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Abstract

The rising popularity of neural networks, combined with the recent proliferation of online audio-

visual media, has led to a revolution in the way machines encode, recognize, and generate

acoustic and visual speech. Despite the ubiquity of naturally paired audio-visual data, only a

limited number of works have applied recent advances in deep learning to leverage the duality

between audio and video within this domain. This thesis considers the use of neural networks to

learn from large unlabelled datasets of audio-visual speech to enable new practical applications.

We begin by training a visual speech encoder that predicts latent features extracted from the

corresponding audio on a large unlabelled audio-visual corpus. We apply the trained visual

encoder to improve performance on lip reading in real-world scenarios. Following this, we

extend the idea of video learning from audio by training a model to synthesize raw speech

directly from raw video, without the need for text transcriptions. Remarkably, we find that this

framework is capable of reconstructing intelligible audio from videos of new, previously unseen

speakers. We also experiment with a separate speech reconstruction framework, which leverages

recent advances in sequence modeling and spectrogram inversion to improve the realism of the

generated speech. We then apply our research in video-to-speech synthesis to advance the state-

of-the-art in audio-visual speech enhancement, by proposing a new vocoder-based model that

performs particularly well under extremely noisy scenarios. Lastly, we aim to fully realize the

potential of paired audio-visual data by proposing two novel frameworks that leverage acoustic

and visual speech to train two encoders that learn from each other simultaneously. We leverage

these pre-trained encoders for deepfake detection, speech recognition, and lip reading, and find

that they consistently yield improvements over training from scratch.
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1.1 Motivation

The development of spoken language has played a central role in the development of human

society, particularly during its infancy, by allowing individuals to collaborate efficiently via a

consistent, widely adopted means of communication. More recently, modern technology has

augmented and amplified the role of speech by allowing long-distance transmission of acoustic

speech (audio only), via the telephone and radio, and audio-visual speech (audio and video), via

the television. This has transformed the nature of speech, which went from being a means of

1
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communication between a local group of individuals to a flexible form of media that is constantly

being produced and shared on a worldwide basis. The ubiquity and newfound universality of

this medium, together with the accelerating advances in computing, have drawn researchers to

study its contents using newly emerging computational techniques.

The intersection between speech and computing has had four primary research focuses in recent

years: transmission, feature extraction, recognition, and synthesis. Research on transmission

has largely focused on improving the speed and efficiency of audio/video transmission via

the Internet. Disregarding hardware improvements, which lie outside the field of software,

transmission can be improved by, for example, developing new codecs, i. e., new forms of speech

compression. Recently, the introduction of neural codecs for acoustic speech (Polyak et al.,

2021) and audio-visual speech (Yang et al., 2022) has drawn substantial attention to this

research issue. For the most part, however, this thesis focuses on the three latter topics:

feature extraction, recognition, and synthesis.

Historically, the most common method for extracting features from speech is the Short Time

Fourier Transform (STFT), which decomposes the raw waveform into frequency and phase.

This form of spectral analysis has been applied to produce a variety of acoustic features,

the most popular of which are the spectrogram, the mel-spectrogram, and the Mel-Frequency

Cepstrum Coefficients (MFCC). These are often leveraged for speech-related tasks such as

speech recognition (Ittichaichareon et al., 2012) and speaker identification (Kamruzzaman et

al., 2010). For visual speech (video only), traditional feature extraction approaches (Gurban

and Thiran, 2009) include compression-based methods, such as the discrete cosine transform

(DCT) (Strang, 1999), linear discriminant analysis (LDA) (Tharwat et al., 2017) and principal

components analysis (PCA) (Shlens, 2014), and mouth geometry methods, which attempt to

extract the lip movements from the images using simple computer vision techniques (e. g., color

thresholding (Kumar et al., 2007)).

Recently, however, newly developed neural architectures such as PASE (Pascual et al., 2019a)

and PASE+ (Ravanelli et al., 2020a) have been shown to greatly outperform the traditional

acoustic features presented above (e. g., STFT, MFCC) for various tasks, including speech and
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emotion recognition. Indeed, while spectrograms continue to be used in many state-of-the-art

models, they are generally fed into neural encoders which encode them into useful intermediate

features (Gulati et al., 2020; Shen et al., 2018). Furthermore, many recent works entirely

forego the use of manually extracted speech features and achieve state-of-the-art results in

highly competitive tasks such as speech recognition (Zeghidour et al., 2018) and text-to-speech

synthesis (Donahue et al., 2021).

On the visual end, the field of computer vision has been revolutionized by the development

of powerful visual encoders such as the ResNet (He et al., 2016), EfficientNet (Tan and Le,

2019) and Vision Transformer (Dosovitskiy et al., 2021), which have dominated the ImageNet

image classification benchmark (Russakovsky et al., 2015) for many years. In particular, the

ResNet-18 (He et al., 2016) (often combined with a 3D convolutional stem, originally pro-

posed in (Stafylakis and Tzimiropoulos, 2017)) has become the standard visual speech encoder

in state-of-the-art models for lip reading (Afouras et al., 2018d), audio-visual speech recogni-

tion (Afouras et al., 2018c), audio-visual speech enhancement/separation (Afouras et al., 2018e)

and video-to-speech synthesis (Mira et al., 2022a).

Speech recognition, also known as speech-to-text, has been one of the most influential tasks in

speech research for many decades, particularly due to its evidently impactful applications (e. g.,

automatic captioning). From the 1970s to the 2000s, speech recognition research (Baker et al.,

2009; Kumar et al., 2018a) was largely dominated by Hidden Markov Models (HMMs) (Ra-

biner and Juang, 1986), often combined with Gaussian Mixture Models (GMMs) (Reynolds,

2008) and trained via the Expectation Maximization (EM) algorithm (Moon, 1996) or the

Baum-Welch algorithm (Baum et al., 1970). Other training techniques include Maximum

Mutual Information (MMI), Maximum A-posteriori Probability (MAP) estimation, and Maxi-

mum Likelihood Linear Regression (MLLR), among others. These methods could not perform

recognition on raw audio and therefore relied on handcrafted features (as presented above),

such as MFCCs. The methods used for visual speech recognition, also known as lip reading,

were similarly based on HMMs applied to handcrafted visual features (Fenghour et al., 2021).

HMMs have severe limitations, including a lack of expressive power due to their Markovian

nature and difficulties in adapting to noisy inputs or substantial mismatches between training
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and testing data. GMMs suffer from similar problems, as they also have difficulties in adapting

to unseen data and can be particularly sensitive to outliers and irregular distributions since

they make strong assumptions about the input features (e. g., they are assumed to be normally

distributed and the clusters are assumed to be elliptical). These issues, combined with the lim-

ited generalisability of traditional feature extraction techniques, meant that speech recognition

and lip reading models were difficult to train and often failed to adapt to new scenarios for

which they were not explicitly trained (Kumar et al., 2018a).

The introduction of deep learning has substantially changed the research landscape in speech

recognition. By transitioning to end-to-end deep learning models and foregoing the use of any

of the previously established methods, speech recognition models have become simpler, easier

to train, and far more adaptable to challenging scenarios. Common architectures include con-

volutional layers, recurrent layers, attention mechanisms, or any combination of the three, and

are typically trained using a simple Connectionist Temporal Classification (CTC) Loss (Graves

et al., 2006). Apart from being easier to apply, these techniques have proven to be substantially

superior to HMM-based models, and have vastly outperformed them for virtually every corpora

available (Kumar et al., 2018a).

Indeed, while previous research focused mostly on studio-recorded datasets such as TIMIT (Baker

et al., 2009; Garofolo et al., 1993), new models are able to achieve very high accuracies for audio

recorded ’in the wild’, e. g., Switchboard (Godfrey et al., 1992; Tüske et al., 2021). This has dra-

matically changed the state-of-the-art in speech recognition, which went from models that were

difficult to deploy and scale in real-world applications, to versatile deep learning models that

are extremely accurate even within noisy environments and have been successfully deployed in

a variety of existing consumer products (Hoy, 2018). Lip reading has followed a similar trend

by combining the visual encoders mentioned above with emerging speech recognition techniques

to greatly surpass signal processing approaches (Assael et al., 2016). Similarly, state-of-the-art

methods have quickly transitioned from studio-recorded datasets such as GRID (Assael et al.,

2016; Cooke et al., 2006a), to challenging ’in-the-wild’ datasets such as LRS2 (Afouras et al.,

2018a) and LRS3 (Afouras et al., 2018b; Ma et al., 2021c).
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The last major research topic in recent speech literature has been synthesis. Before the advent

of deep learning, speech synthesis research was divided into four fields (Tabet and Boughazi,

2011; Tan et al., 2021): articulatory synthesis, which aims to directly imitate the physical

processes in human speech, e. g., tongue movements; formant synthesis, which attempts to

synthesize formants (i. e., word segments) based on manually programmed rules; concatenative

synthesis, which concatenates existing speech recordings (from a very large corpus of short

clips) to form each word; and statistical parametric synthesis, which predicts a specific set of

acoustic parameters from text, and translates these into waveform using a vocoder. On the

other hand, visual speech synthesis, also referred to as facial animation, was generally achieved

by combining HMMs with signal processing techniques such as vector quantization (Simons

and Cox, 1990; Yamamoto et al., 1998). In both modalities, these methods often produced rea-

sonably impressive results on a small scale but were either difficult to scale (e. g., concatenative

synthesis) or produced clearly robotic results (e. g., statistical parametric synthesis).

In the past decade, the introduction of neural speech synthesis has dramatically outperformed

previous techniques. This began with WaveNet (Oord et al., 2016), which introduced stacks

of dilated causal convolutions as a way to synthesize waveforms directly from linguistic fea-

tures and achieved a level of realism far greater than what had previously been achieved.

This work set the trend for modern speech synthesis and was followed by new approaches

such as WaveGAN (Donahue et al., 2019), Parallel WaveGAN (Yamamoto et al., 2019) and

HiFi-GAN (Kong et al., 2020a), which substantially increased inference speed while simultane-

ously decreasing model size. Similarly, remarkable progress was seen in facial animation with

the introduction of an end-to-end speech-to-video model in (Vougioukas et al., 2018). This

paper proved the viability of producing realistic facial animations and spawned the field of

speech-driven facial animation using neural networks, which has become increasingly competi-

tive in recent years (Das et al., 2020; Vougioukas et al., 2021). Generative adversarial networks

(GANs) (Goodfellow et al., 2014) have been generally dominant in both modalities and have

played a central role in increasing the realism of synthesized speech.

In summary, it is clear that the advent of deep learning has revolutionized the main research

topics in acoustic and visual speech. Tasks such as speech recognition, which were viable
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yet difficult to scale to real-world scenarios, became easy to train and achieved great leaps in

performance due to the introduction of end-to-end neural architectures. On the other hand,

tasks such as speech-driven facial animation, which had generally failed to achieve impressive

results, managed to finally produce consistently realistic results through the use of generative

adversarial networks. In short, acoustic and visual speech have been the focus of substantial

research developments in the past decade, particularly due to the advances in deep learning

literature. However, much of this research tends to ignore a fundamental aspect of these two

modalities: they are two parts of the same whole.

Indeed, only a minority of works focus on the combination of acoustic and visual speech,

commonly referred to as audio-visual speech. In recent years, some attention has been drawn

to two tasks that have effectively leveraged audio-visual speech: audio-visual speech recognition

and audio-visual speech enhancement. Audio-visual speech recognition aims to transcribe text

from speech by using not only acoustic speech but visual speech as well (in most cases, video of

the cropped mouth). Most modern approaches effectively add a visual backbone (e. g., ResNet-

18 (Stafylakis and Tzimiropoulos, 2017)) to existing speech recognition pipelines (Petridis et

al., 2018a; Ma et al., 2021d) (e. g., conformer (Gulati et al., 2020)). This approach tends to

yield slight improvements over audio-only speech recognition, but generally requires a larger,

slower model, and therefore continues to be significantly less popular than audio-only speech

recognition.

Similarly, audio-visual speech enhancement aims to extract clean speech (in waveform format)

from a noisy stream of audio and a video of the speaker’s facial movements. This task attempts

to improve the quality of the enhanced speech compared to traditional audio-only speech en-

hancement, which does not receive video as input and relies solely on the noisy audio stream.

When the speech is clearly discernible from the original audio stream, audio-visual models

achieve only minor improvements over their audio-only counterparts. However, audio-visual

approaches yield increasing improvements as the conditions become noisier and the audio su-

pervision becomes unreliable (Hou et al., 2016; Gogate et al., 2021). Furthermore, audio-visual

methods excel at the removal of background speech, which is virtually impossible for single-

channel acoustic models, as they have no way of distinguishing background speech from target
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speech (Ephrat et al., 2018; Gao and Grauman, 2021).

While these works have managed to combine acoustic and visual speech to outperform audio-

only approaches, it is clear that more can be learned from audio-visual speech. Indeed, within

the context of speech research, audio, and video are not only two parts of the same whole: they

are complementary modalities that share some information i. e., verbal content, but also have

unique attributes that are effectively absent from the other modality. For example, the pitch of

someone’s voice can hardly be estimated from their mouth movements alone, but can easily be

extracted from audio. On the other hand, someone’s emotional cues may be hard to estimate

from audio, but can often be easily visible in a video of their face.

Recently, self-supervised learning has become increasingly popular in all areas of machine learn-

ing: natural language processing (Devlin et al., 2019; Brown et al., 2020), computer vision (Chen

et al., 2020; He et al., 2020) and speech processing (Baevski et al., 2020; Hsu et al., 2021). In

short, self-supervised learning aims to learn from data by leveraging the data itself as a su-

pervision target i. e., , using two versions of the same unlabelled image to create an input and

target simultaneously. This learning approach is uniquely valuable because it circumvents the

main limitation of modern machine learning methods: the lack of labeled data. Remarkably,

these self-supervised methods have yielded substantial increases in performance for important

applications such as question answering (Devlin et al., 2019) and image recognition (Chen et

al., 2020; He et al., 2020).

The duality of audio-visual speech and the recent success of self-supervised learning lead us

to a logical question: can acoustic and visual speech learn from each other without additional

supervision? This idea differs substantially from the audio-visual tasks mentioned above, as it

proposes to use one of the modalities as an objective to learn from the other, rather than simply

combining them as the input. Furthermore, the use of one of the modalities as an objective

naturally fits the self-supervised methodology. For instance, in Bootstrap Your Own Latent

(BYOL) (Grill et al., 2020) or Barlow Twins (Zbontar et al., 2021), researchers are forced to

elaborate two different views of the same image which are different enough to present a mean-

ingful learning procedure. Audio-visual speech, on the other hand, presents two substantially
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different yet perfectly synchronized (disregarding small discrepancies) views of the same speech

sample.

1.2 Questions and Objectives

The discussion presented above poses four main questions:

1. How can visual speech leverage acoustic speech as a learning objective?

It is well known that acoustic speech contains more explicit verbal content than visual

speech. For instance, most humans find it much easier to understand what someone is

saying by listening to them, rather than trying to read their lips with no sound. Recent

research has suggested that this assumption holds for machines as well. Indeed, speech

recognition models vastly outperform lip reading models when trained and evaluated on

the same corpus, with similar architectures and training procedures (Ma et al., 2021d).

This poses the question: can one leverage naturally paired audio-visual data to allow

visual encoders to learn verbal information from audio?

2. Is it possible to synthesize realistic speech from silent video only?

As mentioned above, we aim to train a visual encoder that learns from audio. This

method will attempt to learn useful information from the audio, including verbal content,

intonation, accent, etc. By considering this idea to its full extent, one can consider the

following edge case: is it possible to train a visual encoder that can synthesize audio

directly from silent video, with no additional supervision? This can be seen as the most

challenging task for a visual encoder with an acoustic objective: trying to reproduce its

audio counterpart without any audio input.

3. How can both modalities learn from each other simultaneously?

While acoustic speech seems to contain information that may not be as explicit in vi-

sual speech (e. g., verbal information), the inverse is also true. Emotion, for example,

is generally easier to recognize in someone’s facial movements rather than their voice.
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Furthermore, recent research in emotion recognition seems to suggest this assumption

also holds for machines (Schoneveld et al., 2021). This leads us to the following question:

if visual speech can leverage its counterpart to improve verbal encoding, can acoustic

speech also leverage its counterpart to learn valuable information? Naturally, this leads

to one of the fundamental questions in this thesis: can each speech modality leverage its

counterpart to learn new information from audio-visual speech, simultaneously?

4. How can one leverage these models for practical applications?

As outlined in the previous section, neural networks have recently been applied to im-

prove performance in speech applications such as speech recognition and lip reading.

Furthermore, self-supervised learning on unlabelled speech has yielded substantial devel-

opments in speech recognition, advancing the state-of-the-art once more. This research

direction elicits the following question: can audio-visual self-supervised learning improve

performance on established acoustic speech/visual speech tasks? Furthermore, it is also

relevant to consider if this learning strategy can lead to new tasks, such as video-to-speech

synthesis (as proposed in question 2).

In this thesis, I aim to address these questions by focusing on the following goals:

1. Develop a self-supervised visual model which can leverage unlabelled audio-

visual data to achieve state-of-the-art results in a visual speech application.

2. Build a state-of-the-art video-to-speech synthesis system.

3. Leverage my video-to-speech research to advance the state-of-the-art in audio-

visual speech enhancement.

4. Develop a self-supervised audio-visual model where both modalities can learn

from each other simultaneously to achieve state-of-the-art results in their

respective applications.
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1.3 Contributions

My work advances the state-of-the-art in self-supervised learning, video-to-speech synthesis,

and audio-visual speech enhancement:

1. LiRA: Learning visual speech representations from audio through self-supervision

In Chapter 3, I present LiRA (Ma et al., 2021c), a visual speech encoder that learns by

leveraging acoustic speech as its training objective. This self-supervised model is based on

a ResNet-18+Conformer architecture (Gulati et al., 2020; He et al., 2016) and learns by

predicting acoustic features extracted from raw audio using a pre-trained speech encoder

(PASE+ (Ravanelli et al., 2020a)). The trained visual encoder is then fine-tuned by my

collaborator Pingchuan Ma to perform lip reading on multiple ’in-the-wild’ datasets. This

approach achieves state-of-the-art lip reading results on LRS2 (Afouras et al., 2018a) and

outperforms previous self-supervised approaches on LRW (Chung and Zisserman, 2016a).

2. End-to-end video-to-speech synthesis

In Chapter 4, I present a new video-to-speech synthesis framework (Mira et al., 2022a)

that trains a generative adversarial network to reconstruct waveform speech from silent

video end to end. The model is based on a convolutional encoder-decoder structure,

combined with a recurrent temporal encoder. The model is trained via two separate

discriminators which operate on the time/frequency domain, as well as three comparative

losses on the resulting waveform. I train this model on various established datasets,

achieving state-of-the-art results on multiple evaluation metrics, and study the importance

of its components via several ablations studies. I also present experiments analyzing the

model’s ability to adapt to different vocabulary ranges and present an experiment with

silent speakers.

3. SVTS: Scalable video-to-speech synthesis

In Chapter 5, I present SVTS (Mira et al., 2022b): a video-to-speech synthesis model

based on neural vocoders, which focuses on architectural simplicity and scalability. I

apply a ResNet-18+Conformer (Gulati et al., 2020; He et al., 2016) architecture which



1.3. Contributions 11

predicts spectrograms from video of the speaker’s lip movements, as well as a speaker

embedding extracted using a pre-trained speaker encoder (Jia et al., 2018). The pre-

dicted spectrograms are then converted into waveform using a pre-trained neural vocoder

- Parallel WaveGAN (Yamamoto et al., 2020). I present three versions of this model

(small, medium, and large), and apply them to datasets of varying sizes. Experiments

show that SVTS substantially outperforms previous works on small and medium datasets

(GRID (Cooke et al., 2006a) and LRW (Chung and Zisserman, 2016a)), and is the first to

produce intelligible results for LRS3 (Afouras et al., 2018b) - a very large dataset with an

unconstrained vocabulary and thousands of speakers. I also study the importance of the

neural vocoder in this framework by comparing Parallel WaveGAN with other pre-trained

vocoders, as well as the established Griffin-Lim algorithm (Griffin and Lim, 1983).

4. LA-VocE: Low-SNR audio-visual speech enhancement using neural vocoders

In Chapter 6, I present LA-VocE (Mira et al., 2023), a new two-stage approach that

predicts mel-spectrograms from noisy audio-visual speech via a transformer-based ar-

chitecture, and then converts them into waveform audio using a neural vocoder (HiFi-

GAN (Kong et al., 2020a)). I train and evaluate this framework on thousands of speakers

and 11+ different languages, and study this model’s ability to adapt to different levels of

background noise and speech interference. Experiments show that LA-VocE outperforms

existing methods according to multiple metrics, particularly under very noisy scenarios.

5. RealForensics: Leveraging real talking faces via self-supervision for robust

forgery detection

In Chapter 7, I collaborate with my colleague Alexandros Haliassos to design, implement

and train the self-supervised audio-visual framework in RealForensics (Haliassos et al.,

2022) (stage 1). This framework is composed of two speech encoders (one for visual

speech and one for acoustic speech) which learn meaningful representation by predicting

each other’s features. Specifically, the student from one modality learns to maximize

the cosine similarity between its predicted features and the features extracted from the

other modality’s teacher, which is a slow-moving copy of the student. We trained these

models on unlabelled audio-visual data from LRW and VoxCeleb2. Alex Haliassos then
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fine-tuned these trained models for deepfake detection, achieving state-of-the-art results

for multiple established datasets.

6. RAVEn: Jointly learning visual and auditory speech representations from raw

data

In Chapter 7, I collaborate with my colleague Alexandros Haliassos to design, implement

and train RAVEn (Haliassos et al., 2023), a new audio-visual self-supervised learning

approach that operates on raw waveform and video. As in RealForensics (Haliassos et

al., 2022), this framework features student networks that learn by predicting the features

from the other modality’s teacher (slow-moving copy of the student). We present many

additions and improvements to the original structure, the most important of which are:

(1) Inspired by (He et al., 2022), we experiment with masked inputs for the students on

each modality and find that this improves performance (2) Inspired by recent successes

in audio-only self-supervised learning (Baevski et al., 2020; Hsu et al., 2021), the audio

student now predicts not only the video teacher’s features but also his own teacher’s

features. (3) We remove the projector from each encoder, as we find this yields better

results. My collaborators Alexandros Haliassos and Pingchuan Ma then fine-tune these

models for speech recognition and lip reading, and achieve state-of-the-art performance

on multiple datasets, outperforming previous self-supervised methods.

1.4 Publications

1. LiRA: Learning Visual Speech Representations from Audio through Self-

supervision

Pingchuan Ma∗, Rodrigo Mira∗, Stavros Petridis, Björn W. Schuller, Maja Pantic

Interspeech 2021

∗ denotes equal contribution

2. End-to-end Video-to-speech Synthesis using Generative Adversarial Networks
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This chapter aims to introduce the fundamental concepts and methods used for the remainder of

this thesis. We begin by describing the main audio-visual datasets we use to train and evaluate

our models. We omit audio-only datasets, as well as deepfake detection datasets (described in

Chapter 7), as they are not central to the approaches we present. We then go on to describe our

data processing tools for acoustic and visual speech. We describe the main layers that compose

our models, exploring how/why they were designed and what purpose they fulfill. Finally, we

describe every evaluation metric used to evaluate the synthesized speech.

2.1 Datasets

In this section, we describe the audio-visual datasets (i. e., which contain acoustic and visual

speech) used in the remaining chapters. We divide these datasets into two types: ’studio-

recorded’ datasets and ’in-the-wild’ datasets. Studio-recorded datasets are recorded in optimal

conditions, with high-quality video and audio streams and minimal acoustic/visual noise. Apart

from generally being cleaner, the samples in these datasets are recorded by the same researchers,

using the same equipment, in the same location. This consistency makes for a homogeneous

corpus, which is useful in research scenarios. In-the-wild datasets, on the other hand, are

gathered from real-world recordings (e. g., Youtube videos) and are generally lower in quality.

They often feature many speakers recorded using different equipment in vastly different envi-

ronments. This heterogeneity yields a much noisier corpus, which is more difficult to study and

evaluate. However, these have two major advantages over studio-recorded datasets:

1. They are easier to scale

AVSpeech, for example, features roughly 4700 hours of audio-visual speech clips. These

are automatically extracted from Youtube videos using a data collection pipeline that

involves minimal human feedback (Ephrat et al., 2018). Conversely, creating a studio-

recorded dataset of this dimension would require an unreasonably large amount of effort
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Table 2.1: Summary of the contents of each audio-visual dataset we describe in this section.

Name # Languages # Clips # Hours # Words # Speakers

Studio-recorded

GRID 1 (English) 33,000 27 51 33
TCD-TIMIT 1 (English) 13,826 7 N/A 62

In-the-wild

LRW 1 (English) >500,000 173 500 >1,000
LRS2 1 (English) 144,482 225 >40,000 N/A
LRS3 1 (English) 151,819 438 >51,000 >5,000

Voxceleb2 1 (English) 1,128,246 2442 N/A 6,112
AVSpeech 11+ >2,000,000 ∼4700 N/A >150,000

and investment, as each clip would have to be manually recorded. This is why all large-

scale audio-visual speech datasets available today are in-the-wild.

2. They are closer to the ’real world’

While studio-recorded datasets present a consistent set of samples that may be used to

evaluate a research idea (e. g., is it possible to synthesize speech from silent video only),

they are mostly useful for proofs of concept. This is because, in real-world applications,

models must learn to adapt to different scenarios, e. g., if a lip reading model only works

in perfect studio conditions, its applications will be severely limited. With this in mind,

training and evaluating our models on in-the-wild datasets presents a much more realistic

challenge and allows us to consider broader applications.

The datasets presented below are summarized in Tables 2.1 and 2.2.

2.1.1 Studio-recorded

GRID

GRID (Cooke et al., 2006a) contains roughly 33,000 3-second long clips, amounting to around

27 hours of audio-visual speech. The 33 participants are told to utter short sentences which are

formed using a sequence of 6 simple words sampled from a small vocabulary (51 words in total),
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Table 2.2: Summary of the technical details of each audio-visual dataset we describe in this
section. In the first row, “fps” stands for frames per second, and “sr” stands for sampling rate.

Name Video resolution Video fps Audio sr (Hz) Source

Studio-recorded

GRID 720× 576 25 50,000 Studio
TCD-TIMIT 1920× 1080 30 48,000 Studio

In-the-wild

LRW 256× 256 25 16,000 TV (BBC)
LRS2 160× 160 25 16,000 TV (BBC)
LRS3 224× 224 25 16,000 Youtube (TED talks)

Voxceleb2 224× 224 25 16,000 Youtube
AVSpeech Variable 25 16,000 Youtube

e. g., “Bin red in B 9 now.”. All samples are recorded in the same acoustically isolated booth

using professional equipment (microphone and camera). The video is recorded with 720× 576

resolution and 25 frames per second (fps), and the audio is sampled at 50,000 Hz. The lighting,

camera position, microphone position, and head pose were kept consistent throughout the entire

recording procedure.

TCD-TIMIT

TCD-TIMIT (Harte and Gillen, 2015) contains 13,826 clips of varying lengths, amounting to

around 7 hours of audio-visual speech. The corpus features 59 volunteers, each uttering 98

different sentences, and 3 professional lip speakers, each uttering 377 sentences. The sentences

are obtained from the original TIMIT dataset, which features an unconstrained vocabulary

and is designed to include as many phoneme pairs as possible. Each speaker is recorded from

two different angles: frontal, and 30 degrees to the speaker’s right. The video and audio were

recorded in an office with no soundproofing, using professional cameras and microphones. Both

video streams were recorded with 1920× 1080 resolution and 30 fps, and the audio stream was

sampled at 48,000 Hz. As in GRID, lightning, camera position, microphone position, and head

pose were regularly checked and kept consistent during the recording procedure.
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2.1.2 In-the-wild

LRW

Lip Reading in the Wild (LRW) (Chung and Zisserman, 2016a) contains roughly 500,000 1.16-

second-long clips (29 frames each, featuring a single word), amounting to more than 150 hours

of audio-visual speech. It features a vocabulary of 500 words (e. g., “Already”, “Westminster”),

with approximately 1,000 utterances per word uttered by hundreds of different speakers. The

clips are extracted from BBC TV broadcasts of news programs and debates. For each clip, the

face is detected, cropped from each frame, and resized to 256 × 256 resolution (25 fps). The

quality of each video is highly dependent on the size of the face in the original video, as well

as the recording equipment that was used. Overall, the video quality is moderately high, with

clearly discernible facial movements. The audio is sampled at 16,000 Hz and is also inconsistent,

as it is recorded in a wide range of different environments, including outdoors. The video often

features jittery movements centered around the face, which is a consequence of the landmark

extraction process. The audio, on the other hand, frequently contains some background noise

from the recording environment but is consistently intelligible in virtually every sample. The

lighting, camera position, and microphone position vary greatly from clip to clip, but the head

pose is generally constrained to be near-frontal. The corpus is split into “train” (training),

“val” (validation), and “test” (testing) sets, which contain 800-1000, 50, and 50 utterances per

word, respectively.

LRS2

Lip Reading Sentences 2 (LRS2) (Afouras et al., 2018c) contains 144,482 clips of varying lengths,

amounting to around 225 hours of audio-visual speech. The sentences are clipped to 100

characters or 10 seconds in length, feature a vocabulary of more than 40,000 words, and are

uttered by thousands of different speakers. The videos are extracted from a variety of programs

from BBC TV broadcasts. Similarly to LRW, the face is extracted from each video using an

automatic preprocessing pipeline and resized to 160 × 160 resolution (25 fps). The audio is
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sampled at 16,000 Hz. The video and audio are of similar to LRW and suffer largely from

the same jitter/background noise problems. Despite this, the facial movements are generally

well-preserved and the audio is intelligible. As explained above, recording conditions vary

substantially between clips, as they are from different programs recorded at different times in

different environments. The corpus is split into “pre-train” (pre-training), “train”, “val”, and

“test” sets, which contain 96,318, 45,839, 1,082, and 1,243 utterances, respectively.

