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Abstract

Emergent dynamics in confluent tissues play an important role in many biological

processes. Here, we study these dynamics through the lens of active matter physics,

specifically focussing on two emergent phenomena: nematic collective behaviour in

homeostasis and the dynamics of a growing tissue boundary.

We first examine the emergence of extensile nematic behaviour at the tissue level,

and how a collection of contractile cells can give rise to it. By constructing and

analysing a linearised hydrodynamic model, we show that this extensile behaviour

results from fluctuating polar forces that arise from cell-substrate interactions. We

show that polar fluctuations generically lead to extensile behaviour in the absence

active contractile forces, and can still generate extensile behaviour in their presence.

We then confirm our results by analysing the dynamics of nematic defects in a

cell-based numerical model.

In order to analyse these nematic defects, one must have a reliable and efficient

means of detecting them, which currently is not the case for many confluent tissues.

Due to this, we then develop a machine learning model to detect nematic defects in

confluent tissues that is readily implementable on experimental images of cell layers.

We demonstrate that our model outperforms current detection techniques and that

this manifests itself in our method requiring less data to accurately capture defect

properties, improving the accuracy of experimental data interpretation.

Confluent tissue dynamics are not only important in homeostasis, but also during

growth, such as in wound healing. As such, we also examine the dynamics of the
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boundary of a growing tissue. We study this problem using a novel lattice-Boltzmann

method for a growing tissue with a moving front. We find that, at small system

sizes, the interface fluctuations grow with scaling in agreement with the Kardar-

Parisi-Zhang universality class. However, when using a density-dependent growth

regime, we find the onset of a novel instability at larger system sizes, which we

develop an analytical theory to characterise.

In this thesis we have developed new fundamental understanding of confluent tis-

sue dynamics in homeostasis and the physics of growing tissue interface stability.

We have also developed new defect detection methodology and simulation methods

for modelling growing tissues. The tools and understanding generated here pro-

vide fruitful avenues of future research, and equip biophysicists to tackle further

questions, in these important biological systems.
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Chapter 1

Introduction

The incredible complexity of living matter, and the hierarchical structure that brings

about this complexity, is fundamental to the beauty of these systems and our fas-

cination in them. It also makes them very hard to describe with physical theories.

This is because at each level of complexity entirely new behaviour emerges, that can

be very different from what one would expect to find from studying the individual

constituents in isolation at the level below [1]. One cannot discern the function of

proteins from analysing individual amino acids in much the same way that these

individual proteins do not reveal the behaviour of organelles, or these organelles the

dynamics of cells. One must study how different constituents interact to begin to

connect dynamics at one scale to behaviour that emerges at another.

However, this hierarchical structure can also bring about a separation of scales that

allows complexity to be stripped away and makes a physical description possible.

It means one can understand dynamics at a given level in terms of the constituent

units that comprise it, without worrying about the amazing complexity at smaller

scales that brought about the behaviour of those constituents. This allows us to

understand tissue level dynamics - as well as the multitude of biological processes

that depend on it - from the behaviour and interactions of individual cells, without
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16 Chapter 1. Introduction

worrying ourselves with having a complete description of the contents of these cells.

In this thesis, we are concerned with understanding and characterising emergent

behaviour in confluent tissues, densely packed tissues in which cells are in contact

with each other on all sides, due to the role they play in fundamental biological

processes [2]. As we have discussed, one can do this by delineating how cellular

processes and interactions manifest in tissue level dynamics. However, in addition

to understanding how these dynamics emerge, we will also focus on accurately iden-

tifying and classifying tissue scale phenomena, as this can be a challenge in itself

and provide insight into the system, along with being a prerequisite for determining

the cellular mechanisms governing the phenomena.

1.1 Confluent tissues

While we do not need a complete understanding of cellular biology to study the

dynamics of confluent tissues, we do need an understanding of the forces generated

by and between cells, along with the different tissue level phenomena that arise from

these forces. An idea of how these forces and interactions arise is also instructive

and helps in formulating suitable descriptions of the tissue. As such, we will first

delineate these forces and interactions before discussing some of the phenomena they

lead to.

1.1.1 Single cells

Cells generate forces through their cytoskeleton, which also gives cells their rigid-

ity and allows them to withstand tension. The cytoskeleton in eukaryotes can be

broadly split into three components: microtubules, intermediate filaments and mi-

crofilaments (Fig. 1.1). Microtubules, constructed from the polymer tubulin, are
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responsible for intracellular transport of organelles such as mitochondria, they also

resist compressive forces [3]. Intermediate filaments are made from a variety of

proteins, such as keratin in epithelial layers [4]. They maintain cell shape and can

bear tension, they also serve to anchor organelles in position where necessary. Most

pertinent to the study of tissues dynamics is the final component, microfilaments,

which are composed of the protein actin [3].

Figure 1.1: Schematic of the cytoskeleton. The cytoskeleton of the cell has three
principal components: the actin cortex (green), intermediate filaments (red) and
microtubules (blue). The nucleus is also shown in yellow. Microtubules branch off
from the centre of the cell to aid in transporting proteins and organelles around the
cell. Intermediate filaments are dispersed throughout the cell to provide rigidity,
whereas actin filaments are concentrated towards the periphery of the cell. Adapted
from [5]

Actin filaments, together with myosin molecular motors, are the apparatus that

allow cells to actively generate forces: the actomyosin cortex. Concentrated around

the periphery of the cell, these actin filaments act as tracks for myosin proteins that

‘walk’ along them, pulling the filament and generating a contractile force. These

forces can then be transmitted to a substrate via protein complexes known as focal

adhesions. For the cell to move there must be an asymmetry in the strength of

these cell-substrate interactions. To accomplish this, the cell polarises and projects

microfilament-based protrusions out through the cell membrane called lamellipodia

or filopodia, which pull the cell forward in the direction of the protrusions while

focal adhesions towards the rear of the cell are dismantled and the cortex retracts

(Fig. 1.2). As this process requires the constant renewal of focal adhesions, and

actomyosin machinery to which they bind, microfilaments are less stable than inter-

mediate filaments and microtubules, whose demands are longer lasting.
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Figure 1.2: Self-propulsion of a single cell. To migrate in a given direction, cells (1)
generate actin based protrusions from their actin cortex beyond their forward most
focal adhesions, putting the cortex under tension. (2) They then form new focal
adhesions under these protrusions. While doing this they dismantle focal adhesions
at the rear of the cell, with unpolymerised actin being transported to the front to
build the new adhesions. (3) The cortex at the rear of the cell is now free to contract,
moving the cell body forward and starting the cycle again. Adapted from [6].

These active traction forces are balanced by friction between the cell and the sub-

strate it is crawling on. As cell migration occurs at very low Reynolds numbers,

where the dynamics are dominated by dissipative forces, this frictional force is usu-

ally taken to be proportional to the velocity of the cell in a similar manner to viscous

drag [7].

A further source of force in single cells are those generated during cell division.

While the process of mitosis is comprised of many steps involving a variety of cellular

apparatus, from the perspective of cell level forces generated, these steps manifest

as a dipolar force, perpendicular to the axis about which the cell divides [8]. While
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this force may initially pull inwards, in a process known as mitotic rounding, the

primary effect of division on other cells is a force pushing outwards along the same

axis as the cell divides [9].

1.1.2 Cell-cell interactions

As discussed previously, in order to study the emergent properties of confluent tis-

sues, as well as the forces generated by single cells we also need to understand how

these cells interact with one another. These interactions can be long range, with

cells secreting molecules that react with receptors on cells some finite distance away.

They can also be more direct and immediate in the form of cell-cell contacts, which

are more relevant to confluent tissues where cells are, by definition, in contact with

other cells on all sides.

Such contacts can prompt the assembly of transmembrane protein complexes that

physically bind the cytoskeleton of one cell to another, creating an adhesive force.

These links between cells allow for force transmission and the support of forces

throughout the tissue, giving it a finite bulk and shear modulus [10]. Due to the

elasticity of the cytoskeleton, these junctions can also lead to the generation of repul-

sive forces between cells, in an effort to restore their original shape when compressed

[11]. However, at longer times cells can regulate these forces by changing their vol-

ume via gap junctions, channels that form between cells that allow the transfer of

ions and other molecules, with other cells [12]. Cell-cell junctions also generate fric-

tional forces between cells as they move past one another, as this process is often

mediated by the attachment and detachment of these junctions [13]. Some of these

interactions, and others discussed below, are summarised in Fig. 1.3.

Cells can also construct junctions that support the transmission of active forces.

Certain cell-cell junctions, known as desmosomes, do not support this kind of trans-
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Figure 1.3: Forces and interactions in confluent tissues. Schematic overview - a (left)
sideview and (right) top view - of some of the interactions and forces in confluent
tissue layers. Adapted from [14].

mission as they specifically bind to intermediate filaments [15]. However, adherens

and tight junctions link to actin filaments [16], with tight junctions also linking to

microtubules [17], physically linking together the actomyosin machinery of one cell

to another. This means that, when polarised, cells can transmit polar forces between

cells and generate active forces at the tissue level.

Along with the transmission of forces between cells, they can also interact in more

subtle ways that affect their polarity. Forces from neighbouring cells transmitted via

cell-cell junctions can lead cells to regulate their own polarity internally and reorient

their polarity in another direction. This is known as contact regulation of locomotion

(CRL) [14]. CRL encompasses the phenomena of contact inhibition of locomotion

(CIL), whereby cells reverse their polarity direction when their lamellipodia collide

during a head on collision, but also contact following of locomotion (CFL). CFL

is where cells tend to increase their polarisation upon contact with the rear of a

polarised cell. In this scenario cells form ‘cryptic’ lamellipodia, or c-lamellipodia,

that extend underneath the cell in front and allow for longer range ordering in the

orientation of traction forces [18]. In this way cells can internally adapt their polarity
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to align with the direction of the force exerted upon them. Adherens junctions

are known to be crucial for this process and the stable formation of c-lamellipodia,

further underlining the importance of these junctions in generating tissue level forces

[19].

There is also interplay between cell-cell interactions and the cell-substrate inter-

actions discussed in Section 1.1.1. This is due to lots of the machinery involved in

producing these interactions being common to many of them. This leads to situa-

tions where increases in strength in one interaction occur at the expense of another,

if there is a finite supply of a protein required for both interactions within the cell.

An example of this is when active force transmission between cells is decreased. This

was carried out in a study on a MDCK epithelial cell line that were modified such

that they could not form E-cadherin junctions, a type of adherens junction [20]. It

was found that E-cadherin knockout cells exerted larger forces on the substrate due

to an increased number and strength of focal adhesions. The study found that this

was accompanied by changes in the distribution of vinculin, a protein used to form

both E-cadherin junctions and focal adhesions, in the different cell types. In E-

cadherin knockout tissues, vinculin was concentrated at the cell-substrate interface,

as opposed to the cell-cell interfaces in wild type tissues, suggesting having more

of this protein available in E-cadherin knockout cells allows stronger cell-substrate

interactions. This underlines the difficulty in isolating each of these interactions and

examining their role in various phenomena experimentally.

1.1.3 Emergent behaviour

Nematic alignment and defects

The forces and interactions described manifest in a variety of tissue scale phenom-

ena in confluent tissues, which play crucial roles in homeostatic and developmental
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processes. Perhaps the most straightforward to understand is the emergence of large

scale order in cellular alignment (Fig. 1.4a). We will define this type of alignment,

known as nematic alignment, more thoroughly in Section 1.2.1. Here we just seek to

describe the phenomenon and its role in biological processes. If cells are elongated in

shape, at high densities - such as in confluent layers of fibroblasts - steric repulsion

causes cells to align along their long axes, sometimes over millimetre length-scales

[21]. However, cells that are round in shape can also deform and exhibit nematic

order at high densities, such as epithelial cells [22]. This deformation can be due

to confinement but also due to active forces in the tissue, where forces exerted on

cells can deform and elongate them in the same direction locally. In other cases,

persistent application of force can lead cells to remodel their cytoskeletons such that

they elongate either parallel or perpendicular the direction of the force [23, 24]. This

orientational order plays an important role in a variety of biological processes. It

allows for macroscopic contraction of muscle tissues [25] and organising osteons to

give bones their necessary mechanical properties [26]. It also improves endothelium

integrity in blood vessels, protecting against the initiation of atherosclerosis [27].

