burst 

frequency of fitness related gene signatures provides a molecular framework that explains 

their downregulation over time in response to nutrient starvation. This phenomenon is likely a 
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pro-survival strategy for cells aiming at saving energy and biomolecules under unfavorable 

conditions (Pakos-Zebrucka et al., 2016). 

 

Figure 59: Reduction in burst frequencies primarily affects fitness signatures 
 
[A] GSEA analysis of high-frequency genes, HFGs. Signatures with FDR ≤ 10-10 are considered 
enriched.  
[B] Distributions of transcriptional burst frequency for the indicated gene sets in control cells. P-value 
from two-way ANOVA comparing overall trends of MYC targets or OXPHOS with All genes, followed 
by Sidak’s multiple comparisons (****p < 0.0001). N ≥ 110 genes for MYC targets or OXPHOS. 

 

Considering that nutrient deprivation induces a global decrease in transcriptional burst 

frequency, I wondered how stress signatures get upregulated over time. From the stress 

responsive genes (DEGs between d0 and d12), I curated a gene list by collapsing all the 

genes that get upregulated and belong to stress related pathways (e.g. Apoptosis, NFkB target 

genes, etc). Notably, these genes are characterized by low burst frequency in unperturbed 

conditions, making them less susceptible to the global frequency reduction observed upon 

stress and more reliant on burst size to modulate their expression [Figure 60A]. Indeed, the 

burst size of stress genes gradually increased over time reaching its maxima at the latest time 

point, in line with their upregulation [Figure 60B]. It is worth noting that this behavior is specific 

to the stress pathways and is in contrast with what is observed for the rest of the expressed 

loci [Figure 58B].  
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Figure 60: Selective increase in burst size of stress related genes 
 
[A-B] Distributions of transcriptional burst frequency [A] and size [B] for all or stress genes in control 
cells at the indicated times under nutrient deprivation. P-value from two-way ANOVA, followed by 
Sidak’s multiple comparisons (*p < 0.05 and ****p < 0.0001). N = 2814 (all) or 57 (stress) genes. 

 

Altogether, the above data suggest that nutrient deprivation leads to substantial changes in 

transcriptional burst properties and more specifically to the downregulation of high-frequency 

fitness genes and simultaneously the upregulation of low-frequency stress genes through an 

increase in their respective burst size. 

 

4.3.5.3 Epigenetically disrupted cells resist to the stress induced alterations in burst 

properties 

Having established how nutrient starvation affects the bursting properties of fitness and stress 

related signatures, I then asked if disruption of the epigenetic network affects those trends. In 

contrast to the observed alterations in control cells, at day 2 all KO populations exhibited global 

patterns that were comparable to the ones before the application of the stress, suggesting a 

severely affected response to stress [Figure 61A]. Monitoring the frequencies over the time 

trajectory, revealed a gradual decrease upon stress application, reaching a maximum at day 

2 and then showing signs of recovery. Although this trend is similar to the one observed in 

control cells, the extent of the alterations was significantly different in epigenetically disrupted 

cells that exhibited a much milder phenotype [Figure 61B-C]. The effect at d1 mirrored the 

differences observed in the fitness assays, with PRC2-defective cells diverging from control 

cells earlier than cells mutated for SMARCD1 or HIST1H1B [Figure 45B]. Before the 

application of stress (day 0), KO populations showed comparable distributions of burst 

frequencies to the control cells, arguing against the possibility of pre-existing global differences 

in burst properties that make cells less susceptible to the induced global alterations thus 

priming them for a better response to stress [Figure 61D]. 
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Figure 61: Epigenetically disrupted cells resist to the reduction of burst frequency 
 
[A] Visualization of the changes in transcriptional activity induced by nutrient starvation in EED-KO cells. 
Each dot is a gene. 
[B] Distributions of transcriptional burst frequency for individual genes. ***p < 0.001 and ****p < 0.0001 
relative to the same time point in control cells (two-way ANOVA, followed by Sidak’s multiple 
comparisons). N ≥ 2,016 genes. 
[C-D] Pair-wise comparison of transcriptional burst frequencies in the indicated KO populations in 
unperturbed conditions (D) or 2 days after exposure to stress (C). Each dot is a gene. 

 

In line with the above data, epigenetically disrupted populations also exhibited increased 

resistance to the upregulation of the burst size in stress related genes. Contrary to the 

substantial upregulation that was observed in control populations, the KO cells exhibited 

minimal changes during the first 2 days under starvation with only a significant but mild 

increase at the latest time point [Figures 60 and 62]. This differential behavior in the regulation 

of stress genes is in line with the detected differences in the expression of stress genes that 

were detected between KO and control populations during the immediate response to stress 

[Figure 53A]. 
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Figure 62: Resistance of EED-KO cells to the increase in burst size in stress genes 
 
Distributions of transcriptional burst size for all or stress genes in EED-KO cells at the indicated time 
points under starvation. P-value from two-way ANOVA, followed by Sidak’s multiple comparisons (****p 
< 0.0001). N ≥ 2814 (all) or 57 (stress) genes. 

 

 

4.3.5.4 Selection of secondary adaptive gene signatures under chronic nutrient 

starvation 

Failing to mount a strong stress response that subsequently leads to the induction of apoptosis 

increases the probability of survival in the presence of short transient challenges. Additionally 

in cases of chronic stress, as in the case of sustained nutrient starvation under examination 

here, it provides valuable time (increased number of surviving cells x increased time under 

stress) that enhances the probability of acquiring secondary adaptive traits to combat the 

stressor. In line with that, inspection of epigenetically disrupted cells after 12 days under 

starvation revealed the presence of a fraction of cells that express glutamine synthetase 

(GLUL) which is responsible for the de novo production of this non-essential amino acid (Bott 

et al., 2015). Other genes known to compensate for glutamine shortage such as ASNS (Zhang 

et al., 2014) and SLC1A3 (Tajan et al., 2018) were also upregulated [Figure 63A]. Notably, 

their expression pattern was variable among cells, ranging from cells expressing all three 

genes to others that express only one. It is worth mentioning that the absence of single genes 

from individual profiled cells in single-cell transcriptomics experiments can be the result of the 

stochastic Poison sampling from the examined population. However, no correlation was 

observed between the expression of the adaptation genes and the overall capture efficiency, 

as assessed by the total number of detected UMIs or genes in these cells [Figure 63C]. Thus, 

the mixed expression pattern can be an indication that individual cells employ various 

strategies for long-term survival [Figure 63B]. The same genes were also detected in the few 

surviving control cells, but they were significantly less abundant, in line with the overall lower 

fitness of the population [Figure 63A]. 
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Figure 63: Expression of adaptation genes in epigenetically disrupted cancer cells under 
chronic nutrient starvation 
 
[A] Expression levels of the indicated genes in individual cells in the indicated samples. Lines indicate 
the median values. *p < 0.05, **p < 0.01, and ****p < 0.0001 relative to d12 control cells (Kolmogorov-
Smirnov test)  492 ≤ N ≤ 664 cells. 
[B] Expression levels of the indicated genes in HIST1H1B-KO cells at d12 under nutrient starvation. 
Each line represents the expression level in a cell. N = 664 
[C] Total number of captured unique molecular identifiers (UMIs) or genes in HIST1H1B-KO cells at 
d12 under nutrient starvation. Each line represents an individual cell. N = 664 

 

Altogether, the above data demonstrate that epigenetically disrupted cells resist the global 

alterations of transcription burst properties that take place in response to nutrient starvation, 

providing a mechanistic explanation for the inert phenotype that they exhibit. This resistance 

lowers the probability of cell death and concomitantly increases the chance of acquiring 

secondary traits that can combat the challenge. 
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4.4 Conclusion 

In chapter 4 of this thesis, I have presented step by step the approach that I followed to 

interrogate the potential cellular mechanism that mediates the stress-dependent selective 

advantage of epigenetically disrupted cells. In brief, the models explored are a) genetic 

diversity, b) transcriptional diversity c) phenotypic plasticity and d) phenotypic inertia [Figure 

31].  

To dissect among them, I employed a combination of experimental approaches ranging from 

reversible administration of chemical compounds that inhibit epigenetic function to live-cell 

imaging of metabolic states under stress and finally single-cell transcriptomics in control and 

epigenetically impaired populations growing under nutrient deprivation [Figure 64].  

The key findings presented in this chapter are summarised below [Figure 64]:  

✓ The survival advantage observed upon epigenetic deregulation is not genetically 

encoded, as demonstrated by the loss of the stress-resistant phenotype upon withdrawal 

of drugs targeting specific epigenetic functions [Figure 32]. 

✓ Nutrient deprivation induces strong transcriptomic alterations involving upregulation of 

stress signatures and downregulation of highly expressed fitness genes [Figure 37]. 

✓ Under chronic starvation, significant phenotypic diversification is observed with the 

emergence of a mixture of stressed and fit subpopulations [Figures 49, 51 and 52].  

✓ Epigenetically disrupted cells do not exhibit increased cell state transitions in response to 

stress as indicated by time-lapse imaging experiments following the metabolic state of 

individual melanoma cells [Figure 43]. 

✓ Dissection of subpopulation heterogeneity failed to detect subsets of epigenetically 

disrupted cells that express genes capable of providing adaptation to starvation [Figures 

51 and 52]. 

✓ Disruption of the epigenetic control leads to minimal alterations in transcriptional variance 

[Figure 55]. 

✓ The data obtained from live-cell imaging and that single cell transcriptomics do not support 

a system where phenotypic plasticity and/ or bet-hedging mediate the stress-resistant 

phenotype. 

✓ Epigenetically disrupted cells demonstrate increased tolerance to stress, by adopting a 

milder phenotype in response to nutrient starvation [Figures 39, 42, 43 and 53].  

✓ Modelling of the transcriptional burst kinetics reveals a substantial decrease in the burst 

frequency of fitness genes and a concomitant increase in the burst size of stress genes 

providing a mechanistic explanation for their downregulation and upregulation 

respectively [Figures 58, 59 and 60].  
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✓ Epigenetically deregulated cells resist the above stress-induced changes in 

transcriptional burst properties, thus failing to mount a maximal stress response that 

would lead eventually to cell death [Figures 61 and 62]. 

Collectively, the data discussed in Chapter 4 support the notion that phenotypic inertia is likely 

the cellular trait that underpins the fitness advantage of epigenetically deregulated cells under 

unfavorable conditions. In molecular terms, inertia is conferred by the inability of KO cells to 

mount an efficient stress response that ultimately leads to apoptosis and cellular death.  

 

 

Figure 64: Summary of the experimental methodologies and key observations reported in 
Chapter 4 
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Chapter 5. Discussion 

 

5.1 Overview 

Cancer is an evolutionary disease that is shaped primarily by natural selection acting upon 

genetic and epigenetic diversity, to promote the gradual acquisition of favorable phenotypic 

traits that collectively drive disease progression (Vendramin, Litchfield & Swanton, 2021; 

Hanahan, 2022). Epigenetic regulators are one of the gene classes that get preferentially 

disrupted during the later stages of tumorigenesis, yet the functional impact of this disruption 

remains purely understood (Jamal-Hanjani et al., 2017; Dentro et al., 2021). What is 

considered a “favorable” selectable trait can vary during tumorigenesis and is influenced by 

the tumor microenvironment, which is highly heterogenous and dynamic (Lipinski et al., 2016). 

Within this hostile setting, cancer cells must find ways to withstand and survive stress and 

subsequently drive tumor progression by acquiring adaptive behaviors. Based on the 

established role of epigenetic regulators as mediators of response to external stimuli, in this 

PhD thesis, I have explored the potential relevance of environmental stress in the selective 

advantage upon their inactivation. 

The experimental approach presented in this work consists of a combination of various 

methodologies, ranging from large-scale arrayed fitness assays, in vivo mice models, live-cell 

imaging, transcriptomic analysis at the single cell level and modelling of various properties of 

transcriptional regulation and output. In Chapter 3 I demonstrated that disruption of multiple 

epigenetic regulators in diverse cancer cell lines results in broad survival advantage in distinct 

metabolic stress conditions, relevant to cancer cells [Figure 30]. In Chapter 4 I investigated 

various cellular traits that could underlie the stress-specific resistance and propose that the 

inability of cancer cells to respond to their stressful conditions (Inertia) is the favorable 

phenotypic trait that is selected [Figure 65]. For a more thorough presentation of the 

experimental observations made in this thesis please refer to the respective summaries at the 

end of each results chapter (Sections 3.4 and 4.4).  