LRS3

Lip Reading Sentences 3 (LRS3) (Afouras et al., 2018a) contains 151,819 clips of varying lengths,

amounting to around 438 hours of audio-visual speech. As in LRS2, the sentences have a very

large vocabulary (more than 50,000 words) and are uttered by thousands of speakers. The

videos are extracted from YouTube videos of TED/TEDx talks available online. As presented

above, the face is extracted from each clip using an automatic preprocessing pipeline and

resized to 224×224 resolution (25 fps). The audio is sampled at 16,000 Hz. In this dataset, the

video quality is more inconsistent compared to LRW and LRS2, to the point where, in some

videos, the speaker’s lip movements are difficult to recognize. The audio, on the other hand,

is consistently clear and contains minimal noise, which is unsurprising given the TED talk

format. The head poses also appear to have a larger variance - some videos contain segments

with near-profile head poses. These adverse conditions make this dataset more challenging (e. g.,

for lip-reading (Ma et al., 2021d)) than LRW or LRS2. The corpus is split into “pre-train”,

“trainval”, and “test” sets, which contain 118,516, 31,982, and 1,321 utterances, respectively.

The sentences from the “trainval”, and “test” sets are clipped to 100 characters or 6 seconds,

whereas the ones from the “pre-train” set are often longer.

VoxCeleb2

VoxCeleb2 (Chung et al., 2018b) contains 1,128,246 clips of varying lengths, amounting to

2,442 hours of audio-visual speech. It features an unconstrained vocabulary and more than

6,000 speakers. The clips are extracted from videos of celebrities downloaded from YouTube.
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Similarly to the other in-the-wild datasets, the faces are detected and cropped from each video

using an automatic preprocessing pipeline and resized to 224×224 resolution (25 fps). The audio

is sampled at 16,000 Hz. As in LRS3, the video of the speaker’s cropped face is occasionally low

in quality, meaning that their facial movements are more difficult to understand. Unlike LRS3,

the audio quality is also inconsistent, with some samples featuring substantial background noise

and static. The head poses and lighting conditions also vary greatly throughout the dataset.

Overall, VoxCeleb2 is one of the largest audio-visual datasets available online today and is quite

heterogeneous in its contents. The corpus is split into “dev”, and “test” sets, which contain

1,092,009 and 36,237 utterances, featuring 5,994 and 118 speakers, respectively.

AVSpeech

AVSpeech (Ephrat et al., 2018) contains more than 1 million 3- to 10-second long clips, amount-

ing to roughly 4,700 hours of audio-visual speech. It features an unconstrained vocabulary and

approximately 150,000 different speakers. Notably, unlike all datasets presented above, which

exclusively contain speech in English, AVSpeech features 11+ different languages including

Spanish, Japanese, and Russian. The clips are extracted from 290,000 YouTube videos (ranging

from video lectures to TED talks) using an automatic data collection pipeline. This preprocess-

ing discards videos which are blurry, poorly lit, or near-profile, as well as audio clips with a low

signal-to-noise ratio (SNR). The videos are uncropped and vary greatly in resolution. Fps and

audio sampling rate are also unspecified, although the authors choose to resample all videos to

25 fps and audio to 16,000 Hz in their application (Ephrat et al., 2018). As in VoxCeleb2, the

video quality can at times be quite deteriorated, and, despite the SNR filter in preprocessing,

the audio often contains substantial background noise and reverberation. The head poses and

lightning conditions also vary greatly but are generally adequate thanks to the filtering during

data collection. AVSpeech is today the largest publicly available audio-visual speech dataset

and therefore plays a central role in modern audio-visual deep learning research.
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Figure 2.1: Illustration of the step-by-step transformation from waveform (a) to dB-scaled
mel-frequency spectrogram (d).

2.2 Data Processing

In this section, we describe the data processing techniques that are used throughout this thesis

to transform raw audio and video into representations that we can more easily exploit via our

deep learning models.
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2.2.1 Audio

Spectrogram

In computing, audio files are universally stored, played, and shared in the waveform domain,

via many formats ranging from .wav to .mp3. Although this format is convenient for playing

and recording audio on digital devices, it is not particularly helpful when trying to analyze

its contents. This is because humans’ perception of sound depends on the frequencies that

this waveform contains, which are not explicitly represented in the waveform format. For this

reason, researchers use the discrete-time Short-Time Fourier Transform (STFT) (Gold et al.,

2011), which allows us to visualize the frequency and phase of the signal via the following

equation:

STFT (x, f,m) =

wlen−1∑

k=0

w[k]x[mh+ k]e
−i

2πfk

wlen (2.1)

where f is the frequency we are analyzing, m is the index of the sliding window over which

we are computing the Fourier transform, which we refer to as ‘time-step’, w and wlen are the

window function (typically Hann window) and its length, respectively, h is the hop size, and

x is the input waveform. We can then compute the spectrogram by computing the squared

magnitude of the Fourier transform:

S(x, f,m) = |STFT (x, f,m)|2 (2.2)

where S is the spectrogram function. Finally, this allows us to visualize the magnitude of each

frequency at each time step, as presented in Figure 2.1b. There are then two adjustments that

can be performed to make the spectrogram more useful. The first is to convert it into the Mel

scale, which scales the frequencies based on human pitch perception (Gold et al., 2011; Huang

et al., 2001) via the following formula:

fmel = 2595 log10

(
1 +

700

f

)
(2.3)

where f is the frequency in Hertz (Hz), and fmel is the frequency in mel scale. Although
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Figure 2.2: Comparison between Hertz scale and Mel scale. Source: https://en.wikipedia.
org/wiki/Mel_scale.

other formulas have been proposed (Gold et al., 2011), this is the most widely used and is

implemented in well-known packages such as PyTorch (Paszke et al., 2017) and Librosa (McFee

et al., 2022). For these reasons, this is the formula we will be using for the remainder of this

thesis. A comparison between the Hertz scale and the mel scale is shown in Figure 2.2. In

practice, this conversion is done by applying a set of m mel scale triangular filter banks which

convert the original spectrogram into a mel frequency spectrogram (Gold et al., 2011; Huang

et al., 2001). The second adjustment is to convert the power spectrogram (amplitude squared),

as it is computed in Equation X, into the decibel (dB) scale, by scaling them logarithmically:

SdB(x, f,m) = 10 log10(S(x, f,m)) (2.4)

where SdB is the dB-scaled spectrogram. The decibel scale is widely used in many signal

processing applications and allows us to visualize the power of each frequency within a narrower

range. The step-by-step conversion process from raw waveform to dB-scaled mel-frequency

spectrogram is illustrated in Figure 2.1.

https://en.wikipedia.org/wiki/Mel_scale
https://en.wikipedia.org/wiki/Mel_scale


24 Chapter 2. Background

0 1.5 3 4.5 6 7.5 9
Time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Waveform

0 1 2 3 4 5 6 7 8 9
Time

300

200

100

0

100

200

(b) MFCC

Figure 2.3: Conversion from waveform (a) to MFCC (b).

MFCC

The Mel-Frequency Cepstrum Coefficients (MFCC) are a more elaborate speech representation

that was originally shown to be effective in speech recognition (Huang et al., 2001; Davis and

Mermelstein, 1980). Since then, MFCCs have been widely used as an auxiliary representation

in many impactful tasks including speaker identification (Kamruzzaman et al., 2010), speech

recognition (Ittichaichareon et al., 2012), and emotion recognition (Kishore and Satish, 2013).

It is obtained by computing the discrete cosine transform (DCT) of the dB-scaled mel-frequency

cepstrum (as presented above):

MFCC(x, n) =
M−1∑

m=0

Smel,dB[m] cos

(
πn(m+ 0.5)

M

)
(2.5)

where MFCC is the MFCC function, x is the input signal, M is the number of mel-scale filter

banks and Smel,dB is the dB-scaled mel-spectrogram. n varies from 0 to NMFCC , where NMFCC

is the number of coefficients we are computing (this is typically set to 13 in most speech-related

applications (Huang et al., 2001)). An example of the conversion from waveform to MFCC is

presented in Figure 2.3.
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Figure 2.4: Face detection example using RetinaFace. Source: https://github.com/

serengil/retinaface

2.2.2 Video

For the purposes of this thesis, we are interested in videos of people’s facial movements while

they are talking, also known as visual speech. As mentioned in Section 2.1, the audio-visual

datasets we approach in this thesis are carefully designed to include videos of people talking

where the face and lip movements are clearly visible, the quality/resolution of the video is

reasonable, the audio is intelligible and does not contain major noise sources, and the audio

and video streams are synchronized. However, even with all these aspects accounted for, it

is still necessary to extract a consistently aligned face from each frame of each video, as the

original is typically misaligned and contains other visual cues which are irrelevant for visual

speech analysis, e. g., the objects in the background. We extract the face via a pre-processing

pipeline with three major steps: face detection, landmark detection, and alignment. We may

also choose to crop the mouth at the end if we are only interested in lip movements.

https://github.com/serengil/retinaface
https://github.com/serengil/retinaface
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Face detection

We begin by detecting the face in the video, which in practice is done by estimating a bounding

box around the speaker’s face in each video frame. Throughout the chapters of this thesis, two

different methods are applied for face detection: dlib (King, 2009) and RetinaFace (Deng et al.,

2020). dlib is a well-established C++ toolkit that encapsulates a wide variety of methods that

can be useful for practical applications, such as face detection. dlib’s default face detection

function (which is used in Chapters 3 and 4) is based on a combination of Histograms of

Oriented Gradients (HOG) (Dalal and Triggs, 2005) and Linear Support Vector Machines

(SVM) (Hearst et al., 1998). Despite not depending on any neural networks, this method is

reasonably accurate, fast, and efficient.

RetinaFace is a convolutional model trained for face detection via a multi-task framework that

performs face classification, face box regression, facial landmark regression, and dense face

regression simultaneously. This method is trained and evaluated on a very large annotated

dataset (WIDER FACE (Yang et al., 2016)), where it achieves state-of-the-art performance.

RetinaFace has since become an established face detection framework that is widely used for

many applications, including Chapters 5, 6, and 7. For our work, it is assumed that there

is only one speaker in each video - if two speakers are detected, the video is discarded. An

example of face detection using RetinaFace is presented in Figure 2.4.

Landmark estimation

We proceed by estimating the facial landmarks on the detected face, which are a set of 68 points

on the speaker’s face (examples are pictured in Figure 2.5) that will be used for alignment

and cropping later. Throughout this thesis, two methods are used for landmark estimation:

dlib (King, 2009) (used in Chapters 3 and 4) and 2D-Face Alignment Network (FAN) (Bulat

and Tzimiropoulos, 2017a) (used in Chapters 5, 6, and 7). dlib’s landmark estimation model is

based on an Ensemble of Regression Trees (ERT), as proposed in (Kazemi and Sullivan, 2014).

Again, despite not relying on deep learning, this method is shown to be extremely fast and
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Figure 2.5: 68-point landmark estimation examples using a 2D-FAN. Source: https://github.
com/1adrianb/face-alignment

generally provides accurate landmark estimates in real-world scenarios.

2D-FAN, on the other hand, is a model composed of a stack of four HourGlass Networks (Newell

et al., 2016) that predicts the 2D coordinates of each landmark. This network is trained and

evaluated on a very large, synthetically augmented landmark dataset (300-W-LP (Zhu et al.,

2016)) via a simple Mean Squared Error (MSE) loss, and substantially outperforms other

approaches in terms of area under the receiver operating curve (AUC - this metric is described

in Section 2.4.3). Due to its impressive performance and open-source implementation1, FAN is

commonly used to extract facial landmarks in many research projects, including Chapters 5, 6,

and 7.

Smoothing, alignment, and cropping

After computing the 2D landmarks for each frame of each video, we must perform smoothing

to reduce motion jitter in the resulting video. We do this by computing the average landmarks

over time using a 12-frame sliding window. Then, we align each frame of each video with the

mean face by performing an affine transformation, which ensures all faces in all videos will

be aligned with the same reference. In our case, the mean face is computed by averaging the

landmarks from every video in LRW (Chung and Zisserman, 2016a). Finally, the aligned face,

together with the estimated landmarks, can be used to crop out our region of interest (ROI),

which will be either the full face or the mouth, depending on the application. Examples of the

1https://github.com/1adrianb/face-alignment

https://github.com/1adrianb/face-alignment
https://github.com/1adrianb/face-alignment
https://github.com/1adrianb/face-alignment
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(a) Cropped face (b) Cropped mouth

Figure 2.6: Examples of a pre-processed cropped face from GRID (Cooke et al., 2006a) and
cropped mouth from LRW (Chung and Zisserman, 2016a).

cropped face and mouth are shown in Figure 2.6.

2.3 Modelling

In this section, we will focus on the components that make up our models in each of the

chapters below. Fundamentally, our neural networks feature four types of layers: linear layers,

convolutional layers, recurrent layers, and attention layers.

2.3.1 Linear layers

The linear layer (also known as the fully connected layer) is the most basic neural layer described

in this thesis. In short, this layer features two vectors of neurons that are fully connected, i. e.,

each neuron on each vector is connected to every neuron on the other vector, such that each

output neuron depends on every input neuron, as shown in Figure 2.7. Each connection is

modeled via trainable weights and biases such that:

yj = wi,jxi + bj (2.6)
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Figure 2.7: A simple illustration of a linear layer. Source: https://www.baeldung.com/cs/

neural-networks-conv-fc-layers

where xi is the i-th input neuron, yj is the j-th output neuron, wi,j is the weight between

the two neurons, and bj is the bias associated with the output neuron. It is worth noting

that the linear layer can have different numbers of input and output neurons, meaning that

it can connect two tensors with different latent dimensions. Linear layers may be combined

sequentially to form what is commonly referred to as a multilayer perceptron (MLP) (Heaton,

2018), which is effectively a stack of linear layers.

For the purposes of this thesis, linear layers are generally used as projectors, i. e., they are used

to project some output features into a new desired dimensionality. A good example is the linear

projection layer in Chapter 5, Figure 5.1. In this case, the conformer’s output feature has a

hidden dimension of 256, but we would like to generate 4 spectrogram frames, which would be a

hidden dimension of 320. To project our hidden size into the desired dimension, we use a linear

layer with an input size of 256 and an output size of 320, which is a simple and lightweight

solution. Linear layers are also used heavily in transformers, as we will discuss later in Section

2.3.3.

https://www.baeldung.com/cs/neural-networks-conv-fc-layers
https://www.baeldung.com/cs/neural-networks-conv-fc-layers
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Figure 2.8: A simple example of a 2D convolution. In this case, our input has 2 dimensions
(height and width) and 3 channels, and there are 2 kernels of size 3× 3. The stride is set to 2
and the padding is set to 1, so the output is of size 3 × 3. Source: https://cs231n.github.
io/convolutional-networks/

2.3.2 Convolutional layers

While linear layers generally work well for low-dimensional inputs, such as latent vectors, our

work in this thesis adopts modalities with high dimensionality such as waveforms, spectrograms

(which, from a modeling perspective, can be treated as 2D images), and video. Therefore, we

need spatial models that can efficiently encode these modalities into useful features, as well as

decode these features into larger dimensions.

Convolutions

In the context of deep learning (Heaton, 2018), the convolution is an operation that applies

a sliding window of trainable weights and biases (known as the kernel) on an input tensor,

resulting in a new set of features. Although this method can be applied for any number of

dimensions, we can proceed by looking at a 2D image example, as this was the first application

for convolutional neural networks (CNNs) (LeCun et al., 1989). If we have a 64×64 image and

https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/
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apply a kernel of size 3 × 3 with the stride set to 1, this will result in a set of features of the

same dimension (64×64), assuming we choose to add a padding of 1 to the input image, which

is an adjustable parameter in the convolution. In the resulting set of features, each value will

depend on the corresponding pixel in the input image, as well as its 8 neighboring pixels - this

is known as the receptive field. An example of a 2D convolution is shown in Figure 2.8.

If we increase the kernel size to 5 × 5, each feature point will depend on a larger receptive

field of 25 pixels, which means that each feature will take into account a larger spatial context,

and therefore is likely to focus on higher level visual cues. We may also adjust how the sliding

window will move through the input, by adjusting the stride. If we choose a stride of 1, the

kernel will move 1 pixel to the right (or down, if it reaches the end of the row) at each step,

resulting in a set of features of size 64×64 (if padded accordingly). However, if we set the stride

to 2 (and adjust the padding accordingly), the kernel will slide by 2 pixels each step, resulting

in a set of features of size 32 × 32. In short, the convolution allows us not only to produce

features that contextualize each pixel with its surrounding receptive field but also allows us to

produce a compressed set of features with lower dimensionality.

Each convolution layer can apply multiple trainable kernels, which will result in multiple sets

of features. For example, if we apply a convolutional layer with stride 1 and N kernels on an

RGB image of size 3× 64× 64, this will result in a set of features of size N × 64× 64. These

layers may then be stacked sequentially, as in the MLP presented above, to form powerful deep

visual encoders. After propagating through this deep network, the resulting features will yield

a very large receptive field, as they will depend on, e. g., 3× 3 features from the previous layer,

each of which depends on 3× 3 features from the previous layer, etc. Convolutional layers are

typically followed by non-linear activation functions such as ReLU (Nair and Hinton, 2010) or

Swish (Ramachandran et al., 2018). Many convolutional architectures (such as ResNet (He

et al., 2016)) also apply batch normalization (Ioffe and Szegedy, 2015) after each layer, which

normalizes the features over the batch dimension. This has been shown to improve training

stability and yield better performance on the downstream task.

In this thesis, convolutional layers are useful as feature encoders for audio, e. g., , 1D convo-
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lutions in the waveform discriminator in Chapter 4 and in the audio waveform encoder (1D

ResNet-18) in Chapter 7; image, e. g., 2D convolutions in the power critic in Chapter 4 and in

the spectrogram encoder in Chapter 7; and video, e. g., 3D front-end convolutions in the video

encoders in Chapters 4, 5, 3, 7 and 6. In short, convolutional layers serve as effective feature

encoders for all modalities because:

1. They can easily be adapted for different dimensions (1D, 2D, or 3D).

2. When stacked, convolutions produce features with a very wide receptive field, which allows

them to take into account large contextual windows in the input.

3. They are able to encode high-dimensional inputs into compressed low-dimensional latent

features, which can more easily be fed into other models, such as transformers.

4. They enable weight sharing (i. e., , each kernel’s weights are used to process the entire

input, and are therefore ‘shared’ between many sets of inputs), which leads to highly

efficient architectures.

Transposed convolutions

Transposed convolutions can be seen as the inverse of the convolutions presented above. We

apply a sliding kernel, as before, but instead of encoding features using this kernel as a receptive

field on the input, it projects each feature in the input into a new wider set of features, as

presented in Figure 2.9. The kernel size, stride, and padding function as expected having the

inverse effect of the convolution, e. g., , a 2D transposed convolution with kernel size 3 × 3,

stride 2 and output padding 1, when applied on an input of size 64× 64 will output features of

size 128× 128.

In this thesis, 1D-transposed convolutions are used in the decoder in Chapter 4 and in the neural

vocoder in Chapter 6. In short, transposed convolutions are effective at decoding latent features

into higher dimensional modalities (waveform audio, in this case), mirroring the convolution’s

feature encoding capabilities.
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Figure 2.9: A simple example of a 2D transposed convolution. In this case, our input is of size
2× 2, and there is one kernel of size 3× 3. The stride is set to 2, so the output is of size 5× 5.
Source: https://blog.paperspace.com/transpose-convolution/

AlexNet, ResNet and beyond

After their inception in 1989 (LeCun et al., 1989), convolutional neural networks became an

active research field within the computer vision community. However, it was only with the

introduction of AlexNet (Krizhevsky et al., 2017), which set a new state-of-the-art on the

ImageNet Large Scale Visual Recognition Challenge (ILSCRC) (Russakovsky et al., 2015),

that CNNs began to dominate the image classification landscape. The next years saw successive

iterations of similar architectures, such as GoogleNet (Szegedy et al., 2015) and VGG (Simonyan

and Zisserman, 2015), which substantially outperformed AlexNet. These models built upon the

fundamental ideas of LeNet (LeCun et al., 1989) (convolutional layers intertwined with pooling

layers) by adding new activation functions such as ReLU, among other tweaks.

In 2015, ResNets became the new state-of-the-art on ImageNet by proposing one simple devel-

opment which had a dramatic impact on the future of deep neural network modeling: residual

connections. In short, instead of propagating the signal (and backpropagating the gradients)

https://blog.paperspace.com/transpose-convolution/
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Figure 2.10: Simple example of a residual connection. Source: He et al. (2016)

through the model in a single line from input to output, as previous models had done, He et

al. (2016) proposed to add residual connections between layers. Specifically, ResNets are made

of residual blocks - sets of convolutional layers which, apart from being connected sequentially,

as usual, have a residual connection that connects the beginning (before the first layer) to the

end (after the last layer) of the block, as pictured in Figure 2.10.

He et al. (2016) propose ResNets of varying sizes (as in Simonyan and Zisserman (2015)),

ranging from the 18-layer ResNet-18 to the 152-layer ResNet-152. ResNets were shown to

outperform all previous methods on ImageNet classification and went on to win first place in

ILSCRC 2015. Furthermore, residual connections are shown to be one of the main factors

behind the ResNet’s superior performance, via multiple ablation studies that compare ResNets

to their ‘plain’ counterparts without residual connections.

He et al. (2016) suggest that residual connections are a way to combat the degradation of

the signal that is being propagated through deep networks by adding identity mappings from

one block of layers to the next. Despite this convincing motivation, there has been extensive

discussion around the exact reasons why the residual connection is so successful. For instance,

Li et al. (2018) clearly show that residual connection creates a loss landscape that is easier to

optimize but do not provide conclusions on why this is the case. On the other hand, Veit et

al. (2016) claim that ResNets effectively behave like ensembles of smaller networks, and solve

the issue of vanishing gradients through the shorter paths that are created by the residual
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connections.

Since their introduction in 2015 (He et al., 2016), ResNets have become standard deep learning

models for speech recognition (1D) (Saon et al., 2017), image classification (2D) (Kolesnikov et

al., 2020) and action (3D) recognition (Xie et al., 2017), among many other tasks. They have

been followed by many successors including ResNeXt, EfficientNet, and ConvNeXt, which bor-

row from the original ResNets, featuring blocks of convolutions with residual connections. New

transformer-based vision models have also been proposed, such as the original ViT (Dosovitskiy

et al., 2021) and the recent Swin Transformer (Liu et al., 2022). Despite these developments,

state-of-the-art lip reading models continue to use a combination of a 3D front-end layer with a

2D ResNet-18 (Stafylakis and Tzimiropoulos, 2017) as their visual backbone (Ma et al., 2021a,

2022b). Given its success in lip reading and relatively low number of parameters, the 3D+2D

ResNet-18 is also widely adopted as the preferred visual speech encoder throughout the course

of this thesis.

2.3.3 Sequence modelling

In this thesis, we mainly work with audio and video - two modalities with important temporal

aspects. In order to model audio-visual speech accurately, we require strong temporal encoders

that can model the temporal correlations in long sequences effectively. In this section, we discuss

the shift from recurrent neural networks (RNNs), which are used in Chapter 4, to transformers,

which are used in the remaining chapters.

Recurrent neural networks

Recurrent neural networks were originally proposed by Hopfield (1982) with the aim of rec-

ognizing patterns in sequences. In short, RNNs are neural networks that have an explicit

connection to the next time-step, rather than operating on a single static input. In general,

RNNs model sequences by receiving one token of the input sequence xt each iteration and keep-

ing a hidden ‘state’ ht that is updated every time-step, as shown in Figure 2.11. Following this
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Figure 2.11: A simple illustration of a recurrent neural network (RNN). Source: https://

colah.github.io/posts/2015-08-Understanding-LSTMs/

Figure 2.12: Long short-term memory (LSTM) cell. Source: https://colah.github.io/

posts/2015-08-Understanding-LSTMs/

abstract definition, many attempts were made to create RNNs that were efficient and easy to

train. However, early networks suffered from vanishing and exploding gradients during back-

propagation, which made training unstable (Lipton, 2015), and struggled to model long-term

dependencies effectively (Kolen and Kremer, 2001).

The first major development in RNNs came with the proposal of the Long Short-Term Memory

(LSTM) model (Hochreiter and Schmidhuber, 1997). This work proposed to replace the hidden

layers in traditional RNNs with memory cells, as described in Figure 2.12. The LSTM cell

differentiates itself from previous RNN hidden layers by having not only a hidden state but

also a cell state, which flows from time step to time step with minimal changes. This is the

key idea of LSTMs: to have an internal state that can flow through each step of the sequence

while avoiding the vanishing and exploding gradients in the traditional hidden state.

The LSTM cell has three major components presented from left to right in Figure 2.12: the

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure 2.13: Gated Recurrent Unit (GRU). Source: https://colah.github.io/posts/

2015-08-Understanding-LSTMs/

forget gate ft, introduced by Gers et al. (2000), which controls how much of the previous time

step’s cell state Ct−1 is kept and how much is forgotten via an element-wise multiplication;

the input gate it, which computes an embedding based on the previous hidden state ht−1 and

current input xt, and adds it to the cell state Ct; and an output gate ot, which combines the

current input xt, previous hidden state ht−1 and current cell state Ct to produce the current

hidden state ht, while the cell state Ct flows to the next time-step.

Due to their ability to model long-term dependencies while avoiding the training instabilities

of previous RNNs, LSTM models quickly became popular in sequence modeling fields such as

Natural Language Processing (NLP) (Otter et al., 2021) and speech recognition (Graves et

al., 2013). In practice, most works opted for bi-directional LSTM networks, as proposed by

Schuster and Paliwal (1997), which leverages two LSTM layers: one that models the forward

dependencies (from t−1 to t), as in the original RNN, and another one that models the backward

dependencies (from t to t−1). This yields a network that can model the temporal dependencies

from past inputs as well as future inputs. This can be useful in machine translation, for example,

where the translation of a word at time t can be dependent on the input word at time t+ 1.

A more recent variant of the RNN came with the introduction of the Gated Recurrent Unit

(GRU) (Cho et al., 2014; Chung et al., 2014), shown in figure 2.13. The GRU differs funda-

mentally from the LSTM by foregoing the idea of the cell state, and instead keeping only the

hidden state at each time step. However, it borrows the idea of gating by having a reset gate rt,

which allows the network to reset the hidden state ht−1 (which can also be seen as forgetting the

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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previous state), and an update gate zt, which updates the new state ht based on the previous

state ht−1 and new input xt.

For the purposes of this thesis, we use a two-layer bidirectional GRU model as our temporal

encoder in the generator in Chapter 4. We chose this model since we needed to model the

complex temporal dependencies between the visual features from each video frame, which can

be related to past and future frames. We also use a pre-trained LSTM-based model as our

speaker encoder in Chapter 5, which was originally trained to perform speaker verification from

spectrograms (Jia et al., 2018).

Despite being substantially more stable than traditional RNNs, LSTMs, and GRUs still suffer

from severe issues that stem from their auto-regressive nature (i. e., each output ot depends

on the previous output ot−1). Firstly, although the issue of vanishing and exploding gradients

is alleviated in these new variants, it is not completely eliminated (Le and Zuidema, 2016),

which makes for an unreliable training procedure. Secondly, although substantial efforts have

been made to improve long-term dependence modeling, it has been shown that LSTMs still

struggle to consistently display long-term memory (Zhao et al., 2020a). Intuitively, there are

limits to the long-term dependencies that can be modeled via a single continuously changing

hidden state, particularly when compared to the explicit connections present in, e. g., CNNs.

Thirdly and most importantly, the RNN’s autoregressive training procedure, where we must

compute each time-step sequentially since ht depends on ht−1, is not easily parallelizable. This

is unlike CNNs, for example, where the sliding kernel can be applied on many segments of the

input in parallel, rather than one by one. This makes RNNs slow to train even on high-end

GPUs, which is a substantial drawback for practitioners.

Transformers

Transformers (Vaswani et al., 2017) successfully solve the issues faced by RNNs via one simple

design decision: non-autoregressive modeling. Instead of receiving one input token xt for each

step, transformers process the entire sequence in parallel. Each element of the sequence is
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Figure 2.14: The transformer encoder. Source: Vaswani et al. (2017)

associated with a time-step t via positional encoding, which is added to the input embedding:

p(t, 2i) = sin

(
t

10, 000
2i
d

)
(2.7)

p(t, 2i+ 1) = cos

(
t

10, 000
2i
d

)
(2.8)

where p(t, 2i) and p(t, 2i+1) are the positional encodings at time t for input dimensions 2i and

2i+ 1, respectively, and d is the input’s total dimension. This mix of sine and cosine functions

ensures that each input token is associated with a unique positional encoding that identifies

time-step t, and can adapt to sequences of variable lengths. Positional encodings allow us to

simply feed the entire sequence into the model and, more importantly, compute the outputs in

parallel.

Vaswani et al. (2017) introduce an encoder-decoder structure that is proposed for machine

translation (encoding the input in one language and decoding the output in another language).

However, for the purposes of this thesis, we are only interested in the transformer encoder

for sequence modeling and therefore disregard the transformer decoder for the remainder of

this section. The transformer encoder (shown in Figure 2.14) stacks multiple encoder layers,
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each of which contains two main components: a multi-head attention layer and a feedforward

layer. We will focus on describing the multi-head attention layer, as the feedforward layer is

simply composed of two fully connected linear layers, as described in Section 2.3.1. Attention

mechanisms were originally proposed for machine translation in (Bahdanau et al., 2015). The

general idea was to allow the output translation to attend to different parts of the input with

different weights via a context vector:

cj =
T∑

i=0

wijhi (2.9)

where cj is the context vector for the j-th output embedding, hi is the i-th input embedding

(computed via an RNN), wij is the attention coefficient for the i-th input and j-th output,

which is computed via a learnable function, and T is the total number of input embeddings.

Effectively, this allowed the model to explicitly model the dependencies between inputs and

outputs, rather than solely relying on recurrent mechanisms.

This fundamental idea was then extended and reformulated by following works (Niu et al.,

2021), eventually converging into self-attention as proposed by Vaswani et al. (2017). In the

transformer, attention layers receive three vectors as input: queries Q, keys K, and values V .

These are computed from the input embedding using a set of trainable weights w - one for each

of the three vectors:

Q = wQX (2.10)

K = wKX (2.11)

V = wVX (2.12)

where X is the input embedding. Borrowing from the nomenclature presented above for the

original attention mechanisms, the attention coefficient for the i-th input and j-th output

wij will be calculated via the dot product between the j-th query Qj and the i-th key Ki.