More challenging to understand than the presence of this alignment is the pres-

ence of defects, or singularities, in this alignment. In many systems exhibiting

nematic order two types are principally seen: comet-shaped and trefoil-shaped de-

fects (Fig. 1.4b). Again, we characterise these defects more thoroughly, and discuss

why they take the forms they do, and in Section 1.2.1, here we seek to discuss their

significance in confluent tissues. These defects can arise in the tissue as it grows [28],

or be spontaneously generated within the bulk [29]. These defects are not merely a

lack of alignment, they are supercellular structures that can exist on length-scales

far larger than individual cells. The mechanisms governing their emergence and

dynamics is unclear in some cases, and deciphering them is becoming a pressing

question, as these defects have been found to be involved in an increasingly wide

array of biological processes. Comet-shaped defects have been found to control
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(a) (b)

(c)

Figure 1.4: Emergent phenomena in confluent tissues. (a) Orientation alignment
of fibroblasts,adapted from [28]. Top is a flourescent image of the tissue, bottom
is the average local orientation direction overlaid on top of the image. (b) comet-
shaped (top) and trefoil shaped (bottom) defects in cell alignment in an epithelial
layer, adapted from [29]. (Left) experimental images of the defects in the cell layer,
(middle) experimental images with the mean local cell orientation overlaid on top
and (right) schematics of idealised defects. (c) Schematic and experimental images
of a a cell being extruded from an epithelial layer, adapted from [29].

the collective dynamics of confluent layers of neural progenitor cells [30] and have

been highlighted as organisation centres during Hydra morphonegenesis [31]. They

also mediate processes in densely packed bacterial systems, triggering the forma-

tion of fruiting bodies in Myxococcus Xanthus colonies [32] as well as facilitating

collective motion in Pseudomonas aeruginosa [33] and E. Coli colonies [34], while

trefoil-shaped defects have been associated with controlling areas of cell depletion

in bacterial colonies [32].

Furthermore, comet-shaped defects also play a functional role in an important

homeostatic process known as cell extrusion. Extrusion is the process by which

cellular layers remove unnecessary or unwanted cells. As opposed to the cell being
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slowly broken down and removed via phagocytosis, the cell is quickly squeezed out

from the layer, preserving its integrity (Fig. 1.4c). Cells can be extruded for a variety

of reasons. Apoptotic cells are extruded by signalling to neighbouring cells, who form

an actomyosin ring around the cell via adherens junctions before squeezing it out

[35]. Live and healthy cells can also be extruded from the tissue. This was first

reported in zebrafish models and is related to how much compression the system is

under; it has been hypothesised to be a method for reducing overcrowding of cells in

these systems [36]. Comet-shaped defects have been found to provoke apoptotic cell

extrusion in epithelial layers [29]. The defects were found to generate compressive

stresses in the head portion of the defect that triggered the activation of cell death

signalling. The mechanisms driving defect formation, however, remain unclear.

In comparison to extrusion, compression plays an opposing role in cell prolifera-

tion, where it impedes rather than facilitates [37]. It has been shown to be suppressed

by compressive forces, leading to cells becoming quiescent at sufficiently high den-

sities [38]. Moreover, cells under tension have been found to divide preferentially

about an axis perpendicular to the direction of the applied tension, as a means of

reducing the stress experienced [39].

Collective motion and interface dynamics

Collective motion, the coordinated movement of many cells in a given direction, is

vital for a variety of processes, such as embryonic development [40] and cancer cell

invasion [41]. It often requires the large scale organisation of cells polarity direction

via adherens junctions [42], with these anisotropic polar forces transmitted over tens

of cells in distance [43]. Another process that relies on this phenomena is wound

healing. During wound healing, cells polarise outwards in the direction of the leading

edge to close the wound, with this effect transmitted into the bulk from the edge,

albeit with the response diminishing with distance into the tissue [44].
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The mechanism governing the dynamics of the tissue edge during this process, and

its dynamics more generally, is interesting in itself, and has been the subject of much

study in recent years. This is due to the tissue boundary not advancing in an ordered

manner, but rather a chaotic one (Fig. 1.5a). Due to this, it is unclear precisely how

to describe the dynamics, let alone how they emerge. The disordered nature of the

interface growth has led studies to characterise the dynamics as being governed by

the onset of an instability at the tissue interface, and numerous theoretical studies

have found instabilities to emerge at the boundary of tissue models [14, 45, 46, 47].

Due to the links to collective motion, these studies tend to focus on, and have

successfully delineated, how active traction forces can precipitate an instability, with

the role of cell proliferation less explored.

However, instabilities are characterised by the growth of perturbations of a certain

(a)

(b)

Lc

Figure 1.5: Collective migration and dynamics at the tissue edge. (a) Images (top)
and heatmaps showing horizontal velocity (bottom) of expanding epithelial layer,
adapted from [48]. (b) Schematic of the dynamics of a tissue edge if it were unstable.
A certain wavelength of perturbation Lc would grow fastest, meaning with time the
tissue edge should undulate with the wavelength to a greater degree.
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wavelength (Fig. 1.5b), while the edge of an advancing tissue, such as in Fig. 1.5a is

usually not well defined by fluctuations of a single wavelength. The fluctuations seen

in the interface could, therefore, just be due to the intrinsic noise and fluctuations

within the system. Experimental studies have sought to characterise this by exam-

ining how the width of the interface scales in space and time [49, 50, 51, 52]. The

idea behind this is that, if the scaling for space and time can each be described by a

single exponent, the values of these exponents can be used to deduce the mechanism

by which the interface is growing. Experimental studies have thus far measured con-

flicting values for these exponents, meaning the processes governing the dynamics

of the interface are still unclear.

1.2 Active matter

A suitable description of confluent tissues is a prerequisite to characterising these

dynamics and the biological processes dependent upon them. The dynamics of the

cells that compose these tissues arise from the internal consumption of energy within

cells, allowing cells to exert forces on the substrate as well as each other. As such,

active matter provides a natural framework for describing confluent tissues.

Active matter is an emergent field of physics for describing far from equilibrium

many-body systems where the system is driven from equilibrium from energy ex-

pended by the individual constituents themselves [53]. As many biological systems

consist of distinct constituents that constantly convert chemical energy to mechan-

ical work to drive the system far from equilibrium, active matter offers a fruitful

avenue for modelling such systems, be it herds of sheep [54], flocks of birds [55],

colonies of bacteria [56], cytoskeletal filaments [57] or confluent tissues [58]. Given

the diversity of systems active matter aims to describe, a plethora of different mod-

els, not all of them relevant to confluent tissues, have been developed that can
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broadly be divided into different classes based on the different forces and interac-

tions present in these systems [53]. We will first discuss these classes and how they

relate to confluent tissues before focussing on specific modelling approaches taken

to describe these systems, with a focus on cellular systems.

1.2.1 Classifying active systems

Dry and wet

Perhaps the primary distinction to make between active matter systems is whether

they are wet or dry, meaning whether they are momentum conserving or not. In wet

systems, active constituents are immersed in a medium whose dynamics are relevant

and so must be properly resolved. This means momentum must be conserved be-

tween constituents and the medium, as the constituents transfer momentum to the

medium while they self-propel and move around. To properly account for momen-

tum conservation, the medium may also transfer momentum to the agents. This

two-way coupling is encoded in the form of hydrodynamics interactions between

individual agents. Examples of wet systems include swimmers such as spermatozoa

[59]. The dynamics of the medium are generally deemed relevant, and the system

described as wet, when the forces generated in the medium by the constituents gen-

erate hydrodynamic soft modes. Examples of such systems include suspensions of

bacteria [60] or microtubules [61].

In dry systems, the dynamics of the medium in which active constituents are

seeking to self-propel are either irrelevant to understanding the system or negligible,

acting as a momentum sink upon which constituents can exert force. Hence momen-

tum exchange between the particles and the medium need not be considered, and

momentum is not conserved. Examples of dry systems in which the dynamics of the

medium are negligible are flocks of birds [55]. In such systems where one is only con-
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cerned with the dynamics of the birds, the birds can be considered as self-propelled

particles as, assuming there is no wind, the air is far too compressible to induce

any hydrodynamic soft modes. Herds of animals that move on land are an example

of a dry system with a momentum sink because the animals can exert a force on

the ground without it moving [54]. As such, confluent tissues containing cells that

crawl on a rigid substrate are dry systems. This means that we need not conserve

momentum to describe the system and need only model the cells themselves.

Polar and Nematic

The other important distinction between different types of active materials is whether

or not the system is polar. In polar systems, constituents are asymmetric, either

in their shape or dynamics, or both. In other words, each constituent has a clear

‘head’ and ‘tail’ and can be described by an arrow pointing towards the head. Ap-

olar systems are systems where there is no distinguishable head and tail. While

there are different classes of apolar systems, by far the most relevant to biology are

nematic systems. In nematic systems, constituents still display a clear orientation,

for example by being elongated as in many biological systems, but do not have a

distinguishable head or tail along that orientation. They can therefore be described

by a bar, or director, as opposed to an arrow. This indistinction could be due to

the particle periodically reversing the direction of force generation, such that it os-

cillates back and forth, like Myxococcus Xanthus [32] or that the forces it generates

are dipolar, such as the forces generated during cell division [9].

When systems are referred to as polar or nematic it is often in relation to the type

of order they are exhibiting. If a system is displaying polar order, all the arrows that

describe the constituents would be, at least locally, aligned in the same direction

such that there is a non-zero mean force, and non-zero macroscopic velocity if the

constituents are motile, in the direction the particles are aligned (Fig. 1.6a). Conflu-



1.2. Active matter 29

ent tissues undergoing collective motion, discussed in Section 1.1.3, are an example

of polar order being exhibited. However, confluent tissues may also display nematic

order, usually through the alignment of cells’ orientation, as was also highlighted in

Section 1.1.3.

Nematic order is characterised by constituents showing local alignment in their

orientations but with no discernible head or tail along this orientation (Fig. 1.6b).

Consequently, a system of polar particles may exhibit nematic order if the particles

move along some common axis but, due to the interactions between particles, show

no bias in their direction of travel along that axis (Fig. 1.6c) [62]. For example,

individual microtubules display a clear polarity, but when combined in a homoge-

neous mixture with molecular motors, the emerging order and, consequently, the

emerging phenomena are nematic [61]. Similarly, cells in a tissue can be thought of

as polar as they attempt to crawl on a substrate. However, if this crawling is not

coordinated there is no polar order, but steric interactions between cells may align

their long axes and generate nematic order. This demonstrates an important point:

the order a system displays, and the emergent behaviour this order permits, is due

to the interactions between constituents as well as the behaviour of the constituents

themselves.

(a) (b) (c)

Figure 1.6: Orientational order in confluent tissues. (a)Polar particles exhibiting
polar order, red represents the head of the particle and white the tail. (b) Nematic
particles exhibiting nematic order and (c) polar particles aligning nematically, thus
exhibiting nematic order are larger length-scales.
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(a) (b) (c) (d)

Figure 1.7: Defect types found in active systems. Topological defects of charge (a)
+1/2, (b) −1/2, (c) +1 and (d) −1

Systems of polar or nematic particles can display no order in the alignment of

either their polar or nematic field, if so the system is said to be isotropic. When

order does emerge, due to either fluctuations or the initial conditions of the system,

it is rarely perfect and the orientation of the fields often vary in space and time.

Topological defects, or singularities, in these fields then arise where this variation

is discontinuous. While there are, in theory, infinitely many types of topological

defects one can observe, the symmetries of the system dictate and restrict the types

of defects that stably form. In nematic systems, the types preferred are the comet

and trefoil shaped defects seen in Section 1.1.3, known as +1/2 and −1/2 defects

respectively. In polar systems, however, ±1 defects are more prevalent [63]. Exam-

ples of the integer defects seen in polar systems, and half-integer nematic defects,

are shown in Fig. 1.7.

Nematic systems favour ±1/2 defects over ±1 as they lead to less distortion of the

nematic field so require less energy to be created and sustained. They are not seen

in polar systems, however, as the broken head-tail symmetry leads to completely

anti-aligned particles adjacent to each other within the defect, which has a high

energetic cost due to the large distortion in the polar field. Due to this, ±1 defects

are favoured as they allow constituents better local alignment.