In this chapter, I present the key points of my study, synthesize observations from both 

chapters and discuss their implications on various aspects of cancer evolution. On top of that, 

I explore their limitations and suggest future experimental avenues to further characterize, 

strengthen and broaden the conceptual ideas proposed in my PhD thesis. 
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Figure 65: Schematic overview of the conceptual advances made in this PhD thesis 

 

 

5.2 Broad stress-specific survival advantage upon epigenetic 

deregulation 

5.2.1 Exploring the phenotypic relationships from the large-scale fitness 

assays 

5.2.1.1 Phenotypic commonalities 

Inspection of the phenotypic behaviors from the large-scale fitness assays in melanoma and 

lung cancer cells revealed that i) multiple KO populations demonstrated increased survival 

under stress ii) the widespread fitness advantage is shared across different stress conditions 

and cancer types and iii) the inactivated genes that confer advantage belong to all examined 

functional classes of epigenetic regulation [Figures 20 and 25]. These qualitative and 

quantitative aspects of the phenotype (number and functional classification of the fit KO 

populations) argue against the importance of specific epigenetic families and catalytic 

activities on the phenotype and rather propose that epigenetic deregulation at the network-

level converges to a common favorable trait (which in the light of the investigations presented 

in Chapter 4 is phenotypic inertia). This notion is in line with observations from mutational 

studies within cancer patients that have revealed non-preferential targeting of multiple genes 

across the epigenetic families (Brennan et al., 2013; Shen & Laird, 2013). To keep the focus 

on potential similarities among the detected phenotypes throughout my PhD work, I have 

explored phenotypic and transcriptomic behaviors in subsets of epigenetically disrupted 

cancer populations that a) demonstrated varying extents of fitness advantage upon stress and 

b) are KO for diverse regulators within distinct catalytic activities [Figures 21, 22, 23, 26,33, 

36 and 45]. 
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5.2.1.2 Quantitative and qualitative differences within the dataset are expected 

Aside from the aforementioned commonalities, that served as the conceptual basis of this 

study, in the fitness assays there were also differences detected across all dimensions of the 

dataset (e.g. KO populations with varying phenotypes between stress conditions or cancer 

models). Understanding this variability is important as in most cases it is expected, thus not 

weakening the generality of the survival advantage as described above.  

 

KO populations that demonstrated fitness neutrality 

One potential explanation is that these genes are not expressed in the cancer cell lines, thus 

no effect is expected upon their perturbation. Indeed, the KO populations within the dataset 

that did not exhibit any fitness deviation in all the conditions examined, were characterized by 

significantly lower mean expression compared to the ones that deviated from the norm at least 

in one stress condition [Figure 18]. Another explanation is that these genes are expressed 

within the lines, but the system can buffer their perturbation with no detectable phenotypic 

deviation. Although such robustness can be conferred via multiple mechanisms (Masel & 

Siegal, 2009), the most straightforward concept is the presence of gene duplications 

(paralogues), that share sequence similarity and can be characterized by functional 

redundancy. The methyltransferase paralogues SUV39H1 and SUV39H2 that are responsible 

for the deposition of methyl marks on H3K9 within heterochromatic regions and are 

characterized by a degree of redundancy demonstrated fitness neutrality across the fitness 

assays (Table 8) (O’Carroll et al., 2000). Similar behaviors were also observed in other pairs 

of paralogues like ARID3A and ARID3B. This is just an indication and integration of this 

dataset with future explorations regarding the robustness within the epigenetic regulatory 

network will shed light on the interplay between perturbations, robustness and the observed 

phenotypic deviation. 

 

KO populations with different phenotypes across stress conditions. 

Upon epigenetic deregulation, there was a significant directionality observed in the fitness, 

mainly towards survival advantage [Figures 20 and 25]. In rare cases, there were classes of 

genes that exhibited survival disadvantage in a single stress condition. Notable examples in 

this category are the CBX1/3/5 and BRD2/4/8 that both demonstrated a hypersensitive 

phenotype upon nutrient deprivation. These data suggest a direct link between the respective 

epigenetic functions and the response of cells to limited nutrients. In large-scale fitness 
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assays, there is an expected trade-off between accuracy in the detection of a single phenotype 

and scale. Although reproducibility was high in follow-up validation experiments [Figures 21 

and 25], it is still possible that single KO populations displayed falsely no phenotype. It is 

important to remind that the cancer cell models used in this study display an editing efficiency 

of approximately 70% [Figure 10], thus providing another technical reason why milder 

phenotypes may have fluctuated around fitness neutrality, especially in the less sensitive 

acidic conditions. 

 

Phenotypic differences across cancer models. 

Although a significant correlation was detected in the expression profile of epigenetic 

regulators among melanoma and lung cancer cells, there was also cancer type specific 

expression of various genes. Thus, the differential set-up within the epigenetic network in each 

cancer cell model predicts the presence of potential cancer-type specific hits. For example, 

HIST1H1B, HIST1H1D and NAP1L5 were found to be expressed solely in melanoma cells. 

Indeed, their respective KOs conferred a survival advantage in melanoma cells and not in the 

lung cancer model. As stated in section 3.3.2.2, to avoid the presence of inflated ratios during 

the calculation of the stress-specific fitness, KO populations with substantial disadvantage in 

the unperturbed conditions were discarded from the analysis. KO populations for CHAF1B 

DDX11, HDAC3, HMGA1 and SMARCB1, demonstrated fitness advantage in melanoma cells, 

but were discarded in the lung cancer fitness assay. Finally, technical noise stemming from 

the high-throughput nature of the large-scale assays and the editing efficiency may also 

account for differences in this dimension of the dataset. 

So far, I have focused on single KOs in epigenetic regulators and have discussed reasons for 

the detection of varying phenotypes within the dataset. Between the melanoma and the lung 

cancer cells, there was also a significant difference detected in the overall numbers of KO 

populations exhibiting survival advantage under stress (91 and 38 in MEXF 2090 and LXFL 

1674 respectively). The most plausible explanation for this variability is the slow proliferation 

rate that characterizes the lung cancer cell line, which results in a smaller dynamic range of 

the detected phenotypes. On top of that microscopic inspection of the NSCL model, revealed 

significant levels of cell death in the baseline conditions (data not shown). Finally, upon 

epigenetic deregulation, a significant shift towards slower proliferation was observed in many 

KO populations in unperturbed conditions. Thus, it is possible that the inherent properties of 

this model, render them more sensitive to epigenetic deregulation per se, masking potential 

beneficial effects that this disruption could have across other modalities (like stress 
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resistance). The interplay of epigenetic deregulation with other existing cellular properties 

should be characterized more systematically (see subchapter below). 

Overall, technical factors inherent to large-scale assays, specific roles of single genes in stress 

conditions and the structural and functional properties of the epigenetic network across cancer 

types predict the presence of variability within the dataset. 

 

5.2.1.3 Limitations and future experimental directions 

One potential limitation of my thesis is that most of the experiments were performed under 

nutrient starvation or environmental acidification, both of which constitute metabolic stress 

conditions. However, these stressors have been shown to induce antithetic effects on cancer 

cell metabolism, thus the observed stress resistance is expected to emerge from a general 

phenomenon rather than a specific rewiring in the metabolic apparatus of the cells (Yoo et al., 

2020). In line with that, the transcriptomic analysis of the response to nutrient starvation 

revealed alterations in largely generic pathways like proliferation, inflammation, hypoxia and 

apoptosis [Figure 37]. Analysis of expression levels in representative genes revealed similar 

alterations in melanoma cells growing under acidic conditions [Figure 38]. Finally, global 

alterations in fitness and stress signatures have been previously reported in response to 

various hostile conditions, ranging from hypoxia to targeted therapy (Emran et al., 2018; 

Gameiro & Struhl, 2018). The identification of defective transcriptional rewiring in the stress-

fitness axis as the common molecular underpin of the stress-resistant phenotype, predicts that 

the widespread survival advantage upon epigenetic deregulation can be also prevalent in 

other conditions relevant for cancer cells. 

A second limitation of the study stems from the cancer cell models used. Both are clonal lines 

that are characterized by specific driver mutations in RAS and p53. Thus, extrapolating the 

observed broad survival advantage to other cancer types needs caution. Follow-up 

experiments by Fabrizio Simeoni (Scaffidi lab) demonstrated that diverse epigenetic inhibition 

in PDX models from the colon, pancreas and bladder enhanced the survival of cancer cells 

under nutrient starvation, thus providing an additional line of evidence that the phenotype is 

not dependent on the cell of origin (Note that these PDX models are driven by the same 

oncogenic mutations) (Loukas et al., 2023). Variability in other systematic factors like 

oncogenic drivers, signalling pathways, differentiation status and genomic instability is likely 

to significantly affect the detected phenotype upon disruption of the epigenetic machinery 

(Shen & Laird, 2013). To start dissecting such dependencies, similar approaches employing 

pharmacological inhibition of diverse epigenetic regulators within cancer cell lines 

characterised by distinct underlying properties could be performed. Next, to thoroughly dissect 
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the contributing factors, large-scale fitness assays in cancer models that vary in all the 

systematic factors should be considered. Although the arrayed format of the fitness assays 

proved powerful in detecting even subtle phenotypes [Figures 17 and 21]  and revealing 

patterns within the dataset [Figures 20 and 25], the execution is quite laborious. An alternative 

approach here would be to perform pooled CRISPR screens in various PDX models under 

stress. The technical challenge resides in a) the reduced sensitivity towards subtle phenotypes 

and the fact that different lines are expected to have varying dependencies and modes of 

response to stress conditions thus potentially limiting the ability to directly cross-compare 

qualitative and quantitative phenotypic aspects among them. Thus, results should be handled 

under the prism of network-level effects with the focus being on identifying advantageous 

phenotypes that are conferred by mutations in many genes (quantitative aspect) that belong 

to various epigenetic families (qualitative aspect). 

 

5.2.2 Interpretation of cellular phenotypes driven by phenotypic inertia 

Aside from the binary investigation of the stress response (fitness neutrality vs fitness 

advantage), various experiments within Chapter 3 explored additional parameters of the stress 

response like the fraction of surviving cells, the trajectory over time and how epigenetic 

deregulation may affect them. In brief, those experiments revealed that the survival advantage 

of epigenetically disrupted cancer cells correlated with the ability of cells to sustain an 

increased proliferation-to-apoptosis ratio [Figure 22]  and an increased number of stress-

resistant colonies [Figure 23]. However, a close comparison of the phenotypes among the 

different KO populations, revealed cases that diverge from the above general notions. For 

example, HIRA-KO cells presented more stress-resistant colonies, but ultimately lower cell 

count compared to SMARCD1-KO populations [Figures 21A and 23B].  Additionally, following 

the trajectory of dozens of KO populations under stress demonstrated multiple cases where 

the relative ranking of the detected fitness was altered over time [Figure 21B]. Thus, it is 

evident that the extent of the survival advantage in the KO cells is shaped by multiple factors 

like the capacity of cells to combat cell death in the early response to stress along with 

additional secondary mechanisms that emerge and dictate long-term growth under stress. 

Notably, the identification of inertia as the mechanism behind the stress-specific phenotype 

aligns with this view of the system and allows for the presence of the aforementioned 

“discrepancies”. Upon stress application, the inert phenotype decreases the potential of 

immediate cell death thus increasing at the population level the chance of acquiring secondary 

traits that can sustain growth under stress. This acquisition is largely stochastic and can vary 

in regard to timing (if and when the adaptive event happens) and its nature (how it affects 
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proliferation under stress). As proof of principle, the transcriptomic analysis detected at the 

latest time point (d12) significant cell-cell variability in the expression of various genes that 

have been shown to compensate for glutamine starvation [Figure 63]. Finally, this stochasticity 

can also explain the observations from the in vitro competition assays where variability in the 

response was observed even among replicates of the same KO population [Figure 26B]. 

Considering the variability within the explored phenotypes, further experiments are required 

to fully characterize the phenotypic response to stress of epigenetically disrupted cancer cells. 

