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Abstract

This thesis proposes the application of complex analysis to the calculation of effective

parameters of transport problems in multiply connected domains. This can be done by

using special functions called Schottky-Klein prime functions. The effective parameters

focused on in this thesis are electrical resistivity, electrical capacity, and slip lengths of

channels. The prime function is a powerful mathematical function invented by Crowdy for

solving problems in multiply connected domains including transport problems governed

by Laplace’s equation and Poisson’s equation in domains with multiple boundaries. The

functional properties of the prime function make it possible to analyse effective parameters

in multiply connected domains.

First, a new method for solving a new class of boundary value problems in multiply

connected domains is explained. An explicit solution can be derived by multiplying of the

boundary data with a radial slit map written in terms of the prime functions.

We then focus on two electrical transport problems called “the van der Pauw method”

and “electrical capacity”. For the van der Pauw method, the prime function allows us to

derive new formulas for calculating the resistivity of holey samples. A new method for

the electrical capacity of multiply connected domains is formulated by coupling the prime

function with asymptotic matching.

We next construct explicit solutions for flows through superhydrophobic surfaces in

periodic channels and calculate the slip length of these channels. We end the thesis by

mentioning that the new methodology gives accurate estimates for so-called “accessory

parameter problems” associated with conformal maps of multiply connected domains.
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Chapter 1

Introduction

1.1 Background

Transport theory focuses on the transport of physical quantities such as heat, gas, water,

and mass, and its aim is to quantify these flows. Transport theory dates back to research

on heat flow by Fourier. In 1822, Fourier found that the heat flux through materials was

proportional to the negative gradient of the temperature field; this is now called Fourier’s

law (see [59]). Four years later, Ohm found his famous law, which is an electrical analogue

of Fourier’s law. Ohm’s law states that electrical current is proportional to voltage gradient.

Transport theory appears in many areas [22]. For example, it has applications in

electrical engineering, such as the study of electrical power systems, measurement of the

electrical conductivity of molten salts, signal processing and machine learning, engineering,

and research in a wide variety of fields such as, porous media, intelligent transport systems,

and infrastructure. Duderstadt and Martin’ book on transport theory covers topics such

as radiation transport, plasma physics, and gas dynamics [53].

The theory of fluid dynamics can also be interpreted in terms of transport theory [133].

Fluid flows transport energy, mass, heat, and gas. For example, flows in a heat sink

transport heat in order to cool down machines in industry [151]. Similar to electrical

current, a pressure-driven flow is caused by the pressure difference between the inlet and

outlet of tubes or channels. It is noteworthy that different transport phenomena share the

same physical model and hence important quantities, such as the total heat flux, electrical

conductivity, and diffusion rates can be calculated by solving these mathematical models.

The main purpose of the analysis of transport phenomena is to evaluate the important

effective parameters, which characterize the material, the flow, and the industrial

performance. Here we choose three parameters as important examples arising in the

transport theory.
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1.2 Effective parameters arising in transport theory

In this section, we provide detailed explanations of three important parameters associated

with physical flows in transport theory. These parameters extensively investigated in this

thesis are electrical conductivity (or resistivity), electrical capacitance (or capacity), and

slip lengths of fluid flows.

1.2.1 Electrical conductivity/ resistivity

Materials are classified according to their electrical conductivity as insulators,

semiconductors, metals, superconductors, etc. Electrical conductivity is a fundamental

quantity that determines the properties of metals and has a very long history since Ohm’s

experimental measurement of resistance.

As is well known, the resistance R of a uniform conductor of length l and cross-sectional

area A, as shown in Figure 1.1, is expressed as follows:

R =
V

I
= σ

l

A
. (1.1)

The coefficient σ is called resistivity and its inverse is called conductivity.

Figure 1.1: Normal setting for measuring electrical resistivity. The current I flows through
the material due to the induced voltage V .

Electrical conductivity varies greatly depending on the type of metal, temperature,

and impurities inside metals. For example, resistivity is very high for insulators such as

quartz but very small for metals. Therefore, laboratory experiments require a technique

to measure resistivity easily and accurately. Some research on resistivity measurement in

laboratories includes the measurement of the temperature dependence of the electrical

conductivity of diamond [54], the electrical conductivity of perovskiteoxide heterostructures
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for two-dimensional electron gases [163], resistivity of metals and alloys [125], and even

water content or fluid composition of soil [130].

Methods for accurate measurement of electrical conductivity are required in many

situations and thus several methods have been proposed. In particular, the two-point

method, which involves measuring the voltage difference and current between two electrodes,

is a basic method for measuring the resistivity of metals. Wenner used the two-point

method for measuring the resistivity of Earth [157]. However, the two-point method is

known to be susceptible to contact resistances. Instead of this method, the four-point

method is commonly used due to the fact that the method is not affected by contact

resistance [148]. The following review paper discusses the various four-point methods in

detail [96].

Another famous method for measuring electrical resistivity of samples is the van der

Pauw method. Van der Pauw’s method is a simple method for measuring the resistivity

of flat thin samples, and was invented in 1958 by Van der Pauw [117, 118]. One of the

most important advantages of the method is that it can be used to measure resistivity

of arbitrary shaped materials. In order to use the method, the sample must satisfy the

following conditions [154]:

• The sample must have a flat shape of uniform thickness.

• The sample must not have any isolated holes.

• The sample must be homogeneous and isotropic.

The van der Pauw setup is illustrated in Figure 1.2. Here we assume that the contact size

is small and all contacts Ωa, Ωb, Ωz, and Ωw are located at the edge. The van der Pauw

method needs two voltage measurements, Vzw and Vzb, with the following setups. The first

measurement is the voltage difference between Ωz and Ωw with current Jab flowing from Ωa

to Ωb. The second measurement is the voltage difference between Ωz and Ωb with current

Jaw flowing from Ωa to Ωw. The important quantities Rzw
ab , Rzb

aw are measured resistances

defined by

Rzw
ab ≡ Vzw

Jab
, Rzb

aw ≡ Vzb
Jaw

. (1.2)

Then the sheet resistivity σ is known to satisfy the famous van der Pauw equation [118]:

exp

(
−
πdRzw

ab

σ

)
+ exp

(
−πdR

zb
aw

σ

)
= 1, (1.3)

where d is the thickness of the sample.
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x x

x

x

Figure 1.2: Normal van der Pauw setup. The van der Pauw method needs two voltage
measurements. The first measurement is the voltage difference between Ωz and Ωw with
current Jab flowing from Ωa to Ωb. The second measurement is the voltage difference
between Ωz and Ωb with current Jaw flowing from Ωa to Ωw. The simple two measurements
determine the resistivity of the material.

Because of its simplicity, the van der Pauw method is used in many laboratory

experiments. In particular, it is used for the resistivity measurement for superconducting

materials, due to the fact that it is a convenient and accurate method for measuring the

sheet resistivity of square-shaped samples [158,159].

In recent years, the van der Pauw method has been widely studied for samples with

an isolated hole [12, 137, 139]. Szymański et. al studied a sample with a single isolated

hole whose boundary comprises more than a single point as the natural first case to

study. [137, 139]. By conducting both numerical and laboratory experiments Szymański et

al. showed that the van der Pauw equation (1.3) does not hold for a sample with a hole

but conjectured that the data instead satisfy the inequality [137]

exp

(
−
πdRzw

ab

σ

)
+ exp

(
−πdR

zb
aw

σ

)
≤ 1. (1.4)

The same inequality has been proposed in series of papers [112,138]. Those authors state

that a rigorous proof of this conjecture has not been given.

They also find that the pair of measured resistance (Rzw
ab , R

zb
aw) satisfies another

inequality which they dubbed a “lower envelope” – a phrase we also adopt – and they

proposed a method to measure the resistivity based on the existence of this envelope [138].

By conjecturing that the shape of the lower envelope depends only on a Riemann modulus

ρ, they applied a standard fitting technique for pairs of measurements (Rzw
ab , R

zb
aw) lying on
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this envelope and consequently were able to determine the sample resistivity. They did

not, however, succeed in finding a mathematical representation for this lower envelope.

The mathematical construction of the van der Pauw method for holey samples is one of

the main purposes of the thesis.

1.2.2 Electrical capacity

Here we focus on another quantity associated with electrical engineering, called electrical

capacity. To accurately measure the performance of a complex circuit such as interdigitated

circuits or MOSFET VLSIs, it is essential to measure their electrical properties, i.e., how

current flows in the circuit [55]. Among these, one of the most important quantity to be

measured is a capacity of the circuit. As the capacity of the MOS gate determines its

delay time, much research has been done in order to measure the capacity of electrically

interconnected circuits [50].

Figure 1.3: Setup for the capacity problem considered by Papamichael [114]. The voltages
V1 and V2 are set along the portions {z1, z2} and {z2, z4}, respectively. The capacity of
the domain can be calculated by the conformal map to a rectangle.

The classical way to understand two-dimensional capacity is given by Papamichael [114].

First, we explain the capacity in simply connected domains. As shown in Figure 1.3, four

points zi, i = 1, 2, 3, 4 around the plate Ω with the unit conductivity are chosen on the

boundary of a simply connected (no-hole) sample and constant voltages V1 and V2 are

applied to the boundary segment (z1, z2) and (z3, z4), respectively. The other segments

(z2, z3) and (z4, z1) are insulated, i.e., no current flux flows into or out of these boundaries.

The thickness of the sample is assumed to be uniform and thin compared to the width of

the sample. The problem now is to determine the resistance

r =
V2 − V1

I
, (1.5)

where I is the current passing through the plate. According to Gaier [60], this resistance is
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related to the capacity of the domain

C =
I

4π
, (1.6)

where V2 is set to unit voltage and V1 is grounded in this case.

Mathematically, the problem for finding the capacity of the domain can be formulated

by considering the following 2D potential problem:

∇2ϕ(x, y) = 0, (x, y) ∈ Ω, (1.7)

ϕ(x, y) = 1, (x, y) ∈ (z1, z2), (1.8)

ϕ(x, y) = 0, (x, y) ∈ (z3, z4), (1.9)

∂ϕ

∂n
= 0, (x, y) ∈ (z2, z3), (z4, z1), (1.10)

and the total current passing through the plate is calculated by the integral along the

segment (z1, z2) defined by

I ≡
∫ z2

z1

∂ϕ

∂n
ds, (1.11)

where ds is the element of arclength and ∂ϕ/∂n is the outward normal derivative to the

domain.

In this thesis, we use a special mathematical property called “conformal invariance”

to solve potential problems. Here conformal invariance is used to express the following

fact [1, 114]. For a 2D potential ϕ, there is a complex conjugate ψ of the function ϕ. With

these functions, we define a complex potential f(z) ≡ ϕ+ iψ, where z ≡ x+ iy. By the

Riemann mapping theorem, there is a conformal map z = g(ζ) to the original domain

Ωz in z-plane from another domain Ωζ in ζ-plane with the same connectivity [107]. Note

that the boundaries of the domain, ∂Ωζ , are mapped to the boundaries of the original

domain, ∂Ωz. Now define ϕ + iψ = f(g(ζ)) ≡ F (ζ). Conformal invariance means that

equipotential lines, i.e., ϕ = const correspond to equipotential lines in Ωζ , and streamlines

, i.e., ψ = const correspond to streamlines in Ωζ .

Due to the conformal invariance of the potential problem above, the mixed boundary

value problem (1.7)–(1.10) can be solved by a conformal mapping approach [1, 114]. As

shown in Figure 1.3, once we find the conformal map from Ω to a rectangle domain, the

total current and capacity are obtained by

I = m(Q)−1(V2 − V1), C =
1

4πm(Q)
. (1.12)

Here m(Q) = b/a is called the conformal modulus of Q = {Ω, (z1, z2, z3, z4)}. The conformal
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modulus is one of the important conformal invariants and described in detail in [3].

It is important to note that the expression for the capacity (1.12) is different from

equation (2) given by Gaier [60]. This is because he considered different potential problem

which satisfies the following conditions:

∇2ϕ(x, y) = 0, (x, y) ∈ Ω, (1.13)

ϕ(x, y) = 1, (x, y) ∈ (z1, z2), (1.14)

ϕ(x, y) = 0, (x, y) ∈ (z2, z3), (z3, z4), (z4, z1). (1.15)

In this case he obtained the explicit expression for the capacity by the Fourier series

expansion:

C =
2

π2

∞∑
n=1,3,5,···

1

sinh(nπm(Q))
. (1.16)

Due to the complexity of the geometry, most capacities are calculated by numerical

approaches. Much research has been done to calculate the capacity of circuits based on

numerical schemes that find harmonic functions with certain boundary conditions. Some

numerical calculations such as the finite element method are explained in detail in [23].

In recent years, the capacity in multiply connected domains has been studied from both

mathematical and engineering perspectives. Interconnected digital circuits have multiple

voltage domains with grounded lines in general, whose geometry consists of multiply

connected domains [6]. It is therefore essential to be able to calculate the capacity of

multiply connected geometries.

Mathematically, the electrical capacity is the same definition as conformal capacity,

which has been studied extensively since the 20th century. The rigorous mathematical

definition of capacity is given by Pölya and Szegö [120]. Following the book on the conformal

capacity and symmetrization given by Dubinin [52], the conformal capacity of a domain G
containing a subset E is defined by the extremal value of the integral

cap(G, E) = inf
ϕ

∫
G
|∇ϕ|2dxdy, (1.17)

where ϕ(x, y) is a harmonic function with ϕ(x, y) ≥ 1 for all (x, y) ∈ E and ϕ(x, y) → 0 as

(x, y) → ∂G. It is known that the extremal function ϕ satisfies

∇2ϕ(x, y) = 0, (x, y) ∈ G/E, (1.18)
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with the following boundary conditions

ϕ(x, y) = 0, (x, y) ∈ ∂G, (1.19)

ϕ(x, y) = 1, (x, y) ∈ ∂E. (1.20)

Here E is the union of the voltage areas and G is the union of the grounded areas. The

simplest example is where G is taken as the unit disc with centre at the origin and E is a

concentric disc of radius ρ, 0 < ρ < 1. In this case, the capacity is known to be

cap(G, E) =
2π

log(1/ρ)
. (1.21)

The shapes of E and G are generally circular regions or slits. Much research has relied

on numerical methods because the geometries have multiple disconnected boundaries (see

[92], who calculated the capacity of ring capacitors with four electrodes). Due to the

conformal invariance of the capacity, the capacity can be calculated by finding a conformal

map of a multiply connected domain to a canonical target domain. Conformal mappings,

such as the Schwarz-Christoffel mapping or the polycircular arc mapping [40], require

finding the unknown parameters called “accessory parameters”. This makes it difficult to

obtain explicit formulas for the conformal capacities. Therefore, research into the study of

capacities uses the finite element method due to the lack of fast mathematical methods for

solving the potential problem in the multiply connected domains. An illustration of these

techniques is given in Figure 1.4.

Figure 1.4: (i) Capacity calculation by the conformal mapping approach. In order to obtain
the capacity, it is necessary to compute the inner radius ρ. (ii) Finite element method for
the capacity calculation. A fine mesh is required to obtain accurate numerical results.

There has been research into obtaining explicit formulas for electrical capacity. Chang

obtained analytical formulas for a single IC metal line capacity [25] from Schwarz-Christoffel

mappings. Palmer also used the Schwarz-Christoffel map to calculate parallel plate
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capacity [113] and the result was verified by Chen et. al. [26]. These formulas explained

above are all explicit, although geometries in which the capacity can be explicitly calculated

are limited. This means that almost all electrical capacities cannot be written in an explicit

formula. A new framework is needed to derive estimates of capacities. The main objective

of the research presented here is to present a new methodology to obtain explicit simple

formulas for electrical capacity of multiply connected domains.

1.2.3 Slip lengths

Another effective parameter is the “slip length” associated with fluid flows. Fluid flows

exhibit complex behaviour such as slip at the interface between fluids and solid surfaces.

At the micro scale, the interaction between fluid and interface is still unclear but at the

macro scale the flow slips at the interface. According to [122], the slip length in fluid flow is

influenced by a number of factors such as the degree of hydrophobicity, surface roughness,

and the presence of interstitial lubricating layers, the polymer molecular weight, and the

applied shear rate.

In classic work, Navier first proposed the concept of slip length in fluid flow; it quantifies

the slipperiness of the flow [106]. He found that the slippage at the interface is proportional

to a frictional force to the fluid velocity relative to the surfaces [108]. Navier then introduced

the concept of flow satisfying partial slip boundary conditions at the interface and defined

the slip length as the constant of proportionality.

For flow in a bounded channel with a partial slip boundary condition, the slip length is

quantified by equating the total flux of the actual flow and the flow satisfying the Navier

slip condition on the walls [82]. The Navier slip condition imposed on the boundary is

w = λ
∂w

∂n
, (1.22)

where w is a velocity of a pressure-driven flow and ∂/∂n is the Neumann derivative to the

surfaces.

Figure 1.5 (i) shows a diagram of slip lengths. The slip length λ is zero (centre of the

figure) when the flow has no slip at the interface. The slip length becomes positive when

a partial slip occurs at the interfaces. When λ = ∞, which is called ’perfect slip’, the

velocity at the wall is equal to the velocity in the bulk. Figure 1.5 (ii) shows a diagram of

the slip length of a bounded channel flow. The slip length of the fluid flowing above the

wall containing no-shear slots is evaluated by imposing the Navier slip condition on the

entire wall.

A review article shows how to measure the slip length of fluid flow in confined geometries

such as microfluidic devices [90,108]. Maxwell was the first to measure the slip length of
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Figure 1.5: Slip length for semi-infinite channels and bounded channel. (i) Slip length
of (1.22) is defined by the distance between the boundary and the height where the flow
velocity vanishes. (ii) Slip length λ is calculated to satisfy the condition that the total flux
of the actual channel flow is equal to the total flux of the right channel with Navier slip
condition.

gas flowing past a solid surface [126]. Microscopic slip lengths are measured experimentally

using a capillary rheometer at four different temperatures [91]. The velocity profile around

the interface is measured directly by particle image velocimetry experiments [111,145].

Recently, the slip length of fluid flowing through a channel with a superhydrophobic

surface has been actively studied, because the fluid slips at the boundary of the

superhydrophobic channel, which reduces the friction of the fluid and allows more fluid to

flow with less pressure [82]. Because the superhydrophobic surface is slippery, a channel

with a superhydrophobic surface can be designed to have applications to anti-corrosion,

anti-icing, and drag reduction [116].

When calculating the slip length of a superhydrophobic surface, the no-slip condition

is imposed on the wall and the partial slip or perfect slip condition is imposed on the

meniscus. Meniscus is the upward or downward curve at the boundary of a liquid produced

27



CHAPTER 1. INTRODUCTION

by a surface tension. Mathematically, the fluid satisfies a mixed boundary condition with

different boundary conditions at the walls and the meniscus. Philip was the first to calculate

the slip length of longitudinal flows in a semi-infinite and a bounded channel with periodic

superhydrophobic surfaces using a conformal mapping approach [119]. He obtained an

explicit formulas for the slip length of a semi-infinite 2L-periodic channel flow as shown in

(i) of Figure 1.6:

λ =
2L

π
log sec

( πc
2L

)
, (1.23)

where the length of no-shear slots is 2c, 0 < c < L. This formula is not only simple but

good for approximating the slip length of a bounded channel of finite height [76]. Philip

also found a formula for calculating the slip length of a bounded superhydrophobic channel

with slots on one side and a wall on the other [119] as shown in (iii) of Figure 1.6.

On the superhydrophobic surface, the meniscus can move into the groove due to

pressure fluctuation and gas transfer [72]. When the movement proceeds, the meniscus

reaches the bottom of the groove and the friction between the walls becomes high. This

transition is called the Cassie state to Wenzel state transition, which is known to decrease

the slipperiness of the superhydrophobic surfaces [109].

Crowdy was the first to evaluate the slip length of the longitudinal flow of a semi-infinite

channel with superhydrophobic surfaces with partially invaded grooves. The slip length

formula is similar to the Philip’s case (i) in Figure 1.6 and given by

λ =
2L

π
log cosech

(
πH

2L

)
, (1.24)

where the baseline of the slip length measured here is the top of the gratings [41].

The results described above can be summarised in Figure 1.6. For longitudinal flow in

the semi-infinite periodic channel shown in (i), Philip found an explicit formula for the

slip length. Philip also found an explicit representation for the periodic channel flows with

superhydrophobic slots on one side and a wall on the other as shown in (iii). For the

semi-infinite channel with partially invaded grooves, Crowdy found an analytical formula (ii)

for the flow and calculated the slip length of the channel [41]. An analytical expression for

a bounded periodic channel flow with partially invaded grooves has not, to our knowledge,

been given. In Chapter 6, we derive an analytical expression for the flow and this is one of

the main contributions of the thesis.
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Figure 1.6: Summary of the slip length formulas. The figures (i) and (ii) are copies of
Figure 1 of the paper [41]. (i) Semi-infinite periodic channel. (ii) Semi-infinite periodic
channel with partially invaded grooves. (iii) Bounded superhydrophobic channel with slots
on one side and a wall on the other. (iv) Bounded periodic channel with partially invaded
grooves.

1.3 Mathematical techniques

The transport of flows is generally governed by two- or three-dimensional partial differential

equations, such as the Laplace, Poisson, and Helmholtz equations, etc, with some boundary

conditions. In most cases, numerical techniques are required to evaluate the flows. The

Finite Element Method (FEM) is a well-known numerical scheme to perform a finite

element analysis of any given physical phenomena. It involves discretizing the problem

space into discrete elements, usually triangles for 2D geometries and tetrahedra for 3D

geometries, which gives the discretized type of differential equations. The FEM is widely

used in engineering and mathematical modelling for fields such as structural analysis, heat

transfer, fluid flow, mass transport and electromagnetic potential [124].
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The difficulty in solving partial differential equations is often attributed to the

inhomogeneity present in the domain. This can manifest itself in various ways such as the

presence of internal holes within a sample when measuring resistivity, which increases the

computational time. Another example is the evaluation of superhydrophobic surfaces where

channels with superhydrophobic surfaces have mixed boundary conditions, including a

no-slip condition and a no-shear condition. These mixed boundary conditions can sometimes

lead to numerical inaccuracy. The FEMs used for mixed boundary conditions require a

large number of mesh points around the boundary where the conditions change, further

increasing the computational complexity. These challenges require careful consideration in

order to develop accurate and efficient computational models for inhomogeneous domains.

Also, in order to find a geometry that optimises the slip length or capacities, it is

necessary to change the geometries one by one to find the optimal parameters that meet

the requirements. This procedure has a clear numerical cost when using FEMs. Therefore,

analytical formulas for these quantities are desirable to carry out the optimisation.

Another method of solving transport problems is complex analysis. The complex

analysis techniques are powerful tool for solving 2D potential problems by using conformal

maps. Conformal maps are one-to-one maps from simple domains to physical target regions

that have the same connectivity. Conformal mapping is a powerful technique for solving

PDEs in complicated 2D domains. Due to the conformal invariance of complex potentials,

the potential problems can be solved immediately after finding the appropriate conformal

mapping. Moreover, the existence of the conformal mapping is guaranteed by the famous

Riemann mapping theorem [107]. Some recent research focuses on extending the conformal

mapping theory to other transport problems such as diffusion equations and Helmholtz

equations [18,51]. Engineering applications of conformal mapping approaches are discussed

in detail in [132]. In order to solve nonlinear partial differential equations in the planar

domain, Fokas and Kapaev derived a new transform method, called the Fokas method [58].

Crowdy extended the Fokas method to more general domains consisting of circular arcs and

straight lines [38]. The transform method for solving the Helmholtz equation is proposed

in [64].

Crowdy has developed a theoretical framework for solving problems in multiply

connected domains [40]. Using a special function called the “Schottky-Klein prime function”,

henceforth simply “prime function”, it is possible to derive analytical formulas for the

flows. Throughout this thesis we formulate analytical solutions for PDEs based on this

special function and we show that the various problems in multiply connected domains

can be solved in a closed form.

Another importance of using the complex analysis approach is that the harmonic

extension of the field is also calculated. The purpose of solving the fields in the target
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domain is usually to evaluate effective parameters explained in the previous section. Using

the Cauchy-Riemann equations, the harmonic extension of the field is useful for evaluating

the integral along boundaries. We use this technique to calculate effective parameters in

Chapter 5 and 6.

1.4 Overview

This section gives an overview of the thesis and the main results of each section. This

thesis solves important problems for electrical potentials and fluid mechanics in domains

with multiply connected domains and calculates physical quantities appearing in transport

theory. The key mathematical tool for solving these problems is the prime function [40].

Chapter 2

This chapter defines an important mathematical tool developed by Crowdy [40] called

the Schottky-Klein prime function. The prime function is a special function in multiply

connected domains and it is computed uniquely according to the positions and radii of

inner circles. Mathematical analysis in multiply connected domains can be done using this

function. The properties of the prime function are introduced and the main conformal

maps used throughout this thesis are explained in this chapter. The maps described in

this chapter are described in detail in [40], but for the sake of completeness they are briefly

explained here.

The prime function is also important for solving boundary value problems. In the last

section we see that the Schwarz integral formulas with the prime function are used to solve

the famous boundary value problems called Dirichlet problems proposed by [40].

Chapter 3

Chapter 3 proposes a new method for solving mixed boundary value problems in

multiply connected domains. The boundary value problem we consider in this chapter is

one where the boundary data is of a different type on each component of the boundary,

e.g. a Dirichlet condition on one boundary and a Neumann condition on the other. This

new method is necessary to solve the problems in Chapters 5. In multiply connected

domains, one method for solving boundary value problems is the Schwarz integral. This

is a method of reconstructing a harmonic function given the real part on the boundary.

However, in certain problems, the type of boundary conditions (boundary value or its

Neumann derivative) can be different for each boundary, and it is an open question how to

solve it specifically for multiply connected domains. In this chapter we propose an integral

formula, the generalised Schwarz integral, which gives a specific solution for problems

where the boundary conditions are different for each boundary. By using a radial slit map

computed for each multiply connected region, the types of boundary conditions are unified,
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and by using the Schwarz integral and the single-valuedness condition, an explicit solution

is constructed. The solution obtained contains several parameters which are uniquely

determined based on the single-valuedness condition. The content of this chapter addresses

on the open problem explained in [31] and the results have been published in [98].

Chapter 4

Chapter 4 focuses on the van der Pauw method. While the conventional van der Pauw

method can easily measure sheet resistivity, it can only be applied when there are no holes

in the sample. This chapter attempts to extend the van der Pauw method to the simplest

multiply connected region, the annulus. This can be done by exploiting the fact that the

potential is described by the prime function and the van der Pauw equation corresponds to

the cross ratio. First, the van der Pauw equation for the annulus is proposed. The equation

has a new parameter k which is not included in the conventional van der Pauw equation.

By considering the integral with respect to this parameter k, a mathematical proof is given

for the existence of the two envelopes predicted by a number of previous authors [112, 138]

and a new method for measuring sheet resistivity is proposed. The results of this chapter

have been published in [99,100].

Chapter 5

Continuing with the main topic of electrical transport theory, we study the electrical

capacity of multiply connected domains. Similar to Chapter 4, the electrical potential of

doubly or multiply connected domains is considered using the prime function introduced

in Chapter 2. The aim of this chapter is to propose a new method for estimating the

electrical capacity of multiply connected domains. This can be done by matched asymptotic

expansions as discussed by Tuck [146] and Van Dyke [150]. We show that matched

asymptotic expansions give simple formulas and good estimates for the electrical capacity

in multiply connected domains. This research is based on a paper accepted in an IMA

Lighthill-Thwaites special issue [97].

Chapter 6

Chapter 6 calculates flow in a channel involving superhydrophobic surfaces and proposes

a specific formula for calculating the slip length of such surfaces. In this chapter, an explicit

formula for the flow of a superhydrophobic channel with a partially invaded groove is

derived and a method for calculating the slip length is proposed. The content of this

chapter corresponds to the author’s published paper [102].

Chapter 7

In this chapter, a new mathematical technique is given for calculating estimates of

so-called “accessory parameters”. The new methodology presented here proposes accurate

estimates for these parameters by using matched asymptotic expansions proposed in
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Chapter 5. This research is partly based on a paper accepted in an IMA Lighthill-Thwaites

special issue [97].

Chapter 8

In Chapter 8, the conclusions of the thesis are explained and a short summary for each

chapter is given.
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Chapter 2

The Schottky-Klein prime function

In this chapter, a special function called the Schottky-Klein prime function is introduced.

Throughout this thesis the prime function is a fundamental mathematical tool, so it is

instructive to explain the important properties of it here.

The Schottky-Klein prime function is a transcendental function, which was first

documented by Baker’s book [15] and appeared again in [65]. The physical importance of

the prime function was discovered by Crowdy in 2005 to calculate the Schwarz-Christoffel

mapping for multiply connected domains [29]. Crowdy also applies this function to

solve physical problems which include multiple boundaries. The monograph [40] focuses

extensively on how to build solutions for physical problems such as fluid dynamics and

heat transfer in multiply connected domains with the use of the prime function.

We first explain the definition of the prime functions. With the use of the prime

function the important examples of conformal maps are introduced in the Section 2.3. In

Section 2.4 we present an explicit solution for the Dirichlet boundary value problem with

multiple boundaries.

The prime function is easily computable and numerically stable after solving some

parameters. The parameters of the prime function associated to domains can be obtained

by a simple collocation point method [46]. There is also a github code for the evaluation of

the prime function, which is accessible when one can use Matlab [9]. Throughout this thesis,

many solutions for physical transport problems are calculated numerically by evaluating

the prime function.

2.1 The definition of the prime functions

Following [40], the definition of the prime function is described here. Let Dζ be a multiply

connected circular domain consisting the unit disc with M inner circles separated each

other, where M ≥ 1. Let C0 be the boundary of the unit circle and Cj , j = 1, . . . ,M be
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the boundaries of circular discs with centres {δj ∈ C|j = 1, . . . ,M}, and radii {qj ∈ R|j =

1, . . . ,M}. An example of the geometry when M = 3 is illustrated in Figure 2.1.

Figure 2.1: A quadruply connected circular domain Dζ with boundary circles. The outer
circle is C0 and the inner circles are C1, C2, and C3. The centres of the circle Cj are δj
with radii qj , j = 1, 2, 3.

First the Möbius map θj associated with Cj is defined by

θj(ζ) ≡ δj +
q2j ζ

1 − δjζ
, j = 1, . . . ,M. (2.1)

Let C ′
j be the circle with the centre δ′j and the radius q′j which is the reflection of circle

Cj in C0. Also let D′
ζ be the region which is the reflection of Dζ in C0. It is easy to see

that C ′
j is the image of Cj by the Möbius map θj . The union of Dζ and D′

ζ is called the

fundamental region associated with the Möbius maps {θj |j = 1, . . . ,M} and their inverses.

The set of Möbius map is called the Schottky group Θ, defined to be the infinite free group

of mappings generated by compositions of the M basic Möbius maps {θj |j = 1, . . . ,M}
and their inverses {θj |j = 1, . . . ,M} and including the identity map [46]. The union of

Dζ and D′
ζ is defined as F and it is explained in [46,62] that the region F can be viewed

as a model of the two “sides” of a compact (symmetric) Riemann surface associated with

Dζ known as its Schottky double. The genus of this compact Riemann surface is M . An
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illustration of the fundamental region for M = 3 is given in Figure 2.2.

Figure 2.2: A quadruply connected circular domain Dζ with boundary circles. The circles
C ′
j are the reflection of the circles Cj in C0. The a-cycle and b-cycle associated with each

circle are illustrated.

It is known that any compact Riemann surface of genus M has exactly M holomorphic

differential dvj , j = 1, . . . ,M [56]. The function vj(ζ) is an integral of the first kind and

satisfies the following properties around a-cycles and b-cycles as shown in Figure 2.2:∮
ak

dvj = δjk,

∮
bk

dvj = τjk, τjk ∈ C, j, k = 1, . . . ,M, (2.2)

where δjk is a Kronecker’s delta. It is important to mention that these functions are

analytic everywhere in Dζ , but Re[vj ] is not single-valued around Cj and C0 because of

a logarithmic branch cut between them. An illustration of v1(ζ) and v2(ζ) for a triply

connected domain is given in Figure 2.3.

With vj(ζ) and τjk defined above, Hejhal constructed a function X(ζ, γ) in his
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Figure 2.3: Visualization of the functions v1(ζ) and v2(ζ) of triply connected doamins.

monograph [65] based on the following theorem:

Theorem There is a unique function X(ζ, γ) having the following properties:

• X(ζ, γ) is a single-valued analytic function everywhere in the fundamental region F

associated with the Schottky group of Dζ .

• lim
ζ→γ

X(ζ, γ)/(ζ − γ)2 = 1.

• For j = 1, 2, . . . ,M , X(ζ, γ) satisfies

X(θj(ζ), γ) = exp(−2πi(2(vj(ζ) − vj(γ)) + τjj)
dθj
dζ

X(ζ, γ). (2.3)

• X(ζ, γ) has second-order zeros at the set of points {θ(γ)| θ ∈ Θ′′}.
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Here Θ′′ is defined to be the subgroup of Θ with the inverse composition maps and the

identity element excluded.

With X(ζ, γ), the Schottky-Klein prime function ω(ζ, γ) is defined by

ω(ζ, γ) = (X(ζ, γ))1/2, (2.4)

where the branch cut of the function is chosen so that ω(ζ, γ) → (ζ − γ) as ζ → γ.

The prime function ω(ζ, γ) has the following properties [40]:

• ω(ζ, γ) has a simple zero at ζ = γ, (2.5)

• ω(γ, ζ) = −ω(ζ, γ), (2.6)

• ω(1/ζ, 1/γ) = − 1

ζγ
ω(ζ, γ), (2.7)

• ω(θj(ζ), γ) = − qj

1 − δjζ
e−2πi(vj(ζ)−vj(γ)+τjj/2)ω(ζ, γ). (2.8)

2.2 The prime function for the concentric annulus

In the doubly connected domain, i.e., M = 1, the prime function is related to

one-dimensional theta functions, and can be represented in closed form. Here we consider

an eccentric annulus, which is the unit disc with an inner circular hole with radius r1 and

center c1. The eccentric annulus in the z-plane is mapped to the concentric annulus with

inner radius ρ in z′-plane by the simple Möbius transformation [40]:

z′ =
z − a

1 − az
, a =

1 + c21 − r21 −
√

(1 + c21 − r21)2 − 4c21
2c1

, ρ =
r1 + c1 − a

1 − a(r1 + c1)
. (2.9)

Hence it is enough to consider the prime function in the concentric annulus. The prime

function ω(ζ, c) for the annulus ρ < |ζ| < 1 is a function of two complex variables, ζ and c

say, which can be defined explicitly in this case by the formula [40]:

ω(ζ, c) = − c

P̂ (1)
P (ζ/c, ρ), (2.10)

where

P (ζ, ρ) ≡ (1 − ζ)P̂ (ζ, ρ), P̂ (ζ, ρ) ≡
∞∏
n=1

(1 − ρ2nζ)(1 − ρ2n/ζ). (2.11)
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It is easy to show, directly from these definitions via an infinite product, that P (ζ, ρ)

satisfies the following functional relations

P (ζ−1, ρ) = (1 − ζ−1)
∞∏
n=1

(1 − ρ2nζ−1)(1 − ρ2nζ)

= −ζ−1(1 − ζ)

∞∏
n=1

(1 − ρ2nζ−1)(1 − ρ2nζ) = −ζ−1P (ζ, ρ), (2.12)

and

P (ρ2ζ, ρ) = (1 − ρ2ζ)

∞∏
n=1

(1 − ρ2(n+1)ζ)(1 − ρ2(n−1)ζ−1)

= (1 − ζ−1)
∞∏
n=1

(1 − ρ2nζ)(1 − ρ2nζ−1) = −ζ−1P (ζ, ρ). (2.13)

For notational brevity, we write P (ζ) even though this function also depends on the

parameter ρ as is clear from its definition (2.11). The reader should bear in mind this

additional parametric dependence. We will also need the function K(ζ) and L(ζ) defined

by

K(ζ) ≡ ζ
∂

∂ζ
logP (ζ), (2.14)

and

L(ζ) ≡ ζ
∂K

∂ζ
. (2.15)

This logarithmic derivative of the prime function is also an important function in the

general function theory on multiply connected domains [40]. By direct calculation,

K(ζ) = − ζ

1 − ζ
−

∞∑
n=1

(
ρ2nζ

1 − ρ2nζ
− ρ2nζ−1

1 − ρ2nζ−1

)
, (2.16)

L(ζ) = − ζ

(ζ − 1)2
−

∞∑
n=1

[
ρ2nζ

(1 − ρ2nζ)2
+

ρ2nζ−1

(1 − ρ2nζ−1)2

]
, (2.17)

and hence, it is easily shown that K(ζ) and L(ζ) satisfy the functional relations

K(ζ−1) = 1 −K(ζ), K(ρ2ζ) = K(ζ) − 1, (2.18)

and

L(ζ−1) = L(ζ), L(ρ2ζ) = L(ζ). (2.19)
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These mathematical relationships are used extensively in Chapter 4.