This coefficient is then scaled down by dividing by key’s dimension
√
dK (this prevents the

coefficient values from becoming too large before the softmax, which can create issues during
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Scaled Dot-Product Attention Multi-Head Attention

Figure 2.15: A brief summary of self-attention and multi-head self-attention. Source: Vaswani
et al. (2017)

training (Vaswani et al., 2017)), and the softmax function is applied. Finally, as in the original

attention mechanisms, the attention coefficient is multiplied with the i-th value Vi to obtain

the final attention value for the i-th input and j-th output. These are then summed for all

inputs i to compute the final output for index j. This can be computed in matrix form via the

following equation:

A = softmax(
QKT

√
dK

)V (2.13)

where A is the output of the attention layer. This formula allows for very efficient computation

since it computes the output of the attention layer via a set of highly parallelizable matrix

multiplications. The authors then proposed multi-head attention as a wider, more powerful

version of this self-attention. Multi-head self-attention with N heads is performed by projecting

the queries, keys, and values via a set of N linear layers, passing those projections through a set

of N attention layers (denoted here as ’heads’), concatenating the outputs and projecting these

once more via a linear layer. This can be seen as applying self-attention on multiple ’views’ of

the input, which again can efficiently be computed in parallel. A brief summary of multi-head

self-attention is shown in Figure 2.15.

By abandoning the autoregressive modeling proposed by traditional RNNs, transformers can
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more efficiently be trained in parallel on GPUs and are able to explicitly model the dependencies

between different time steps of the input sequence, rather than relying on a recurrent hidden

state. After their introduction by Vaswani et al. (2017), transformers quickly overtook RNNs

in virtually every NLP-related task (Devlin et al., 2019; Niu et al., 2021). Transformers were

also later extended with a new kind of positional embedding (Dai et al., 2019), which solved

the original transformer’s fixed length limitation by adding recurrent mechanisms.

Transformers have also become popular in image processing, especially for self-supervised learn-

ing (Baevski et al., 2020; Hsu et al., 2021), and image classification (Dosovitskiy et al., 2021),

where the state-of-the-art has been dominated by transformer-based approaches, particularly

due to their ability to leverage transfer learning effectively (Yu et al., 2022; Zhai et al., 2022).

It is worth noting, however, that, when training from scratch, smaller vision encoders still

benefit from having a convolutional front-end, as shown in the original Vision Transformer

(ViT) (Dosovitskiy et al., 2021). Transformers have also been widely used in video-related

tasks such as action recognition (Tong et al., 2022) and lip reading (Shi et al., 2022a), where

they have obtained state-of-the-art results by similarly leveraging self-supervised learning.

In this thesis, transformer encoders (with the positional embeddings from (Dai et al., 2019))

are used for sequence modeling as powerful audio-visual encoders in Chapters 6 and 7. On the

video branch, these transformers are preceded by the standard 3D+2D spatiotemporal encoder,

resembling an improved version of the 3D+2D ResNet + BGRU video encoder presented in

Chapter 4, which was limited by the BGRU in terms of performance and speed. On the audio

branch, they are preceded by either a 1D-ResNet 18 for raw audio (Chapter 7) or a simple linear

layer for spectrograms (Chapter 6). For both audio and video, the front-end layers merely serve

as initial feature extractors, while the transformer is the main component of the network with

a much larger number of parameters.

Conformers

During their rise in popularity, there have been many proposals to make lighter/faster versions

of transformers (Fournier et al., 2021), including the Reformer (Kitaev et al., 2020), the Lin-
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Figure 2.16: The Conformer (Gulati et al., 2020). Source: Gulati et al. (2020)

former (Wang et al., 2020b) and the Performer (Choromanski et al., 2021). These models have

focused on decreasing the quadratic complexity of the transformer’s self-attention (O(n2)) in

an attempt to make the computations faster during training and inference. However, each of

these new models has displayed its own set of limitations and challenges, and therefore none

has succeeded in becoming as dominant in sequence modeling as the original transformer.

On the other hand, other models have focused on augmenting the transformer to improve its

performance, disregarding the pursuit of lower computation overhead. One such model has

been the Conformer (Gulati et al., 2020), which aims to outperform the original transformer

by combining self-attention with convolutions. In other words, the fundamental idea is that

self-attention can model the global dependencies between the different elements of the input

sequence, while convolutions can model local dependencies more effectively.

The Conformer encoder is composed of a front-end convolutional layer followed by a set of

conformer blocks. Each conformer block (shown in Figure 2.16) mirrors the transformer block
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(one multi-head self-attention layer followed by a feedforward module with two linear layers)

but features two major changes. The first is that instead of using a single feedforward module

after the self-attention layer, the conformer block employs a half-step feed forward module

before and after the self-attention layer, inspired by Macaron-Net (Lu et al., 2019). Secondly,

a convolutional module is added between the self-attention layer and the second feedforward

module. The convolutional module is shown in Figure 2.17. It effectively encapsulates a single

1D depthwise convolution (Chollet, 2017), sandwiched between two pointwise convolutions.

Intuitively, the idea is that this convolutional module will capture local dependencies via its

sliding kernel (which, in the original conformer, is set to a size of 32).

In the original paper (Gulati et al., 2020), the conformer is proposed for speech recognition

from mel-spectrograms, and is shown to outperform the Transducer (Zhang et al., 2020a), as

well as other previous transformer-based approaches. Due to its state-of-the-art performance,

the conformer became a prevalent model choice in speech recognition (Zhang et al., 2020b;

Chan et al., 2021), lip reading (Ma et al., 2022a) and audio-visual speech recognition (Ma et

al., 2021e). For the purposes of this thesis, conformer encoders are used as video encoders

(preceded by a 3D+2D ResNet-18) in Chapters 3 and 5 due to their exceptional sequence

modeling performance and scalability.

2.3.4 Generative Adversarial Networks

The original generative adversarial network (GAN) was proposed by Goodfellow et al. (2014).

It was designed to produce impressive generative results using deep learning, which had not yet

been convincingly achieved despite the existence of variational autoencoders (VAEs) (Kingma

and Welling, 2014). Indeed, until the introduction of GANs, neural networks had only achieved
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substantial success in discriminative tasks and generally struggled with tasks such as image

generation, where models tended to produce blurry images that often contained noticeable

artifacts.

GANs aim to generate realistic images by following a simple adversarial technique that involves

two main components: the generator and the discriminator. The generator receives random

Gaussian noise as input and generates e. g., a 2D image. This module is generally composed of

a stack of transposed convolutional layers that gradually decode the input noise into a full-sized

image. The discriminator, on the other hand, is designed as a traditional image classifier and

aims to classify whether the input it has received is a real image (from the ground truth dataset)

or a fabricated image produced by the generator. These two networks are trained within an

adversarial framework, where the generator aims to ‘fool’ the discriminator by producing images

that are classified as real, and the discriminator aims simply to behave as an accurate classifier

that classifies the real and fabricated images correctly. During training, the generator and

discriminator losses LG and LD, respectively, are given by:

LG = log(D(G(z)) (2.14)

LD = log(D(x)) + log(1−D(G(z))) (2.15)

where G is the generator, D is the discriminator, x is a real image and z is random gaussian

noise. Despite its simplicity, this approach forces the generator to correct its blurry/noisy

outputs and model the real image distribution more accurately. Despite not displaying partic-

ularly groundbreaking results in their original proposal (Goodfellow et al., 2014), GANs were

quickly adopted by other researchers and became the most influential generative deep learning

framework of the 2010s. Conditional GAN (Mirza and Osindero, 2014) adapted this method

to receive a condition as input, rather than random Gaussian noise, which led the way for in-

teresting applications such as text-to-image generation (Reed et al., 2016) and image-to-image

translation (Isola et al., 2017). Furthermore, DCGAN (Radford et al., 2016) built on the origi-

nal GAN framework by proposing a fully convolutional generator/discriminator ensemble with

a variety of empirically defined architectural tweaks. This model was trained on multiple large
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datasets, including ImageNet-1k, and achieved state-of-the-art performance on multiple tasks,

further solidifying GANs as the de-facto standard in generative image modeling.

The GAN was also popularized for other domains, such as video and audio. GANs were first

introduced for audio synthesis by Donahue et al. (2019). This paper proposed two genera-

tor/discriminator frameworks - one to generate raw waveform (i. e., a 1D vector) and another

to generate spectrograms (i. e., a 2D image), which can be converted to raw audio using the

Griffin-Lim algorithm (Griffin and Lim, 1983). Both models were trained using a variant of

the GAN loss presented below (the Wasserstein GAN) on various different domains, including

instruments (e. g., drums, piano) and speech (e. g., TIMIT (Harte and Gillen, 2015)). De-

spite initially underwhelming results, particularly when compared with the well-established

WaveNet (Oord et al., 2016), WaveGAN became a pioneering work in audio synthesis. In the

following years, researchers gradually succeeded in leveraging adversarial speech synthesis to

design lightweight speech synthesizers that outperform WaveNet while having fewer parameters

and faster inference, such as Parallel WaveGAN (Yamamoto et al., 2019) and HiFi-GAN (Kong

et al., 2020a).

Wasserstein GAN

While GANs are very effective under the right conditions, they are notoriously difficult to train

and are known to have unstable training patterns. These issues have led to the development

of new GAN variants, which tweak the original GAN loss in an attempt to yield improved

results, or simply stabilize training. One of these variants has been the Wasserstein GAN

(WGAN), which aims to minimize the Wasserstein distance between the real distribution Pr

and the generated distribution Pg. In practice, WGAN is trained using exactly the same

generator/discriminator logic, but proposes a new training loss for both:

LG = −C(G(z)) (2.16)

LC = C(G(z))− C(x) (2.17)
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Figure 2.18: Gradients of an optimal discriminator (GAN) and critic (WGAN) trained to
discriminate between two gaussian distributions. As we can see, the original GAN suffers from
vanishing gradients, while WGAN provides a smooth optimization landscape with reasonably
valued gradients at almost every point. Source: Arjovsky et al. (2017)

where G is the generator, z is random gaussian noise, and x is an image from the real dataset,

as before, and C is the critic. In this GAN variant, we refer to the discriminator as the critic,

since it does not aim to discriminate (i. e., classify) the inputs as real or fabricated (1 or 0),

but rather it attributes an unbounded positive score (≥ 0) to the input, where a higher score

indicates a more realistic input (i. e., closer to the real distribution). This loss configuration

leads to a smoother optimization landscape, as shown in Figure 2.18.

The losses presented above refer to the optimization problem we are hoping to solve, which

is derived from the highly intractable Wasserstein distance criteria using the Kantorovich-

Rubinstein duality, resulting in the following equation:

W (Pr, Pg) = sup
||f ||L≤1

Ex Pr
[f(x)]− Ex Pg

[f(x)] (2.18)

whereW (Pr, Pg) is the Wasserstein distance between the real and generated distributions, and f

is a function that takes inputs from both distributions - in Wasserstein GAN, this role is played

by the critic C. Importantly, this means that the critic is constrained to be a K-Lipschitz

continuous function at all times (as indicated by the 1-Lipschitz constraint above ||f ||L ≤ 1).
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In practice, there are two ways of satisfying this constraint:

1. Weight clipping - In the original WGAN, the K-Lipschitz continuity is enforced by

clipping the critic’s weights to keep them within a very compact range (in this case,

[−0.01, 0.01]). However, the authors openly claim that “Weight clipping is a clearly

terrible way to enforce a Lipschitz constraint.”. In short, whether the gradient clipping

parameter is small or large, it can have adverse effects on the optimality and stability of

training.

2. Gradient penalty - Gulrajani et al. (2017) aim to address the issues that arise from

gradient clipping by proposing an improved method to enforce the Lipschitz constraint.

Through a series of proofs, the authors propose that a 1-Lipschitz function’s gradients

should be at most 1 (≤ 1) at all points. In practice, this can be enforced by adding a

gradient penalty LGP to the WGAN loss:

LGP = λ(∥∇x̂D(x̂)∥2 − 1)2 (2.19)

where λ is the gradient penalty coefficient, which is an adjustable hyperparameter, and x̂

is a point randomly sampled between a real sample x and a fake sample x̃. By leveraging

this alternative way to enforce the Lipschitz constraint, the authors find that the training

objective becomes easier to optimize, yielding better generative results. This improved

version of WGAN is known as WGAN-GP.

For the purposes of this thesis, the WGAN-GP loss is used in Chapter 4 to train our video-to-

speech generator.

Least Squares GAN

The Least Squares GAN (LSGAN) (Mao et al., 2017) is designed with the same goals of WGAN,

i. e., to improve the stability and effectiveness of adversarial networks by proposing a smoother
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Figure 2.19: (a) Original GAN’s cross-entropy loss function (b) LSGAN’s loss function.
Source: Mao et al. (2017)

loss landscape that is easier to optimize. The LSGAN’s loss is defined as:

LG = (D(G(z))− 1)2 (2.20)

LD = (D(x)− 1)2 + (D(G(z)))2 (2.21)

Although this may seem like a trivial transformation of the original GAN loss which squares

each of the loss components, this leads to a vastly different loss curve, as presented in Fig-

ure 2.19. Unlike the original GAN’s cross-entropy loss, which flattens and saturates around

0 for larger inputs, the LSGAN’s loss is a smooth function with only one flat point in the

center. The authors argue that this helps prevent the well-known vanishing gradients issue in

adversarial training, which makes it difficult to adequately update the generator’s weights and

yields decreased training stability. The authors train LSGAN on a variety of image genera-

tion benchmarks and conclusively find that it produces higher-quality images than its GAN

counterpart.

For the purposes of this thesis, the LSGAN loss is used to train Parallel WaveGAN in Chapter

5 and HiFi-GAN in Chapter 6, which play a central role in achieving state-of-the-art results on

video-to-speech synthesis and audio-visual speech enhancement.
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2.4 Evaluation metrics

In this short section, we describe the metrics that we apply to evaluate our results in the

following chapters. Speech assessment metrics typically aim to evaluate one of two aspects

of speech: quality and intelligibility (Xu et al., 2017). Quality evaluates how natural and

clear the speech sounds for human users i. e., how confortable the listening experience is, while

intelligibility evaluates how intelligible the speech is i. e., how easy it is to understand the words

being uttered. Since no metric is perfectly correlated with human perception for either of these

two aspects, most speech synthesis approaches, including the ones presented in Chapters 4, 5,

and 6 in this thesis, use multiple evaluation metrics for both. This results in a more diverse set

of metrics, which are often combined with a user study and/or a set of demo samples to further

illustrate the generative model’s performance. Except for word error rate (WER), all of the

speech assessment metrics presented below receive two signals: the reference signal, which is the

ground truth audio taken from a real dataset, and the degraded signal, which is an estimation

of the original reference signal (in our case, generated by a neural network).

2.4.1 Speech quality metrics

PESQ

PESQ (Perceptual Evaluation of Speech Quality) (Rix et al., 2001) is an objective speech

quality metric originally proposed for telephony quality assessment. The pipeline for PESQ,

which receives two audio waveforms and outputs a speech quality score, is summarized as

follows: first, the signals are aligned to a standard listening level, filtered using an FFT-based

input filter, and aligned in time; then, they are processed via an auditory transform based on

PSQM (Beerends and Stemerdink, 1994), and two distortion parameters are obtained from the

difference between the transformed signals; finally, these parameters are aggregated in frequency

and time, and are mapped to a MOS (Mean Opinion Score) prediction. The full pipeline is

illustrated in Figure 2.20. The authors mention that it correlates very well with subjective

listening tests for various types of telephony distortion. However, it is sensitive to loudness
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Figure 2.20: Graphical illustration of the PESQ pipeline. Source: Rix et al. (2001)

and the speaker’s voice profile (Rix et al., 2001), which evidently hinders its objectivity. We

use the narrowband version of PESQ (PESQ-NB), which is designed to assess the quality of

narrowband speech (300-3,400 Hz), in Chapters 4 and 5 (for simplicity, we refer to this as

“PESQ”, as this is the most commonly-used version of this metric), and the wideband version

of PESQ (PESQ-WB), which is designed to assess the quality of wideband speech (50–7,000

Hz), in Chapter 6.

MCD

MCD (Mel-Cepstral Distance) (Kubichek, 1993) is designed to evaluate speech quality based on

the cepstrum distance on the Mel scale. In practice, this is calculated as the distance between

the MFCCs (as defined in Section 2.2.1) extracted from two signals:

MCD(x, y) =
1

F

F∑

f=1

√√√√
NMFCC∑

n=1

[MFCC(x, n)−MFCC(y, n)]2 (2.22)

where x and y are the reference and degraded signals, respectively, F is the number of audio

frames, NMFCC is the number of coefficients for the MFCC. This metric is used in Chapters 4

and 6. We find that it works quite reliably in measuring perceptual quality in our synthesized

outputs when compared to the original signals.
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Figure 2.21: Graphical illustration of the original ViSQOL algorithm. Source: Hines et al.
(2015)

VisQOL

ViSQOL (Virtual Speech Quality Objective Listener) (Hines et al., 2015; Chinen et al., 2020) is

an objective speech quality metric, recently proposed by Google. It is designed to measure the

quality of human speech by using a spectro-temporal measure of similarity between the real and

synthesized audio. The step-by-step process to compute ViSQOL (the original version (Hines et

al., 2015)) is shown in Figure 2.21 and briefly summarized as follows: first, the degraded signal

is scaled to match the power of the reference signal; then, spectrograms are computed from

both signals and active patches are extracted from each using a simple voice activity detector

(VAD); the patches are then aligned in time and adjusted to compensate for warping; finally, the

similarity between the frames for each signal is computed, averaged, and mapped into a MOS

score. ViSQOL is shown to consistently outperform PESQ through multiple experiments while

being sensitive to a wide variety of degradations, background noises, and speech enhancement

methods. This metric is used in Chapter 5 – we use ViSQOL v3 (Chinen et al., 2020), which

makes minor tweaks and additions to the original algorithm, rather than the original version,

as it is shown to be more effective.

2.4.2 Speech intelligibility metrics

STOI

STOI (Short-Time Objective Intelligibility measure) (Taal et al., 2011a) aims to measure how

intelligible a speech signal is through a comparative approach. The pipeline (shown in Figure
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Figure 2.22: Graphical illustration of the STOI pipeline. Source: Taal et al. (2011b)

2.22) is as follows: first, the signals are decomposed into DFT-based one-third octave bands;

then, short-time segmentation is performed on the resulting signals and the degraded segments

are normalized and clipped; following this, the short-term intelligibility measures are computed

by comparing the segments between the signals via a correlation coefficient; finally, these mea-

sures are averaged to obtain the final intelligibility score. STOI has been shown to correlate

closely with human intelligibility scores. This metric is used in Chapters 4, 5, and 6. In

our experiments, we find that it correlates well with the intelligibility of the generated signal,

compared to the original.

ESTOI

ESTOI (Extended Short-Time Objective Intelligibility measure) (Jensen and Taal, 2016) is

proposed as a new version of STOI that can accurately adapt to a wider range of input signals.

In practice, the algorithm for ESTOI is almost identical to STOI, but instead of computing

short-term correlation coefficients and averaging across frequency, it instead computes spectral

correlation coefficients between the complete 400-ms spectrograms. This allows ESTOI to

perform better, in particular for temporally highly modulated noise sources. In addition, the

clipping presented at the start of the original STOI pipeline is removed in this extended version.

This metric is used in Chapters 5 and 6.
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Word Error Rate

WER (Word Error Rate) measures the accuracy of a speech recognition system. It is calculated

as:

WER =
S +D + I

N
, (2.23)

where S is the number of substitutions, D is the number of deletions, I is the number of

insertions and N is the total number of words in an utterance. This metric is used to measure

the accuracy of our speech recognition/lip reading models in Chapters 3 and 7. In Chapter

4, we apply pre-trained ASR models to measure WER (using the dataset’s manually labeled

transcriptions as the ground truth), which serves as an objective intelligibility metric for the

reconstructed speech. In Chapter 5, we propose to forego the use of manual text transcriptions

and use instead the transcription predicted from the corresponding real audio as the ground

truth. This increases the interpretability of the reported numbers, as they are a direct measure

of the difference in intelligibility between real and generated audio, and it also removes the

requirement for labeled datasets in future work.

2.4.3 Other metrics

Above we have presented all metrics used throughout this thesis for the purposes of evaluat-

ing generated speech. However, Chapters 3 and 7 focus instead on lip reading and deepfake

detection, which require slightly different metrics. For sentence-level lip reading, where the

model aims to predict a sentence/phrase from a speech sample, WER, as presented above, is

typically used to measure performance. However, for word-level lip reading, where the model

aims to predict a single word, accuracy is used instead, which simply measures the ratio of

correct predictions over the total number of predictions (typically expressed in percentage):

Accuracy =
# correct predictions

# total predictions
, (2.24)
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Figure 2.23: Illustration of the area under the receiver operating characteristic curve
(AUC). Source: https://developers.google.com/machine-learning/crash-course/

classification/roc-and-auc

For deepfake detection, the area under the receiver operating curve (AUC) is used in addition

to accuracy, in an attempt to better evaluate the reliability of the trained forgery detector. The

receiver operating characteristic curve (ROC) measures the accuracy of a binary classifier (in

this case, the model aims to predict whether the video is real or forged) for different classification

thresholds, as plotted in Figure 2.23. The vertical axis measures the true positive rate (TPR),

while the horizontal axis measures the false positive rate (FPR), which are computed as follows:

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
, (2.25)

where TP is the number of true positive, FN is the number of false negatives, FP is the

number of false positives, and TN is the number of true negatives. AUC simply measures the

area below this curve. In short, a binary classifier such as the one presented in Chapter 7 aims

to maximize the AUC, since this would imply that the model achieves a high true positive rate

(TPR) across different classification thresholds.

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc


CHAPTER 3

LEARNING VISUAL REPRESENTATIONS

FROM SPEECH

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.1 Learning visual representations from speech . . . . . . . . . . . . . . . 60

3.2.2 Lip reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.1 Word-level lip-reading . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.2 Sentence-level lip-reading . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

This chapter is based on LiRA: Learning Visual Speech Representations from Audio through

Self-supervision, a conference paper published in Interspeech 2021. Pingchuan Ma and I were

56



3.1. Introduction 57

joint first authors of the paper. I designed the self-supervised framework, conducted the self-

supervised experimental procedure, and wrote the sections of the manuscript that introduced,

described, and discussed the self-supervised framework. Pingchuan Ma designed the lip read-

ing models, conducted the downstream lip reading experiments to evaluate the quality of the

learned representations, and wrote the sections of the manuscript that refer to lip reading.

Stavros Petridis, Björn Schuller, and Maja Pantic supervised the project throughout its entirety,

providing helpful suggestions, feedback, and guidance regarding the design of the framework

and the writing of the manuscript.

It is important to highlight that the results presented in this chapter are only compared with

the works that were available at the time of submission (March 2021). The decision to not

include more recent works in the related work and in the comparison with competing models

serves to contextualize the work presented in this chapter within the time it was published,

which we find is increasingly important in this fast-moving field. In particular, although the

LRS2 results presented here were state-of-the-art at the time of publication, they have now

been outperformed by newer models developed by some of our co-authors (Ma et al., 2022a,

2023), as well as our newer self-supervised model RAVEn, presented in Chapter 7 (please refer

to the appendix of the full paper for the LRS2 results (Haliassos et al., 2023)). Similarly, newer

works have further pushed the state-of-the-art for lip reading on LRW (Ma et al., 2022b).

3.1 Introduction

Self-supervised learning can be seen as a subset of unsupervised learning. While unsupervised

learning typically leverages machine learning techniques such as K-Means clustering (Mac-

Queen, 1967) to classify unlabelled data, self-supervised learning aims to leverage supervised

deep learning techniques for unlabelled data, by extracting a training objective from the data

itself. As mentioned in Chapter 1, self-supervised learning has become increasingly popular

to improve results in image classification and speech recognition. In summary, recent self-

supervised learning methods (for image, audio, video, or any other modality) can generally be
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divided into three categories:

• Contrastive - these methods are based on teaching the model to distinguish between

matching and non-matching data. A simple example is SimCLR (Chen et al., 2020),

which augments the same image in two different ways, e. g., a picture of a dog flipped

upside down, and a picture of a dog in grayscale, and teaches the model to minimize

the distance between the representations via a cosine similarity loss. On the other hand,

it simultaneously teaches the model to maximize the distance between representations

from augmented versions of different images. The idea is that the model must look past

superficial visual cues and understand the content of the image (e. g., understand what

a dog looks like) to make this distinction accurately. This idea has been adapted and

re-iterated in numerous works focusing on images (He et al., 2020; Chen et al., 2021) and

speech (Baevski et al., 2020).

• Clustering-based - these methods learn by clustering the data via unsupervised learning

(typically K-Means) and trying to predict the cluster assignments using a deep learning

model. This task can be made more difficult to leverage further learning by increasing

the number of clusters in K-Means, effectively leading to a classification task with more

classes, or applying aggressive augmentations on the model’s input, such as masking.

This method originally became popular for visual representations (Caron et al., 2018),

and was also later successfully applied for speech (Hsu et al., 2021).

• Predictive - these methods learn by predicting either the input image (typically from a

masked (He et al., 2022) or augmented (Zhang et al., 2016; Noroozi and Favaro, 2016)

version of the image) or a set of features extracted from the image. Examples of features

that are used as objectives include acoustic features, such as spectrograms or MFCC in

Problem Agnostic Speech Encoder (PASE) (Pascual et al., 2019b) and PASE+ (Ravanelli

et al., 2020b), or features from another visual encoder, as in Bootstrap Your Own Latent

(BYOL) (Grill et al., 2020).

Of the three presented approaches, predictive methods are the most computationally intensive,

since they require predicting a denser set of outputs, but have become prevalent in recent years
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since they offer a more challenging and robust learning experience. Contrastive and clustering-

based methods, on the other hand, tend to saturate during the later stages of training, with

the objective becoming “too easy” for the network to continue learning.

Similarly to speech recognition, lip reading is a task that can benefit heavily from self-supervised

learning, especially since there is more room for improvement due to the difficulties in training

a VSR model from scratch. Despite this, very few works have attempted to improve lip reading

models by leveraging the audio modality, which is typically paired with the video. Recent

self-supervised works leverage audio-visual synchronization with contrastive learning to create

new objectives from unlabelled data (Chung et al., 2020a, 2019, 2020b), and experiment with

intra-modal and cross-modal prediction (Tellamekala et al., 2020). Recently, Zhao et al. (2020b)

use a pre-trained speech recognition model to perform distillation, effectively allowing the lip

reading model to directly learn from the ASR model. On the other hand, Afouras et al. (2020)

experiment with semi-supervised learning by using a pre-trained speech recognition model to

generate ‘pseudo-labels’ for unlabelled video datasets such as VoxCeleb2, while also performing

distillation to accelerate training. While both methods yield improvements over training from

scratch, they both require very large labeled speech datasets (LibriSpeech (Panayotov et al.,

2015a)) to train the ASR models, so they are not entirely self-supervised.

In this chapter, we propose Learning Visual Representations from Audio (LiRA): a new frame-

work which can leverage unlabelled audio-visual speech to improve lip reading models. The

method works by feeding visual speech into a ResNet+Conformer model which is trained to

predict audio features from the corresponding acoustic speech. We extract audio features using

PASE+ (Ravanelli et al., 2020a), a pre-trained speech encoder trained entirely on unlabelled

data to generate problem-agnostic features. This allows the visual model to learn about the

content that is shared between video and audio, e. g., verbal information. We then fine-tune

this model for lip reading to evaluate the quality of the learned representations. We pre-train

LiRA on LRS3 and find that, after being fine-tuned for lip reading, it outperforms previous self-

supervised approaches by a substantial margin on LRW, and achieves state-of-the-art results

on LRS2.
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Figure 3.1: Overview of LiRA’s training procedure.

3.2 Methodology

3.2.1 Learning visual representations from speech

Our visual encoder combines a 2D ResNet-18 with a 3D front-end convolutional layer which

outputs one embedding per frame, as introduced in Chapter 2 and explained in detail in Chap-

ter 4. This is followed by our temporal encoder, the conformer encoder (described in detail

in Chapter 2). It contains an initial linear layer, followed by positional encoding, and 6/12

conformer blocks (for LRW/LRS2) with 4 attention heads, a feedforward dimension of 2048,

and an attention dimension of 256. Finally, the resulting features are passed through a linear

layer which projects them into the predicted PASE+ features. The ground truth features are

extracted using the official pre-trained PASE+ model (Ravanelli et al., 2020a) available online1.

These features (100 fps) are averaged over time to match the visual encoder’s features (25 fps).

The model is trained using an L1 loss between these and the predicted features. It is worth

noting that we attempted to use features from the original PASE model (Pascual et al., 2019b)

for the same purpose, but found that they yielded worse performance.

1https://github.com/santi-pdp/pase

https://github.com/santi-pdp/pase
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3.2.2 Lip reading

In order to evaluate the quality of our self-supervised visual encoder, we transfer its weights to

perform lip reading and measure the improvements over training from scratch. We experiment

with three configurations: LiRA-Supervised, which is trained from scratch and serves as our

baseline; LiRA-Frozen, which uses the weights from the pre-trained 3D+2D ResNet-18 from

our self-supervised training and keeps them frozen during downstream training; and LiRA-

FineTuned, which is identical to LiRA-Frozen, but unfreezes the weights in the ResNet, allowing

them to be fine-tuned for this new task. For word-level lip reading (on LRW), we use a

Multi-Scale Temporal Convolutional Network (MS-TCN) as our temporal model, whereas for

sentence-level lip reading (on LRS2) we use a conformer followed by a transformer decoder.

3.3 Experimental Setup

As mentioned above, we use LRS3 for our self-supervised pre-training stage, LRW for word-level

lip reading, and LRS2 for sentence-level lip reading. We use the original training/validation/testing

file splits for each dataset. For LRS2 we combine the ‘pre-train’ and ‘train’ sets into a single

training set, and for LRS3 we split the ‘train-val’ set into training and validation sets using a

90–10% ratio, and combine the training set with the ‘pre-train’ set. To model the speaker’s lip

movements, we crop a 96 × 96 Region of Interest (ROI) around the mouth using dlib (King,

2009) to detect faces and estimate landmarks, as described in Chapter 2.

Additionally, we employ two data augmentation methods during training. Firstly, we apply

random cropping on the input frame, producing a frame with roughly 90% of the original size.

Furthermore, we apply horizontal flipping to each frame with a probability of 50%. These

procedures help make our model more robust and provide regularization. During test time, the

same cropping is performed on the center of the frame and no horizontal flipping is performed.