The incorporation of barcoding and lineage tracing methodologies would provide important 

insights, regarding the clonality of the response and how the system evolves over time. It is 

worth reminding that even within the KO populations a significant fraction of cells succumb to 

stress [Figure 22B]. What drives this variability in the response? Are there pre-existing 

heterogeneous traits within the phenotypically inert cells that can tip the balance between 

survival and death upon stress? Utilizing barcoding systems like Rewind (Emert et al., 2021) 

and CaTCH (Umkehrer et al., 2021) that enable the detection of surviving clones and the 

subsequent interrogation of the traits of the ancestral clone in the unperturbed conditions will 

shed light towards this direction. 

 

5.2.3 Expanding the fitness relationships in the in vivo setting 

Most of the investigations presented in my thesis were performed in vitro. This allowed for the 

i) elimination of various potential confounding properties of the system ii) direct interrogation 

of the relationship between epigenetic deregulation and survival under stress iii) execution of 

complex experiments that would have been challenging in vivo. Having established that 

inactivating mutations in diverse epigenetic regulators can increase the survival of cancer cells 

under stress, the next step was to explore if this link holds true in the much more complex 

setting of evolving tumors.  

Initial evidence in support of this notion, comes from the in vivo competition experiment, where 

EZH2-KO cells outcompeted control populations in all tumors where the microenvironment 

was manipulated to promote further nutrient scarcity [Figure 28]. One potential limitation of 

this experimental setup arises from the fact that within the mixture of cells that are injected 

into mice, a fraction of cells is already knock-out for the epigenetic regulator. This creates the 

possibility that part of the detected phenotypic deviation could be independent of the ability of 

cells to respond to environmental stress and could be attributed to other traits like increased 

capacity to initiate tumorigenesis or increased proliferation rate in vivo. However, the 

dichotomy among the untreated tumors (EZH2-KO enrichment in two vs fitness neutrality in 

the rest) dismissed this scenario [Figure 29]. On top of that, the fact that EZH2-KO enrichment 
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correlated with lower nutrient availability (as indirectly inferred by pS6 staining) confirms that 

the detected phenotype is dependent on the relationship of the cells with the TME [Figure 29]. 

Finally, it demonstrates that even within replicate models of tumorigenesis, the baseline levels 

of nutrient availability can substantially affect the selective forces and thus the detected 

phenotype. 

The above observations are encouraging but limited only to one KO population. Further in vivo 

competition assays are needed to strengthen the detected in vivo phenotype. A better future 

approach would be to perform such an experiment with an inducible setup, where the KO is 

initiated after the formation of a primary tumor, thus more faithfully mimicking the scenario of 

subclonal expansion [Figure 66A]. Additionally, using KO and control melanoma cells (MEXF 

2090) stably expressing the GFP and mCherry fluorophores [Figure 26] would allow for their 

direct detection within the tumor core and assessment of their spatial distribution relative to 

other components of the TME. This approach combined also with spatial transcriptomics 

(Lewis et al., 2021), could provide powerful insights into the biology behind the spatial 

distribution and expansion of epigenetically deregulated cancer cells in evolving tumors. 

Going a step further, it would be interesting to explore signs of the stress-epigenetics 

relationship in cancer patients. This can be done by a combination of computational and 

experimental methodologies, with the core principle being to detect relative enrichment of 

mutations in epigenetic regulators within differentially stressed tumor samples (similar concept 

to the in vivo competition assays in mice). It is well established that cancer types are 

characterized by overall different levels of hypoxia, which subsequently generates nutrient 

scarcity and environmental acidification (Bhandari et al., 2019). Thus, one potential avenue is 

to look for a positive correlation between the number of subclonal mutations in epigenetic 

regulators and the overall hypoxic score of those tumors [Figure 66B]. An additional 

computational approach, that takes into account various interpatient confounding factors, is to 

focus on tumors with available multi-region sequencing data (Jamal-Hanjani et al., 2017), 

stratify the subclones based on the expression of various stress signatures (Barkley et al., 

2022; Baron et al., 2020) and look for enrichment of epigenetically deregulated cells [Figure 

66C]. A reciprocal approach can also be applied here. Although this approach is more 

straightforward, it requires a significant number of specimens that have been profiled both at 

the genetic and transcriptional levels. Finally, an experimental equivalent to the above 

methodologies is to select patients with mutations in epigenetic regulators and co-stain with 

markers of stress, to directly examine the spatial proximity between these deregulated cells 

and stress signatures in the in vivo setting [Figure 66D]. 
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Figure 66: Proposed experimental directions to strengthen the notion that epigenetic 
deregulation alter the sub-clonal expansion of cancer cells in evolving tumors 

 

5.3 Transcriptional response to stress 

The profiling of mean expression, variance and bursting properties of genes along the time 

trajectory, allowed for a multifaceted investigation of how melanoma cells respond to stress 

[Figure 67]. Nutrient starvation induces a substantial number of transcriptional alterations that 

gradually accumulate over time [Figure 48A]. In the early response to stress (d2 vs d0) highly 

expressed genes involved in proliferation and cell cycle control get downregulated whereas 

pathways indicative of stress (e.g. Hypoxia, NFKB, Apoptosis) get upregulated [Figures 37, 

48B and 49]. In the long-term response (d12) control cells also demonstrate a strong 

inflammatory phenotype, in line with previous reports further confirming the validity of the 

transcriptomic analysis (Gameiro & Struhl, 2018) [Figure 49]. Interestingly, I observed at the 

latest time point a partial recovery in fitness related signatures suggestive of adaptation at 

least in a fraction of cells [Figures 48C and 49]. The above evolutionary conserved response 

has a dual role as it allows for the conservation of cellular energy and biomass along with the 

upregulation of stress related genes to promote short-term survival under stress. It is currently 

unclear if the detected alterations in fitness and stress related genes are interdependent. 

Finally, another observation within the dataset was the transcriptomic diversification in 

response to stress, which resulted at the latest time point in control cells that exhibited 

significant variability along the stress-fitness axis [Figures 47, 49 and 51]. It is worth 
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mentioning that the above analysis of the transcriptomic response was focused on the context 

of glutamine starvation. However, various evidence supports its generality. For example, 

similar alterations in fitness and stress related genes were observed in acidic conditions 

[Figure 38]. On top of that similar alterations have been previously reported in other contexts 

including diverse metabolic stressors and therapy (Emran et al., 2018; Gameiro & Struhl, 

2018). Thus, it is plausible that the above transcriptomic alterations can extend to additional 

hostile conditions, a concept that needs to be experimentally validated.  

One interesting observation is that fitness and stress related genes are characterised by 

distinct bursting properties. Specifically, highly expressed fitness genes exhibit elevated burst 

frequency, while stress genes demonstrate lower frequencies compared to the norm [Figures 

59 and 60]. This dichotomy likely reflects the evolutionary shaping of hard-wired and dynamic 

properties that dictate the bursting behavior of the respective expressed loci. Such factors 

within fitness and stress related genes have been previously reported in other contexts and 

cellular models, with the most notable example being the preferential presence of TATA box 

elements within the promoter regions of stress related genes that results in increased 

expression noise (Bar-Even et al., 2006; Newman et al., 2006; Larsson et al., 2019; Ochiai et 

al., 2020). This relationship was also confirmed by the variance analysis presented in this 

thesis [Figure 54]. 

The fact that starvation induces a strong reduction in global burst frequencies [Figure 58], 

while size remains unaffected, provided a mechanistic framework for the coordinated down-

regulation of functionally related fitness gene sets, that spam multiple chromosomes and are 

under the regulations of distinct GRNs. The low frequency of stress genes makes them less 

sensitive to the induced reduction in frequency and their upregulation seems to correlate with 

a gradual increase in burst size, potentially reflecting the stable binding of stress induced 

transcription factors. Such proteins like ATF3, ATF4 or DDIT3 were significantly upregulated 

upon stress (data not shown) and their functional relevance regarding the bursting alterations 

remains to be elucidated. Overall, the above data reveal a dichotomy in traits within stress and 

fitness related genes that enables their differential regulation. Similar selectivity has been also 

observed at the translational level, via alterations in the dynamics of tRNAs (Torrent et al., 

2018), revealing a multi-layered evolutionary regulation across distinct layers of gene 

expression in response to stress.  
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Figure 67: Schematic representation of the transcriptomic response of melanoma MEXF2090 
cells under nutrient deprivation. 
 
The lines have been arbitrarily selected to start from the same position within the Y axis to aid the visual 
inspection of the trends over time. 

 

 

5.4 The stress resistant phenotype is not mediated by genetic 

events, transcriptional variance or state transitions  

Having established the link between epigenetic deregulation and increased survival under 

stress, the main focus of Chapter 4 was to explore the presence of underlying traits that could 

mediate this phenomenon. In brief, I investigated if the stress resistance of the KO populations 

was conferred by genetic events, transcriptional variance, state transitions or inability to alter 

their phenotype in response to stress [Figure 31].  

Multiple lines of evidence argue against the importance of mutations as drivers of the stress-

tolerant phenotype upon epigenetic deregulation. First, the clonal nature of the PDX lines 
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eliminates the presence of pre-existing heterogeneity at the genetic level. On top of that, whole 

exome sequencing of spontaneously adapting parental lines to starvation failed to identify 

clonal or shared subclonal driver mutations [Figure 13]. The complete loss of the favorable 

phenotype in all populations, upon withdrawal of the epigenetic inhibitors, is the strongest hint 

against the genetic nature of the favorable trait [Figure 32]. It is theoretically possible that the 

established mutation confers a phenotypic advantage that is dependent on the existing 

deregulated epigenetic state. This unlikely scenario is not supported by the growth kinetics of 

KO populations under stress. A model where a rare genetic event (pre-existing or de novo 

acquired) is favorable and selected over time would require weeks to drive detectable 

alterations at the phenotype (cell count). Contrary to that prediction, pharmacological or 

genetic inactivation of epigenetic regulators led to significant fitness leaps after only a few 

days under starvation, as determined in various fitness assays [Figures 14, 20, 21 and 45]. 

The second scenario that was assessed is if epigenetic deregulation can affect the 

transcriptional variance of cells, priming them for a better response to stress, a concept 

analogous to bet-hedging in unicellular organisms. In this study, transcriptional variance was 

assessed at the gene level. Inference of variability was robust as the defined cohort of highly-

variable genes was enriched for stress and plasticity related signatures [Figure 54]. This is in 

line with the existing notion, that across species selective forces have shaped the regulatory 

properties of these cells in order to minimize variance within housekeeping genes and 

maximize heterogeneity within stress related signatures (Bar-Even et al., 2006; Newman et 

al., 2006). No difference in the number, extent or nature of the HVGs was detected among the 

KO and the control populations. My analysis was restricted to the unperturbed conditions (day 

0), with the idea being to identify pre-existing variability that could prime cells for a better stress 

response. Towards this direction, inspection of the transcriptional variance within GLUL, 

ASNS and SLC1A3, genes that have been reported to compensate for glutamine starvation 

(Zhang et al., 2014; Tajan et al., 2018), revealed no differences among control and 

epigenetically deregulated cells (data not shown). Other forms of variability within the 

population were also assessed (Grün, 2020), but the results were inconsistent and sensitive 

to subtle parameter changes thus limiting the power to draw conclusions from them (data not 

shown). In line with the observation in my PhD thesis, direct assessment in an experimental 

model where heterogeneity has been shown to be relevant for survival under stress, did not 

detect the emergence of favorable phenotypes upon disruption of the epigenetic network 

(Torre et al., 2021).  

An alternate concept to transcriptional variance is cellular plasticity, a term heavily misused in 

the cancer literature (Mills, Stanger & Sander, 2019). Here plasticity has been examined under 

the prism of state transitions, by utilizing a FRET based biosensor that can indirectly monitor 
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the OXPHOS state of cancer cells, which was demonstrated to be responsive to stress. Live-

cell imaging of individual EZH2i and DMSO melanoma cells did not reveal any differences in 

the state variability during the initial response to starvation [Figure 43]. Although this analysis 

should be extended ideally to other KO populations and additional monitored transcriptional 

states, it provides initial evidence against the increased plasticity of cancer cells upon 

epigenetic deregulation. If indeed the KO cells were more robustly transitioning towards a 

favorable (transcriptional) state, then it is expected that this state would be selected over time. 