Topological defects are characterised and so-called due to their topological charge,
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or ‘winding number’. This is the amount the field in question rotates as a closed

loop is traversed around the centre of the defect [64] (Fig. 1.8). The half integer

defects found in nematic systems are so called because the nematic field rotates by

half a full rotation, or π radians, around the loop. The sign of the defects depends on

whether the rotation of the nematic field is in the same direction as the direction in

which the loop is being traversed. If the nematic field rotates clockwise as the loop is

traversed in a clockwise direction, the defect is positive; if it rotates anti-clockwise,

it is negative. The same is true for integer defects but with the field undergoing a

full rotation.

(a) (b)

Figure 1.8: Calculating defect winding number.(a) Example of a trefoil-shaped −1/2
defects in a confluent cell layer with the orientation of the long axis of each cell
plotted in red. (b) Characterising this defect by its winding number. As a closed
loop is traversed around the −1/2 defect, the orientation of the cells rotate by π
radians (half a full rotation), hence the defect is half-integer. The sign of the defect
is negative as the cells rotate in the opposite direction to the direction of travel
around the loop

Extensile and contractile

As nematic systems are defined by constituents being head-tail symmetric, for a

system to be an active nematic the forces generated by individual constituents must

also be head tail symmetric. This leads to a final important distinction is to be
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made within active nematic systems. This is whether the system is extensile or

contractile. In the context of active matter, these terms originally referred to the

forces generated in the surrounding medium of a wet active system as swimmers

self-propel. If a swimmer self-propels by pushing fluid out along its long-axis behind

it, such as a spermatozoa, the dipolar forces generated in the fluid are said to be

extensile (Fig. 1.9a). Conversely, if self-propulsion stems from the swimmer pulling

itself forward through the fluid, such as Chlamydomonas algae [65], then the forces

generated in the fluid pull in along its long axis and are said to contractile (Fig. 1.9b).

These terms are now commonly applied to dry systems based on the type of force

generated within the constituents themselves. If the force generated pushes out

along its long axis, the constituents are said to be extensile, whereas if it pulls in

it is contractile (Fig. 1.9c). As the actomyosin cortex is contractile, individual cells

exhibit contractile forces, although they also generate extensile forces during cell

division [7].

(a) (b) (c)

Extensile

Contractile

Figure 1.9: Extensile and contractile active nematic constituents. (a) Swimmers that
self-propel by pushing fluid out behind them are known as extensile. (b) Swimmers
pull fluid towards them are contractile. (c) Dry systems are extensile or contractile
based upon the direction direction of the force dipole generated by constituents.

This microscopic dichotomy manifests itself macroscopically in the dynamics of

nematic +1/2 defects. Due to their three-fold symmetry, the force generated around

−1/2 defects balance and they display no net self-propulsion. However, due to their

polarised shape, +1/2 defects generate a net self-propulsion force that depends on

the nature of the active forces in the system. If they are extensile the +1/2 defect

is pushed in a tail to head direction, whereas contractile forces pull the defect in a

head to tail direction (Fig. 1.10) [66]. As individual cells are contractile, one would
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anticipate that defects in confluent tissues would exhibit head to tail motion when

the appear, which in some systems, such as collections of fibroblasts [28], they do.

However, other tissue types display extensile defect motion, such as MDCK epithelial

layers [29, 20] and neural progenitor cells [30], suggesting a switch in behaviour at

the tissue level from the cell level that is not fully understood.

(a) (b)

Figure 1.10: Defect motion under active nematic forces. (a) Extensile forces induce
a tail-to-head motion in +1/2 defects and (b) contractile forces induce a head-to-tail
motion.

1.2.2 Modelling approaches

There are myriad techniques for modelling the various types of systems and phenom-

ena outlined above, although they can broadly be split into two categories: micro-

scopic or coarse-grained. Microscopic approaches model the dynamics of each indi-

vidual constituent, whereas coarse-grained models capture the local mean dynamics

of a collection of constituents. As rules and parameters governing the dynamics and

interactions of individual particles are explicitly established in microscopic models,

they can be very useful for studying how macroscopic phenomena can arise from

a minimal set of rules. Also, they provide a precise link between the microscopic

parameters and these phenomena. However, explicitly modelling every constituent

leads to an increase in computational complexity as the number of agents increases,

meaning coarse-grained models are more appropriate for studying phenomena at

hydrodynamic length-scales.
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Microscopic

Vicsek Model

There are a wide variety of microscopic models, building in complexity from the

Vicsek model, perhaps the most well-known. The Vicsek model consists of polar

point particles that all move with the same constant velocity and seek to align their

velocity with that of their neighbours [67]. This is done by each particle reorienting

its polarity vector to that of the mean velocity direction of all neighbouring particles

within some interaction range, with the addition of some random noise (Fig. 1.11).

In the original model a complete reorientation is done at each time-step in the

simulation, but it can also be implemented with a delay such that the polarity vector

reorients over a given timescale [68]. These are minimal methods for introducing

polarity alignment interactions. However, unlike those discussed in Section 1.1.2,

where these interactions are a result of the force one cell exerts on another, here

they are the result of a constituent ‘sensing’ the behaviour of nearby constituents in

a more abstract way.

Like confluent tissues, this system can exhibit collective motion if at sufficiently

low noise strengths or high particle densities. Many variations of this original model

r0

Figure 1.11: Schematic of the Vicsek model. Point particles, represented by arrows,
interact with other particles with in some interaction range r0. The seek to align their
velocity (red arrow) with the mean velocity of other particles they are interacting
with (black arrow), with additional random fluctuations (black dashed lines).
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have been developed, such as the inclusion of alignment with topological nearest

neighbours as opposed to neighbours within a given distance [69] or nematic align-

ment interactions between particles [62], which all show some transition to polar or

nematic order. While the Vicsek model may be appropriate for capturing systems

such as flocks of birds [70], where constituents are not in contact and interact over

a finite distance, it is not appropriate for systems such as confluent cell layers where

constituents are by definition always in contact with one another and so always, at

a minimum, interact sterically.

Active Brownian particles

The simplest models to incorporate these volume exclusion effects are active Brow-

nian particles (ABPs). While a priori point particles, ABPs are often implemented

as self-propelled spherical particles, that can also undergo spatial diffusion as well

as fluctuations in the direction of their polarity vector, and interact via hard or soft-

core repulsive energy potentials. Variations of this can introduce more biologically

relevant forces, such as attractive forces between particles to model cell-cell adhe-

sion [71]. Additionally, ABPs are usually modelled in the overdamped limit where

inertia is negligible and dynamics are dominated by friction, the regime in which

confluent tissues also operate. ABPs can have the same alignment interactions as in

Vicsek models, with the additional option that now the particle can seek to align its

polarity vector with that of its own velocity, as opposed to that of its neighbours.

This is due to velocity and polarity no longer necessarily being the same due to

steric interactions.

If the system is overdamped, this velocity corresponds to the forces being ex-

erted on the particle and so this polarity realignment more accurately reflects the

alignment interactions in confluent tissues, where cells reorient their polarities in

response to the forces exerted on them by other cells. Inclusion of these interactions

led to good qualitative agreement between an ABP model with softcore repulsion
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and epithelial tissue dynamics [72], although obviously ABPs can only begin to

appropriately describe confluent tissues at very high particle densities. Using non-

spherical particles introduces additional repulsive torques to the steric interactions

[73]. In the case of elongated, rod-shaped particles, these torques promote nematic

alignment and can lead to a transition from an isotropic to nematic state at suffi-

ciently high densities [74], similar to what is seen in systems of spindle shaped cells

[28].

While the models discussed thus far are primarily biologically inspired and illus-

trate how generic interactions between individual constituents can spawn larger scale

emergent phenomena, they were not developed with the express purpose of describ-

ing confluent tissues. Other modelling approaches, where the forces and interactions

are explicitly based on those experienced by cells in these systems, promise more

insight into these biological systems.

Cellular Potts model

The first such model to attempt this was the Cellular Potts model (CPM), a lattice

based model where contiguous portions of the lattice are grouped together to form

cells (Fig. 1.12a) [75]. The dynamics of the cells minimise a Hamiltonian with terms

that account for the compressibility of cells and interfacial tensions between neigh-

bouring lattice sites belonging to different cells. The model is then updated using

a Monte Carlo scheme with Metropolis dynamics. Traction forces can implemented

by decreasing the energy for configurations whose cells’ centre of mass moves in the

direction of its polarity vector. CPMs have been used to study velocity correlations

in confluent tissues [76] and fingering instabilities in growing tissue fronts [77]. How-

ever, it is unclear how well these relaxational dynamics naturally describe the far

from equilibrium nature of active forces in confluent tissues.

Phase field model
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(a) (b)

(c)

Figure 1.12: Cell-based tissue modelling approaches. (a) A Cellular-potts model
showing two cells represented by contiguous blocks of lattice sites. Adapted from
[78]. (b) A vertex model showing a tiling of cell whose degrees of freedom are the
cell vertices (blue dots).Adapted from [79]. (c) The phase field model, in which cells
are each represented by a distinct phase field ϕi. Adapted from [80].

A more natural description of confluent tissues can be found in off-lattice models,

such as the phase-field model. Initially developed to study interfacial dynamics of

single cells [81], phase-field models have also been used hard condensed contexts

to study phase boundaries [82]. They have more recently been extended to study

collections of cells and confluent tissues. Each cell is represented as a distinct scalar

phase field ϕi. A free energy is then constructed in terms of ϕi and ∇ϕi that encodes

the integrity of the cell and interactions between cells (Fig. 1.12c). Repulsive forces

and cell-cell adhesive forces then arise from gradients in this free energy. Activity can

be introduced in a variety of ways. Each cell can experience a polar self-propulsive

across its surface akin to ABPs [83, 84]. Additionally, by tying forces to ∇ϕi, they
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can be implemented explicitly at cellular interfaces. In this way active nematic

forces have been implemented around the boundary of cells [85, 86]. This captures

the active intercellular forces cells can exert on another through cell-cell junctions.

Although phase-field models allow for a clear definition of forces at cellular inter-

faces, defining the forces cells experience via the scalar field ϕi introduces additional

parameters and requires the inclusion of Cahn-Hilliard free energy terms to stabilise

the interface. This adds unnecessary complexity and, as cells are bound by lipid

membranes, this is not the physical mechanism by which cells maintain a stable

shape.

Active vertex model

A simpler class of models that have nevertheless provided much insight into con-

fluent tissues are vertex models. Vertex models represent the cell layer as a confluent

tiling of polygons, the degrees of freedom being the cell vertices (Fig. 1.12b) [87]. Cell

stiffness, cortical tension and cell-cell adhesion are typically encoded via some form

of an effective tissue energy function, with gradients in this energy then governing

the forces each cell experiences.

While vertex models have their roots in describing the physics of foams, polar self-

propulsive forces have recently been included to create active vertex models (AVMs)

[88]. By using the cell vertices to define a long-axis for each cell, active nematic forces

have also been implemented [89]. This intuitive description of cellular forces has led

to AVMs becoming increasingly popular, with variations looking at the effects of

active cell-edge tensions [90], cell division and apoptosis [91]. It has been used to

study a variety of phenomena from embryo development [92], to epithelial tissue

folding [93] and cancer metastasis [94].

Self-propelled Voronoi model

A related class of vertex models are self-propelled Voronoi (SPV) models [95, 79].
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These operate under the same principles as AVMs but each cell is defined by a

single degree of freedom, a point called its cell ‘centre’. A Voronoi tessellation is

performed based on the positions of the centres from which the cell vertices found.

This halves the number of degrees of freedom in the system compared to AVMs,

as there are 2N vertices for every N cells, but requires an extra calculation to

determine how the movement of the cell vertices translates to movement of the cell

centre. Moreover, as the tissue is defined using a Voronoi tessellation, all the cell are

by definition convex in shape, meaning this model is only appropriate for studying

scenarios where cellular deformation is low. Nevertheless, SPVs have successfully

captured several phenomena seen experimentally, from the emergence of wavelike

modes in confined epithelia [96] to tissue organisation in corneal epithelia [58].