We train our model using the Adam optimizer (Kingma and Ba, 2015) with the Noam learning

rate scheduler (Vaswani et al., 2017). We use β1 = 0.9, β2 = 0.98, and a batch size of 32. To

simplify the training procedure and avoid the issue of long sentences, we randomly sample 1
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Figure 3.2: Lip reading accuracy on LRW using features extracted from different layers of
Lira-Frozen. “res-b3” and “res-b4” refer to the output of blocks 3 and 4 from the ResNet,
respectively; and “ce-b2” to “ce-b6” refer to the layers from every two conformer blocks from
bottom to top.

Table 3.1: Comparison of LiRA with previous supervised and self-supervised lip reading meth-
ods on LRW. In the upper row, “Acc.” stands for accuracy, as described in Chapter 2.

Methods Strategy Acc. (%)

ResNet + BLSTM (Stafylakis and Tzimiropoulos, 2017) Supervised 83.0
Two-stream 3D CNN (Weng and Kitani, 2019) Supervised 84.1
ResNet + BLSTM (Stafylakis et al., 2018) Supervised 84.3
ResNet + DenseTCN (Ma et al., 2021f) Supervised 88.4
PerfectMatch (Chung et al., 2020a) Self-supervised 71.6
PT-CDDL (Chung et al., 2020b) Self-supervised 75.9
AV-PPC (Tellamekala et al., 2020) Self-supervised 84.8

LiRA-Supervised (Ma et al., 2021b) Supervised 87.4
LiRA-Frozen Self-supervised 83.1
LiRA-FineTuned Self-supervised 88.1

second from each clip and feed this into our visual encoder, disregarding utterances that are

longer than 1 second.
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Figure 3.3: LiRA’s lip reading performance for varying fractions of the labeled training data.
(a): Accuracy of the lip reading model as a function of the percentage of the training set (on
a logarithmic scale) used for training on LRW. (b) WER as a function of the percentage of
labeled data used for training on LRS2. “CL” refers to the model being trained using curriculum
learning.

3.4 Results

3.4.1 Word-level lip-reading

We begin by comparing the performance of LiRA-Frozen for features extracted from different

layers in Figure 3.2. The best lip reading performance is achieved by extracting features from

the last layer of the ResNet. Remarkably, the performance consistently drops if we extract

the features from deeper layers, which may indicate that these are further tuned towards the

pre-training task of predicting PASE+ features and fail to generalize for lip reading. On the

other hand, it is relevant to note that the features from the penultimate block of the ResNet

also perform worse, as they are likely too low-level to serve as effective visual features. Based on

this analysis, in subsequent experiments, we extract features from the last layer of the ResNet

when reporting results on LiRA-Frozen.

We then compare our three configurations with other works in Table 3.1. We find that LiRA-

Supervised achieves an accuracy of 87.4%, which outperforms many previous supervised works

and demonstrates the capacity of our ResNet+MS-TCN architecture. On the other hand,

LiRA-Frozen achieves 83.1%, which is an impressive performance considering that it is trained

by extracting visual features from a frozen visual encoder which is not trained for this task.
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Table 3.2: Lip reading performance comparison of LiRA with other supervised and unsupervised
works on LRS2. “CL” refers to Curriculum learning.

Methods Strategy WER. (%)

Hyb. CTC/Att. (Petridis et al., 2018b) Supervised 63.5
Conv-seq2seq (Zhang et al., 2019) Supervised 51.7
TDNN (Yu et al., 2020) Supervised 48.9
TM-seq2seq (Afouras et al., 2018a) Supervised 48.3
KD-seq2seq (Afouras et al., 2020) Unsupervised 51.3

LiRA-Supervised (Ma et al., 2021e) Supervised (CL) 39.1
LiRA-FineTuned Self-supervised 38.8

Finally, LiRA-FineTuned yields a considerable improvement over LiRA-Supervised, achieving

an accuracy of 88.1%. This result clearly outperforms previous self-supervised methods and

comes very close to the state-of-the-art method (88.4%). Most importantly, the improvement

over LiRA-Supervised shows that our self-supervised pre-training strategy works effectively,

providing an improvement of 0.7% without additional labels or supervision.

We conclude our word-level lip reading experiments by comparing LiRA’s performance for

different fractions of the labeled training data in Figure 3.3a. We observe that both LiRA-

Frozen and LiRA-FineTuned are superior LiRA-Supervised when training on 1% of the labeled

data, which suggests that our self-supervised learning approach yields significant improvements

when very few labels are available. As we scale up our training set, we observe that LiRA-

Frozen’s performance drops sharply, eventually being overtaken by LiRA-Supervised, which is

unsurprising given that the visual encoder is frozen. In contrast, LiRA-FineTuned continues to

outperform LiRA-Supervised at all points, even when using the full training set. This analysis

leads us to two main conclusions: 1) For very small labeled datasets (in this case, 1% of

LRW), using a pre-trained visual encoder is always better than training from scratch, even if it

is frozen; and 2) Fine-tuning the self-supervised model is superior to training it from scratch

or freezing the pre-trained weights for any proportion of labeled training data on LRW.
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3.4.2 Sentence-level lip-reading

We proceed by evaluating LiRA on sentence-level lip reading, which poses a substantially more

challenging task. We compare with other works in Table 3.2. As in word-level lip reading,

we find that LiRA-FineTuned outperforms LiRA-Supervised in WER, meaning that our self-

supervised training procedure yields improvements in sentence-level lip reading as well. Fur-

thermore, we find that LiRA-FineTuned outperforms all previous supervised and unsupervised

approaches on this task by an absolute margin of 9.5%, setting a new state-of-the-art on LRS2.

We then investigate the impact of labeled training on LiRA’s performance in Figure 3.3b, as

we did for word-level lip reading. During our experiments, we found that LiRA-Supervised

was difficult to train from scratch without a good initialization. As we observe in the plot, the

model starts to perform poorly when we increase the size of the training set, and in fact, yields

gradually decreasing performance when trained on more labeled data. We hypothesize that this

behavior is due to the very long sentences in the LRS2 training set, which create instability

during training. We propose curriculum learning (CL) as a solution to this issue - we begin

by training on a set composed only of videos that are less than 155 frames long, amounting

to 11% of the total labeled data, and then continue by training the initialized model on the

full training set. This curriculum learning strategy is also used in other lip reading works that

train from scratch on LRS2, namely Ma et al. (2022a) which applies this strategy for LRS2 and

LRS3 in order to achieve state-of-the-art results without additional training data.

Overall, we find that LiRA-FineTuned is consistently superior to LiRA-Supervised for any

fraction of the training corpus. We also observe that the self-supervised initialization of LiRA-

FineTuned generally yields better performance than the CL initialization, including when using

100% of the training set. Once again, we find that the discrepancy between LiRA-FineTuned

and the supervised models is particularly large for very small fractions of labeled data, where the

model is more sensitive to its initialization. Finally, we highlight that we are able to outperform

the previous state-of-the-art on LRS2 (Afouras et al., 2018a) (48.3% WER, trained on 1,362

hours of data) using 18× less labeled training data (36% of LRS3 ≈ 76 hours).
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3.5 Conclusion

In this chapter, we present LiRA, a new self-supervised framework that leverages unlabelled

audio-visual speech to produce better visual representations. We experiment with different

feature extraction techniques and find that the visual features from the last layer of the visual

encoder’s ResNet-18 provide the best lip reading performance. After this, we experiment with

feature extraction configurations from a frozen encoder, as well as fine-tuning experiments that

adapt the pre-trained ResNet encoder for lip reading. We find that the fine-tuned models

consistently outperform those trained with random initialization, outperforming previous self-

supervised approaches on LRW and setting a new state-of-the-art for LRS2. Finally, we show

that the impact of the self-supervised pre-training is particularly large when training lip reading

models on smaller sets of labeled data. In the future, we would like to apply similar audio-visual

self-supervised methods to improve other speech-related tasks, such as emotion recognition.
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This chapter is based on End-to-end Video-to-speech Synthesis using Generative Adversarial

Networks, a conference paper published in IEEE Transactions on Cybernetics in 2022. I was

the first author of this paper, designed the framework, conducted the experimental proce-

dure, and wrote the manuscript. Konstantinos Vougioukas provided the code for his previous

video-to-speech project (Vougioukas et al., 2019a), which served as an important baseline and

made substantial contributions to discussions surrounding the design and implementation of

the model. Pingchuan Ma contributed to our implementation by aiding in the development of

our model architecture and trained several pre-trained speech recognition models which were

essential for our evaluation procedure. Stavros Petridis, Björn Schuller, and Maja Pantic super-

vised the project throughout its entirety, providing helpful suggestions, feedback, and guidance

regarding the design of the framework and the writing of the manuscript.

As in the previous chapter, it should be noted that, in order to adequately contextualize the

work portrayed in this chapter, the related work and comparison with other works presented

below only include works presented before the time of submission (December 2020). Since then,
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this work has been outperformed on GRID, TCD-TIMIT, and LRW by new video-to-speech

approaches (Kim et al., 2023; Hsu et al., 2022), including the one presented in Chapter 5.

4.1 Introduction

The previous chapter focused on lip reading, and how we achieved state-of-the-art performance

on this impactful task. However, although the translation from video-to-text can be achieved

with remarkable consistency, various applications would benefit from a video-to-audio model,

such as videoconferencing in noisy conditions, speech inpainting (Zhou et al., 2019), i. e., filling

in audio gaps from video in an audio-visual stream, or generating an artificial voice for people

suffering from aphonia (i. e., people who are unable to produce voiced sound). One approach for

this task would be to simply combine a lip reading model (such as the one presented in the pre-

vious chapter) with a text-to-speech (TTS) model. This approach is especially attractive since

state-of-the-art TTS models can now produce realistic speech with considerable efficacy (Shen

et al., 2018; Oord et al., 2018).

Combining video-to-text and text-to-speech models to perform video-to-speech has, however,

some disadvantages. Firstly, these models require large transcribed datasets, since they are

trained with text supervision. This is a sizeable constraint given that generating transcripts is

a time-consuming and expensive process. Secondly, generation can only happen as each word is

recognized, which imposes a delay on the throughput of the model, jeopardizing the viability of

real-time synthesis. Lastly, using text as an intermediate representation removes any intonation

and emotion from the spoken statement, which are fundamental for natural-sounding speech.

Given these constraints, some authors have developed end-to-end video-to-speech models which

circumvent these issues. The first of these models (Cornu and Milner, 2015) used visual features

based on discrete cosine transform (DCT) and active appearance models (AAM) to predict

linear predictive coding (LPC) coefficients and mel-filterbank amplitudes. Following works

have mostly focused on predicting spectrograms (Ephrat et al., 2017; Akbari et al., 2018;

Prajwal et al., 2020a), which is also a common practice in text-to-speech works (Shen et al.,
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2018). These models achieve intelligible results but are only applied to seen speakers, i. e.,

there is an exact correspondence between the speakers in the training, validation, and test sets,

or choose to focus on single speaker speech reconstruction (Prajwal et al., 2020a). Recently,

Michelsanti et al. (2020a) have proposed an alternative approach based on predicting WORLD

vocoder parameters (Morise et al., 2016) which generates clear speech for unseen speakers as

well. However, the reconstructed speech is still not realistic.

It is clear that previous works have avoided synthesizing raw audio, likely due to the lack of

a suitable loss function, and have focused on generating intermediate representations which

are then used for reconstructing speech. To the best of our knowledge, the only work which

directly synthesizes the raw audio waveform from video is by Vougioukas et al. (2019a). This

work introduces the use of GANs (Goodfellow et al., 2014; Arjovsky et al., 2017), and thanks

to the adversarial loss, it can directly reconstruct the audio waveform. This approach also

produces realistic utterances for seen speakers and is the first to produce intelligible speech for

unseen speakers.

Our approach builds upon the work of Vougioukas et al. (2019a) by proposing architectural

changes to the model, and to the training procedure. Firstly, we replace the original encoder

composed of five stacked convolutional layers with a ResNet-18 (He et al., 2016) composed of a

front-end 3D convolutional layer (followed by a max pooling layer), four blocks containing four

convolutional layers each and an average pooling layer, as in Chapter 3. Additionally, we replace

the GRU (Gated Recurrent Unit) layer following the encoder with two bidirectional GRU layers,

increasing the capacity of our temporal model. The adversarial methodology was a major factor

in generating intelligible waveform audio in the original model proposed by Vougioukas et al.

(2019a). Hence, our approach is also based on the Wasserstein GAN (Arjovsky et al., 2017),

but we propose a new critic adapted from Kumar et al. (2019a). We also propose an additional

critic which discriminates real from synthesized spectrograms.

Furthermore, we revise the loss configuration presented by Vougioukas et al. (2019a). Firstly, we

decide to forego the use of the total variation loss and the L1 loss, as their benefit was minimal.

Secondly, we use the recently proposed PASE (Problem Agnostic Speech Encoder) (Pascual
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et al., 2019b) as a perceptual feature extractor. Finally, we propose two additional losses:

the power loss and the MFCC loss. The power loss is an L1 loss between the (log-scaled)

spectrograms of the real and generated waveforms. The MFCC loss is an L1 Loss between the

MFCCs (Mel Frequency Cepstral Coefficients) of the real and generated waveforms.

Our contributions for this chapter are described as follows: 1) We propose a new approach

for reconstructing waveform speech directly from video based on GANs without using any

intermediate representations. We use two separate critics to discriminate real from synthesized

waveforms and spectrograms, respectively, and apply three comparative losses to improve the

quality of outputs. 2) We include a detailed ablation study where we measure the effect of

each component on the final model. We also investigate how the type of visual input, size of

the training set, and range of vocabulary affect the performance. 3) We show results on two

different datasets (GRID (Cooke et al., 2006b) and TCD-TIMIT (Harte and Gillen, 2015))

for seen speakers. We find that our model substantially outperforms the state-of-the-art for

GRID and adapts well to a larger pool of speakers. 4) We also include results for unseen

speakers on two datasets (GRID and LRW (Chung and Zisserman, 2016a)). We show that our

model achieves intelligible results, even when applied to utterances recorded ‘in the wild’, and

outperforms the state-of-the-art for the corpora we present. 5) Finally, we study our model’s

ability to generalize for videos of silent speakers and discuss our findings.

4.2 Related Work

Video-driven speech reconstruction is effectively the combination of two tasks: lip reading and

speech synthesis. As such, we begin by briefly describing the main works in each field and then

go on to describe existing approaches for video-to-speech.
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4.2.1 Lip reading

Traditional lip reading approaches relied on HMMs (Hidden Markov Models) (Gurban and

Thiran, 2009) or SVMs (Support Vector Machines) (Zhao et al., 2009) to transcribe videos

from manually extracted features such as DCT (Gurban and Thiran, 2009) or mouth geome-

try (Kumar et al., 2007). Recently, end-to-end models have attracted attention due to their

superior performance over traditional approaches. One of the first end-to-end architectures

for lip reading was proposed by Assael et al. (2016). This model featured a convolutional

encoder as the visual feature extractor and a two-layer BGRU-RNN (Bidirectional GRU recur-

rent neural network) followed by a linear layer as the classifier, and it achieved state-of-the-art

performance for the GRID corpus. This work was followed by Chung and Zisserman (2016b),

whose model relied entirely on CNNs (Convolutional Neural Networks) and RNNs, and was

successfully applied to spoken utterances recorded in the wild.

Various works have followed which apply end-to-end deep learning models to achieve compet-

itive lip reading performance. Petridis et al. (2017a, 2020) propose an encoder composed of

fully connected layers and performs classification using LSTMs (as described in Chapter 2).

Other works choose to use convolutional encoders (Shillingford et al., 2019), often featuring

residual connections (Stafylakis and Tzimiropoulos, 2017), and then apply RNNs to perform

classification. Furthermore, these end-to-end architectures have been extended for multi-view

lip reading (Petridis et al., 2017b) and audio-visual (Petridis et al., 2018a) speech recognition.

Finally, as we have shown in Chapter 3 with LiRA, self-supervised pre-training stages, as well

as transformer-based architectures, have also been leveraged to push the state-of-the-art in this

field.

4.2.2 Speech Synthesis

One of the most popular speech synthesis models in recent years has been WaveNet (Oord et

al., 2016), which proposed dilated causal convolutions to compose waveform audio sample by

sample, taking advantage of the large receptive field achieved by stacking these layers. This
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model achieved far more realistic results than any artificial synthesizer proposed before then.

Another work (Wang et al., 2017b) introduced a vastly different sequence-to-sequence model

that predicted linear-scale spectrograms from text, which were then converted into waveform

using the Griffin-Lim Algorithm (GLA) (Zhu et al., 2007). This process produced very clear and

intelligible audio. In the following years, Shen et al. (2018) combined these two methodologies

to push the state-of-the-art once more, and Oord et al. (2018) accelerated and improved the

original WaveNet.

The first model to apply GANs for end-to-end speech synthesis was proposed by Donahue et

al. (2019), which used simple convolutional networks with large kernels as the generator and

discriminator and applied the improved Wasserstein loss (Gulrajani et al., 2017). In a later

work (Yamamoto et al., 2019), the original WaveNet vocoder (Oord et al., 2016) has been

combined with the adversarial methodology introduced by Donahue et al. (2019). This results

in a network that has far fewer parameters than the original WaveNet, but remains on par with

the latest WaveNet-based models. Recently, the first end-to-end adversarial Text-To-Speech

model (Donahue et al., 2020) was also proposed, whose performance is comparable to the

state-of-the-art.

4.2.3 Reconstructing audio from visual speech

To the best of the authors’ knowledge, the first work to attempt the task of video-to-speech

synthesis directly was proposed by Cornu and Milner (2015). The proposed model aims to

predict the spectral envelope (LPC or mel-filterbanks) from manually extracted visual features

(DCT or AAM) using Gaussian Mixture Models (GMMs) or deep neural networks. These

acoustic parameters are then fed into an HMM-based vocoder, together with an estimate of

the voicing parameters. Through multiple user studies, the speech reconstructed by this model

is shown to have fairly low intelligibility (WER ≈ 50%), but shows that this task is indeed

achievable. This work was extended by Cornu and Milner (2017), which introduced additional

temporal information in the visual features and in the model itself. These improvements yielded

an impressive 15% WER for GRID (single speaker), based on user studies.
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The next development in this field came with Ephrat and Peleg (2017), who use a deep CNN

architecture to predict acoustic features – LPC analysis followed by LSP (Line Spectral Pairs)

decomposition, frame by frame – from gray-scale video frames. These are combined with white

noise (excitation signal) and fed into a source-filter speech synthesizer which produces unvoiced

speech. This model produces intelligible results (WER < 20%) when trained and tested on

a single speaker from GRID, and constitutes a step forward given that it no longer relies on

handcrafted visual features as input. An improved version of this model was later introduced

(Ephrat et al., 2017), which predicts spectrograms that are then translated into waveform

using the Griffin-Lim algorithm. This extension also proposes a new encoder composed of two

ResNet-18s followed by a post-processing network that increases temporal resolution. This

work is the first to experiment with multiple speakers and achieves much more realistic speech

than any previous work for this task.

Lip2Audspec (Akbari et al., 2018) proposes a similar CNN+RNN encoder to predict spectro-

grams directly from the gray-scale frames of the video. As in the work presented above (Ephrat

et al., 2017), the spectrograms are converted to waveform using a phase estimation method. The

resulting spectrograms are very close to the original samples, but the reconstructed waveforms

sound clearly artificial. Another recent work (Michelsanti et al., 2020a) uses CNNs+RNNs

to predict vocoder parameters (aperiodicity and spectral envelope), rather than spectrograms.

Additionally, the model is trained to predict the transcription of the speech, in other words

performing speech reconstruction and recognition simultaneously in a multi-task fashion. This

approach achieves results that are very impressive when measured with objective speech quality

metrics (PESQ, STOI), but yields samples that still sound noticeably robotic.

Finally, a recent paper (Prajwal et al., 2020a) proposes an approach based on the Tacotron

2 architecture (Shen et al., 2018), predicting mel-frequency spectrograms from video rather

than text. To perform this task, it applies a stack of residual 3D convolutional layers as a

spatiotemporal encoder for the video and combines it with an attention-based decoder adapted

from Shen et al. (2018), which generates the spectrograms. Unlike Tacotron, these spectrograms

are decoded into waveform audio using the Griffin-Lim algorithm (Zhu et al., 2007) rather than

WaveNet, as the authors claim the generated spectrograms are not as accurate as modern TTS
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works, and therefore do not perform well with neural vocoders. This work is able to generate

remarkably intelligible audio from visual speech and achieves state-of-the-art performance in

all presented metrics. However, it focuses on speaker-specific speech reconstruction, i. e., it is

trained and tested on the same speaker.

An aspect that is worth highlighting is that none of these models attempt to generate the

waveform end-to-end from video, instead predicting spectrograms or other features which can

be translated into waveform. This is likely due to the notoriously arduous task of generating

realistic waveforms, which can be attributed to the lack of suitable loss functions. The only

model to perform video-to-waveform speech reconstruction without the use of intermediate

representations is presented by Vougioukas et al. (2019a). This paper introduces the use of

conditional generative adversarial networks (Mirza and Osindero, 2014), which have been pop-

ularized in image-related generative tasks (Reed et al., 2016; Isola et al., 2017), for the task

of video-to-speech synthesis, which can be seen as speech synthesis conditioned on video. The

model is based on a convolutional encoder-decoder model (combined with a GRU) which en-

codes video into visual features and decodes them directly into waveform audio. The generator

is trained with an adversarial loss based on a convolutional waveform critic, as well as three

other comparative losses. This procedure achieves competitive results for speech reconstruction

on both seen and unseen speaker datasets (GRID).

4.2.4 Reconstructing audio from multi-view visual speech

The majority of works in video-driven speech reconstruction use frontal views of the face. In

this section, we briefly describe a set of works that instead use multiple views, i. e., videos

of the same spoken utterance taken from multiple camera angles to capture different parts of

the speaker’s face (typically recorded in studios), to improve the quality of the reconstructed

speech.

The first work to use multi-view video for this task was proposed by Kumar et al. (2018b). This

model is very similar to the work of Ephrat and Peleg (2017) in the sense that it applies a CNN

to extract visual features directly from video, which then predicts vocoder parameters (LPC
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followed by LSP). This work, however, uses video taken from two different angles for every

speaker (Oulu VS2 dataset (Anina et al., 2015)). The results presented in this paper show that

the use of multiple views can substantially improve speech reconstruction performance.

This model was later improved (Kumar et al., 2018c) by replacing the LSTM with a BGRU

and using more than two views as input. It is shown that the use of three views can yield

improvements of 20% in the quality of reconstructed outputs (measured with PESQ). This has

been extended (Kumar et al., 2019b) by including a view classifier to attribute view labels to

the input videos and by also generating text transcriptions. The latest work in this field (Uttam

et al., 2019) follows the trend seen in single-view speech reconstruction research (Ephrat et al.,

2017; Ephrat and Peleg, 2017) and speech synthesis in general (Tabet and Boughazi, 2011;

Wang et al., 2017b) by switching from LPC coefficients to spectrograms as the predicted audio

representation.

4.2.5 Audio reconstruction from video in other applications

Finally, a set of past works has approached the application of video-to-audio models to domains

outside speech (Owens et al., 2016; Zhou et al., 2018; Chen et al., 2017). Namely, these papers

have focused on a diverse range of datasets that feature a set of generic sounds such as fireworks

and drums (Zhou et al., 2018); different instruments being played (Chen et al., 2017); or even

objects composed of different materials being hit with a drumstick (Owens et al., 2016). The

methodology applied to reconstruct audio from video is similar to what is seen for video-to-

speech systems. CNNs are applied to encode the video frames, followed by RNNs or fully

connected layers to produce acoustic features which are decoded into audio using vocoders.

While some of these works struggle to reproduce the corresponding audio, Zhou et al. (2018) can

produce remarkably realistic audio (as proven by its user studies) by combining the extraction

of optical flow with a neural network-based vocoder.
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Figure 4.1: Architecture of the generator (encoder, bidirectional GRU, decoder) and critics
(waveform critic, power critic) used in this chapter, as well as the losses that are used for
training.

4.3 Video-Driven Speech Reconstruction

Our model is composed of a video encoder based on a ResNet-18 combined with a Bidirectional

GRU, as well as a convolutional decoder that transforms the visual features into waveform

audio. This generator is trained using two separate critics, to maximize the realism of the

outputs, as well as three L1 losses to minimize the difference between real and synthesized

audio for each video.

4.3.1 Generator

Given that we aim to synthesize speech directly from video, our generator accomplishes two

sequential tasks: encoding temporal visual features and decoding them into an audio waveform.

Firstly, we encode the frames of the video using a Resnet-18 preceded by a spatiotemporal 3D

convolutional layer (combined with a max pooling layer), as in Chapter 3. This initial layer has

a receptive field of five frames centered on the frame it will encode meaning that the encoding
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Figure 4.2: Description of the encoder layers in our end-to-end video-to-speech generator.

for each frame will depend on the previous two frames and the following two frames. We

experimented with different numbers of frames as input to this layer (3 and 7) but found that

this did not considerably affect results. The ResNet-18 is composed of 4 blocks of 4 convolutional

layers, each followed by batch normalization and ReLU (Rectified Linear Unit) activation, and

an adaptive average pooling layer. The features extracted from the ResNet encoder are then fed

into a 2-layer bidirectional GRU (as described in Chapter 2) which temporally correlates the

features produced from each set of frames. This encoder is adapted from the audio-visual speech

recognition work (Petridis et al., 2018a) mentioned in the previous section. This architecture

is described in detail in Figure 4.2.

After this, the decoder upsamples the features from each video frame into a waveform segment

of N audio samples. The length of each segment is given by:

N =
audio sampling rate

video frame rate
. (4.1)

Since we use a sampling rate of 16 kHz and a frame rate of 25 frames per second, N is equal

to 640 (corresponding to 40ms of audio). The decoder is composed of six stacked transposed

convolutional layers, each followed by batch normalization and ReLU activation except for the

last layer which uses a hyperbolic tangent activation function. In an attempt to alleviate the

issue of abrupt frame transitions, we use an overlap of 50% between the generated waveform

frames, as proposed by Ephrat and Peleg (2017). The overlapped segments are linearly averaged
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sample by sample in order to maintain the original waveform scale. The detailed architecture of

the decoder is shown in Figure 4.3. The end-to-end waveform generation formula can therefore

be defined as:

a = D(T(E(v))), (4.2)

where v is the input video, a is the generated audio, E is the encoder (Figure 4.2), T is the

temporal model ((Figure 4.2)) and D is the decoder (Figure 4.3). The full generator is shown

in Figure 4.2.

4.3.2 Critics

As demonstrated in recent works (Donahue et al., 2019; Yamamoto et al., 2019; Kumar et

al., 2019a), the use of a waveform critic can dramatically increase the realism and clarity of

synthesized speech. To discriminate the real from the synthesized waveforms, we adapt the critic

proposed by Kumar et al. (2019a). After experimenting extensively with and without weight

normalization for this module, as well as for the generator, we find that weight normalization

increases the stability of adversarial training but overall leads to worse results. Therefore, we

remove weight normalization from this critic but otherwise keep the original architecture: 7

convolutional layers, each followed by Leaky ReLU activation, as shown in Figure 4.4a.

We did not attempt batch normalization, which worked well for the generator since this inter-

feres with the gradient penalty for our adversarial loss (Gulrajani et al., 2017). We compared

this architecture to other convolutional critics similar to the one proposed by Donahue et al.

(2019) as well as a one-dimensional ResNet-18 and found that this critic produced the best

results. Remarkably, this critic has a far smaller receptive field than any of the critics we

experimented with. This may indicate that waveform critics work best when focusing on the

small scale.

Inspired by SpecGAN (Donahue et al., 2019), we combine the waveform critic, which judges

the audio in the temporal domain, with a power critic, which judges the audio in the spectral

domain. This module discriminates the spectrograms computed from real and generated audio.
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Synthesized Waveform
(N_frames/1/640)

Figure 4.3: Description of the decoder layers in our end-to-end video-to-speech generator.

We first compute the spectrogram from both the real and generated samples using the short-

time Fourier transform (STFT) with a window size of 25ms, a hop size of 10ms, and frequency

bins of size 512. We then compute the natural logarithm of the spectrogram magnitudes,

normalize these values to mean 0 and variance 1, clip values outside [-3,3], and normalize them

to [-1,1], similarly to Donahue et al. (2019). In this case, we use a ResNet18 identical to the one

presented in our generator, except with a two-dimensional front-end convolutional layer in the

beginning, since our input is a single image. As with the waveform critic, we cannot use batch

normalization in this module due to the gradient penalty and found that weight normalization

did not improve results. The architecture for the power critic is shown in Figure 4.4b.

4.3.3 Losses

To train our network, we apply the Wasserstein GAN loss (Arjovsky et al., 2017), which aims

to minimize the Wasserstein Distance between the distributions of real and synthesized data.

We also add the gradient penalty (Gulrajani et al., 2017) to satisfy the Lipschitz constraint
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in the Wasserstein GAN objective (as explained in detail in Chapter 2). The losses for the

generator and respective critic(s) are defined as:

LG = − E
x̃∼PG

[D(x̃)] + λ E
x̂∼Px̂

[(∥∇x̂D(x̂)∥2 − 1)2] (4.3)

LD = E
x̃∼PG

[D(x̃)]− E
x∼PR

[D(x)], (4.4)

where G is the generator, D is the critic, x ∼ PR are samples from the real distribution,

x̃ ∼ PG are samples from the estimated distribution (produced by the generator) and x̂ ∼ Px̂

are sampled uniformly between two points from PG and PR respectively. In this work, we apply

two critics: the waveform critic and the power critic. Each critic is trained with their own losses

LDwave
and LDpower

, whereas the generator combines the losses from the two critics such that:

LGadv
= LGwave

+ LGpower
, (4.5)

where LGwave
and LGpower

are calculated as mentioned in Eq. 4.3. The coefficient for the gradient

penalty λ is kept at 10 for both critics, as proposed by Gulrajani et al. (2017).

In addition to this adversarial loss, we also apply three other losses to train the generator. The

first is a perceptual loss:

LPASE = ∥δ(x)− δ(x̃)∥1, (4.6)

where x is the real waveform, x̃ is the synthesized waveform from the same video and δ is our

perceptual feature extractor. In this chapter, we use the pre-trained PASE model (Pascual et al.,

2019b) to extract perceptual features δ(x). PASE has been trained in a self-supervised manner

to produce meaningful speech representations. We have also tried using PASE+ (Ravanelli et

al., 2020b), which is an improved version of PASE that we used to train our model in Chapter

3. However, no improvement in the speech reconstruction quality was observed. Furthermore,

we experimented with multiple ASR models as feature extractors, but we found that they also

did not improve results.
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The second loss we apply is the Power Loss. This function aims to improve the accuracy of the

reconstructed audio by attempting to match it with the real audio in the frequency domain.