Dissecting the sub-population heterogeneity at the latest time point (day 12) did not detect any 

subsets of epigenetically disrupted cancer cells with adaptive signatures but rather cells with 

milder alterations in the stress-fitness axis [Figure 52]. These differences were not a result of 

recovery after reaching a full stress maxima, as following the fitness and stress signatures 

along the time trajectory revealed increased resistance of epigenetically disrupted cancer cells 

in response to stress [Figure 53]. Those observations are in accordance with the behaviors 

observed in EZH2i cells in the experiments monitoring the metabolic states [Figures 42 and 

43]. 

Overall, observations from fitness assays, live cell imaging and the subsequent transcriptomic 

analysis provided multiple evidence in favor of phenotypic inertia as the mediator of the 

advantageous phenotype in KO cells [Figures 39, 42, 43, 53, 61 and 62]. It is essential to state 

that the data presented in this thesis do not imply that epigenetic deregulation does not lead 

to genomic instability or plasticity or transcriptional variance. On the contrary, they propose 

that there are specific contexts and time scales during cancer evolution (like the examined 

environmental challenges) that disruption of the epigenetic network confers a survival 

advantage through alternate non-genetic mechanisms like phenotypic inertia. 

 

5.5 Considerations regarding the causes and consequences of 

phenotypic inertia during cancer evolution 

5.5.1 Assessing the causality of the detected transcription burst alterations 

The data presented in my PhD thesis (Chapter 4) are in line with the existing literature and 

suggest that diverse stressful stimuli promote a significant alteration in the transcriptional 

profile of cells, consisting primarily of the downregulation of fitness related genes and 

upregulation of stress signatures. Modelling of bursting properties revealed that this 

downregulation is mediated by a decrease in burst frequency while the upregulation of stress 

genes is primarily driven by an increase in burst size. It is important to state that follow-up 

investigations by Fabrizio Simeoni confirmed the predictions from the single-cell 
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transcriptomics and bursting analysis, which was used as a proxy of global transcriptional 

activity. In detail, fitness genes exhibited a 60- 90% reduction in nascent RNA levels after two 

days under starvation accompanied by a significant decrease in bound RNA polymerase II 

phosphorylated at serine 2 within its CTD domain (this modification marks active RNA 

polymerases during transcriptional elongation) (Loukas et al., 2023). The proposed model is 

that the increased resistance of the epigenetically deregulated cells towards those alterations 

(herein termed transcriptional “numbness”) leads to their inert phenotype and thus to 

increased survival under stress. One major question that arises is if transcriptional numbness 

is causal to the survival advantage. An alternative scenario is that the KO populations are 

characterized by a pre-existing cellular trait that primes them for a better stress response, thus 

any detected alterations in the bursting properties are a passive trait within the system. 

Multiple hints along the presented data in this study argue against this scenario. For example, 

the fact that the stress-resistant phenotype is conferred by mutations in genes across all 

known epigenetic families argues against the selection of a single “favorable” molecular 

function (e.g. writing of specific methylation marks is important for the phenotype) [Figures 20 

and 25]. Accordingly, the shared widespread advantage in response to two antithetic stressors 

eliminates the relevance of potential stress-specific favorable traits (e.g. decreased glutamine 

dependence upon epigenetic deregulation) [Figures 20 and 25]. In the unperturbed conditions, 

SMARCD1-KO and HIST1H1B-KO cells are characterized by minimal pre-existing 

transcriptomic alterations [Figure 34A], thus decoupling the extent of the survival advantage 

with the presence of any pre-existing transcriptional rewiring. In line with that, the levels of the 

stress-responsive genes were identical among the examined KO populations before the 

application of the stress [Figure 39C]. Finally, the most important hint regarding the causality 

of the phenotype is the nature of the epigenetic regulation itself, as its primary function is to 

shape the transcriptional output in response to diverse internal and external stimuli.  

Nevertheless, it is essential to directly explore the causality of transcriptional numbness. 

Ideally, this would consist of a perturbation within the system that can affect the capacity of 

cancer cells to alter their bursting properties in response to stress. Bursting frequency and 

size have been proposed to be regulated by a variety of fixed but also dynamic traits within 

the cells, with RNA polymerase being an important factor in the latter category (Rodriguez & 

Larson, 2020; Tunnacliffe & Chubb, 2020). In other experimental systems pharmacological 

inhibition of RNA polymerase elongation has resulted in deterministic effects on bursting 

frequency and size (Ochiai et al., 2020). Thus, one potential experimental set-up would 

comprise of treating MEXF 2090 cells with inhibitors affecting various steps of RNA 

polymerase function (initiation, elongation, etc) and assessing the survival under multiple 

stress conditions like nutrient starvation and environmental acidification. In an alternative 
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approach, Fabrizio Simeoni genetically inactivated in MEXF 2090 cells NELFA, a component 

of the NELF complex that negatively regulates the elongation of transcription by RNA 

polymerase II (Aprile-Garcia et al., 2019; Rawat et al., 2021). Strikingly, these KO cells 

exhibited increased survival advantage under nutrient starvation, in analogy to the behavior in 

epigenetically deregulated cells, providing important evidence in favor of the causal 

relationship between transcriptional numbness and the ability of cells to survive under stress. 

 

5.5.2 Mechanistic convergence upon epigenetic deregulation? 

Why are epigenetically deregulated cells defective in the transcriptomic response to stress? 

This is an especially interesting question, considering that the examined regulators are 

characterised by different functions and catalytic activities. Considering their nature, future 

experiments should focus on how properties within the chromatin landscape change upon 

stress. For example, one scenario is that the KO cells fail to remodel the chromatin (histone 

marks and/or accessibility) around fitness and stress genes thus hindering the expected 

stress-induced transcriptomic alterations. Significant changes in histones marks (Sharma et 

al., 2010; Emran et al., 2018) and chromatin accessibility (Shaffer et al., 2017) have been 

reported in various cancer models that acquire resistance to either environmental stress or 

therapeutic intervention. However, these alterations are detected in long-term survivors under 

stress, having undergone significant epigenetic reprogramming, and may reflect alterations 

that are not important for the early stress response.  

In line with that, Marta Milan and Fabrizio Simeoni focused on the initial response to stress 

and assessed how chromatin dynamics and modifications (via ATAC-seq and Chip-seq 

respectively) compare in unperturbed conditions and after two days in starvation. Despite the 

apparent global transcriptional downregulation, the control populations under stress exhibited 

a striking upregulation of their chromatin accessibility. On the contrary, active or repressive 

histone modifications remained seemingly unaffected, in line with the pattern observed during 

the transcriptional downregulation within cells upon UV irradiation (Liakos et al., 2020). 

Epigenetically deregulated cells demonstrated minimal alterations in chromatin accessibility, 

providing a first indication that distinct epigenetic activities when mutated converge to 

transcriptional numbness through the inability of cells to remodel their chromatin landscape in 

response to stress (Loukas et al., 2023). 
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5.5.3 Is epigenetic deregulation the only road to inertia? 

One important clarification to be made is that transcriptional numbness and phenotypic inertia 

are two separate concepts. The defective rewiring of transcription in response to stress 

(numbness), as a result of epigenetic deregulation, is the molecular trait that leads to an 

unresponsive cellular state (Inertia) which in turn is the phenotypic trait under selection. This 

decoupling among molecular and phenotypic properties predicts that perturbations in other 

regulatory mechanisms within the cell may result in an inert state. For example, signalling 

pathways and proteins involved in translational control, are both implicated in sensing and 

responding to environmental stimuli and have been shown to be important for cellular 

response to stress, including therapy (Lee et al., 2021). This scenario would be in line with the 

preferential inactivation of signalling proteins that has been previously described during 

subclonal expansion in evolving tumors (Jamal-Hanjani et al., 2017). 

During the large-scale fitness assays presented in this thesis, there were two important 

signalling genes targeted as a control; mTOR, an evolutionary conserved sensor of nutrient 

availability and cellular energy and ATM, a kinase that responds to genotoxic stress by 

promoting cell cycle arrest, DNA repair and apoptosis. Notably, these KOs exhibited increased 

survival advantage under stress, providing preliminary evidence towards this notion (Table 8). 

In a non-cancerous setting, cells lacking PTEN, a protein that is commonly mutated in cancer 

and acts as a negative regulator of PI3K signalling, demonstrated a fitness advantage in 

conditions of limited nutrient availability (Nowak et al., 2013). In a MYC driven model of 

neuroblastoma, inhibition of ATF4 primed cells for a better response to starvation, suggesting 

that deregulation of transcriptomic events downstream of signalling cascades can alter the 

phenotype under stress (Qing et al., 2012). Finally in cancer models of stress resistance in 

various stressors, including glucose deprivation, strong alterations in the activity of signalling 

pathways coincided with alterations in the chromatin state, suggesting a potential crosstalk 

among these regulatory layers (Emran et al., 2018). Further experimental investigation is 

required to define perturbations outside the epigenetic regulatory network that can result in an 

inert phenotype. Arrayed fitness assays in MEXF 2090 melanoma cells under various stress 

conditions, systematically targeting genes involved in signalling and transcriptional regulation 

would provide powerful insight towards this direction. Similar methodologies have been 

applied for the exploration of the functional impact of such regulatory layers into other aspects 

important for cancer evolution, like transcriptional heterogeneity and adaptation to targeted 

therapy (Torre et al., 2021). An experimental shortcut would be to treat the melanoma cells 

with various available inhibitors against signalling proteins and assess survival under stress. 
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5.5.4 Relevance of inertia for other stress conditions during disease 

progression 

In this PhD thesis, the defective transcriptional rewiring of the epigenetically disrupted cells 

was detected in the fitness-stress axis. In principle, phenotypic inertia is predicted to be 

relevant in response to any internal or external stressor that acts through transcriptional 

alterations and is strong enough to tip the balance between fitness and stress related 

signatures. The strength of the stress (dose x time under exposure) is important, as varying 

severity may induce alternative behaviors within the cells ranging from minor adaptive rewiring 

to cell death. In line with that, when performing validation experiments in conditions with 

varying acidity [Figure 25C], the extent of the observed fitness advantage in epigenetically 

disrupted cells (specifically in KO populations for either PRC2 subunit), positively correlated 

with the severity of the stress (as assessed by the extent of cell death and the reciprocal 

upregulation of stress related genes – data not shown). Alterations in similar pathways and/or 

global downregulation of transcription have also been reported in a variety of cellular models 

under stress, including cells exposed to other metabolic stresses, hypoxia, UV irradiation and 

thermal stress (Emran et al., 2018; Gameiro & Struhl, 2018; Tufegdžić Vidaković et al., 2020; 

Cugusi et al., 2022). Thus, it would be interesting to explore if the inert phenotype is 

advantageous within these settings too. Selection of the populations used for the validation 

experiments [Figure 21] and monitoring of their fitness under stress would provide interesting 

evidence regarding the generality of inertia within environmental challenges. Of note, the 

melanoma cells are insensitive to hypoxia, thus examination of the relationship in this specific 

stress is not possible [Figure 24C].  

The inability of cancer cells to respond to unfavorable conditions (a concept to be expanded), 

suggests that inertia can be a relevant trait for other aspects of cancer evolution, like 

metastasis.  Metastatic dissemination is a complex biological process consisting of multiple 

steps like local invasion, transport through the bloodstream and finally seeding and 

proliferation within the recipient tissue (Fares et al., 2020). During this process cancer cells 

face a multitude of hostile conditions directing them towards cell death. Interestingly, in a 

genomic study across various solid tumors, targeting enzymes involved in chromatin 

regulation was shown to be enriched among the metastatic driver mutations (Hu et al., 2020). 

On top of that, multiple accumulating evidence suggest that non-genetic mechanisms can act 

as drivers of this process (Chen & Yan, 2021; Gui & Bivona, 2022). Experimentally 

establishing primary tumors with a mixture of fluorescently labelled control and KO populations 

and exploration of the nature of the cells within the bloodstream (single or CTC clusters 

isolated by FACS) could provide initial evidence regarding the ability of these cells to promote 

local invasion and survive within the bloodstream. On top of that, tail vein assays could further 
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explore the overall metastatic potential of these cells, including their ability to survive within 

the new setting and promote secondary growth. 