2.3 Numerical computation of the prime function for M > 1

For M > 1, the prime function cannot be written in a simple form like M = 1, so a

numerical method is necessary for evaluating it. The most numerically efficient method is

to make use of freely available MATLAB codes that compute ω(., .) for any user-specified

circular domain akin to Dζ [9, 40, 46]. These codes are based on a numerical algorithm

described in detail in [46], and which extends an earlier algorithm proposed by Crowdy

and Marshall [49]. These methods use Laurent series representations.

For a triply connected domain, it is also known (see Chapter 14 of [40]) that the infinite

product representation

ω(z, ζ) = (z − ζ)
∏
θ∈Θ′′

(θ(z) − ζ)(θ(ζ) − z)

(θ(z) − z)(θ(ζ) − ζ)
, (2.20)

is convergent; here each function θ lies in the set of Möbius maps Θ′′ which denotes all

elements of the free Schottky group generated by the basic Möbius maps {θj , θ−1
j : j = 1, 2},

except for the identity and excluding all inverses [40, 46, 49]. For numerical purposes of

evaluation it is necessary to truncate this product, and the natural way to do so is to

include all Möbius maps up to a chosen level: see [49] for more details. Use of this infinite

product is perfectly feasible for most channel geometries. Also, it has been verified that

the numerical results from the infinite product representation matches the Laurent series

expression when M = 2 [49]. However, maintaining a required degree of accuracy requires

truncation at increasingly high levels as the radii of C1 and C2 get larger, resulting in

the convergence of the product becoming unacceptably slow. In such cases, use of the

MATLAB code from [9] is preferred and advised.

When M > 2 the convergence of the infinite product is an open question (see [31]).

Also, even if the series expression is convergent, the convergence becomes very slow as the

inner circle approaches each other. In this case, it is recommended to use the github code

to calculate the prime function [9].

2.4 Examples of conformal maps

Throughout this thesis, conformal mappings from multiply connected domains are used

to solve boundary value problems in two-dimensional domains with multiple boundaries.

Here two types of important conformal mappings are introduced. The expressions for these

maps are simple rational functions of the prime functions associated to multiply connected
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domains Dζ .

As mentioned in the previous section, the prime function ω(ζ, γ) is analytic everywhere

inside the domain, has a simple zero at ζ = γ, and satisfies the functional relations

(2.5)–(2.8). Various formulas in terms of the prime function yield several important

conformal maps.

2.4.1 Radial slit map

Consider

w = w1(ζ) =
ω(ζ, a)ω(ζ, 1/a)

ω(ζ, b)ω(ζ, 1/b)
, (2.21)

where a and b are two distinct points inside Dζ . This map has a simple zero at ζ = a and

a simple pole at ζ = b. For ζ ∈ C0, i.e., ζ = 1/ζ, it is easy to obtain

w1(ζ) =
ω(ζ, a)ω(ζ, 1/a)

ω(ζ, b)ω(ζ, 1/b)
=
ω(1/ζ, a)ω(1/ζ, 1/a)

ω(1/ζ, b)ω(1/ζ, 1/b)
=

(
ab

ab

)
w1(ζ), (2.22)

where the functional relation (2.7) is used. For ζ ∈ Cj , j = 1, 2, . . . ,M , by using ζ = θj(1/ζ),

it can be shown that

w1(ζ) =
ω(ζ, a)ω(ζ, 1/a)

ω(ζ, b)ω(ζ, 1/b)
=
ω(θj(1/ζ), a)ω(θj(1/ζ), 1/a)

ω(θj(1/ζ), b)ω(θj(1/ζ), 1/b)
(2.23)

=

(
ab

ab

)
e−2πi(vj(a)−vj(b)+vj(1/a)−vj(1/b))w, (2.24)

where the following property of the prime function is used:

ω(ζ, a) = ω(θj(1/ζ), a) = − qj
1 − δ1/ζ

e2πi(vj(1/z)−vj(a)+τjj/2)ω(1/ζ, a)

= − qj
1 − δj/ζ

e2πi(vj(1/z)−vj(a)+τjj/2) ·
(
−a
ζ

)
· ω(ζ, 1/a). (2.25)

Thus, it is concluded that the arguments of w are constant on Cj , j = 0, 1, . . . ,M . This

map is called a radial slit map because each circular boundary is mapped to a radial slit

emanating from the origin. An example of radial slit maps in a quadruply connected

domain is illustrated in Figure 2.4.
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Figure 2.4: (Left) A quadruply connected circular domain Dζ with boundary circles and
inner points a and b. (Right) An example of a radial slit map. The point a and b are
mapped to the origin and ∞, respectively.

2.4.2 Horizontal slit map

Consider

w = w2(ζ) =
1

2πi
log

(
ω(ζ, a)

|a|ω(ζ, 1/a)

)
, a ∈ Dζ . (2.26)

Note that the function w2(ζ) has a branch cut between a to 1/a. This function is called

the (modified) Green’s function associated with the domain Dζ [40]. It can be shown that,

on C0,

w2(ζ) = − 1

2πi
log

(
ω(ζ, a)

|a|ω(ζ, 1/a)

)
= − 1

2πi
log

(
ω(1/ζ, a)

|a|ω(1/ζ, 1/a)

)
= w2(ζ). (2.27)

Also, on Cj , we have

w2(ζ) = − 1

2πi
log

(
ω(ζ, a)

|a|ω(ζ, 1/a)

)
= − 1

2πi
log

(
ω(θj(1/ζ), a)

|a|ω(θj(1/ζ), 1/a)

)
= vj(a) − vj(1/a) + w2(ζ), (2.28)

where the functional property (2.25) is used.

Thus, it is concluded that the imaginary part of w2(ζ) is constant on each boundary Cj ,
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j = 0, 1, . . . ,M . This map is called a horizontal slit map because each boundary is mapped

to a slit parallel to the real axis. An example of horizontal a slit map in a quadruply

connected domain is illustrated in Figure 2.5.

Figure 2.5: (Left) A quadruply connected circular domain Dζ with boundary circles and a
branch cut between z = a and z = 1/a. (Right) An example of a horizontal slit map.

An important example of the horizontal slit map is the map from a symmetrical triply

connected domain with radii q1 = q2 = q, q > 0, and centres δ1 = δ2 = δ:

w = w3(ζ) =
1

2πi
log

(
ω(ζ, θ1(∞))

ω(ζ, θ2(∞))

)
, (2.29)

where δ is purely imaginary. This map is shown in Figure 2.6. It maps the outer boundary

to a slit on the real axis and the two inner circles to lines parallel to the real axis. Because

of the symmetry, the function w3(ζ) satisfies a special functional relation

w3(−ζ) = −w3(ζ). (2.30)

This map is used to solve for a superhydrophobic channel flow in Chapter 6.

2.5 Schwarz integral formulas for multiply connected

domains

Another important application of the prime function is presenting the explicit solution for

the Dirichlet problem in multiply connected domains, which was discovered by Crowdy [32].

This method is used for solving several boundary value problems in this thesis and used
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Figure 2.6: (Left) A triply connected circular domain Dζ with boundary circles with branch
cut between two inner circles. (Right) An example of a horizontal slit map.

extensively in Chapter 3, where we propose a new solution for a mixed boundary value

problem. Let Dζ be a multiply connected domain consisting of M inner circles in complex

ζ-plane. The Dirichlet problem in Dζ is to find the solution ϕ satisfying

∇2ϕ = 0, ζ ∈ Dζ , (2.31)

with

ϕ = Φj(ζ), ζ ∈ Cj , j = 0, 1, . . . ,M, (2.32)

where Φj(ζ), j = 0, 1, . . . ,M are continuous real functions around each circle Cj . This

problem appears in vast areas of applications, such as irrotational 2D flow and finding

electrical potentials [114].

Because ϕ is harmonic it is convenient to define the complex-valued function f ≡ ϕ+iψ,

where ψ is the harmonic conjugate of the function ϕ. The problem now is to find a complex

function f(ζ) with boundary conditions

Re[f(ζ)] = Φj(ζ), ζ ∈ Cj , j = 0, 1, . . . ,M. (2.33)

It is important to note that f(ζ) is not necessary single-valued. This is because any

harmonic function can be represented by the real part of an analytic function plus a

logarithmic term [152]. The logarithmic function has a continuous real part, but its

imaginary part has a branch cut.
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The simplest case is when Dζ is the unit disc, i.e., no inner circle inside it. In this case,

the famous integral formula called the Poisson integral formula for the unit disc [1] can

recover the analytic function up to an imaginary constant. The function f(ζ) analytic in

the unit disc is given by

f(ζ) =
1

2πi

∮
C0

Φ0(ζ
′)
ζ ′ + ζ

ζ ′ − ζ

dζ ′

ζ ′
+ ic0, c0 ∈ R. (2.34)

A simple proof of the formula is given in [1].

For M = 1 and Dζ taken to be a canonical doubly connected concentric annulus

the solution can be expressed in terms of the lesser known, but still arguably classical,

Villat integral formulas [40,149]. Crowdy [32,40] has shown that the Poisson and Villat

integral formulas are special cases of much more general integral formulas valid for any

(M + 1)-connected domain [40] with M ≥ 0. These formulas were constructed [32, 40]

using the prime function associated with any such multiply connected circular domains.

Crowdy [32,40] has shown that f(ζ) has the representation

f(ζ) = I(ζ) −
M∑
k=1

Akvk(ζ) + ic0, c0 ∈ R, (2.35)

where the single-valued (in Dζ) integral I(ζ) is

I(ζ) =
1

2πi

∮
C0

Φ0(ζ
′)(d logω(ζ, ζ ′) + d logω(ζ−1, ζ ′−1))

− 1

2πi

M∑
k=1

∮
Ck

Φk(ζ ′)(d logω(ζ, ζ ′) + d logω(θk(ζ−1), ζ ′−1)). (2.36)

The set of constants {Aj |j = 1, . . . ,M} is given by

Aj = −

[∫
C0

Φ0dv̂j −
M∑
k=1

∫
Ck

Φkdv̂j

]
, (2.37)

where v̂k are linear combinations of vj , j = 1, 2, . . . ,M .

The prime function ω(ζ, ζ ′) has a simple zero whenever ζ = ζ ′ so (2.36) is also a singular

integral formula of Cauchy type. In the simply connected case, or M = 0, the relevant

prime function is just ω(ζ, ζ ′) = (ζ − ζ ′) and (2.35) reduces to the familiar Poisson integral

formula (3.2).

The existence of the term vk, k = 1, . . . ,M means that f(ζ) is no longer a single-valued

function except when Ak = 0 for k = 1, . . . ,M . To ensure that f(ζ) is single-valued, the
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boundary condition Φj(ζ) should satisfy M conditions:

∫
C0

Φ0dv̂k −
M∑
j=1

∫
Cj

Φjdv̂k = 0, k = 1, . . . ,M. (2.38)

This is called the single-valuedness condition and it will be shown that the condition is

important when we solve mixed boundary problems in multiply connected domains in

Chapter 3.

2.6 Conclusions

We have introduced the prime function and presented its important functional properties.

Using the prime function, we have shown that important conformal maps such as radial

slit maps and horizontal slit maps can be written in terms of it. We also showed that

the solution for the Dirichlet boundary value problems in multiply connected domains is

expressible in terms of the prime function. In addition, we have noted the single-valuedness

conditions for the boundary values.

The horizontal slit map and the Schwarz integral formula presented are shown here to

be powerful mathematical tools for solving physical problems. For example, they are used

to solve for channel flow over superhydrophobic surfaces with partially invaded grooves in

Chapter 5.

In the next Chapter we extend the Schwarz integral formula described in the last section

to produce “generalized Schwarz integral formulas”, which solve mixed boundary value

problems in multiply connected domains. The extension comes from a combination of

radial slit maps and the Schwarz integral formula.
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Chapter 3

Generalized Schwarz integral

formulas for multiply connected

domains

This chapter focuses on a generalization of the Schwarz integral formulas in the class

of multiply connected circular domains. A Schwarz integral formula retrieves, up to an

imaginary constant, an analytic function in a domain given its real part on the boundary.

This integral formula corresponds to the solution for the Dirichlet problem in a multiply

connected domain. Here we derive an integral formula for solving mixed-type boundary

value problems in multiply connected domains. The present chapter combines Schwarz

integral formulas with the radial slit conformal mappings introduced in Chapter 2, also

expressible in terms of the prime function, to produce integral expressions for analytic

functions where more general linear combinations of their real and imaginary parts are

specified on the boundary components of a multiply connected domain. We refer to the

resulting expressions as generalized Schwarz integral formulas.

3.1 Introduction and background

Consider the problem of finding a function f(ζ), analytic in some given (M + 1)-connected

two-dimensional domain D in a complex ζ-plane for M ≥ 1, with the following data

specified on its M + 1 boundary components {∂Cj |j = 0, 1, . . . ,M}:

Re[eiαjf(ζ)] = rj(ζ), ζ ∈ Cj , j = 0, 1, . . . ,M, (3.1)

for some given set of real constants {αj |j = 0, 1, . . . ,M} and where the set of real-valued

functions {rj(ζ)|j = 0, 1, . . . ,M} is given. This problem arises in a wide range of applied
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mathematical applications. It has the advantage of conformal invariance, so that solving it

in some canonical class of domains has great value. When M = 0 and D is the canonical

simply connected unit disc, (3.1) is just the classical Schwarz problem whose solution was

already given in Chapter 2 as

eiα0f(ζ) =
1

2πi

∮
|ζ′|=1

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
r0(ζ

′) + ic0, c0 ∈ R. (3.2)

When αj = 0 for all values of j, and D is taken as a circular domain Dζ in a complex

ζ plane comprising the unit disc with outer boundary C0 and M smaller circular discs

with boundaries {Cj |j = 1, . . . ,M} excised, Crowdy [32,40] has shown that f(ζ) has the

representation as introduced in Chapter 2:

f(ζ) = I(ζ) −
M∑
k=1

Akvk(ζ) + ic0, c0 ∈ R, (3.3)

where the single-valued (in Dζ) integral I(ζ) is given by the equation (2.36).

In the special case where the data on the right hand side of (3.1) is also a set of constants

on each boundary component, Crowdy [33] used the prime function to derive formulas

for the solutions of (3.1) for any values of the parameters {αj |j = 0, 1, . . . ,M}. Those

formulas are not integral formulas of Cauchy type, but are akin to those found to describe

Schwarz-Christoffel conformal mapping formulas to multiply connected polygons [13,29,30].

This is because the special piecewise-constant nature of the data allows use of conformal

slit mappings expressible in terms of the prime function to deduce expressions for the

functional form of the derivative df/dζ up to a finite set of accessory parameters.

To summarize, problem (3.1) is known to admit explicit formulas for its solution

in terms of the prime function in (at least) the two cases where: (i) all the constants

{αj |j = 0, 1, . . . ,M} are equal, but with no restrictions on the data {rj(ζ)|j = 0, 1, . . . ,M};

(ii) when the data {rj |j = 0, 1, . . . ,M} are constants but with no restrictions on {αj |j =

0, 1, . . . ,M}.

A natural question arises: can integral formulas in terms of the prime function be found

for the solution, when it exists, of problem (3.1) when there are no restrictions on either

the constants {αj |j = 0, 1, . . . ,M} or the data {rj(ζ)|j = 0, 1, . . . ,M}?

The answer, as we show here, it is in the affirmative and is again use of conformal slit

mappings – here we use the class of radial slit mappings [40, 48] – that provides the key to

the construction.
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3.2 The construction of solution: radial slit map approach

In this section we provide a general scheme to solve the boundary value problem (3.1).

(i) Doubly connected domain

To illustrate the essential idea, take Dζ to be the concentric annulus ρ < |ζ| < 1 in which

a single-valued analytic function f(ζ) must satisfy the boundary conditions

Re[f(ζ)] = r0(ζ), |ζ| = 1,

Im[f(ζ)] = r1(ζ), |ζ| = ρ,
(3.4)

where r0(ζ) and r1(ζ) are given real continuous functions on the respective boundaries. This

is not a standard Schwarz problem because the real part of f(ζ) is given on one boundary

of the doubly connected domain, and its imaginary part on the other. It corresponds to

problem (3.1) with M = 1 and α0 = 0, α1 = π/2. Therefore, the standard Schwarz integral

formula (2.35) – which, in this case, is equivalent to the Villat integral formula – cannot

be used directly here. Consequently, to find f(ζ), other ideas are needed.

Our solution is to consider the radial slit mapping in Chapter 2:

χ = η(ζ) = cη
ω(ζ, a)ω(ζ, 1/a)

ω(ζ, b)ω(ζ, 1/b)
, cη ∈ C, (3.5)

where, in this case, ω(., .) is the prime function of the annulus. The distinct points a and b

lie strictly inside Dζ and can be chosen so that, when viewed as a conformal mapping to

a complex χ-plane, the image of the boundary circle |ζ| = 1 is a finite-length slit along

the real χ-axis and that of |ζ| = ρ is a finite-length slit along the imaginary χ-axis. Now

introduce

X(ζ) ≡ η(ζ)f(ζ) (3.6)

which is analytic in Dζ except for a simple pole of unknown residue, B say, at ζ = b. Since

η(ζ) takes real values on |ζ| = 1,

Re[X(ζ)] = η(ζ)Re[f(ζ)] = η(ζ)r0(ζ), |ζ| = 1 (3.7)

and since η(ζ) takes purely imaginary values on |ζ| = ρ,

Re[X(ζ)] = −η(ζ)

i
Im[f(ζ)] = iη(ζ)r1(ζ), |ζ| = ρ. (3.8)
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The simple pole of X(ζ) at b can be subtracted off:

Re

[
X(ζ) − B

ζ − b

]
=


η(ζ)r0(ζ) − Re

[
B

ζ − b

]
, |ζ| = 1,

iη(ζ)r1(ζ) − Re

[
B

ζ − b

]
, |ζ| = ρ.

(3.9)

This modified boundary value problem now more closely resembles a standard Schwarz

problem in the annulus for the (single-valued, analytic in Dζ) function in square brackets

on the left hand side of (3.9). It does not quite qualify as such, however, as the real part

of the function is not completely specified by the right-hand-side of (3.9) because B in

unknown. But by pretending it known, the Schwarz integral formula (2.35) can be used to

write

X(ζ) =
B

ζ − b
+ I(ζ) −A1v1(ζ) + ic, c ∈ R, (3.10)

where I(ζ) is given by (2.36). Therefore,

f(ζ) =
1

η(ζ)

[
I(ζ) +

B

ζ − b
+ ic

]
, (3.11)

which contains the unknown parameters B and c. But these must be chosen so that the

function in square brackets in (3.11) vanishes at the zero of η(ζ) in Dζ at ζ = a in order

that f(ζ) is analytic there. With these parameters so determined, (3.11) is an integral

formula for the required solution. It is essentially the Schwarz integral formula from [32,40]

but now with an enmeshed radial slit mapping: notice that η(ζ) appears not only outside

the square bracket in (3.11) but also in the integral formula for I(ζ) owing to its appearance

in the right-hand-side data in (3.9). For this reason, we have chosen to refer to it as a

generalized Schwarz integral formula for the annulus.

(ii) Multiply connected domain

Now we discuss the generalized Schwarz problem for M + 1-connected domains to find an

analytic and single-valued function f(ζ), which satisfies the following boundary conditions

Re[eiαjf(ζ)] = rj(ζ), ζ ∈ Cj , j = 0, . . . ,M. (3.12)

The construction of the solution starts by finding the radial slit map η(ζ) which satisfies

arg[η(ζ)] = −αj , ζ ∈ Cj , j = 0, . . . ,M. (3.13)
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Considering η(ζ)f(ζ), and noting that η(ζ) has a pole at ζ = b, we have the following

boundary conditions:

Re

[
η(ζ)f(ζ) − B

ζ − b

]
= eiαjη(ζ)rj(ζ) − Re

[
B

ζ − b

]
≡ sj(ζ), ζ ∈ Cj , j = 0, . . . ,M,

(3.14)

where B ∈ C is an unknown parameter to be found. Then the solution is given by using

the Schwarz integral formula as follows:

f(ζ) =
1

η(ζ)

[
I(ζ) +

B

ζ − b
+ ic0

]
, c0 ∈ R, (3.15)

where I(ζ) is a Schwarz integral formula for multiply connected domains given in (2.36)

with boundary data sj(ζ).

The parameters should satisfy the following conditions. First, because η(ζ) has a zero

at ζ = a and f(ζ) must be analytic at ζ = a, the function in square brackets must vanish

at ζ = a, which means

I(a) +
B

a− b
+ ic0 = 0, (3.16)

and because f(ζ) is single-valued we have M single-valuedness conditions:

−
∫
C0

s0(ζ)dvk(ζ) +

M∑
j=1

∫
Cj

sj(ζ)dvk(ζ) = 0, k = 1, . . . ,M. (3.17)

We have parameters B ∈ C and c0 ∈ R, which gives 3 real parameters to be found. However,

we have M single-valuedness conditions and two conditions due to the fact that η(ζ) has a

zero at ζ = a.

When we consider finding an analytic and single-valued function f(ζ) which satisfies

the given boundary data r0(ζ), the above argument means that there are M − 1 additional

conditions on rj(ζ). This was first proved mathematically by Vekua [152]. The important

result here is that when M = 1, i.e., Dζ is the annular region, there always exists an

analytic and single-valued function which satisfies the given regular boundary data r0(ζ)

and r1(ζ). For M > 1, it will be seen that these M − 1 conditions are necessary for solving

the parameters of multi-valued functions in section 3.3.

51



CHAPTER 3. GENERALIZED SCHWARZ INTEGRAL FORMULAS FOR MULTIPLY
CONNECTED DOMAINS

3.3 Generalized Schwarz integral formulas with multi-valued

functions

In this section, we will see how the Schwarz problem in multiply connected domains can

be uniquely solved by introducing multi-valued functions. The existence of the term vk in

the solution (3.3) for the Dirichlet problem means that the solution f(ζ) is analytic but

not necessarily single-valued unless Ak = 0 for k = 1, . . . ,M . Hence, it is clear that the

boundary value rj(ζ) satisfies the M conditions if we want to find a single-valued analytic

function for the Dirichlet problem.

Here we consider the problem of finding an analytic, but not necessarily single-valued

function which satisfies the following boundary conditions:
Re[f(ζ)] = r0(ζ), ζ ∈ C0

Re[f(ζ)] = r1(ζ), ζ ∈ C1

Im[f(ζ)] = r2(ζ), ζ ∈ C2.

(3.18)

The continuities of rj(ζ) around the boundary Cj , for j = 0, 1, 2, allow us to have a branch

cut between C0 and C1. This means that real part of f(ζ) should be continuous around

C0 and C1, but the imaginary part of f(ζ) is not necessarily continuous. It is convenient

to write

f(ζ) = f̂(ζ) + iβv1(ζ), β ∈ R, (3.19)

where f̂(ζ) is a single-valued function in Dζ . Note that the function v1(ζ) introduced in

Chapter 2 has a branch-cut between C0 and C1. By introducing an appropriate radial slit

map η(ζ), which satisfies arg[η(ζ)] = 0 or π, ζ ∈ C0, C1,

arg[η(ζ)] =
π

2
or − π

2
, ζ ∈ C2,

(3.20)

we have the modified Schwarz boundary value problem

Re

[
η(ζ)f̂(ζ) − B

ζ − b

]
=



η(ζ)(r0(ζ) − Re[iβv1(ζ)]) − Re

[
B

ζ − b

]
≡ s0(ζ), ζ ∈ C0,

η(ζ)(r1(ζ) − Re[iβv1(ζ)]) − Re

[
B

ζ − b

]
≡ s1(ζ), ζ ∈ C1,

iη(ζ)(r2(ζ) − Im[iβv1(ζ)]) − Re

[
B

ζ − b

]
≡ s2(ζ), ζ ∈ C2.

(3.21)
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Thus, we have the solution for the mixed boundary value problem (3.18):

f(ζ) =
1

η(ζ)

[
I(ζ) +

B

ζ − b
+ ic0

]
+ iβv1(ζ). (3.22)

The problem now is to find the parameters β, c0 ∈ R, and A ∈ C. Since f̂(ζ) is a

single-valued function in Dζ , the boundary data sj(ζ), j = 0, 1, 2, must satisfy the following

single-valuedness conditions

−
∫
C0

s0(ζ)dvk(ζ) +
2∑

j=1

∫
Cj

sj(ζ)dvk(ζ) = 0, k = 1, 2. (3.23)

This gives us two real linear equations. Since the radial slit map η(ζ) has a zero at ζ = a,

we also require that the function inside the bracket vanishes at ζ = a, i.e.,

I(a) +
B

a− b
+ ic0 = 0. (3.24)

The real part and the imaginary parts of this equation give two additional conditions.

There are the 4 real linear equations for the 4 unknown real parameters, and so the mixed

boundary value problem (3.18) can be solved uniquely.

3.4 Products of radial slit mappings

This section focuses on products of radial slit maps. The product of N radial slit mappings

is defined by

η(ζ) ≡
N∏

n=1

ηk(ζ) = ĉη

N∏
n=1

ω(ζ, an)ω(ζ, 1/an)

ω(ζ, bn)ω(ζ, 1/bn)
, ĉη ∈ C, (3.25)

where the parameters an, bn, n = 1, 2, . . . , N are strictly inside Dζ . In this section, it is

shown that the products of radial slit maps have two advantages for calculating generalized

Schwarz integral formulas.

3.4.1 Parameters

It is important to point out that a given radial slit mapping of the form (3.5) contains only

three complex adjustable parameters, cη, a, and b, yet as more boundaries of a multiply

connected domain are added this will not be enough adjustable parameters to ensure the

function required for our construction has all the requisite properties. The resolution is to

consider the products of radial slit maps (3.25) to produce a function with the required

properties. It is clear that (3.25) has more adjustable parameters, and also has piecewise
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constant argument on all boundaries of the domain having prime function ω(., .). By

considering the products of radial slit maps instead of (3.5), we can find a suitable function

η(ζ) that satisfies the boundary conditions (3.13).

3.4.2 Conditioning

The method proposed in the previous section becomes unstable when the two circles (the

outer circle and the inner circle, or two inner circles) approach each other. This is because

the radial slit map η(ζ) maps a boundary to an long radial slit when appropriate parameters

a or b are chosen. In this section, the resolution for these difficulties is described.

(i) Doubly connected domains

In this section, we solve the following mixed-type boundary value problem:

Im[f(ζ)] = r0(ζ), |ζ| = 1, (3.26)

Re[f(ζ)] = r1(ζ), |ζ| = ρ. (3.27)

The radial slit map η(ζ) in this case can be found explicitly as

η(ζ) =
P (ζ/a)P (aζ)

P (ζ/a)P (aζ)
, a ≡ r exp

(
πi

4

)
, ρ < r < 1. (3.28)

Figure 3.1 shows the annulus region with different ρ and the slit map we obtained, where

the parameter r is chosen to be r =
√
ρ so that the lengths of the two slits are equal. It

can be seen that as ρ becomes large, the edges of the radial slit map approach 0. Since

the generalized Schwarz integral includes the integration of η(ζ)rj(ζ) on Cj for j = 0, 1 as

shown in (3.9), the integral loses information around the edge of η(ζ). This reduces the

accuracy of the proposed method.

Figure 3.1: Examples of radial slit maps of doubly connected domains. When ρ becomes
big the lengths of two radial slits become long, which compromises the accuracy of the
radial slit map approach.
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Based on the above observation, it is natural to define the condition number of the

generalized Schwarz integral, which quantifies the ill-posedness of the problem, as

cond(η) ≡ max
j=0,...,M

max
ζ∈Cj

|η(ζ)|

min
ζ∈Cj

|η(ζ)|

 . (3.29)

Figure 3.2 shows the condition number of the radial slit map in (3.28) with respect to ρ.

When ρ becomes large the condition number increases exponentially, which means that

the accuracy of the approach becomes worse.

Figure 3.2: Log plot of condition number of the radial slit map defined in (3.29). As the
inner radius ρ increases, the condition number increases.

One way to overcome this accuracy problem is to use products of radial slit maps.

Consider a product of N radial slit maps as follows:

η(ζ) =
N∏

n=1

P (ζ/an)P (anζ)

P (ζ/an)P (anζ)
, (3.30)

where

an =
√
ρ exp

[
πi

N

(
2(n− 1) +

1

4

)]
, n = 1, . . . , N. (3.31)

The value of the function (3.30) for ρ = 0.7 is illustrated in Figure 3.3. The number of

multiplication is changed from N = 1 to N = 5. The condition numbers (3.29) of these

functions are 3.35 × 108, 1.04 × 104, and 20.7, respectively. This means that the products
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of radial slit maps can reduce the condition numbers.

Figure 3.3: The boundary values of the function (3.30). The blue circles are the parameters
an. The radius of the inner circle ρ is 0.7. The condition numbers for N = 1, N = 2, and
N = 5 are 3.35 × 108, 1.04 × 104, and 20.7, respectively.

Now we consider X(ζ) ≡ η(ζ)f(ζ). The product of radial slit maps changes the problem

slightly, because η(ζ) in (3.30) now has N -simple poles at ζ = an, n = 1, . . . , N . Hence,

we should eliminate the poles at ζ = an such that

Re

[
X(ζ) −

N∑
n=1

Bn

ζ − an

]
=



iη(ζ)r0(ζ) − Re

 N∑
j=1

Bn

ζ − an

 , |ζ| = 1,

η(ζ)r1(ζ) − Re

[
N∑

n=1

Bn

ζ − an

]
, |ζ| = ρ,

(3.32)

where Bn ∈ C, n = 1, 2, . . . , N , are parameters to be found. Thus, the solution for the

problem with boundary conditions (3.26) and (3.27) is

f(ζ) =
1

η(ζ)

[
I(ζ) +

N∑
n=1

Bn

ζ − an
+ ic0

]
. (3.33)

The new approach increases the number of parameters but we have the same number of

additional conditions. Because η(ζ) has simple zeros at ζ = an, n = 1, . . . , N , the bracket

56



CHAPTER 3. GENERALIZED SCHWARZ INTEGRAL FORMULAS FOR MULTIPLY
CONNECTED DOMAINS

Figure 3.4: The accuracy of the radial slit map approach with respect to the number of
products of radial slit maps. We solve the problem with boundary values (3.26) and (3.27)
with ρ = 0.7. The function is set to be f(ζ) = ζ. The red lines correspond to the true value
on C0 and the blue dotted lines correspond to the reconstructed values by the radial slit
map approach. When N = 1 and N = 2, there are some errors between the test function
and the reconstructed results. In contrast, when N = 5 the proposed method is much more
accurate than N = 1 or N = 2. This is due to the condition number defined in (3.29). For
numerical integration of the Schwarz integral, alternate trapezoidal rule around C0 and C1

with the interval π/3000 was used.

in (3.33) should vanish at ζ = an, for n = 1, . . . , N . This produces the same number of

conditions as the additional parameters.

The effect of the change of the condition number is validated numerically in Figure 3.4.

In Figure 3.4, we solve the mixed boundary value problem in the annular region Dζ defined

in (3.26) and (3.27) and we set f(ζ) = ζ.

Figure 3.4 shows the value of f(ζ) on C0 in red lines and the function f̂(ζ) on C0

calculated by the generalized Schwarz integral in blue dotted lines. Since the condition

number for N = 5 is small, the proposed method can achieve sufficient accuracy.

One of the advantages of the products is that they do not increase the computational

time. To determine Bn, an N -by-N linear system for Bn is created, which can be solved in

a straightforward manner. Therefore, it is recommended to reduce the condition number

by the products in order to obtain the accuracy.
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(ii) Triply connected domain

In this subsection, we consider the mixed boundary value problem in the symmetrical

triply connected domain below:
Re[f(ζ)] = r0(ζ), ζ ∈ C0,

Im[f(ζ)] = r1(ζ), ζ ∈ C1,

Im[f(ζ)] = r2(ζ), ζ ∈ C2.

(3.34)

The centres of the inner circles are (−δ, 0) and (δ, 0), and the radii are both q, where δ is

purely imaginary.

Following the argument in Chapter 2, an appropriate map for solving the boundary

value problem (3.34) is given by

η(ζ) ≡ cη
ω(z, a)ω(z, 1/a)

ω(z, b)ω(z, 1/b)
, cη =

(
ab

ab

)1/2

, (3.35)

where a and b are chosen so that η(ζ) satisfies
arg[η(ζ)] = 0, π, ζ ∈ C0,

arg[η(ζ)] = ±π
2
, , ζ ∈ C1,

arg[η(ζ)] = ±π
2
, ζ ∈ C2.

(3.36)

It can be shown that the parameters a and b in the radial slit map η(ζ) then satisfy
v1(a) − v1(b) + v1(1/a) − v1(1/b) =

1

2
, or − 1

2
,

v2(a) − v2(b) + v2(1/a) − v2(1/b) =
1

2
, or − 1

2
.

(3.37)

For triply connected domains, there are no explicit expressions for the parameters (a, b) in

the radial slit map. Therefore, a non-linear solver such as Newton’s method must be used to

find these parameters which satisfy the condition (3.36). The candidates for the parameters

(a, b) which satisfy the condition (3.36) are visualized in Figure 3.5. The parameter a is

shown as red dots and b is illustrated as blue dots. The radii of the two inner circles are

q = 0.2, and the centres are (0, 0.4) and (0,−0.4). There are several choices of (a, b) and if

we choose (a, b) as the cyan circles as shown in the left figure of Figure 3.5, the condition

number is 194.96.
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Figure 3.5: The possible candidate of the parameters (a, b), which satisfies the
condition (3.36). We have plotted the case where Im[a] > 0 and Im[b] < 0. The parameter
a is shown as red dots and b is illustrated as blue dots. The radius of the inner circle is
q = 0.2, and the centres are (0, 0.4) and (0,−0.4). There are multiple choices of (a, b). If
we choose (a, b) as shown in the left figure, the condition number is 194.96.

For triply connected domains, we can also consider products of radial slit maps in order

to reduce the condition number as follows:

η(ζ) ≡ ĉη

N∏
n=1

ω(z, an)ω(z, 1/an)

ω(z, bn)ω(z, 1/bn)
, ĉη ≡

N∏
n=1

(
anbn

anbn

)1/2

. (3.38)

It is observed that the condition number increases as the inner circles approach to the unit

circle for any choice of parameters a and b. Therefore, it is recommended to use a product

of radial slit maps in order to reduce the condition number.

3.5 Application to hollow vortex wake behind a wedge

In this section, we apply the proposed method to calculate the flow around hollow vortices.

The main mathematical tools are the prime function and generalized Schwarz integral

formula derived in the previous section. The formula solves the mixed boundary value

problems which include parameters of the fluid velocity and the Bernoulli constants. By

minimising the cost function, these parameters are optimized and then the shape of the

free surfaces is determined. The result we present here show the versatility of the proposed

generalized Schwarz integral formulas.
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3.5.1 Introduction

The hollow vortex wake behind a wedge object concerns a generalization of the Föppl point

vortex pair behind a bluff body, a well-known problem in fluid dynamics [17, 142]. We

propose to study a more realistic model in which we smear out those point vortices (in

which the vorticity is concentrated in two δ-functions behind the body) to two “hollow

vortices”. A hollow vortex is a bounded region of constant pressure with a non-zero

circulation around it. Hollow vortices are an old vortex model [128] but have recently been

the subject of much renewed interest [27,45,47,62]. A hollow vortex wake behind a bluff

body has been studied by Batchelor [16], Lin and Landweber [87] and, more recently, by

Telib and Zannetti [142]. Following [87] we will study a pair of closed free streamlines,

with non-zero circulation of opposite sign, enclosing finite-area constant-pressure regions

(these are the hollow vortices) behind an open wedge of finite length. Our methodology is

extendible to other geometries; for example, the problem of a hollow vortex in an infinite

wedge region has recently received attention [27, 88, 153] and the approach here can be

adapted to that case too.