Coarse-grained

As illuminating as microscopic models are, their complexity often increases rapidly

with the number of constituents being modelled. Also, as the length-scale of the sys-

tem and phenomena being studied becomes orders of magnitude larger then the scale

of the constituents and their interactions, the behaviour of individual constituents

ceases to be of concern and their average behaviour becomes more appropriate for

describing system dynamics. One does not model fluid flow by simulating the dy-

namics of every molecule in the fluid, instead one solves the hydrodynamic equations

of motion (EOM), which are determined by the symmetries of the system at hand.

This is incredibly powerful, as each hydrodynamic model describes a whole class

of microscopic models that possess the same symmetries. The Vicsek model, ABPs

and AVMs, provided they are dry and their self-propulsion is polar, are all described

by the same model in the hydrodynamic limit: the Toner-Tu equations [97, 98]. Sim-

ilarly, wet passive nematic systems are all described by the Beris-Edwards equations

[99]. The inclusion of activity then allows for the inclusion of additional terms [34].
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Collectively migrating tissues could therefore be described using the Toner-Tu equa-

tions, or the dynamics of a cellular orientation field by the Beris-Edwards equations

with additional active terms. However, due to the many non-linearities that arise in

these equations, they can be very difficult to analyse. They can be solved by direct

numerical simulation, and numerous studies have implemented different approaches,

such as finite difference [100] and spectral methods [101], to simulate these hydro-

dynamic equations under various conditions. This has been done to investigate the

dynamics of nematic defects [66] and the dynamics of polar defects during the tran-

sition to order [102]. Nonetheless, the non-linearities in these equations can still

cause these methods to be slow and cumbersome.

One potential remedy for this problem is to use a mesoscopic approach such as

lattice-Boltzmann methods (LBMs). LBMs solve a simplified mesoscale model, a

discretised form of the Boltzmann equation, of the system of interest. The un-

derlying principle is that if this simplified system obeys the same symmetries as

the system we seek to model, then it must produce the correct behaviour in the

hydrodynamic limit as this is determined by the symmetries of the system.

This was the foundation for work done on lattice gas cellular automata models, the

predecessor to LBMs, which consist of particles moving and colliding on a lattice.

These lattice gas models are able to generate Navier-Stokes like behaviour [103],

however these models are still microscopic and the mean behaviour can only be

found by averaging over many realisations. LBMs solve this problem by moving a

distribution of particles around the lattice, effectively performing the averaging in

advance. It has since been shown analytically that LBMs of passive fluids correspond

exactly to solving the Navier-Stokes equations in the hydrodynamic limit [104].

Similarly, the same has been done for nematic systems, with an LBM for simulating

the nematic field being shown to correspond to the Beris-Edwards equation in the

hydrodynamic limit [105]. Of particular pertinence here is the recent development
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and application of LBMs to active systems. An LBM developed for dry active matter

has been shown to correspond to the Toner-Tu equations in the hydrodynamic limit

[106]. This same model has also reproduced several canonical dry active matter

emergent phenomena, such as collective motion. Moreover, a variety of phenomena

in wet active nematic systems have been studied using a ‘hybrid’ LBM, where the

velocity field is solved using a LBM and the nematic field is solved using finite

differences [100]. It has been used to investigate the onset of turbulence in these

systems [107, 108] and also the roles of nematic defects as organisational centres in

bacterial colonies [34]. Most work using LBMs has focussed on models where cell

proliferation and death is ignored, although the hybrid LBM has been used to study

the role of cell division in tissue dynamics [109].

One of the main draws of LBMs is their simplicity; solving a simplified minimal

model of the system we seek to describe strips away complexity and consequently

computational cost. They do, however, have their limitations. A key assumption in

their derivation is that the velocities present in the system are much lower than the

speed of sound; note that this is not an issue for cellular systems, which typically

operate in the overdamped limit.

One of the key challenges in modelling systems using LBMs and hydrodynamic

models is ascertaining the correct values for the parameters of the system one is

seeking to describe. This is because, when using models derived from the symmetries

of the system, any link to the specific microscopic system of interest is lost. One

approach recently developed to combat this is the development of machine learning

models to infer these parameters from experimental data [110].
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1.2.3 Machine learning in active matter

Like in so many scientific fields, machine learning, or ‘data-driven’, approaches are

being increasingly used in active matter for problems where theoretical techniques

either do not yet exist or are inadequate [111]. Machine learning is an incredibly

broad field of study in which, often large amounts of, data are used to fit, or ‘train’,

a high dimensional model such that when new data is input into the trained model

it can make a prediction or decision without being explicitly programmed to do so.

Most of the approaches used to date in active matter are classed as ‘supervised’

learning methods.

In supervised methods, the model is trained by being given a set of inputs along

with the desired corresponding outputs [112]. Its parameters are then fitted such

that they provide the best mapping between them. This is in contrast to unsuper-

vised methods, where the training inputs are not labelled with a desired output.

The model is then trained to minimise some other cost function, as opposed to

the difference between the predicted output and the desired output, meaning the

number of outputs and the values they can take are not predetermined. In both

these methods, model parameters are usually fitted using some form of stochastic

gradient-based optimisation method, where the parameters are initialised and grad-

ually adjusted based on approximating the gradient of the cost function with respect

to the parameters [113].

Supervised models can be broadly split into two categories: regression models

and classification models [112]. In classification models, each input is labelled to

correspond to a single output, or ‘class’, with the model trained to assign the correct

class for a given input. In practise this means that all possible outputs are zero

except the output corresponding to the predicted class of the input, which would be

one. In regression models, however, the model is trained to predict some numerical

value or values, so outputs are not binary and, if there are multiple, can all take
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different values.

It is regression models that are used to determine parameters in hydrodynamic

models, with the most common used thus far are linear regression methods. In

these methods, the measured hydrodynamic variables are used as inputs. From

these fields, all derivatives, and combinations of variables and derivatives, appearing

in the equations can be calculated at each point in the field. A linear fit is then

performed on the coefficients to the hydrodynamic equations such that the equation

is satisfied at each point in the field. This method even allows for the formulation of

hydrodynamic equations, as generalised equations can be postulated, containing all

terms allowed by the symmetries of the system being studied, and terms discarded

if their accompanying parameter is negligibly small, leaving a minimal set of terms

that adequately match the data. This approach has been successfully implemented

on microtubule active nematic systems [114, 115] and systems of polar particles

[116].

Another method for determining hydrodynamic coefficients is to use a neural net-

work. Based on biological neural networks in the brain, artificial neural networks are

collections of nodes, or ‘neurons’, that receives either input data or signals from other

neurons and, based on this information, transmits a signal to neurons it is connected

to [113]. Typically these neurons are arranged into distinct layers which are often

‘fully-connected’, with each neuron in one layer providing an input to every neuron

in the subsequent layer (Fig. 1.13a). Each neuron’s output is some function of the

weighted sum of its input, and so can be thought of as combining information from

different parts of the input data (Fig. 1.13b). The parameters that are fitted during

training are then the weights of the connections between each neuron. The weights

determines the strength of the signal through each neuron and by adjusting them

one can identify combinations and correlations in the input data that are impor-

tant for predicting the output accurately. However, as opposed to linear regression
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where the parameters being trained are the coefficients of the equations themselves,

and the cost function is the error in some postulated equation of motion, in neural

networks the parameters are fitted to predict these coefficients and the error is the

difference between this prediction and the actual coefficients. As such, data where

the actual hydrodynamic coefficients are known is needed. This has been achieved

for an active nematic system by training a neural network on data from a simulated

nematohydrodynamic model, where the parameters are known, before testing it on

experimental data for a microtubule system [110].

In this study, the first layers in the neural network were convolutional layers.

Convolutional layers take advantage of spatial structure in the input by passing a 2D

array of neurons known as a feature detector, over the input data to test whether a

feature or structure is present in the data at each point (Fig. 1.13b). Multiple feature

detectors identifying different structures and patterns are used simultaneously, with

the output signal being how strongly each feature is detected at each point in the

field. The parameters that are then trained are the weights of each neuron in the

feature detector, such that the model is trained to detect pertinent features [113].

Convolutional layers are more effective than fully-connected layers when the input

data for a given problem is an image or 2D field, as they preserve the 2D structure

of the image. Fully-connected layers flatten the image into one dimension when

feeding the input data into the first layer of the network.

Due to this, convolutional neural networks (CNNs) are widely used in classifi-

cation tasks where objects need to be detected in an image. Neural networks are

commonly used in classification tasks and can be very useful in classifying phenom-

ena and behaviour in active systems. They have been used to identify distinct phases

in a system of polar particles [117] and detect topological defects in nematic sys-

tems [118, 119]. As previously discussed, correctly classifying behaviour in biological

systems can be a challenge in itself and a prerequisite for understanding the mecha-
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nisms driving such behaviour. Machine learning and neural networks therefore offer

a promising avenue for assisting in this regard, where theory based methods are

currently lacking.

Figure 1.13: Schematics of neural network architectures. (a) A fully-connected feed
forward network. Input data is fed into intermediate, or ‘hidden’, layers who in turn
transmit signals to subsequent layers or the output layer. (b) Each input xi to a
neuron is weighted by wi, the parameter that is fitted during training, such that
each neuron produces an output signal that is a function of the weighted sum of its
N inputs. (c) A convolutional neural network. Feature detectors, scan the 2D input
data to create a map of the degree to which a given pattern is detected at each point
in the input. Further layers of feature detectors can be scanned across these maps
the search for higher order correlations in the input data. These layers are typically
succeeded by a fully connected layer to collate the information into form that can
be fed into the output layer.
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1.3 Overview and scope

Thus far we have discussed some of the behaviours exhibited by confluent tissues,

their role in important biological processes and why the most effective way of under-

standing them can often be from the forces generated, and interactions that arise,

at the cellular level. We have also outlined some of these forces and interactions,

where the link between them and the emergent behaviour can sometimes be clear

but is often uncertain. In the following chapters, we will develop tools and concepts

from active matter, introduced above, to gain insight into the emergence of different

tissue scale phenomena.

In Chapter 2, we investigate the emergence of extensile nematic behaviour in

confluent tissues. As discussed previously, the actomyosin machinery within cells

means the active forces they generate are contractile, meaning one would reasonably

assume that behaviour at the tissue level is also contractile. However, some tissues

exhibit extensile collective behaviour, evidenced by the motion of +1/2 defects in

the tissue. To investigate how extensile behaviour can emerge from a collection of

contractile constituents, we construct a linearised hydrodynamic model of a confluent

tissue on a substrate which describes tissue velocity and nematic fields in the limit

of small fluctuations. By calculating correlations between the velocity field and

the nematic field, we show that the polar traction forces cells generate to self-propel

manifest as extensile behaviour in the nematic field. This can drive extensile nematic

behaviour in systems with contractile constituent forces. We then demonstrate an

example of this result by examining the motion of nematic defects detected in an

AVM whose only active forces are polar. As the active forces are solely polar, from

our analytical theory we expect this model to exhibit extensile motion, which is

exactly what we find.

In seeking to examine the motion of defects in an AVM in Chapter 2, one of the
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key challenges was detecting nematic defects when they appear in the tissue. One

cannot begin to understand or study these phenomena and the biological processes

they mediate if they cannot even be reliably identified. Current methods break

down and are inefficient in systems of cells where the long-axis is less well-defined,

as as often the case in confluent tissues such as epithelial layers. This is evidenced

through the vast amounts of data required to obtain the extensile velocity field

around the defects detected in our AVM. In Chapter 3 we address this deficiency by

developing a machine learning model to detect defects in confluent tissues, designed

such that it is easy to use and suitable for experimental data. We train it using data

from our AVM and show that it outperforms current defect detection techniques.

We demonstrate this improved performance with improved capturing of the velocity

field around +1/2 defects using a limited amount of data. This highlights that our

method has the potential to improve experimental outcomes where the amount of

available data can be limited.

In Chapter 4, we study a different tissue scale behaviour, the dynamics of a growing

tissue boundary. We examine the dynamics and stability of the interface of a growing

tissue, focusing on the role of cell proliferation in the dynamics of the interface. To

do this we develop a novel LBM that incorporates friction with the substrate, cell

proliferation and, crucially, a sharp, growing front. We find that, for two different

growth regimes at small system sizes, the growth and dynamics of the interfaces

are characterised by fluctuations in the interface width that scale in agreement

with the Kardar-Parisi-Zhang (KPZ) universality class. However, we find that, for

sufficiently large system sizes, the width of the interface becomes unstable and a

system spanning instability emerges. By constructing a minimal analytical model

for the dynamics of the interface, we show that this instability emerges due to a

coupling between the number of constituents actively proliferating and the position

of the interface.
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In Chapter 5, we summarise our findings, their implications, the limitations of our

work, and future directions for each of the studies.