Aside from naturally occurring hostile conditions, one of the most significant struggles that 

cancer cells face is therapeutic intervention. Induction of a strong inflammatory response and 

downregulation of various fitness signatures has been also reported as a response to both 

chemotherapy and target therapy in various cancer models (Daigeler et al., 2008; Komurov et 

al., 2012; Emran et al., 2018; Rambow et al., 2018; Aissa et al., 2021), thus necessitating the 

investigation of the potential relevance of inertia to therapy response and resistance. MEXF 

2090 cells are BRAFWT driven by oncogenic NRAS mutation. NRAS can exert its oncogenic 

function through a variety of downstream signalling cascades including the RAF/MEK/ERK, 

MAPK, and PI3K/AKT pathways (Johnpulle, Johnson & Sosman, 2016). Thus, an appropriate 

experimental approach would be to compare the fitness of control and KO populations upon 

inhibition of one of these downstream effectors (or a combination of them). Upon treatment of 

melanoma cells with PI3K inhibitors, Fabrizio Simeoni observed increased fitness in a panel 

of epigenetically deregulated populations, thus providing a first line of evidence regarding the 

potential importance of phenotypic inertia in resistance to therapeutic intervention (Loukas et 

al., 2023).   

In their recent study Torre et al. screened various epigenetic regulators for the effect on 

transcriptional variability and stress resistance to therapy. In contrast to the data presented 

here, upon epigenetic deregulation, they observed overall fitness neutrality, with only a handful 

of mutations in epigenetic regulators conferring stress resistance to targeted therapy. Although 

the two models are fundamentally different in many regards, this phenotype is potentially an 

underestimation as the pooled CRISPR screen was not run towards saturation. Interestingly 

within the dataset there were KOs in epigenetic regulators (e.g. KMT2D) that had no effect on 

the number of “primed” cells but demonstrated increased resistant colonies upon therapy, 

indicating an alternative mechanism of action compared to transcriptional variance. 

Phenotypic inertia could fit into this model. Accordingly, Marsolier and colleagues detected a 

distinct subpopulation in the treatment-naïve breast cancer cells that exhibited increased 

capacity to withstand therapeutic intervention. These cells exhibited a distinct epigenetic state 

characterized by alterations in the landscape of the repressive H3K27me3 mark, which is 

deposited on chromatin by EZH2. Inhibiting EZH2 in these cells increased the resistance of 

cells to therapy, in an analogy to the increased stress resistance of EZH2-KO cells in our 

model systems (Marsolier et al., 2022). 

Targeting of the epigenetic mechanisms has been proposed as an attractive therapeutic 

approach, via the elimination of the plastic behaviors that have been observed within cancer 

cells (Marine, Dawson & Dawson, 2020). In light of the data presented here, caution is needed 
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regarding this therapeutic avenue, as inhibition of the epigenetic machinery may select for the 

inert phenotypic which is predicted to be relevant for therapy, thus yielding potential antithetic 

results. Further studies are required to carefully examine the prevalence, sources, and 

consequences of phenotypic inertia, as a result of epigenetic deregulation. 

 

5.5.5 Inertia and other models of cancer evolution 

As discussed above, further studies are needed to characterize key properties of the inert 

phenotype and assess its significance in various stages of tumor evolution. An important step 

forward is to start positioning phenotypic inertia within the existing framework of non-genetic 

mechanisms that drive cancer cell tolerance. The adaptation of cancer cells during disease 

progression has been largely studied under the lens of resistance to therapeutic intervention. 

Aside from genetic events, the selection and/or emergence of cancer cell subpopulations with 

intrinsic tolerance to stress is emerging as a major non-genetic driver of tumorigenesis 

(Marine, Dawson & Dawson, 2020). Despite the significant variability across model systems, 

these drug-tolerant cells are characterized by some shared/overlapping properties. The pre-

existing or emerging resistant cells are rare, with some studies positioning their clonality within 

a range of 1:100-1:10000. Such variability likely reflects both differences within the biological 

mechanisms involved in various cancer models but also technical variability in the 

methodologies and timeframes used during the experimental investigation. Nevertheless, the 

tolerant phenotype is associated with the transition towards a slowly proliferating cell state and 

is also accompanied by alterations in cell identity ranging from reversion to an undifferentiated 

stem-cell like state to trans-differentiation towards an alternate cell lineage (Shen, Vagner & 

Robert, 2020). Contrary to the above characteristics, the increased survival advantage of 

epigenetically deregulated cells was not a rare phenomenon [Figure 14], it was associated 

with increased proliferative capacity of cells in the immediate response to stress [Figure 22] 

and was independent of alterations in stemness [Figure 34]. On top of that in persister cells, 

activation of stress response signalling and the subsequent upregulation of ATF4 transcription 

factor mediates the survival of melanoma cells upon targeted BRAF inhibition (Yang et al., 

2021). In our model, cancer cells with decreased activation of stress signalling are the 

prevailing component, suggesting that the survival advantage of epigenetically deregulated 

cells is dependent on different modalities. Phenotypic inertia renders the cells less sensitive 

to their hostile setting thus decreasing the possibility of immediate cell death.  
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5.5.6 Assessing acquired vulnerabilities in inert cancer cells 

So far, the emergence of phenotypic inertia has been largely discussed under a positive prism, 

as it is considered a favorable trait that can provide survival advantage under environmental 

stress and is predicted to do so also in other stress conditions that substantially affect the 

fitness-stress axis, like targeted therapy (See section 5.5.4). One interesting question is if the 

emergence and selection of the inert cellular state is accompanied by the acquisition of novel 

vulnerabilities that then could be exploited for their elimination. In an analogous manner, 

stress-tolerant cancer cells, a non-genetic mechanism of therapy resistance, have been 

reported to acquire vulnerabilities in various pathways ranging from DNA damage response 

to metabolism (De Conti, Dias & Bernards, 2021).  

In preliminary data that are not displayed in this thesis, KO cells in either subunit of the PRC2 

complex displayed hypersensitivity to replicative stress after growth and expansion in nutrient 

starvation. Generalization from such observations needs caution as phenotypes detected 

within single KOs can reflect gene-level and not network-level effects. Nevertheless, they 

suggest that stress-induced selection can shape novel properties within cells that are worth 

further investigation. Considering the defective transcriptional rewiring in epigenetically 

deregulated cells under stress  [Figure 61], an intriguing scenario is that epigenetic 

deregulation followed by stress-dependent selection of the inert cell state renders cells 

hypersensitive to perturbations affecting transcription per se. To test this hypothesis, Fabrizio 

Simeoni cultured control and epigenetically deregulated cells under starvation and isolated 

the stress-resistant populations after prolonged culture. Treatment of parental and stress-

resistant populations with BET and CDK9 inhibitors revealed a hypersensitivity of the latter to 

transcription inhibitors (Loukas et al., 2023). These data provide initial insights into the 

acquired vulnerability of phenotypically inert cells and suggest a potential therapeutic avenue 

towards their elimination. Furthermore, robustness in biological systems to genetic 

perturbations can be affected by stress conditions. Thus, another intriguing possibility to be 

explored in the future is that the cells selected under stress become more sensitive to further 

disruption of their epigenetic machinery. 
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Figure 68: Follow-up questions on causes and consequences of phenotypic inertia in cancer 
evolution raised by my findings 

 

5.6 Concluding remarks 

I herein propose a network-level effect, where inactivation of multiple diverse epigenetic 

regulators results in the inability of cells to efficiently rewire their transcriptional response to 

stress. This leads to phenotypic unresponsiveness (Inertia), making the cells less likely to die 

upon exposure to stress, thus increasing the probability of acquiring secondary adaptive traits 

to ensure long-term survival [Figure 69].  

The novelty of my PhD thesis resides in the experimental approach that consists of systematic 

functional perturbation of the entire epigenetic network to uncover potential fitness 

relationships between the examined properties of the system. On top of that phenotypes like 

plasticity (i.e. state transitions) are not inferred by the data but are rather directly monitored. 

The above are in contrast with most of the existing literature that consists of correlative 

explorations between epigenetic properties and transcriptional dynamics in cancer cells, thus 

limiting the power to draw causal links among them. Of note, the experimental procedures 

described in this thesis fall into the greater category of reductionism. This allows the 

elimination of varying confounding properties within the system to uncover potential patterns 

and functional links. Subsequent extrapolation to the more complex in vivo setting needs 

caution and requires further examination as described in greater detail in 5.2.3.  
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The observations made in this thesis may have significant implications for cancer biology. 

First, the widespread selective advantage of epigenetically deregulated cells under diverse 

hostile conditions provides a potential explanation for the recurrent inactivation of this 

regulatory layer at the later stages of tumorigenesis. Second, it is a proof of principle that 

fitness relationships upon perturbation should be examined under various contexts, including 

environmental challenges. Third, the fact that multiple data from the fitness assays and 

transcriptomic analysis could be explained by conceptually antithetic models like cellular 

plasticity and phenotypic inertia, reinforce the need to utilize better experimental frameworks 

to assign observations to models underlying cancer evolution. Finally, the fact that targeted 

therapy can induce similar transcriptional changes in cancer cells, along the stress-fitness axis 

that was explored in this study, points to a potential relevance of phenotypic inertia in therapy 

resistance and raises caution on the use of targeted therapy against epigenetic regulators in 

the clinical setting. 

 

Figure 69: Proposed model of phenotypic inertia upon epigenetic deregulation. 
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Tables 

Table 1. Epigenetic regulators targeted in the large-scale fitness assays 

 

ACTL6A BRWD3 DOT1L HIF1AN KDM1A MSL1 PRMT1 SIRT3 TET2 

ALKBH1 CARM1 EED HIRA KDM2A MSL3 PRMT2 SIRT4 TET3 

ARID1A CBX1 EHMT1 HIRIP3 KDM2B MTA1 PRMT3 SIRT5 TRIM24 

ARID1B CBX2 EHMT2 HIST1H1A KDM3A MTA2 PRMT5 SIRT6 TRIM28 

ARID2 CBX3 ELP3 HIST1H1B KDM3B MTA3 PRMT6 SIRT7 TRIM66 

ARID3A CBX4 EP300 HIST1H1C KDM4A NAP1L1 PRMT7 SMARCA1 UBE2A 

ARID3B CBX5 EP400 HIST1H1D KDM4B NAP1L3 PRMT8 SMARCA2 UBE2B 

ARID4A CBX6 ERCC6 HIST1H1E KDM4C NAP1L4 PRMT9 SMARCA4 UHRF1 

ARID4B CBX7 EZH1 HIST1H1T KDM4D NAP1L5 RBBP4 SMARCA5 UHRF2 

ARID5A CBX8 EZH2 HIST2H3A KDM4E NCOA1 RBBP7 SMARCAD1 USP3 

ARID5B CDY2A GFI1B HIST3H3 KDM5A NCOA3 RBM10 SMARCAL1 UTY 

ASF1A CDYL GTF3C4 HJURP KDM5B NCOR1 RCC1 SMARCB1 YEATS4 

ASF1B CDYL2 H1F0 HLTF KDM5C NEDD4 RCOR1 SMARCC1 ZBTB33 

ASH1L CECR2 H1FNT HMGA1 KDM5D NPM2 RCOR2 SMARCC2 ZBTB4 

ATAD2 CENPA H1FOO HMGA2 KDM6A NR3C1 RING1 SMARCD1 ZBTB7C 

ATAD2B CENPE H1FX HMGB1 KDM6B NSD1 RIOX1 SMARCD2 ZMYND11 

ATF2 CENPF H2AFB1 HMGB2 KDM7A NSD2 RIOX2 SMARCD3 ZMYND8 

ATRX CHAF1A H2AFJ HMGB3 KMT2A NSD3 RNF2 SMARCE1 TNP1 

BAP1 CHAF1B H2AFV HMGN1 KMT2B NUP153 RNF20 SMCHD1 TNP2 

BAZ1A CHD1 H2AFX HMGN2 KMT2C NUP62 RNF40 SMYD1 HMGB4 

BAZ1B CHD1L H2AFY HMGN3 KMT2D PADI4 RRP8 SMYD2 SMC1B 

BAZ2A CHD2 H2AFY2 HMGN5 KMT2E PBRM1 RSF1 SMYD3 DNMT3L 

BAZ2B CHD3 H2AFZ HP1BP3 KMT5A PCGF1 RUVBL1 SMYD5  

BCOR CHD4 H3F3B HR KMT5B PCGF2 SAFB SP100  

BMI1 CHD5 HAT1 HSPBAP1 KMT5C PCGF3 SATB1 SRCAP  

BPTF CHD6 HDAC1 IKZF1 L3MBTL1 PCGF5 SATB2 SS18L1  

BRD1 CHD7 HDAC10 INCENP MAF PCGF6 SCMH1 SSRP1  

BRD2 CHD8 HDAC11 INO80 MBD1 PHC1 SETD1A STAG1  

BRD3 CHD9 HDAC2 JARID2 MBD2 PHC2 SETD1B SUDS3  

BRD4 CHRAC1 HDAC3 JMJD4 MBD3 PHC3 SETD2 SUV39H1  

BRD7 CREBBP HDAC4 KAT2A MBD3L1 PHF1 SETD6 SUV39H2  

BRD8 CTCF HDAC5 KAT2B MBD4 PHF2 SETD7 SUZ12  

BRD9 DDX11 HDAC6 KAT5 MBD5 PHF8 SETDB1 TADA2A  

BRDT DMAP1 HDAC7 KAT6A MBD6 POLE3 SETDB2 TAF1  

BRPF1 DNMT1 HDAC8 KAT6B MECP2 PRDM2 SETMAR TAF5  

BRPF3 DNMT3A HDAC9 KAT7 MEN1 PRDM8 SIRT1 TAF6L  

BRWD1 DNMT3B HELLS KAT8 MPHOSPH8 PRDM9 SIRT2 TET1  

 