3.5.2 Problem formulation

Consider a wedge obstacle with opening angle 2πϕ in a complex z = x+ iy-plane, where

0 < ϕ < π/2, as shown in Figure 3.6. The origin is taken at the wedge apex. Suppose there

is an irrotational ideal flow of speed U flowing from left to right in the x direction. There

will therefore be an associated complex potential [17] w(z) = ϕ+ iψ, where ϕ and ψ are

the velocity potential and streamfunction respectively, from which the velocity field (u, v)

can be determined from the formula u− iv = dw/dz. Following [87] we assume that two

hollow vortices, of identical shape with equal but opposite circulation ±Γ, form a steady

wake behind the wedge; see Figure 3.6. At the trailing edge, labelled B in Figure 3.6, a

Kutta condition is imposed [87,142].

A hollow vortex is a constant-pressure region of finite area with circulation around

it [27]. On the boundary of the hollow vortex, Bernoulli’s equation gives

p+
(u2 + v2)

2
= constant, (3.39)

where p is pressure on the hollow vortex boundary. The pressure on the hollow vortex is

constant, and thus, the Bernoulli condition gives the velocity around the hollow vortex

constant.
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Figure 3.6: A hollow vortex wake behind a wedge in uniform flow and the associated
conformal mapping used in the solution scheme.

3.5.3 Complex analysis formulation

The fluid domain here is triply connected. However, by a flow symmetry across the x

axis, it is enough to consider the flow in the upper-half region exterior to the wedge and

the upper hollow vortex. This domain is doubly connected, making it appropriate to use

a parametric annulus ρ < |ζ| < 1 as the preimage domain appropriate; let C0 and C1

denote its outer and inner circular boundaries. To solve this free boundary problem we

will construct the conformal mapping, z = Z(ζ) say, from this concentric annulus to the

upper-half flow region. Two prevertices ζa and ζc indicated in Figure 3.6 are transplanted

to the origin (on different “sides” of the wedge) and ζb is mapped to the upper trailing edge

B. From an analysis of the Föppl point vortex problem, a stagnation point, labelled D,

is expected on the x-axis; its preimage will be denoted by ζd. We suppose the conformal

map has the form,

Z(ζ) = − is

ζ − 1
+ Ẑ(ζ), s ∈ R, s > 0, (3.40)

where Ẑ(ζ) is analytic in the annulus and where a rotational freedom of the Riemann

mapping theorem allows us to choose ζ = 1 as the preimage of z = ∞.

Supposing such a conformal mapping can be found, it turns out that a general “calculus”

[34,40] for solving two-dimensional irrotational flow problems of this kind can be used to

immediately write down that the complex potential for this flow as [34,40]

W (ζ) ≡ w(Z(ζ)) = −iUsK(ζ) +
iΓ

2π
log ζ, (3.41)

where K(ζ) is defined in Chapter 2. Note that K(ζ) has a simple zero at ζ = 1, which
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corresponds to the uniform flow U at z → ∞, or w(z) → Uz. The logarithmic term in

(3.41) accounts for the required circulation Γ around the hollow vortex.

In the spirit of free streamline theory [17] it is now convenient to write

log

(
dw

dz

)
= logS(ζ) + T (ζ), (3.42)

where

S(ζ) ≡ Ŝ(ζ)

Ŝ(1)
, Ŝ(ζ) ≡ (ζb − ζ)(ζ − ζd)

ζ

(
ζa − ζ

ζ − ζb

)ϕ(ζc − ζ

ζ − ζb

)1−ϕ

. (3.43)

The job of logS(ζ) is to capture all expected singularities of log(dw/dz) on C0 and C1

associated with the corners and edges of the wedge, and any stagnation points, leaving the

function T (ζ) analytic inside the annulus domain Dζ and up to the boundary. The form of

Ŝ(ζ) is analytic at ζ = ζb, but some terms are included for numerical convenience. It can

be shown to satisfy the boundary value problem

Im[T (ζ)] = 0, ζ ∈ C0,

Re[T (ζ)] = log(vc) − Re[logS(ζ)], ζ ∈ C1,
(3.44)

where vc is the constant velocity of the hollow vortex. In order to derive the equation (3.43),

we used that

log

(
dw

dz

)
= log

∣∣∣∣dwdz
∣∣∣∣+ iarg

(
dw

dz

)
. (3.45)

Since dw/dz = u− iv, its argument on the wedge is −πϕ. It is important to mention that

at ζ = ζa the argument of S(ζ) changes by −πϕ, and at ζ = ζc the argument changes by

−(1 − ϕ)π. In addition, because S(ζ) consists of products of powers of Cayley maps it can

be shown that, from Chapter 7 of [40], S(ζ) has a piecewise constant argument on ζ ∈ C0.

The key point is that this is essentially the same mixed boundary value problem (3.4),

falling within in the general class (3.1), whose solution was discussed in the previous section.

As such, we can represent its solution using the generalized Schwarz integrals discussed

there. The radial slit map used in the generalized Schwarz integral formula in this case is

η(ζ) =
P (ζ/c)P (cζ)

P (ζ/c)P (cζ)
, c = r exp

(
πi

4

)
, ρ < r < 1. (3.46)

With an expression for dw/dz found as a function of ζ in this way, and with W (ζ) known
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from (3.41), we can reconstruct the shape of hollow vortex by the chain rule:

Z(ζ) =

∫ ζ

ζa

dZ
dζ ′

dζ ′ =

∫ ζ

ζa

dW/dζ ′

dw/dz
dζ ′. (3.47)

Given these representations of the solutions, there is still a parameter problem to solve.

The parameters ζa, ζb, ζc, and log(vc) are determined by ensuring the sides of the wedge

have specified length, and by imposing the condition of single-valuedness of the mapping

Z(ζ), i.e., ∮
C′

Z ′(ζ)dζ = 0, (3.48)

where C ′ is any closed circle in the annulus. Other conditions on this problem are that

dW

dζ
= 0, for ζ = ζb, ζd,

∣∣∣∣dWdz
∣∣∣∣ = vc, for |ζ| = ρ. (3.49)

The condition at ζd enforces that it is a stagnation point, the condition at ζb is the Kutta

condition. The second condition on |dw/dz| follows from the Bernoulli theorem and the

assumption that the wake vortex is hollow, meaning that the pressure inside it is constant

forcing its boundary speed to be constant.

As ρ→ 0 the hollow vortex will degenerate to a point vortex, and standard methods

can be used to find the equilibrium point in this limit (akin to the standard Föppl vortex

pair analysis). The coordinate of the Föppl point vortex (ξ0, η0) is given by solving the

zero velocity at the vortex and Kutta condition on the edge.

Γ

U
= − 4π

1/η0 − Im[(d/dζ)(log dz/dζ)]
, (3.50)

where z = Z(ζ) is a conformal map from the upper half region to the upper half region

with a half wedge. The Kutta condition is

−U
Γ

= − i

2π

(
1

ζb − ζ0
− 1

ζ − ζ0

)
, ζ0 ≡ ξ0 + iη0. (3.51)

A continuation method for ρ > 0 was then used to determine unique values of the

parameters by Newton’s method.

The numerical algorithm to find the hollow vortex wake can be summarized as follows.
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Figure 3.7: Hollow vortex wakes calculated by solving the mixed boundary value problem
(3.44). The red point corresponds to the equilibrium point vortices. The innermost line
corresponds to the case where ρ = 0.05, and blue lines from the inner line corresponds to
ρ = 0.1, 0.25, 0.4, 0.6. (i) Γ = 6.0, θ = π/4. (ii) Γ = 10.0, θ = π/3.

Algorithm 1 A hollow vortex wake computed using generalized Schwarz integrals

1: Set parameters U,Γ, ρ (these parameters are fixed)
2: Set initial parameters ζa, ζb, ζc and the speed of the hollow vortex vc. The stagnation

point ζd is set to be 1/ζb because dW
dζ (ζd) = 0.

3: the cost functions are |Z(ζa)| − 1, |Z(ζc)| − 1, and
∮
C

dZ
dζ′dζ

′ = 0. (4 in total)
4: while The cost function > ϵ do
5: Obtain the value s by enforcing the Kutta condition dW

dζ (ζb) = 0.

6: Solve for dZ
dζ and calculate the cost function.

7: end while
8: Calculate Z(ζ) =

∫ ζ
ζa

dZ
dζ′dζ

′ for ζ ∈ C1 to obtain the shape of the hollow vortex.

Figure 3.7 shows the shape of hollow vortex wakes for different wedge angles θ and Γ.

As ρ increases, the size of the hollow vortex wake becomes larger and there is qualitative
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agreement with the earlier calculations of Lin and Landweber [87] who used very different

methods (those authors gave no numerical data with which to make a quantitative

comparison).

3.6 Application to the longitudinal flow in a heat sink

Based on the generalized Schwarz integral formula proposed in this chapter, an analytical

formula for longitudinal flow in heat channels with periodic fins can be derived. Heat

sinks or heat channels are devices that is used to transfer heat in order to manage the

temperature of electrical devices or elsewhere easily and at low cost [85]. They consist

of a sealed container filled with a liquid (such as water or a special fluid) and a finned

structure that helps to circulate the liquid and transfer heat. Heat sinks can be used in a

variety of applications, such as computer cooling, space heating, and thermal management

in electronic devices [70]. They are highly efficient at transferring heat and can operate

over a wide temperature range. A review article focuses on microchannel heat transfer [75].

Figure 3.8 shows a typical heat channel with periodic fins. Various numerical methods

have been proposed to calculate the flow and the temperature fields in microchannels

or pipes with fins [73, 134]. The velocity fields and heat transfer through a tube with

equally-spaced fins were calculated by Hu and Chang [69]. Another method was proposed

by Masilyah and Nandakumar in order to solve the flow and thermal temperature using

an approximate Green’s function of cylindrical channels [94]. However, a special case has

to be taken around the points adjacent to the top of the fins because the edge of the fin

becomes singular for numerical calculations.

In this section, we aim to obtain an analytical solution for the flow in a heat channel.

This can be done by using the horizontal map introduced in Chapter 2 and generalized

Schwarz integral formulas in the triply connected domain.

3.6.1 Problem formulation

Following the problem formulation described by Sparrow, Baliga, and Patankar [134],

a pressure-driven longitudinal flow is considered in the period window consisting of

equally-spaced periodic thermal fins. The fins are assumed to be infinite in Z-direction, so

the velocity field is u = (0, 0, w(x, y)). The period window is bounded by a top wall called

“shroud” and a bottom wall called “base”, which consist of periodic fins. The periodicity of

the fins is 2L and the height of the fins is H. The distance between the top of the fin and

the top wall is c. The total height of the channel is H + c.

We define a half period window as D+ and set the origin as the centre of the bottom

line. The geometry is illustrated in the left figure of Figure 3.9. The flow is assumed to be
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Figure 3.8: Illustration of a periodic heat sink. The heat pipe has periodic fins with height
H consisting of top and bottom walls.

fully-developed. The non-dimensional velocity field w(x, y) satisfies

∇2w(x, y) = 1, (x, y) ∈ D+. (3.52)

The half period window D+ is bounded by top and bottom walls. The boundary conditions

on the walls and fins are

w(x, y) = 0, 0 ≤ x ≤ L, y = 0, H + c (3.53)

w(0, y) = 0, 0 ≤ y ≤ H, x = 0. (3.54)

Because of the periodicity, the partial derivative of the velocity w(x, y) with respect to

x vanishes at the centre line of the period window and the gap between the fins and the

upper wall. These conditions are given by

∂w

∂x
(0, y) = 0, H ≤ y ≤ H + c, (3.55)

∂w

∂x
(L, y) = 0, 0 ≤ y ≤ H + c. (3.56)

This is a mixed boundary value problem. Sparrow used the finite element method

to calculate the velocity field [134]. Karamanis et. al. also used the discretized mesh to

calculate the flow and the temperature field [73]. However, since the flow at the edge of

the fins becomes singular, a number of discretized meshes are used to achieve sufficient

accuracy. The following analytical solution appears to be new.
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Figure 3.9: The conformal map to the half period window from the upper-left of triply
connected domain.

3.6.2 Complex Analysis Formulation

Here a complex analysis formulation is introduced to solve the mixed boundary value

problem. We split the flow w(x, y) into two parts:

w(x, y) = w0(x, y) + ŵ(x, y), w0(x, y) ≡ −y(H + c− y)

2
, (3.57)

where ŵ(x, y) is a harmonic function which satisfies

ŵ(x, y) = 0, 0 ≤ x ≤ L, y = 0, H + c (3.58)

ŵ(0, y) =
y(H + c− y)

2
, 0 ≤ y ≤ H, (3.59)

∂ŵ

∂x
(0, y) = 0, H < y ≤ H + c, (3.60)

∂ŵ

∂x
(L, y) = 0, 0 < y < H + c. (3.61)

Because ŵ(x, y) is a harmonic function it is convenient to define h(z) = χ+ iŵ, z ≡ x+ iy,

where χ is the harmonic extension of ŵ. On the real axis, i.e., z = z, we have

h(z) = h(z) = h(z) = h(z), (3.62)

where f(z) is a Schwarz conjugate of the function f(z) defined by f(z) ≡ f(z). Due to the

Schwarz reflection principle, the function h(z) can be analytically extended to the region
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D− and it satisfies

h(z) = h(z), z ∈ D−. (3.63)

Hence, from (3.59) and (3.63),

ŵ(0, y) = Im[h(z)] = Im[h(z)] = −Im[h(z)] =
y(H + c+ y)

2
(3.64)

for −H − c ≤ y ≤ 0. From (3.60), (3.61), and the Cauchy-Riemann equations, it is

straightforward to see that χ is constant both on the centre line of the period window and

on the gap between the fins and the top surface. Without loss of generality, it suffices to

set

χ(0, y) = 0, H ≤ y ≤ H + c (3.65)

χ(L, y) = χ0, 0 ≤ y ≤ H + c, (3.66)

where χ0 ∈ R is an unknown parameter that is solved during the flow calculation.

Now we introduce the conformal mapping to D = D+ ∪D− in the z-plane from the

upper half unit disc with an inner small circular disc excised; let this region be called D+
ζ

in the complex ζ-plane. The map is defined by

z = Z(ζ) = −H + c

π
log

(
ω(ζ, θ1(∞))

ω(ζ, θ2(∞))

)
, (3.67)

where

θ1(ζ) ≡ δ +
q2

1 − δζ
, θ2(ζ) ≡ −δ +

q2

1 + δζ
, (3.68)

and where ω(., .) is the prime function associated with Dζ [40].

The one-to-one map Z(ζ) is shown in Figure 3.9. The upper-right semi-circle C++
0 is

mapped to the fins, the positive real axis inside the circle is mapped to the gap between the

top surface and the top of the fins, and the right part of the inner circle is mapped to the

centre line of the period window, respectively. This mapping is explicit up to two unknown

parameters δ and q. These parameters can be easily obtained by solving a nonlinear system

using Newton’s method.

Because of the conformal invariance of the analytic function, it is useful to define

H(ζ) ≡ h(Z(ζ)). The boundary condition (3.59) on the upper semi-circle becomes

Im[H(ζ)] =
y(H + c− y)

2
=

Im[Z(ζ)](H + c− Im[Z(ζ)])

2
, ζ ∈ C++

0 , (3.69)
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and

Im[H(ζ)] =
y(H + c+ y)

2
=

Im[Z(ζ)](H + c+ Im[Z(ζ)])

2
, ζ ∈ C−+

0 . (3.70)

From (3.65) and the fact that the Z(ζ) maps the real axis of the ζ-plane to the gap,

we have

Re[H(ζ)] = 0, ζ = ζ. (3.71)

Using the Schwarz reflection principle, the function H(ζ) can be analytically extended to

the lower half disc outside the inner circle and

H(ζ) = −H(ζ), ζ ∈ D−
ζ . (3.72)

Thus, combining (3.69), (3.70), and (3.72), we have the following boundary value problem

for H(ζ) in Dζ :

Im[H(ζ)] = ϕ(ζ), ζ ∈ C0, (3.73)

Re[H(ζ)] = χ0, ζ ∈ C1, (3.74)

Re[H(ζ)] = −χ0, ζ ∈ C2, (3.75)

where

ϕ(ζ) =


Im[Z(ζ)](H + c− Im[Z(ζ)])

2
, ζ ∈ C++

0 , C+−
0

Im[Z(ζ)](H + c+ Im[Z(ζ)])

2
, ζ ∈ C−+

0 , C−−
0 .

(3.76)

This boundary value problem can be solved using the generalized Schwarz integral

formula introduced in this Chapter. By introducing a suitable radial slit map η(ζ), which

satisfies the conditions such that η(ζ) is purely imaginary on ζ ∈ C0 and purely real on

ζ ∈ C1 and ζ ∈ C2. The boundary value problem then becomes

Re

[
η(ζ)H(ζ) − A

ζ − b

]
=



iη(ζ)f(ζ) − Re

[
A

ζ − b

]
≡ g0(ζ), ζ ∈ C0,

χ0η(ζ) − Re

[
A

ζ − b

]
≡ g1(ζ), ζ ∈ C1,

− χ0η(ζ) − Re

[
A

ζ − b

]
≡ g2(ζ), ζ ∈ C2.

(3.77)
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Figure 3.10: Velocity contour plots of w(x, y). The total height of the channel and the
height of fins are fixed to 0.8 and 0.5, respectively. (i) L = 0.5. (ii) L = 0.3. (iii) L = 0.25.

Figure 3.11: Velocity contour plots of w(x, y). The total height of the channel and the
space of fins are fixed to 0.8 and 0.6, respectively. (i) H = 0.4, c = 0.4. (ii) H = 0.5,
c = 0.3. (iii) H = 0.6, c = 0.2.

The solution for this boundary value problem is given by

H(ζ) =
X(ζ)

η(ζ)
, X(ζ) ≡ I(ζ) +

A

ζ − b
+ ic0, (3.78)

where I(ζ) is a Schwarz integral with the boundary data gj = {g0(ζ), g1(ζ), g2(ζ)}. The

parameters χ0 ∈ R, c0 ∈ R, and A ∈ C can be solved uniquely from a linear system

obtained by the single-valued conditions around C1 and C2 plus the condition X(a) = 0.

3.6.3 Numerical evaluations

The solution (3.78) is almost explicit except for the unknown parameters q and δ of Dζ

and the parameters in the radial slit map a and b. The geometric parameters q and δ can
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be obtained by solving the following non-linear equations:Z(1) = iH,

Z(δ + qi) = L.
(3.79)

This can be solved by the Newton’s method. After solving these parameters, the conformal

map and the solution can be constructed by computing the prime function.

Figures 3.10 and 3.11 show typical flows in different geometries. We have compared

our data with Sparrow, Baliga, and Patankar given in [134].

It is important to note that this boundary value problem is also solved using Schwarz

integral formulas in Chapter 2 by considering

w(x, y) = wP (x, y) + w̃(x, y), (3.80)

where wP (x, y) satisfies

∇2wP (x, y) = 1, (3.81)

with

wP (0, y) = 0, 0 ≤ y ≤ H, (3.82)

wP (x, 0) = w(x,H) = 0, 0 ≤ x ≤ L, (3.83)

∂wP

∂x
(L, y) = 0, 0 ≤ y ≤ H. (3.84)

This formulation is explained in detail in [101].

This section has shown how to incorporate the generalized Schwarz integral formulas [98]

to solve for flow in microchannels with periodic fins. The solutions are explicit once two

parameters, δ and q, have been found by solving two non-linear equations given the

geometry of the surface. It is expected that our formulation would be able to deal with

the flow in microchannels with staggered fins, previously studied in [74,160].

3.7 Conclusion

This chapter has shown how to use radial slit mappings (expressed in terms of the prime

function of a preimage domain) in conjunction with Schwarz integral formulas (with kernels

also expressible in terms of that the same prime function) to find what we have dubbed

generalized Schwarz integral formulas that solve the class of boundary value problems (3.1)

for analytic functions in multiply connected domains. Such problems are ubiquitous in the
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applied sciences as we hope to have shown here by showing the new solution method in

action in two problems in the physical sciences. The ideas here constitute a flexible new

applied mathematical tool for applications.

In implementing the method this chapter has used radial slit mappings which have

piecewise constant argument on the boundaries of a given multiply connected circular

domain. We could alternatively have used the class of mappings called Cayley-type

mappings by Crowdy [40]. They share the property of having piecewise constant argument

on the boundaries of the domain, but they have a pole on one of the boundary circles rather

than inside the domain (as is the case for the radial slit mappings). This only requires a

few minor modifications and, indeed, we solved without difficulty some of the problems in

this paper using such Cayley-type mappings.

In the class of problems with boundary conditions (3.1) it has been assumed that a single

type of boundary condition holds on the whole of boundary portion ∂Dj . But one can easily

envisage the boundary condition switching type on a given boundary portion ∂Dj . Then

it is likely that Schwarz-Christoffel type functions as constructed for multiply connected

domains using the prime function in [29, 30, 40] will play the role of the radial slit or

Cayley-type mappings used in the present construction. Indeed, those Schwarz-Christoffel

type functions were themselves constructed using radial slit and Cayley-type mappings as

“building blocks”. This matter will be investigated in future work.

Mathematically, we end by mentioning that, if preferred, problem (3.1) can be recast as

a special case of a linear Riemann-Hilbert problem in a multiply connected domain. Many

methods have been put forward to solve such Riemann-Hilbert problems (e.g. [152]) and

new contributions on numerical methods for them continue to emerge [155, 156]. Those

methods can, in principle, be adapted to provide alternative schemes to those developed

here.
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Chapter 4

Van der Pauw method for holey

samples: new resistivity

measurement

This chapter explains a new approach for measuring the resistivity of holey materials. One

method is the van der Pauw method [117,118], which is commonly used to measure the

resistivity of a thin material. The van der Pauw method is simple and accurate but it has

the limitation that the sample to be measured should not have any holes in it. We will

see that the use of the prime function introduced in Chapter 2 and generalization of the

cross-ratio identity gives a new van der Pauw equation for holey samples. This chapter

contains one of the important applications of the conformal mapping of multiply connected

domains introduced in Chapter 2.

4.1 Introduction and background

Figure 4.1 shows a setup for the original van der Pauw measurement: the four electrical

contacts (Ωa,Ωb,Ωz,Ωw) are placed on the perimeter of a test sample. If Ωa and Ωb are a

source and sink of current Jab respectively, then the potential difference Vzw between points

Ωz and Ωw can be measured while this current is flowing. The resistance Rzw
ab = Vzw/Jab

is then a measured quantity; a second resistance Rzb
aw can be measured in exactly the same

way. Van der Pauw [118] showed that for any arrangement of four electrical contacts, and

given these two resistance measurements Rzw
ab and Rzb

aw, the resistivity λ can be found by

solving the nonlinear equation:

exp

(
−
Rzw

ab

λ

)
+ exp

(
−R

zb
aw

λ

)
= 1. (4.1)
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Figure 4.1: The original van der Pauw setup. The first measurement is the voltage
difference between z and w with a source of current a and a sink of current b. The second
measurement is the difference between z and b with a source a and a sink w. These
resistances satisfy the van der Pauw equation (4.1) which can be solved for λ. Because the
domain is simply connected, the prime function is ω(ζ, c) ≡ ζ − c.

In this thesis, this will be referred to as the classical van der Pauw equation and it provides

the basis for the van der Pauw method. Because this method needs only two resistance

measurements, and works for samples of arbitrary shape, the method is widely applied for

measuring the resistivity of superconductors or Hall coefficients of materials in laboratory

experiments [117,135]. An efficient numerical method to determine λ is discussed in [28].

In the next section we will see how the van der Pauw method is changed when considering

holey samples.
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4.2 Two conjectures of the van der Pauw measurements for

annular domains

In recent years, the van der Pauw method for samples with a single hole, or even several

holes, has been extensively studied [11, 79, 80, 112,136–141]. It has been reported that the

van der Pauw equation (4.1) is inaccurate for samples with several holes [103]. This is to

be expected since this formula takes no account of the presence of any holes. Indeed, quite

what form the appropriate generalization of the van der Pauw method should take is not

currently clear from the extant literature.

A sample with a single isolated hole whose boundary comprises more than a single

point is the natural first case to study and has been considered by [137, 139]. Any 2D

sample with a single hole is doubly connected and can be transplanted conformally into

an annulus [40] where the radius of the inner circle of the annulus depends on the shape

of sample [107]. By conducting both numerical and laboratory experiments Szymański et

al. [137] showed that the van der Pauw equation (4.1) does not hold for a sample with a

hole but conjectured that the data instead satisfies the inequality

exp

(
−
Rzw

ab

λ

)
+ exp

(
−R

zb
aw

λ

)
≤ 1. (4.2)

The same inequality has been proposed in series of papers [112,138]. To the best of the

authors’ knowledge, a rigorous proof of this conjecture has not been given. It is one of the

objectives of this chapter to show how the inequality (4.2) can be confirmed mathematically.

For holey samples Szymański et al. proposed some modifications to the van der

Pauw setting [138, 139]. Firstly, they proposed a six-point method, which uses six

electrical contacts on the perimeter of a sample with a hole, and measures nine pairs

of resistances [139]. Because the nine resistances can be expressed explicitly in terms of

the coordinates of six electrical contacts on the perimeter of a unit circle, they obtained

a well-conditioned equation for the unknown sample resistivity. The method was also

validated by some laboratory experiments. Arguably a drawback is that the method

requires the measurement of nine resistances to solve seven nonlinear equations.

Szymański et al. [138] also find that the pair of measured resistance (Rzw
ab , R

zb
aw) satisfies

another inequality which they dubbed a “lower envelope” – a phrase we also adopt – and

they proposed a method to measure the resistivity based on the existence of this envelope.

By conjecturing that the shape of the lower envelope depends only on a Riemann modulus

ρ, they applied a standard fitting technique for pairs of measurements (Rzw
ab , R

zb
aw) lying on

this envelope and consequently were able to determine the sample resistivity. They did

not, however, succeed in finding a mathematical expression for this lower envelope. This is
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Figure 4.2: Evidence for the two “envelopes”. Numerical experiments for pairs (X,Y )
where X ≡ exp(−Rzw

ab /λ) and Y ≡ exp(−Rzb
aw/λ) following [138]. The point z = 1 is fixed,

but (a, b, w) are picked at random with the ordering arg[z] < arg[w] < arg[a] < arg[b] < 2π.
When ρ = 0, all pairs (X,Y ) are on the line X + Y = 1 which is (4.1). However, when
ρ > 0, all points (X,Y ) lie in the gray-shaded region bounded by X + Y = 1 and a “lower
envelope” which is curved. As shown in the center and right, the size of the gray-shaded
area increases with ρ.

one of the new contributions of the present chapter which we now describe.

Figure 4.2 shows the results of the same numerical experiment conducted in [138]. It

shows the data from 40,000 pairs (X,Y ), where the more convenient designations

X ≡ exp(−Rzw
ab /λ), Y ≡ exp(−Rzb

aw/λ) (4.3)

are introduced. In Figure 4.2 three different samples are used, corresponding to three

different values of ρ. The contact points z, w, a, and b are chosen at random but always

such that they retain the ordering 0 = arg[z] < arg[w] < arg[a] < arg[b] < 2π. The data is

found to fall in the gray-shaded regions in Figure 4.2. If there is no hole, which means

ρ = 0, the pair satisfies X + Y = 1 as must be true since that data is known to satisfy the

original van der Pauw equation (4.1). However, if ρ > 0, this is no longer true and the

data (X,Y ) “fills in” a crescent-shaped domain shown shaded in Figure 4.2. Szymański et

al. conjecture that the data (X,Y ) always lies in such a domain bounded by the upper

envelope X + Y ≤ 1 and some lower envelope, dependent purely on ρ. Those authors

do not, however, give a definite equation for the curve described by this envelope. The

same authors also conjecture, again without a rigorous mathematical proof, that the lower

envelope might correspond to the pair of (Xθ, Yθ), where (Xθ, Yθ) are measurements with
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x

x

Figure 4.3: The upper envelope (red line) and the lower envelope (blue line). The lower
envelope, parametrized by the variable θ, is defined by its set of tangents as in (4.4): any
point in the gray region, which is where all measurement pairs lie, is above the tangent
line for each point on the lower envelope. The right-most figure gives a geometrical
interpretation of θ and shows what we mean by “symmetric resistance measurements”: the
sector formed by the pair (a, b) subtends the same angle θ at the origin as that formed by
the pair (z, w).

the four electrical contacts having the “symmetry” shown on the right of Figure 4.3; for

brevity, we will refer to these as “symmetric resistance measurements”. The angle θ is

defined as θ ≡ arg[w/z] = arg[b/a]; for such contact points the sector formed by the pair

(a, b) subtends the same angle θ at the origin as that formed by the pair (z, w). Based on

these conjectures, Szymański et al. [138] propose a method to determine λ by measuring

some pairs of resistances which lie on the lower envelope. If these conjectures hold then

the form of the upper and lower envelopes can be expressed mathematically as

X + Y ≤ 1, Y − Yθ ≥
∂Yθ/∂θ

∂Xθ/∂θ
(X −Xθ), for 0 < θ < π, (4.4)

where θ parametrizes the lower envelope which is defined by its set of tangents. Two

examples of such tangents (4.4) are shown on the left of Figure 4.3. These inequalities

have been proposed in several papers [112,136–138], but no rigorous proof has yet been

obtained.

The next sections aims to understand the envelope structure mathematically. This is

done by introducing, for the first time, two important tools into this area of investigation:

(i) use of the prime function ω(ζ, c) [40] associated with the concentric annulus ρ < |ζ| < 1

that generalizes the simple monomial prime function relevant when the sample if free of

holes; (ii) use of the Fay trisecant identity [40, 57, 121] satisfied by this new prime function

to gain insights into the two envelopes associated with the two resistance measurements
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(4.3).

In section 4.4 the prime function for the annulus is revisited and the electrical potentials

for annular samples are expressed by using the prime function. In section 4.4.2, the Fay

trisecant identity satisfied by this particular prime function is presented. Section 4.5 shows

how these mathematical tools can be used to understand the structure of the envelopes

associated with a holey sample. This involves analysis of an integrated form of the Fay

trisecant identity. In section 4.7 we propose how to use the new expressions for the lower

envelope curve in a generalized van der Pauw setting and carry out some numerical tests

to validate the scheme.

4.3 The van der Pauw equation for simply connected

domains

We start by considering the voltage potential of a sample with no holes to derive the

original van der Pauw equation (4.1). Because the electrical potential is harmonic, it is

reasonable to define the complex potential H0(Ω) of the complex variable Ω = x+iy, whose

real part is the harmonic voltage potential V (x, y) in the sample:

H0(Ω) = V (x, y) + iχ(x, y), (4.5)

where (x, y) denotes Cartesian coordinates in the physical plane. We have introduced

χ(x, y) as the harmonic conjugate of the potential V (x, y). The voltage V (x, y) is harmonic

in the sample and its normal derivative vanishes on the sample boundary; equivalently, by

the Cauchy-Riemann equations, its harmonic conjugate χ(x, y) is constant on the boundary.

Let σ be the specific resistance of the sample. Its thickness is defined as d, which is

measured beforehand. By the Riemann mapping theorem, we can introduce a conformal

mapping Ω = f(ζ) between the unit disc in a complex parametric ζ-plane and the sample

in the physical Ω-plane. By the conformal invariance of the boundary value problem for

V (x, y) [1], the complex potential h0(ζ) ≡ H0(Ω) for the voltage distribution caused by a

current source at Ωa and a compensating sink at Ωb is then given, as a function of ζ, by

h0(ζ) =
σJab
πd

log

(
ζ − a

ζ − b

)
= λJab log

(
ω(ζ, a)

ω(ζ, b)

)
, (4.6)

where

Ωa = f(a), Ωb = f(b), (4.7)
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and where λ ≡ σ/πd is the resistivity. We have used ω(ζ, c) above as the prime function of

simply connected domain defined by

ω(ζ, c) = ζ − c. (4.8)

The potential difference Vzw is therefore given by

Vzw ≡ Re[h0(z)] − Re[h0(w)] = λJab log

∣∣∣∣ω(z, a)ω(w, b)

ω(z, b)ω(w, a)

∣∣∣∣ = λJab log |p0(z, w; a, b)| . (4.9)

It follows that

Rzw
ab =

Vzw
Jab

= λ log p0(z, w; a, b), (4.10)

where the classical cross-ratio is defined by

p0(z, w; a, b) ≡ ω(z, a)ω(w, b)

ω(z, b)ω(w, a)
. (4.11)

We have removed the modulus symbols because the cross-ratio is real and positive when all

(z, w, a, b) are on the unit circle in the ζ plane, and 0 ≤ arg[z] < arg[w] < arg[a] < arg[b] <

2π.

The other measurement Rzb
aw is also given by the potential difference between z and b

with a current source at a and sink at w. Switching of b and w in (4.10) yields

Rzb
aw =

Vzb
Jaw

= λ log p0(z, b; a,w). (4.12)

It is well-known that the cross ratio satisfies the cross-ratio identity:

p0(z, w; b, a) + p0(z, b;w, a) = 1. (4.13)

The identity (4.13) is easily verified by a simple calculation:

p0(z, w; b, a) + p0(z, b;w, a) =
ω(z, b)ω(w, a)

ω(z, a)ω(w, b)
+
ω(z, w)ω(b, a)

ω(z, a)ω(b, w)

=
(z − b)(w − a)

(z − a)(w − b)
+

(z − w)(b− a)

(z − a)(b− w)

=
(z − b)(w − a) − (z − w)(b− a)

(z − a)(w − b)
= 1. (4.14)

Hence the cross ratio identity (4.13) is equivalent to the original van der Pauw equation (4.1).

In complex analysis the cross-ratio [1,40] is most commonly encountered in a geometrical

context as the Möbius mapping that provides a conformal mapping, as a function of the

variable z say, between 3 arbitrary complex points (a,w, b) in the complex z plane and the
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canonical choice of points (0, 1,∞).

Concerning the function (4.8), it is so simple in this case that it is rarely given the

designation “prime function”. However, the monograph [40] makes the case that recognizing

it as the simplest instance of a more general notion of a prime function is important for

generalizing many known results for simply connected planar geometries to multiply

connected cases. The van der Pauw problem of interest here is no exception. It will

be shown later that the natural way to extend the classical van der Pauw method to

multiply connected geometries is to treat the problem using the prime function – more

specifically, the multiply connected generalization of (4.8) – and to make use of some

important identities satisfied by that function.

4.4 The van der Pauw equation for annular domains

Here we derive a new van der Pauw equation for simplest nontrivial domains, i.e., doubly

connected domains. This can be done by considering the voltage potentials of the domain

with the use of conformal maps and the Fay’s trisecant identity associated with the doubly

connected domains. This approach is exactly the same as Section 4.3 except we use the

prime function for doubly connected domains.

4.4.1 The voltage potential in annular domains

We start by considering the voltage potential in annular domains. Let D denote a bounded

sample with an isolated hole. Let ∂D0 be the outer boundary of the sample and ∂D1 the

boundary of the hole. Similar to the original van der Pauw method, it is assumed that

the sample thickness is d. It is assumed that the hole in the sample carries no net charge.

Figure 4.4 shows a schematic diagram of the setup of the van der Pauw method for annular

domains.

It is also supposed that 4 point contacts (Ωa,Ωb,Ωz,Ωw), of infinitesimal width, are

placed on ∂D0. It is known, by an extension of the Riemann mapping theorem [40], that

any such domain is conformally equivalent to a concentric annulus ρ < |ζ| < 1 with circular

boundaries C0 and C1 and 0 ≤ ρ < 1. The circle C0 is the unit circle; C1 is the circle

|ζ| = ρ. In other words, there exists an analytic function

Ω = f(ζ) (4.15)

that transplants the annulus ρ < |ζ| < 1 to the domain D with C0 being transplanted to

∂D0 and C1 to ∂D1.
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Figure 4.4: The van der Pauw set-up for a sample with an isolated hole. The first
measurement is the voltage difference between z and w with a source of current a and a
sink of current b. The second measurement is the difference between z and b with a source
a and a sink w. Similar to the original van der Pauw method, the measured resistances are
denoted by the logarithm of the prime function.