For this purpose, we use the L1 loss between the STFT magnitudes of the real and synthesized

audio (as described in Chapter 2) as follows:

Lpower = ∥ log |STFT (x)|2 − log |STFT (x̃)|2∥1, (4.7)

where x is the real waveform, x̃ is the synthesized waveform from the same video and STFT

is the Short Time Fourier Transform with a window size of 25ms, a hop size of 10ms and

frequency bins of size 512 (same parameters used for the power critic). We found that scaling

the magnitudes using the natural logarithm and using an L1 Loss rather than the L2 Loss

presented by Oord et al. (2018) greatly improves training stability and performance.

The third loss we apply is the MFCC Loss:

LMFCC = ∥MFCC(x)−MFCC(x̃)∥1, (4.8)

where x is the real waveform, x̃ is the synthesized waveform from the same video and MFCC is

the MFCC function which extracts 25 mel-frequency cepstral coefficients from the corresponding

waveform. The objective of this loss lies in increasing the accuracy and intelligibility of the

synthesized speech, given that MFCCs are known to be effective in ASR (Han et al., 2006)

and emotion recognition (Krishna Kishore and Krishna Satish, 2013). We adapt the function

provided on an open-source repository1.

Finally, the loss for the generator is described based on the losses mentioned above as:

LG = α1LGadv
+ α2LPASE + α3Lpower + α4LMFCC . (4.9)

We tune the coefficients (α1, α2, α3, and α4) by sequentially training multiple models on GRID

(4 speakers, seen speaker split) and incrementally finding the coefficients that yield the best

WER on the validation set. Through our search, we find that α1 = 1, α2 = 140, α3 = 50,

1https://github.com/skaws2003/pytorch-mfcc



4.3. Video-Driven Speech Reconstruction 83

Conv2D (LeakyReLU(0.2))
Kernel size: 15

Stride: (1)

Conv2D (LeakyReLU(0.2))
Kernel size: 41

Stride: (4)

Conv2D (LeakyReLU(0.2))
Kernel size: 5

Stride: (1)

Conv2D (LeakyReLU(0.2))
Kernel size: 3

Stride: (1)

x 4

Critic Output
(1)

Real Waveform
(1/1/16000)

Synthesized Waveform
(1/1/16000)

(a) Waveform critic

Real Spectrogram
(257/101)

Synthesized Spectrogram
(257/101)

Conv2D (No Batch Norm, ReLU)
Kernel size: 7x7

Stride: (2,2)

ResNet 18 (2D) 
(No Batch Norm, ReLU)

Fully Connected
In features: 512
Out features: 1

Critic Output
(1)

Real Waveform
(1/1/16000)

Synthesized Waveform
(1/1/16000)

Log STFT
N_FFT: 512

Window Size: 25 ms
Hop size: 10 ms

Log STFT
N_FFT: 512

Window Size: 25 ms
Hop size: 10 ms

Max Pooling (2D)
Kernel size: 3x3

Stride: (2,2)

(b) Power critic

Figure 4.4: Description of the layers in the waveform critic (a) and power critic (b) used to
train our model.

α4 = 0.4 yield the best results.

4.3.4 Training details

We use the Adam optimizer with a learning rate of 0.0001 and β1 = 0.5, β2 = 0.99 to train our

generator and critics end-to-end. Given that the critics should be trained to completion before

every generator training step, we perform 6 training steps on the critics before every training

step of the generator. It should also be noted that we feed a one-second clip randomly sampled

from the real and synthesized audio to each of the critics, rather than the entire utterance. The

other losses are computed using the entire real and synthesized utterances. Additionally, we

employ random cropping and horizontal flipping during training, as in Chapter 3.

Training our model for each of the experiments generally takes approximately one week on

an Nvidia RTX 2080 Ti GPU. We train our model to completion, i. e., until the validation

metrics plateau, using a batch size of 10 for all experiments. Synthesizing a 3-second audio clip
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Table 4.1: Number of speech clips and total number of hours of speech for each dataset used
in our study.

Corpus
Training set

(clips / hours)
Validation set
(clips / hours)

Test set
(clips / hours)

GRID (4 speakers,
seen speakers)

3,576 / 2.98 210 / 0.18 210 / 0.18

GRID (33 speakers,
seen speakers)

29,584 / 24.65 1,642 / 1.37 1,641 / 1.37

GRID (33 speakers,
unseen speakers)

15,888 / 13.24 7,000 / 5.83 9,982 / 8.32

TCD-TIMIT
(3 lip speakers)

1014 / 1.64 57 / 0.09 60 / 0.09

LRW (full) 488,763 / 157.49 25,000 / 8.06 25,000 / 8.06

FLRW 500 Words 112,811 / 36.35 5878 / 1.89 5,987 / 1.93

FLRW 100 Words 22,055 / 7.11 1151 / 0.37 1,144 / 0.37

FLRW 20 Words 4,347 / 1.40 266 / 0.09 248 / 0.08

sampled at 16 kHz from 75 frames of video takes approximately 32ms on the same high-end

GPU, excluding pre-processing. Our generator has a total of 45.8 million parameters, whereas

the waveform and power critics have 5.6 million and 11.2 million parameters respectively.

4.4 Datasets

For the purposes of this chapter, we use three separate audio-visual datasets to train and

evaluate our model: GRID, TCD-TIMIT, and LRW. The content of these datasets is explained

in detail in Chapter 2. To compare with previous works (Prajwal et al., 2020a) on TCD-

TIMIT, we only use the audio-visual data uttered by the three lip speakers, rather than the

entire corpus. This results in a total of 1,131 clips. For LRW, in addition to the full corpus,

we use a subset of this corpus that keeps only the approximately frontal videos, i. e., videos

with yaw, pitch, and roll below 10 degrees. This leads to a corpus containing 124,676 samples

in total and will be referred to as F(rontal)LRW. We also randomly select 20/100 words from

this subset to experiment with different ranges of vocabulary during training/testing. These
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smaller sets will be referred to as FLRW20 and FLRW100, respectively. Further statistics for

each dataset are presented in Table 4.1. Rather than using the full face as input to our network,

as is standard in other speech reconstruction works (Ephrat et al., 2017; Akbari et al., 2018;

Prajwal et al., 2020a), we crop the mouth of the speaker using dlib’s 68 landmark model (King,

2009), as explained in Chapter 2. The mouth ROI is of size 128x74 for GRID and 96x96 for

TCD-TIMIT and LRW.

4.5 Evaluation Metrics

Although many metrics have been proposed for evaluating the quality of speech (Loizou, 2011),

it is widely acknowledged that none of the existing metrics are highly correlated with human

perception. For this reason, we evaluate our speech reconstruction model using 4 objective

metrics which capture different properties of the audio: PESQ, STOI, MCD, and WER. Each

of these metrics is explained in detail in Chapter 2

4.6 Results on Seen Speakers

In this section, we present our experiments for seen speakers. For direct comparison with

other works we use 4 speakers from GRID (1, 2, 4 and 29), as proposed by Vougioukas et al.

(2019a), Akbari et al. (2018), Prajwal et al. (2020a), and Michelsanti et al. (2020a), and the 3

lip speakers from TCD-TIMIT, as proposed by Prajwal et al. (2020a). In order to investigate

the impact of the number of speakers and the amount of training data, we also present results

for all 33 speakers from the GRID dataset. We split the utterances in each of these datasets

using a 90–5–5% ratio for training, validation, and testing respectively similarly to Vougioukas

et al. (2019a), Akbari et al. (2018), Prajwal et al. (2020a), and Michelsanti et al. (2020a), such

that the speakers in the validation and test sets are identical to the speakers seen in the training

set (but the utterances are different). To measure the Word Error Rate (WER) for our GRID

samples, we use a pre-trained ASR model (based on the work of Ma et al. (2019)) which was
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trained and tested on the full GRID dataset (using the split mentioned in Section 4.7), achieving

a baseline of 4.23% WER on the test set. During training, we save the checkpoint with the

lowest WER on the validation set at the end of each epoch, to obtain the best possible model.

For TCD-TIMIT, we were unable to obtain an accurate publicly available speech recognition

model and thus did not use WER as a metric. Therefore, we use STOI instead of WER as

our criteria to select the best checkpoint for our TCD-TIMIT experiments. Audio samples, as

well as spectrogram and waveform figures, are presented on our website2 for the experiments

presented in Sections 4.6, 4.7 and 4.8. Additionally, we present a publicly available repository3

which can be used to reproduce each of the evaluation metrics presented in this chapter. We are

also available to provide generated test samples for researchers hoping to reproduce or compare

with our work.

4.6.1 Ablation Study

Results for the ablation study are shown in Table 4.2. For this study, we use the GRID (4

speakers, seen speakers) dataset. Firstly, we observe that each of the three comparative losses

LPASE, Lpower and LMFCC yield considerable improvements in the verbal accuracy of samples

(as shown by the WER), even when only one is removed. We can also observe that LMFCC and

Lpower are particularly impactful on the MCD of the reported samples, which is unsurprising

since this is an MFCC-based metric. On the other hand, it is clear that LPASE is essential for

achieving high intelligibility, given its particular impact on STOI. Finally, all three losses also

seem to positively impact the PESQ score, indicating an increase in overall audio clarity.

We can see that the simultaneous removal of LPASE and Lpower greatly decreases PESQ and

STOI, indicating that these losses are particularly important towards the clarity of generated

samples. We also show that the absence of LMFCC and Lpower sharply increases MCD, indicating

that these two losses greatly increase the similarity between real and synthesized audio. On the

other hand, this model maintains a WER below 10%, which means that LPASE alone (together

with the adversarial losses) can achieve intelligible audio. Finally, the removal of all three L1

2https://sites.google.com/view/video-to-speech/home
3https://github.com/miraodasilva/evalaudio

https://sites.google.com/view/video-to-speech/home
https://github.com/miraodasilva/evalaudio
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Figure 4.5: Mel-frequency spectrograms taken from the audio reconstructed with our seen
speaker ablation models. The clip we present is from GRID, speaker 1, utterance ’Bin blue at
L 9 again’.

losses results in realistic yet unintelligible audio. This is because the adversarial losses are the

only objective used for training, and therefore there is no incentive for the network to learn the

exact words corresponding to the input video.

We observe that the use of the waveform critic yields noticeable improvements through our

metrics, particularly in WER and STOI, suggesting that its inclusion substantially increases

intelligibility. Additionally, the power critic also yields moderate improvements in PESQ, STOI,

and WER. Finally, we observe that the removal of both critics results in substantially lower

MCD and WER, but maintains PESQ and STOI at a similar value. This again indicates that

our model can generate intelligible and accurate words without adversarial losses. However,

these synthesized samples lack realism, which drastically improves when the critics are used.

To demonstrate this effect, readers are encouraged to listen to examples on our website2.

We also experiment with using the full face as input, as this is commonly used in previous

studies. Through this ablation, we show that using a cropped mouth region instead of the full

face improves our results substantially in terms of WER, effectively improving intelligibility.

We also prove that the use of overlap improves all metrics slightly, suggesting that its purpose

of minimizing the issue of frame transitions is beneficial toward output quality. A qualitative

comparison with other works can be seen in Figure 4.5. Compared to the real audio, our

spectrogram is similar overall, but is slightly blurrier and fails to model some of the fine details in

the frequency bins, especially in the higher frequencies. The model trained without adversarial

critics features a much blurrier spectrogram than the full model, failing to reproduce even the

lower frequency bands during voiced speech, highlighting the importance of adversarial training.
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Table 4.2: Ablation study for our end-to-end video-to-speech model performed on GRID (4
speakers, seen speakers).

Model PESQ STOI MCD WER

w/o LPASE 2.06 0.597 26.44 8.97%

w/o Lpower 2.05 0.575 28.64 9.54%

w/o LMFCC 2.08 0.591 28.09 9.09%

w/o LPASE, w/o Lpower 1.86 0.545 27.47 13.44%

w/o LPASE, w/o LMFCC 2.02 0.589 28.82 13.33%

w/o LMFCC , w/o Lpower 2.00 0.569 31.43 9.71%

w/o LPASE, w/o Lpower, w/o LMFCC 1.14 0.311 53.63 89.12%

w/o waveform critic 2.07 0.583 26.66 8.47%

w/o power critic 2.08 0.594 26.73 7.30%

w/o waveform critic, w/o power critic 2.07 0.584 27.45 9.01%

w/o overlap 2.06 0.590 26.73 7.40%

w/ full face 2.07 0.596 26.46 9.94%

full model 2.10 0.595 26.78 7.03%
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4.6.2 Comparison with Other Works

We compare our proposed model with previous works on GRID (4 speakers, seen speakers) as

shown in Table 4.3. We note that the metrics reported on Lip2Wav (Prajwal et al., 2020a) are

taken directly from their paper due to test samples not being publicly available and that their

WER was calculated using the Google Speech-to-Text (STT) API rather than our ASR model.

Regarding PESQ, it is clear that our model is superior to the previous approaches by a sizeable

margin. This suggests that the quality of our synthesized speech is somewhat higher than past

models. Our model also outperforms previous works on STOI, excluding Lip2Wav. This shows

that our samples are more intelligible than most other approaches, but are outperformed by the

robustness and consistency of the speech produced by Lip2Wav. In particular, Lip2Wav’s very

impressive performance on STOI compared to other metrics indicates that the generated speech

is easily intelligible, but is lacking in perceptual quality and realism, which is confirmed by an

empirical analysis of their samples. Furthermore, our generated samples achieve a better MCD

than previous works, indicating that our reconstructed audio is more accurate than previous

approaches on the frequency domain. Finally, our work achieves the best WER out of all

methods, which shows that our model is more accurate than any of the previous approaches by

a large factor, outperforming our previous model by more than 10%.

A qualitative comparison is shown in Figure 4.6, which displays waveforms, mel-frequency spec-

trogram, and mel-frequency spectrogram differences, i. e., the element-wise absolute difference

between the real and synthesized spectrograms. This difference is calculated as:

∥MelSpec(x)−MelSpec(x̃)∥1, (4.10)

where x is the real waveform and x̃ is the synthesized waveform. Through the spectrograms, it

is clear that Lip2Audspec is the least accurate in the frequency domain, failing to model many

frequencies, particularly in the higher bands. The other three approaches are clearly more

accurate, but all feature some inaccuracies during voiced speech and also noise in unvoiced

segments. While the samples generated by Vougioukas et al. (2019a) and Michelsanti et al.
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Figure 4.6: Mel-frequency spectrograms (left), mel-frequency spectrogram differences (mid-
dle) and waveforms (right) taken from the audio reconstructed with Lip2AudSpec (Akbari
et al., 2018) (a), our previous work (Vougioukas et al., 2019a) (b), a previous vocoder-based
model (Michelsanti et al., 2020a) (c) and our model (d), as well as the real audio (e) – GRID,
Speaker 1, utterance ’Bin white at T 3 soon’. All models were trained on the same split of
GRID (4 speakers, seen speakers), as presented in our comparison.

(2020a) feature an excessive amount of low-frequency noise, our model seems to accurately

emulate the low amount of noise in the real audio and therefore achieves the least substantial

spectrogram difference.

We also compare our model to Lip2Wav on TCD-TIMIT (3 lip speakers) in Table 4.4. Once

more, it is clear that our model outperforms Lip2Wav (Prajwal et al., 2020a) on PESQ, but

achieves lower performance on STOI, which indicates that our model produces clearer, yet

somewhat less intelligible audio. Additionally, our samples achieve a reasonably low MCD,

indicating moderate similarity in the frequency domain.
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Table 4.3: Comparison between our model and previous works, using GRID (4 speakers, seen
speakers).

Method PESQ STOI MCD WER

Lip2Audspec (Akbari et al., 2018) 1.81 0.425 63.88 46.36%

GAN-based (Vougioukas et al., 2019a) 1.70 0.539 45.37 21.11%

Vocoder-based (Michelsanti et al., 2020a) 1.90 0.553 46.64 22.14%

Lip2Wav (Prajwal et al., 2020a) 1.77 0.731 - 14.08a%

Ours 2.10 0.595 26.78 7.03%

aReported using Google STT API.

Table 4.4: Comparison between our model and Lip2Wav, using TCD-Timit (3 lip speakers)
with a seen speaker split.

Method PESQ STOI MCD

Lip2Wav (Prajwal et al., 2020a) 1.35 0.558 -

Ours 1.61 0.295 32.12

4.6.3 Performance as a Function of Training Set Size

For the purposes of this study, we use GRID (33 speakers, seen speakers) and we report results

as we vary the size of the training set from 20% to 100% in steps of 20%. Results are shown

in Table 4.5. When compared to the results reported for GRID (4 speakers, seen speakers), we

observe comparable performance for 33 speakers when using the full training set. This shows

that our network adapts well to larger datasets and is able to model a large number of speakers

with no substantial drop in performance.

Regarding the models which are trained using a smaller subset of the training set, it is clear

that the performance drops as the amount of training data is gradually reduced. However, it is

worth highlighting that the overall performance remains moderately consistent, even when we

use only 20% of the training data. This shows that our model adapts well to smaller datasets.

We note that all 5 models were trained for the same amount of total training steps to avoid

any bias in our comparative results.



92 Chapter 4. Synthesizing Speech from Silent Video End-to-End

Table 4.5: Study on the performance of our model using varying training set sizes, using GRID
(33 speakers, seen speakers)

.

% of Training Set PESQ STOI MCD WER

20% 1.96 0.583 29.22 11.78%

40% 2.00 0.594 28.49 10.10%

60% 2.02 0.595 27.94 9.06%

80% 2.02 0.596 27.68 8.36%

100% 2.02 0.601 27.78 8.03%

4.7 Results on Unseen Speakers

In this section, we investigate the performance of the proposed approach on unseen speakers.

For this study, we use all speakers from the GRID dataset, using a 50–20–30% split ratio similar

to Vougioukas et al. (2019a) and Michelsanti et al. (2020a), such that there is no overlap between

the speakers featured in the training, validation, and test sets. To measure WER, we use the

model trained on GRID mentioned in the previous section. We also select the checkpoint with

the lowest WER on the validation set.

4.7.1 Ablation Study

In this study, we use GRID (33 speakers, unseen speakers). The results of the ablation study

are shown in Table 4.6. For this task, we find that Lpower provides the greatest impact on

the quality of results, providing a substantial improvement in all metrics. On the other hand,

LPASE and LMFCC show noticeable improvements in PESQ and STOI, indicating that these

losses contribute to the clarity and intelligibility of the generated samples. Furthermore, we

once more find that LMFCC and Lpower are particularly important towards achieving a low

MCD, meaning that these losses are essential for achieving accurate MFCCs in our synthesized

samples.

Regarding the adversarial loss, we can see that, as reported in the seen speaker ablation, PESQ,

STOI, and MCD improve with the addition of the waveform and power critics. This suggests
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Table 4.6: Ablation study for our model performed on GRID (33 speakers, unseen speakers).

Model PESQ STOI MCD WER

w/o LPASE 1.44 0.520 38.19 22.66%

w/o Lpower 1.37 0.503 39.59 24.32%

w/o LMFCC 1.44 0.518 39.03 21.70%

w/oWaveform Critic, w/o Power Critic 1.43 0.516 38.48 22.82%

Full Model 1.47 0.523 37.91 23.13%

that these critics have a positive effect on the clarity and intelligibility of samples and that the

accuracy on the frequency domain is improved as well. However, we observe that the WER

remains at a similar value with the removal of both critics, indicating that the network is

generally capable of reproducing the correct words from the corresponding video samples while

relying only on the three proposed L1 losses.

4.7.2 Comparison with Other Works

We present our comparison with other works (Vougioukas et al., 2019a; Michelsanti et al., 2020a)

on GRID (33 speakers, unseen speakers) in Table 4.7. It is clear that our model outperforms

previous works in all performance measures. Although the improvement in PESQ and STOI

compared to these works is not as emphatic as the gains reported for seen speakers, WER

sees a very substantial reduction. This improvement in WER can easily be observed in our

synthesized speech and clearly shows that our model is far more consistent for this task than

previous approaches. Furthermore, the observed MCD is substantially lower in our work,

indicating that our synthesized speech yields more accurate spectrograms, which suggests a

greater similarity between the content of real and synthesized samples.

4.7.3 Additional Experiments

Additionally, we present a study on silent speakers. For this experiment, we artificially produce

a video of a speaker from the GRID corpus being silent for five seconds by feeding Brownian
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Table 4.7: Comparison between our current and previous model, using GRID (33 speakers,
unseen speakers)

.

Method PESQ STOI MCD WER

GAN-based (Vougioukas et al., 2019a) 1.24 0.470 51.28 37.10%

Vocoder-based (Michelsanti et al., 2020a) 1.23 0.477 55.02 55.23%

Ours 1.47 0.523 37.91 23.13%
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Figure 4.7: The spectrogram and waveform for the audio produced by our model for a video of
a silent speaker (Speaker 2 from GRID) are portrayed in (a). As displayed in the waveform (b),
the audio is almost completely silent, disregarding some low-frequency noise which is highlighted
in the spectrogram (c). This shows that our model is robust to the scenario of silent speakers
and produces minimal baseline noise under these circumstances. This audio sample is also
available on our website2.

noise into the facial animation model proposed by Vougioukas et al. (2020). We then use this

video as input for our model trained on GRID (33 speakers, unseen speakers). This aims to

measure two distinct factors: firstly, our model’s ability to recognize a silent speaker and not

produce any voiced speech; and secondly, the baseline noise that is present in the audio we

synthesize with our network, which is clear to observe when the speaker is silent. As discussed

in Figure 4.7, our model performs well in this scenario and produces minimal noise for this

silent example.

4.8 Results in the Wild

In this section, we investigate the performance of the proposed approach on utterances recorded

‘in the wild’. For this purpose, we use the full LRW dataset, and its subsets FLRW 500 Words,

FLRW 100 Words, and FLRW 20 Words, which are introduced in Section 4.4. We split the

utterances using the default split for LRW (90–5–5% ratio), such that there is no overlap

between the utterances in the training, validation, and test sets. To measure the Word Error
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Table 4.8: Comparison between our model and Lip2Wav, using the full LRW dataset.

Method PESQ STOI MCD WER

Lip2Wav (Prajwal et al., 2020a) 1.20 0.543 - 34.20a%

Ours 1.45 0.556 39.32 42.51%

aReported using Google STT API.

Rate (WER) for our samples, we use a pre-trained model (based on the work of Petridis et al.

(2018a)) which was trained and tested on full LRW using the same split and achieve a baseline

WER of 1.68% on the test set. As in previous experiments, we select the checkpoint with the

lowest WER on the validation set.

Our comparison with Lip2Wav (Prajwal et al., 2020a) on LRW (500 Words) is presented in

Table 4.8. We compare our model to Lip2Wav on LRW (500 Words), in order to compare our

model’s performance “in the wild” to this recent work. Our work shows a great improvement

in PESQ compared to Lip2Wav, which suggests that our samples are able to achieve superior

clarity in this regard. On the other hand, our STOI is very similar to the one reported in

Lip2Wav, achieving a slight edge which could indicate a minor improvement in intelligibility.

In order to demonstrate our model’s ability to reconstruct speech in less constrained conditions,

we experiment with the LRW dataset, as well as some of its subsets. These subsets present

increasing degrees of challenge, culminating with the full LRW dataset which presents the

greatest challenge given its large vocabulary and large variance in video perspective.

Regarding the experiments with frontal LRW, we observe that our model maintains a similar

overall quality of outputs for larger vocabularies, as demonstrated by the consistency in PESQ,

STOI, and MCD. However, it is clear that the more difficult task presented by larger vocabu-

laries yields a decrease in the average accuracy of samples, shown by the increasing WER. This

implies that our model scales well with larger datasets, but has difficulties in adapting to larger

vocabularies in very unconstrained and inconsistent environments. Even still, the word error

rate reported for FLRW 20 Words is noticeably low, implying that our model can realistically

reconstruct speech for hundreds of different speakers, even under such ‘wild’ conditions. Fi-



96 Chapter 4. Synthesizing Speech from Silent Video End-to-End

Table 4.9: Study on the performance of our speech reconstruction model for the three subsets
of LRW mentioned in Section 4.4, as well as the full LRW dataset.

Corpus PESQ STOI MCD WER

FLRW 20 Words 1.43 0.523 43.87 25.00%

FLRW 100 Words 1.40 0.528 41.56 36.54%

FLRW 500 Words 1.44 0.555 39.72 44.28%

LRW 500 Words 1.45 0.556 39.32 42.51%

nally, we found that the full LRW dataset yields better performance than our full frontal subset

(FLRW 500 Words). Although we expected the frontal data to provide an easier task for the

network during training and testing, this result shows that the network benefits strongly from

a larger training set, even if the visual data is less consistent.

4.9 Conclusion

In this chapter, we have presented our end-to-end video-to-waveform synthesis model using a

generative adversarial network with two critics on waveform and spectrogram. First, we showed

through an ablation study on GRID that the use of our losses, adversarial critics, and other

choices in training methodology provides a positive impact on the quality of our results for

both seen and unseen speaker video-to-speech. Furthermore, we demonstrated through our

experiments on LRW that our model is able to generate intelligible speech for videos recorded

entirely in the wild by hundreds of different speakers. Finally, we compared our model to

previous video-to-speech models and found that it produces the best results on most metrics

for GRID and LRW and achieves state-of-the-art performance on PESQ for TCD-TIMIT.

We observed that the choice of good critics as well as adequate comparative losses are funda-

mental to obtaining realistic results. Therefore, we believe that the pursuit of alternative loss

functions (including different adversarial losses) is a promising option for future work. Addi-

tionally, we believe that there would be substantial benefit in experimenting with a speaker

embedding as input to the generator, in addition to the video, in order to generalize to unseen
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speakers with a more accurate voice profile, as proposed by Shen et al. (2018) and Prajwal

et al. (2020a). We will explore this methodological addition in Chapter 5. Finally, extending

our model towards other practical applications such as speech inpainting i. e., reconstructing

missing audio segments in an audio-visual stream, would be a promising research pursuit in

order to show the empirical value of video-to-speech synthesis.
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This chapter is based on SVTS: Scalable Video-to-Speech Synthesis , a journal paper published

in Interspeech 2022. I was the first author of this paper, designed the framework, conducted

the experimental procedure, and wrote the manuscript. Alexandros Haliassos contributed to

our implementation substantially to enable efficient training procedures, helped conduct many

of the experiments, and provided useful feedback on the manuscript. Stavros Petridis, Björn

Schuller, and Maja Pantic supervised the project throughout its entirety, providing helpful

suggestions, feedback, and guidance regarding the design of the framework and the writing of

the manuscript.

As in previous chapters, we would like to note that the related work and comparison with

other works described in this chapter only include papers that were released before the time

of submission (March 2022). Since then, several new video-to-speech approaches have been

proposed, some of which outperform SVTS on LRS3 (Kim et al., 2023; Hsu et al., 2022), for

instance.

5.1 Introduction

As explained in the previous chapter, video-to-speech synthesis is a promising task with many

exciting applications such as audio recovery from existing videos, live speech reconstruction

in videoconferencing, and even helping people suffering from aphonia. Furthermore, when de-

signed without the need for intermediate text transcriptions, video-to-speech models such as the

one presented in the previous chapter can be trained on unlabelled audio-visual speech, meaning

that, in theory, they could be trained directly on large-scale datasets such as AVspeech Ephrat

et al., 2018. Remarkably, however, most recent works focus on corpora with small pools of

speakers, constrained vocabularies, and video recorded in studio conditions (e. g., 4-Speaker

GRID and 3-Lipspeaker TCD-TIMIT (Harte and Gillen, 2015)) (Akbari et al., 2018; Vou-

gioukas et al., 2019b; Yadav et al., 2021; Michelsanti et al., 2020b; Oneata et al., 2021; Um et
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al., 2021; Hong et al., 2021), achieving improvements in performance via the use of intricate

loss ensembles (Um et al., 2021; Kim et al., 2021) and complex architectures (Yadav et al.,

2021; Um et al., 2021; Hong et al., 2021; Prajwal et al., 2020b) (e. g., Chapter 4). While these

developments are meaningful within ideal conditions, they fail to leverage the massive amount

of audio-visual data available publicly and propose training procedures that do not easily scale

to very large datasets (Kim et al., 2021).

In this chapter, we aim to address these issues by proposing a simple video-to-speech system

that efficiently scales with more data. It consists of a video-to-spectrogram predictor followed

by a spectrogram-to-waveform synthesizer. The former is a ResNet18+conformer network (Gu-

lati et al., 2020; He et al., 2016), which becomes deeper and wider for larger datasets and is

trained using a combination of two established comparative losses. The latter is a pre-trained

neural vocoder, which accurately synthesizes the corresponding audio waveform with low com-

putational overhead. Our contributions are as follows: (1) We present a simple and effective

video-to-speech approach that can easily scale to large and complex datasets. (2) We conduct a

detailed ablation study demonstrating the differences between commonly-used spectrogram in-

version methods, as well as validating our choice of loss functions. (3) We outperform previous

approaches on most metrics on the small but popular GRID dataset and achieve state-of-the-art

performance on the larger LRW dataset. (4) To the best of our knowledge, we are the first to

present intelligible results on the challenging LRS3 (Afouras et al., 2018b) dataset and show

that scaling our model even further with a combination of LRS3 and VoxCeleb2 (Chung et al.,

2018a) (containing more than 1,500 hours of data) yields significant improvements.

5.2 Methodology

5.2.1 Video-to-spectrogram model

Our spectrogram predictor comprises two main components: (1) a visual encoder composed

of a 3D convolutional stem followed by a standard 2D ResNet-18 (He et al., 2016), as in the
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Figure 5.1: Summary of our video-to-speech synthesis approach during training and inference.
In this figure, the components pictured in blue are pre-trained and kept frozen, while the
components pictured in green are trained from scratch.

previous chapters, and (2) a conformer (Gulati et al., 2020), as in Chapter 3, which receives the

features from the visual encoder and aims to model the temporal correlations between them.