Chapter 2

Emergent active nematic collective

behaviour

2.1 Introduction

Collective nematic behaviour in planar confluent epithelial tissues represent a prime

example of emergent behaviour at the macroscopic level being very different from

what one would expect from the microscopic picture. While a single motile epithe-

lial cell on a substrate can exhibit polar dynamics [78, 18] and generate contractile

nematic stress when its cell shape is elongated [120], a confluent monolayer of these

cells can instead act like an extensile nematic [29]. Intriguingly, this disconnect

between the cellular and tissue dynamics is robust and present no matter whether

the tissue is in a liquid or solid state. The cause of this discrepancy remains poorly

understood in both cases. Resolving the seemingly contradictory behaviour at the

single-cell versus the tissue level is not only important to active matter physics, but

is also crucial to a number of fundamental biological processes. As discussed in Sec-

tion 1.1.3, in confluent cell layers, extensile nematic defects have been shown to me-

diate cell extrusions in epithelial monolayers [29] and control the collective dynamics

49
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of neural progenitor cell cultures [30]. In collectives of micro-organisms, they are

responsible for initiating layer formation in Myxococcus xanthus colonies [32], medi-

ating the morphologies of growing E. coli colonies [34], controlling morphogenesis in

Hydra [31] and increasing collective migration velocities of Pseudomonas aeruginosa

[33].

Due to the presence of nematic defects, these biological systems are increasingly

being characterised using active nematic theories [121, 122, 123]. As active ne-

matic systems are typically characterised by elongated constituents possessing apo-

lar motility [124], where it is well established that activity can induce local nematic

order [125, 126, 127], it is not surprising that previous studies focused on describing

these systems as active nematics. For example, in Myxococcus xanthus colonies, in-

dividual bacteria are rod shaped and display periodic reversals of velocity direction

[128]. Other biological constituents that exhibit collective nematic behaviour usually

possess at least one of these two features, such as the spindle shape of fibroblasts or

the active forces involved in cell division being inherently dipolar [21, 109, 56]. How-

ever, epithelial cells are not rod-shaped and display polar dynamics [78, 18], calling

into question whether active nematic theories capture the fundamental physics of

epithelial monolayers.

Recent studies have tried to resolve the discrepancy between cell-level and tissue-

level dynamics in epithelial tissues [85, 129, 86], with one study notably linking polar

activity to extensile active nematic behaviour [129]. However, these studies either

directly incorporate ad-hoc extensile nematic terms into the equations of motion

(EOM), either in the deterministic part [85] or the fluctuation part [129]. Ad-

hoc anisotropic noise terms with no biological motivation have also been added to

nematic models to achieve the extensile behaviour [86]. Doing so begs the following

question: Are we missing key microscopic, cell-level ingredients to justify these

terms?
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In this chapter, we refute this need by showing, analytically and by simulation,

that polar fluctuations (due to cell-substrate interactions) generically lead to exten-

sile nematic behaviour in a confluent tissue, in both liquid and solid states. Our

conclusion applies universally in the small fluctuation limits when active contractile

nematic stresses are absent in the system. When contractile stresses are switched

on at the cellular level (due to cellular contractility and cell-cell interactions [130]),

the nematic nature of the confluent tissue can be either extensile or contractile de-

pending on, e.g., the relative strengths of the polar fluctuations and the fluctuations

of the active nematic stresses.

We will first analyse a generic set of linearised EOM describing the velocity and

nematic fields of confluent cell tissues in both solid and liquid states. We then

illustrate our findings by simulating liquid and solid confluent tissues using an AVM

and determine their collective behaviour by examining the dynamics of nematic

defects in the system.

2.2 Analytical hydrodynamic modelling

2.2.1 Incompressible fluid case

We first consider a hydrodynamic model of a 2D confluent cell tissue in the liquid

state. Consistent with previous studies, we will treat confluent tissues with polar

fluctuations as an incompressible active fluid on a frictional substrate [97, 98, 60,

131], in which the polar fluctuations originate from cell-substrate interactions as

the cells generate active traction forces; we ignore thermal fluctuations as they

are negligible in cellular and tissue dynamics. To capture the coarse-grained cell

shape anisotropy, we use the nematic tensor field Q = S(2n̂n̂ − 1), where S is the

scalar nematic order parameter and n̂ is the local coarsed-grained unit director that



52 Chapter 2. Emergent active nematic collective behaviour

corresponds to the local average orientation of cell elongation. The scalar order

parameter S takes a value of 1 if cells are perfectly aligned locally and zero if they

are in an isotropic state.

The equations of motion are the active nemato-hydrodynamic equations of motion

for a dry system, which are

∂tv + v ·∇v = µ∇2v −∇P − Γv + α∇ ·Q+ ξ (2.1a)

∂tQ+ v · ∇Q = Ω+D∇2Q− ηQ , (2.1b)

where P is our tissue pressure. In the language of optimisation, the “pressure”

P in Eq. (2.5a) acts as a Lagrange multiplier that enforces the incompressibility

condition ∇·v = 0. In other words, it takes the value that minimises the free energy

F = 1
2

∫
x
µ|∇v|2 subject to the constraint ∇ · v = 0.

Our tissue viscosity is µ, Γ the effective friction with the substrate and α the

nematic activity. The active nematic term α∇ ·Q stems from the active stress αQ.

As our system is active, force densities need not arise from a free-energy functional

and the active stress is a simple, apolar means of representing the coarse-grained

dipolar force fields generated by cells’ cytoskeleton and transmitted via cell-cell

junctions [132]. Taking α > 0 encodes the active contractility exhibited by individual

cells. The polar fluctuations ξ, originating from cell-substrate interactions such as

transient lamellipodia activity [130, 18], are represented by a Gaussian white noise

with

⟨ξi(t, r)⟩ = 0 , ⟨ξi(t, r)ξj(t′, r′)⟩ = 2∆δijδ(t− t′)δ2(r− r′) , (2.2)

where ∆ is the strength of the fluctuations. Indeed, while the cells’ polar fluctuations

typically display some persistency, this length and time-scale of this persistency

is lower than hydrodynamic scales. This means that, in the hydrodynamic limit

(i.e. at long enough time and length-scales), this persistency is irrelevant and these
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fluctuations can be described as δ-correlated noise terms as in Eq. (2.2). This is

akin to systems of self-propelled particles being described by the Toner-Tu equations

in the hydrodynamic limit [53, 97, 98].

In our EOM for Q, Ω is the corotational derivative, capturing the response of the

nematic field to gradients in the flow, in addition to the advective term on the LHS.

It is given by

Ωij = (2λSik + ωik)

(
Qkj +

δkj
2

)
(2.2)

+

(
Qik +

δik
2

)
(2λSkj − ωkj)− 2λ

(
Qij +

δij
2

)
(Qkl∂kvl) ,

where Sij = (∂jvi+∂ivj)/2 is the strain rate tensor, ωij = (∂ivj−∂jvi)/2 is the vortic-

ity tensor and λ is our flow alignment parameter. The other two terms on the RHS of

our EOM forQ describe the relaxational dynamics of of system. The are governed by

the de Gennes-Ginzburg-Landau free energy F = 1
2

∫
x
(aTr[Q]2 +K(∇Q)2), where

K is the nematic stiffness (in the one-elastic constant approximation) [133, 129].

As, in the absence of activity, our system will relax to an isotropic state (S = 0),

a > 0 and we neglect stabilising higher order terms in Q. The two terms in our

EOM then come from the system seeking to relax to a minimum in this free energy

−1

γ

δF

δQ
= −ηQ+D∇2Q , (2.4)

where γ describes the rotational viscosity of the material, D = K/γ is the diffusivity

parameter and η = a/γ can be thought of as an inverse relaxation time.

Motivated by in vitro experimental studies on epithelial tissues, we focus on the

regime without long-range order in the velocity field v [131] or quasi-long-range

order in the nematic fieldQ [134, 135, 136], and away from the order-disorder critical

region [137]. While we do not expect the system to develop any hydrodynamic soft

modes in this regime, it is still of interest to use the hydrodynamic equations to
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study the system at length-scales beyond the microscopic (cellular) length-scale. In

the small fluctuations regime, the magnitudes of both v and Q are small and thus

the linearised EOM are expected to apply universally; these are of the form:

∂tv = µ∇2v −∇P − Γv + α∇ ·Q+ ξ (2.5a)

∂tQ = λ
[
∇v + (∇v)T

]
+D∇2Q− ηQ . (2.5b)

We will focus first on the case of passive nematics, without any contractility (α = 0

in Eq. (2.5a)). In the highly damped limit (large Γ and η), we can set both

temporal derivatives in Eq. (2.5) to zero. To ascertain the extensile or contractile

nature of the nematic field, we calculate the equal-time, equal-position correlation

⟨v · (∇ · Q)⟩. The motivation behind doing so is that an active nematic material

is usually characterised as extensile or contractile by the sign of the coefficient α in

front of the active nematic term α∇ · Q when present [53, 138, 139]. Focusing on

Eq. (2.5a) and ignoring all spatial and temporal variations, it is clear that the sign

of α is the same as that of the correlation ⟨v · (∇ ·Q)⟩. Therefore, even if α = 0,

calculating such a correlation, or just determining whether it is positive or negative,

enables us to ascertain effectively the extensile or contractile nature of the nematic

field under the system’s dynamics.

We can express ⟨v · (∇ · Q)⟩ as inverse Fourier transforms (where the Fourier

transform is defined as: ṽ(k) ≡ F [v(r)] = (2π)−1
∫
d2r v(r)e−ik·r) by

⟨v · (∇ ·Q)⟩ =
〈
F−1[ṽ(k′)] · F−1[ik · Q̃(k)]

〉
(2.6a)

=

〈∫
d2k d2k′

(2π)2
ṽi(k

′)(ikjQ̃ij(k))e
i(k+k′)·r

〉
. (2.6b)

We now seek to write our velocity and nematic field in terms of our stochastic

fluctuations, which we can then average over to calculate our correlation. In the
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large damping limit with α = 0, Eq. (2.5a) reads

Γv = −∇P + µ∇2v + ξ . (2.7)

Taking the divergence of Eq. (2.7) and applying the incompressibility condition

(∇ · v = 0) gives a Poisson equation in the pressure

∇2P = ∇ · ξ . (2.8)

Assuming our pressure and fluctuations decay to zero at infinity, we can thus elim-

inate the pressure from our velocity equation to obtain

Γv − µ∇2v = Pξ , (2.9)

where we have introduced the incompressibility projection operator P , Pij = δij −

k̂ik̂j in Fourier transformed space. Fourier transforming the whole expression above

and using Einstein’s summation convention, we can write our velocity field in terms

of our stochastic fluctuations

(Γ + µk2)ṽi(k) = Pij ξ̃j(k) . (2.10)

For the nematic field, taking the divergence of Eq. (2.5b) and using the incompress-

ibility condition, we obtain in index notation

(η −D∂kk)∂jQij = λ∂jjvi , (2.11)

which in Fourier space leads to

ikjQ̃ij(k) = −λk
2ṽi(k)

η +Dk2
= − λk2

η +Dk2
Pij ξ̃j(k)

Γ + µk2
, (2.12)
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as required. Substituting Eq. (2.10) and Eq. (2.12) into Eq. (2.6b) gives

⟨v · (∇ ·Q)⟩ =

〈∫
d2k d2k′

(2π)2
Pij ξ̃j(k

′)

µk′2 + Γ

(
− λk2

η +Dk2
Pilξ̃l(k)

Γ + µk2

)
ei(k+k′)·r

〉
(2.13)

= −λ
∫

d2k d2k′

(2π)2
ei(k+k′)·r

k2
〈
(δij − k̂′ik̂

′
j)ξ̃j(k

′)(δil − k̂ik̂l)ξ̃l(k)
〉

(µk′2 + Γ)(µk2 + Γ)(η +Dk2)
.