Let the required complex potential, as a function of Ω = x+ iy be

H(Ω) = V (x, y) + iχ(x, y). (4.16)

We can still exploit the conformal invariance for the problem of determining the potential

V (x, y) in this doubly connected domain. Crowdy [37, 40] has shown that the complex

potentials for any source/sink driven harmonic field in a multiply connected domain can

be written down explicitly in terms of the prime function associated with that domain. It

is important to emphasize that this fact holds for domains of any finite connectivity not

just the doubly connected case of interest here.
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Following [37,40] the complex potential h(ζ) ≡ H(f(ζ)) is given by

h(ζ) =
σJab
2πd

log

(
āb

|ab|
ω(ζ, a)ω(ζ, ā−1)

ω(ζ, b)ω(ζ, b̄−1)

)
= λJab log

(
a

b

P (ζ/a)

P (ζ/b)

)
+ ic, c ∈ R, (4.17)

where P (.) is the prime function for the annulus domain with inner radius ρ defined in

Chapter 2. Although P (.) also depends on the inner radius ρ we omit ρ here for notational

brevity. The first equality of (4.17) is derived in [37, 40] and follows from the general

properties of the prime function, and where we have used (2.10) in the second equality. The

relation (4.15) gives the relationship between (a, b, z, w) and (Ωa,Ωb,Ωz,Ωw) although it is

understood that the mapping f(ζ) is now the new mapping from the concentric annulus to

the holey sample. The specific resistivity λ is defined as λ = σ/πd. Note that, because two

electrical contacts a and b are on C0, ā = a−1 and b̄ = b−1.

The voltage difference between z and w is given by

Vzw ≡ Re[h(z)] − Re[h(w)] = λJab log
P (z/a)P (w/b)

P (z/b)P (w/a)
. (4.18)

It is important to note that because all contacts are located on the same boundary of the

annulus, Im[h(z)] − Im[h(w)] = 0. This relation is also proven mathematically by direct

calculation

h(z) − h(w) = log

(
P (z/a)P (w/b)

P (z/b)P (w/a)

)
= log

(
P (a/z)P (b/w)

P (b/z)P (a/w)

)
= log

(
P (z/a)P (w/b)

P (z/b)P (w/a)

)
= h(z) − h(w), (4.19)

where we note that P (ζ) has functional properties (2.12) and (2.13) and the fact that

z, w, a, b ∈ C0 has been used. The measured resistance Rzw
ab is defined as

Rzw
ab ≡ Vzw

Jab
= λ log

P (z/a)P (w/b)

P (z/b)P (w/a)
. (4.20)

In the same way, the resistance Rzb
aw is given by swapping w and b:

Rzb
aw ≡ Vzb

Jaw
= λ log

P (z/a)P (b/w)

P (z/w)P (b/a)
. (4.21)

It is straightforward to check that formulas (4.20) and (4.21) above are equivalent to those

given in the previous definition given by Szymański et.al. [137]. More precisely, it can be

checked that the function G(ϕ) used in [137] is related to P (ζ) – and hence to the prime
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function (2.10) – by the formula

P (eiϕ) = (1 − eiϕ)
∞∏
n=1

(1 − ρ2neiϕ)(1 − ρ2ne−iϕ)

= −2ie
iϕ
2 sin

ϕ

2

∞∏
n=1

(1 + ρ4n − 2ρ2n cosϕ)

= −2ie
iϕ
2 sin

ϕ

2

∞∏
n=1

(1 + ρ4n) ·
∞∏
n=1

(
1 − 2 cosϕ

ρ2n + ρ−2n

)
= −2ie

iϕ
2 P̂ (i)G(ϕ), (4.22)

where

G(ϕ) ≡ sin
ϕ

2

∞∏
n=1

(
1 − cosϕ

coshhn

)
, h ≡ 2 log ρ. (4.23)

Although (4.22) shows that our new expressions (4.20)–(4.21) coincide with those of [137],

there is much significance in having recognized that the resistances can be written in terms

of this special transcendental function known as the prime function [40] of the preimage

concentric annulus. First, the notion of a prime function extends to a planar domain of any

finite connectivity [40] which means that we already have a route to generalizing all the

ideas in this chapter (presented here for the annulus) to any higher connected domain (i.e.

a sample with more than one hole). Crowdy [37] was the first to show how the complex

potentials for source/sink driven harmonic fields in multiply connected domains can be

written explicitly. His treatment uses irrotational fluid mechanics as the physical context

but mathematically the problem is equivalent to the electrical conduction problems of

interest here. Second, it is known [40] that prime functions, including those associated

with domains of connectivity higher than one, satisfy a so-called Fay trisecant identity.

This identity can be viewed as an analogue of the cross-ratio identity (4.13) on a higher

genus Riemann surface [57] and is the topic of the next subsection.

4.4.2 The Fay trisecant identity for the annulus

It is useful to introduce the function

p(z, w; a, b) ≡ ω(z, a)ω(w, b)

ω(z, b)ω(w, a)
. (4.24)

Although this formula is identical to that defining the cross-ratio (4.13) this quantity is no

longer a cross-ratio since the definition of the prime function has changed. On use of (2.10)
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formula (4.24) can be written in terms of P (ζ) as

p(z, w; a, b) =
P (z/a)P (w/b)

P (z/b)P (w/a)
. (4.25)

From (4.25) and (4.20)-(4.21) we see that

exp(−Rzw
ab /λ) =

P (z/b)P (w/a)

P (z/a)P (w/b)
= p(z, w; b, a), (4.26)

exp(−Rzb
aw/λ) =

P (z/w)P (b/a)

P (z/a)P (b/w)
= p(z, b;w, a). (4.27)

For the cross ratio in annular domains, the Fay trisecant identity is an analogue of the

cross ratio identity of simply connected domains [57]. The Fay trisecant identity associated

with this prime function is

P (kz/w)P (ka/b)

P (kza/wb)
p(z, w; b, a) +

P (kz/b)P (ka/w)

P (kza/wb)
p(z, b;w, a) = P (k), (4.28)

where k is an arbitrary complex number. This statement (4.28) of the genus-1 Fay trisecant

identity expressed purely in terms of the prime function of the concentric annulus has

been taken from Exercise 8.9 of Chapter 8 of the monograph [40] which asks the reader

to prove it using the properties of so-called loxodromic functions. Although it is well

established [57, 121] from more general arguments, we sketch a proof of this form (4.28) of

the genus-one Fay trisecant identity. First we consider the left hand side of (4.28) as a

function of z with all other quantities being treated as parameters. Let

J(z) ≡ P (kz/w)P (ka/b)

P (kza/wb)
p(z, w; b, a) +

P (kz/b)P (ka/w)

P (kza/wb)
p(z, b;w, a). (4.29)

By direct calculation and the use of the properties (2.12) and (2.13) of the function P (ζ),

we have

J(ρ2z) =
P (ρ2kz/w)P (ka/b)

P (ρ2kza/wb)

P (ρ2z/b)P (w/a)

P (ρ2z/a)P (w/b)
+
P (ρ2kz/b)P (ka/w)

P (ρ2kza/wb)

P (ρ2z/b)P (w/a)

P (ρ2z/a)P (w/b)

=
P (kz/w)P (ka/b)

P (kza/wb)

P (z/b)P (w/a)

P (z/a)P (w/b)
+
P (kz/b)P (ka/w)

P (kza/wb)

P (z/b)P (w/a)

P (z/a)P (w/b)

= J(z). (4.30)

Hence, since it is also meromorphic as a function of z, it is a loxodromic function of z; see

Chapter 8 of [40]. A loxodromic function is the name of an automorphic function on the

Schottky double of the concentric annulus; it is a meromorphic function of that surface
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satisfying the functional identity (4.30). If we write

J(z) =
N(z)

P (kza/wb)P (z/a)P (w/b)
(4.31)

so that

N(z) = P (kz/w)P (ka/b)P (z/b)P (w/a)

− (w/b)P (kz/b)P (ka/w)P (z/w)P (b/a)
(4.32)

then, it can be verified, again using the properties (2.12) and (2.13) of P (ζ), that

N(a) = N(wb/ka) = 0. (4.33)

Since J(z) is a loxodromic function with removable poles at z = a and z = wb/ka – and,

therefore, having no poles on the surface – then it must be independent of z, which means

it is a constant when considered as a function of z. We are employing a Liouville-type

theorem on this genus-one Schottky double: any meromorphic function on it having no

poles must be constant. Such results will be used extensively throughout this chapter.

We can also consider the left hand side of (4.28) as a function for w and write

J̃(w) ≡ P (kz/w)P (ka/b)

P (kza/wb)
p(z, w; b, a) +

P (kz/b)P (ka/w)

P (kza/wb)
p(z, b;w, a). (4.34)

This can also be shown to be loxodromic, i.e.,

J̃(ρ2w) = J̃(w) (4.35)

and to have removable poles at w = b and w = kza/b. It is therefore independent of w.

By similar arguments, considering the left hand side of (4.28) successively as a function

of a and b it can be shown to be independent of those variables too. Putting all these facts

together, it is concluded that

P (kz/w)P (ka/b)

P (kza/wb)
p(z, w; b, a) +

P (kz/b)P (ka/w)

P (kza/wb)
p(z, b;w, a) = C(k), (4.36)

where C(k) is a function to be determined. It can be found by matching to the limit of the

left hand side of (4.36) in the double limit w → z and b→ a which yields

C(k) = P (k). (4.37)

Thus we have established the Fay trisecant identity (4.28).
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A key observation is that, on substituting (4.20) and (4.21) into (4.28), we obtain

P (kz/w)P (ka/b)

P (k)P (kza/wb)
exp

(
−
Rzw

ab

λ

)
+
P (kz/b)P (ka/w)

P (k)P (kza/wb)
exp

(
−R

zb
aw

λ

)
= 1 . (4.38)

When ρ→ 0, so that there is no hole in a sample, it is straightforward to check that

P (kz/w)P (ka/b)

P (k)P (kza/wb)
=
P (kz/b)P (ka/w)

P (k)P (kza/wb)
= 1 (4.39)

by choosing k = 0, because, from (2.11), it follows that P (ζ) = 1 − ζ when ρ = 0. The

original van der Pauw equation (4.1) is therefore retrieved from (4.38) in the simply

connected (i.e. “no hole”) limit.

It is clear that (4.38) opens up new perspectives: that it reduces, as ρ → 0, to the

original van der Pauw equation (4.1) is tantalizing. It also makes it a natural candidate,

at least from the mathematical point of view, to find natural ways to extend the van

der Pauw method to holey samples. In contrast to the original van der Pauw equation,

the coefficients of exp(−Rzw
ab /λ) and exp(−Rzb

aw/λ) in (4.38) now depend not only on the

electrical contact locations z, w, a, b but also on a fifth complex parameter k. It should

be emphasized that (4.38) holds for arbitrary choices of a, b, z, w and k even though, for

present purposes, we have assumed that a, b, z and w lie on C0. This degree of freedom

in the choice of k will be exploited in the next section to gain insights into the envelope

structure evident in Figure 4.2.

4.5 Analysis of the envelopes: the integrated Fay identity

In the introduction of this chapter the existence of two envelopes, an “upper” and a “lower”

envelope, were discussed based on the observations of previous authors. These envelopes

have the conjectured mathematical definitions given in (4.4). In this section it is shown

how the new tools introduced in the previous two sections allow us to prove the conjectured

form of these envelopes.

4.5.1 Expressions for two envelopes

First we will rephrase the two inequalities (4.4) in terms of the Fay trisecant identity. For

arbitrary z, w, a, and b on C0 we can introduce the special choice of angular coordinates

θ, θ1 and θ3 defined by

z = 1, w = exp(i(θ1 + θ)), a = exp(i(θ1 + θ3)), b = exp(i(θ + θ3)). (4.40)
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x

x

Figure 4.5: Special choice of angular coordinates. It can be seen that the angles θ1 and θ3
are displacements from symmetric choice of contact points.

The arbitrary points with the angular coordinates is described in Figure 4.5. Because

0 < arg[w] < arg[a] < arg[b] < 2π, the ranges of θ1, θ, θ3 are given by

−θ < θ1 < θ, θ < θ3 < 2π − θ, 0 < θ < π. (4.41)

It is important to point out that the case of symmetric contact points shown in Figure 4.3

corresponds to θ1 = 0 and θ3 = π.

The choice (4.40) of angular variables may not seem very intuitive but they have been

chosen because they allow us to make progress with the mathematical proofs.

The Fay trisecant identity (4.38) can be written

A(θ1, θ, k̂)Xθ1,θ3,θ +B(θ3, θ, k̂)Yθ1,θ3,θ = 1, (4.42)

where Xθ1,θ3,θ ≡ exp(−Rzw
ab /λ), Yθ1,θ3,θ ≡ exp(−Rzb

aw/λ) and the coefficient functions are

A(θ1, θ, k̂) ≡ P (kz/w)P (ka/b)

P (k)P (kza/wb)
=
P (ke−i(θ+θ1))P (kei(−θ+θ1))

P (k)P (ke−2iθ)
=
P (k̂e−iθ1)P (k̂eiθ1)

P (k̂e−iθ)P (k̂eiθ)
,

(4.43)

B(θ3, θ, k̂) ≡ P (kz/b)P (ka/w)

P (k)P (kza/wb)
=
P (ke−i(θ+θ3))P (kei(−θ+θ3))

P (k)P (ke−2iθ)
=
P (k̂e−iθ3)P (k̂eiθ3)

P (k̂e−iθ)P (k̂eiθ)
,

(4.44)

and where we have set k = k̂eiθ because k is arbitrary. Because of this choice, A(θ1, θ, k̂)

becomes independent of θ3 and B(θ3, θ, k̂) becomes independent of θ1.
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The next step is to consider contour integrals of A(θ1, θ, k̂) and B(θ3, θ, k̂) with respect

to k̂ around the circle |k̂| = ρ. From (4.42), we thus obtain an integrated Fay trisecant

identity:

α(θ1, θ)Xθ1,θ3,θ + β(θ3, θ)Yθ1,θ3,θ = 1, (4.45)

where

α(θ1, θ) ≡
1

2π

∫ 2π

0
A(θ1, θ, ρe

iϕ)dϕ =
1

2π

∫ 2π

0

P (ρei(ϕ−θ1))P (ρei(ϕ+θ1))

P (ρei(ϕ−θ))P (ρei(ϕ+θ))
dϕ, (4.46)

β(θ3, θ) ≡
1

2π

∫ 2π

0
B(θ3, θ, ρe

iϕ)dϕ =
1

2π

∫ 2π

0

P (ρei(ϕ−θ3))P (ρei(ϕ+θ3))

P (ρei(ϕ−θ))P (ρei(ϕ+θ))
dϕ. (4.47)

The integrated Fay trisecant identity (4.45) is essential for understanding the envelope

structure and proving the conjectures made about it in the literature.

On taking a derivative of (4.45) with respect to θ, we find

∂α(θ1, θ)

∂θ
Xθ1,θ3,θ +

∂β(θ3, θ)

∂θ
Yθ1,θ3,θ + α(θ1, θ)

∂Xθ1,θ3,θ

∂θ
+ β(θ3, θ)

∂Yθ1,θ3,θ
∂θ

= 0. (4.48)

The sum of the first two terms is zero because

∂α(θ1, θ)

∂θ
Xθ1,θ3,θ +

∂β(θ3, θ)

∂θ
Yθ1,θ3,θ

=
i

2π

∫ 2π

0
[A(θ1, θ, ρe

iϕ)Xθ1,θ3,θ +B(θ3, θ, ρe
iϕ)Yθ1,θ3,θ][K(ρei(ϕ−θ)) −K(ρei(ϕ+θ))]dϕ

=
i

2π

∫ 2π

0
[K(ρei(ϕ−θ)) −K(ρei(ϕ+θ))]dϕ = 0, (4.49)

where we used the Fay identity (4.42) in the second equality. The function K(.) is related

to the first derivative of the prime function P (.) introduced in Chapter 2. On use of (4.49)

in (4.48), we find

α(θ1, θ)
∂Xθ1,θ3,θ

∂θ
+ β(θ3, θ)

∂Yθ1,θ3,θ
∂θ

= 0. (4.50)

Suppose now that we fix the two parameters θ1 and θ3. Then the points (Xθ1,θ3,θ, Yθ1,θ3,θ)

lie on some curve dependent only on the single parameter θ with the tangent at

(Xθ1,θ3,θ, Yθ1,θ3,θ), when viewed as a function of θ, defined as the set of points (X,Y )

satisfying

Y − Yθ1,θ3,θ =
∂Yθ1,θ3,θ/∂θ

∂Xθ1,θ3,θ/∂θ
(X −Xθ1,θ3,θ). (4.51)
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If we now make use of both (4.50) and (4.45) we can see that the tangent line (4.51) is

equivalent to

α(θ1, θ)X + β(θ3, θ)Y = 1. (4.52)

This is an important observation and it is helpful to visualize this pictorially. Figure 4.6

shows some examples of these tangent lines. The red line represents the collection of data

points (Xθ1,θ3,θ, Yθ1,θ3,θ) sketched out when both θ1 and θ3 are fixed and the parameter θ

is varied; the blue lines in Figure 4.6, given by (4.52), are clearly tangent to those red lines

(each blue line corresponds to a particular choice of θ).

Figure 4.6: The red lines are collections of data points (Xθ1,θ3,θ, Yθ1,θ3,θ) with both θ1 and
θ3 fixed and only parameter θ changed. The blue lines, given by (4.52), are typical tangents
to the red lines at (Xθ1,θ3,

2π
5
, Yθ1,θ3, 2π5

). When the fixed parameters θ1 and θ3 take the

particular values θ1 = 0 and θ3 = π the red line, parameterized by θ, corresponds to the
lower envelope.

The important point is that, in view of the observation (4.52), and the observation

made earlier that the symmetric choice of (a, b, z, w) shown in Figure 4.3 corresponds to

θ1 = 0 and θ3 = π, the two inequalities in (4.4) are equivalent to

X + Y ≤ 1, (4.53)

αθX + βθY ≥ 1, αθ ≡ α(0, θ), βθ ≡ β(π, θ), (4.54)

for all pairs (X,Y ) and 0 < θ < π. The first statement simply states that all pairs (X,Y )

for ρ ≥ 0 lie on or below the line X + Y = 1 relevant to the classical van der Pauw
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case ρ = 0; the second statement states that all pairs (X,Y ) for ρ ≥ 0 lie above a curve,

parametrized by θ associated with the symmetric choice of points shown in Figure 4.3, and

defined for θ1 = 0 and θ3 = π.

Now, the strategy is to prove (4.53) and (4.54) for all (X,Y ) by considering the

maximum values and minimum values of the coefficient functions α(θ1, θ) and β(θ3, θ)

subject to the condition (4.41). From the integrated Fay identity (4.45) and the principles

of the minimum and the maximum, we have that

min
−θ<θ1<θ

(α(θ1, θ))Xθ1,θ3,θ + min
θ<θ3<2π−θ

(β(θ3, θ))Yθ1,θ3,θ

≤ α(θ1, θ)Xθ1,θ3,θ + β(θ3, θ)Yθ1,θ3,θ = 1, (4.55)

max
−θ<θ1<θ

(α(θ1, θ))Xθ1,θ3,θ + max
θ<θ3<2π−θ

(β(θ3, θ))Yθ1,θ3,θ

≥ α(θ1, θ)Xθ1,θ3,θ + β(θ3, θ)Yθ1,θ3,θ = 1. (4.56)

The idea is to show that (4.55) is equivalent to (4.53), and (4.56) is equivalent to (4.54).

Before presenting the details, the strategy just explained above is illustrated in Figure 4.7.

By minimising both α(θ1, θ) and β(θ3, θ), the upper envelope X + Y = 1 is obtained. In

contrast, by maximising both α(θ1, θ) and β(θ3, θ), a tangent line to the lower envelope is

obtained and, consequently, an explicit equation (4.91) for the curve traced out by this

lower envelope.

4.5.2 Analysis of the functions

Now we will see how two functions α(θ1, θ) and β(θ1, θ) behave. To study the extrema of

α(θ1, θ) and β(θ1, θ), we define the function

gθ(η) ≡ 1

2π

∫ 2π

0

P (ρei(ϕ−η))P (ρei(ϕ+η))

P (ρei(ϕ−θ))P (ρei(ϕ+θ))
dϕ =

1

2π

∫ 2π

0
Gθ,η(ρeiϕ)dϕ, (4.57)

where 0 ≤ η ≤ 2π and the integrand is defined as

Gθ,η(ζ) ≡ P (ζ/µ)P (ζµ)

P (ζ/ν)P (ζν)
, µ ≡ eiη, ν ≡ eiθ. (4.58)

From the definitions (4.47) it is clear that the two coefficients functions in (4.45) can be

written in terms of this single function:

α(θ1, θ) = gθ(θ1), β(θ3, θ) = gθ(θ3). (4.59)

Analysis of this function gθ(η) provides the key to the proofs of the conjectures.
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Figure 4.7: Visualizing the relationship between tangent lines and the upper and lower
envelopes. The parameter θ = 4π

7 is fixed in all figures. Red lines show the curves produced
by changing only θ, and blue lines are tangents to the envelope at (Xθ1,θ3,θ, Yθ1,θ3,θ). When
α(θ1, θ) and β(θ3, θ) are minimised, the tangent line corresponds to X + Y = 1. When
α(θ1, θ) and β(θ3, θ) are maximised, the line becomes a tangent line to the lower envelope
at (Xθ, Yθ), where Xθ ≡ X0,π,θ and Yθ ≡ Y0,π,θ.

It is important to mention that because of the definition of P (ζ),

P (ρeiϕ) =

∞∏
n=1

(1 + ρ4n−2 − 2ρ2n−1 cosϕ) > 0, (4.60)

91



CHAPTER 4. VAN DER PAUW METHOD FOR HOLEY SAMPLES: NEW
RESISTIVITY MEASUREMENT

which means Gθ,η(ρeiϕ) is real and positive. By a log-sum and sum-log inequality, we obtain

log gθ(η) = log

[
1

2π

∫ 2π

0

P (ρei(ϕ−η))P (ρei(ϕ+η))

P (ρei(ϕ−θ))P (ρei(ϕ+θ))
dϕ

]

≥ 1

2π

∫ 2π

0
log

P (ρei(ϕ−η))P (ρei(ϕ+η))

P (ρei(ϕ−θ))P (ρei(ϕ+θ))
dϕ

=
1

2π

∫ 2π

0
[log(P (ρei(ϕ−η))) + log(P (ρei(ϕ+η)))

− log(P (ρei(ϕ−θ)) − log(P (ρei(ϕ+θ)))]dϕ = 0.

(4.61)

Thus, we can conclude that gθ(η) ≥ 1 for all θ and η.

We propose an alternative expression of gθ(η) to be:

gθ(η) =
P (ν/µ)P (µν)

P̂ (1)P (ν2)
[K(µ/ν) −K(µν)], (4.62)

where we recall that µ = eiη and ν = eiθ. This expression is useful for the analysis of gθ(η).

To explain the derivation of (4.62) we note that the integrand Gθ,η(ζ) defined in (4.58)

has two simple poles at ζ = ν and ζ = 1/ν and is readily confirmed, on use of (2.12) and

(2.13), to be loxodromic. The function Gθ,η(ζ) can therefore also be written as

Gθ,η(ζ) =
P (ζ/µ)P (ζµ)

P (ζ/ν)P (ζν)
= c1[K(ζ/ν) −K(ζν)] + c2, (4.63)

where c1, c2 ∈ C. Since K(ζ) is a logarithmic derivative of P (ζ) and has functional

properties (2.18), the right hand side of (4.63) is also a loxodromic function and has two

simple poles at ζ = ν and ζ = 1/ν. The coefficients c1 and c2 are determined by considering

the limits ζ → ν and ζ → µ,

c2 = −c1[K(µ/ν) −K(µν)], c2 =
P (ν/µ)P (µν)

P̂ (1)P (ν2)
[K(µ/ν) −K(µν)]. (4.64)

A Liouville-type argument then confirms the equivalence of the two expressions for Gθ,η(ζ)

in (4.63). We therefore conclude by using (4.57) and (4.63) that

gθ(η) =
1

2π

∫ 2π

0
Gθ,η(ρeiϕ)dϕ

=
1

2π

∫ 2π

0

(
c1[K(ρei(ϕ−θ)) −K(ρei(ϕ+θ))] + c2

)
dϕ = c2,

(4.65)

which is precisely (4.62).

Now, we consider the behavior of the function gθ(η) by exploiting the derivative of
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gθ(η):

∂gθ
∂η

=
∂µ

∂η

∂gθ
∂µ

= i
P (ν/µ)P (µν)

P̂ (1)P (ν2)
(L(µ/ν) − L(µν)) + igθ[K(µν) −K(ν/µ)]. (4.66)

The function L(µ/ν) − L(µν) is a loxodromic function as a function of µ, and has two

second-order poles at µ = ν and µ = 1/ν. Similar to the expression of gθ(η), we propose

another expression of L(µ/ν) − L(µν) given by

L(µ/ν) − L(µν) =
P̂ (1)2P (µ2)P (ν2)

P (ν/µ)P (µ/ν)P (µν)2
. (4.67)

To establish this expression, consider a new function

L(µ) ≡ L(µ/ν) − L(µν) − P̂ (1)2P (µ2)P (ν2)

P (ν/µ)P (µ/ν)P (µν)2
. (4.68)

The function L(µ) is shown to be a loxodromic function by using the functional

properties (2.12), (2.13), (2.18), and (2.19) as follows:

L(ρ2µ) = L(ρ2µ/ν) − L(ρ2µν) − P̂ (1)2P (ρ4µ2)P (ν2)

P (ν/ρ2µ)P (ρ2µ/ν)P (ρ2µν)2

= L(µ/ν) − L(µν) − P̂ (1)2(ρ2µ4)−1P (µ2)P (ν2)

(ρ2µ/ν)−1P (ν/µ)(µ/ν)−1P (µ/ν)(µν)−2P (µν)2

= L(µ).

(4.69)

Furthermore, the asymptotic expansions of each term at µ = ν and µ = 1/ν are

L(µ/ν) − L(µν) ∼ − 1

(1 − µ/ν)2
+

1

1 − µ/ν
+ O(1) at µ = ν,

L(µ/ν) − L(µν) ∼ 1

(1 − µν)2
− 1

1 − µν
+ O(1) at µ = 1/ν,

P̂ (1)2P (µ2)P (ν2)

P (ν/µ)P (µ/ν)P (µν)2
∼ 1

(1 − ν/µ)(1 − µ/ν)
+ O(1)

= − 1

(1 − µ/ν)2
+

1

1 − µ/ν
+ O(1) at µ = ν,

P̂ (1)2P (µ2)P (ν2)

P (ν/µ)P (µ/ν)P (µν)2
∼ 1

(1 − µν)2
− 1

1 − µν
+ O(1) at µ = 1/ν.

(4.70)

Thus the two poles at ν and 1/ν are removable. We conclude that L(µ) is a constant

function, i.e., it is independent of µ. In addition, we define another function

L̃(ν) ≡ L(µ/ν) − L(µν) − P̂ (1)2P (µ2)P (ν2)

P (ν/µ)P (µ/ν)P (µν)2
. (4.71)
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By similar arguments, the function L̃(ν) can be seen to be a loxodromic function of ν with

removable poles ν = µ and ν = 1/µ. Thus, L(µ) is independent of both µ and ν.

On use of the functional property (2.19) of L(ζ), it can be verified that L(ρ) = 0, which

means L(µ) vanishes everywhere leading to expression (4.67).

Expression (4.67) can now be used to analyse the behaviour of gθ(η). By substituting

(4.67) into (4.66),

∂gθ
∂η

= i

[
P̂ (1)P (µ2)

P (µ/ν)P (µν)
+ gθ(η)(K(µν) −K(ν/µ))

]

= i(K(µν) −K(ν/µ))

[
gθ(η) − 1

K(ν/µ) −K(µν)

P̂ (1)P (µ2)

P (µ/ν)P (µν)

]

= i(K(µν) −K(ν/µ))

[
gθ(η) − 1

gη(θ)

]
.

(4.72)

Since, from (4.61), gθ(η) ≥ 1 and gη(θ) ≥ 1 then

gθ(η) − 1

gη(θ)
≥ 0. (4.73)

The sign of the derivative (4.72) is therefore determined by the function

kθ(η) ≡ i(K(µν) −K(ν/µ)). (4.74)

The derivative of kθ(η) with respect to η is

∂kθ
∂η

= −(L(µν) + L(ν/µ)). (4.75)

But it can also be shown that L(eiϕ) for 0 < ϕ < 2π is real and positive – the proof is

given in appendix A.1. This means that

∂kθ
∂η

< 0, 0 < η < 2π. (4.76)

It is straightforward to check that kθ(0) = kθ(π) = 0 and consequently, using continuity

arguments,

lim
η→θ−0

kθ(η) = −∞, lim
η→θ+0

kθ(η) = +∞, (4.77)

lim
η→2π−θ−0

kθ(η) = −∞, lim
η→2π−θ+0

kθ(η) = +∞. (4.78)

With this information we can determine the maxima and the minima of gθ(η). The local
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minima occur when η = θ or η = 2π − θ. By the definition (4.57),

gθ(θ) = gθ(2π − θ) = 1. (4.79)

On the contrary, local maxima occur when η = 0 and η = π. Recall that this case

corresponds to the symmetric choice of points with parameter θ. Recall that P (ζ), and

hence gθ(η) and kθ(η) depend on the parameter ρ although this dependence is hidden in

our notation.

4.5.3 Proof of two conjectures (4.53)–(4.54)

We will now prove the two conjectures (4.53) and (4.54) using what we have established

about the behavior of gθ(η). From (4.55) and (4.79), we can conclude that

Xθ1,θ3,θ + Yθ1,θ3,θ ≤ 1 (4.80)

for all (Xθ1,θ3,θ, Yθ1,θ3,θ). This is equivalent to the conjecture (4.53).

The maxima of α(θ1, θ) and β(θ3, θ) occur when θ1 = 0 and θ3 = π. Hence, from (4.56),

we conclude that

αθXθ1,θ3,θ + βθYθ1,θ3,θ ≥ 1. (4.81)

The inequality (4.81) is not, however, equivalent to the inequality (4.54). What has been

proven in (4.81) is that for 0 < θ < π, the pair (Xθ1,θ3,θ, Yθ1,θ3,θ) is above the tangent at

(X0,π,θ, Y0,π,θ) on the lower envelope. Thus, for the final step, we need to prove that for

another θ′ ≠ θ, the pair (Xθ1,θ3,θ, Yθ1,θ3,θ) lies above the tangent at (X0,π,θ′ , Y0,π,θ′). The

condition is equivalent to

αθ′Xθ1,θ3,θ + βθ′Yθ1,θ3,θ ≥ 1. (4.82)

Notice that because of the condition of angular coordinates (4.41) the range of θ1 and θ3

are related to θ, but θ′ should be chosen independently of θ1 and θ3 since we need it to

parametrize the whole of the lower envelope.

The procedure to prove (4.82) can be divided by two steps.

In the first step (Step 1) we find a specific θ̃ such that αθ′ ≥ α(θ1, θ̃) and βθ′ ≥ β(θ3, θ̃).

This step can be viewed as a movement from a point on the lower envelope (the set of 3

blue curves in Figure 4.8) to a point on another curve (the red curve in Figure 4.8) on

which the point (Xθ1,θ3,θ, Yθ1,θ3,θ) lies.

In the next step (Step 2) we make a use of a log-sum and sum-log inequality to prove
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that

α(θ1, θ̃)Xθ1,θ3,θ + β(θ3, θ̃)Yθ1,θ3,θ ≥ 1. (4.83)

First let us explain Step 1. For an arbitrary value of θ′ with 0 < θ′ < π, there are three

possible cases for the sets (θ′, θ1, θ3). The three cases are illustrated in Figure 4.8: they can

be understood as corresponding to the lower envelope being split into three parts: the three

blue curve segments sitting on the lower envelope in Figure 4.8 as shown in top, middle, and

bottom of this Figure. These will be called cases 1, 2a and 2b, respectively. The red solid

curve on each Figure 4.8 is drawn by changing θ from |θ1| to π−|π−θ3| while θ1 and θ3 are

fixed. The range of θ comes from the condition of angular coordinates (4.41). The reason

for the separation into three cases is that when θ′ < |θ1| or π − |π − θ3| < θ′, an auxiliary

point (Xθ1,θ3,θ′ , Yθ1,θ3,θ′) does not lie on the red curve. Based on the argument above, we

therefore assign a value θ̃ to a value of θ′ according to the following three conditions:

• Case 1: When |θ1| ≤ θ′ ≤ π − |π − θ3|, which means that the point (Xθ′ , Yθ′) marked

as “+” in the top right of Figure 4.8 lies on the blue solid curve shown there, an

auxiliary point (Xθ1,θ3,θ′ , Yθ1,θ3,θ′) also lies on the red curve marked as “x”. From the

behavior of gθ′(η), we can see that αθ′ ≥ α(θ1, θ
′) and βθ′ ≥ β(θ3, θ

′). In this case,

we choose θ̃ = θ′.

• Case 2a: When θ′ < |θ1| as shown in the middle of Figure 4.8, an auxiliary point

(Xθ1,θ3,θ′ , Yθ1,θ3,θ′) does not lie on the red curve. In this case, the end point of the red

curve is chosen, that is, we make the choice θ̃ = |θ1|. From the behavior of gθ(η), it

is apparent that αθ′ ≥ α(θ1, |θ1|) = 1. Because of the angular condition (4.41) such

that |θ1| < θ3 < 2π − |θ1| and because βθ is a monotonically decreasing function

with respect to θ for 0 < θ < π (Appendix B), βθ′ > β|θ1| = β(π, |θ1|) ≥ β(θ3, |θ1|).

• Case 2b: This is the same as case 2a but refers to the other end of the red curve. When

π−|π−θ3| < θ′ as shown in the bottom of Figure 4.8, a point (Xθ1,θ3,θ′ , Yθ1,θ3,θ′) does

not lie on the red curve (cf: Case 2a). In this case, the opposite boundary point of the

red curve is chosen, which means that we choose θ̃ = π− |π− θ3|. From the behavior

of gθ(η), it is apparent that βθ′ ≥ β(θ3, π − |π − θ3|) = 1. Because π − |π − θ3| < θ′,

|θ1| < π−|π−θ3|, and because αθ is a monotonically increasing function with respect

to θ for 0 < θ < π (Appendix B), αθ′ > απ−|π−θ3| ≥ α(θ1, π − |π − θ3|).

In any case, it is possible to find a specific θ̃ such that αθ′ ≥ α(θ1, θ̃) and βθ′ ≥ β(θ3, θ̃).
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Figure 4.8: Three possible cases for pairs (θ′, θ1, θ3). (i) Case 1: αθ′ ≥ α(θ1, θ
′) and

βθ′ ≥ β(θ3, θ
′). (ii) Case 2a: Because |θ1| > θ′, we choose θ̃ = |θ1|. We can see that

αθ′ ≥ α(θ1, |θ1|) = 1 and βθ′ > β(θ3, |θ1|). (iii) Case 2b: Because |π−θ3| > π−θ′, we choose
θ̃ = π−|π− θ3|. We can see that αθ′ ≥ α(θ1, π−|π− θ3|) and βθ′ > β(θ3, π−|π− θ3|) = 1.

Thus, we obtain the important result that

αθ′Xθ1,θ3,θ + βθ′Yθ1,θ3,θ ≥ α(θ1, θ̃)Xθ1,θ3,θ + β(θ3, θ̃)Yθ1,θ3,θ. (4.84)

This facilitates Step 2 where we use a log-sum and sum-log inequality for the right

hand side of (4.84) as follows:

log
[
α(θ1, θ̃)Xθ1,θ3,θ + β(θ3, θ̃)Yθ1,θ3,θ

]
= log

[
1

2π

∫ 2π

0
(A(θ1, θ̃, ρe

iϕ)Xθ1,θ3,θ +B(θ3, θ̃, ρe
iϕ)Yθ1,θ3,θ)dϕ

]
≥ 1

2π

∫ 2π

0
log
[
A(θ1, θ̃, ρe

iϕ)Xθ1,θ3,θ +B(θ3, θ̃, ρe
iϕ)Yθ1,θ3,θ

]
dϕ.