Non-expressed genes that were used as negative controls throughout this study are depicted 

in grey. 
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Table 2. Cellular models used in this study 

 

Cell line name Application Culture conditions 

PDX L1C5c Parental clonal lines; 

Exome-seq 

RPMI 1640 

supplemented with 

10% FBS, 100 U/ml 

penicillin, and 100 

μg/ml streptomycin at 

37 °C in 5% C02 

PDX MeA5a 

PDX MeA5a eGFP – NLS 
In vitro competition assay 

PDX MeA5a mCheryy – NLS 

PDX MeA5a Glucose FRET sensor Live cell imaging 

HEK293T Virus generation 

PDX MeA5a KO library Large-scale fitness assays and 

subsequent experiments PDX L1C5c KO library 

PDX MeA5a KO sgRNA barcoded 

In vivo competition assay; 

Bulk RNA-seq; 

scRNA-seq; 

 

Table 3. Characteristics of Patient Derived Xenograft (PDX) models 

 

  
PDX 

MEXF 2090 

PDX 

LXFL 1674 

Patient 

information 

Gender female female 

Age at surgery  68 45 

Patient tumor 

information 

Histology Melanoma Large Cell Carcinoma 

Stage at surgery  Not available Not available 

Differentiation Good Poor 

Therapy prior to surgery  Not known Not known 

Origin of xenograft  Primary (Skin) Primary (Lung) 

PDX histological 

characteristics 

Stroma content  3.00% 15.00% 

Vascularization Low Intermediate 

Grading NA Undifferentiated 

 

Table 4. Plasmids used in this study 

 

Plasmid name Use 
Growth 

conditions 
Source 

pCW-Cas9 

Packaging of lentiviral 

particles 

Stbl3 / 37 °C / Amp Addgene; #50661 

psPax2 DH5a / 37 °C / Amp Addgene; #12260 

pMD2.G DH5a / 37 °C / Amp Addgene; #12259 

pAdVAntage™ Vector Stbl3 / 37 °C / Amp Promega; #E1711 
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Arrayed lentiviral sgRNA 

library 

KO induction in 

epigenetic regulators 
NA 

(Henser-Brownhill, 

Monserrat & Scaffidi, 

2017) 

pUAS-mCherry-NLS Cloning DH5a / 37 °C / Amp Addgene; #87695 

pTRIP-SFFV-mCherry-

NLS 

Generation of 

fluorescently labelled 

melanoma cells 

NEB Stable / 30 °C 

/ Amp 

Generated in this 

study 

pTRIP-SFFV-EGFP-NLS Addgene; #86677 

PiggyBac transposon 

carrying FRET biosensor 

Generation of 

melanoma cells 

expressing a glucose 

FRET sensor 

Stbl3 / 37 °C / Amp 
Eric Sahai; (Kondo et 

al., 2021) 

PB transposase (PBase) Stbl3 / 37 °C / Amp 
Eric Sahai;  

(Liang et al., 2009) 

PUC57-

Capture_sequence_1 
Cloning DH5a / 37 °C / Amp Genscript 

pLenti-BSD-sgRNA-

Capture_seq_1E 

Barcoding KO 

populations for 

multiplexed scRNA-seq 

ccdB Survival/ 37°C 

/ Amp + Chl 

Generated in this 

study 

 

 

Table 5. Primers and other oligonucleotides used in this study 

Primers used for qRT-PCR to assess total mRNA levels 

Primer name Sequence (5' to 3') 

IL1B Forward GCTTATTACAGTGGCAATGAGG 

IL1B Reverse AGATTCGTAGCTGGATGCC 

SAT1 Forward GAAGAATCTAAGCCAGGTTGC 

SAT1 Reverse ATGGATGGTTCATTCCATTCTG 

MTIE Forward CAAGAAGAGCTGCTGTTCC 

MTIE Reverse AGAGCTGTTCCCACATCAG 

GLRX Forward GTCTCTTTGCAACAGAGTGG 

GLRX Reverse TTCCTATGAGATCTGTGGTTACTG 

TIMM13 Forward AATGGAGCAGAGGATGACG 

TIMM13 Reverse ACTTCTGCTCGGAGTTGTC 

SNRPA1 Forward CACCAATAATAGTCTCGTGGA 

SNRPA1 Reverse CTTAGGATACTTAGGTAAGTCAGC 

DDX21 Forward TGCCATCCCTTTGATTGAG 

DDX21 Reverse GCAAGAACCAGTACCTGAG 

PPIA Forward AGACTGAGTGGTTGGATGG 

PPIA Reverse ATCTTCTTGCTGGTCTTGC 
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Primers used to replace GFP with mCherry in pTRIP-SFFV-EGFP-NLS 

Primer name Sequence (5' to 3') 

mCherry_NLS amplification Forward TAGCGGATCCATGGTGAGCAAGGGCGAG 

mCherry_NLS amplification Reverse AGGTCTCGAGTCTTATCATGTCTGCTCGAAGC 

 

Primers used for library preparation and NGS for the in vivo competition experiment 

Primer name Sequence (5' to 3') 

sgRNA outter PCR1 Forward AGAGGTACCAAGGTCTGGCA 

sgRNA outter PCR1 Reverse CCTCGACCTGCTGGAATCTC 

Miseq inner PCR2 Forward TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTTCTTGG

GTAGTTTGCAGTTTT 

Miseq inner PCR2 Reverse GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCACCGA

CTCGGTGCCACTTTT 

 

Synthetic construct carrying an engineered sgRNA scaffold with a 3' terminal Capture 

Sequence 1 that is compatible with the 10x Genomics Feature barcoding technology. 

Restriction sites for BstBI and NsiI are labelled in blue. 

Primer name Sequence (5' to 3') 

Synthetic sgRNA 

scaffold with Capture 

Sequence 1 

TTCGAACGTCTCTGTTTAAGAGCTAAGCTGGAAACAGCATAGCAAGTT

TAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGG

TGCGCTTTAAGGCCGGTCCTAGCAATTTTTTTCTCGAGGTCGACGGTA

TCGATAAGCTCGCTTCACGAGATTCCAGCAGGTCGAGGGACCTAATAA

CTTCGTATAGCATACATTATACGAAGTTATATTAAGGGTTCCAAGCTTA

AGCGGCCGCGTGGATAACCGTATTACCGCCATGCAT 

 

Sequences containing the sgRNAs against the indicated genes along with a fixed 10X 

Genomic barcode, used for population calling in the single cell transcriptomics experiment 

sgRNA target Sequence (5' to 3') Sequence (5' to 3') 

EED GGCGTGTTTGTAGGTGTATC (BC)GTTTAAGAGCTAAGCTGGAA 

EZH2 ACACGCTTCCGCCAACAAAC (BC)GTTTAAGAGCTAAGCTGGAA 

HIST1H1B CGCTTTGCGCTTAGCAGCGC (BC)GTTTAAGAGCTAAGCTGGAA 

SMARCD1 GAAACGGCTAGATATCCAAG (BC)GTTTAAGAGCTAAGCTGGAA 

SUZ12 ACGGCTTCGGGCGGCAAATC (BC)GTTTAAGAGCTAAGCTGGAA 

TNP2 TCTGGCTCCGGCTGCCACGA (BC)GTTTAAGAGCTAAGCTGGAA 
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Primers used for Sanger sequencing 

Primer name Sequence (5' to 3')  

Illumina outer 1R CCTCGACCTGCTGGAATCTC 
Sequencing of pLenti plasmids to 

verify cloning of new sgRNA scaffold 

Universal U6 promoter GACTATCATATGCTTACCGT 
Sequencing of pLenti plasmids to 

verify sgRNA integration 

 

Table 6. Chemical compounds used in this study 

 

Name Target Source 
Catalogue 

number 

Working 

concentration 

RGFP966 HDAC3 APExBIO #A8803 5 μM 

Tubastatin A HDAC6 APExBIO #A4101 2.5 μM 

EX 527 

(SEN0014196) 
SIRT1 APExBIO #A4181 2.5 μM 

EPZ004777 DOT1L APExBIO #A4170 2.5 μM 

MM-102 KMT2A APExBIO #B1582 2.5 μM 

WM-8014 KAT6A APExBIO #A8779 5 μM 

GSK126 EZH2 Stratech #S7061-SEL 5 μM 

Quisinostat pan HDAC Insight Biotechnology 
#HY-15433-

1ml 
5 nM 

JIB-04 

pan-Jumonji 

histone 

demethylase 

APExBIO #B1579 5 nM 

 

Table 7. Antibodies used in this study 

Abbreviations; IF: Immunofluorescence, IHC: Immunohistochemistry, IP: Intraperitoneal 

Name 
Application 

(Dilution) 
Source Catalogue number 

Mouse monoclonal anti-

Lamin A/C (636) 
IF (1:200) 

Santa Cruz 

Biotechnology 
#sc-7292 

Rabbit polyclonal anti-

trimethyl-Histone H3 (Lys27) 

IF (1:400) 

IHC (1:200) 
EMD Millipore #07-449 

Rabbit polyclonal anti-acetyl-

Histone H4 (Lys12) 
IF (1:500) 

Cell Signaling 

Technology 
#2591 

Bevacizumab (anti-VEGF 

recombinant antibody) 

IP injection 

(2 mg/kg and 8 

mg/kg) 

Stratech #A2006-SEL-5mg 
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Table 8: Stress-specific phenotype (z-score) of the indicated KO populations as determined in the large-
scale fitness assays 
 