The latter contains an initial linear layer, followed by a set of conformer blocks that vary in

depth and width based on the model version, as shown in Table 5.1. Finally, each feature

vector, corresponding to a video frame, is projected into a hidden size of 320 using a linear

projection layer and reshaped into 4 × 80 spectrogram frames, similarly to our projector in

Chapter 3. The input video is sampled at 20 fps and the extracted spectrogram contains 80

frames per second. We train our predictor using a combination of the L1 loss and the spectral

convergence loss (Yamamoto et al., 2020).
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Table 5.1: Summary of our proposed SVTS architectures. ∗refers to the total number of
parameters in the model (ResNet + conformer + projection layer)

.

Model SVTS-S SVTS-M SVTS-L

Num. parameters∗ (M) 27.3 43.1 87.6
Conformer blocks 6 12 12
Attention dim. 256 256 512
Attention heads 4 4 8
Conv. kernel size 31 31 31
Feedforward dim. 2048 2048 2048

As in multi-speaker text-to-speech systems (Jia et al., 2018), our video-to-speech model requires

information about the speaker’s voice characteristics, which cannot be derived accurately from

silent video only. To this end, we use a pre-trained speaker encoder1 originally trained for

speaker verification on a combination of VoxCeleb (Nagrani et al., 2017), VoxCeleb2 (Chung

et al., 2018a), and Librispeech (Panayotov et al., 2015b). For each video clip, an embedding is

extracted from a randomly selected audio clip from the same speaker and concatenated with

the visual features extracted by the visual encoder, which are then fed into the conformer. Note

that the speaker encoder is kept frozen during training.

5.2.2 Spectrogram-to-waveform

To generate waveform speech from the spectrograms, we opt for the use of a neural vocoder,

Parallel WaveGAN (Yamamoto et al., 2020). This WaveNet-based (Oord et al., 2016) model

is trained using a combination of comparative and adversarial losses. We employ a version

pre-trained on LibriTTS (Zen et al., 2019) for 1 million iterations. Note that it is used only

at inference time, allowing for a substantially simpler training procedure than related video-to-

speech works, which train their own vocoder from scratch (Um et al., 2021; Hong et al., 2021).

This is, however, a trade-off between simplicity and performance, since a vocoder trained on

the same corpus (rather than a separate set of datasets) will typically yield better results, as

we will explore in Chapter 6. An overview of our approach is illustrated in Figure 5.1.

1https://github.com/CorentinJ/Real-Time-Voice-Cloning.

https://github.com/CorentinJ/Real-Time-Voice-Cloning
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5.3 Experimental setup

5.3.1 Datasets

The first corpus we experiment with is GRID, which has become an established benchmark in

video-to-speech literature due to its small vocabulary, predictable structure, and clean record-

ing conditions. We experiment with two versions of the dataset: (1) a seen speaker version,

proposed in Chapter 4, where the 33 speakers are present in the training, validation, and testing

sets, and (2) an unseen speaker version, introduced in (Vougioukas et al., 2019b), where there

is no overlap in the speakers between the sets.

The second corpus is the full LRW dataset, as in Chapter 4. Due to its lack of speaker labels, it is

not possible to select a random audio clip from the same speaker to produce the corresponding

speaker embedding. Therefore, for this corpus, we generate the speaker embeddings using

the audio clip from the corresponding video, which is consistent with previous multi-speaker

video-to-speech approaches on LRW (Prajwal et al., 2020b).

To demonstrate our method’s scalability to even larger and less constrained datasets, we run

experiments on the 312-hour-long LRS3 dataset, which was not featured in the experiments

for our previous model (Chapter 4). As in GRID, we use two different versions of LRS3: seen

speaker, where all speakers’ utterances are split into training, validation, and testing sets using

an 80–10–10% ratio, and unseen speaker, following the original split proposed by Afouras et al.

(2018b). Finally, we experiment with combining the LRS3 training dataset with an English-

only version (Shi et al., 2022a) of VoxCeleb2 (while keeping the same LRS3 validation and test

sets to ease comparison), amounting to around 1,550 hours of footage. An extended version of

this combined training set is also used for the pre-training stage in Chapter 7. For both corpora,

utterances exceeding 24 seconds are excluded from training due to hardware limitations. The

contents of these datasets are explored in detail in Chapter 2
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5.3.2 Data pre-processing and augmentation

To produce the cropped mouth video, we first extract 68-point landmarks using RetinaFace2 (Deng

et al., 2020) and a pre-trained 2D-FAN3 (Bulat and Tzimiropoulos, 2017b). We average the

landmarks across 12 frames through a sliding window to reduce motion jitter and align each

frame to the mean face. We then crop a 96× 96 region centered around the mouth and convert

the frames to grayscale. The audio is sampled at 24 kHz, and the log-mel spectrograms are

extracted using 80 mel bands, frequency bins of size 2048, a hop size of 12.5 ms, a window

length of 50 ms, and a Hann window.

During training, we apply random cropping and horizontal flipping as in previous Chapters

and also add random erasing with a probability of 0.5. The erased area is randomly sampled

between 2 and 33% of the full frame, with an aspect ratio ranging from 0.3 to 3.3. For our

LRS3 experiments, we apply time-masking by randomly replacing each frame with the average

pixel value in the video, since we find it aids generalization when training on long sentences.

We apply one contiguous time mask for each second of the utterance, and each mask’s length

is uniformly sampled from 0 to 0.4 seconds.

5.3.3 Training details

For our GRID and LRW experiments, we train our models using AdamW (Loshchilov and

Hutter, 2017a) with a learning rate of 1 × 10−3, β1 = 0.9, β2 = 0.98, and a weight decay of

1× 10−2. We warm up the learning rate for the first 10% of iterations, and then decay it with

a cosine schedule (Loshchilov and Hutter, 2016). For LRS3 seen speakers, we use a maximum

learning rate of 7×10−3, while for unseen speakers (including the combination with VoxCeleb2)

we use 1× 10−3. We train for a total of 200, 150, 500, and 150 epochs for GRID, LRW, LRS3

seen speakers, and LRS3 unseen speakers, respectively. We save a checkpoint at the end of

each epoch and at the end of training select the one with the lowest validation loss.

2https://github.com/biubug6/Pytorch_Retinaface
3https://github.com/1adrianb/face-alignment

https://github.com/biubug6/Pytorch_Retinaface
https://github.com/1adrianb/face-alignment
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5.3.4 Evaluation metrics

We use a set of four objective metrics to evaluate the quality of the generated speech in our

experiments. Compared to Chapter 4, PESQ, STOI, and WER are kept, but MCD is replaced

by ESTOI, as we found that measuring intelligibility was particularly important in this work.

Although these metrics are commonly referenced in video-to-speech works and are therefore

useful for comparison, it is widely known that no objective speech metric correlates perfectly

with human perception of quality and intelligibility (Vougioukas et al., 2019b), as we claim in

Chapter 4. Therefore, we highly encourage readers to listen to the generated samples available

on our project website4 rather than rely solely on the reported metrics.

5.4 Results

5.4.1 Experiments

Our results are presented in Table 5.2. We begin by discussing our findings on the small-scale

GRID dataset. For the seen speaker split, our SVTS-S model clearly outperforms our previous

approach presented in Chapter 4, as well as the recent model by Kim et al. (2021), on STOI

and ESTOI. It also achieves a significant improvement in WER. These metrics indicate that

our samples are more intelligible than previous works. On unseen speakers, our model achieves

a better PESQ, STOI, and ESTOI but is outperformed by our previous GAN-based work

(presented in Chapter 4) in WER. By perceptually evaluating the generated samples, we find

that our seen speaker reconstruction is highly realistic and could be mistaken for real audio.

On the other hand, our unseen speaker samples sound considerably less noisy than previous

works and capture the unseen speaker’s voice with remarkable accuracy, thanks to our speaker

embedding strategy.

On the more challenging and diverse LRW dataset, SVTS-M is superior to previous approaches

on all metrics by a wide margin. We achieve a low WER of 13.4%, indicating that our samples

4https://sites.google.com/view/scalable-vts

https://sites.google.com/view/scalable-vts
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are consistently intelligible. Perceptually, we find that our samples sound substantially more

realistic and accurate than previous approaches, including our GAN-based approach presented

in Chapter 4. This strong performance is a consequence of our SVTS architecture, which allows

us to efficiently scale to this larger dataset.

Finally, we experiment with LRS3, which is undoubtedly the most challenging corpus we ap-

proach, as discussed in Section 5.3.1. On the seen speaker setting, we find that our model

achieves reasonable PESQ, STOI, and ESTOI performance, comparable to what had been re-

ported by previous works on LRW. The unseen speaker protocol is naturally more challenging

and therefore does not achieve the same level of quality. Interestingly, we find that results are

greatly improved with the addition of the VoxCeleb2 data, as shown by the significant boost

in all metrics. This empirically demonstrates our model’s ability to improve its reconstructions

by leveraging additional training data, even if its distribution is different from the testing set

(which only contains samples from LRS3). It also suggests that we may have not yet reached

a saturation point: There are likely still gains to be made in the future with even more data.

Perceptually, we find that the most intelligible samples are produced by our seen speaker

model, closely followed by our model trained on LRS3+VoxCeleb2. Although there is room for

improvement, we find that most syllables in the reconstructed speech are discernible, and each

speaker’s voice profile is reproduced with considerable accuracy, which is particularly impressive

in the unseen speaker scenario.

5.4.2 Ablations

To motivate our use of Parallel WaveGAN (PWG) as our waveform synthesis model, we compare

it in Table 5.3 with other recently proposed neural vocoders as well as the commonly used

Griffin-Lim algorithm. All models, including our version of PWG, are pre-trained on LibriTTS

and are publicly available5. The Griffin-Lim synthesis is performed using the fast version of

the algorithm6 (Perraudin et al., 2013) and runs for 30 iterations. It can be observed that

5https://github.com/kan-bayashi/ParallelWaveGAN
6https://librosa.org/doc/main/generated/librosa.griffinlim.html

https://github.com/kan-bayashi/ParallelWaveGAN
https://librosa.org/doc/main/generated/librosa.griffinlim.html
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Table 5.2: Summary of SVTS’s results compared to previous works on GRID, LRW, and LRS3.
Due to LRS3’s complex vocabulary and long sentence structure, we are unable to find a speech
recognition model that works accurately on our generated samples (e. g., the word “teacher” is
often mistaken for “teachers”), and therefore do not report WER for this dataset. ∗reported
using Google speech-to-text API.

Method Corpus
(seen/unseen)
Speaker split

(hours)
Training data

PESQ STOI ESTOI WER (%)

End-to-end GAN (Mira et al., 2022a) (Chapter 4) GRID seen 24 1.70 0.667 0.466 4.60
VCA-GAN + Griffin-Lim (Kim et al., 2021) GRID seen 20 1.97 0.695 0.505 5.13

SVTS-S GRID seen 24 1.97 0.705 0.523 2.36

End-to-end GAN (Vougioukas et al., 2019b) GRID unseen 13 1.26 0.494 0.198 32.79
Conv.+GRU+WORLD vocoder (Michelsanti et al., 2020b) GRID unseen 13 1.26 0.541 0.227 38.15

End-to-end GAN (Mira et al., 2022a) (Chapter 4) GRID unseen 13 1.37 0.568 0.289 16.12
VCA-GAN+Griffin-Lim (Kim et al., 2021) GRID unseen 13 1.39 0.570 0.282 24.57
Conv.+LSTM+WaveNet (Hong et al., 2021) GRID unseen 13 1.33 0.531 0.271 26.17

SVTS-S GRID unseen 13 1.40 0.588 0.318 17.85

Conv.+LSTM+Griffin-Lim (Prajwal et al., 2020b) LRW unseen 157 1.20 0.543 0.344 34.20∗

End-to-end GAN (Mira et al., 2022a) (Chapter 4) LRW unseen 157 1.33 0.552 0.330 42.60
VCA-GAN+Griffin-Lim (Kim et al., 2021) LRW unseen 157 1.34 0.565 0.364 37.07

SVTS-M LRW unseen 157 1.49 0.649 0.483 13.40

SVTS-L LRS3 seen 256 1.30 0.553 0.331 -

SVTS-L LRS3 unseen 296 1.25 0.507 0.271 -

SVTS-L
VoxCeleb2
LRS3 +

unseen 1556 1.26 0.530 0.313 -

Table 5.3: Vocoder ablation for SVTS on GRID (seen speakers). Speed is measured on an
Nvidia RTX 2080 Ti. ∗computed on CPU

.

Metric PESQ STOI ESTOI
(%)
WER

(clips/sec.)
Speed

Griffin-Lim∗ (Griffin and Jae Lim, 1984) 2.00 0.696 0.513 2.41 1.2
Multiband MelGAN (Yang et al., 2021) 1.86 0.683 0.487 2.50 184.9
Style MelGAN (Mustafa et al., 2021) 1.93 0.702 0.520 2.38 83.7
Parallel WaveGAN (Yamamoto et al., 2020) 1.97 0.705 0.523 2.36 54.7

Table 5.4: Loss ablation for SVTS on GRID (seen speakers).

Metric PESQ STOI ESTOI WER (%)

w/o Spec. Conv. 1.97 0.705 0.523 2.90
w/o L1 1.91 0.700 0.514 2.74
L1+Spec. Conv. 1.97 0.705 0.523 2.36
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Parallel WaveGAN outperforms its peers Multiband Melgan (Yang et al., 2021) and Style

Melgan (Mustafa et al., 2021) on all four evaluation metrics. Furthermore, through perceptual

evaluation, we find that PWG produces substantially more realistic audio. Regarding Griffin-

Lim, although it achieves a slightly higher PESQ score, we find that it consistently produces

noisy speech with frequent artifacts. This highlights the limitations of PESQ as a metric, as it

is often not sensitive to artifacts that are immediately noticeable to human listeners. Thanks to

efficient GPU implementations, the vocoders are roughly 50× faster than Griffin-Lim, with the

fastest vocoder, Multiband Melgan, being able to process almost 200 GRID clips per second.

In Table 5.4, we experiment with each of our loss functions separately and compare them with

the combined loss (baseline). We find that the baseline’s performance is roughly similar to

the individual losses on PESQ, STOI, and ESTOI, but is clearly superior on WER. Interest-

ingly, we find that our model achieves comparable performance with only an L1 loss, which

contrasts greatly with previous approaches’ (including Chapter 4) reliance on elaborate loss

combinations (Um et al., 2021).

5.5 Conclusion

In this chapter, we propose SVTS, a scalable approach for video-to-speech synthesis. We present

three architectures of varying sizes, which allow us to efficiently adapt our training procedure

to datasets ranging from GRID (27 hours) to LRS3+VoxCeleb2 (> 1,500 hours). We show that

our method outperforms previous approaches (including our end-to-end approach presented in

the previous Chapter) on most metrics for two popular versions of GRID, and establishes a

new state-of-the-art for LRW. Finally, we experiment with the large and unconstrained LRS3

corpus, achieving intelligible results, and combine it with VoxCeleb2 to further improve our

performance, demonstrating our method’s scalability. We hope our work will encourage a shift

towards larger corpora, as this aligns with the current ubiquity of unlabelled audio-visual data.
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This chapter is based on LA-VocE: Low-SNR Audio-visual Speech Enhancement using Neural

Vocoders, a conference paper published in ICASSP 2023. I was the first author of this paper, de-

signed the framework, conducted the experimental procedure, and wrote the manuscript. Buye

Xu made substantial contributions to the design of the framework, the implementation of our

code base, and our experimental procedure, and provided helpful feedback on the manuscript.

Jacob Donley helped establish our data processing pipeline, made substantial contributions to

our evaluation procedure (namely through the proposal of new speech quality/intelligibility

metrics), and provided extensive feedback and guidance during the writing of the manuscript.

Anurag Kumar actively contributed to discussions surrounding data pre-processing, model de-

sign, the use of baselines for comparison, and the use of evaluation metrics in our results.

Stavros Petridis, Vamsi Krishna Ithapu, and Maja Pantic supervised the project throughout

its entirety, providing helpful suggestions, feedback, and guidance regarding the design of the

framework and the writing of the manuscript.

As in previous chapters, the related work and comparison with other works presented be-

low only include papers released before the time of submission (September 2022). Since then,

ReVISE (Hsu et al., 2022), for instance, has notably achieved impressive audio-visual speech en-

hancement results, although it does not compare directly with our work and is trained/evaluated

on different datasets, under different conditions.

6.1 Introduction

Speech enhancement, defined as the extraction of clean speech from a noisy signal, is a well-

established signal processing task that has benefited greatly from the advent of deep learn-

ing (Wang and Chen, 2018). Recently-proposed models excel at denoising and dereverbera-

tion (Tan and Wang, 2020; Défossez et al., 2020), but often struggle with very low signal-to-

noise ratios (SNR) (Hao et al., 2019). Furthermore, audio-only methods struggle to accurately

remove background speech, as they are limited in the information they can use to distinguish it
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Figure 6.1: Summary of LA-VocE’s two-stage training approach and inference procedure.

from the target signal. These limitations have drawn researchers to leverage visual cues of the

target speaker’s lip movements as additional supervision – an approach known as audio-visual

speech enhancement (AVSE), which was discussed briefly in Chapter 1. This can be partic-

ularly valuable for applications such as video conferencing, streaming, recording, and hearing

augmentation in a crowded and / or noisy environment, where the target speaker’s video stream

can help the model enhance their speech. This method may also be leveraged to improve speech

recognition in low-SNR conditions. Furthermore, the recent success of video-to-speech synthe-

sis, as portrayed in Chapters 4 and 5, where the audio is reproduced using only silent video,

highlights the importance of the visual modality and shows a promising direction for audio-

visual speech enhancement in very low-SNR conditions.

Recent AVSE methods are often based on U-Nets (Gao and Grauman, 2021; Gabbay et al.,

2018; Pan et al., 2021; Xu et al., 2022), inspired by their audio-only counterparts (Tan and

Wang, 2020; Défossez et al., 2020; Luo and Mesgarani, 2019), or simple convolutional net-

works (Hou et al., 2018), frequently combined with LSTMs (Yang et al., 2022; Afouras et al.,

2018e). Existing speech enhancement models are typically combined with a video encoder which

extracts visual features and concatenates them with acoustic features to perform audio-visual

enhancement. These approaches draw heavily from speech enhancement literature, but do not
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take advantage of state-of-the-art transformer-based audio-visual encoders (Ma et al., 2021d;

Shi et al., 2022b). Most methods estimate (either directly or via a mask) the magnitude and

phase of the clean spectrogram, which are converted into waveform using the inverse Short-

Time Fourier Transform (iSTFT) (Afouras et al., 2018e; Gao and Grauman, 2021; Gabbay et

al., 2018; Hou et al., 2018), while others attempt to perform enhancement in the time domain

directly (Pan et al., 2021; Xu et al., 2022). Both of these reconstruction techniques rely on

very accurate predictions, which can be difficult to achieve, especially in low-SNR environ-

ments where audio supervision is unreliable. Yang et al. (2022) introduce neural vocoders as

an alternative synthesis method but choose to focus on constrained studio-recorded scenarios.

To address these shortcomings, we propose a new two-stage approach for audio-visual speech

enhancement entitled Low-SNRAudio-visualVocoder-based Speech Enhancement (LA-VocE).

First, we train an audio-visual spectrogram enhancer, which receives noisy speech and video of

the cropped mouth and aims to predict a clean spectrogram. This model features a ResNet-

18-based visual encoder (He et al., 2016), as in previous chapters, and a large transformer

encoder (Vaswani et al., 2017) to model the temporal correlations in the audio-visual features

and is trained using an L1 loss between the real and predicted mel-spectrogram magnitudes.

We then train a neural vocoder (HiFi-GAN V1 (Kong et al., 2020b)) to predict waveform audio

from clean mel-spectrograms on the same corpus. This fully convolutional model is trained

using a mixture of adversarial and comparative losses, with an ensemble of eight discriminators

operating on multiple periods and scales. During inference, the enhancer and the vocoder are

combined to perform end-to-end audio-visual speech enhancement.

Our contributions are as follows: (1) We present a new audio-visual speech enhancement

approach based on a large transformer-based spectrogram enhancer, combined with our version

of HiFi-GAN V1 trained on the same corpus. (2) We train our model to remove background

noise and speech on the challenging AVSpeech dataset, which features thousands of speakers and

multiple languages. (3) We compare our approach with previous state-of-the-art audio-visual

and audio-only speech enhancement methods, and show that it significantly outperforms all

methods across all metrics and noise conditions. (4) We study our model’s ability to generate

clean audio for varying levels of noise and interference and find that it consistently achieves
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improvements in speech intelligibility. (5) We measure our trained vocoder’s effectiveness

against other spectrogram inversion approaches and observe that it significantly outperforms

existing pre-trained models, as well as the Griffin-Lim algorithm (Griffin and Jae Lim, 1984).

6.2 Methodology

6.2.1 Audio-visual spectral enhancement

LA-VocE is summarized in Fig. 6.1. The first stage in our framework consists of training an

audio-visual spectrogram enhancer, which is inspired by the video-to-spectrogram model in

Chapter 5. This model extracts visual features using a 2D ResNet-18 (He et al., 2016) with a

3D convolutional stem (as in Chapters 3, 4, and 5), and acoustic features using a single linear

layer. The video features are then upsampled (via nearest neighbors interpolation) to match

the audio features’ frame rate, and the features from the two modalities are concatenated

along the channel dimension. The fused audio-visual features are fed into the transformer

encoder (Vaswani et al., 2017) - the largest component in the network. This module comprises

an initial embedding layer, with a linear layer followed by relative positional encoding (Dai

et al., 2019), and 12 transformer encoder blocks, where the attention dimension, feedforward

dimension, and the number of attention heads are 768, 2048 and 8, respectively. Finally, these

features are decoded via a linear layer into the predicted mel-frequency spectrogram. We train

the model via an L1 Loss:

L1 = ||sclean − E(snoisy, v)||1, (6.1)

where sclean and snoisy are the clean and noisy mel-spectrograms, respectively, v is the video of

the speaker’s lip movements and E is our audio-visual spectrogram enhancer. We remove the

spectral convergence loss from Chapter 5, as we find that it does not noticeably improve overall

performance.
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6.2.2 Waveform synthesis

The second stage in our method involves training a neural vocoder to convert the enhanced

spectrograms into waveform audio, rather than using a pre-trained vocoder as we did in Chapter

5. We use HiFi-GAN (Kong et al., 2020b), which upsamples the spectrogram gradually using a

set of transposed convolutions. In particular, we opt for HiFi-GAN V1, the largest HiFi-GAN

variant, which features 12 ResBlocks with hidden size 512, amounting to 13.92 million parame-

ters. As proposed by Kong et al. (2020b), the model is trained via a multi-period discriminator

(MPD), composed of five convolutional sub-discriminators which analyze the waveform along

different periods (i. e., every 2, 3, 5, 7 and 11 samples), and a multi-scale discriminator (MSD),

consisting of one sub-discriminator for the raw audio and two sub-discriminators that receive

downsampled versions of the same waveform (via 2× and 4× average pooling). Our training

objective (as in the original HiFi-GAN) combines the Least Squares Generative Adversarial

Network (LSGAN) loss (Mao et al., 2017) with an L1 loss on the mel-spectrogram magnitudes

and a feature matching loss (Larsen et al., 2016):

LG = α1LGadv
+ α2Lspec + α3LFM , (6.2)

LGadv
=

ND∑

i=1

(Di(G(sclean))− 1)2, (6.3)

Lspec = ∥m(wclean)−m(G(sclean))∥1, (6.4)

LFM =

ND∑

i=1

NLi∑

l=1

∥Dl
i(wclean)−Dl

i(G(sclean))∥1
dli

, (6.5)

LD =

ND∑

i=1

(Di(wclean)− 1)2 +Di(G(sclean))
2, (6.6)

where LG is the generator loss, LD is the discriminator loss, LGadv
is the generator’s adversarial

loss, Lspec is the mel-spectrogram loss, LFM is the feature matching loss, G is the generator
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(HiFi-GAN V1), Di is the i-th discriminator, ND is the number of discriminators, wclean is the

clean waveform, m is the function that computes the mel-spectrogram, NLi
is the number of

layers in discriminator i, andDl
i and dli refer to the features extracted from layer l / discriminator

i and their dimension, respectively. Loss coefficients α1, α2, and α3 are set to 1, 45, and 2,

respectively, as in the original HiFi-GAN (Kong et al., 2020b). After both stages of training,

the spectrogram enhancer and neural vocoder are combined during inference, as shown in Fig.

6.1.

6.3 Experimental Setup

6.3.1 Datasets

Our experiments focus on AVSpeech (Ephrat et al., 2018), one of the largest publicly available

audio-visual speech datasets. It contains roughly 4,700 hours of 3- to 10-second-long video

clips obtained from 290,000 YouTube videos. These feature approximately 150,000 different

subjects, speaking several languages with a virtually unconstrained vocabulary. The scale and

heterogeneity of the data make for a substantially more challenging and realistic scenario than

many commonly-used corpora such as GRID (Yang et al., 2022; Cooke et al., 2006b; Gabbay

et al., 2018) or Facestar (Yang et al., 2022), which are recorded in studios.

For background noise, we sample clips from the Deep Noise Suppression challenge (Reddy

et al., 2020) noise dataset. It contains roughly 70,000 noise clips, amounting to around 150

classes, ranging from music to machine sounds. Both datasets are split into training, validation,

and testing sets using an 80–10–10% ratio. Due to the computational cost of computing

the evaluation metrics, we randomly sample 1% of the AVSpeech testing set, amounting to

1,552 samples, and use this as the evaluation set for our experiments. We add two types of

corruption to the clean speech: background noise (denoted ‘noise’) and background speech

(denoted ‘interference’). The corruption level is controlled by the Signal-to-Noise Ratio (SNR)

and the Signal-to-Interference Ratio (SIR):
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SNR =
Psignal

Pnoise

, SIR =
Psignal

Pinterference

, (6.7)

where P refers to the power of each waveform. The interfering speech is also obtained from

AVSpeech. During training, the SNR and SIR are independently randomly sampled between

5 and -15 dB. The number of background noises and interfering speakers in each sample vary

randomly from 1 to 5 and 1 to 3, respectively. During validation, we propose three different

noise conditions to compare with other methods, ranging from least to most noisy. Noise

conditions 1 (low), 2 (medium), and 3 (high) feature 1, 3, and 5 background noises at 0, -5,

and -10 dB SNR, and 1, 2, and 3 background speakers at 0, -5, and -10 dB SIR, respectively.

6.3.2 Pre-processing, augmentation, and evaluation

The noisy and clean signals are normalized via peak normalization and are converted into log-

scale mel-spectrograms using the following parameters: frequency bin size and Hann window

size 1024, hop size 256, and 80 mel bands. The audio sampling rate is 16 kHz and the video

frame rate is 25 frames per second (fps). To model the speaker’s lip movements, we extract the

grayscale mouth Region Of Interest (ROI) from each video, following Chapter 5. To augment

our data during training, we apply random cropping, random horizontal flipping, random eras-

ing, and time-masking, as in Chapter 5. We evaluate our results using a set of five objective

speech metrics. For more details on each metric, please refer to Chapter 2. Following other

works (Pan et al., 2021; Luo and Mesgarani, 2019), we denote improvements between noisy and

enhanced speech metrics with the lowercase ‘i’, e. g., PESQ-WB i. In practice, this is computed

as:

M i(x, x̃, x̂) = M(x, x̂)−M(x, x̃) (6.8)

where M can be any of the five metrics we propose, x is the clean speech (ground truth), x̃

is the noisy speech, before any enhancement, and x̂ is the enhanced speech (the output of the
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model).

6.3.3 Comparison models

We compare our results with two recent AVSE models: VisualVoice (Gao and Grauman, 2021),

a complex spectral mapping approach originally proposed for speech separation that we adapt

to perform enhancement, and Multi-modal Speaker Extraction (MuSE) (Pan et al., 2021), a

feature masking approach based on Conv-TasNet (Luo and Mesgarani, 2019). To provide a

broader comparison with other reconstruction techniques, we also adapt two recent speech

enhancement models for AVSE - Gated Convolutional Recurrent Network (GCRN) (Tan and

Wang, 2020) and Demucs (Défossez et al., 2020). We achieve this by adding a visual stream

(3D front-end + ResNet-18, as in our model) which encodes the video into temporal features

that are concatenated with the audio features from the original audio encoder (preceding the

LSTM/GLSTM). We refer to these models as AV-GCRN and AV-Demucs. We also compare

with the original audio-only GCRN to highlight the importance of the visual stream. All models

are implemented based on official open-source code.

6.3.4 Training details

We train our spectrogram enhancer for 150 epochs using AdamW (Loshchilov and Hutter,

2019) with learning rate 7× 10−4, β1 = 0.9, β2 = 0.98 and weight decay 3× 10−2. We increase

the learning rate for the first 15 epochs using linear warmup and then apply a cosine decay

schedule (Loshchilov and Hutter, 2017b). Our comparison models are trained for 150 epochs

using Adam (Kingma and Ba, 2015) with β1 = 0.9, β2 = 0.98 and the same learning rate

schedule. The learning rate for GCRN, AV-GCRN, AV-Demucs, VisualVoice, and MuSE is

set to 7 × 10−4, 1 × 10−3, 7 × 10−4, 3 × 10−4 and 3 × 10−4, respectively. To train MuSE,

we replace the original SI-SDR objective (Pan et al., 2021) with the loss from Demucs (L1 +

multi-resolution STFT (Défossez et al., 2020)), as we find this increases training stability and

yields better results. We train HiFi-GAN for roughly 1 million iterations on AVSpeech using
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AdamW with learning rate 2× 10−4, β1 = 0.8, β2 = 0.99 and weight decay 1× 10−2, decaying

the learning rate by a factor of 0.999 every epoch.

6.4 Results

6.4.1 Comparison with other works

We compare with previous state-of-the-art methods in Table 6.1, and present a demo of these

results on our project website1. For noise condition 1, LA-VocE outperforms other approaches

in quality and intelligibility, achieving significant improvements across all metrics. Indeed, even

in this less noisy scenario, our vocoder-based approach can reproduce the target speech more

accurately than mask-based methods such as MuSE (Pan et al., 2021) and VisualVoice (Gao

and Grauman, 2021), which are designed for separation with one to two background speakers.

Previous AVSE methods yield decreased improvements for noise condition 2, particularly for

speech quality metrics such as PESQ and ViSQOL, while LA-VocE yields significant gains in

quality and especially intelligibility, as indicated by ESTOI i. This shows that despite identical

training conditions, previous methods adapt poorly to lower SNR/SIR conditions compared

to our new model.