(4.85)
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However the right hand side can be written

1

2π

∫ 2π

0
log

[
Xθ1,θ3,θ +

B(θ3, θ̃, ρe
iϕ)

A(θ1, θ̃, ρeiϕ)
Yθ1,θ3,θ

]
dϕ+

1

2π

∫ 2π

0
logA(θ1, θ̃, ρe

iϕ)dϕ

=
1

2π

∫ 2π

0
log

[
Xθ1,θ3,θ +

B(θ3, θ, ρe
iϕ)

A(θ1, θ, ρeiϕ)
Yθ1,θ3,θ

]
dϕ+

1

2π

∫ 2π

0
logA(θ1, θ, ρe

iϕ)dϕ

=
1

2π

∫ 2π

0
log
[
A(θ1, θ, ρe

iϕ)Xθ1,θ3,θ +B(θ3, θ, ρe
iϕ)Yθ1,θ3,θ

]
dϕ = 0,

(4.86)

where we used the fact that the integral of logA(θ1, θ, ρe
iϕ) is

1

2π

∫ 2π

0
logA(θ1, θ, ρe

iϕ)dϕ =
1

2π

∫ 2π

0
log

(
P (ρei(ϕ−θ1))P (ρei(ϕ+θ1))

P (ρei(ϕ−θ))P (ρei(ϕ+θ))

)
dϕ

=
1

2π

∫ 2π

0
[logP (ρei(ϕ−θ1)) + logP (ρei(ϕ+θ1))

− logP (ρei(ϕ−θ)) − logP (ρei(ϕ+θ))]dϕ = 0

(4.87)

and the fact that

B(θ1, θ̃, ρe
iϕ)

A(θ3, θ̃, ρeiϕ)
=
B(θ1, θ, ρe

iϕ)

A(θ3, θ, ρeiϕ)
=
P (ρei(ϕ−θ3))P (ρei(ϕ+θ3))

P (ρei(ϕ−θ1))P (ρei(ϕ+θ1))
(4.88)

is independent of θ and θ̃. In the last line, we have used the Fay trisecant identity (4.42).

Putting all this together it has been shown that

log
[
α(θ1, θ̃)Xθ1,θ3,θ + β(θ3, θ̃)Yθ1,θ3,θ

]
≥ 0. (4.89)

From (4.89) it follows that

αθ′Xθ1,θ3,θ + βθ′Yθ1,θ3,θ ≥ 1, (4.90)

which means for 0 < θ < π, αθX + βθY ≥ 1 for all (X,Y ). We have proved all the

conjectured features of the envelope structure observed by previous authors.

To finish, we summarize what was done in steps 1 and 2 geometrically using Figure 4.8.

In step 1 we found a choice of an auxiliary tangent line (the red line) to the pink curve on

which (Xθ1,θ3,θ, Yθ1,θ3,θ) sits (and which corresponds to fixed θ1 and θ3) which is above the

tangential line on the lower envelope (the blue line) for the three segments of the lower

envelope into which it naturally divides for any fixed θ1 and θ3 (i.e., cases 1, 2a and 2b).

In step 2 the point (Xθ1,θ3,θ, Yθ1,θ3,θ) is then shown to be above that red tangent line by

using the log-sum and sum-log inequalities. We thus prove that (Xθ1,θ3,θ, Yθ1,θ3,θ) is above

any point on the lower envelope.
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4.6 Lower envelope formula

In the previous section we have proved that (X,Y ) is always on the crescent-shaped domain

and lies on the lower envelope when the contacts (a, b, z, w) have the symmetry. We will

use these properties to obtain new formulas for the resistivity λ.

Here two explicit formulas for the lower envelope are derived. First, the following

explicit formula for the lower envelope is derived:∫ 2π

0
log

(
exp

(
−
Rθ

X

λ

)
+
P (−ρeiϕ)2

P (+ρeiϕ)2
exp

(
−
Rθ

Y

λ

))
dϕ = 0, (4.91)

where Rθ
X and Rθ

Y form a pair of resistance measurements corresponding to contact points

(a, b, z, w) with the symmetry depicted in Figure 4.3 and parametrized by the angle θ shown

there; for a fixed ρ and λ, formula (4.91) therefore defines a curve as θ varies between 0

and π and this is precisely the lower envelope. The formula (4.91) for the lower envelope

follows from (4.86) on setting θ1 = 0, θ3 = π:

1

2π

∫ 2π

0
log

[
X0,π,θ +

B(π, θ, ρeiϕ)

A(0, θ, ρeiϕ)
Y0,π,θ

]
dϕ

=
1

2π

∫ 2π

0
log
[
A(0, θ, ρeiϕ)X0,π,θ +B(π, θ, ρeiϕ)Y0,π,θ

]
dϕ = 0. (4.92)

Using the definitions in (4.43)–(4.44), and with X0,π,θ = exp(−Rθ
X/λ), and Y0,π,θ =

exp(−Rθ
Y /λ), we obtain (4.91).

Another formula for the lower envelope is derived by the approximation of small ρ≪ 1.

An approximation of small ρ≪ 1 can be used to provide a more explicit expression of van

der Pauw type relating the measured resistances. The values X0,π,θ and Y0,π,θ are written

down explicitly as

X0,π,θ =
P (−eiθ)P (−e−iθ)

P (−1)P (−1)
∼ (1 + cos θ)(1 + 4ρ2 cos θ)

2(1 + 4ρ2)
, (4.93)

Y0,π,θ =
P (eiθ)P (e−iθ)

P (−1)P (−1)
∼ (1 − cos θ)(1 − 4ρ2 cos θ)

2(1 + 4ρ2)
, (4.94)

where we used the first order approximation in ρ2:

P (ζ) = (1 − ζ)(1 − ρ2ζ)(1 − ρ2ζ−1) · · · (4.95)

∼ (1 − ζ)(1 − ρ2(ζ + ζ−1)) + O(ρ4). (4.96)
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We can calculate

(1 − 4ρ2)(X0,π,θ + Y0,π,θ)
2 + 32ρ2X0,π,θY0,π,θ =

(1 − 4ρ2)(1 + 4ρ2 cos2 θ)2 + 8ρ2 sin2 θ

(1 + 4ρ2)2

=
1

1 + 4ρ2
+ O(ρ4) = 1 − 4ρ2 + O(ρ4).

Note that X0,π,θ = exp(−Rθ
X/λ) and Y0,π,θ = exp(−Rθ

Y /λ). By expanding in powers of ρ2

and eliminating terms of order ρ4 and higher, an approximation for the lower envelope is

obtained as follows:(
exp

(
−
Rθ

X

λ

)
+ exp

(
−
Rθ

Y

λ

))2

+
32ρ2

1 − 4ρ2
exp

(
−
Rθ

X +Rθ
Y

λ

)
= 1. (4.97)

Equation (4.97) includes two unknown parameters ρ and λ but ρ can be eliminated explicitly

by considering the ratio of the first term and the second term in (4.97). We then obtain

the approximate formula for λ:

exp

(
Rθ1

X −Rθ1
Y

λ

)
+ exp

(
Rθ1

Y −Rθ1
X

λ

)
− exp

(
Rθ1

X +Rθ1
Y

λ

)
=

exp

(
Rθ2

X −Rθ2
Y

λ

)
+ exp

(
Rθ2

Y −Rθ2
X

λ

)
− exp

(
Rθ2

X +Rθ2
Y

λ

)
. (4.98)

The significance of equation (4.98) is that it more closely resembles the classical van der

Pauw equation (4.1) since it depends only on λ and the resistance measurements although,

in this case, there are 4 such measurements involved not just 2. The important point is

that dependence on the parameter ρ has disappeared in (4.98). An approximation for the

resistivity λ can be calculated by solving the single equation (4.98) provided data from the

two pairs of resistances (R
θj
X , R

θj
Y ), j = 1, 2 is available. Formula (4.98) also appears to be

new.

Roughly speaking, one would expect this formula to give good results for a sample

with relatively small holes located away from the sample boundaries since then one might

expect ρ to be small. In any event, (4.98) provides a useful first approximation for any

sample with a single hole and will certainly be more accurate than use of (4.1).

Figure 4.9 shows the comparison between the actual lower envelope (4.91) and the

asymptotic expansion (4.97) as the conformal modulus ρ varies. These graphs show that

the asymptotic expansion yields a very satisfactory approximation for the lower envelope

when ρ < 0.3 and it remains quite accurate for larger ρ.
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Figure 4.9: The approximation (4.97) of the lower envelope is superposed on data from
numerical experiments for different values of ρ. The exact formula (4.91) lies precisely on
the lower envelope formed by the data. For small ρ the lower envelope is well approximated
by a quadratic in X and Y .

4.7 Determining the resistivity using the lower envelope

equation

A method to obtain λ based on the lower envelope has already been proposed in [138].

Because the resistance (Rzw
ab , R

zb
aw) from the symmetric points shown in Figure 4.3 can be

parametrized by the angle θ the corresponding resistances can be denoted by the parameter

θ as follows:

Rθ
X ≡ Rẑŵ

âb̂
, Rθ

Y ≡ Rẑb̂
âŵ, (4.99)

where ẑ = 1 = −â, ŵ = exp(iθ) = −b̂, 0 < θ < π. The chapter [138] proposed to measure

several resistivities on the lower envelope and conducted a standard fit to obtain λ.

If the given sample has clear reflectional symmetries about two perpendicular

axes, it is an easy matter to find resistances within the class (4.99) associated with

symmetrically-disposed points in the preimage domain as shown in Figure 4.3. This is

because one expects to be able to identify reflectionally symmetric points in the physical

domain with reflectionally symmetric preimage points in the annulus.

However, for a generally non-symmetric sample it is not obvious how one might obtain

this resistance information for such symmetrically-disposed points in the preimage domain.

If one knows the conformal mapping to the given doubly connected sample from a preimage

annulus then the contact points corresponding to such symmetric preimage points can

be determined in principle. However, one of the advantages of the traditional van der

Pauw method is that it exploits the underlying conformal invariance of the problem; this

manifests itself in a practical way by formula (4.1) being valid for any shapes and, in

particular, without the need to determine any conformal mapping functions. Ideally, any

practical method for a holey sample should also avoid the need to compute any conformal
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Figure 4.10: (i), (ii) Illustration of the practical procedure proposed in [138] to obtain
contact points w1, b1, w2, b2 with the symmetry shown in Figure 4.3. By searching for the
local extrema of Rzw

ab a symmetrical choice of points shown in (iii) and corresponding to
resistances lying on the lower envelope can be found.

mappings.

A practical method has been proposed in [138] based on searching for the extrema

of the resistance measurements. That procedure is as follows: firstly, as shown in (i) in

Figure 4.10, arbitrary points are chosen on the sample boundary with preimage points

z and a with a source placed at z and a sink at a. Then, by changing the two contact

points with preimages w and b, with the condition that the potential at w remains the

same as the potential at b, the local extremum of the measured resistance Rzw
ab is found.

When the resistance Rzw
ab is at the local extremum, the claim in [138] is that the line wb

become diametrically opposed points in the preimage annulus; this special choice of points

are then marked as w1 and b1. In a second step, as shown in (ii) in Figure 4.10, the point

a is changed to a′, and the same procedure as in (i) is repeated in order to obtain a second

such diametrically-opposed pair w2 and b2. It is then clear from (iii) in Figure 4.10 that

the four-point pair (w1, w2, b1, b2) has the sought-after symmetry shown in Figure 4.3 and
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which, therefore, correspond to resistance measurements that lie on the lower envelope.

Szymański et al. [138] verified experimentally that this method works, but appeared not

to give any mathematical explanation of why it works. We now provide such an explanation.

When there are a source a and sink z as shown in (i) in Figure 4.10, the potential

difference between w and b is

Vwb ≡ Vw − Vb = λJaz log
P (w/a)P (b/z)

P (w/z)P (b/a)
. (4.100)

Suppose we search for a local extremum of Rzw
ab while changing w and b with the condition

that Vwb = 0. This problem is expressed mathematically using a Lagrange multiplier γ:

F (w, b) ≡ 1

λ
(Rzw

ab + γVwb) = log
P (z/a)P (w/b)

P (z/b)P (w/a)
+ γ̂ log

P (w/a)P (b/z)

P (w/z)P (b/a)
, (4.101)

where γ̂ ≡ γ/Jaz. By considering the derivative with respect to w and b, we obtain two

conditions for local extrema:

∂F

∂w
=

1

w
[K(w/b) −K(w/a) + γ̂(K(w/a) −K(w/z))] = 0, (4.102)

∂F

∂b
=

1

b
[K(z/b) −K(w/b) + γ̂(K(b/z) −K(b/a))] = 0. (4.103)

It can be verified that both conditions are satisfied when w = −b and a/w = w/z, which

correspond to the symmetric choice of contact points. This explains why the practical

procedure just described does indeed pick out points with diametrically-opposed preimages

w and b in the annulus.

In view of the above discussion we now proceed under the assumption that two pairs of

resistances (R
θj
X , R

θj
Y ), j = 1, 2, for two sets of contact points in the symmetric arrangement

shown in Figure 4.3 are available. The method proposed here is to make use of the two

explicit formulas (4.91) and (4.98) to determine the resistivity λ.

Some simple numerical experiments validate that the resistivity λ can indeed be robustly

found using the new expressions (4.91) and (4.98) for the lower envelope. We set λ = 0.25

and then used the explicit formulas for the voltage based on (4.17) to generate the “data”

giving the resistances corresponding to two four-point pairs in symmetric configurations

around C0; in a real experiment, this data would be found by measurement on the physical

sample such as those just described. Those values are used both in (two instances of)

formula (4.91) and in the single approximate formula (4.98) and a standard nonlinear

solver (interior-point method) is used to solve them for λ. Table 4.1 show the values of λ

and ρ. As expected, the methods retrieve the known results to the expected degrees of

accuracy.
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Table 4.1: Numerical determination of λ and ρ on solving (4.91) and (4.98)

λ (i) (ii) (iii)

Env. method 0.25000 0.25000 0.25000
Approx. method 0.25061 0.25705 0.27608

True value 0.25 0.25 0.25

ρ (i) (ii) (iii)

Env. method 0.100001 0.20000 0.30000
Approx. method 0.097726 0.18445 0.25401

True value 0.1 0.2 0.3

Figure 4.11: The van der Pauw setup for triply connected domains which has symmetries
on real and imaginary axes. The contact points (a, b, z, w) lie on the boundary of the unit
disc.

4.8 Van der Pauw method for triply connected domains

Here we propose a new van der Pauw formula for multiply connected domains and give

some numerical experiments of resistances in triply connected domains. This can be done

by considering the complex potential of multiply connected domains with a source and a

sink using the prime function.

Let Dζ be a multiply connected domain consisting of the unit disc with M , M ≥ 1,

be inner circles separated from each other. Let C0 be the boundary of the unit circle and

Cj , j = 1, . . . ,M be the boundaries of circular discs with centres {δj ∈ C|j = 1, . . . ,M},

and radii {qj ∈ C|j = 1, . . . ,M}. According to [40], the prime function is expressed by
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multidimensional theta functions as follows:

ω(z, a) =
θ(v(z, a); τ)√∑M

j=1 bkv
′
k(z)

√∑M
j=1 bkv

′
k(a)

, (4.104)

where the row vector v(z, a) is defined by v(z, a) ≡ (v1(z)−v1(a), . . . , vM (z)−vM (a)) ∈ CM ,

and bk, k = 1, . . . ,M are complex constants. Note that vk, k = 1, . . . ,M are the functions

defined in Chapter 2. The multidimentional theta function is given by

θ(v; τ) ≡
∑

m∈ZM

exp
[
πi(m + δ)τ(m + δ)⊤ + 2πi(v + ϵ)(m + δ)⊤

]
, (4.105)

where δ, ϵ ∈ RM are M -dimensional vectors defined by

δ =

1

2
, 0, . . . , 0︸ ︷︷ ︸

M−1

 , ϵ =

(
1

2
, . . . ,

1

2

)
, (4.106)

and the matrix components of τ ∈ CM×M are defined by the functional property:

vk(θj(z)) − vk(z) = τjk. (4.107)

Because of the property above, the following important property is derived:

v(θj(z), a) = v(z, a) + ejτ. (4.108)

For complex parameters a, b, z, w ∈ C, Fay’s trisecant identity for genus M is written

using the multidimensional theta function as follows [57]:

θ(k + v(z, w))θ(k + v(a, b))p(z, w; b, a) + θ(k + v(z, b))θ(k + v(a,w))p(z, b;w, a)

= θ(k)θ(k + v(z, w) + v(a, b)), (4.109)

where

p(z, w; b, a) ≡ ω(z, b)ω(w, a)

ω(z, a)ω(w, b)
, p(z, b;w, a) ≡ ω(z, w)ω(b, a)

ω(z, a)ω(b, w)
. (4.110)

Therefore, the van der Pauw equation for multiply connected domains is given by

θ(k + v(z, w))θ(k + v(a, b))

θ(k)θ(k + v(z, w) + v(a, b))
exp

(
−
Rzw

ab

λ

)
+
θ(k + v(z, b))θ(k + v(a,w))

θ(k)θ(k + v(z, w) + v(a, b))
exp

(
−R

zb
aw

λ

)
= 1.

(4.111)
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It is important to note that for doubly connected domains, v(z, a) is a simple logarithmic

function, so we have v(z, w) + v(a, b) = v(za, wb). By using this property, the van der

Pauw equation for doubly connected domain (4.38) can be derived. However, for the triply

connected domains, the relation is no longer satisfied, which means the van der Pauw

equation for multiply connected domains is not reduced to the simple form. However,

the same technique as the annular domain could be used to analyze the van der Pauw

equation (4.111).

4.9 Summary

This chapter has introduced two new mathematical tools to this area of investigation – the

prime function of a multiply connected domain and the Fay trisecant identity – and used

them to show how the van der Pauw method can be extended to find the resistivity of a

sample with a hole. We have shown that an integrated form of the Fay trisecant identity

provides valuable information concerning the appearance of “envelopes” observed in the

case of holey samples by previous authors. We find an explicit formula for the curves

described by the envelopes, as well as a useful approximate formula relating two pairs of

resistance measurements to the sample resistivity that is valid when the hole is sufficiently

small. It is also described how these new mathematical tools have enabled us to prove

certain conjectures recently made in the engineering literature.

We are also able to justify mathematically a practical procedure for obtaining such

data for a general non-symmetric sample as proposed by Szymański et al. [138]. Those

authors gave evidence that their practical construction does indeed produce such data, but

did not give any mathematical justification as to why the method works.

The van der Pauw for triply connected domains or domains of higher genus will open a

new perspective in both mathematics and engineering. It should be possible to analyze the

van der Pauw equation (4.111) by the same technique as the annulus case.
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Chapter 5

Capacity calculation by matched

asymptotic expansions

In this chapter we solve another electrical transport problem to obtain the capacity of

electrical circuits. New methods for deriving explicit estimates for electrical capacity in

circuits with multiple boundaries are presented. This can be done by incorporating the

prime function described in Chapter 2 with matched asymptotic expansions [150]. We

present new explicit formulas that can be easily evaluated by using the github code [9] for

the evaluation of the prime function.

5.1 Introduction

Electrical capacity is a fundamental property of materials or circuits that describes how

much charge they can store. Accurate measurement of electrical capacity is essential; for

example, the performance of two-dimensional interconnects in MOSFET VLSI circuits

depends on their electrical capacity [55,162]. The gate capacity of a MOS transistor also

affects the delay time of a MOS gate [50], which determines the performance of electrical

circuits.

Figure 5.1 shows typical circuits that include a ground plane and a metal plate with

unit voltage. It is known that the coupling circuit has a fringing effect, which was suggested

by Thomson [144]. Accurate evaluation of electrical capacity usually requires two or three

dimensional calculations solving Laplace equations with Dirichlet conditions [127]. This

type of calculation is sometimes time consuming due to the geometry of the circuits. The

circuits usually have several plates and ground planes, which become multiply connected

domains.

Electrical capacity has many connections with transport theory arising in engineering

fields. A number of other physical applications are discussed in detail by Papamichael [114,
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Figure 5.1: Examples of the electrical circuits. The white region is a wire and the black
areas are ground.

115]. For example, the effective transport coefficients of materials can be calculated by

obtaining the conformal modulus of holey materials [81]. Acker [2] studied the heat loss of

a cylindrical pipe in order to obtain the appropriate shape of the outer boundary of the

pipe which minimises the heat loss of the whole domain. The effective diffusion coefficients

of diffusive material can be calculated by solving the 2D Laplace equation and integrating

the flow along the flow domain [19]. These physical quantities have physical meaning

in each field, but mathematically they can be related to the calculation of the electrical

capacity of the domain.

There has been much research into obtaining explicit formulas for electrical capacity.

Chang obtained the analytical formulas for IC metal-line capacity in case (a) and (b) in

Figure 5.1 [25] using Schwarz-Christoffel mappings. Palmer used a Schwarz-Christoffel

map to calculate the capacity of the parallel plate [113] and the result was verified by [26].

Sakurai and Tamaru [129] derived an empirical formula for calculating the capacity in case

(b) in Figure 5.1.

Despite its many applications it is rare to find explicit formulas for electrical capacity.

Because the voltage potential satisfies the 2D Laplace’s equation with Dirichlet boundary

conditions, a common tool for calculating capacity is conformal mappings. For very general

polygonal or polycircular domains, including multiply connected cases, the general theory

for the construction of such mappings has now been developed by Crowdy [29,40,43,44].

On the other hand, one can use purely numerical approaches based on boundary integral

formulations or their kin: for example, Nassar et al. used the generalized Neumann kernel to

calculate the capacity of a doubly connected domain [105]. Baddoo and Trefethen recently

proposed an algorithm to evaluate the capacity using rational function approximations [14].

Indeed, many different numerical schemes for the computation of conformal capacity have

now been proposed [20,63,86].

The purpose of this chapter is to show how a quite different mathematical idea –
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the theory of matched asymptotics [150] – can be used to great advantage in providing

estimates of the capacity. Perhaps surprisingly, we have not seen this idea applied to

the computation of capacity which is all the more remarkable because the estimates it

provides are, as will be shown here, very accurate even well beyond the expected range

of validity. While the idea may not be familiar in the literature on the computation of

capacity, asymptotic analysis is a powerful tool in the applied sciences and its principal

tenets are well known [68,150]. Tuck [146] advocated its use in the calculation of so-called

“blockage coefficients” characterizing the net effect of occlusions obstructing ideal flows in

channels as well as the “effective size” of holes in a wall, and both concepts have much in

common with conformal capacity. And, just as the notion of conformal capacity manifests

itself in applications in many different guises, Crowdy [36] has shown how the idea of a

blockage coefficient is analogous to the so-called hydrodynamic slip length used in surface

engineering to quantify the frictional properties of superhydrophobic surfaces. In many

ways, the present article adopts the spirit of Tuck’s approach to estimates of blockage

coefficients and effective size but now for the estimation of the electrical capacity.

5.2 The definition of electrical capacity and simple examples

In this section, the mathematical definition of the electrical capacity of the circuit in two

dimension is presented. Let G be a domain whose boundary ∂G is grounded, and let E

be a domain E in G, where the unit voltage is induced on the boundary of E, define as

∂E. Note that G and E can have multiple boundaries, which means that the region G\E
becomes multiply connected domains. The voltage ϕ of the boundary of E is set as the

unit voltage. A typical geometry is shown in Figure 5.2.

The 2D voltage potential ϕ then satisfies the following classical Dirichlet problem [3,63]:

∇2ϕ(x, y) = 0, (x, y) ∈ G\E, (5.1)

with the following boundary conditionsϕ(x, y) = 0, (x, y) ∈ ∂G,

ϕ(x, y) = 1, (x, y) ∈ ∂E.
(5.2)

The electrical capacity is defined as the total current flowing in the domain G\E as follows:

cap(G, E) ≡
∫
G\E

|∇ϕ|2dxdy =

∫
∂E

∂ϕ

∂n
ds, (5.3)

where ∂/∂n denotes the normal derivative outward to the boundary E. In the second
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Figure 5.2: A typical domain for capacity calculation.

Figure 5.3: (i) Concentric annulus. (ii) A slit in the unit circle.

equality, we have used Gauss’s divergence theorem and the fact that ϕ = 1 on (x, y) ∈ ∂E.

An elementary example is where G is taken as the unit disc with centre at the origin and

E is a concentric disc of radius ρ, 0 < ρ < 1, as shown in (i) of Figure 5.3. The solution for

the Dirichlet problem (5.1) in this geometry is found by introducing the complex potential

W (z), ϕ = Re[W (z)], where the analytic function

W (z) =
log z

log ρ
, z ≡ x+ iy, (5.4)

is called a complex potential for the problem. The capacity can then be calculated from (5.3)

by using the Green’s second identity [3, 63] with the result

cap(G, E) =

∫
∂E

∂ϕ

∂n
ds =

2π

log(1/ρ)
. (5.5)

Since the capacity is conformally invariant, the calculation of capacity in doubly connected
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domains (where ∂E forms an internal boundary component of a doubly connected domain)

can be related to the problem of finding the conformal modulus ρ of the conformal mapping

to the target annular domain from a canonical concentric annulus, ρ < |ζ| < 1 say, with

|ζ| = 1 mapping to ∂G and |ζ| = ρ mapping to ∂E.

Another example where the capacity can be found in closed form is where G is the unit

disc and E is the slit {(x, y)|x ∈ [0, r], y = 0, 0 < r < 1}, as shown in (ii) of Figure 5.3.

This domain, called “Grötzsch ring”, has broad application in the theory of conformal

mappings, in physics, and in number theory [5]. The expression for the ring can be derived

because the explicit conformal map from an annulus ρ < |ζ| < 1 to this domain can be

determined in closed form; see, for example, Exercise 5.16 of [40], or pp. 293 of [107].

The conformal map from the concentric annulus to the unit disc exterior to the slit

x ∈ [−r′, r′] is given by [40]

w(ζ) = −P (ζ, ρ) − P (−ζ, ρ)

P (ζ, ρ) + P (−ζ, ρ)
, (5.6)

where the function P (., .) is the prime function [40] of the annulus introduced in Chapter 2

and

r′ = w(ρ). (5.7)

Because of the properties of P (ζ) explained in Chapter 2, it is easy to see that, when ζ lies

on C0, i.e., ζ = ζ−1,

w(ζ) = −P (ζ, ρ) − P (−ζ, ρ)

P (ζ, ρ) + P (−ζ, ρ)
= −P (ζ−1, ρ) − P (−ζ−1, ρ)

P (ζ−1, ρ) + P (−ζ−1, ρ)
(5.8)

= −P (ζ, ρ) + P (−ζ, ρ)

P (ζ, ρ) − P (−ζ, ρ)
=

1

w(ζ)
. (5.9)

Changing the slit region x ∈ [−r′, r′] to a different slit x ∈ [0, r], without changing the unit

circle, just requires an automorphism of the unit disc:

z(w) =
w + r′

r′w + 1
. (5.10)

Combining these two conformal maps gives the formula for the capacity implicitly as

follows:

cap(G, E) =
2π

log(1/ρ)
, r =

P (−ρ, ρ)2 − P (ρ, ρ)2

P (−ρ, ρ)2 + P (ρ, ρ)2
. (5.11)

As shown in Chapter 4, the prime function of the concentric annulus can be represented by
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elliptic functions, so that (5.11) can be related to an alternative expression (2.6) featured

in [63]. To be more precise, the capacity of the Grötzsch ring is given by the complete

elliptic integral of the first kind as follows: (see the equation (3.11) of [5])

cap(G, E) =
2π

µ(r)
, µ(r) ≡ π

2

K(
√

1 − r2)

K(r)
, K(r) ≡

∫ π/2

0

dθ√
1 − r2 sin2 θ

, (5.12)

and hence ρ in (5.11) has an explicit formula such that ρ = exp(−µ(r)).

These two examples, the annular region and the Grötzsch ring, are special cases because

these capacities can be expressed in closed form. In general, however, the capacity in

multiply connected domains cannot be obtained explicitly. The unit disc with a small

lens-shaped inclusion is a simple example whose capacity is not available in closed form. In

the next section we present a new method for obtaining an “estimate” of this capacity. This

method gives us an analytical expression for the capacity, which can be easily evaluated

using the prime function and is shown to be quite accurate.

5.3 The theory of matched asymptotic expansions for the

capacity calculation

In this section, we will show how a quite different mathematical idea – the theory of

matched asymptotics [150] – can be used to great advantage in providing estimates of

capacity. This can be done by providing a simple capacity formula for one of the simplest

non-trivial examples, i.e., the unit disc with a small lens-shaped inclusion as shown at the

top of Figure 5.4. Based on the proposed method, estimates of the capacity for various

geometries can be obtained in closed form.

Here we consider a small lens located at the center of a unit disc shown in Figure 5.4;

this same geometry is featured in Figure 1 of [63]. Let the unit disc be denoted by

G and denote the lens by E. The domain G\E is a doubly connected polycircular-arc

domain (defined as a domain with boundaries made up of a union of circular arcs) and

the general theory exists – see [40,43,44] – to compute the capacity of this domain using

conformal mapping from a canonical concentric annulus; that calculation, while relatively

straightforward (indeed, it will be carried out later), still requires numerical integration of

a differential equation. However, using the matching approach to be described next, an

explicit formula estimating the required capacity can be obtained using more elementary,

albeit still non-trivial, considerations.

The main assumption is that the lens is small compared to the unit circle and also

well separated from it. Then, using an electric circuit analogy for concreteness, an “outer”

observer viewing this set-up on the scale of the unit circle sees the small lens, set to unit
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Figure 5.4: The idea of the matching approach. The capacity of a grounded unit disc with
a small lens-shaped inclusion held at unit voltage can be estimated to great accuracy by
viewing the problem at two different scales: an “outer” problem and an “inner” problem.

voltage, effectively as a point current source at the origin and of (as yet) unknown strength

m. Resolution of the detailed geometry of the lens is not possible for this observer, as

indicated in Figure 5.4 (i), and the corresponding complex potential for this outer observer

is well approximated by

Wouter(z) =
m

2π
log z, (5.13)

where the real part of this analytic function is the voltage potential, ϕ say. This potential

incorporates the condition that the outer boundary is grounded, ϕ = 0 on |z| = 1. On the

other hand, an “inner” observer viewing the same configuration at the smaller scale of the

lens does not notice the grounded outer boundary in the far distance; this is indicated in

Figure 5.4 (ii). Hence, for the inner observer, the boundary value problem for the voltage

potential ϕ requires that ϕ = 1 on ∂E with the total current out of the lens equal to m.

The solution to this inner problem is more difficult to solve, but is readily done by utilizing
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the conformal map from the unit disc in a complex ζ-plane to the outside of the lens with

opening angle 2θ in the z-plane as determined in [35] as

z = f(ζ) = a

[
(1 − ζ)2(1−θ/π) + (1 + ζ)2(1−θ/π)

(1 − ζ)2(1−θ/π) − (1 + ζ)2(1−θ/π)

]
,

ζ = f−1(z) =
(z/a− 1)π/2(π−θ) − (z/a+ 1)π/2(π−θ)

(z/a− 1)π/2(π−θ) + (z/a+ 1)π/2(π−θ)
,

(5.14)

where 2a is the width of the lens and, for the matching approach to work, we assume

a≪ 1. Given that ϕ = 1 on ∂E, the solution to the inner problem is

Winner(z) = 1 − m

2π
log(−ζ) = 1 − m

2π
log(−f−1(z)). (5.15)

A constant in this expression has been chosen to ensure that the imaginary part of

Winner(z) is zero to the right of the meniscus. It should be emphasized that the outer

solution incorporates information on the grounded nature of the outer boundary, while

the inner solution encodes the fact that the inner boundary has been set to unit voltage.

The idea now is to match the outer and inner solutions at an intermediate length scale at

which their validity is assumed to overlap. Practically, this means that the limit of the

inner solution as z → ∞ must be made to “match” with the the outer solution as z → 0.

As z → ∞,

ζ = f−1(z) → − πa

2(π − θ)z
+ O(z−2), z → ∞, (5.16)

so that, in the same limit, the inner potential behaves as

Winner(z) = 1 − m

2π
log

(
πa

2(π − θ)z
+ O(z−2)

)
→ m

2π
log z + 1 − m

2π
log

(
πa

2(π − θ)

)
+ ....

(5.17)

Notice first that (5.13) and (5.17) have the same leading order asymptotics. Furthermore,

the “matching” of the constant terms in (5.13) and (5.17) determines a leading-order

approximation to m via the relation

1 − m

2π
log

(
πa

2(π − θ)

)
= 0. (5.18)

The capacity of the domain is then approximated by

cap(G, E) =

∫
G\E

|∇ϕ|2dxdy =

∫
∂E

∂ϕ

∂n
ds = −m ≈ 2π

log

(
2(π − θ)

πa

) , (5.19)
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where ∂/∂n denotes the normal derivative outward to the boundary of E. This simple

explicit formula is found to furnish an excellent approximation even when the size of the

inner polycircular lens becomes large. Figure 5.7 shows a comparison of the estimates

given by this formula and a calculation of the capacity based on construction of a doubly

connected polycircular-arc conformal mapping to be described in the next section. The

capacity for this example was also calculated using very different numerical methods in [63].

This simple example demonstrates the power of the matching approach in providing

useful estimates of the capacity. These is useful, for example, in obtaining initial guesses for

iterative procedures to find more precise values based on solution of a conformal mapping

accessory parameter problem as described in Chapter 7. The remainder of this paper

demonstrates, using a series of illustrative cases, the scope of these ideas.

5.4 Capacity calculation for doubly connected domains

The matching technique just described can also be applied to cases (A), (B), and (C) shown

in Figure 5.5. The choice of domain G in cases (A) and (B) is an infinite channel with

height 2H. We also aim to validate the matching approach by comparing the capacity of

the Grötzsch ring with the exact formula (5.11).

Figure 5.5: Three example geometries: (A) a circular disc in a channel: (B) a lens in a
channel; (C) a lens in a rectangle.

Case (A): Circle in a channel

The geometry for a circle in a channel is illustrated in Figure 5.5 (A). First we assume

that the parameter a characterizing the size of E is small compared to H so that the total

flux out of the inner region can be seen as a total flux from a point source with strength

m at the center of lens. The solution to the “outer problem” of a single point source of

strength m in a channel with grounded walls can be found using elementary conformal

mapping techniques [1]:

Wouter(z) =
m

2π
log tanh

( πz
4H

)
=
m

2π
log
( π

4H

)
+
m

2π
log z + . . . , (5.20)
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where the Taylor expansion of the hyperbolic tangent is used to find the behaviour as

z → 0. Since E is a circular disc in this case, which is a special case of a lens, then the

inner solution is still (5.15) but now with z = f(ζ) = −a/ζ:

Winner(z) = 1 − m

2π
log(−ζ) = 1 − m

2π
log(a/z) =

m

2π
log z +

(
1 − m

2π
log a

)
+ . . . (5.21)

The matching of constants in the inner and outer solution gives

m

2π
log

π

4H
= 1 − m

2π
log a, or m =

2π

log
( πa

4H

) . (5.22)

Hence, the capacity for case (A) is

cap(G, E) = −m ≈ 2π

log

(
4H

πa

) . (5.23)

Case (B): Lens in a channel

Case (A) is actually a special case of (B). For a general lens with opening angle θ, a

combination of the inner solution (5.17) and the outer solution (5.20) gives the matching

condition

m

2π
log

π

4H
= 1 − m

2π
log

(
πa

2(π − θ)

)
(5.24)

from which the capacity for case (B) is calculated as

cap(G, E) = −m ≈ 2π

log

(
8H(1 − θ/π)

πa

) . (5.25)

The result (5.23) for case (A) is retrieved when θ = π/2.

Case (C): Lens in a rectangle

For case (C), only the outer solution needs to be modified. The relevant complex

potential for the outer solution is that for a point source with strength m situated at the

center of a rectangle with height 2H and width 2L. It can be calculated using a simple

exponential conformal mapping from the rectangle to a half annular region and the theory

of the prime function associated with that annulus as described in [37,40].

We explain how to derive the potentials of this problem. The potential is a solution

which satisfies Re[Wouter(z)] = 0 on the boundary of rectangle with a source m at the

center of the rectangle. By using the conformal map ζ = e−π(z+L+iH)/2H , the rectangle
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Figure 5.6: Geometry of the exponential maps ζ = e−π(z+L+iH)/2H .

region is transformed into the lower half annular domain D−
ζ with radius r = e−πL/H .

Figure 5.6 shows the rectangle and lower half annular domain. The location of the point

source with strength m is now ζ = −i
√
r. The conformal invariance of the potential shows

that the function X(ζ) ≡ Wouter(z(ζ)) has a simple source term with a strength m at

ζ = −i
√
r and satisfies Re[X(ζ)] = 0, ζ ∈ C−

0 , C
−
1

Re[X(ζ)] = 0, r < |ξ| < 1, η = 0.
(5.26)

On the real axis, i.e. ζ = ζ, the second condition of (5.26) means X(ζ) = X(ζ) = −X(ζ).