Gene Functional class 

MEXF 2090 LXFL 1674 

Acidic 
conditions 

Nutrient Starvation 
Replicative 

stress 
Nutrient Starvation 

ACTL6A Chromatin remodeller 1.75 -1.16 0.90 1.68 

ALKBH1 DNA Me Eraser -0.09 1.81 0.25 2.08 

ARID1A Chromatin remodeller 2.02 0.20 -0.31 2.62 

ARID1B Chromatin remodeller 1.97 0.61 -1.87 1.28 

ARID2 Chromatin remodeller 2.14 -2.18 15.17 1.81 

ARID3A Chromatin remodeller -0.46 -0.67 -0.25 -0.47 

ARID3B Chromatin remodeller 0.63 -0.18 0.78 -0.95 

ARID4A Chromatin remodeller 0.12 -0.46 0.18 -1.69 

ARID4B Chromatin remodeller 0.03 -3.40 -0.86 -2.13 

ARID5A Chromatin remodeller 2.64 1.14 0.12 3.96 

ARID5B Chromatin remodeller -2.15 -2.53 0.69 -1.63 

ASF1A Histone variants and chaperons -0.03 3.19 -0.07 -0.32 

ASF1B Histone variants and chaperons -0.53 0.93 0.43 2.54 

ASH1L Histone Me Writer 3.03 1.45 -0.56 -0.61 

ATAD2 Histone Ac Reader -0.52 -1.95 -1.85 1.71 

ATAD2B Histone Ac Reader 0.81 1.61 0.84 0.59 

ATF2 Histone Ac Writer 5.14 3.80 -0.32 3.06 

ATRX Chromatin remodeller 1.75 1.45 0.16 0.01 

BAP1 Histone Ub Eraser -0.66 -2.66 -0.88 0.61 

BAZ1A Chromatin remodeller 0.27 6.44 -0.05 -1.02 

BAZ1B Histone P Writer 8.19 7.57 1.17 -0.28 

BAZ2A Histone Ac Reader 0.14 -1.52 -1.46 1.79 

BAZ2B Histone Ac Reader 1.40 2.19 0.51 1.99 

BCOR Histone Ac Eraser 0.67 1.44 1.38 -0.34 

BMI1 Histone Ub Writer 1.47 -0.08 -0.54 -0.08 

BPTF Histone Me Reader 0.80 0.76 1.89 -0.97 

BRD1 Histone Ac Reader 1.99 0.89 0.17 -1.68 

BRD2 Histone Ac Reader 0.48 -5.75 3.79 Failed QC 

BRD3 Histone Ac Reader 0.20 -0.72 2.01 -1.54 

BRD4 Histone Ac Reader -0.20 -5.47 6.87 Failed QC 

BRD7 Histone Ac Reader Failed QC 0.01 

BRD8 Histone Ac Reader -0.49 -4.63 4.90 -1.05 

BRD9 Histone Ac Reader 0.25 2.00 1.18 -0.85 

BRDT Histone Ac Reader Not expressed Not expressed 

BRPF1 Histone Ac Reader -0.29 -3.23 -0.59 -1.04 

BRPF3 Histone Ac Reader 0.77 1.44 0.12 0.93 

BRWD1 Histone Ac Reader 0.24 0.26 1.36 0.99 

BRWD3 Rest 3.66 2.60 -1.44 1.54 

CARM1 Histone Me Writer 3.30 -1.63 -0.65 -1.63 

CBX1 Histone Me Reader 0.57 -1.44 1.02 1.34 

CBX2 Histone Me Reader 0.31 0.40 1.04 -0.47 

CBX3 Histone Me Reader 1.18 -2.57 -0.84 -0.31 

CBX4 Histone Me Reader 0.78 -2.18 0.78 0.14 

CBX5 Histone Me Reader -0.76 -3.03 -0.14 -0.17 

CBX6 Histone Me Reader 1.42 0.01 0.02 -0.57 

CBX7 Histone Me Reader Not expressed Not expressed 

CBX8 Histone Me Reader 0.46 -0.35 -0.33 0.79 

CDY2A Histone Ac Writer Not expressed Not expressed 

CDYL Histone Me Writer 0.24 10.36 -0.80 -0.78 

CDYL2 Histone Me Reader 0.32 2.06 0.45 0.07 

CECR2 Chromatin remodeller Not expressed Not expressed 

CENPA Histone variants and chaperons Failed QC Failed QC 

CENPE Rest 2.20 0.26 -0.86 Failed QC 

CENPF Rest 0.29 0.89 0.47 -1.37 

CHAF1A Histone variants and chaperons 1.24 1.63 2.56 3.57 

CHAF1B Histone variants and chaperons 3.71 4.39 2.10 Failed QC 

CHD1 Chromatin remodeller 3.69 -0.21 -0.58 1.27 

CHD1L Chromatin remodeller 1.99 1.18 0.21 0.71 

CHD2 Chromatin remodeller 3.58 1.49 0.01 0.40 

CHD3 Chromatin remodeller 0.05 -0.29 0.31 -1.39 

CHD4 Chromatin remodeller -0.32 0.47 0.67 1.01 

CHD5 Chromatin remodeller Not expressed Not expressed 

CHD6 Chromatin remodeller 0.62 0.08 -1.12 -1.51 

CHD7 Chromatin remodeller 3.19 1.00 1.39 1.85 

CHD8 Chromatin remodeller 3.36 4.70 -0.18 0.08 

CHD9 Chromatin remodeller 1.99 -2.98 -2.12 -0.75 

CHRAC1 Chromatin remodeller 1.58 7.89 0.13 0.88 

CREBBP Histone Ac Writer -2.58 0.46 4.02 4.50 

CTCF Genome topology 1.09 -0.68 2.08 -0.17 

DDX11 Rest 0.71 1.86 1.43 Failed QC 

DMAP1 Histone Ac Eraser 0.52 -0.42 1.19 -0.44 

DNMT1 DNA Me Writer 0.27 -0.63 1.46 Failed QC 

DNMT3A DNA Me Writer 1.45 -1.23 2.15 1.36 

DNMT3B DNA Me Writer 1.72 -0.34 1.87 -0.32 

DOT1L Histone Me Writer 0.16 2.92 -1.11 -0.89 

EED Histone Me Writer -2.00 29.90 -3.44 10.63 

EHMT1 Histone Me Writer 2.18 5.60 -0.03 -1.56 

EHMT2 Histone Me Writer 2.02 2.68 -1.23 -2.09 

ELP3 Histone Ac Writer -0.52 -0.57 2.19 -0.09 

EP300 Histone Ac Writer Failed QC 0.50 

EP400 Histone Ac Writer -2.62 -2.48 0.60 0.15 

ERCC6 Chromatin remodeller 2.51 1.61 1.40 Not expressed 

EZH1 Histone Me Writer 1.44 1.09 1.72 0.53 

EZH2 Histone Me Writer -0.68 31.61 0.05 7.37 

GFI1B Histone Ac Eraser Not expressed Not expressed 

GTF3C4 Histone Ac Writer -1.46 -1.20 2.11 Failed QC 

H1F0 Histone variants and chaperons 0.61 0.65 -0.50 -1.49 

H1FNT Histone variants and chaperons Not expressed Not expressed 

H1FOO Histone variants and chaperons Not expressed Not expressed 

H1FX Histone variants and chaperons 0.26 -0.72 -0.47 -0.84 

H2AFB1 Histone variants and chaperons Not expressed Not expressed 

H2AFJ Histone variants and chaperons 0.57 0.53 -0.92 -0.70 

H2AFV Histone variants and chaperons 5.46 4.52 1.76 -1.12 

H2AFX Histone variants and chaperons Failed QC -1.20 

H2AFY Histone variants and chaperons 0.47 0.58 -1.28 -1.14 

H2AFY2 Histone variants and chaperons Not expressed -0.20 

H2AFZ Histone variants and chaperons Failed QC -1.94 

H3F3B Histone variants and chaperons 2.39 3.92 0.45 1.34 

HAT1 Histone Ac Writer 3.05 -1.18 1.98 1.13 

HDAC1 Histone Ac Eraser 0.15 0.27 0.00 2.07 

HDAC10 Histone Ac Eraser Not expressed -1.44 

HDAC11 Histone Ac Eraser -0.22 0.37 -1.19 0.20 
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HDAC2 Histone Ac Eraser 0.60 -0.59 1.71 -0.19 