Finally, on the noisiest scenario (noise condition 3), it is clear that other audio-visual methods,

including mapping-based approaches (AV-GCRN (Tan andWang, 2020) and AV-Demucs (Défossez

et al., 2020)), are unable to increase speech quality, achieving effectively no improvement on

PESQ-WB and small increases on other metrics. LA-VocE, on the other hand, can still achieve

significant gains in all metrics, indicating that our approach is substantially more robust to

extremely low-SNR scenarios. Notably, both audio-only models (GCRN Tan and Wang, 2020

and LA-VocE) yield poor results in all scenarios - without visual information, the model is

unable to accurately distinguish target speech from background speech.

1https://sites.google.com/view/la-voce-avse

https://sites.google.com/view/la-voce-avse
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Table 6.1: Comparison between LA-VocE and other speech enhancement methods for different
noise conditions. In the second column, “A” and “AV” stand for audio-only and audio-visual,
respectively.

Method Input MCD i ↓ PESQ-WB i ↑ ViSQOL i ↑ STOI i ↑ ESTOI i ↑

Noise condition 1 (1 background noise at 0 dB SNR + 1 interfering speaker at 0 dB SIR)

GCRN (Tan and Wang, 2020) A 0.410 0.044 0.093 -0.052 -0.038
AV-GCRN (Tan and Wang, 2020) AV -1.193 0.394 0.499 0.220 0.235
AV-Demucs (Défossez et al., 2020) AV -5.581 0.738 0.688 0.270 0.298
MuSE (Pan et al., 2021) AV -5.528 0.787 0.679 0.276 0.299
VisualVoice (Gao and Grauman, 2021) AV -3.781 0.606 0.645 0.249 0.270
LA-VocE (audio-only) A -3.189 0.248 0.135 0.055 0.047
LA-VocE AV -6.653 0.931 1.100 0.294 0.333

Noise condition 2 (3 background noises at -5 dB SNR + 2 interfering speakers at -5 dB SIR)

GCRN (Tan and Wang, 2020) A -0.416 -0.010 0.163 -0.015 -0.015
AV-GCRN (Tan and Wang, 2020) AV -1.354 0.096 0.398 0.234 0.214
AV-Demucs (Défossez et al., 2020) AV -5.548 0.274 0.426 0.308 0.300
MuSE (Pan et al., 2021) AV -5.314 0.297 0.409 0.308 0.289
VisualVoice (Gao and Grauman, 2021) AV -3.388 0.164 0.367 0.253 0.237
LA-VocE (audio-only) A -2.817 0.056 0.087 0.066 0.043
LA-VocE AV -6.863 0.511 0.700 0.379 0.397

Noise condition 3 (5 background noises at -10 dB SNR + 3 interfering speakers at -10 dB SIR)

GCRN (Tan and Wang, 2020) A -0.414 -0.015 0.210 -0.020 -0.005
AV-GCRN (Tan and Wang, 2020) AV -1.263 -0.043 0.217 0.171 0.139
AV-Demucs (Défossez et al., 2020) AV -4.866 0.013 0.298 0.262 0.230
MuSE (Pan et al., 2021) AV -4.185 0.011 0.242 0.231 0.182
VisualVoice (Gao and Grauman, 2021) AV -2.518 -0.045 0.248 0.181 0.160
LA-VocE (audio-only) A -1.982 -0.015 0.073 0.032 0.008
LA-VocE AV -6.170 0.159 0.447 0.371 0.358

6.4.2 Noise and interference study

We study our model’s performance in Table 6.2 by varying the SNR and SIR between 5 dB

and -15 dB (as in training) while keeping the number of background noises and interfering

speakers fixed at 3 and 2, respectively. On the left, we can see a very clear trend in PESQ-

WB improvement, as it peaks for higher SNR/SIR conditions and deteriorates as the noise

and interference increase. This suggests that the model excels at improving speech quality for

higher SNR/SIR, even with the higher PESQ baseline, but struggles to achieve substantial

gains when the environment becomes too noisy. On the other hand, ESTOI i is substantially

more consistent across all conditions and is in fact higher for -15 dB SNR/SIR than it is for 5

dB SNR/SIR. This indicates that, while LA-VocE struggles to produce high-quality audio for

extremely noisy scenarios, it manages to achieve impressive improvements in intelligibility even

for -15 dB SNR/SIR, where the target speech is entirely imperceptible for human listeners.
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Table 6.2: LA-VocE’s performance for different SNR/SIR conditions with 3 background noises
and 2 interfering speakers.

PESQ-WB i ↑ ESTOI i ↑

SNR (dB) 5 0 -5 -10 -15 5 0 -5 -10 -15

5 0.970 0.876 0.715 0.486 0.245 0.269 0.316 0.356 0.375 0.362
0 0.904 0.795 0.630 0.411 0.210 0.327 0.354 0.375 0.378 0.355

S
IR

(d
B
)

-5 0.789 0.679 0.511 0.319 0.136 0.386 0.394 0.397 0.383 0.349
-10 0.617 0.523 0.405 0.248 0.092 0.429 0.426 0.414 0.388 0.344
-15 0.438 0.383 0.289 0.195 0.081 0.443 0.433 0.414 0.381 0.330

Table 6.3: LA-VocE’s performance for different numbers of background noises and interfering
speakers (-5 dB SNR/SIR).

PESQ-WB i ↑ ESTOI i ↑

# noises 1 2 3 4 5 1 2 3 4 5

1 0.709 0.642 0.601 0.580 0.557 0.396 0.402 0.404 0.404 0.403

#
sp

k
.

2 0.602 0.553 0.511 0.497 0.482 0.396 0.398 0.397 0.395 0.393
3 0.539 0.490 0.462 0.455 0.431 0.390 0.390 0.388 0.387 0.384

This is consistent with our perceptual evaluation - LA-VocE consistently produces intelligible

audio despite the noticeable artifacts for lower SNR/SIRs.

Notably, LA-VocE performs better for lower SIRs compared to lower SNRs, e. g., 5 dB SNR/ -

15 dB SIR substantially outperforms -15 dB SNR/ 5 dB SIR on both metrics. This disparity

is likely due to the nature of these two signals. Speech typically has a consistent frequency

range and timbre and often contains gaps that the model can easily exploit, while noise is

substantially more heterogeneous, ranging from impulses to continuous noises, presenting a

greater denoising challenge. We also evaluate our model’s ability to perform enhancement

under multiple noise sources and background speakers in Table 6.3, keeping the SNR/SIR at

-5 dB. Unsurprisingly, we find that the strongest PESQ-WB improvements are achieved with

1 noise and 1 speaker, and become worse as they are increased, achieving a minimum of 0.431

for 5 noises and 3 speakers. While it is expected that increasing the number of sources will

increase the complexity of the background noise, therefore making the enhancement task more

difficult, we hypothesize that the sharper drop in performance when increasing the number

of speakers is related to the temporal and spectral gaps in the interference. A single stream
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Table 6.4: Comparison between different spectrogram inversion methods for LA-VocE (noise
condition 2). In the second column, “Train. corp.” stands for training corpus.

Method Train. corp. MCD i ↓ PESQ-WB i ↑ ViSQOL i ↑ STOI i ↑ ESTOI i ↑

Griffin-Lim (Griffin and Jae Lim, 1984) - -6.805 0.333 0.806 0.311 0.318
Noisy phase - -6.640 0.461 0.721 0.305 0.310
HiFi-GAN V1 (Kong et al., 2020b) VCTK -6.570 0.384 0.655 0.374 0.388
HiFi-GAN V1 (Kong et al., 2020b) LJSpeech -6.601 0.432 0.670 0.370 0.382
HiFi-GAN V1 (Kong et al., 2020b) AVSpeech -6.863 0.511 0.700 0.379 0.397

of speech will contain pauses that will ease denoising, but these disappear as we increase the

number of speakers, resembling continuous noise.

6.4.3 Spectrogram inversion comparison

Finally, we compare our trained HiFi-GAN with other spectrogram inversion methods in Ta-

ble 6.4. We observe that our HiFi-GAN achieves better performance than existing pre-trained

models2 (trained on VCTK (Yamagishi et al., 2012) and LJSpeech (Ito and Johnson, 2017), as

presented in the original HiFi-GAN paper (Kong et al., 2020b)) on all five metrics, highlighting

the importance of training our own vocoder on AVSpeech, rather than applying a publicly

available pre-trained model as in Chapter 5. As we demonstrate here, using a pre-trained

vocoder makes for a simpler training procedure (since there is no need for a second stage),

but yields worse results. We also compare with Griffin-Lim (Griffin and Jae Lim, 1984), a

commonly-used spectrogram inversion algorithm, and experiment by applying iSTFT using the

phase from the noisy input to reconstruct the waveform, as proposed by Gabbay et al. (2018)

and Hou et al. (2018). In our experiments, both methods consistently produce artifacts that

make the resulting waveforms sound noticeably more robotic than those produced by neural

vocoders (this is particularly noticeable for Griffin-Lim). We show that these inversion methods

yield significant drops in PESQ-WB i, STOI i, and ESTOI i, but surprisingly achieve competi-

tive MCD i performance, and substantially better ViSQOL i. This inconsistency likely implies

that these three metrics are less sensitive to the specific artifacts introduced by these phase

estimation strategies, and emphasizes the need for multiple evaluation metrics when evaluating

synthesized speech.

2https://github.com/jik876/hifi-gan

https://github.com/jik876/hifi-gan
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6.5 Conclusion

In this chapter, we propose LA-VocE, a new framework for audio-visual speech enhancement

under low-SNR conditions. Our method consists of two stages of training: audio-visual spectral

enhancement via a transformer-based encoder, and waveform synthesis via HiFi-GAN. We train

our model on thousands of hours of multilingual audio-visual speech and find that it significantly

outperforms previous state-of-the-art AVSE approaches, particularly for higher noise conditions.

We study LA-VocE’s performance under varying conditions of noise and interference, showing

that even in the noisiest scenarios our vocoder-based approach can achieve large improvements

in speech intelligibility. Finally, we compare our vocoder with existing spectrogram inversion

methods, highlighting the importance of training our own HiFi-GAN. In the future, we believe

it would be promising to adapt and optimize our architecture for real-time synthesis, which

would enable speech enhancement in live video streams.
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This chapter is based on two papers: Leveraging Real Talking Faces via Self-Supervision for

Robust Forgery Detection, also known as RealForensics, a conference paper published in CVPR

2022, and Jointly Learning Visual and Auditory Speech Representations from Raw Data, also

known as RAVEn, a conference paper published in ICLR 2023.

Alexandros Haliassos was the first author of RealForensics, designed both the pretext and

downstream tasks, conducted the experimental procedure, and wrote the manuscript. I, the

second author, made substantial contributions to discussions around the design of the self-

supervised framework, contributed extensively to the codebase, conducted a wide variety of

experiments (many of which were included in the final paper), and helped write the manuscript.

Stavros Petridis and Maja Pantic supervised the project throughout its entirety, providing

helpful suggestions, feedback, and guidance regarding the design of the framework and the

writing of the manuscript.

Alexandros Haliassos was also the first author of RAVEn, designed both the pretext and down-

stream tasks, conducted the experimental procedure, and wrote the manuscript. Pingchuan Ma

contributed to the design of the downstream frameworks (including substantial contributions

to the codebase), conducted many downstream experiments which were featured in the paper,

and helped write the manuscript. I, the third author, helped design the self-supervised frame-

work and the underlying experimental procedure, conducted several experiments, and helped

write the manuscript. Stavros Petridis and Maja Pantic supervised the project throughout

its entirety, providing helpful suggestions, feedback, and guidance regarding the design of the

framework and the writing of the manuscript.

As in previous Chapters, the related work and comparison with other works presented below

only include papers released before the time of submission (November 2021 and September 2022,

respectively). Since then, many works have competed with RealForensics, with some of them

outperforming our model under specific conditions (Bai et al., 2023; Feng et al., 2023). Similarly,

some of RAVEn’s results on LRS3 have been outperformed by the new AV-data2vec (Lian et

al., 2023).
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7.1 Introduction

As discussed in Chapter 3, self-supervised learning has become a popular way to learn rep-

resentations from unlabelled data by leveraging the data itself as a training objective. While

many approaches have focused on image (Chen et al., 2020; Grill et al., 2020), audio (Baevski

et al., 2020; Hsu et al., 2021), and video (Tong et al., 2022; Fernando et al., 2017) individually,

not many works have considered video and audio together for self-supervised learning. This is

a particularly promising topic since audio-visual speech data has become ubiquitous in modern

online platforms, and can be easily leveraged to train new deep learning models.

So far, we have presented three projects that demonstrate how visual speech encoders can learn

from acoustic speech to perform video-to-speech synthesis, or to train better lip reading models.

These approaches are motivated by the intuitive idea that acoustic speech may contain better

or more salient information about specific aspects of the speech (e. g., verbal information) which

the visual encoder can leverage to produce better features. However, it may also be the case

that video contains better information about other aspects of the speech, e. g., emotional cues.

Therefore, one could train a self-supervised acoustic speech encoder to predict visual features

in order to produce better features for emotion recognition, for example.

Inspired by this idea, Shukla et al. (2021) propose a self-supervised approach to improve emotion

recognition from speech by leveraging video as an objective. Specifically, the model learns

by reconstructing the corresponding video based on a previous speech-driven facial animation

work (Vougioukas et al., 2018), while simultaneously applying a self-supervised audio loss based

on the work of Fernando et al., 2017. The results show that this self-supervised framework

consistently outperforms traditional supervised learning on emotion recognition and that visual

supervision plays a fundamental role in self-supervision. This method also outperforms previous

audio-only self-supervised approaches.

These two research directions lead us to the idea of designing a framework that can perform both

tasks simultaneously, i. e., learn visual representations from audio and acoustic representations

from video. Inspired by this idea, we propose two audio-visual self-supervised frameworks:
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Figure 7.1: Summary of the RealForensics self-supervised training procedure.

RealForensics and RAVEn.

7.2 RealForensics

RealForensics is a self-supervised model inspired by Bootstrap Your Own Latent (BYOL) (Grill

et al., 2020), a recent self-supervised framework that achieves state-of-the-art performance in

image representation learning. The method works by employing a student-teacher pair for each

modality (audio and video), where the student in one modality predicts the other modality’s

teacher’s features. We train it on an unlabelled version of LRW and apply the pre-trained

visual encoder for DeepFake detection. We show that this method achieves state-of-the-art on

multiple forgery detection tasks.

7.2.1 Methodology

Our self-supervised pre-training method is summarized in Figure 7.1. Inspired by BYOL (Grill

et al., 2020), we propose a student-teacher pair for each modality, where the encoder architec-

tures of the students and teachers are identical, and the teachers’ weights are updated as an
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exponential moving average (with momentum set to 0.999) of the students’ weights. The video

encoder is composed of a Channel-Separated convolutional Network (CSN) (Tran et al., 2019)

with the temporal strides set to 1, which serves as our visual backbone, followed by a linear

projector, which consists of a single convolutional layer with kernel size 1, and a batch nor-

malization layer. This model receives raw RGB video of the full face as input sampled at 25

fps and outputs a 256-dimension visual feature per input frame. The audio encoder, on the

other hand, receives log-scaled mel-spectrograms sampled at 100 fps, which are downsampled

to 25fps via a 2D ResNet-18 backbone (He et al., 2016) followed by a linear projector (identical

to the one in the video encoder).

Each student’s features are fed into single-block transformer encoders, which serve as our pre-

dictors. The predicted features are first L2-normalised and then compared with the other

modality’s teacher’s features via an L2 Loss, which we aim to minimize. We note that, as

shown in Figure 7.1, we apply a stop-gradient in each teacher to prevent training collapse, as

proposed by Grill et al. (2020). We optimize our model using AdamP (Heo et al., 2021), with

the learning rate set to 7× 10−4, β1 = 0.9, β2 = 0.999 and weight decay set to 0.01. We train

for 150 epochs, where we linearly increase the backbones’ and projectors’ learning rate until

epoch 20 using warmup, and then apply a cosine decay learning rate schedule (Loshchilov and

Hutter, 2017b), as in Chapters 5 and 6. In contrast, the predictors’ learning rate is kept fixed

throughout training, inspired by Chen and He (2021).

7.2.2 Experimental Setup

We train our self-supervised model on LRW (Chung and Zisserman, 2016a) (without labels)

using the original training/validation/testing file splits. We find that this dataset is large enough

to provide a good pre-training corpus for this specific project, and allows us to have reasonable

computational costs per experiment. During pre-training, we apply random cropping to size

140×140, and then resize the frame to size 112×112, and also apply random horizontal flipping

and grayscale transformation, both with a probability of 50%, similarly to previous chapters.

In addition, we apply random masking on the inputs of the student networks, which forces them
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Figure 7.2: Summary of the RealForensics downstream training procedure, after self-supervised
pre-training.

to predict the missing information. We randomly erase a set of frames from each video, as in

Chapter 5, and similarly erase temporal frames and frequency bins from each spectrogram, as

proposed by Park et al. (2019).

We evaluate the performance of our pre-trained visual encoder by applying it for deepfake

detection (also known as forgery detection). The CSN backbone is transferred for this new

downstream task and is fine-tuned to perform two tasks simultaneously. On one side of the

network, the visual features are fed into a cosine classifier (Wang et al., 2017a) which classifies

whether the video sample is real or fake. At the same time, if the input is a real sample, its visual

features are fed into a projector and predictor (identical to the ones seen previously, but trained

from scratch) which are trained to predict the frozen teacher’s features from the pre-training

stage. Our downstream training procedure is summarized in Figure 7.2. This second auxil-

iary learning task encourages the network to classify the samples based on high-level semantic

features, such as mouth movements and emotion, due to the teacher likely having learned to

capture such information in the self-supervised stage. We train the downstream model on a

FaceForensics++ (FF++) (Rössler et al., 2019), a large and well-established deepfake detection

corpus made using two face swapping methods and two face reenactment methods (4000 fake
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Table 7.1: Cross-dataset forgery detection performance (Area Under Curve (AUC) in %) of
RealForensics compared to previous works. Our model is pre-trained on LRW via our self-
supervised framework, and fine-tuned for forgery detection on FaceForensics++, as described
in Section 7.2.2. The acronyms for each dataset presented on the first row are explained in the
last paragraph of Section 7.2.1

Method CDF DFDC FSh DFo Avg

Xception (Rössler et al., 2019) 73.7 70.9 72.0 84.5 75.3
CNN-aug (Wang et al., 2020a) 75.6 72.1 65.7 74.4 72.0
Patch-based (Chai et al., 2020) 69.6 65.6 57.8 81.8 68.7
Face X-ray (Li et al., 2020b) 79.5 65.5 92.8 86.8 81.2
CNN-GRU (Sabir et al., 2019) 69.8 68.9 80.8 74.1 73.4
Multi-task (Nguyen et al., 2019) 75.7 68.1 66.0 77.7 71.9
DSP-FWA (Li and Lyu, 2019) 69.5 67.3 65.5 50.2 63.1
Two-branch (Masi et al., 2020) 76.7 — — — —
LipForensics (Haliassos et al., 2021) 82.4 73.5 97.1 97.6 87.7
FTCN (Zheng et al., 2021) 86.9 74.0 98.8 98.8 89.6

CSN (supervised training only) 69.4 68.1 87.9 89.3 78.7
RealForensics (our self-supervised method) 86.9 75.9 99.7 99.3 90.5

videos and 1000 real videos in total), and measure its cross-dataset performance by evaluat-

ing it on separate forgery detection datasets: CelebDF-v2 (CDF) (Li et al., 2020c), which

contains 5,639 synthetic videos generated using their improved face swapping algorithm; a sub-

set of DeepFake Detection Challenge (DFDC) (Dolhansky et al., 2019; Haliassos et al., 2021),

amounting to 3,215 videos filmed under extreme conditions (e. g., low lighting); FaceShifter

(FSh) (Li et al., 2020a) and DeeperForensics (DFo) (Jiang et al., 2020), each of which applies

their own face swapping methods on the real videos from FF++ to generate new deepfakes.

We apply random time masking (as in pre-training) and random erasing on the input video

during downstream training.

7.2.3 Results

We begin by comparing our method with previous forgery detection approaches on all down-

stream datasets in Table 7.1, where we pre-train on LRW (via self-supervised learning) and

train on FaceForensics++. It is clear that RealForensics outperforms all previous approaches,

spanning a wide variety of techniques, on all presented datasets. Our method yields partic-
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Table 7.2: Ablation study for RealForensics on the downstream deepfake detection task. The
results shown refer to the forgery detection accuracy (%). All models are pre-trained on LRW
and fine-tuned on FaceForensics++.

Method FSh DFo

RealForensics 97.1 97.1
CSN (supervised training only) 82.1 83.1
self-supervised pre-training + fine-tuning (w/o auxiliary task) 95.0 95.2
w/o time masking 96.1 95.9
w/o random erasing 96.3 96.3

Table 7.3: Comparison of RealForensics with other self-supervised approaches. The results
shown refer to the forgery detection accuracy (%). All models are pre-trained on LRW and
fine-tuned on FaceForensics++.

Method FSh DFo

Perfect Match (Chung et al., 2019) 91.4 87.9
Symmetrised Perfect Match 91.8 90.2
Video-only RealForensics 92.9 89.7

RealForensics 97.1 97.1

ularly impressive improvements on DFDC and FaceShifter (FSh), while on average achieving

0.9% higher AUC (in absolute terms) than the previous state-of-the-art result. Notably, the

model considerably outperforms its supervised counterpart by a wide margin on all datasets,

indicating the importance of our audio-visual self-supervised pre-training. Indeed, if we apply

the same video encoder (CSN) for näıve supervised downstream training, the results are well

below the previous state-of-the-art.

We move on to perform an ablation on the main aspects of RealForensics in Table 7.2. We ex-

periment by training a CSN for deepfake detection from scratch and find that this configuration

yields a decrease of 15 and 14% for FaceShifter (FSh) and DeeperForensics (DFo) compared to

our baseline method. Then, we transfer the pre-trained model from the self-supervised stage

(trained on LRW) and fine-tune it for forgery classification without the auxiliary teacher loss

and find that this substantially increases downstream accuracy, but is still noticeably worse than

the baseline. This leads us to two fundamental conclusions: 1) The audio-visual pre-training

stage plays a very important role in RealForensics’ performance, and removing it yields a very
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large decrease in downstream performance, and 2) the proposed regularization effect of the

auxiliary task during downstream training plays a less important role, but still yields tangible

improvements in classification accuracy. We also experiment by removing time masking and

random erasing on the video input of the downstream task and find that this yields worse

results, highlighting the importance of these data augmentations.

Finally, we compare RealForensics with other self-supervised methods in Table 7.3. First, we

compare with a recent contrastive method - Perfect Match (Chung et al., 2019). This approach

works by feeding a short video clip into our visual encoder, and feeding multiple audio clips

(from the same video sample) into our audio encoder, one of which is correctly aligned with the

video. Through a simple contrastive loss, the encoders learn to produce features that are similar

for the aligned audio/video pair, and distant for misaligned pairs. We propose to symmetrize

this architecture by also performing the inverse task of having multiple misaligned videos for

one audio input, and find that this achieves better results. Overall, however, RealForensics

significantly outperforms both of these approaches. Finally, we investigate the importance of

paired audio-visual data, by pre-training on video only (from LRW) using the BYOL frame-

work (Grill et al., 2020). We find that this pre-training approach is clearly inferior to our

audio-visual baseline (RealForensics) in downstream performance. This clearly highlights the

significance of applying a pre-training scheme that leverages the duality between video and

audio.

7.3 RAVEn

Raw Audio-Visual Encoder (RAVEn) is a self-supervised audio-visual model which extends

and reformulates the ideas of RealForensics. Inspired by He et al. (2022), we introduce masking

mechanisms before the predictor networks, which provide direct improvements in downstream

performance. We also entirely forego the use of handcrafted features by encoding raw waveform

directly, adopt transformer encoders as the main backbone for both modalities, remove feature

projectors since we find they no longer improve performance and introduce intra-modality self-
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Figure 7.3: Summary of RAVEn’s self-supervised training procedure.

supervised learning in addition to the cross-modal learning. In order to make full use of both

our pre-trained encoders (trained on a combination of LRS3 and VoxCeleb2), we apply the

audio and video branches for speech recognition and lip reading, respectively. We show that

RAVEn achieves state-of-the-art lip reading results on LRS3, and outperforms all previous self-

supervised approaches for speech recognition and lip reading on a low-resource scenario where

only 30 hours of labeled data (from LRS3) are available.

7.3.1 Methodology

As in RealForensics, we propose a student-teacher pair for each modality, inspired by Grill et

al. (2020), as shown in Figure 7.3. In RAVEn, however, both backbones (video and audio) are

based on deep transformer encoders with 12/24 blocks for the Base/Large variants of our model

(RAVEn-Base and RAVEn-Large). On the audio side, we encode raw waveform using a 1D

ResNet-18 which is adjusted to produce features that match the video’s temporal dimension (25

fps). On the video side, we encode raw grayscale cropped mouth video by applying a 3D+2D

ResNet-18, as in previous chapters. Unlike RealForensics, we apply no projection layers after
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Table 7.4: Comparison with other supervised and self-supervised works on LRS3 using only
30 hours of labeled training data (Lab. hours) and 433 (full LRS3 training set) / 1,759
(LRS3+Vox2-en) hours of unlabelled data (Unlab. hours). “LM” refers to whether a Lan-
guage model was used in the downstream task. *Includes non-publicly available data, some of
which is not hand-labeled. †Result obtained from (Hsu et al., 2021). ‡Result obtained with
the same pre-training strategy for VSR and ASR.

Method Encoder LM
hours
Unlab.

hours
Lab. WER (%)

VSR ASR

Supervised

Afouras et al. (2018c) Transformer ✓ - 1,519* 58.9 8.3
Xu et al. (2020) RNN ✗ - 590 57.8 7.2
Shillingford et al. (2019) RNN ✓ - 3,886* 55.1 -
Ma et al. (2022a) Conformer ✓ - 813 34.7 -
Makino et al. (2019) RNN ✗ - 31,000* 33.6 4.8
Prajwal et al. (2022) Transformer ✓ - 2,676* 30.7 -
Serdyuk et al. (2021) Transformer ✗ - 90,000* 25.9 2.3
Serdyuk et al. (2022) Conformer ✗ - 90,000* 19.3 1.6

Trained from scratch (supervised)

Base model Transformer ✗ - 30 93.4 18.5
Large model Transformer ✗ - 30 95.5 9.9

Self-supervised

Base models, less pre-training data
Ma et al. (2021c) (Chapter 3) Transformer ✗ 433 30 71.9† -
Zhang et al. (2022) Transformer ✗ 433 30 67.8 10.9
Hsu et al. (2021) Transformer ✗ 433 30 - 5.4
Shi et al. (2022a) Transformer ✗ 433 30 51.8 4.9
RAVEn Transformer ✗ 433 30 47.0 4.7

Base models, more pre-training data
Zhang et al. (2022) Transformer ✗ 1,759 30 - 5.0
Hsu et al. (2021) Transformer ✗ 1,759 30 46.1 4.6‡ / 3.8
RAVEn Transformer ✗ 1,759 30 40.2 3.8

Large models, more pre-training data
Zhang et al. (2022) Transformer ✗ 1,759 30 - 3.2
Hsu et al. (2021) Transformer ✗ 1,759 30 32.5 2.9
Hsu et al. (2021) w/ self-train. Transformer ✗ 1,759 30 28.6 -
RAVEn Transformer ✗ 1,759 30 33.1 2.6
RAVEn w/ self-train. Transformer ✗ 1,759 30 26.2 2.2
RAVEn w/ self-train. Transformer ✓ 1,759 30 24.4 1.9
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the feature encoders. Instead, we apply token-level masking before the predictors, a choice

motivated by the findings of He et al. (2022). As in RealForensics, we use shallow transformer

encoders as predictors but increase the number of blocks to 2, and the hidden size to 512.

We keep the cross-modal loss from RealForensics, which is an L2 loss between the real and

predicted features. Furthermore, we add an intra-modal loss for the audio branch. The audio

features are fed into a separate predictor which predicts the teacher’s features for the masked

input frames (this is unlike the cross-modal prediction task, where all features from all input

frames, masked and unmasked, must be predicted). We motivate this asymmetrical design

through an ablation study presented later in Section 7.3.3. We optimize our self-supervised

framework using AdamW with the learning rate set to 3/2×10−3 (for RAVEn-Base/Large),

beta1 = 0.9, beta2 = 0.999 and weight decay set to 0.04. We train for 150 epochs, where we

use learning warmup for the first 30/40 epochs (for LRS3/LRS3+Vox2-en) and a cosine decay

schedule for the remaining epochs, as in previous chapters.

7.3.2 Experimental Setup

For self-supervised training, we use two datasets. The first is LRS3, where we use the same

training/validation/testing split as in Chapter 3, but remove the transcriptions. The second is

a slightly extended version of the combination of the training sets from LRS3 and English-only

VoxCeleb2 presented in Chapter 5, curated and originally presented by Shi et al. (2022a). For

the remainder of this chapter, we refer to this corpus as LRS3+Vox2-en. We apply random

horizontal flipping (p = 0.5) and random cropping (to size 88× 88) for video, and random time

masking for both video and audio. We crop the mouth in each video using RetinaFace and

FAN, as in Chapter 5.

Instead of discarding our audio encoder, as we did in RealForensics, we use both modalities’

encoders for separate tasks: speech recognition (audio) and lip reading (video). In both cases,

we transfer the full encoders (ResNet+Transformer encoder) from each student and discard the

predictors. Instead, we add (for both tasks) a decoder, composed of a single linear layer followed

by a 6/9-block transformer decoder (for the Base and Large variants), which predicts the
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transcriptions. We fine-tune these models for speech recognition/lip reading using a combined

CTC+attention loss. We also experiment with self-training by first fine-tuning the audio model

on the available labeled data, then generating pseudo-labels for the remaining unlabelled data,

and finally training both models (audio and video) on the new (larger) set of labeled data.

To further boost performance, we also add a transformer-based pre-trained language model

(as presented by Irie et al. (2019)), which is trained on a combination of many large language

datasets totaling 166 million characters.