The use of Schwarz reflection principle shows that the function X(ζ) satisfies X(ζ) ≡
X(ζ) = −X(ζ) on Dζ . This property indicates that X(ζ) has a sink at ζ = i

√
r. On

ζ ∈ C+
j , ζ ∈ C−

j for j = 1, 2, so

Re[X(ζ)] =
1

2
(X(ζ) +X(ζ)) =

1

2
(−X(ζ) −X(ζ)) = −Re[X(ζ)] = 0, ζ ∈ C+

j , j = 1, 2.

(5.27)

Thus, X(ζ) has a source at ζ = −i
√
r and a sink at ζ = i

√
r and satisfies

Re[X(ζ)] = 0, ζ ∈ C0, C1. (5.28)
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Now we define

X(ζ) =
m

2π
log

[
P (−i

√
rζ, r)P (−ζ/(i

√
r), r)

P (ζ/(i
√
r), r)P (i

√
rζ, r)

]
. (5.29)

Because P (ζ, r) has a simple zero at ζ = 1, X(ζ) has a source ζ = −i
√
r and a sink at

ζ = i
√
r. On ζ ∈ C0, i.e., ζ = ζ−1, we have

X(ζ) =
m

2π
log

[
P (i

√
rζ−1, r)P (ζ−1/(i

√
r), r)

P (−ζ−1/(i
√
r), r)P (−i

√
rζ−1, r)

]
(5.30)

=
m

2π
log

[
P (ζ/(i

√
r), r)P (i

√
rζ, r)

P (−i
√
rζ, r)P (−ζ/(i

√
r), r)

]
= −X(ζ), (5.31)

where we used the properties of the prime function (2.12) and (2.13). Hence, Re[X(ζ)] = 0

on ζ ∈ C0. It is also easy to check that Re[X(ζ)] = 0 on C1 and X(ζ) = −X(ζ). Thus,

the outer solution for case (iii) is given by

Wouter(z) =
m

2π
log

[
P (−i

√
rζ, r)P (−ζ/(i

√
r), r)

P (ζ/(i
√
r), r)P (i

√
rζ, r)

]
, (5.32)

where

ζ = e−π(z+L+iH)/2H , r ≡ e−πL/H . (5.33)

As z → 0, which corresponds to ζ → −i
√
r, the outer solution has the local expansion

Wouter(z) =
m

2π
log z +

m

2π
log

[
π

2H

P (−r, r)P̂ (1, r)

P (−1, r)P (r, r)

]
+ . . . (5.34)

On matching (5.34) and (5.21) the capacity of this geometry is estimated by the non-trivial

explicit formula

cap(G, E) ≈ 2π

log

[
4H(1 − θ/π)

πa

(
P (r, r)P (−1, r)

P̂ (1, r)P (−r, r)

)] . (5.35)

Case: Grötzsch ring

It is important to note that the capacity of the Grötzsch ring obtained in (5.11) is also

approximated with great accuracy by the proposed matching approach. When the length

of the slit in the Grötzsch ring becomes short, an outer observer will see the point source

of strength m at the centre of the slit [0, r]. Since Re[Wouter(z)] = 0 on the unit circle, we
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have

Wouter(z) =
m

2π
log

(
z − r/2

(r/2)(z − 2/r)

)
. (5.36)

By using the same conformal map (5.14) with θ = 0 and z → z − r/2, the inner solution

around the slit is given by

Winner(z) = 1 − m

2π
log

r

4
+
m

2π
log (z − r/2) + . . . . (5.37)

Combining the outer solution (5.36) and the inner solution (5.37) gives the approximation

for the capacity of the Grötzsch ring:

cap(G, E) = −m ≈ 2π

log

(
4 − r2

r

) . (5.38)

5.5 Numerical evaluations for capacities of doubly connected

domains

In this section, we evaluate the estimate of capacity with the results calculated by conformal

mappings. Cases (A), (B) and (C) all involve doubly connected polycircular-arc domains [43].

These examples were chosen so that the accuracy of the estimates from the matching

approach can be validated by computing the capacity using the conformal map of each

doubly connected domain using the general theory described in [43] (see also [40]). Crowdy

and Fokas [43] have shown that the conformal map z = f(ζ) from a concentric annulus

in ζ-plane to a doubly connected polycircular region in z-plane satisfies the ordinary

differential equation

ζ2{f, ζ} = T (ζ), {f, ζ} ≡
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

, ′ ≡ d

dζ
, (5.39)

where T (ζ) is a so-called loxodromic function [40] that depends on the geometry of the

domain; the curly brackets denote a Schwarzian derivative. The function T (ζ) depends

on unknown accessory parameters as well as the modulus ρ and these can be found (e.g.

by a simple Newton method) using equations derived by solving the ordinary differential

equation (5.39).

For the numerical calculation for doubly connected polycircular-arc domains, we need

to solve the third-order differential equation [40, 43] for the conformal map z = Z(ζ) given
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Figure 5.7: Comparison of the capacity of the lens in a circle as calculated using the doubly
connected polycircular-arc conformal mapping method and the estimate (5.19) from the
matching approach for the example in Figure 5.4. The matching estimates are excellent
for small a, as expected, and are good even when a is large.

by

ζ2{Z, ζ} = T (ζ), {f, ζ} ≡
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

, f ′ ≡ df

dζ
, (5.40)

where the loxodromic function T (ζ) and initial conditions on the differential equation

depend on each geometry [40]. For the sake of simplicity, we recall two important functions

defined in Chapter 2 by

K(ζ, ρ) ≡ ζ
P ′(ζ, ρ)

P (ζ, ρ)
, L(ζ, ρ) ≡ ζ

dK

dζ
(ζ, ρ). (5.41)

We note again that K(ζ, ρ) has a single pole at ζ = 1, and L(ζ, ρ) has a double pole at

ζ = 1. The turning angle [40,43] of the meniscus α is related to the opening angle of lens

θ as

α = 2

(
1 − θ

π

)
. (5.42)

For completeness, we now list the functional form of the loxodromic function T (ζ) for each

case.
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Figure 5.8: Comparison of the capacity as given by the estimates (5.25) and (5.35) from
the matching formula and the values given by the solution of the accessory parameter
problem for case (A), (B), and (C) in Figure 5.5 with H = 1. For case (C), θ is fixed to
θ = π/4 but L is varied.

1. (Lens in a circle):

Because of the symmetry, the prevertices of the edges of the lens are set to be at ζ = ±ρ.

Then we can write

T (ζ) =
α2 − 1

2
[L(ζ/ρ, ρ) + L(−ζ/ρ, ρ)] + C, (5.43)

where C is a real parameter to be found.

2. Case (A) (Circle in a channel):

We let ζ = ±1 be transplanted to x→ ±∞. Because of the symmetry, we can set

T (ζ) = −1

2
[L(ζ, ρ) + L(−ζ, ρ)] + C, (5.44)

where C ∈ R is a parameter to be found.

3. Case (B) (Lens in a channel):

By the combination of the case (i) and case (A), we can derive

T (ζ) = −1

2
[L(ζ, ρ) + L(−ζ, ρ)] +

α2 − 1

2
[L(ζ/ρ, ρ) + L(−ζ/ρ, ρ)] + C, (5.45)

where C ∈ R is a parameter to be found.
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4. Case (C) (Lens in a rectangle):

Because of the symmetry, the point β on the unit circle is taken to be transplanted to the

top right corner of the rectangle. Then we can derive

T (ζ) = −3

8
L4(ζ, ρ) + iγ[K(ζ/β, ρ) −K(−ζ/β, ρ) +K(−ζ/β, ρ) −K(ζ/β, ρ)] (5.46)

+
α2 − 1

2
[L(ζ/ρ, ρ) + L(−ζ/ρ, ρ)] + C,

where γ, C ∈ R and

L4(ζ, ρ) ≡ L(ζ/β, ρ) + L(ζ/β, ρ) + L(−ζ/β, ρ) + L(ζ/β, ρ). (5.47)

First, this method was used to calculate the capacity as graphed in Figure 5.7. The

matching gives excellent estimates when the width of lens is less than 0.6.

Next, comparisons of the estimates given by the matching formula with the values

given by the solution of the accessory parameter problem for case (A), (B), and (C) are

shown in Figure 5.8. For case (C), the half of the opening angle θ is fixed to π/4. In all

cases, the matching procedure gives excellent estimates for the capacity even when a grows

comparable with unity.

5. Grötzsch ring

We evaluate our matching approach with the exact values of capacity of Grötzsch ring. We

have derived the approximation for the capacity of the Grötzsch ring in the equation (5.38)

and it is convenient to note it again:

cap(G, E) = −m ≈ 2π

log

(
4 − r2

r

) . (5.48)

This result agrees with the asymptotics of µ(r) described in page 8 of [5], where it is shown

that µ(r) behaves log(4/r) when r tends to zero. The accuracy of the matching (5.38) is

displayed in the Table 5.1.

Table 5.1: Comparison of the capacity of the Grötzsch ring between (i) the conformal
mapping method, (ii) the explicit equation (5.12), and (iii) the matching approach.

r Conf. map. method Elliptic integral (5.12) Relative error Matching (5.38)

0.1 1.70443732109 1.70443732092 1.04 × 10−10 1.70443404447
0.3 2.44777371061 2.44777371083 9.00 × 10−11 2.44719002877
0.5 3.12680384539 3.12680384564 7.97 × 10−11 3.11835619040
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According to the equation (3.13) of [5], µ(r) is known to have a famous inequalities:

µmin = log

(
(1 +

√
r′)2

r

)
< µ(r) < log

(
2(1 + r′)

r

)
= µmax, (5.49)

where r′ ≡
√

1 − r2. Figure 5.9 shows the comparison of the capacity of the Grötzsch ring

given by the matching approach (5.38) and (5.49). It is not surprising that µmin and µmax

are more accurate than the matching approach because µmin and µmax include expansions

of higher orders than the matching approach. To be more precise, Taylor expansions of

µmin and µmax around r = 0 give us

µmin = log

(
(1 +

√
r′)2

r

)
= log

(
1 +

√
1 − r2 + 2(1 − r2)1/4

r

)
(5.50)

= log

(
4 − r2 − 5r4/16

r
+ · · ·

)
, (5.51)

and

µmax = log

(
2(1 +

√
r′)

r

)
= log

(
4 − r2 − r4/4

r
+ · · ·

)
. (5.52)

These expansions suggest that the matching approach gives us the first two terms of the

asymptotics in this case.

Figure 5.9: Comparison of the capacity of the Grötzsch ring given by (5.38) and the upper
and lower bounds given in (5.49).
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Figure 5.10: Two triply connected domains: cases (I) and (II).

5.6 Capacity calculation for triply connected domains

The matching approach can be easily extended to multiply connected domains such as the

two triply connected examples, cases (I) and (II), shown in Figure 5.10. In both examples,

G is again the unit disc.

Case (I): Two circles in the unit circle

First consider case (I) involving the triply connected domain G\E, E ≡ {E1, E2},

denoted by Dz, comprising the unit disc with two equal circular discs E1 and E2 excised.

To align with the notation of [40] we will denote ∂G by C0 and ∂Ej by Cj for j = 1, 2. The

centers of each disc are at δ, −δ, where δ ∈ R, and both have radius q ∈ R, where q and δ

satisfies 0 < q < δ < 1, q + δ < 1. In order to find the capacity of the domain, consider the

potential ϕ in Dz which satisfies

∇2ϕ(x, y) = 0, (x, y) ∈ Dz, (5.53)

with the boundary conditions

ϕ(x, y) = 1, (x, y) ∈ C1, C2, (5.54)

ϕ(x, y) = 0, (x, y) ∈ C0. (5.55)

As in Section 2, the complex potential W (z), ϕ = Re[W (z)], will be sought.

In order to construct the outer solution, suppose that the radii q ≪ 1 and that the two

circles C1 and C2 are sufficiently separated from each other, i.e., q ≪ δ, and neither are

too close to C0. Hence an outer observer viewing at the scale of the unit circle sees the
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point sources with strength m1 and m2 at the centers of inner circles. Since Re[W (z)] = 0

on C0, the outer solution is given by

Wouter(z) =
m1

2π
log

(
z − δ

δ(z − 1/δ)

)
+
m2

2π
log

(
z + δ

δ(z + 1/δ)

)
. (5.56)

As before, the strengths of two sources m1 and m2 are unknown.

There are now two “inner solutions”. The inner solution, valid near C1, defined as

W
(1)
inner, satisfies ϕ = 1 on ∂E is

W
(1)
inner(z) = 1 − m1

2π
log

(
q

z − δ

)
, (5.57)

where m1 is the flux associated with this inclusion. This inner observer sees neither the

outer boundary, nor the other circular boundary C2. Similarly, the inner solution around

C2 is

W
(2)
inner(z) = 1 − m2

2π
log

(
q

z + δ

)
, (5.58)

where m2 is the flux associated with this inclusion. The observer associated with this inner

solution sees neither the outer boundary, nor the other circular boundary C1.

The outer solution and the two inner solutions must be matched. As z → δ, or as z

approaches C1, the outer solution (5.56) has the local expansion

Wouter(z) =
m1

2π
log

(
1

δ(1/δ − δ)

)
+
m2

2π
log

(
2δ

δ(δ + 1/δ)

)
+
m1

2π
log(z − δ) + . . . , (5.59)

which should match to W
(1)
inner(z). Similar arguments can be made as z approaches C2. On

matching, a linear system for m1 and m2 emerges:
1 − m1

2π
log q =

m1

2π
log

(
1

δ(1/δ − δ)

)
+
m2

2π
log

(
2δ

δ(δ + 1/δ)

)
,

1 − m2

2π
log q =

m1

2π
log

(
2δ

δ(δ + 1/δ)

)
+
m2

2π
log

(
1

δ(1/δ − δ)

)
.

(5.60)

By symmetry we expect m2 = m1 and consequently,

m1 = m2 =
2π

log

(
2q

δ(1/δ2 − δ2)

) . (5.61)

The capacity for the domain Dz = G\E, E ≡ {E1, E2} then follows from Green’s second
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identity as

cap(G, E) =

∫
Dz

|∇ϕ|2dxdy =

∫
∂Dz

∂ϕ

∂n
ds = −m1 −m2 ≈ − 4π

log

(
2q

δ(1/δ2 − δ2)

) . (5.62)

Case (II): Generalized Grötzsch ring

For case (II), there are now two slits with length 2a centred at (b, 0) and (−b, 0) in the

unit disc G. We call the geometry a generalized Grötzsch ring. These slits are labelled as

L1 and L2. Suppose that a≪ 1 and a≪ b. By using the same conformal map (5.14) with

θ = 0, the inner solution around L1 is given by

W
(1)
inner(z) = 1 − m1

2π
log

a

2
+
m1

2π
log(z − b) + . . . . (5.63)

Since the outer boundary is the unit circle, the same expression (5.59) for the outer solution

can be used. On matching in this case the linear system for m1 and m2 is
1 − m1

2π
log

a

2
=
m1

2π
log

(
1

b(1/b− b)

)
+
m2

2π
log

(
2b

b(b+ 1/b)

)
,

1 − m2

2π
log

a

2
=
m1

2π
log

(
2b

b(b+ 1/b)

)
+
m2

2π
log

(
1

b(1/b− b)

)
.

(5.64)

By symmetry we expect m1 = m2 and after solving the linear system (5.64), the capacity

is estimated by

cap(G,E) = −m1 −m2 ≈ − 4π

log

(
a

b(1/b2 − b2)

) . (5.65)

5.7 Numerical evaluations for capacity of triply connected

domains

To test the accuracy of these estimates, the values of the capacity are computed using an

alternative scheme. Following a general formulation described in [40], the potential problem

(5.53) can be solved using linear combinations of two multi-valued analytic functions v1(z)

and v2(z) relevant to the general function theory associated with multiply connected

domains as described in [40]. Since the functions v1(z) and v2(z) can be readily evaluated

by using freely available codes [9] we merely make use of these resources here.

For Case (I), the exact solution of the potential problem is given by

W (z) = i(α1v1(z) + α2v2(z)), (5.66)
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where the parameters α1 and α2 are determined by the boundary conditions (5.54). The

following capacity is then given by the same technique as (5.62)

cap(G,E) = −α1 − α2. (5.67)

For Case (II), the potential is also given by formula (5.66), but now the preimage

circular domain, Dζ say, for which the two functions v1 and v2 are defined is different.

The geometry of the circular domain Dζ resembles that of Dz in Case (I), but the two

preimage circles C1 and C2 have different centers, at (δ̃, 0) and (−δ̃, 0) say, and both have

a different radius, q̃ say [40]. To find δ̃ and q̃ it happens that the conformal mapping from

the triply connected circular domain Dζ to the domain Dz of Case (II) can be found using

the following sequence of conformal maps [44]:

z = Z(χ(ζ)), χ = −ω(ζ,+1)

ω(ζ,−1)
, Z(χ) =

1 − χ

1 + χ
, (5.68)

where ω(., .) is the prime function associated with Dζ [40]. The parameters δ̃ and q̃ are

determined by conditions

z(δ̃ − q̃) = b− a, z(δ̃ + q̃) = b+ a. (5.69)

The prime function ω(., .) can be readily evaluated by using the same freely available

codes [9] and the two equations (5.69) readily solved using standard methods.

Figure 5.11 shows the comparison of the capacity calculated by the matching approach

and those calculated using the method just described. As expected, the matching approach

gives excellent approximations when the size of the inclusions are small.
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Figure 5.11: Comparison of the capacity as calculated by the conformal mapping approach
and the matching approach for cases (I) and (II) in Figure 5.10. The matching approach
approximates the capacities when the size of holes are small.

5.8 The capacity calculation for single interdigitated

electrodes (Case 1.)

In this section, we focus on physical examples of interdigitated electrodes. This geometry

contains a single electrode and a single ground line, and has been considered by several

authors when calculating the fringing effects of the circuits. The geometry is shown in the

right-hand figure in Figure 5.12.

Figure 5.12: Example of the interdigitated electrodes. We can evaluate the capacity of this
circuit using the conformal map from the annulus.
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The problem now is to solve the potential ϕ which satisfies

ϕ = 1, for x ∈ [d/2, d/2 + 2L], y = 0, (5.70)

ϕ = 0, for x ∈ [−d/2 − 2C,−d/2], y = 0. (5.71)

We calculate the estimate of the capacity using the matching approach. First it is assumed

that these two slits are well separated and L/d,C/d ≪ 1. The inner solution around

z = L+ d/2 is given by

Winner(z) = 1 − m

2π
log

(
L/2

(z − L− d/2)

)
, (5.72)

where m is a flux out of the electrode. The outer solution is a solution of the potential

problem which satisfies

ϕ = 0, for x ∈ [−d/2 − 2C,−d/2], (5.73)

with the source m at z = d/2 + L. The outer solution can be derived by using a famous

Joukowski map as follows:

Wouter(z) =
m

2π
log

(
ξ − ξ0

ξ0(ξ − 1/ξ0)

)
, ξ = Θ(z) =

z + d/2 + C

C
−
√

(z + d/2 + C)2

C2
− 1,

(5.74)

and ξ0 = Θ(d/2 + L). By the matching approach, the capacity of the single interdigitated

electrodes is given by

m ≈ 2π

log

(
LC

4[(C + d+ L)2 − C2]

) (5.75)

so the capacity is given by

cap(G, E) = −m = − 2π

log

(
LC

4[(C + d+ L)2 − C2]

) . (5.76)

The exact value of the capacity of this geometry is given by the radial slit map presented

in Chapter 2. We consider the radial-slit map

η(ζ) =
d

η̂(ρi) − η̂(i)
η̂(ζ), η̂(ζ) ≡ P (ζ/aη, ρ)P (aηζ, ρ)

P (−ζ/aη, ρ)P (−aηζ, ρ)
, (5.77)

where aη is a purely imaginary number. The parameters ρ and aη can be solved by the
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Figure 5.13: Capacity of a single interdigitated electrode. The distance between two
electrode is fixed to d = 1 for all numerical experiments.

following conditions: η(−ρi) − η(ρi) = 2L,

η(i) − η(−i) = 2C.
(5.78)

These nonlinear equations can be readily solved by the standard method such as the

Newton’s method. After solving for ρ the capacity of the domain can be calculated by the

equation (5.5).

Figure 5.13 shows the numerical comparison of the capacity calculated by the matching

approach (5.76) and the conformal mapping approach. Similar to Section 5, the matching

procedure gives excellent estimates for the capacity even when the slit lengths L and C

grow comparable with the distance d.
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5.9 The capacity calculation for periodic interdigitated

electrodes (Case 2.)

In this section, we focus on the capacity calculation for periodic interdigitated electrodes.

The problem now is to find the potential ϕ generated by the periodic interdigitated

electrodes shown in Figure 5.14. The arrangement is 2T -periodic in the x direction and, in

each period window, there are two electrodes: one of length 2L held at unit voltage, another

of length 2C that is grounded. The distance between them is d, so that T = L+ d+ C.

The height of the dielectric material containing the electrodes is 2H. Setting the origin as

shown in Figure 5.15 the potential ϕ(x, y) in the period window D satisfies

∇2ϕ(x, y) = 0, (x, y) ∈ D, (5.79)

with the boundary conditions

ϕ = 1, for x ∈ [−L,L], y = 0, (5.80)

ϕ = 0, for x ∈ [−T,−T + C], [T − C, T ] , y = 0, (5.81)

∂ϕ

∂y
= 0, for y = ±H. (5.82)

In order to use the matching approach for this problem, it is necessary to solve the potential

ϕ with source m/2 at z = 0 that satisfies following boundary conditions

ϕ = 0, for x ∈ [L+ d, L+ d+ 2C], (5.83)

and the Neumann derivative vanishes around the rectangle Drect = {(x, y) ∈ [0, 2(d+ L+

C)] × [−H,H]}. This can be done by using the conformal mapping of doubly connected

domains. However, the explicit solution for the map is difficult to obtain because of the

accessory parameter problems [40], which will be explained in detail in Chapter 7. Instead

of using the matching approach, we propose to use the other two schemes for calculating

the capacity.

5.9.1 The solution given by generalized Schwarz integral formulas

Here we solve the mixed boundary value problem (5.82) by the generalized Schwarz

integral proposed in Chapter 3. Since ϕ is harmonic in D, we seek its analytic extension

h(z) ≡ χ + iϕ where χ is its harmonic conjugate. Owing to a symmetry across the real

axis, ∂ϕ/∂y = 0 on L ≤ |x| ≤ L+ d, y = 0 allowing, by the Cauchy-Riemann equations,

the deduction that χ = 0 there, without loss of generality. The Cauchy-Riemann equations
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. . .. . .

Figure 5.14: The boundary value problem for the potential ϕ(x, y) around a periodic array
of interdigitated electrode.

and (5.82) also imply that on y = ±H,

∂χ

∂x
= 0, or χ = c± for − T ≤ x ≤ T, y = ±H. (5.84)

While the domain D is simply connected, an explicit conformal mapping to D from a

quadruply connected circular domain Dζ as shown in Figure 5.15 is known to be

Z(ζ) =
T

πi
log

ω(ζ, θ2(∞))

ω(ζ, θ3(∞))
, (5.85)

where ω(., .) is the prime function associated with Dζ , and

θ1(ζ) = ρ2ζ, θ2(ζ) = δ +
q2ζ

1 − δζ
, θ3(ζ) = −δ +

q2ζ

1 + δζ
, (5.86)

where ρ, q, q, and 0, δ, −δ (δ is pure imaginary) are, respectively, the radii and centres

of the interior circular boundaries of Dζ denoted by C1, C2, and C3. The unit circle, the

outer boundary of Dζ , is denoted by C0. The function Z(ζ) transplants C0 to the grounded

electrode, C1 to the unit-potential electrode, C2 to the upper boundary, and C3 to the

lower boundary, respectively.

Having introduced the mapping (5.85), the idea is to seek to find the composed function

H(ζ) ≡ h(Z(ζ)). Because χ = 0 on L ≤ |x| ≤ L+ d, Re[H(ζ)] = 0 on the real axis of Dζ ;

this allows us to deduce, by a Schwarz reflection argument, that c+ = −c− ≡ B ∈ R where
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Figure 5.15: Conformal mapping from the quadruply connected domain Dζ to a single
period window D of the physical domain in a complex z = x+ iy plane.

B must be determined. The boundary value problem becomes

Im[H(ζ)] = 0, ζ ∈ C0,

Im[H(ζ)] = 1, ζ ∈ C1,

Re[H(ζ)] = B, ζ ∈ C2,

Re[H(ζ)] = −B, ζ ∈ C3.

(5.87)

It is clear that the usual Schwarz integral formula (2.35) for this quadruply connected

domain [32, 40] cannot be used directly because the real part of H(ζ) is not known on

all parts of the boundary. But the problem falls within the class (3.1) and is therefore

amenable to the generalized Schwarz integral formulation described in Chapter 3.

Although ϕ = Im[H(ζ)] must be single-valued in Dζ , Re[H(ζ)] is multi-valued because

the electrified electrodes in each period window necessitate a logarithmic branch cut of

H(ζ) between C0 and C1. It is convenient to write

H(ζ) = Ĥ(ζ) + αv1(ζ), (5.88)

where v1(ζ) is one of the multi-valued function introduced in Chapter 2. It is important to

note again that Re[v1(ζ)] is multi-valued around C0 and C1, but single-valued around C2

and C3. The parameter α will be determined in the next subsection.

As indicated in Chapter 3, to find the single-valued function Ĥ(ζ) we consider the

modified function X(ζ) ≡ η(ζ)Ĥ(ζ) where η(ζ) is a radial slit mapping given in (3.5). The
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two parameters a, b in this slit mapping must be chosen to satisfy

η(ζ) =

purely imaginary on C0, C1,

purely real on C2, C3.
(5.89)

On ζ ∈ C0, or C1,

Re [X(ζ)] = −η(ζ)

i
· Im[Ĥ(ζ)] = iη(ζ) · Im[Ĥ(ζ)]. (5.90)

Similarly, on ζ ∈ C2, C3,

Re [X(ζ)] = η(ζ)Re[Ĥ(ζ)]. (5.91)

On subtracting off a simple pole of unknown residue β at ζ = b, the boundary value

problem to be solved is therefore

Re

[
X(ζ) − β

ζ − b

]
=



−iαη(ζ)Im[v1(ζ)] − Re

[
β

ζ − b

]
≡ s0(ζ) ζ ∈ C0,

iη(ζ)(1 − αIm[v1(ζ)]) − Re

[
β

ζ − b

]
≡ s1(ζ) ζ ∈ C1,

η(ζ)(B − αRe[v1(ζ)]) − Re

[
β

ζ − b

]
≡ s2(ζ) ζ ∈ C2,

−η(ζ)(B + αRe[v1(ζ)]) − Re

[
β

ζ − b

]
≡ s3(ζ) ζ ∈ C3.

(5.92)

A representation for X(ζ) now follows by the Schwarz integral formula (2.35) of [32,40]:

X(ζ) = η(ζ)Ĥ(ζ) = I(ζ) +
β

ζ − b
+ ic0. (5.93)

Thus,

ϕ(z) = Im
[
Ĥ(ζ) + αv1(ζ)

]
, (5.94)

where

Ĥ(ζ) =
1

η(ζ)

[
I(ζ) +

β

ζ − b
+ ic0

]
. (5.95)
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Figure 5.16: Equipotentials of ϕ(x, y) for T = 1 and d = 0.3: (i) L = 0.2, H = 0.2, (ii)
L = 0.4, H = 0.5, (iii) L = 0.2, H = 0.8.

The problem now is to find parameters α, c0, B ∈ R, and β ∈ C, which is a total

of 5 real parameters. Because Ĥ(ζ) must be single-valued on Dζ , the boundary values

{sj(ζ)|j = 0, 1, 2, 3} must satisfy the following solvability conditions [32,40]:

−
∫
C0

s0(ζ)dvk(ζ) +

3∑
j=1

∫
Cj

sj(ζ)dvk(ζ) = 0, k = 1, 2, 3. (5.96)

This yields three linear equations. Also, because η(a) = 0, then we require

I(a) +
β

a− b
+ ic0 = 0. (5.97)

The real part and the imaginary part of this equation yield two additional conditions.

These are the 5 real linear equations for the 5 unknown real parameters.

Figure 5.16 shows typical equipotentials in a period window for three different geometries

with T = 1 and d = 0.3.

With the solution given by the generalized Schwarz integral formula it is straightforward

to calculate the electrical capacity of the circuits in the period window. Let G be the

period window D and E be the ground line with length 2C. Because Ĥ(ζ) is analytic and

single-valued on Dζ ,

cap(G, E) = α, (5.98)

where the positive sign comes from the definition that ϕ = Im[H(ζ)] in this case.
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5.9.2 The Schwarz-Christoffel mapping approach

The boundary value problem can be solved using an alternative technique given in [33],

because the boundary data are of different types but all constant.

We define h(z) = χ+ iϕ. Now we use the fact that, because z = Z(ζ) is a horizontal

map, dz = dx on ζ ∈ Cj , j = 0, 1, 2, 3. This means

dh

dz
=
dχ

dx
+ i

dϕ

dx
=
dχ

dx
, ζ ∈ C0, C1, (5.99)

where we used the fact that ϕ is constant on C0, C1. Also,

dh

dz
=
dχ

dx
+ i

dϕ

dx
= i

dϕ

dx
, ζ ∈ C2, C3, (5.100)

where we used that χ is constant on C2, C3. Thus,

dh

dz
=

purely real on C0, C1

purely imaginary on C2, C3

(5.101)

We now introduce two key building block functions for the solution defined by

R1(ζ; ζ1, ζ2) =
ω(ζ, ζ1)

ω(ζ, ζ2)
(5.102)

and

R2(ζ; ζ1, ζ2) =
ω(ζ, ζ1)ω(ζ, ζ−1

1 )

ω(ζ, ζ2)ω(ζ, ζ−1
2 )

. (5.103)

The function R1(ζ; ζ1, ζ2) has a constant argument on each circle Cj , j = 0, 1, 2, 3 when ζ1,

ζ2 are on the same circle. The function R2(ζ; ζ1, ζ2) has a constant argument when ζ1 and

ζ2 are any two ordinary points of the Schottky group. Because of the symmetry of the

geometry, the function satisfies

dh

dz
(T,H) =

dh

dz
(0, H) =

dh

dz
(T,−H) =

dh

dz
(0,−H) = 0, (5.104)

which means dh/dz = 0 for ζ = aj , j = 1, 2, 3, 4, where

a1 = qi + δ, a2 = −qi + δ, a3 = qi − δ, a4 = −qi − δ. (5.105)

In addition, because of the horizontal map Z(ζ), dZ/dζ = 0 when ζ = bj , j = 1, 2, 3, 4,
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Figure 5.17: Capacity of the periodic interdigitated electrodes calculated by the
Schwarz-Christoffel mapping approach. (i) H = 0.5, (ii) H = 0.8.

where

b1 = ρ, b2 = −ρ, b3 = 1, b4 = −1. (5.106)

However, dh/dz must not vanish at these points. This means dh/dz has poles at ζ = bj ,

j = 1, 2, 3, 4. With the arguments above, we can deduce

dh

dz
= Ĉ · ω(ζ, a1)ω(ζ, a2)ω(ζ, a3)ω(ζ, a4)

ω(ζ, b1)ω(ζ, b2)ω(ζ, b3)ω(ζ, b4)

ω(ζ, γ1)

ω(ζ, 1/γ1)

ω(ζ, 1/γ2)

ω(ζ, γ2)

ω(ζ, 1/γ3)

ω(ζ, γ3)
, (5.107)

where γj ∈ Cj , j = 1, 2, 3, and Ĉ ∈ R. Because the function vj(ζ) has the following property

ω(ζ, γj)

ω(ζ, 1/γj)
= const · e2πivj(ζ), γj ∈ Cj , (5.108)

we arrive at the final formula for dh/dz:

dh

dz
= iC · ω(ζ, a1)ω(ζ, a2)ω(ζ, a3)ω(ζ, a4)

ω(ζ, b1)ω(ζ, b2)ω(ζ, b3)ω(ζ, b4)
e2πi(v1(ζ)−v2(ζ)−v3(ζ)). (5.109)

The parameter C ∈ R can be determined by the condition:

Im[h(L)] = Im

[∫ ρ

1

dh

dz

dz

dζ
dζ

]
= 1. (5.110)

The capacity is calculated by the definition and the Cauchy-Riemann equation as
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follows:

cap(G, E) =

∫
∂E

∂ϕ

∂n
ds = −2

∫ b

−b

∂χ

∂x
(x, 0) = 2(χ(−b) − χ(b)). (5.111)

Figure 5.17 shows the capacity of the periodic interdigitated electrodes with different

C and H. It has been verified that the two very different methods produce the same

numerical results, confirming the viability of the generalized Schwarz integral method.

5.10 Conclusion

By presenting a series of examples, and comparing with numerical calculations, this chapter

has demonstrated a practical procedure based on asymptotic matching of suitable “outer”

and “inner” solutions to provide estimates of the capacity associated with multiply connected

domains. The estimates show excellent agreement when there is a good separation of scales

between the inner and outer regions, a feature on which the matching idea relies [68,146,150].

From the selection of examples explored here, it should be clear that the idea is very

general and the approach can be applied to a wide variety of geometries.

On a technical note, it is worth remarking that it is usual when using matched

asymptotics to introduce a rescaled variable to distinguish the inner region from the outer

region and this can be important when doing matching at higher orders in any asymptotic

expansions. Here, however, this rescaling has not been introduced explicitly since the

estimates for capacity derived here involve only the leading order asymptotics in each

region. In principle, more accurate estimates can be obtained by higher order matching,

and then the introduction of suitably scaled inner and outer variables is advised.

We have also used the generalized Schwarz integral formulas to calculate the capacity of

the periodic interdigitated electrodes. In this example the matching approach is not easily

applied because of the famous accessory parameter problems, which will be explained in

Chapter 7.
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Chapter 6

Longitudinal flow in

superhydrophobic channels with

partially invaded grooves

In Chapters 4 and 5, we focused on the measurement of effective parameters in electrical

engineering, i.e., electrical resistivity of materials and the capacity of electrical circuits.

It was shown that the theory of the prime function gives us new mathematical tools for

calculating these parameters.

In this chapter, another important transport problem arising in fluid dynamics is

studied. We calculate longitudinal channel flows involving superhydrophobic surfaces

and propose an explicit formula for the slip length of the channel flow. With the use

of the prime function, analytical expressions are derived for the longitudinal flow in a

superhydrophobic microchannel, where flat menisci in the Cassie state have partially

invaded the grooves between no-slip blades. Using these solutions, the effective slip lengths

are calculated and compared with recent analytical results for unbounded shear flow over

the same class of surfaces proposed by Crowdy [41]. Expressions are also derived for the

first-order corrections to these effective slip lengths when the menisci are weakly curved. A

mathematical connection to superhydrophobic channel flows where flat menisci are still

pinned to the tops of the pillars is also made, resulting in novel analytical expressions for

those solutions too.

6.1 Introduction

Superhydrophobic surfaces, or SHS, can dramatically reduce flow resistance in the

manipulation of small volumes of fluid in microchannel devices [83,126]. At small scales

surface tension allows interfaces or menisci to span the gaps between microstructural
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Figure 6.1: A bounded channel flow between two superhydrophobic surfaces making up
the top and bottom of the channel with the menisci. Due to pressure fluctuation or mass
transfer, the menisci move into the groove, resulting in the transition from the Cassie state
to the Wenzel state.

protrusions that prevent fluid from fully penetrating interstitial regions. This leads to

trapped gas pockets and enhanced slip over the spanning menisci. This so-called Cassie

state can prove difficult to maintain and requires careful pressure control in many situations

to prevent reversion to a fully wetted, or Wenzel, state. The use of textured groove

sidewalls with reentrant and doubly reentrant pillar designs has been proposed in recent

work [4, 66, 84, 147] as a means to improve the robustness of the Cassie state. In many

of these configurations the menisci have depinned from the tops of the pillars and have

partially invaded the grooves between pillars.