(2.14)

When averaging over the noise the incompressibility projection operator drops out

to give as a final result

⟨v · (∇ ·Q)⟩ = −2λ∆

∫
d2k

(2π)2
k2

(η +Dk2)(Γ + µk2)2
. (2.15)

The integral above is always positive (in fact, it equals DΓ+µη[log(µη/(DΓ))−1]
4πµ(DΓ−µη)2

when

integrating over all wavelength k). Therefore, the correlation depends only on the

sign of λ. Specifically, the nematic field is statistically extensile if λ > 0, and

contractile if λ < 0. In the case of confluent cell tissues, it is clear that a positive

velocity gradient will cause a cell to stretch in the direction of that gradient. Hence,

λ is positive and thus statistically, the velocity field is negatively correlated with the

divergence of the nematic field. In other words, in the highly damped limit, a polar

fluctuation in confluent cell tissues will generically lead to the appearance of active

extensile nematics.

However, active contractile nematic behaviour in cell tissues has also been observed

experimentally, e.g. in fibroblasts cells [28, 20]. In the context of active nematics,

one can recover this behaviour by setting α > 0 in Eq. (2.5a). Additionally, since

the nematic field Q can now generate active stresses, fluctuations in the EOM of Q

are also generically present. Specifically, one needs to include a Gaussian noise term
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Θ on the R.H.S. of Eq. (2.5b), with statistics given by

⟨Θij(t, r)⟩ = 0 , (2.16a)

⟨Θij(t, r)Θkl(t, r′)⟩ = 2∆Qδ(t− t′)δ2(r− r′)ϵijkl (2.16b)

where, for symmetry reasons,

ϵijkl =
1

2
(δikδjl + δilδjk − δijδkl) . (2.17)

We now repeat the analysis with the terms α∇ ·Q and Θ included Eq. (2.5a) and

Eq. (2.5b), respectively, assuming no correlation between Θ and ξ. In the highly

damped limit, our governing equations in the linear regime are thus

0 = µ∇2v −∇P + α∇ ·Q− Γv + ξ (2.18a)

0 = λ
[
∇v + (∇v)T

]
+D∇2Q− ηQ+Θ . (2.18b)

In Fourier transformed space, the above two equations become

(µk2 + Γ)ṽi = Pij

[
iαkkQ̃jk + ξ̃j

]
(2.19a)

(Dk2 + η)Q̃ij = iλ(kiṽj + kj ṽi) + Θ̃ij , (2.19b)

where once again Pij(k) = δij − k̂ik̂j and is there to enforce the incompressibility

condition. Using Eq. (2.19b) to eliminate Q̃ in Eq. (2.19a), we have

[
µk2 + Γ +

λαk2

Dk2 + η

]
ṽi = Pij

[
iαkkΘ̃jk

Dk2 + η
+ ξ̃j

]
. (2.20)



58 Chapter 2. Emergent active nematic collective behaviour

We now consider the equal-time correlation ⟨v · (∇ ·Q)⟩, which can be expressed as

⟨v · (∇ ·Q)⟩ =
〈
F−1[ṽ(k′)] · F−1[ik · Q̃(k)]

〉
(2.22)

=

〈∫
d2k

2π

d2k′

2π
ṽi(k

′)[ikjQ̃ij(k)]e
i(k+k′)·r

〉
=

∫
d2kd2k′

(2π)2
ei(k+k′)·r

Dk2 + η

[
−λk2 ⟨ṽi(k′)ṽi(k)⟩+ ikj⟨ṽi(k′)Θ̃ij(k)⟩

]
=

∫
d2k

(2π)2(Dk2 + η)

{
− 2λ∆k2G(k)2

+α∆Qk
2

[
G(k)

Dk2 + η
− αλk2G(k)2

(Dk2 + η)2

]}
,

where G(k) ≡
[
µk2 + Γ + λαk2

Dk2+η

]−1

.

For passive nematics (α = 0), the above expression corresponds to Eq. (2.15). The

second and third terms are the new terms due to the nematic activity. Denoting the

term in the square brackets as

I(k) =
G(k)

Dk2 + η
− αλk2G(k)2

(Dk2 + η)2
, (2.22)

one finds that limk→0 I(k) = (Γη)−1 and limk→∞ I(k) = 0. Further, for contractile

nematics, α > 0, given that all parameters Γ, µ, η, λ and D are also positive, one can

show that I(k) is a monotonically decreasing function by checking that I ′(k) < 0.

We thus conclude that the sign of the term in the square brackets is always positive.

Hence, the system can transition from exhibiting extensile nematic behaviour to

contractile nematic behaviour when the terms in the square bracket dominate over

the first one. As the contractile and extensile terms are proportional to α△Q and

λ△ respectively, this shows that the extensile-to-contractile transition occurs when

α△Q ≫ λ△.

To better estimate when the transition occurs, we can focus on the high damping
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limit (Γ, η ≫ 1) and re-write the above integral as

∫ Λ

0

dk

2π

[
αΓ△Qk

3 + (2D∆λ− α△Qµ)k
5

Γ2η2
− 2∆λk3

Γ2η
+O

(
1

η3
,
1

Γ3

)]
, (2.23)

where we have integrated out the angular direction and imposed an ultra-violet

cutoff Λ. Integrating the integral, we find that, in the limits of large Γ, η and Λ, the

extensile-to-contractile transition occurs when

α∆Q

λ∆
>

2D

µ
. (2.24)

We note here that our results so far are qualitatively and quantitatively different

from a recent work linking polar forces to extensile behaviour [129] in the following

ways: (1) both the active stress term (∝ α) and fluctuations in Q are crucial for the

extensile-contractile transition in our work (since it is the product α∆Q that appears

in the correlation Eq. (2.21)), (2) we do not assume that the nematic field influences

the polar fluctuations, and (3) nonlinear advective coupling is not needed in our

treatment. Indeed, while nonlinear effects may be crucial in the high fluctuation

limit, it remains unclear how to gauge the importance of a particular nonlinear

term in relation to (many) other nonlinear terms that are intrinsically present in the

EOM. In the present theory, we focus exclusively on the small fluctuation limit.

2.2.2 Compressible fluid case

To underline the generality of our result, we now look at a tissue away from the

incompressible limit, in the case without active contractility. Introducing compress-

ibility to our system means we must now include a continuity equation for our

density field ρ. Our initial EOM are thus
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∂tρ+ v ·∇ρ = −ρ(∇ · v) (2.25a)

∂tv + v ·∇v = µ1∇2v + µ2∇(∇ · v)− c2∇ρ− Γv + ξ (2.25b)

∂tQ+ v ·∇Q = Ω+D∇2Q− ηQ , (2.25c)

where we have used an equation of state for the pressure P = c2ρ and now have

an additional contribution from viscous stresses in Eq. (2.26) due to relaxing the

incompressibility condition. As we are concerned with the small fluctuation limit,

we linearise the continuity equation around a mean density ρ0. Our linearised EOM

now read

∂tρ = −ρ0(∇ · v) (2.26a)

∂tv = µ1∇2v + µ2∇(∇ · v)− c2∇ρ− Γv + ξ (2.26b)

∂tQ = λ(∇v +∇vT ) +D∇2Q− ηQ . (2.26c)

In Fourier transformed space, the density is given by

ρ̃ =
ρ0k · ṽ
ω

, (2.27)

which can be substituted into the Fourier transformed equation for the velocity field

to give

[iω − µ1k
2 − Γ]ṽ −

[
µ2k

2 + ic2
ρ0
ω

]
k(k · ṽ) + ξ̃ = 0 . (2.28)

By separating ṽ into its longtudinal and transverse components ṽ = ṽL(k)k̂+ṽT (k),

where k · ṽT = 0 by definition, and substituting this into Eq. (2.28) we can obtain
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expressions for each of these components in terms of the polar fluctuations

ṽL =
ξ̃L

µLk2 + Γ + i
(
c2k2 ρ0

ω
− ω

) (2.29a)

ṽT =
ξ̃T

µ1k2 − iω
, (2.29b)

where µL = µ1+µ2. Now writing the equation for the nematic field in Fourier space

and taking the divergence we have

ik · Q̃ =
−λ [k2ṽ + k(k · ṽ)]
Dk2 + η − iω

(2.30)

=
−λk2

[
2ṽLk̂+ ṽT

]
Dk2 + η − iω

. (2.31)

We again consider the correlation ⟨v · (∇ ·Q)⟩, which is of the form

〈∫
d2kd2k′dωdω′

(2π)3
ṽi(ω

′,k′)[ikjQ̃ij(ω,k)]e
i[(k+k′)·r−(ω+ω′)t]

〉
. (2.32)

Substituting in Eq. (2.31) and ṽ = ṽLk̂+ ṽT gives

−λ
∫

d2kd2k′dωdω′

(2π)3
ei[(k+k′)·r−(ω+ω′)t]

Dk2 + η − iω′ k
2(⟨ṽL(ω,k)ṽL(ω′,k′)⟩+⟨ṽT (ω,k)ṽT (ω′,k′)⟩) ,

(2.33)

which, using Eq. (2.29), we calculate to be

⟨v · (∇ ·Q)⟩ =− 2λ∆

∫
d2kdω

(2π)3
k2(η +Dk2)

(η +Dk2)2 + ω2
(2.34)[

2

(µLk2 + Γ)2 + ω−2(c2k2ρ0 − ω2)2
+

1

(µ1k2 + Γ)2 + ω2

]
. (2.35)

This, like the incompressible case, is always negative, further confirming that polar

fluctuations drive extensile behaviour in the nematic field.
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2.2.3 Solid case

Having established the expected extensile nematic behaviour in confluent tissues in

the liquid state, we now repeat the analysis in the solid state, again in the highly

damped limit. Here, the relevant hydrodynamic variables are the displacement field

u from the stress-free configuration, as well as the velocity field v and the passive

nematic field Q. Our EOM in this case read [140]

Γv = A∇2u+B∇(∇ · u) + ξ (2.36a)

∂tQ = Ω+ C
[
∇u+ (∇u)T

]
+D∇2Q− ηQ , (2.36b)

where the constants A and B are the shear modulus and bulk modulus of the

material respectively, both of which are positive [140], and ξ is a polar fluctuation

term again given by Eq. (2.2). The coupling constant C between the strain and

nematic fields leads to the development of strain anisotropy either parallel (C > 0)

or perpendicular (C < 0) to Q [141]. We expect it to be positive for the same reason

- outlined previously - that we expect λ to be positive, although the sign does not

effect our result.

We then linearise again and focus on the highly damped limit to give

Γv = A∇2u+B∇(∇ · u) + ξ (2.37a)

ηQ = C
[
∇u+ (∇u)T

]
+ λ

[
∇v + (∇v)T

]
+D∇2Q . (2.37b)

We can now analyse Eq. (2.37) following a similar procedure as in the liquid case.

In Fourier transformed space, we have

ṽ = −(A+B)k2ũLk̂− Ak2ũT + ξ̃ (2.38a)

Q̃ =
iC
[
kũ+ (kũ)T

]
+ iλ

[
kṽ + (kṽ)T

]
Dk2 + η

, (2.38b)
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where we have defined the coefficients A and B to eliminate Γ to ease notation. We

have also decomposed ũ into longitudinal and transverse components, ũ = ũL(k)k̂+

ũT (k). In Fourier (spatial and temporal) transformed space, the expressions for ũ

are

ũL =
ξ̃L

−iω + (A+B)k2
(2.39a)

ũT =
ξ̃T

−iω + Ak2
. (2.39b)

We are again interested in the sign of the equal-time equal-position correlation

⟨v · (∇ ·Q)⟩, which, from Eq. (2.6b), is of the form

〈∫
d2kd2k′dωdω′

(2π)3
ṽi(ω

′,k′)[ikjQ̃ij(ω,k)]e
i[(k+k′)·r−(ω+ω′)t]

〉
, (2.40)

where we now also have the time/frequency argument in the above expression since

v = ∂tu. With the above results, the equal-time correlation function is thus

⟨v · (∇ ·Q)⟩ = −λ
∫

d2kdω

(2π)3
k2 ⟨ṽi(−ω,−k)ṽi(ω,k)⟩

Dk2 + η
, (2.41)

where we integrate over all wavelengths up to an ultra-violet cut off. This integral is

always negative if λ > 0, since the correlation ⟨ṽi(−ω,−k)ṽi(ω,k)⟩ is always positive

(see Eq. (2.38)). The above results underline that, in the small fluctuations limit,

polar fluctuations generically drive extensile nematic forces in the solid state.