7.3.3 Results

We compare with other works in Table 7.4 using only 30 hours of labeled audio-visual speech

from LRS3. We experiment with three configurations: “Base models, less pre-training data”,

where we use the base variant of RAVEn (and other works) and only the unlabelled train-

ing data from LRS3; “Base models, more pre-training data”, where we increase the amount

of unlabelled data by roughly 4× by adding English-only data from VoxCeleb2; and “Large

models, more pre-training data” where we increase the model size by using the large variant of

RAVEn (and other works), while still using LRS3+Vox2-en for pre-training. RAVEn achieves

state-of-the-art results in all three categories, yielding particularly impressive improvements

for VSR. On the third task, we find that our self-training strategy boosts results by a signifi-

cant margin, particularly for lip reading, indicating that the combination of self-supervised and

semi-supervised learning yields the best results. Furthermore, we observe that the addition of

the language model (seen in the last row) noticeably improves performance on both VSR and

ASR, justifying its inclusion in our downstream methodology. Finally, on a more general note,

we would like to highlight RAVEn’s remarkable scalability: by scaling up the model and lever-

aging more unlabelled data (and applying the additional techniques presented above), RAVEn

roughly halves its WER on VSR (from 47.0% to 24.4%) and achieves an even larger relative

improvement on ASR (4.7% to 1.9%) while training on the same amount of labeled data.

We proceed by conducting an ablation on the prediction tasks presented in RAVEn, as illus-

trated in Figure 7.4 and described in Table 7.5. We begin by running a version of RAVEn where



136 Chapter 7. Learning from Both Modalities SimultaneouslyPrediction tasks ablation

V A

… …

Within-modal

V A

… …

Cross-modal

V A

… …

Cross- + within-modal

V A

… …

Cross- + audio within-modal

V video 
student

A
audio 

student

video 
target
audio 
target

V A

… …

Cross- + video within-modal

Figure 7.4: Summarized overview of RAVEn’s experimental configurations featured in our
ablation study.

Table 7.5: Ablation study on the prediction tasks used in RAVEn. The models are pre-trained
on LRS3 (full training set) and fine-tuned on 30 hours of LRS3 labeled data using RAVEn-Base,
as in the “Base models, more pre-training data” configuration in Table 7.4. In the upper row,
V and A stand for video and audio, respectively.

Setting
Prediction tasks WER (%)

V → V A → A V → A A → V VSR ASR

Within-modal ✓ ✓ ✗ ✗ 92.7 15.5
Cross-modal ✗ ✗ ✓ ✓ 40.8 14.0
Cross- + within-modal ✓ ✓ ✓ ✓ 49.0 14.0
Cross- + video within-modal ✓ ✗ ✓ ✓ 55.3 16.4
Cross- + audio within-modal ✗ ✓ ✓ ✓ 32.9 12.2

only within-modal losses (on both video and audio) are used in pre-training, effectively con-

sisting of two separate uni-modal self-supervised models. Remarkably, this setup achieves very

high WER, since it does not leverage the duality of video and audio, which plays a fundamen-

tal role in RAVEn’s success. Then, we apply only the cross-modal losses, as in RealForensics,

yielding much better results. We attempt to combine the two approaches, having both cross-

modal and within-modal losses on both sides of the network, and find that the addition of the

within-modal losses, in fact, deteriorates performance. Finally, we combine each within-modal

loss with both cross-modal losses in two separate experiments, to investigate the role of within-

modal learning in each modality. The results clearly show that the video within-modal loss

has a strong negative effect on performance, whereas the audio within-modal loss (on its own)

improves downstream performance substantially. We hypothesize that this large discrepancy

in within-modal performance can be attributed to the nature of the two modalities: in most

scenarios, it is expected that the audio will contain better and more salient verbal information

than the video, particularly due to the existence of homophemes in visual speech (Chung et al.,

2017).



7.4. Conclusion 137

7.4 Conclusion

In this chapter, we present RealForensics and RAVEn, two self-supervised frameworks that

can leverage large datasets of unlabelled audio-visual speech to improve performance on prac-

tical downstream tasks. In RealForensics, we show that our self-supervised approach yields

a video encoder that consistently improves forgery detection performance in multiple cross-

dataset scenarios, achieving state-of-the-art performance on four different deepfake datasets.

We also show that our predictive cross-modal methodology outperforms existing audio-visual

synchronization-based contrastive methods, as well as video-only self-supervised pre-training

based on state-of-the-art research. In RAVEn, we extend and adapt our methodology through

multiple changes and additions, including a within-modal loss, and fine-tune both pre-trained

encoders (audio and video) to outperform previous works on speech recognition and lip read-

ing. Furthermore, we conduct an ablation on RAVEn’s prediction tasks, where we find that

the cross-modal losses play a fundamental role in RAVEn’s downstream performance, and the

addition of the audio-only within-modal loss yields a lower WER on both tasks, justifying its

inclusion in the framework. In summary, we design two frameworks where both modalities can

learn from each other simultaneously while directly improving each other’s representations, and

find that these can be applied to real-world tasks. In the future, we believe it would be promis-

ing to apply our frameworks for neighboring speech-related tasks, such as emotion recognition.

In addition, it would potentially be promising to combine the three most prevalent methods in

recent lip reading works - self-supervised learning, semi-supervised learning, and distillation -

into one unified framework.
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8.1 Summary

This thesis aims to leverage unlabelled audio-visual speech via deep learning to improve real-

world performance on audio/video-related tasks. It begins by using speech-related features as

a self-supervised objective to improve performance on visual speech recognition. Then, we take

this idea to its furthest extent by trying to leverage audio not only as an objective to learn

useful features, but as a synthesis target, and propose two separate video-to-speech synthesis

frameworks that achieve state-of-the-art results. After this, we apply our developments in

138
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video-to-speech to improve audio-visual speech enhancement under noisy conditions via the

use of powerful audio-visual encoders and neural vocoders. Finally, we propose to leverage

the full potential of audio-visual speech by using both modalities as inputs and objectives in

a single unified framework. To this end, we propose two methods where acoustic and visual

speech learn from each other simultaneously, progressively improving each other’s features, and

apply the trained encoders for deepfake detection, speech recognition, and lip reading.

In Chapter 3, we leverage an existing pre-trained speech encoder (PASE+ (Ravanelli et al.,

2020a)) to generate an acoustic objective that can be used to train our ResNet+Conformer-

based video encoder. We pre-train on an unlabelled version of LRS3 using this novel objective

and then fine-tune the pre-trained visual model for lip reading. We show that the pre-training

outperforms previous self-supervised methods on LRW (word-level lip reading) and achieves

state-of-the-art performance on LRS2 (sentence-level lip reading). Furthermore, we compare

the pre-trained model with our baseline (training from scratch) for different portions of labeled

data and find that the pre-trained weights consistently yield an improvement in downstream

performance, but are particularly important when the labeled dataset is very small.

In Chapter 4, we propose a new end-to-end video-to-speech synthesis framework that generates

raw waveform from raw video of the speaker’s lip movements. We propose a convolutional

encoder-decoder structure for the waveform generator (with a GRU-based temporal encoder),

which is trained via two discriminators that operate on the waveform and spectrogram domains,

and three comparative losses. We find that this model achieves state-of-the-art performance

according to most metrics on three versions of GRID, TCD-TIMIT, and LRW. Through an

extensive ablation study, we find that each of the proposed losses plays an important role in

the quality of the reconstructed speech.

In Chapter 5, we design a new video-to-speech model that prioritizes simplicity and scalability.

This is based on a ResNet+Conformer generator that predicts log-scaled mel-spectrograms from

raw video, which can be scaled for different datasets. The predicted spectrograms are converted

into raw waveform using a pre-trained neural vocoder (Parallel WaveGAN). We demonstrate

that this approach outperforms all previous methods on GRID and LRW, and experiment for
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the first time with LRS3, which is larger than any previously mentioned dataset in video-to-

speech literature.

In Chapter 6, we borrow from our experience in video-to-speech synthesis by proposing a

new audio-visual speech enhancement (AVSE) model for Low-SNR conditions. We propose a

ResNet+Transformer encoder that receives raw mouth crop video and noisy audio and predicts

log-mel spectrograms. Rather than using a pre-trained vocoder, as we did in Chapter 5, we train

our own version of Hifi-GAN on the same audio-visual corpus (AVSpeech). We find that this

approach considerably outperforms previous AVSE methods for three different noise conditions

with multiple background speakers and noise sources. Furthermore, we conduct a study where

we evaluate our model’s ability to perform different levels of noise and interference, and find

that it consistently outputs intelligible results.

In Chapter 7, we propose two audio-visual self-supervised frameworks where acoustic and visual

speech can learn from each other to produce better representations. These approaches are

inspired by recent advances in image-based methods (Grill et al., 2020; He et al., 2022), and

work by training the visual and acoustic speech encoders to predict each other’s latent features.

We apply our first framework, RealForensics, by fine-tuning the pre-trained video encoder

for deepfake detection, and find that it outperforms all previous works on four cross-dataset

benchmarks. In our second project, RAVEn, we apply the audio and video encoders for ASR

and VSR respectively and find that they both outperform previous self-supervised methods

when few labeled examples are available (30 hours of transcribed data from LRS3).

8.2 Applications

This thesis focuses on a diverse array of downstream tasks. Firstly, lip reading and speech

recognition, which are proposed in Chapter 3 and 7 can, and indeed already have, a variety of

real-world applications in commercial speech-to-text systems1,2. On the medical front, speech

recognition can help hearing impaired patients by transcribing speech in real time, while lip

1https://cloud.google.com/speech-to-text
2https://support.apple.com/en-gb/guide/iphone/iph2c0651d2/ios

https://cloud.google.com/speech-to-text
https://support.apple.com/en-gb/guide/iphone/iph2c0651d2/ios
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reading can help people with aphonia, i. e., who cannot produce voiced speech, by transcrib-

ing their speech based on their facial movements. Video-to-speech synthesis, as proposed in

Chapters 4 and 5, can similarly be applied to help people with aphonia by producing audible

speech directly from their silent lip movements alone. On the other hand, audio-visual speech

enhancement systems, such as the one proposed in Chapter 6, can instead be applied for video

conferencing, where we can remove acoustic noise and background speech based by leveraging

the speaker’s video stream as additional supervision.

Finally, deepfake detection (presented in Chapter 7) can be applied to automatically detect

manipulated visual speech without the need for human intervention. This can have a direct

positive impact on modern media-sharing platforms by alleviating the potential social harm

of misusing recent advances in facial animation. Furthermore, the self-supervised visual and

acoustic models in Chapters 3 and 7 can be applied to a variety of new tasks, other than

the ones proposed in their respective Chapters. These include emotion recognition, speaker

recognition/identification, speech re-synthesis from self-supervised audio embeddings (Polyak

et al., 2021) and facial animation, among others.

8.3 Ethical Considerations

Many of the tasks discussed in this thesis, including ASR, VSR, video-to-speech synthesis, and

audio-visual speech enhancement can have a very positive effect on broader society by improv-

ing communication systems, particularly by helping those who suffer from hearing impairments

or aphonia. However, these can also be easily applied for surveillance, which is particularly

problematic in VSR and video-to-speech since they can be applied for long-distance speech

recognition, e. g., transcribing the speech of someone being recorded on CCTV. Another aggra-

vating point is the fact that these methods are designed to be autonomous, meaning that they

can be deployed and operated with little to no human supervision. This newfound automation,

combined with recent developments that substantially improve the accuracy of state-of-the-art

models, can enable automatic mass surveillance on an unprecedented scale.
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As I mentioned in a recent interview with VICE3, there are two ways to prevent and limit

the misuse of these technologies. Firstly, state-of-the-art research should be published in open-

access platforms where researchers can be held accountable for their claims and applications.

This allows us the public to discuss the impact of potential applications before these can

be developed and leveraged by bad actors. Secondly, to prevent the misuse of these new

technologies by powerful institutions such as governments or large corporations, it is important

to consider them as political matters. Inevitably, powerful organizations will eventually have

access to new models and the resources to deploy them. Therefore, our democracies must be

robust enough to prevent them from undermining the general public’s safety or privacy, e. g.,

by passing laws that limit the use of facial recognition in public spaces 4.

Another important ethical consideration should be made regarding the data that is used to

train the models presented in this thesis, i. e., audio-visual speech. The datasets we use to

train our models are either recorded in studios (GRID, TCD-TIMIT) or taken from existing

audio-visual media, e. g., television broadcasts (LRW, LRS2), Ted Talks (LRS3) or YouTube

(VoxCeleb2, AVSpeech). In all of these datasets, the aim is to collect as much audio-visual

speech as possible, which means that there are limited mechanisms in place to, for example,

ensure that there is a representative percentage of each ethnicity. In fact, none of these datasets

present a detailed study of the ethnicity of its speakers. Therefore, it is highly likely that some

ethnicities may be underrepresented, which will lead to models that are less accurate for these

specific individuals. This kind of implicit discrimination caused by biased datasets should be

prevented by designing inclusive datasets that are designed with these factors in mind. A good

example is Casual Conversations (Hazirbas et al., 2022), a recent dataset that is explicitly made

to take into account age, gender, and apparent skin tone.

3https://www.vice.com/en/article/bvzvdw/tech-companies-are-training-ai-to-read-your-lips
4https://www.politico.eu/article/europe-edges-closer-to-a-ban-on-facial-recognition/

https://www.vice.com/en/article/bvzvdw/tech-companies-are-training-ai-to-read-your-lips
https://www.politico.eu/article/europe-edges-closer-to-a-ban-on-facial-recognition/
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8.4 Future Work

Although many research directions can be pursued by developing the research questions posed in

this thesis, two future research topics should be highlighted. The first is diffusion-based speech

synthesis. As we demonstrate in Chapters 5 and 6, neural vocoders play a fundamental role

in developing state-of-the-art video-to-speech and audio-visual speech enhancement models.

Indeed, modern vocoders such as HiFi-GAN (Kong et al., 2020a) considerably outperform

Griffin-Lim (Griffin and Lim, 1983), are relatively lightweight and are substantially faster than

real-time during inference. The vocoders used in this thesis (Parallel WaveGAN (Yamamoto

et al., 2019) and HiFi-GAN (Kong et al., 2020a)), as well as the waveform decoder in Chapter

4, are based on GANs, which have dominated speech synthesis literature and have shown very

impressive results. However, with the emergence of diffusion models in recent years (Ho et al.,

2020), the image synthesis state-of-the-art has shifted away from GANs and achieved novel,

more impressive results by leveraging diffusion-based architectures (Dhariwal and Nichol, 2021).

Although there has been some initial research into diffusion-based neural vocoders (Kong et al.,

2021; Koizumi et al., 2022), we would like to encourage a more substantial shift towards this

research direction, as this could lead to better vocoders that can improve the state-of-the-art

for all synthesis-based tasks, including video-to-speech and audio-visual speech enhancement.

We also believe it would be promising to investigate new learning objectives for audio-visual self-

supervised learning. In Chapter 3, we propose a self-supervised objective that can successfully

leverage audio as an objective for visual speech encoders by using a pre-trained speech encoder.

In Chapter 7, on the other hand, we propose two different frameworks with different (yet

similar) objectives that allow acoustic and visual speech to learn from each other simultaneously.

We believe these objectives were a fundamental step towards our state-of-the-art results on

downstream results. However, as discussed in these chapters, there is a wide variety of self-

supervised objectives proposed for image recognition, for example, that we did not experiment

with (Zbontar et al., 2021; He et al., 2022). We believe exploring this topic more thoroughly

within the audio-visual domain could lead to frameworks that are faster, more stable, require

less tuning, and, most importantly, produce better downstream results. Therefore, we would



144 Chapter 8. Conclusion

like to encourage new research that either applies existing self-supervised objectives to learn

from audio-visual speech or designs new objectives that are tailored to these modalities.
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O. Scharenborg, and P. Motĺıcek, Eds., ISCA, 2021, pp. 3011–3015. doi: 10.21437/

Interspeech.2021-1360. [Online]. Available: https://doi.org/10.21437/Interspeech.

2021-1360.

[42] Y. Tabet and M. Boughazi, “Speech synthesis techniques. a survey,” in International

Workshop on Systems, Signal Processing and their Applications, WOSSPA, 2011, pp. 67–

70. doi: 10.1109/WOSSPA.2011.5931414.

[43] X. Tan, T. Qin, F. K. Soong, and T. Liu, “A survey on neural speech synthesis,” CoRR,

vol. abs/2106.15561, 2021. arXiv: 2106.15561. [Online]. Available: https://arxiv.

org/abs/2106.15561.

[44] A. Simons and S. Cox, “Generation of mouthshapes for a synthetic talking head,” Pro-

ceedings of the Institute of Acoustics, Autumn Meeting, Jan. 1990.

[45] E. Yamamoto, S. Nakamura, and K. Shikano, “Lip movement synthesis from speech

based on hidden markov models,” Speech Commun., vol. 26, no. 1-2, pp. 105–115, 1998.

doi: 10.1016/S0167-6393(98)00054-5. [Online]. Available: https://doi.org/10.

1016/S0167-6393(98)00054-5.

[46] A. van den Oord et al., “Wavenet: A generative model for raw audio,” in The 9th ISCA

Speech Synthesis Workshop, Sunnyvale, CA, USA, 13-15 September 2016, ISCA, 2016,

p. 125. [Online]. Available: http://www.isca- speech.org/archive/SSW\_2016/

abstracts/ssw9\_DS-4\_van\_den\_Oord.html.

[47] C. Donahue, J. J. McAuley, and M. S. Puckette, “Adversarial audio synthesis,” in 7th

International Conference on Learning Representations, ICLR 2019, New Orleans, LA,

https://doi.org/10.21437/Interspeech.2021-1360
https://doi.org/10.21437/Interspeech.2021-1360
https://doi.org/10.21437/Interspeech.2021-1360
https://doi.org/10.21437/Interspeech.2021-1360
https://doi.org/10.1109/WOSSPA.2011.5931414
https://arxiv.org/abs/2106.15561
https://arxiv.org/abs/2106.15561
https://arxiv.org/abs/2106.15561
https://doi.org/10.1016/S0167-6393(98)00054-5
https://doi.org/10.1016/S0167-6393(98)00054-5
https://doi.org/10.1016/S0167-6393(98)00054-5
http://www.isca-speech.org/archive/SSW\_2016/abstracts/ssw9\_DS-4\_van\_den\_Oord.html
http://www.isca-speech.org/archive/SSW\_2016/abstracts/ssw9\_DS-4\_van\_den\_Oord.html


152 Chapter 8. Conclusion

USA, May 6-9, 2019, OpenReview.net, 2019. [Online]. Available: https://openreview.

net/forum?id=ByMVTsR5KQ.

[48] R. Yamamoto, E. Song, and J. Kim, “Parallel wavegan: A fast waveform generation

model based on generative adversarial networks with multi-resolution spectrogram,”

CoRR, vol. abs/1910.11480, pp. 6199–6203, 2019. doi: 10.1109/ICASSP40776.2020.

9053795. arXiv: 1910.11480. [Online]. Available: http://arxiv.org/abs/1910.11480.

[49] J. Kong, J. Kim, and J. Bae, “Hifi-gan: Generative adversarial networks for efficient and

high fidelity speech synthesis,” in Advances in Neural Information Processing Systems

33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,

December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and

H. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.cc/paper/

2020/hash/c5d736809766d46260d816d8dbc9eb44-Abstract.html.

[50] K. Vougioukas, S. Petridis, and M. Pantic, “End-to-end speech-driven facial anima-

tion with temporal gans,” in British Machine Vision Conference 2018, BMVC 2018,

Newcastle, UK, September 3-6, 2018, BMVA Press, 2018, p. 133. [Online]. Available:

http://bmvc2018.org/contents/papers/0539.pdf.

[51] D. Das, S. Biswas, S. Sinha, and B. Bhowmick, “Speech-driven facial animation using

cascaded gans for learning of motion and texture,” in Computer Vision - ECCV 2020 -

16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XXX,

A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, Eds., ser. Lecture Notes in Computer

Science, vol. 12375, Springer, 2020, pp. 408–424. doi: 10.1007/978-3-030-58577-

8\_25. [Online]. Available: https://doi.org/10.1007/978-3-030-58577-8\_25.

[52] K. Vougioukas, S. Petridis, and M. Pantic, “DINO: A conditional energy-based GAN

for domain translation,” in 9th International Conference on Learning Representations,

ICLR 2021, Virtual Event, Austria, May 3-7, 2021, OpenReview.net, 2021. [Online].

Available: https://openreview.net/forum?id=WAISmwsqDsb.

[53] I. J. Goodfellow et al., “Generative adversarial networks,” CoRR, vol. abs/1406.2661,

2014. arXiv: 1406.2661. [Online]. Available: http://arxiv.org/abs/1406.2661.

https://openreview.net/forum?id=ByMVTsR5KQ
https://openreview.net/forum?id=ByMVTsR5KQ
https://doi.org/10.1109/ICASSP40776.2020.9053795
https://doi.org/10.1109/ICASSP40776.2020.9053795
https://arxiv.org/abs/1910.11480
http://arxiv.org/abs/1910.11480
https://proceedings.neurips.cc/paper/2020/hash/c5d736809766d46260d816d8dbc9eb44-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c5d736809766d46260d816d8dbc9eb44-Abstract.html
http://bmvc2018.org/contents/papers/0539.pdf
https://doi.org/10.1007/978-3-030-58577-8\_25
https://doi.org/10.1007/978-3-030-58577-8\_25
https://doi.org/10.1007/978-3-030-58577-8\_25
https://openreview.net/forum?id=WAISmwsqDsb
https://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661


8.4. Future Work 153

[54] S. Petridis, T. Stafylakis, P. Ma, F. Cai, G. Tzimiropoulos, and M. Pantic, “End-to-end

audiovisual speech recognition,” in 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing, ICASSP 2018, Calgary, AB, Canada, April 15-20, 2018,

IEEE, 2018, pp. 6548–6552. doi: 10.1109/ICASSP.2018.8461326. [Online]. Available:

https://doi.org/10.1109/ICASSP.2018.8461326.

[55] P. Ma, S. Petridis, and M. Pantic, “End-to-end audio-visual speech recognition with

conformers,” in IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing, ICASSP 2021, Toronto, ON, Canada, June 6-11, 2021, IEEE, 2021, pp. 7613–

7617. doi: 10.1109/ICASSP39728.2021.9414567. [Online]. Available: https://doi.

org/10.1109/ICASSP39728.2021.9414567.

[56] J. Hou et al., “Audio-visual speech enhancement using deep neural networks,” in Asia-

Pacific Signal and Information Processing Association Annual Summit and Conference,

APSIPA 2016, Jeju, South Korea, December 13-16, 2016, IEEE, 2016, pp. 1–6. doi:

10.1109/APSIPA.2016.7820732. [Online]. Available: https://doi.org/10.1109/

APSIPA.2016.7820732.

[57] M. Gogate, K. Dashtipour, and A. Hussain, “Towards robust real-time audio-visual

speech enhancement,” CoRR, vol. abs/2112.09060, 2021. arXiv: 2112.09060. [Online].

Available: https://arxiv.org/abs/2112.09060.

[58] A. Ephrat et al., “Looking to listen at the cocktail party: A speaker-independent audio-

visual model for speech separation,” ACM Trans. Graph., vol. 37, no. 4, p. 112, 2018.

doi: 10.1145/3197517.3201357. [Online]. Available: https://doi.org/10.1145/

3197517.3201357.

[59] R. Gao and K. Grauman, “Visualvoice: Audio-visual speech separation with cross-

modal consistency,” in IEEE Conference on Computer Vision and Pattern Recognition,

CVPR 2021, virtual, June 19-25, 2021, Computer Vision Foundation / IEEE, 2021,

pp. 15 495–15 505. doi: 10.1109/CVPR46437.2021.01524. [Online]. Available: https:

//openaccess.thecvf.com/content/CVPR2021/html/Gao\_VisualVoice\_Audio-

https://doi.org/10.1109/ICASSP.2018.8461326
https://doi.org/10.1109/ICASSP.2018.8461326
https://doi.org/10.1109/ICASSP39728.2021.9414567
https://doi.org/10.1109/ICASSP39728.2021.9414567
https://doi.org/10.1109/ICASSP39728.2021.9414567
https://doi.org/10.1109/APSIPA.2016.7820732
https://doi.org/10.1109/APSIPA.2016.7820732
https://doi.org/10.1109/APSIPA.2016.7820732
https://arxiv.org/abs/2112.09060
https://arxiv.org/abs/2112.09060
https://doi.org/10.1145/3197517.3201357
https://doi.org/10.1145/3197517.3201357
https://doi.org/10.1145/3197517.3201357
https://doi.org/10.1109/CVPR46437.2021.01524
https://openaccess.thecvf.com/content/CVPR2021/html/Gao\_VisualVoice\_Audio-Visual\_Speech\_Separation\_With\_Cross-Modal\_Consistency\_CVPR\_2021\_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Gao\_VisualVoice\_Audio-Visual\_Speech\_Separation\_With\_Cross-Modal\_Consistency\_CVPR\_2021\_paper.html


154 Chapter 8. Conclusion

Visual\_Speech\_Separation\_With\_Cross-Modal\_Consistency\_CVPR\_2021\

_paper.html.

[60] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirec-

tional transformers for language understanding,” in Proceedings of the 2019 Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,

Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and T. Solorio, Eds., Associ-

ation for Computational Linguistics, 2019, pp. 4171–4186. doi: 10.18653/v1/n19-1423.

[Online]. Available: https://doi.org/10.18653/v1/n19-1423.

[61] T. B. Brown et al., “Language models are few-shot learners,” in Advances in Neural In-

formation Processing Systems 33: Annual Conference on Neural Information Processing

Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ran-

zato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020. [Online]. Available: https://

proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-

Abstract.html.

[62] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton, “A simple framework for con-

trastive learning of visual representations,” in Proceedings of the 37th International Con-

ference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, ser. Pro-

ceedings of Machine Learning Research, vol. 119, PMLR, 2020, pp. 1597–1607. [Online].

Available: http://proceedings.mlr.press/v119/chen20j.html.

[63] K. He, H. Fan, Y. Wu, S. Xie, and R. B. Girshick, “Momentum contrast for unsupervised

visual representation learning,” in 2020 IEEE/CVF Conference on Computer Vision

and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, Computer

Vision Foundation / IEEE, 2020, pp. 9726–9735. doi: 10.1109/CVPR42600.2020.00975.

[Online]. Available: https://doi.org/10.1109/CVPR42600.2020.00975.

[64] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “Wav2vec 2.0: A framework for self-

supervised learning of speech representations,” in Advances in Neural Information Pro-

cessing Systems 33: Annual Conference on Neural Information Processing Systems 2020,

https://openaccess.thecvf.com/content/CVPR2021/html/Gao\_VisualVoice\_Audio-Visual\_Speech\_Separation\_With\_Cross-Modal\_Consistency\_CVPR\_2021\_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Gao\_VisualVoice\_Audio-Visual\_Speech\_Separation\_With\_Cross-Modal\_Consistency\_CVPR\_2021\_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Gao\_VisualVoice\_Audio-Visual\_Speech\_Separation\_With\_Cross-Modal\_Consistency\_CVPR\_2021\_paper.html
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://proceedings.mlr.press/v119/chen20j.html
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/CVPR42600.2020.00975


8.4. Future Work 155

NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M.

Balcan, and H. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.

cc/paper/2020/hash/92d1e1eb1cd6f9fba3227870bb6d7f07-Abstract.html.

[65] W. Hsu, B. Bolte, Y. H. Tsai, K. Lakhotia, R. Salakhutdinov, and A. Mohamed, “Hubert:

Self-supervised speech representation learning by masked prediction of hidden units,”

IEEE ACM Trans. Audio Speech Lang. Process., vol. 29, pp. 3451–3460, 2021. doi:

10.1109/TASLP.2021.3122291. [Online]. Available: https://doi.org/10.1109/

TASLP.2021.3122291.

[66] J. Grill et al., “Bootstrap your own latent - A new approach to self-supervised learning,”

in Advances in Neural Information Processing Systems 33: Annual Conference on Neural

Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, H.

Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020. [Online]. Avail-

able: https://proceedings.neurips.cc/paper/2020/hash/f3ada80d5c4ee70142b17b8192b2958e-

Abstract.html.

[67] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny, “Barlow twins: Self-supervised

learning via redundancy reduction,” in Proceedings of the 38th International Confer-

ence on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, M. Meila

and T. Zhang, Eds., ser. Proceedings of Machine Learning Research, vol. 139, PMLR,

2021, pp. 12 310–12 320. [Online]. Available: http://proceedings.mlr.press/v139/

zbontar21a.html.

[68] L. Schoneveld, A. Othmani, and H. Abdelkawy, “Leveraging recent advances in deep

learning for audio-visual emotion recognition,” Pattern Recognit. Lett., vol. 146, pp. 1–

7, 2021. doi: 10.1016/j.patrec.2021.03.007. [Online]. Available: https://doi.org/

10.1016/j.patrec.2021.03.007.

[69] J. S. Chung and A. Zisserman, “Lip reading in the wild,” in Asian Conference on Com-

puter Vision, 2016.

[70] R. S. C. de Mira, A. Haliassos, S. Petridis, B. W. Schuller, and M. Pantic, “SVTS:

scalable video-to-speech synthesis,” in Interspeech 2022, 23rd Annual Conference of

https://proceedings.neurips.cc/paper/2020/hash/92d1e1eb1cd6f9fba3227870bb6d7f07-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/92d1e1eb1cd6f9fba3227870bb6d7f07-Abstract.html
https://doi.org/10.1109/TASLP.2021.3122291
https://doi.org/10.1109/TASLP.2021.3122291
https://doi.org/10.1109/TASLP.2021.3122291
https://proceedings.neurips.cc/paper/2020/hash/f3ada80d5c4ee70142b17b8192b2958e-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f3ada80d5c4ee70142b17b8192b2958e-Abstract.html
http://proceedings.mlr.press/v139/zbontar21a.html
http://proceedings.mlr.press/v139/zbontar21a.html
https://doi.org/10.1016/j.patrec.2021.03.007
https://doi.org/10.1016/j.patrec.2021.03.007
https://doi.org/10.1016/j.patrec.2021.03.007


156 Chapter 8. Conclusion

the International Speech Communication Association, Incheon, Korea, 18-22 Septem-

ber 2022, H. Ko and J. H. L. Hansen, Eds., ISCA, 2022, pp. 1836–1840. doi: 10 .

21437/Interspeech.2022-10770. [Online]. Available: https://doi.org/10.21437/

Interspeech.2022-10770.

[71] Y. Jia et al., “Transfer learning from speaker verification to multispeaker text-to-speech

synthesis,” in Advances in Neural Information Processing Systems 31: Annual Confer-

ence on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8,
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