The quantification of the slip properties of superhydrophobic surfaces has been an area

of much recent activity. Philip [119] provides explicit solutions to several mixed boundary

value problems relevant to the mixture of no-slip and no-shear surfaces, which provide a

good model of flow over superhydrophobic surfaces. Philip’s solutions are relevant when

flat interfaces are flush with interspersed flat no-slip surfaces, a feature shared with later

studies [82]. Sbragaglia and Prosperetti [131] examined how weak meniscus curvature

affects slip by solving the relevant mixed boundary value problems. Their study was

reappraised and extended by Crowdy [39] who showed that their slip length corrections can

be found instead using integral identities, or “reciprocal theorems”, together with Philip’s

exact solutions for flat menisci. In practice, this meniscus curvature is caused by pressure

differences between the trapped gas and the working fluid.

As discussed above, another circumstance that can often occur is the depinning of the

menisci from the top of the grating [66,67]. The depinning of the menisci is illustrated in

Figure 6.1. This could be due to pressure fluctuations or mass transfer out of the cavities,
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Figure 6.2: The geometry of a bounded channel flow between two superhydrophobic surfaces
making up the top and bottom of the channel where the menisci have invaded grooves.

among other reasons (see [89,95] for more details). This causes the menisci to descend into

the grooves and partially wet the cavities, a scenario that has received much less attention

in the theoretical literature. Lee et al [83] have pointed out that meniscus depinning and

cavity invasion are significantly more deleterious to slip than mere curving of the menisci

without depinning [21]. Several authors have carried out numerical studies to quantify

slip for partially filled cavities [61,110,143]. Crowdy [36,41] has derived several analytical

results that quantify the effective slip for semi-infinite shear over grooved surfaces when

the menisci have partially invaded the cavities.

The purpose of this chapter is to extend the recent work of [41], which involves

semi-infinite shear over a single superhydrophobic surface, to the case of a bounded channel

flow between two superhydrophobic surfaces making up the “top” and “bottom” of the

channel, where fluid flows longitudinally parallel to the grooves. Figure 6.2 shows a

schematic.

6.2 Summary of previous work

Here we summarise several papers on longitudinal flows over superhydrophobic surfaces.

All analytical results presented here are based on the assumptions that the menisci are

flat and that the fully-developed longitudinal flow u = (0, 0, w(x, y)) satisfies the following
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Figure 6.3: Summary of previous work. (i) A semi-infinite channel flow over periodic
superhydrophobic surfaces. (ii) A semi-infinite channel flow over periodic superhydrophobic
surfaces with partially invaded grooves. (iii), (iv) A bounded channel flow with periodic
superhydrophobic surfaces. (v) A bounded channel flow over periodic superhydrophobic
surfaces with partially invaded grooves. Philip found the solution for (i) and (iv) [119].
Marshall found the solution for (iii) [93]. Crowdy found the solution for (ii) [41].

boundary conditions:

w(x, y) = 0, (x, y) ∈ walls, (6.1)

∂w

∂y
(x, y) = 0, (x, y) ∈ menisci. (6.2)
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6.2.1 Semi-infinite flow

For semi-infinite channel flow in y > 0, the flow w(x, y) satisfies

∇2w(x, y) = 0, ∇2 =
∂2

∂x2
+

∂2

∂y2
, (6.3)

with the condition of simple shear with unit shear rate in the far field,

∂w

∂y
= −1, as y → ∞. (6.4)

Case (i).

Philip found the solution for a semi-infinite flow over periodic superhydrophobic

surfaces [119]. The conformal map from the upper half plane to the physical domain

gives an explicit solution as follows:

w(x, y) = −2L

π
Im

[
cos−1

(
cos(πz/2L)

cos(πc/2L)

)]
, (6.5)

and the well-known slip length expression defined in (1.22) is obtained by

λPhilip =
2L

π
log sec

( πc
2L

)
. (6.6)

Case (ii).

For the flow over a superhydrophobic surface with partially invaded grooves, Crowdy has

solved the mixed boundary value problem and obtained the solution

w(x, y) = −2L

π
Im

[
sin−1

(
sin(πz/2L)

sinh(πH/2L)

)]
, (6.7)

and the slip length is found to be

λ =
2L

π
log

(
1 + coth

(
πH

2L

))
, (6.8)

where the slip length is measured at the level of menisci in this case.

6.2.2 Bounded channel flow

For a bounded channel domain, Philip was the first to calculate longitudinal channel flow

with a periodic superhydrophobic surface and a wall one side and a wall on the other [119].

The flow considered here is driven by a constant pressure-driven S. The flow satisfies the
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following equation in a bounded channel:

∇2w(x, y) = S, (6.9)

where the origin of the xy-plane is taken at the center of the lower meniscus.

Case (iii).

Marshall found an explicit solution for channel flow by using a conformal map of a doubly

connected domain [93]. The flow in this channel is given by

w(x, y) = −Sy
2

(2G− y) + Sŵ(iii)(x, y), (6.10)

where an explicit representation for ŵ(iii)(x, y) is derived in the equation (37) in [93]. With

this function w(iii)(x, y), the slip length can be calculated as

λ = − 1

LG

∫ c

0
ŵ(iii)(x, 0)dx. (6.11)

Case (iv).

By using a conformal map from the period window to the upper half plane, Philip found

an explicit formula for the flow:

w(iv)(x, y) = −Sy
2

(G− y) + Sŵ(iv)(x, y), (6.12)

where

ŵ(iv)(x, y) = −G
2

Im

[
G

Kq
cn−1

(
cn(zKp/L, k1)

cn(cKp/L, k1)

)
− z

]
, (6.13)

where cn is the Jacobi cnoidal function given by

cn(u, k) =
√

1 − sn2(u, k), u = sn−1(x, k) =

∫ x

0

1√
(1 − t2)(1 − k2t2)

dt, (6.14)

and where the parameters Kp, Kq, and k1 are chosen so that

Kp = K(k1), Kq = K(
√

1 − k21),
Kq

Kp
=
G

L
, (6.15)
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and where K(k) is an elliptic function of the first kind defined by

K(k) =

∫ 1

0

1√
(1 − t2)(1 − k2t2)

dt. (6.16)

The slip length of the channel is given by equating the total flux and the flux with a

Navier-slip condition with Navier-slip parameter

λ = −
G
∫ c
−c ŵ(iv)(x, 0)dx

G2L+
∫ c
−c ŵ(iv)(x, 0)dx

. (6.17)

It is important to mention that Crowdy also found alternative analytical formulas for

the channel flow by using the approach based on the prime function of the annulus [42].

Case (v).

As mentioned earlier, the solution for bounded channel flow with partially invaded groove has

not been obtained yet. We first address this problem and then show that the mathematical

framework can also be used to calculate the other two bounded channel flows. This can be

done by the conformal mapping approach and an implementation of the Schwarz integral

formula introduced in Chapters 2 and 3.

6.3 Channel flow with partially invaded menisci

We introduce the basic idea by explaining the calculation of the flow over a superhydrophobic

surface with partially invaded grooves. The challenge is to calculate longitudinal flow

(0, 0, wF (x, y)) in a typical period window of the superhydrophobic channel shown in (v) of

Fig. 6.3. The origin in the cross-sectional (x, y) plane is taken at the intersection of the

centerlines shown in Fig. 6.4. The period of the geometry in the x-direction is 2L, and

the distance of displacement of the flat meniscus below to tips of the sidewalls is H. The

height of the channel, or distance between the sidewall gratings, is 2G as shown in Figs. 6.4

and 6.11. We define Ω as the whole period window bounded by partially invaded grooves

as shown in Figs. 6.4 and 6.5.

Following the approach taken in [39, 41, 93], we assume that the fluid satisfies a no-slip

condition on the walls and a no-shear condition on each meniscus. At first, it is assumed

that the menisci are flat. Steady flow in the Z-direction along the channel is driven by a

constant pressure gradient −S.

Let D denote the half-period window of the channel shown in Fig. 6.4, i.e., D ≡
{(x, y)|x ∈ [0, L], y ∈ [−H −G,H +G]}. Then wF (x, y) satisfies the following boundary
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Figure 6.4: Conformal map from the upper half unit disc with a circular hole to a half-period
of the channel flow.

value problem:

∇2wF = S, (x, y) ∈ D, (6.18)

∂wF

∂y
= 0, 0 < x ≤ L, y = ±(H +G), (6.19)

∂wF

∂x
= 0, x = 0, 0 ≤ |y| < G, (6.20)

∂wF

∂x
= 0, x = L, 0 ≤ |y| ≤ H +G, (6.21)

wF = 0, x = 0, G ≤ |y| ≤ H +G. (6.22)

The boundary conditions (6.20) and (6.21) follow from a reflectional symmetry of the

geometry.

It is convenient to define a new variable ŵ(x, y) via

wF = wP + Sŵ, wP (x, y) ≡ −Sx
(
L− x

2

)
. (6.23)
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The corresponding boundary value problem for ŵ is then

∇2ŵ = 0, (x, y) ∈ D, (6.24)

∂ŵ

∂y
= 0, 0 < x ≤ L, y = ±(H +G), (6.25)

∂ŵ

∂x
= L, x = 0, 0 ≤ |y| < G, (6.26)

∂ŵ

∂x
= 0, x = L, 0 ≤ |y| ≤ H +G, (6.27)

ŵ = 0, x = 0, G ≤ |y| ≤ H +G. (6.28)

Since ŵ(x, y) is a harmonic function in D we aim to determine its analytic extension

h(z) ≡ χ+ iŵ, where χ is the harmonic conjugate of ŵ.

Use of the Cauchy–Riemann equations and (6.26) implies that

∂χ

∂y
= −L, or χ = −Ly + c1, x = 0, 0 ≤ |y| ≤ G. (6.29)

Similar arguments can be used to show that since ∂ŵ/∂x = 0 on x = L, 0 ≤ |y| ≤ H +G

and since ∂ŵ/∂y = 0 on 0 ≤ x ≤ L, y = ±(H +G), then

χ = c2, x = L, 0 ≤ |y| ≤ H +G, (6.30)

and

χ = c±, 0 ≤ x < L, y = ±(H +G), (6.31)

where c2, c± ∈ R. Since χ is defined up to a constant, we set c2 = 0 without loss of

generality. The continuity of χ around the boundary of D then requires that c± = c2 = 0.

An integral relation also reveals that c1 = 0. To see this, consider the upper-left quadrant

of Ω, denoted by D′ := {(x, y) : x ∈ [0, L], y ∈ [0, H + G]}. Due to the symmetry of the

flow about y = 0, ∂ŵ/∂y = 0 on the lower boundary of D′, i.e., {(x, y) : x ∈ [0, L], y = 0}.

Thus

0 =

∫
D′

∇2ŵ dA =

∮
∂D′

∂ŵ

∂n
ds =

∫ H+G

G

∂ŵ

∂x
dy + LG. (6.32)

Use of the Cauchy-Riemann equations gives

0 = −
∫ H+G

G

∂χ

∂y
dy + LG = χ(G) − χ(H +G) + LG

= (−LG+ c1) − c2 + LG = c1,

(6.33)
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where we have used the fact that c2 = 0. It follows from (6.29) that

χ = −Ly, x = 0, 0 ≤ y ≤ G. (6.34)

6.4 Conformal mapping and the prime function

Now we solve the mixed boundary value problem by considering a suitable horizontal slit

map, introduced in Chapter 2, from the triply connected domain to the period window.

Let Dζ be the circular domain in a parametric complex ζ plane interior to the unit circle,

denoted by C0, but exterior to two circles C1 and C2 each of radius q and having centres at

±δ where δ is purely imaginary as shown in Fig. 6.4. It will be convenient later to denote

by C+
0 the semicircular portion of C0 that is in the upper-half ζ plane, and by C−

0 the

semicircle in the lower-half ζ plane.

Now introduce the holomorphic conformal mapping function

Z(ζ) = −H +G

π
log

(
ω(ζ, θ1(∞))

ω(ζ, θ2(∞))

)
, (6.35)

where

θ1(ζ) ≡ δ +
q2ζ

1 − δζ
, θ2(ζ) ≡ −δ +

q2ζ

1 + δζ
= θ1(ζ), (6.36)

and where overbars denote the Schwarz conjugate of an analytic function, defined by

θ1(ζ) ≡ θ1(ζ). The function ω(·, ·) is the prime function [40] of the triply connected domain

Dζ . The function (6.35) provides the one-to-one conformal map, z = Z(ζ), from the upper

half of Dζ to D. Figure. 6.4 shows the correspondence between D and Dζ schematically.

The semicircle C+
0 in the ζ-plane is mapped to the line |y| ≤ G on the imaginary axis in

the z-plane, and the inner circle C1 is mapped to middle line x = L, |y| ≤ H +G of the

periodic channel.

Because Dζ is reflectionally symmetric about the real axis, its associated prime function

has the special property

ω(z, ζ) = ω(z, ζ), (6.37)

where we use the notation ω(z, ζ) ≡ ω(z, ζ). A consequence of this, together with (6.36),

is that

Z(ζ) = −Z(ζ). (6.38)

Armed with this conformal mapping it will now be shown that the composed analytic

function

H(ζ) ≡ h(Z(ζ)), ζ ≡ ξ + iη (6.39)
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is the solution to a classical problem in complex analysis known as a Schwarz problem in

the triply connected circular domain Dζ introduced in Chapter 2 [32,40].

Owing to the fact that we expect h(z) to have the same values on y = ±(H +G) for

any 0 ≤ x ≤ L, we seek a function H(ζ) that is continuous across Γ± and, consequently,

analytic in the upper half of Dζ . On ζ = ζ, we know from (6.28) that

ŵ(x, y) = Im[H(ζ)] = 0, (6.40)

implying that the Schwarz conjugate function of H(ζ) defined by H(ζ) ≡ H(ζ) coincides

with H(ζ), that is,

H(ζ) = H(ζ). (6.41)

By the Schwarz reflection principle [1], since H(ζ) is known to be analytic in the upper

half of Dζ we infer that H(ζ) is analytic in the lower half too, that is, in the whole of Dζ .

If ζ ∈ C+
0 it follows from (6.34) that

Re[H(ζ)] = −LIm[Z(ζ)], ζ ∈ C+
0 . (6.42)

Suppose now that ζ ∈ C−
0 , then clearly ζ ∈ C+

0 . Furthermore,

Re[H(ζ)] = Re[H(ζ)] = Re[H(ζ)] = −LIm[Z(ζ)] = LIm[Z(ζ)] = −LIm[Z(ζ)], (6.43)

where the first and fourth equalities follow from trivial properties of complex quantities,

the second and last equalities follow from (6.41) and (6.38) respectively, and the third

equality follows from (6.34) since ζ ∈ C+
0 . A similar argument can be used to show that

because Re[H(ζ)] vanishes on C1 due to (6.30), then it also vanishes on C2.

We therefore arrive at a boundary value problem for the function H(ζ), analytic in Dζ ,

with boundary values satisfying

Re[H(ζ)] =

 −LIm[Z(ζ)], ζ ∈ C0,

0, ζ ∈ C1, C2.
(6.44)

This is a standard Schwarz problem in Dζ : the problem of finding an analytic function in

Dζ given its real part everywhere on the domain boundary. From the results described in

Chapter 2, the solution for H(ζ) is given by

H(ζ) =
L

π

∮
C0

Z(ζ ′) d logω(ζ ′, ζ) −A1iv1 −A2iv2 + ic0. (6.45)

Note that H(ζ) is not only analytic in Dζ but also single-valued. For the particular
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problem in (6.44) it can be shown using properties of the prime function (and confirmed

numerically) that, for this problem, A1 = A2 = c0 = 0. This means, in particular, that

H(ζ) is single-valued in Dζ , a feature that is consistent with earlier arguments (indeed,

alternatively we could have stated that the boundary value problem for the single-valued

analytic function H(ζ) is a modified Schwarz problem in Dζ , and then confirmed that the

boundary data satisfies compatibility conditions necessary for such a single-valued function

to exist [32,40]). Consequently, (6.44) can be simplified to the compact expression

H(ζ) =
L

π

∮
C0

Z(ζ ′) d logω(ζ ′, ζ), (6.46)

where we have used the fact that ζ ′ = 1/ζ ′ on C0 and the prime function property

ω(ζ ′−1, ζ−1) = −ω(ζ ′, ζ)/ζζ ′ (see Section 4.7 of [40]). The final expression for ŵ(x, y) is

ŵ(x, y) = Im [H(ζ)] = −L(H +G)

π2
Im

[∮
C0

log
ω(ζ ′, θ1(∞))

ω(ζ ′, θ2(∞))
d logω(ζ ′, ζ)

]
. (6.47)

Combining (6.23) and (6.47), we arrive at the explicit integral formula:

w(x, y) = −Sx
(
L− x

2

)
− SL(H +G)

π2
Im

[∮
C0

log
ω(ζ ′, θ1(∞))

ω(ζ ′, θ2(∞))
d logω(ζ ′, ζ)

]
. (6.48)

6.5 Calculation of the slip lengths

The effective slip length associated with the flow can now readily be determined. We follow

the approach expounded in [39] where reciprocity arguments are proposed to determine

the volume flux associated with flows over superhydrophobic surfaces of this kind. The

total flux in the period window is calculated as

QF ≡
∫
Ω
wF dA =

∫
Ω

(wP + Sŵ) dA = −4

3
S(H +G)L3 + S

∫
Ω
ŵ dA, (6.49)

where the first term has been retrieved by elementary surface integration, and the second

term will be evaluated using Green’s second identity. We first note that∫
Ω

(
wP∇2ŵ − ŵ∇2wP

)
dA =

∮
∂Ω

(
wP

∂ŵ

∂n
− ŵ

∂wP

∂n

)
ds. (6.50)

Using the symmetry in y = 0 of wF and wP , this equation reduces to

−S
∫
Ω
ŵ dA = 4S

∫ G

0
ŵ(0, y)

dwP

dx
(0, y) dy = −4SL

∫ G

0
ŵ(0, y) dy, (6.51)
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Figure 6.5: The definition of the effective slip length for a channel flow. The flow is
compared to a Navier-slip flow with walls taken at the level of the invaded menisci.

and thus, we have

QF = −4

3
S(H +G)L3 + 4SL

∫ G

0
ŵ(0, y) dy. (6.52)

Next, we compare this flux with that of the Navier slip problem. This is the standard

procedure for calculating slip lengths in channels used in [77, 93]. The comparison flow

that we have chosen imposes a Navier slip condition on a flat boundary taken at the level

of the menisci as shown in Fig. 6.5. We set the origin as the center of a period window.

The flow field wλ(x, y) in the period window Ωλ satisfies

∇2wλ = S, (x, y) ∈ Ωλ, (6.53)

wλ = λ
∂wλ

∂n
, 0 ≤ |x| ≤ L, y = ±(H +G), (6.54)

where n denotes the normal pointing into the liquid in this case. Here λ is the slip length

in question. This problem is solved by

wλ(x, y) = wP,λ(x, y) − λS(H +G), wP,λ(x, y) ≡ −S
2

[(H +G)2 − y2] (6.55)

which gives the flux

Qλ ≡
∫
Ωλ

wλ dA = −4

3
S(H +G)3L− 4λS(H +G)2L. (6.56)

151



CHAPTER 6. LONGITUDINAL FLOW IN SUPERHYDROPHOBIC CHANNELS
WITH PARTIALLY INVADED GROOVES

Figure 6.6: Two definitions of the effective slip length for a channel flow. In case (I) the
flow is compared to a Navier-slip flow with walls taken level with the tops of the pillars; in
case (II) it is compared to a Navier-slip flow with walls taken at the level of the invaded
menisci.

Comparing (6.56) and (6.52) then yields

λ =
L2

3(H +G)
− H +G

3
− 1

(H +G)2

∫ G

0
ŵ(0, y) dy. (6.57)

6.6 Two definitions of the effective slip length

It is worth pointing out that there is arbitrariness in the choice of defining the slip length

as already observed in Crowdy [41]. For example, consider two definitions of the effective

slip length for a channel flow denoted by λ(I) and λ(II) shown in Fig. 6.6. In (I) the baseline

is placed at the top of the grooves, while in (II) the baseline is at the same level as the

meniscus. Case (II) is equivalent to the right panel of Fig. 6.5, i.e. λ(II) = λ. For case (I)

we can use the same technique as Section 6.5 and obtain a formula for the slip length:

λ(I) =
(H +G)L2

3G2
− G

3
− 1

G2

∫ G

0
ŵ(0, y) dy. (6.58)

There is a mathematical relation between λ(I) and λ(II). Multiplying λ(I) by G2 and

λ(II) by (H +G)2, we find

λ(I) =

(
1 +

H

G

)2

λ(II) +H

(
1 +

H

G

)
+
H3

3G2
. (6.59)

This expression can be seen as a generalization of equation (3.8) derived by Crowdy [41],

who calculated the slip length for shear flow over a single surface with partially invaded
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grooves. Note that for G/L→ ∞, we obtain the asymptotic formula

λ(I) = λ(II) +H, (6.60)

which is exactly the relation derived in [41]. For the limiting case of a channel of infinite

height, i.e. G/L→ ∞, λ(I) becomes the analytical result derived by Crowdy [41]:

λ(I),∞ =
2L

π
log

(
1 + coth

(
πH

2L

))
. (6.61)

6.7 Characterization of the solutions

To study the flow, plot the velocity contours and calculate effective slip lengths, it is

necessary to be able to evaluate the prime function ω(., .). The prime function for triply

connected domains can be evaluated by the the method explained in Chapter 2.

The parameters δ and q are determined uniquely, for a given channel geometry, by

solving the two equations

Z(1) = iG, Z(δ + qi) = L, (6.62)

subject to the constraints |δ| + q < 1, |δ| > 0, and q > 0. Equations (6.62) are readily

solved using any nonlinear solver such as Newton’s method.

The half-period L has been used to non-dimensionalize lengths so that H/L and G/L

are the relevant non-dimensional geometrical parameters. Figs. 6.7 and 6.8 show typical

velocity contour plots of wF (x, y). In Fig. 6.7, H/L is varied while fixing G/L = 0.8; in

Fig. 6.8, the invasion depth G/L is varied while fixing H/L = 0.8.

The effective slip length λ discussed in Section 6.5 has also been calculated. The left

panel of Fig. 6.9 shows how the normalized slip length λ/2L behaves for different values of

G/L when the invasion depth H/L is varied. For the limiting case of a channel of infinite

height, i.e. G/L → ∞, the problem becomes equivalent to that studied by Crowdy [41],

who derived the analytical result

λ∞ =
2L

π
log cosech

(
πH

2L

)
. (6.63)

The cross-dot line in Fig. 6.9 shows the slip length as given by this formula, which agrees

well with the results of the new formulation when G/L = 8.5.

There is a value of H/L which yields a “zero slip length”. A similar observation was
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Figure 6.7: Contours of the velocity field wF (x, y). L and G are fixed to 1 and 0.8 in all
figures respectively. (a) H = 0.4, (b) H = 0.8, (c) H = 1.2. The pressure gradient S is set
to be 1.

Figure 6.8: Contours of the velocity field wF (x, y). L and H are fixed to 1 and 0.8
respectively in all figures. (a) G = 0.4, (b) G = 0.8, (c) G = 1.2.

made by Crowdy [41] for the case of semi-infinite flow over a single surface. The reason for

the vanishing slip length at this “critical invasion depth” is clear: since the slip length is

measured relative to an effective slip flow in a channel taken at the level of the invaded

menisci, the more the no-slip blades protrude into the flow, the more they will provide

increased resistance. Thus, at a sufficiently large groove invasion depth, or equivalently,

when the blades have protruded sufficiently far into the flow, any slip advantage afforded

by the no-shear nature of the menisci will eventually be cancelled out by the resistance

offered by the protruding no-slip blades. The (non-dimensional) critical invasion depth,
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Figure 6.9: (Left) Normalized slip lengths λ/2L for four different ratios of channel height
G and period length L. The cross dot corresponds to the slip lengths where G tends to
infinity, which is calculated explicitly by [41]. (Right) Critical invasion depth (H/L)crit for
increasing G/L.

(H/L)crit say, is determined as a function of G/L by the criterion

λ = λ((H/L)crit, G/L) = 0. (6.64)

The right panel of Fig. 6.9 shows the behavior of this critical invasion depth. As G/L→ ∞,

it tends to (2/π) log(1 +
√

2), the value found by Crowdy [41]. Interestingly, as G/L

tends to 0 (by definition, we must have G > 0) the critical invasion depth tends to unity.

When G/L tends to 0, the blades touch and form continuous no-slip walls. The menisci

are shear-free so the flow resembles a channel flow in a vertical channel. Therefore, the

comparison problem in a horizontal channel has the same mass flux when λ = 0 and H = L

since these two flows are just rotations of each other by 90o. By taking the limit G/L→ 0

in equation (6.57) the slip length for this flow is obtained:

λ =
L2 −H2

3H
, (6.65)

which means λ = 0 when H/L = 1.

6.8 Slip correction for weakly curved menisci

If the menisci are weakly curved we expect the slip length to be modified according to a

regular perturbation expansion

λθ = λ+ λ1θ + O(θ2), (6.66)
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where, in order to make contact with other studies [131], the coefficient of the first-order

slip correction λ1 is decomposed as λ1 = λ11 + λ12.

We follow the approach of Crowdy [39] who first proposed combining perturbation

analysis with the use of integral “reciprocal identities” to find the leading order corrections

to the flat-state slip length. Marshall [93] followed the approach of [39] in his analysis of

the superhydrophobic channel problem (with non-invaded grooves) shown in Fig. 6.11(a).

Each meniscus is assumed to be a circular arc with a protrusion angle denoted by θ.

In our case, the meniscus curves slightly downwards, hence θ is assumed to be small and

negative. We write the solution for the flow field wθ(x, y) as a series expansion in θ ≪ 1:

wθ(x, y) = wF (x, y) + θw1(x, y) + O(θ2). (6.67)

Since the curved meniscus is a circular arc with protrusion angle θ, the meniscus can be

approximated by the quadratic curve y = θY (x) + O(θ2), where Y (x) = (L2 − x2)/2L [39].

The normal derivative of wθ on the curved meniscus is

∂wθ

∂n
(x,−H −G) = −θ∂w1

∂y
(x,−H −G)

+ θ

(
d

dx

(
Y (x)

dwF

dx

)
− SY (x)

)
+ O(θ2). (6.68)

Green’s second identity states that∫
Ωθ

(wF∇2wθ − wθ∇2wF )dS =

∫
∂Ωθ

(
wF

∂wθ

∂n
− wθ

∂wF

∂n

)
ds, (6.69)

and thus the volume flux in Ωθ, denoted by Qθ, is given by

Qθ = QF + θ(Q11 +Q12) + O(θ2), (6.70)

where

Q11 = −4

∫ L

0

(
wF (x,−H −G)Y (x) +

Y (x)

S

(
dwF

dx
(x,−H −G)

)2
)
dx, (6.71)

Q12 = −4

∫ L

0
wF (x,−H −G)Y (x)dx. (6.72)

By equating Qθ and Qλ, we obtain

λθ = λ+ θλ1 + O(θ2), (6.73)
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where λ1 = λ11 + λ12, and

λ11 =
1

SL(H +G)2

∫ L

0

(
wF (x,−H −G)Y (x) +

Y (x)

S

(
dwF

dx
(x,−H −G)

)2
)
dx,

(6.74)

λ12 =
1

SL(H +G)2

∫ L

0
wF (x,−H −G)Y (x) dx. (6.75)

Fig. 6.10 shows graphs of λ1. For large G/L, the slip length agrees well with analogous

explicit integral formulas for the first-order correction to the slip length given recently

in [41] for semi-infinite shear over a single surface. An interesting feature is that, for large

G/L, λ1 is monotonically decreasing, but this behavior is different for smaller values of

G/L. At some critical value of G/L (close to unity) the slip length correction becomes

negative as H/L increases. This observation means that increasing the curvature of the

meniscus does not enhance slip when G/L is small, i.e., for shallow channels.
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Figure 6.10: The behavior of λ1. λ1/2L agrees well with the infinite-height case when
G/L = 20.0.

6.9 Connection with another SHS problem

To motivate his study of semi-infinite shear flow over a single surface of blades where the

menisci have partially invaded the grooves, Crowdy [41] includes a figure similar to that

shown in Fig 6.11 which shows three different superhydrophobic surface (SHS) channel
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Figure 6.11: Superhydrophobic channel flows. (a) Symmetric channel flow between two
superhydrophobic surfaces with menisci spanning the grooves between thick walls. (b) The
critical case when the walls become infinitely thin, i.e. c→ L; the solution here is known
to be singular [41]. (c) The problem solved in this paper: symmetric channel flow where
the menisci have partially invaded the grooves between infinitely-thin blades.

flows. Fig 6.11(a) shows the most commonly considered case: longitudinal channel flow

over a 2L-periodic symmetric channel where menisci are flat, of length 2c, and flush with

the tops of the no-slip pillars. The pillars therefore have width 2(L − c). As c → L

the pillars become infinitely thin (“blades”) as shown in Fig 6.11(b). This flow scenario

is singular because there is no solid surface left to retard the flow against the imposed

pressure gradient. This manifests itself in the effective slip length associated with the

flow in Fig 6.11(a) becoming infinite as c → L. A “continuation” of this singular state,

discussed by Crowdy [41], is shown in Fig 6.11(c) and shows the menisci descending by

distance H into the grooves between infinitely thin walls. The analytical formulas (6.61)

and (6.63) refer to slip lengths associated with the flow shown in Fig 6.11(c) in the limit

G/L→ ∞ (which can be viewed as the problem of semi-infinite shear over a single SHS).

As explained in [41], both a semi-infinite and a bounded channel flows over a SHS with

invaded grooves do not have any singularities in the period window.

6.9.1 Solution to the flow in case (iii)

Remarkably, it turns out that there is a mathematical connection between (the physically

distinct) Superhydrophobic surface flows shown in Fig 6.11(a) and Fig 6.11(c). This

is significant because it renders the new analytical solution (6.48) doubly useful. The

observation is that if we take the upper half window in problem (a) and rotate it by 90o,

then we obtain the period window relevant to problem (c) and, moreover, the boundary

conditions associated with the two problems (a) and (c) can be seen to be of the same type

on each boundary portion (i.e., either no-slip or the normal derivative vanishing). Indeed,

it can be shown that the flow field in problem (a) can be deduced from the solution of

158



CHAPTER 6. LONGITUDINAL FLOW IN SUPERHYDROPHOBIC CHANNELS
WITH PARTIALLY INVADED GROOVES

problem (c) by using the following transformations:

x 7→ y, y 7→ x, L 7→ G, H +G 7→ L, G 7→ c. (6.76)

This mathematical transformation means that we have essentially solved two physically

distinct problems at once. Thus, the solution for the flow in the channel (a) is given by

w(iii) = w(a) = −Sy
2

(2G− y) + Sŵ(iii), (6.77)

where

ŵ(iii) = −LG
π2

Im

[∮
C0

log
ω(ζ ′, θ1(∞))

ω(ζ ′, θ2(∞))
d logω(ζ ′, ζ)

]
. (6.78)

Here the conformal map Z(ζ) is the transformation from triply connected domain Dζ to

the lower half of the period window, which is given by

z = Z(ζ) =
L

πi
log

(
ω(ζ, θ1(∞))

ω(ζ, θ2(∞))

)
, (6.79)

and the parameters of the triply connected domain now is determined by solving

Z(1) = −c, Z(δ + iq) = iG. (6.80)

Fig. 6.12 shows the transformations (6.76) graphically. We can see that both flows in

the period window satisfy the same type of boundary conditions.

This observation also means that we have produced a new representation of the solution

to problem (a) found by Marshall [93] who used a very different approach. Marshall also

adopted use of the prime function technology but he performed the analysis in a doubly

connected annulus rather than the triply connected domain Dζ used here. Conversely, the

observation means that, in principle, the partially-invaded meniscus problem (c) could

have been solved by adapting Marshall’s solution of problem (a). Notwithstanding this

observation, we believe that the conciseness of the new formula (6.48) has its own attractions

and is interesting in its own right. Furthermore, use of the triply connected preimage

domain of this paper has “uniformized” a square-root singularity that appears in the

analysis when a doubly connected annulus is used instead. The approach proposed by

Marshall involves the incomplete elliptic integral of the first kind, which has square-root

singularities at the edges of the menisci. Such integrable singularities are eliminated safely

in our approach. Elimination of square root singularities can be desirable for numerical

purposes since it obviates the need to deal with branch points and branch cuts associated

with those singularities.
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Figure 6.12: (i) Superhydrophobic channel flow in problem (c). (ii) Superhydrophobic
channel flow in problem (a). The boundary condition on the black portion is no-slip, while
on the red portion it is no-shear. By the transformation (6.76), both flows in the period
window can be made to match.

To corroborate this observation, Fig. 6.13 shows the slip length for problem (a), and

the coefficient of the first-order correction for small meniscus curvature, as calculated by

adapting our approach and making use of the transformation (6.76). The circle-dot lines

correspond to the results obtained using Marshall’s alternative approach [93]; the cross-dot

lines are the slip lengths for the flow in a periodic infinite channel, initially found in [119]:

λ(a),∞ =
2L

π
log sec

( πc
2L

)
. (6.81)

Following [93], the slip length in problem (a) is

λ(iii) = − 1

LG

∫ c

0
ŵ(iii)(x, 0) dx = − 1

LG

∫ G

0
ŵ(0, y) dy, (6.82)

where the transformation (6.76) is used in the second equality. Comparing equation (6.82)

with (6.57) shows that λ has an additional term and a different coefficient in front of the

integral term, which results in the slip lengths having entirely different behavior as seen in

Fig. 6.13. This is of course not surprising because, while the two flows might be related

mathematically, they are nevertheless completely different flows.

It is interesting that, compared to problem (a), the channel height G in problem (c)

needs to be much larger in order for the channel-flow slip length λ to be well approximated

by the semi-infinite flow result λ∞.
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Figure 6.13: Slip length and normalized coefficient of the first-order correction for weak
meniscus curvature for problem (a). Solid lines show the quantities calculated using the
new approach of this paper; results using Marshall’s approach [93] are shown as circle dots.
The cross dots correspond to the slip length from formula (6.81).

6.9.2 Solution for the flow in case (iv)

We can obtain the solution for the flow in case (iv) by using the same conformal map

Z(ζ) defined in (6.79). Here we consider the conformal map Z(ζ) to the period window

as shown in (iv) in Figure 6.3. First we split the flow w(iv) into a non-harmonic and a

harmonic part as follows:

w(iv)(x, y) = −Sy
2

(H − y) + ŵ(iv), (6.83)

where ŵ(iv) is a harmonic function in the period window, which satisfies the following

boundary conditions:

∂ŵ(iv)

∂y
=
H

2
on y = 0, |x| < c, (6.84)

ŵ(iv) = 0 on y = 0, c < |x| < L, (6.85)

ŵ(iv) = 0 on y = H, |x| < L, (6.86)

∂ŵ(iv)

∂x
= 0 on 0 < y < H, x = ±L. (6.87)

Here we define h(z) ≡ χ+ iŵ(iv) and consider H(iv)(ζ) ≡ h(Z(ζ)), where we use the same

conformal map defined in (6.79). By using the Cauchy-Riemann equation, we have

∂ŵ(iv)

∂y
=
∂χ

∂x
=
H

2
on y = 0, |x| < c, (6.88)

161



CHAPTER 6. LONGITUDINAL FLOW IN SUPERHYDROPHOBIC CHANNELS
WITH PARTIALLY INVADED GROOVES

Figure 6.14: Superhydrophobic channel flows in the case (iv) in Figure 6.3. We fixed L = 1
for all figures. (i) c = 0.3, H = 0.5 (ii) c = 0.6, H = 1.0.

which means Re[h(z)] = H
2 Re[z], where we set Re[h(0)] = 0 without loss of generality.

Therefore, we have the following boundary value problem for H(iv)(ζ):

Re[H(iv)(ζ)] =
H

2
Re[Z(ζ)], ζ ∈ C0, (6.89)

Im[H(iv)(ζ)] = 0, ζ ∈ C1, (6.90)

Im[H(iv)(ζ)] = 0, ζ ∈ C2. (6.91)

The imaginary part of H(iv)(ζ) is single-valued by the definition of h(z) but the real

part can be multi-valued. The solution can be obtained using the technique explained in

Chapter 3. We split the solution into a single-valued function and a multi-valued function

as follows:

Ĥ(iv)(ζ) ≡ H(iv)(ζ) − CZ(ζ). (6.92)

Note that Re[Z(ζ)] has a branch-cut between C1 and C2. Then, the boundary value

problem for Ĥ(iv) becomes

Re[Ĥ(iv)(ζ)] =

(
H

2
− C

)
Re[Z(ζ)], ζ ∈ C0, (6.93)

Im[Ĥ(iv)(ζ)] = −CIm[Z(ζ)], ζ ∈ C1, (6.94)

Im[Ĥ(iv)(ζ)] = −CIm[Z(ζ)], ζ ∈ C2. (6.95)

The parameter C is determined by the single-valuedness condition. The final formula is

given by

H(iv)(ζ) =
1

η(ζ)

(
I(ζ) +

A

ζ − b
+ ic0

)
+ CZ(ζ). (6.96)
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Figure 6.14 shows typical channel flows with this problem. The numerical values are

checked against Philip’s solution. It is important to note that Crowdy also found another

representation for the flow (iii) in Figure 6.3 using the prime function of the concentric

annulus [42].