2.3 Numerical Cell-resolution modelling

To validate our analytical results, we perform simulations on cell-based models of

confluent tissues in both liquid and solid states [142]. We use the active vertex

model (AVM) to explore the dynamics of the tissue in both solid and liquid states.
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As in previous studies, we focus on the dynamics of +1/2 defects to determine the

extensile or contractile nature of the nematic field [66]. In addition, we also calculate

the isotropic stress fields around these defects arising from cell-cell interactions,

to underline the consistency between our modelling and experimental results [29].

Finally, we then calculate the correlation ⟨v ·(∇·Q)⟩ to demonstrate the consistency

between using this method and examining defect dynamics as a means of determining

nematic behaviour.

We first detail how we implement the AVM and our procedure for calculating

the stress in the tissue, before describing how we detect defects in our system and

analysing their dynamics. We then calculate ⟨v · (∇ ·Q)⟩.

2.3.1 Active vertex model implementation

The AVM represents the monolayer as a tiling of polygons; the cell vertices are the

degrees of freedom in this model, and each cell is endowed with a self-propulsive

motile force (Fig. 2.1). In addition to self-propulsion, vertices move in response

to mechanical interactions stemming from an effective tissue energy function. As

the only active forces explicitly included are polar, this model is comparable to our

analytical model without the inclusion of active contractility and extensile behaviour

is expected universally. Our effective tissue energy function is defined as

E =
N∑
a=1

KA(Aa − A0)
2 +KP (Pa − P0)

2 , (2.42)

where N is the number of cells, KA and KP are the area and perimeter moduli,

Aa and Pa are the area and perimeter of cell a, and A0 and P0 are the target

area and perimeter common to all cells. The first term in Eq. (2.42) is quadratic

in the cell areas and encodes a combination of cell volume incompressibility and

the monolayer’s resistance to height fluctuations. The second term in the energy
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function is quadratic in the perimeter of the cells and encodes a competition between

the cytoskeleton and cell membrane tension from cell-cell adhesion and cortical

tension. The interaction force on vertex m is then Fm = −∇mE, which we calculate

to be

Fm = − ∂E

∂rm
= −

∑
a∈N (m)

∂Ea

∂rm
, (2.43)

where a ∈ N (m) denotes the 3 cells indexed by a that are neighbours to vertex

m. The interaction force experienced by cell a is due to the shape of the cells that

neighbour it. The energy derivatives are then

∂Ea

∂rm
=
∂Ea

∂Aa

∂Aa

∂rm
+
∂Ea

∂Pa

∂Pa

∂rm

= 2KA(Aa − A0)
∂Aa

∂rm
+ 2KP (Pa − P0)

∂Pa

∂rm
. (2.44)

The area and perimeter derivatives are given by

∂Aa

∂rm
=

1

2
(|rmn|n̂mn + |rmp|n̂mp) ,

∂Pa

∂rm
= r̂mn + r̂mp , (2.45)

where vertices p and n are the two vertices directly before and after m (respectively)

when traversing the vertices of cell a in a clockwise loop. We denote rmn = rm − rn

as the cell edge connecting vertices m and n, n̂mn is the outward facing normal unit

vector to that edge and r̂mn = rmn/|rmn|.

To model cell motility, each cell is endowed with a self-propulsion force of con-

stant magnitude f0. This self-propulsion force acts along a polarity vector, n̂a =

(cos θa, sin θa), where θa is an angle measured from the x-axis. The resultant self-

propulsion force on each vertex is the average of the three self-propulsion forces of

the cells that neighbour vertex m, fm = f0
3

∑
a∈N (m) n̂a, where N (m) denotes the list

of cells that share vertex m. Assuming overdamped dynamics and a large supply of
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ri

fi Fi

Figure 2.1: Schematic of the active vertex model. The degrees of freedom are the
cell vertices (black dots). Each vertex experiences two types of forces, an active
force from cellular self-propulsion, fi (red arrow), which is the mean self-propulsive
force from the 3 cells that neighbour each vertex (blue arrows), and the mechanical
response of the tissue to this driving, Fi (black arrow).

ATP, the EOM of each vertex is defined as

drm
dt

=
1

ζ
(Fm + fm) , (2.46)

where ζ is the damping coefficient. The polarity vector of each cell also undergoes

rotational diffusion according to

dθa
dt

=
√

2Drξa(t) , (2.47)

where ξa(t) is a white noise process with zero mean and unit variance and Dr is the

rotational diffusion coefficient. We implement the Euler-Mayurama method in C++

and numerically integrate Eq. (2.46) and Eq. (2.47) forward in time with time-step

∆t = 0.01, and D−1
r as our unit time.

We initialise the simulation by arranging N cells on a hexagonal lattice, with grid

spacing d =
√

2/
√
3, in a periodic domain with dimensions dN × (

√
2/3)dN . We

then draw a Voronoi diagram from the seeded points to obtain the initial positions of

the vertices. The choice of grid spacing gives edges of length a = d/
√
3 and ensures

that all cells initially have unit area. This means the average cell area throughout the

simulation Ā = 1 and we use
√
Ā as our unit length. To ensure different realisations
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of the system are independent, cells have random initial polarities and we integrate

through at least 2 × 103 time units in the liquid state to initialise the system. We

then quench the system at the desired p0 value and run our simulations for 104 time

units.

Prior to initialising, we create a series of lists storing each cells neighbours, which

vertices belong to each cell and which three cells neighbour each vertex. The in-

formation is stored in a clockwise order and updated as cells rearrange, making

accessing information much quicker when marching forward in time. These lists are

then used throughout each time-step. For example, the list of which vertices belong

to each cell is used when calculating the cellular area, perimeter and long axis direc-

tion, and the list of which cells neighbour each vertex is used when calculating both

the active and interaction force on each vertex. At each time-step, we then calculate

the area and perimeter of each cell, calculate the active force and interaction force

on each vertex, update the vertex positions, update the polarisation directions and

check if any cell rearrangements are required.

The vertex model has been shown to undergo a rigidity transition that is controlled

by a single non-dimensional parameter, the target shape index p0 = P0/
√
A0 [87].

In passive systems, where f0 = 0, this transition occurs at p0 = p∗0 ≈ 3.81, although

this decreases with increasing motility [95]. Above this critical value of p∗0 there

are no energy barriers to cell rearrangements and the cell layer enters a liquid-like

phase. We thus choose pairs of values of p0 and f0 to ensure p∗0 < 3.81 for our solid

simulation and p∗0 > 3.81 for our liquid simulation.

We implement cell rearrangements in the form of T1 transitions when a cell edge

length becomes lower than a threshold value, lT1 (Fig. 2.2). To perform a T1 transi-

tion, we rotate the edge to be switched (the edge shared by cells 2 and 3 in Fig. 2.2)

about its centre such that it is parallel to a line connecting the centres of mass of

the old neighbouring cells. The new edge length is then set to be equal to 1.5lT1 to
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avoid switching back and forth of neighbours. After performing the exchange, we

update the relevant neighbour and cell vertex lists, ensuring all elements are still

stored in a clockwise order.

1 1

2 2

3 3

4 4

Figure 2.2: Cell rearrangements are performed via T1 transitions. When an edge
becomes shorter than a threshold value, such as between cells 2 and 3 on the left,
the edge is changed such that neighbours are exchanged and cells 1 and 4 become
neighbours.

Unless otherwise stated, in the AVM we simulate N = 400 cells with parameters

A0 = 1, Dr = 1, ∆t = 0.01 and a T1 transition threshold length, lT1 = 0.01. For

the liquid state we use P0 = 3.7 and f0 = 0.5, and for the solid state P0 = 3.4 and

f0 = 0.5. As the total area of the domain is N , the average area of each cell is

Ā = A0. This models the cell layer as just reaching confluence.

2.3.2 Computing cell-cell interaction stress

To further compare our findings to experimental results, we calculate the mechan-

ical stress in the tissue arising from cell-cell interactions, which we refer to as the

interaction stress. Following a previous study on calculating stresses in vertex mod-

els [143], we calculate our interaction stress from gradients in the energy functional

governing mechanical interactions in each model. We adopt the convention that the

stress is negative when the cell is under compression. Specifically, for cell a, the
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interaction stress is given by

σa =
∂E

∂Aa

1 +
1

2Aa

∑
mn∈V(a)

Tmnrmn , (2.48a)

∂E

∂Aa

= 2KA(Aa − A0) , Tmn =
∂E

∂rmn

= 2KP [(Pa − P0) + (Pb − P0)]̂rmn ,

(2.48b)

where Tmn is the cell-edge tension and the summation is over all the edges in cell a,

with mn being the cell edge connecting vertices m and n that separates cells a and

b. The factor of 1/2 in the cell-edge tension term is due to each edge being shared by

two cells. From here, we find the normal stress on each cell to be the average of the

diagonal terms. For the purposes of calculating the average properties of defects,

this is defined at the centre of mass of each cell.

2.3.3 Computing the local cell orientation field

To analyse the properties of nematic defects, we must first calculate the average

local orientation of cells in our system, which means we must define the long axis

of each cell. We calculate the orientation of each cell’s long axis by finding the

eigenvector associated with the largest eigenvalue of each cell’s shape tensor, Sa,

which is a rank-2 tensor given by

Sa =
1

Na

∑
m∈V(a)

ramram , (2.49)

where m ∈ V(a) denotes the vertices of cell a and ram = rm − ra is the vector from

the centroid of the cell a, denoted by ra, to each vertex, m. The shape tensor Sa has

two eigenvalues and the eigenvector associated with the larger (smaller) eigenvalue

determines the major (minor) principal axis of the cell (Fig. 2.3a).

To find the local cell orientation field, or director field, we follow the methods used
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in recent experimental studies [29, 20]. The domain is split into a grid, with each

point on the grid representing the centre of a square window. The dimensions of the

window are chosen such that each window contains on average 4–6 cells (Fig. 2.3b).

A cell counts as being within a window if one of its vertices lies within that window.

We then calculate the director field at each point on the grid by determining the

nematic order tensor Q of the cells within the window associated with that point.

In two dimensions, Q is given by

Q =

⟨cos 2θa⟩ ⟨sin 2θa⟩

⟨sin 2θa⟩ −⟨cos 2θa⟩

 , (2.50)

where θa is the long axis orientation of cell a and ⟨·⟩ represents an average over all

the cells in the window. The eigenvector associated with the largest eigenvalue of

Q is the local orientation of the cells in the window (Fig. 2.3c). The sizing of the

windows to contain 4–6 cells acts to reduce nose in the director field and is in line

with previous studies [29, 20]. This means, using the parameters detailed in the

sections above, our director field is defined on an 18 by 18 grid, with a grid spacing

in the x and y directions of ∆x = 1.19 and ∆y = 1.03 respectively. These points

define the centre of our square windows, which have a side length of 1.19.

(a) (b) (c) (d)

Figure 2.3: Procedure for calculating the director field. (a) The long axis of each
cell is found. (b) A grid is overlaid on the domain, with each grid point defining
the centre of a box (one shown in red for clarity) sized to contain vertices from 4–6
cells. (c) The mean orientation of the cells in each box is calculated from finding
the largest eigenvalue of the nematic tensor. (d) The final director field.



2.3. Numerical Cell-resolution modelling 71

2.3.4 Defect detection and analysis

Similarly to previous work [29, 20], we detect defects at a particular point in the

director field by calculating the winding number, which is a measure of the angle

of rotation of the director field along a closed loop of nearest neighbours (Fig. 2.4).

The winding number around a given point in our director field is given by [64]

∆β =
∑
a

δβa , (2.51)

where the sum is over the eight nearest neighbours around the point for which we

are calculating the winding number and δβa is the change in the angle β of the

director field when moving from neighbour a to neighbour a+1 in an anticlockwise

direction. It is given by

δβa = βa+1 − βa + γ , (2.52)

where γ is

γ = 0 if |βa+1 − βa| ≤ π/2 (2.53a)

γ = +π if βa+1 − βa < −π/2 (2.53b)

γ = −π if βa+1 − βa > +π/2 . (2.53c)

The addition of γ ensures δβi is the smallest angle needed to turn from βa to βa+1.