HDAC3 Histone Ac Eraser 0.70 2.38 1.96 Failed QC 

HDAC4 Histone Ac Eraser 0.28 0.16 -1.87 0.69 

HDAC5 Histone Ac Eraser 0.46 1.24 -0.51 -1.48 

HDAC6 Histone Ac Eraser 2.57 2.80 0.28 0.86 

HDAC7 Histone Ac Eraser 0.53 2.30 2.65 1.29 

HDAC8 Histone Ac Eraser 2.37 2.03 -1.57 -0.55 

HDAC9 Histone Ac Eraser 0.48 1.29 0.22 Not expressed 

HELLS DNA Me Writer 2.09 6.52 -0.90 -0.87 

HIF1AN Histone Ac Eraser 0.49 2.89 2.40 0.34 

HIRA Histone variants and chaperons 2.18 3.46 -1.02 -0.12 

HIRIP3 Histone variants and chaperons 0.13 -0.42 -0.19 1.74 

HIST1H1A Histone variants and chaperons 2.13 2.92 1.12 Not expressed 

HIST1H1B Histone variants and chaperons 3.30 7.62 -0.68 Not expressed 

HIST1H1C Histone variants and chaperons 3.08 2.60 -1.01 -1.23 

HIST1H1D Histone variants and chaperons 3.88 6.73 -1.54 Not expressed 

HIST1H1E Histone variants and chaperons Not expressed -0.35 

HIST1H1T Histone variants and chaperons Not expressed Not expressed 

HIST2H3A Histone variants and chaperons Not expressed Not expressed 

HIST3H3 Histone variants and chaperons Not expressed Not expressed 

HJURP Histone variants and chaperons Failed QC Failed QC 

HLTF Chromatin remodeller 2.46 2.17 0.96 -0.52 

HMGA1 Genome topology 2.05 1.85 -2.41 Failed QC 

HMGA2 Genome topology 3.57 2.45 -1.19 -0.06 

HMGB1 Genome topology 2.33 0.94 -3.92 Failed QC 

HMGB2 Genome topology 4.72 3.12 1.33 3.06 

HMGB3 Genome topology 3.99 1.44 0.51 3.52 

HMGN1 Genome topology 5.51 3.45 2.59 1.64 

HMGN2 Genome topology 2.11 1.60 -0.08 0.63 

HMGN3 Genome topology 6.71 6.95 1.84 -0.30 

HMGN5 Genome topology 4.74 3.87 2.42 -1.63 

HP1BP3 Rest 4.25 2.85 1.59 1.83 

HR Histone Me Eraser Not expressed Not expressed 

HSPBAP1 Rest Not expressed 0.59 

IKZF1 Histone Ac Eraser Not expressed Not expressed 

INCENP Rest 3.55 2.46 0.34 Failed QC 

INO80 Chromatin remodeller 1.95 0.61 -1.63 Failed QC 

JARID2 Histone Me Writer 2.16 0.85 2.09 0.52 

JMJD4 Histone Me Eraser 0.82 0.87 -0.49 -0.84 

KAT2A Histone Ac Writer 3.93 9.38 1.04 1.72 

KAT2B Histone Ac Writer 3.52 2.72 1.70 0.36 

KAT5 Histone Ac Writer 0.50 -2.04 4.69 1.52 

KAT6A Histone Ac Writer 2.04 4.96 1.49 -1.82 

KAT6B Histone Ac Writer 3.95 4.86 3.37 -1.41 

KAT7 Histone Ac Writer 2.73 1.78 -0.53 -0.49 

KAT8 Histone Ac Writer Failed QC Failed QC 

KDM1A Histone Me Eraser -1.10 -2.22 -2.26 -2.45 

KDM2A Histone Me Eraser -0.26 -2.15 0.87 -1.97 

KDM2B Histone Me Eraser -0.08 -2.60 3.05 0.06 

KDM3A Histone Me Eraser 0.14 1.42 0.41 0.30 

KDM3B Histone Me Eraser -1.19 4.70 -2.15 -1.06 

KDM4A Histone Me Eraser -0.33 -0.21 0.52 1.01 

KDM4B Histone Me Eraser -0.22 3.23 1.86 1.49 

KDM4C Histone Me Eraser 0.20 2.48 0.05 1.85 

KDM4D Histone Me Eraser -0.27 2.14 -0.14 Not expressed 

KDM4E Histone Me Eraser Not expressed Not expressed 

KDM5A Histone Me Eraser 2.05 3.17 -0.35 -0.41 

KDM5B Histone Me Eraser -0.17 0.61 -0.32 0.83 

KDM5C Histone Me Eraser 0.53 1.49 1.43 -1.95 

KDM5D Histone Me Eraser Not expressed Not expressed 

KDM6A Histone Me Eraser -0.20 -0.87 0.46 -0.92 

KDM6B Histone Me Eraser 0.92 0.37 0.44 Failed QC 

KDM7A Histone Me Eraser 0.33 4.41 -1.43 0.45 

KMT2A Histone Me Writer -0.87 2.38 -0.71 -1.44 

KMT2B Histone Me Writer -0.34 0.42 -0.17 0.21 

KMT2C Histone Me Writer -0.28 -0.60 -1.27 1.07 

KMT2D Histone Me Writer -0.92 -0.25 0.90 0.17 

KMT2E Histone Me Writer 1.43 -0.86 1.15 1.05 

KMT5A Histone Me Writer -0.87 -1.09 -0.36 1.64 

KMT5B Histone Me Writer -0.55 -0.60 -0.40 0.04 

KMT5C Histone Me Writer 1.90 0.47 -0.59 0.82 

L3MBTL1 Histone Me Reader Not expressed Not expressed 

MAF Histone Ac Writer Not expressed 1.62 

MBD1 DNA Me Reader 3.33 -0.06 -1.18 1.55 

MBD2 DNA Me Reader 4.44 -0.85 0.38 1.59 

MBD3 DNA Me Reader 5.26 7.65 3.42 6.12 

MBD3L1 Histone Ac Eraser Not expressed Not expressed 

MBD4 DNA Me Reader 1.76 0.18 3.65 1.35 

MBD5 Histone Ub Eraser 2.57 -1.02 -0.18 Not expressed 

MBD6 Histone Ub Eraser 7.10 -0.38 0.01 3.43 

MECP2 DNA Me Reader 1.51 1.62 1.51 0.62 

MEN1 Histone Me Writer -0.91 -2.07 -2.75 2.32 

MPHOSPH8 Histone Me Reader -0.63 -0.82 -2.06 -1.29 

MSL1 Histone Ac Writer 2.70 -1.73 0.96 -0.84 

MSL3 Histone Ac Writer 0.95 -1.79 -0.37 -1.19 

MTA1 Chromatin remodeller 6.19 6.26 1.43 0.71 

MTA2 Chromatin remodeller 7.07 6.95 5.01 -3.06 

MTA3 Chromatin remodeller 2.61 2.16 0.88 -0.18 

NAP1L1 Histone variants and chaperons 0.36 -0.42 -0.30 0.72 

NAP1L3 Histone variants and chaperons Not expressed Not expressed 

NAP1L4 Histone variants and chaperons 2.16 2.80 -0.14 -0.54 

NAP1L5 Histone variants and chaperons 1.10 3.72 -0.78 Not expressed 

NCOA1 Histone Ac Writer 4.96 2.56 -0.18 0.94 

NCOA3 Histone Ac Writer 1.34 0.83 0.06 -1.14 

NCOR1 Histone Ac Eraser 2.47 9.61 6.80 -1.22 

NEDD4 Histone Ub Writer 1.56 2.61 -0.72 -0.94 

NPM2 Histone variants and chaperons Not expressed -1.86 

NR3C1 Rest 3.91 2.56 1.12 -0.54 

NSD1 Histone Me Writer 3.89 -2.18 2.73 -2.34 

NSD2 Histone Me Writer 0.68 -0.03 0.28 -0.47 

NSD3 Histone Me Writer 2.09 0.75 0.57 -1.31 

NUP153 Rest 2.66 -0.26 -0.23 Failed QC 

NUP62 Rest 2.93 -0.77 1.04 1.87 

PADI4 Rest Not expressed Not expressed 

PBRM1 Chromatin remodeller 3.61 -2.21 7.65 0.95 

PCGF1 Histone Ub Writer -2.62 0.00 2.82 0.55 

PCGF2 Histone Ub Writer 0.65 1.09 0.51 0.07 

PCGF3 Histone Ub Writer -0.51 2.98 1.14 0.93 

PCGF5 Histone Ub Writer 0.86 1.89 -0.02 -1.23 

PCGF6 Histone Ub Writer -0.66 -1.78 0.76 -1.56 

PHC1 Histone Ub Writer 1.19 0.72 -0.46 0.68 
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PHC2 Histone Ub Writer 1.39 1.21 0.29 0.83 

PHC3 Histone Ub Writer 1.25 3.51 1.26 -0.07 

PHF1 Histone Me Reader 2.09 1.21 0.97 -0.38 

PHF2 Histone Me Reader 1.07 -1.84 0.36 -1.12 

PHF8 Histone Me Reader 0.89 -0.28 0.12 -3.61 

POLE3 Chromatin remodeller 6.87 7.13 0.40 -0.44 

PRDM2 Histone Me Writer 0.59 0.10 0.14 0.12 

PRDM8 Histone Me Writer -0.89 0.37 0.49 1.15 

PRDM9 Histone Me Writer Not expressed Not expressed 

PRMT1 Histone Me Writer 2.20 0.73 0.07 Failed QC 

PRMT2 Histone Me Writer -0.35 -0.71 -0.61 -1.78 

PRMT3 Histone Me Writer 4.64 4.00 0.56 0.29 

PRMT5 Histone Me Writer 0.68 1.22 -0.64 Failed QC 

PRMT6 Histone Me Writer -0.38 -0.39 -0.72 -1.18 

PRMT7 Histone Me Writer Failed QC -0.21 

PRMT8 Histone Me Writer Not expressed Not expressed 

PRMT9 Histone Me Writer 2.03 3.18 -2.69 -0.05 

RBBP4 Rest 1.61 0.56 -0.51 Failed QC 

RBBP7 Rest Failed QC -1.69 

RBM10 Rest -1.13 -1.91 2.10 -2.36 

RCC1 Genome topology 0.32 0.12 1.95 Failed QC 

RCOR1 Histone Ac Eraser -1.06 1.12 -3.02 -1.67 

RCOR2 Histone Ac Eraser Not expressed -0.15 

RING1 Histone Ub Writer -0.39 3.54 0.79 0.48 

RIOX1 Histone Me Eraser -1.83 1.38 -1.71 -0.83 

RIOX2 Histone Me Eraser -0.17 2.98 -1.53 1.64 

RNF2 Histone Ub Writer 2.84 1.68 1.12 0.12 

RNF20 Histone Ub Writer 0.58 1.57 0.25 0.03 

RNF40 Histone Ub Writer 0.20 1.27 0.65 0.86 

RRP8 Histone Me Reader 1.88 0.03 -0.73 -0.30 

RSF1 Rest 4.67 6.03 1.02 0.30 

RUVBL1 Histone Ac Writer 3.28 1.19 2.10 -0.11 

SAFB Genome topology 4.26 5.00 2.37 2.92 

SATB1 Rest Failed QC Not expressed 

SATB2 Histone Ac Eraser 0.63 -0.51 -0.79 2.69 

SCMH1 Histone Ub Writer 0.92 1.02 -1.11 0.80 

SETD1A Histone Me Writer Failed QC Failed QC 

SETD1B Histone Me Writer Failed QC -0.32 

SETD2 Histone Me Writer Failed QC -3.18 

SETD6 Histone Me Writer Not expressed -2.26 

SETD7 Histone Me Writer 0.08 -0.46 0.09 -0.66 

SETDB1 Histone Me Writer Failed QC -4.80 

SETDB2 Histone Me Writer -0.05 0.07 -0.22 Not expressed 

SETMAR Histone Me Writer 0.13 -0.72 -0.66 -1.30 

SIRT1 Histone Ac Eraser 2.05 4.08 -1.29 0.20 

SIRT2 Histone Ac Eraser -0.61 -0.12 -2.05 0.20 

SIRT3 Histone Ac Eraser -1.66 1.00 0.59 0.37 

SIRT4 Histone Ac Eraser Not expressed Not expressed 

SIRT5 Histone Ac Eraser 1.85 4.24 -1.74 0.18 

SIRT6 Histone Ac Eraser -0.57 -1.92 -0.63 -1.32 

SIRT7 Histone Ac Eraser 0.15 0.03 2.68 -0.70 

SMARCA1 Chromatin remodeller 1.62 1.71 1.40 0.21 

SMARCA2 Chromatin remodeller 1.99 -0.01 1.02 0.86 

SMARCA4 Chromatin remodeller 0.81 3.73 0.03 4.13 

SMARCA5 Chromatin remodeller 1.70 0.14 0.43 0.72 

SMARCAD1 Chromatin remodeller 4.82 2.98 2.47 3.15 

SMARCAL1 Chromatin remodeller 0.94 1.95 -0.10 -0.13 

SMARCB1 Chromatin remodeller 1.99 2.99 1.32 Failed QC 

SMARCC1 Chromatin remodeller 1.82 5.10 1.11 2.06 

SMARCC2 Chromatin remodeller -0.13 0.14 0.18 3.02 

SMARCD1 Chromatin remodeller 0.59 6.20 0.65 1.00 

SMARCD2 Chromatin remodeller -0.99 0.23 -0.58 -0.77 

SMARCD3 Chromatin remodeller 0.39 -0.85 -0.95 2.07 

SMARCE1 Chromatin remodeller -0.27 -1.45 -0.22 3.56 

SMCHD1 Genome topology 1.07 0.25 -0.06 0.28 

SMYD1 Histone Me Writer Not expressed Not expressed 

SMYD2 Histone Me Writer 0.71 -0.43 1.15 0.57 

SMYD3 Histone Me Writer 3.89 2.63 0.63 -0.73 

SMYD5 Histone Me Writer 2.42 2.80 -1.16 -0.25 

SP100 Rest 0.67 4.64 0.05 0.34 

SRCAP Chromatin remodeller -0.20 -1.20 0.67 -0.55 

SS18L1 Chromatin remodeller 1.36 1.19 0.37 0.56 

SSRP1 Chromatin remodeller 0.16 -1.94 1.96 1.95 

STAG1 Genome topology 0.86 -0.89 -0.90 0.18 

SUDS3 Histone Ac Eraser -1.51 0.62 -2.36 Failed QC 

SUV39H1 Histone Me Writer 0.61 0.29 -0.15 -0.04 

SUV39H2 Histone Me Writer 0.87 -0.73 1.06 -0.20 

SUZ12 Histone Me Writer -1.43 20.95 -2.68 10.86 

TADA2A Histone Ac Writer 3.58 3.67 1.78 -0.05 

TAF1 Histone Ac Writer 1.31 -0.23 2.04 -0.62 

TAF5 Histone Ac Writer -0.62 -1.62 2.76 Failed QC 

TAF6L Histone Ac Writer Not expressed 0.16 

TET1 DNA Me Eraser -0.26 -0.98 0.14 0.13 

TET2 DNA Me Eraser 0.60 -0.70 1.38 Not expressed 

TET3 DNA Me Eraser 0.96 -0.95 -0.15 0.70 

TRIM24 Rest 0.29 2.83 -0.46 0.97 

TRIM28 Rest Failed QC -3.08 

TRIM66 Histone Ac Eraser -1.16 -1.51 0.28 Not expressed 

UBE2A Histone Ub Writer 0.42 1.86 -0.19 -0.84 

UBE2B Histone Ub Writer 1.07 0.85 1.42 -0.59 

UHRF1 DNA Me Writer Failed QC -1.77 

UHRF2 DNA Me Reader 1.47 1.71 -0.69 1.91 

USP3 Histone Ub Eraser 3.62 1.63 3.04 -1.53 

UTY Histone Me Eraser Not expressed Not expressed 

YEATS4 Histone Ac Writer 2.93 0.37 0.15 -0.37 

ZBTB33 DNA Me Reader 1.44 1.00 0.69 -0.77 

ZBTB4 DNA Me Reader 0.43 -1.17 3.09 2.10 

ZBTB7C Rest Not expressed Not expressed 

ZMYND11 Histone Me Reader -0.09 1.08 -0.59 -0.87 

ZMYND8 Rest 0.51 1.29 3.16 -1.37 
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Appendix 1 

Contributions to published work 

The data generated during this PhD thesis have contributed to the two following publications: 

I. Loukas, I., Simeoni, F., Milan, M., Inglese, P., Patel, H., Goldstone, R., East, P., 

Strohbuecker, S., Mitter, R., Talsania, B., Tang, W., Ratcliffe, C.D.H., Sahai, E., 

Shahrezaei, V. & Scaffidi, P. (2023) Selective advantage of epigenetically disrupted 

cancer cells via phenotypic inertia. Cancer Cell. 41 (1), 70-87.e14. 

doi:10.1016/j.ccell.2022.10.002. 

II. Simeoni, F., Loukas, I., Wilson, T.S. & Scaffidi, P. (2023) CRISPR-based large-scale 

modeling of loss-of-function mutations to investigate mechanisms of stress resistance 

in cancer. STAR Protocols. 4 (1), 102097. doi:10.1016/j.xpro.2023.102097. 

 

The above articles were published under the Creative Commons Attribution (CC BY 4.0) 

licence that allows for reusing portions or extracts in this PhD thesis with appropriate 

acknowledgement of the contributing sources. 
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Appendix 2 

Maps of plasmids generated in this thesis or provided by other labs 

 

P723_pTRIP-SFFV-mCherry-NLS (see Methods section 2.3.1) 
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P587_pLenti_BSD_Capt1E_scRNAseq (see Methods section 2.3.2) 
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pSBbi plasmid carrying the glucose FRET biosensor (from Sahai lab, see Methods section 

2.14.1) 
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