6.10 Conclusion

This chapter has shown how to use the prime function associated with a triply connected

circular domain [40] to find compact representations of longitudinal channel flows over

superhydrophobic surfaces where the menisci have depinned from the pillar tops and

partially invaded the grooves. The solutions are explicit once two parameters, δ and q,

have been found by solving two nonlinear equations given the geometry of the surface. The

slip properties of the surfaces have been quantified based on the use of these new formulas.

It has also been indicated how previously derived solutions due to Marshall [93] for a

different flow in a superhydrophobic channel can be derived by a simple transformation of

our formula.

We believe the compact form of the flow solution (6.48) is important since many

applications of superhydrophobic surfaces involve additional physical effects, such as

heat [77] and mass transfer, or thermocapillary or other surfactant effects [78,161], making

it useful to have available concise representations of the basic flow. Finally, for the

convenience of readers wishing to make use of the solutions described herein, the author

has prepared downloadable MATLAB codes based on the theoretical work in this chapter [10].
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Chapter 7

Accessory parameter

determinations for canonical

domains by matched asymptotic

expansions

In this chapter, a method for calculating accessory parameters associated with conformal

mappings is proposed. Conformal mappings are powerful tools for solving various problems

in the physical transport theory. However, conformal maps always have unknown parameters

associated with the geometry, which are sometimes hard to obtain. The radius of the inner

circle for doubly connected domain is an example. We show how the matched asymptotics

introduced in Chapter 5 can be used to derive explicit estimates for these accessory

parameters. This can be done by equating the conformal capacity of the preimage with

that of the target domains. The formulas derived here are explicit and they provide excellent

approximations to the accessory parameters. The conformal capacity is equivalent to the

“electrical capacity” introduced in Chapter 5, but here we use a terminology “conformal

capacity”.

7.1 Introduction

The study of conformal invariants is of particular importance in the field of complex

analysis [3]. The conformal capacity is one of the most essential such invariants and has

been studied for many years [120,123]. Mathematically, the conformal capacity of a domain
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G containing a subset E is defined by the extremal value of the integral [52,104]

cap(G, E) = inf
ϕ

∫
G
|∇ϕ|2dxdy, (7.1)

where ϕ(x, y) is a harmonic function with ϕ(x, y) ≥ 1 for all (x, y) ∈ E and ϕ(x, y) → 0

as (x, y) → ∂G. It is known that the extremal function ϕ satisfies the following classical

Dirichlet problem [3,63]:

∇2ϕ(x, y) = 0, (x, y) ∈ G\E, (7.2)

with the following boundary conditionsϕ(x, y) = 0, (x, y) ∈ ∂G,

ϕ(x, y) = 1, (x, y) ∈ ∂E.
(7.3)

An elementary example is where G is taken as the unit disc with centre at the origin and

E is a concentric disc of radius ρ, 0 < ρ < 1. The solution for the Dirichlet problem (7.2)

in this geometry is given by ϕ = Re[W (z)], where the analytic function

W (z) =
log z

log ρ
, z ≡ x+ iy, (7.4)

is often called a complex potential for the problem. The conformal capacity can then be

calculated from equation (7.1) by using the Green’s second identity [3, 63] with the result

cap(G, E) =
2π

log(1/ρ)
. (7.5)

Since the capacity is conformally invariant, the calculation of capacity in doubly connected

domains (where ∂E forms an internal boundary component of a doubly connected domain)

can be related to the problem of finding the conformal modulus ρ of the conformal mapping

to the target annular domain from a canonical concentric annulus, ρ < |ζ| < 1 say, with

|ζ| = 1 mapping to ∂G and |ζ| = ρ mapping to ∂E.

The main technique here is to equate the conformal capacity of the target domains with

the preimage. As shown in Chapter 5, simple formulas are given for the conformal capacities

of both geometries, which makes it possible to relate the capacities of the preimage to that

of the target domains.
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7.2 Estimating accessory parameters for the doubly

connected domains

This section explains two methods for estimating the accessory parameters of doubly

connected domains. First the matching approach is proposed to obtain the estimate of the

radii and centres of the predomain, by equating the capacities of the predomain to that of

the target domain.

7.2.1 Matching approach

This section focuses on the Riemann modulus ρ associated with target domains. As

explained in the introduction of this chapter, the conformal capacity of a concentric

annulus with the inner radius ρ has the capacity given by (7.5). Here the same three

example geometries shown in Figure 5.5 in Chapter 5 are studied again. The matching

formula has shown that the conformal capacity for case (A) is

cap(G, E) =
2π

log
( πa

4H

) . (7.6)

Hence, the modulus ρ is approximated by the following simple equation given by

ρ(A) =
πa

4H
. (7.7)

Similarly, the expressions for the capacity for cases (B) and (C) give simple formulas

ρ(B) =
πa

8H(1 − θ/π)
, (7.8)

and

ρ(C) =
πa

4H(1 − θ/π)

(
P̂ (1, r)P (−r, r)
P (r, r)P (−1, r)

)
, r = e−πL/H . (7.9)

These simple formulas give remarkably good estimates for unknown modulus of the annulus.

Figure 7.1 shows the numerical comparison of the matching approach and the Newton’s

method. It is verified that the matching approach gives good estimates even for large sizes

of inner regions.
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Figure 7.1: Numerical comparison of the value ρ calculated by the matching approach and
the conformal mapping method in the case (A), (B), and (C) in Figure 5.5.

7.2.2 Connection to the isomonodromy approach

Another very different method has recently been proposed for the estimation of accessory

parameters based on the so-called isomonodromic tau function [7, 8, 24]. In [8, 24], the

isomonodromy method was used to find an undetermined pervertex of polycircular arcs

with four vertices by finding the zero of the tau function [8, 24].

Here the isomonodromy approach is explained briefly based on [8]. The conformal map

w = f(z) from the upper half plane in z-plane to a simply connected polycircular domain

with N -vertex is given by [3]

{f, w} ≡
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

=

N∑
n=1

[
1 − θ2n

2(w − wn)2
+

βn
w − wn

]
, ′ ≡ d

dw
, (7.10)

where πθn are the interior angles at zn = f(wn) in the target domain. It is known that the

solution of the Schwarz derivative can be linearlized by considering f(w) ≡ ỹ1(w)/ỹ2(w),

where ỹ1(w) and ỹ2(w) are linearly independent solutions for the following second order

differential equation:

ỹ′′ +
1

2

N∑
n=1

[
1 − θ2n

2(w − wn)2
+

βn
w − wn

]
ỹ = 0. (7.11)

The regularity condition at w → ∞ gives three conditions for these parameters:

N∑
n=1

βn =

N∑
n=1

(2wnβn + (1 − θ2n)) =

N∑
n=1

(w2
nβn + wn(1 − θ2n)) = 0. (7.12)

The differential equation (7.11) is called a 2D Fuchsian equation. When N > 3, the
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Figure 7.2: The conformal map from the upper half annulus to the half channel outside a
semi-circle.

equation always has unknown accessory parameters associated to the target domain. The

relationship between the accessory parameters of the conformal mapping and a special

function called tau function introduced by Jimbo, Miwa, and Ueno [71] has been revealed

by [7,24]. According to [7,24], the explicit expressions for accessory parameters are derived

by calculating the zero of tau function associated with the monodromy data of the target

domain.

Indeed, with regard to case (A) in Figure 5.5, i.e., the unit circle in a channel, it

is possible to make a direct comparison between them. Considering the upper half of

the unit circle in a channel region, where the geometry becomes simply connected, the

approximation for ρ can be derived by the following procedure. First, as shown in the upper

figure of Figure 7.2, the conformal mapping from the upper half plane to the upper half of

the unit circle in a channel region is considered. The target domain has four vertices, which

means we have one unknown coordinate t0 in complex t-plane. This accessory parameter

t = t0 is given by [7]

t1−σ
0 =

1 + sinπσ

1 − sinπσ

Γ4(1/4 + σ/2)Γ2(1 − σ)

Γ4(5/4 − σ/2)Γ2(σ − 1)
, H/a = − cos(πσ). (7.13)

Because this expression comes from the lower orders of the expansion of the tau function

around t = 0, this expression is accurate when t0 is small, which corresponds to the case

where a/H is large. Now we associate t0 with the inner radius ρ. A conformal map from
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Figure 7.3: Graphs of ρ for a circle in a channel region as calculated by the conformal
mapping method, the matching approach, and the isomonodromy approach [8].

the upper annulus region in ζ-plane to the upper half plane in t-plane is defined as

t = F2(ζ) =
P (ρ, ρ)2

P (−ρ, ρ)2
· P (−ζ, ρ)2

P (ζ, ρ)2
. (7.14)

This function F2(ζ) maps ζ = 1 to the infinity, ζ = −1 to the origin, ζ = ρ to t = 1, and

ζ = −ρ to t = t0, respectively. The correspondence of the function gives us

t0 = F2(−ρ) =
P (ρ, ρ)4

P (−ρ, ρ)4
=

∞∏
n=1

(
1 − ρ2n−1

1 + ρ2n−1

)8

. (7.15)

Figure 7.3 shows a comparison between the estimates from the matching approach

(7.7) and from the isomonodromy approach (7.15). Matching is more accurate when the

width a is small, while the isomonodromy approach is more accurate when the width a

is large. This is natural because the matching approach assumes that the internal circle

is small compared to the height of the channel. The isomonodromy approach, however,

assumes that the prevertex t = t0 is nearly 0 in order to approximate the tau function,

which corresponds to ρ getting large. When combined, these two approximations – each

emerging from very different considerations – give excellent estimates across the range of

parameters and investigating the relationship between the tau function and the matching

approach advocated here is an interesting challenge for the future.
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7.3 Estimating accessory parameters for the

superhydrophobic surface

As shown in the previous section, the matching approach can provide estimates of a

conformal modulus in a conformal mapping problem in doubly connected domains. This

section shows that the matching procedure can be extended to provide more general

estimates of other accessory parameters as well.

The geometry to be considered happens to be one relevant to a topical problem involving

channel flows with superhydrophobic surfaces [102], which is the same region considered in

Chapter 6. The period of the channel in the x-direction is 2L, the distance of displacement

of the flat meniscus below to tips of the sidewalls is H, and the distance between the side

wall gratings is 2G as shown in Figure 7.4. The preimage circular domain Dζ is taken to

be the circular domain in a parametric complex ζ = ξ + iη-plane interior to the unit circle,

denoted by C0, but exterior to two circles C1 and C2 each of radius q and having centers

at ±δ, where δ is purely imaginary. The conformal map from Dζ to the groove region D is

known [102] to be given by

z = Z(ζ) = −H +G

π
log

(
ω(ζ, θ1(∞))

ω(ζ, θ2(∞))

)
, z = x+ iy, (7.16)

where

θ1(ζ) ≡ δ +
q2

1 − δζ
, θ2(ζ) ≡ −δ +

q2

1 + δζ
, (7.17)

and where ω(., .) is the prime function associated with Dζ [40]. We note that the circle C0

in the ζ-plane is mapped to the line |y| ≤ G on the imaginary axis in the z-plane, and the

inner circles C1 and C2 are mapped to the line x = ±L, |y| ≤ H+G of the periodic channel.

The parameters δ and q depend on the lengths H, G, and L and can easily be solved

for given the functional form (7.16) of the conformal mapping. Once again, the prime

function ω(., .) is readily evaluated using freely available codes [9]. While this procedure is

straightforward, it is of interest to examine whether approximate estimates for δ and q are

forthcoming from a matching approach akin to that developed in this chapter.

7.3.1 Capacity of predomain

Consider a potential problem for a harmonic ϕ(ξ, η) on Dζ where ϕ = α on C1, ϕ = β on

C2, and ϕ = 0 on C0, α, β ∈ R. The analytic extension of ϕ is defined as W (ζ) = ϕ+ iχ as

usual. Suppose that the flux mα is associated with C1 and mβ is associated with C2. For
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Figure 7.4: The geometry of the superhydrophobic surface (Left) and the triply connected
domain (Right).

the two “inner solutions” near to each circle it is easy to argue that

W
(1)
inner(ζ) =

mα

2π
log

ζ − δ

q
+ α, W

(2)
inner(ζ) =

mβ

2π
log

ζ + δ

q
+ β, (7.18)

where the notation should be obvious. Because the sources with strength mα and mβ lie

at ζ = δ and ζ = −δ respectively, the outer solution is

Wouter(ζ) =
mα

2π
log

ζ − δ

|δ|(ζ − 1/δ)
+
mβ

2π
log

ζ + δ

|δ|(ζ + 1/δ)
. (7.19)

The matching of constant terms arising from local expansions of (7.18) and (7.19) in the

usual way leads to a linear system of equations for mα and mβ:
α+

mα

2π
log

1

q
=
mα

2π
log

∣∣∣∣ 1

|δ|(δ − 1/δ)

∣∣∣∣+
mβ

2π
log

∣∣∣∣ 2δ

|δ|(δ + 1/δ)

∣∣∣∣ ,
β +

mβ

2π
log

1

q
=
mα

2π
log

∣∣∣∣ 2δ

|δ|(δ + 1/δ)

∣∣∣∣+
mβ

2π
log

∣∣∣∣ 1

|δ|(−δ + 1/δ)

∣∣∣∣ . (7.20)

The parameters mα and mβ therefore satisfy the following linear system:(
A B

B A

)(
mα

mβ

)
=

(
α

β

)
, A ≡ 1

2π
log

∣∣∣∣ q

|δ|(δ − 1/δ)

∣∣∣∣ , B ≡ 1

2π
log

∣∣∣∣ 2δ

|δ|(δ + 1/δ)

∣∣∣∣ .
(7.21)
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We can now compute the quantity

cap =

∫
Dζ

|∇ϕ|2dξdη =

∫
∂Dζ

ϕ
∂ϕ

∂n
ds = −(αmα + βmβ) = −Aα

2 − 2αβB +Aβ2

A2 −B2
. (7.22)

7.3.2 Capacity of the target domain

This same quantity can be calculated using estimates based on matching in the target region

itself. We assume that the distance between the side wall gratings G is small compared to

the height of the groove H. Because of the conformal invariance of the boundary value

problem, the potential Φ(z) ≡ ϕ(ζ(z)) satisfies

Φ = 0, x = 0, −G ≤ y ≤ G,

Φ = α, x = L, −H −G ≤ y ≤ H +G,

Φ = β, x = −L, −H −G ≤ y ≤ H +G,

∂Φ

∂y
= 0, −L ≤ x ≤ L, y = ±(H +G),

(7.23)

where the last flux condition comes from the symmetry of Dζ about the η-axis. To solve

this, consider

Φ =
(α− β)x

2L
+
α+ β

2
+ Φ̂, (7.24)

where Φ̂ satisfies 
Φ̂ = −α+ β

2
, x = 0, −G ≤ y ≤ G,

Φ̂ = 0, x = ±L, −H −G ≤ y ≤ H +G,

∂Φ̂

∂y
= 0, −L ≤ x ≤ L, y = ±(H +G).

(7.25)

The flux m of Φ̂ associated with the blue portion in Figure 7.4 can now be estimated using

the matching approach in the manner developed in this paper. Let the analytic extension

of Φ̂ be Ŵ (z) so that Φ̂ = Re[Ŵ (z)]. The inner solution for Ŵ (z) is given by

Ŵinner(z) = −α+ β

2
− m

2π
log

G

2
+
m

2π
log z + . . . . (7.26)

Modelling this flux as associated with a point source of strength m at z = 0 in the rectangle

region, we are going to find the outer solution Ŵouter(ζ). The potential we need to seek is

a solution which satisfies Φ̂ ≡ Re[Ŵouter(z)] = 0 on the left and right sides of a rectangle

and
∂Φ̂

∂y
= 0 on the top and bottom sides of a rectangle with a source m at the center of
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Figure 7.5: Geometry of the exponential maps ζ = e−π(z+L+iH)/2H (left) and ζ̂ =
e−π(z+L)/(H+G) (right).

the rectangle. By the Cauchy Riemann equations, the boundary condition on the top and

bottom sides becomes that Im[Ŵouter(z)] is constant on the left and right sides. By using

the conformal map ζ̂ = e−π(z+L)/(H+G), the rectangle region in the z-plane is transformed

into the whole annular domain in the ζ̂ = ξ+ iη-plane. The figure on the right in Figure 7.5

shows the rectangle and annular domain. The radius of the inner circle is ρ = e−2πL/(H+G).

The left and right sides of the rectangle are mapped to the boundary of the annulus, and

the top and bottom sides of the rectangle are mapped to the same portion ξ ∈ [−1,−ρ].

The location of the point source is now ζ̂ =
√
ρ. The function Y (ζ̂) ≡ Ŵouter(z(ζ̂)) has a

simple source term with a strength m at ζ̂ =
√
r and satisfies

Re[Y (ζ)] = 0, ζ ∈ C0, C1,

Im[Y (ζ)] = c1, −1 < ξ < −ρ, η = 0,

Im[Y (ζ)] = c2, ρ < ξ < 1, η = 0,

(7.27)

where c1, c2 ∈ R. Note that the last condition of (7.27) comes from the fact that the center

line of the rectangle {(x, y)| − L < x < L, y = 0} is mapped to {(ξ, η)|ρ < ξ < 1, η = 0},

and by symmetry

∂Φ̂

∂y
= 0, −L < x < L, y = 0. (7.28)
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Then, the Cauchy Riemann equation means that Im[Y (ζ)] is constant on ρ < ξ < 1, η = 0.

Now we define

Y (ζ̂) =
m

2π
log

(
P (ζ̂/

√
ρ, ρ)

√
ρ

P (ζ̂
√
ρ, ρ)

)
− m

4π
log ζ̂. (7.29)

The function Y (ζ̂) has a source at ζ̂ =
√
ρ. On ζ̂ ∈ C0 i.e., ζ̂ = ζ̂−1, we have

Y (ζ̂) =
m

2π
log

(
P (ζ̂−1/

√
ρ, ρ)

√
ρ

P (ζ̂−1√ρ, ρ)

)
− m

4π
log ζ̂−1 (7.30)

=
m

2π
log

(
P (ζ̂

√
ρ, ρ)

P (ζ̂/
√
ρ, ρ)

√
ρ

)
+
m

4π
log ζ̂ = −Y (ζ̂) (7.31)

where we used the properties (2.12) and (2.13). Hence Re[Y (ζ̂)] = 0 on ζ̂ ∈ C0. It is also

easy to show that Re[Y (ζ̂)] = 0 on ζ̂ ∈ C1. Thus the expression for the outer solution is

given as follows:

Ŵouter(ζ̂) =
m

2π
log

(
P (ζ̂/

√
ρ, ρ)

√
ρ

P (ζ̂
√
ρ, ρ)

)
− m

4π
log ζ̂, (7.32)

where

ζ̂ = e−π(z+L)/(H+G), ρ = e−2πL/(H+G). (7.33)

A local expansion around ζ =
√
ρ gives

Ŵouter(z) =
m

2π
log z +

m

2π
log

[
P̂ (1, ρ)

P (ρ, ρ)
·

π
√
ρ

(H +G)

]
− m

4π
log

√
ρ+ . . . . (7.34)

Matching (7.26) and (7.34) implies the following expression for m:

m = −α+ β

2
· 2π

log

(
πGP̂ (1, ρ)

2(H +G)P (ρ, ρ)
· ρ1/4

) . (7.35)
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Figure 7.6: The accessory parameter estimations by the matching approach. (Left)
Comparison of |δ|. (Right) Comparison of q.

Now, we can calculate the same quantity cap in the target domain as follows:

cap =

∫
D
|∇ϕ|2dxdy =

H +G

L
(α− β)2 +

∫
∂D

Φ̂
∂Φ̂

∂n
ds̃

=
H +G

L
(α− β)2 +

α+ β

2
m

=
H +G

L
(α− β)2 − 2π

log

(
πGP̂ (1, ρ)

2(H +G)P (ρ, ρ)
· ρ1/4

) (α+ β)2

4
. (7.36)

We now have two expressions for the same quantity: (7.22) and (7.36). On comparing

the coefficients in front of α2 and αβ, we arrive at a system of nonlinear equations for δ

and q: 

− A

A2 −B2
=
H +G

L
− π

2 log

(
πGP̂ (1, ρ)

2(H +G)P (ρ, ρ)
· ρ1/4

) ,
B

A2 −B2
= −(H +G)

L
− π

2 log

(
πGP̂ (1, ρ)

2(H +G)P (ρ, ρ)
· ρ1/4

) . (7.37)
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Indeed, after some algebra, these can be solved to give
δ = i

(
1

C
−
√

1

C2
− 1

)
, C ≡ πG

2(H +G)
· P̂ (1, ρ)

P (ρ, ρ)
, ρ ≡ e−2πL/(H+G).

q = 2
√
ρ

(
C − 1

C
+

√
1

C2
− 1

)
.

(7.38)

Figure 7.6 shows how well these formulas predict the values of δ and q. Similar to the

previous results, the matching approach can estimate these parameters even when G

becomes large relative to H.

7.4 Estimating accessory parameters for the two slits in a

channel

Here new formulas are derived for the accessory parameters associated with a conformal

mapping to the channel region which has two slits. First it is important to count the

number of parameters in the triply connected circular domain. For doubly connected

domains, it is enough to consider the annular domain with radius ρ, which black only one

parameter in the predomain (see Chapter 2). For triply connected domains, it is assumed

that one inner circle lies at the centre and the other inner circle lies at z = δ̃, δ̃ ∈ R. The

radii of these two circles are also parameters associated with the predomain, so there are 3

parameters in total.

Now we set the original domain as triply connected domain with the unit circle for the

outer boundary with two inner circles. The centre of these circles are set to ζ = δ and

ζ = −δ respectively, but the radii are q1, q2. The geometry is shown in Figure 7.7.

First consider a potential problem for a harmonic ϕ on Dζ where ϕ = α on C1, ϕ = β

on C2, and ϕ = 0 on C0. Similar to the previous section, suppose that the flux mα is

associated with C1 and mβ is associated with C2. The matching of constant terms with

inner and outer solutions gives the linear system of equations for mα and mβ:
α+

mα

2π
log

1

q1
=
mα

2π
log

∣∣∣∣ 1

|δ|(δ − 1/δ)

∣∣∣∣+
mβ

2π
log

∣∣∣∣ 2δ

|δ|(δ + 1/δ)

∣∣∣∣ ,
β +

mβ

2π
log

1

q2
=
mα

2π
log

∣∣∣∣ 2δ

|δ|(δ + 1/δ)

∣∣∣∣+
mβ

2π
log

∣∣∣∣ 1

|δ|(−δ + 1/δ)

∣∣∣∣ . (7.39)

Thus we have a linear system for mα and mβ:(
A B

B C

)(
mα

mβ

)
=

(
α

β

)
, (7.40)
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Figure 7.7: (Left) The triply connected domain. (Right) Two slits in a channel.

where

A ≡ 1

2π
log

(
q1

δ(δ − 1/δ)

)
, B ≡ 1

2π
log

(
2δ

δ(δ + 1/δ)

)
, C ≡ 1

2π
log

(
q2

δ(δ − 1/δ)

)
,

(7.41)

where we have used δ ∈ R. We can now compute the quantity

cap =

∫
Dζ

|∇ϕ|2dξdη =

∫
∂Dζ

ϕ
∂ϕ

∂n
ds = −(αmα + βmβ) = −Cα

2 − 2αβB +Aβ2

AC −B2
. (7.42)

The capacity (7.42) is associated to the capacity of a channel with height 2H, which

contains two slits with lengths 2d1 and 2d2, d1, d2 > 0, at the center line of the channel.

The coordinates of the centres of two slits are set to be a and b, a, b ∈ R, respectively. We

consider a potential problem for a harmonic function where ϕ = α on the right slit, ϕ = β

on the left slit, and ϕ = 0 on the boundary of the channel. First from the view point of the

outer observer, there is a point source at the centre of each slit and the strengths of two

sources defined by mα and mβ, are unknown. The two inner solutions are then given by

W
(1)
inner(z) = α− mα

2π
log

(
d1

2(z − a)

)
, (7.43)

W
(2)
inner(z) = β −

mβ

2π
log

(
d2

2(z − b)

)
. (7.44)

The outer solution is given by the summation of the two point sources at the center line of
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the channel:

Wouter(z) =
mα

2π
log tanh

(
π(z − a)

4H

)
+
mβ

2π
log tanh

(
π(z − b)

4H

)
. (7.45)

By using the matched asymptotic expansions of two inner solutions (7.43) and (7.44), and

one outer solution (7.45), we have a linear system for mα and mβ as follows:(
Â B̂

B̂ Ĉ

)(
mα

mβ

)
=

(
α

β

)
, (7.46)

where

Â =
1

2π
log

πd1
8H

, B̂ =
1

2π
log tanh

π(b− a)

4H
, Ĉ =

1

2π
log

πd2
8H

. (7.47)

Using the same technique as (7.42), the capacity of this geometry is given by

cap = − Ĉα
2 − 2αβB̂ + Âβ2

ÂĈ − B̂2
. (7.48)

Now we have two expressions for capacities (7.42) and (7.48). Because of the conformal

invariance of the conformal capacity, these expressions must be consistent. By comparing

the coefficients of (7.42) and (7.48), estimates for the accessory parameters q1, q2, and δ

are derived. More precisely, 

q1
1 − δ2

=
πd1
8H

2δ

1 + δ2
= tanh

[
π(b− a)

4H

]
q2

1 − δ2
=
πd2
8H

.

(7.49)

Thus, the explicit expressions for these parameters are derived:

δ =
1

C
−
√

1

C2
− 1, C = tanh

[
π(b− a)

4H

]
,

q1 =
πd1
8H

(1 − δ2),

q2 =
πd2
8H

(1 − δ2).

(7.50)

In order to check the accuracy of the estimate, the conformal mapping approach

described in [40] is used. The accuracy of the expressions can be verified by considering
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the logarithmic Cayley map:

χ(ζ) =
cχ
π

log

(
− ω(ζ, 1)

ω(ζ,−1)

)
, cχ ∈ R. (7.51)

This function maps the triply connected domain to the channel with horizontal two slits

on the real axis. The parameters cχ, δ, q1, and q2 are obtained by solving the following

nonlinear equations such that 

χ(δ + q1) = b+ d1,

χ(δ − q1) = b− d1,

χ(−δ + q2) = a+ d2,

χ(−δ − q2) = a− d2.

(7.52)

These parameters can be solved by the nonlinear optimizations such as Newton’s method.

The table 7.1 shows the numerical comparison between the matching approach and

the conformal mapping methods. These three examples show that the matching approach

gives us a good estimate for these parameters.

Table 7.1: Numerical comparison between the matching approach and the conformal
mapping method. The values calculated by the matching approach are in the bracket.

d1 d2 b− a δ q1 q2
Case 1 0.1148 0.0758 0.5582 0.4 (0.4123) 0.075 (0.0748) 0.05 (0.0494)
Case 2 0.1950 0.1270 1.1599 0.7 (0.7216) 0.075 (0.0734) 0.05 (0.0478)
Case 3 0.2367 0.1520 0.6169 0.4 (0.4499) 0.15 (0.1483) 0.1 (0.0952)

7.5 Conclusion

By presenting a series of examples and comparing with numerical calculations, this chapter

has demonstrated a practical procedure based on asymptotic matching of suitable outer

and inner solutions to provide estimates of the capacity associated with multiply connected

domains. The estimates show excellent agreement when there is a good separation of scales

between the inner and outer regions, a feature on which the matching idea relies [68,146,150].

From the selection of examples explored here, it should be clear that the idea is very

general and the approach can be applied to a wide variety of geometries. On a technical

note, it is worth remarking that it is usual when using matched asymptotics to introduce

a rescaled variable to distinguish the inner region from the outer region and this can be

important when doing matching at higher orders in any asymptotic expansions. Here,

however, this rescaling has not been introduced explicitly since the estimates for capacity
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derived here involve only the leading order asymptotics in each region. In principle, more

accurate estimates can be obtained by higher order matching, and then the introduction of

suitably scaled inner and outer variables is advised.

As shown in this chapter, the proposed approach has the connection to the

isomonodromy approach. The research on the connection between the conformal capacity

and tau functions is a future work.
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Chapter 8

Summary

In this thesis new methods for the quantification of effective parameters arising in transport

theory have been developed. Using the prime function, analytical formulas can be obtained

for the calculation of these parameters.

Chapter 1 introduced three important quantities, namely, electrical resistivity, electrical

capacity, and slip lengths. This chapter explained that these quantities characterize the

properties of electrical performance or fluid flows in channels. It is also mentioned that

due to the geometry these flows satisfy mixed boundary conditions in multiply connected

domains, which are sometimes difficult to solve.

Chapter 2 followed the book [40] and introduced the prime function. An explanation of

the important properties of conformal mappings and three examples of conformal mappings

are described. It is explained that the prime function is also used to solve Dirichlet-type

boundary value problem by so-called Schwarz integral formulas.

Chapter 3 has developed a natural extension of the Schwarz integral formulas,

“generalized Schwarz integral formulas”, which can be used to solve mixed boundary

value problems in multiply connected domains. This can be done by introducing radial

slit maps, which transform mixed boundary value problems into Dirichlet boundary value

problems. Using the prime function and the Schwarz integral formulas introduced in

Chapter 2, it has been shown that the integrals can calculate the shape of hollow vortex

wakes behind a wedge and the longitudinal flow in heat sinks.

Chapter 4 has developed a new resistivity measurement for holey samples. Using the

prime function and the cross-ratio identity, i.e., Fay’s trisecant identity, a new van der

Pauw equation for holey samples is developed and two conjectures proposed by [138] is

proven. A new method for measuring the resistivity of holey samples can be obtained by

considering the lower envelope’s formulas.

Chapter 5 has formulated a new method for calculating electrical capacities of multiply

connected domains. This can be done by using the matched asymptotic expansions for
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inner solutions and outer solutions. Several numerical results show that the new method

gives good estimates for the capacities of multiply connected domains.

In Chapter 6, an analytical formula is proposed for the slip lengths of superhydrophobic

channel flow with partially invaded grooves. By using the horizontal slit map introduced in

Chapter 2, the boundary value problem can be reduced to a problem on a triply connected

domain, which can be solved by the Schwarz integral formulas. The slip lengths of the

channel are calculated from the explicit expression for the flow.

Chapter 7 has explained parameter problems in conformal mappings, namely, accessory

parameter problems of multiply connected domains. As presented in several examples, the

matched asymptotic expansions give good estimates for the accessory parameters associated

to conformal mappings for multiply connected domains.

The main purpose of this thesis is to develop new mathematical formulas for the

calculation of physical quantities arising in transport theory. The techniques developed

here are applicable to the calculation of effective parameters in many areas, so it would be

interesting to apply these techniques to the other areas of transport phenomena.
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Appendix

A.1 The positiveness of L(eiϕ) for 0 < ϕ < 2π

First, we consider the derivative of L(ζ) defined in (2.15) as follows:

M(ζ) ≡ ζ
∂L

∂ζ
. (A.1)

Because we have another representation of L(µ/ν) − L(µν) as stated in (4.67), we can

consider a limit of each side:

lim
ν→1

L(µ/ν) − L(µν)

1 − ν
= µ lim

ν→1

(
1

ν

L(µ/ν) − L(µ)

µ/ν − µ
+
L(µ) − L(µν)

µ− µν

)
= 2M(µ). (A.2)

The right hand side is, from the definition in (2.11),

lim
ν→1

1

1 − ν

P̂ (1)2P (µ2)P (ν2)

P (ν/µ)P (µ/ν)P (µν)2
= 2

P̂ (1)3P (µ2)

P (1/µ)P (µ)3
. (A.3)

We therefore find an alternative representation of M(ζ):

M(ζ) =
P̂ (1)3P (ζ2)

P (1/ζ)P (ζ)3
. (A.4)

Consequently M(eiϕ) is found to be

M(eiϕ) =
P̂ (1)3P (e2iϕ)

P (1/eiϕ)P (eiϕ)3
=

i

8
C(ϕ)

sinϕ

sin4 ϕ

2

, (A.5)
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where

C(ϕ) = P̂ (1)3
∞∏
n=1

(1 + ρ4n − 2ρ2n cos 2ϕ)

(1 + ρ4n − 2ρ2n cosϕ)4
> 0. (A.6)

Therefore, because
∂L

∂ϕ
(eiϕ) = iM(eiϕ), L(eiϕ) decreases when 0 < ϕ < π, and L(eiϕ)

increases when π < ϕ < 2π. The minimum of L(eiϕ) is L(eiπ) = L(−1) where L(−1) can

be calculated explicitly to be

L(−1) =
1

4
+ 2

∞∑
n=1

ρ2n

(1 + ρ2n)2
> 0. (A.7)

Therefore L(eiϕ) is positive over this range of ϕ.

A.2 Proof of the properties of αθ and βθ

Here we will prove that for 0 < θ < π, αθ is a monotonically increasing function and βθ is

a monotonically decreasing function with respect to θ, that is,

∂αθ

∂θ
> 0,

∂βθ
∂θ

< 0. (A.8)

We will prove it using the integrated Fay trisecant identity. From (4.49),

∂αθ

∂θ
X0,π,θ +

∂βθ
∂θ

Y0,π,θ = 0, (A.9)

which means the sign of ∂αθ/∂θ is opposite to ∂βθ/∂θ. By a log-sum and sum-log inequality,

log[αθ′X0,π,θ + βθ′Y0,π,θ]

≥ 1

2π

∫ 2π

0
log[A(0, θ′, ρeiϕ)X0,π,θ +B(π, θ′, ρeiϕ)Y0,π,θ]dϕ

=
1

2π

∫ 2π

0
log[A(0, θ, ρeiϕ)X0,π,θ +B(π, θ, ρeiϕ)Y0,π,θ]dϕ = 0,

(A.10)

where we used (4.87) and (4.88). This means

αθ′X0,π,θ + βθ′Y0,π,θ ≥ 1. (A.11)

From the Fay trisecant identity, αθX0,π,θ + βθY0,π,θ = 1, so

(αθ′ − αθ)X0,π,θ + (βθ′ − βθ)Y0,π,θ ≥ 0 (A.12)
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for 0 < θ′ < π. Hence, together with (A.9), we can obtain an inequality for the second

derivatives of αθ and βθ as follows:

∂2αθ

∂θ2
X0,π,θ +

∂2βθ
∂θ2

Y0,π,θ ≥ 0. (A.13)

When we take the derivative of (A.9) with respect to θ, we get

∂αθ

∂θ

∂X0,π,θ

∂θ
+
∂βθ
∂θ

∂Y0,π,θ
∂θ

+
∂2αθ

∂θ2
X0,π,θ +

∂2βθ
∂θ2

Y0,π,θ = 0. (A.14)

Thus, from (A.13),

∂αθ

∂θ

∂X0,π,θ

∂θ
+
∂βθ
∂θ

∂Y0,π,θ
∂θ

= −∂
2αθ

∂θ2
X0,π,θ −

∂2βθ
∂θ2

Y0,π,θ ≤ 0. (A.15)

The signs of ∂X0,π,θ/∂θ and ∂Y0,π,θ/∂θ can be determined for 0 < θ < π, that is,

∂X0,π,θ

∂θ
= iX0,π,θ[K(−eiθ) −K(−e−iθ)] = iX0,π,θ[2K(−eiθ) − 1] < 0,

∂Y0,π,θ
∂θ

= iY0,π,θ[K(eiθ) −K(e−iθ)] = iY0,π,θ[2K(eiθ) − 1] > 0.

(A.16)

where we used the positiveness of L(eiϕ) to state that the imaginary part of K(eiϕ) is

monotonically increasing and K(eiπ) = 1/2. Because the sign of ∂αθ/∂θ is opposite to

∂βθ/∂θ as stated in (A.9), we can conclude that

∂αθ

∂θ
> 0,

∂βθ
∂θ

< 0. (A.17)
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