The topological charge, which we expect to be ±1/2 if it is non-zero, is then ∆β/2π.

To avoid double counting of defects these closed loops must not overlap, so we only

detect defects at every other point, horizontally and vertically, on our grid.

To determine whether the defects behave in a contractile or extensile manner,

we look at the behaviour of defects as they form. Indeed, in active solids where

constituents fluctuate around an equilibrium position, such as in the solid state of our

AVM, restoring forces will eventually pull the tissue back to equilibrium as the active
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Figure 2.4: Defects are detected at every other director field grid point (black dots).
The winding number is calculated by summing the change in angle α of the director
field when traversing an anti-clockwise closed loop around the nearest neighbours of
each detection site. An example is shown in the bottom left.

behaviour varies with the diffusion of the polarity vector [66]. When the material

behaves in an extensile manner, we expect the defect to initially move in a tail-

to-head direction; however, the restoring force may eventually pull the defect back

making it move in a head-to-tail direction (while the material remains extensile).

To analyse the properties of defects, we thus only examine defects that have formed

in the previous ten time-steps, however, we note that this is not necessary when

analysing the behaviour of defects in the liquid state, as the tissue can rearrange. In

this regime, we can average behaviour over all detected defects and obtain similar

results to those found when studying ‘new’ defects.

We ensure that we detect defects at statistically independent times by calculating

the temporal autocorrelation function for the velocity field Cv and nematic tensor

field CQ which are defined as

Cv(τ) =

〈
1

2

2∑
i=1

1

Ts2i

T−τ∑
t=1

[vi(t)− v̄i][vi(t+ τ)− v̄i]

〉
(2.54a)

CQ(τ) =

〈
1

4

2∑
i=1

2∑
j=1

1

Ts2ij

T−τ∑
t=1

[Qij(t)− Q̄ij][Qij(t+ τ)− Q̄ij]

〉
, (2.54b)
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where s2 is the variance of the component, T is the length of the time-series, τ is the

time-lag and angled brackets represent a spatial average. We then fit an exponential

function to the plots to obtain decorrelation times, which are approximately 0.5 and

6 time-units for v and Q respectively in the AVM (Fig. 2.5). Similar values were

found for the solid state. We thus sample for detects every 10 time units (1000

time-steps). To summarise, every 1000 time-steps we save the winding number at

each defect detection point for ten time-steps. For each defect detection point we

then check whether a defect has appeared at that point in any of the previous saved

time-steps (i.e. has the winding number changed from zero to a non-zero value). If

it has we then save the position and topological charge at that point.

We analyse the properties around defects by first finding their orientation using

the process described in [144]. Specifically, the orientation of a defect is defined as

ψ =
k

1− k
arctan

[
sgn(k)∂xQxy − ∂yQxx

∂xQxx + sgn(∂yQxy)

]
, (2.55)

where k is the topological charge of the defect and ψ is defined in Fig. 2.6. For +1/2

defects, it is the angle between the vector from the defect core to the tail of the

Figure 2.5: Temporal autocorrelation functions for the velocity field Cv and nematic
tensor field CQ in the AVM liquid state. Similar results were found for the solid
state.



74 Chapter 2. Emergent active nematic collective behaviour

defect and the x-axis and, for −1/2 defects, ψ is the angle between a vector from

the defect core to one of the points of the trefoil shape and the x-axis (Fig. 2.6). We

calculate the derivatives of Q at the defect site using a central difference scheme

on our director field grid. We then align the defects and crop the field of interest

around them before interpolating the points at which they are defined, either the

cell vertices when calculating the velocity field or the cell centres when calculating

the stress field, to a grid. We then average over detected defects of a particular type.

All results shown are averaged over approximately 10000 defects from at least ten

independent simulations.

Figure 2.6: Example calculated defect orientation ψ for (a) +1/2 defects and (b)
-1/2 defects.

Despite its simplicity, we observe that the AVM, in both solid and fluid states,

displays ±1/2 defects generated randomly within the tissue in a similar manner to

those observed in epithelial layers in vitro [29] (Fig. 2.7a-d, left). Upon computing

mean properties of the tissue around these defects, we observe velocity fields indica-

tive of extensile active nematic behaviour, with the +1/2 defect moving in a tail to

head direction (Fig. 2.7a and c, middle) [66].

We also show the mean isotropic stress due to cell-cell interactions in Fig. 2.7a-

d(right). The patterns show good qualitative agreement with those found in epithe-

lial layers [29], with same compressive stresses in the head portion of +1/2 defects

in our model as those found to trigger extrusion in the experimental system.
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(c)

(a) (b)

(d)

Figure 2.7: Simulation results of confluent tissues in their liquid ((a) and (b)) and
solid ((c) and (d)) states. Nematic configurations, dynamics, and passive stress fields
around detected +1/2 defects in the (a) liquid state and (c) solid state, and those
of detected −1/2 defects in the (b) fluid state and (d) solid state. In each case, we
show representative defects (left), mean velocity fields around defects (middle), and
heat maps of mean isotropic passive stress (σxx + σyy)/2 due to cell-cell interactions
around defects (right). Heat maps have been normalised such that blue represents
maximum compression and yellow maximum tension. We use A0 = 1, KA = 1,
KP = 1, f0 = 0.5 and Dr = 1. In the liquid state we use P0 = 3.7 and in the solid
state P0 = 3.4.

We note that the only type of topological defects consistently observed were defects

with half-integer charges. Further, the extensile behaviour is apparent over a range

of stiffnesses and activities, and collective contractile behaviour was never seen over

the parameter ranges explored, in full support of our analytical findings.

2.3.5 Numerical calculation of correlations

We further support our analytical results by calculating the correlation ⟨v · (∇·Q)⟩

in our numerical models in both solid and liquid states. To do this we calculate

the spatially averaged cross-correlation coefficient function C between v and ∇ ·Q.

The cross-correlation function measures the correlation between a time series and

lagged versions of another time series as a function of the lag, τ . We then integrate

this correlation function over the time-lag. A negative integral corresponds to a

negative correlation and extensile behaviour. We do this, as opposed to calculating

the average correlation coefficient between the two quantities at the same time-step,
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because our analytical model is coarse-grained in time, so any correlation calculated

implicitly includes some averaging in time. For two arbitrary 2D vectors x and y

the cross-correlation coefficient function is

Cxy(τ) =


〈

1
2

∑2
i=1

1
Tsxi s

y
i

∑T−τ
t=1 [xi(t)− x̄i][yi(t+ τ)− ȳi]

〉
, τ > 0〈

1
2

∑2
i=1

1
Tsxi s

y
i

∑T+τ
t=1 [xi(t)− x̄i][yi(t+ τ)− ȳi]

〉
, τ < 0

(2.56)

where x̄ and ȳ denote the means x of y, s the standard deviation and angled brackets

denote a spatial average. To calculate the correlation of interest Cv·(∇·Q), we inter-

polate the velocity field to the grid points at which our director field, and therefore

Q, is defined. We then obtain the necessary gradient information using a central

differencing scheme on this grid. We then calculate Cv·(∇·Q) at spatially independent

points in our director field and take the average before integrating over time.

(a) (b)

Figure 2.8: Temporal cross-correlation coefficient functions between v and ∇·Q (a)
for the liquid and solid states and (b) for different values of p0. While the peak of
the negative portion of the curves is similar in magnitude for all values of p0, the
peak of the positive contribution decreases with increasing p0.

Both solid and liquid states have a negative correlation at positive lags in time,

but a positive correlation at negative lags (Fig. 2.8a). The negative contribution is

due to the self-propulsive active force f , while the positive contribution is due to

the passive response of the material F generating contractile forces (Fig. 2.9). These

contractile forces arise because, while the average cell area in the domain is equal to
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Figure 2.9: Temporal cross-correlation coefficient functions between the self-
propulsive force f and ∇·Q, the mechanical response of the material F and ∇·Q, as
well as between v and ∇·Q for the liquid state. While the correlation is exclusively
negative for f , it is exclusively positively for F, meaning the correlation for v has a
positive and negative component.

their target area, the average perimeter of cells in the model is always larger than

their target perimeter, even in the liquid state (Fig. 2.10).

This is further evidenced by the positive contribution in the correlation decreasing

as we move deeper into the liquid state, where the mechanical response of the tissue

plays a smaller role in the dynamics (Fig. 2.8b). However, the integrals for both

liquid and solid states in Fig. 2.8a are negative overall (−3.224 and −0.281 respec-

tively) indicating statistically extensile behaviour, in agreement with our analytical

results and observed defect motion. This highlights the compatibility of the measure

of extensility we use in our analytical model with that more commonly used exper-

imentally. Moreover, the purely negative correlation between f and ∇ · Q further

underlines that polar forces drive extensile behaviour in the nematic field (Fig. 2.9).

Overall, our simulation results thus fully support our analytical findings.
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Figure 2.10: Time evolution of the average cell perimeter P relative to the target
perimeter P0.

2.4 Discussion

We demonstrate analytically that planar confluent tissues with polar fluctuations

lead generically to extensile nematic behaviour with regards to cell shape orientation

in the limit of small fluctuations. In contrast to previous studies, our analysis does

not require the addition of ad-hoc extensile nematic terms [34, 85, 129]. Further,

our analytical treatment applies universally in the small fluctuation regime and

thus elucidates how extensile behaviour can emerge even though contractile nematic

stresses are prevalent at the cellular scale. We confirm all our findings by simulating

models of confluent tissues in both liquid and solid states.

Our findings highlight the role cell-substrate interactions, arising from fluctuating

polar traction forces, play in governing collective tissue behaviour. With previous

emphasising the importance of cell-cell interactions [85, 20, 86], one key conclusion

of this work is that key physics of the system are not captured if cell-substrate

interactions, specifically polar cell-substrate interactions, are not included. A fur-

ther crucial point this work highlights is the effect fluctuations can have on system

dynamics. Although biological systems are clearly very noisy environments, they
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are often omitted from studies using active nematic models, although their impor-

tance is beginning to be recognised [145, 86]. This work underlines further their

importance in properly characterising biological systems.

We note that a recent joint experimental and theoretical work investigating the

switch from contractile cells to extensile tissues concluded that the extensile be-

haviour of epithelial tissues may come from strong intercellular interactions medi-

ated by cadherins [20]. Our result here is consistent with their findings if stronger

intercellular interactions lead to a reduction in the fluctuations/strength of the active

nematic contractility due to the increased rigidity at the cellular level. Additionally,

a recent study has found that cadherin-mediated cell-cell contacts support the for-

mation of cryptic lamellipodia [19], meaning stronger intercellular interactions could

also facilitate stronger polar traction forces.

We also note that our findings have been subsequently corroborated by numerical

simulations of a hydrodynamic nematic model [145]. This study focussed of the role

of the flow alignment parameter λ in inducing defect dynamics in a passive nematic

material with fluctuations. They concluded that the sign of λ controls whether the

defects move in an extensile-like or contractile-like manner, in full agreement with

our passive findings. Finally, since our main motivation comes from experiments, we

focus here exclusively on confluent tissues, however, due to the use of hydrodynamic

models we expect our theory to apply equally to many-body systems of deformable

particles or elongated particles. Indeed, we argue that our results could explain

the previously unresolved extensile motion of +1/2 defects seen in 2D layers of

rod-shaped molecules on a vibrating substrate [146].



Chapter 3

Machine learning of nematic

defects

3.1 Introduction

Due to the prevalence and functional role of ±1/2 defects in many systems [124], the

efficient detection and characterisation of topological defects in confluent tissues, and

cellular systems generally, is of fundamental interest to both biology and physics.

The application of defect detection algorithms to imaging data often requires a

sophisticated understanding of the underlying physics. Current algorithms usually

entail locating degenerate points in the nematic field followed by inspecting how

the orientation of the nematic field changes around this point [147], usually by

calculating the winding number. This can be effective in systems where the nematic

field is well defined across the domain [148, 149] including tissues where cells are

elongated or rod-like, such as spindle shaped fibroblasts [28]. However, this method

is not suited to systems where the nematic field is not well-defined everywhere, as

degenerate points in the field could just be areas of low order and do not necessarily

indicate the existence of a defect.

80
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This is often the case in confluent tissues such as epithelial layers, which are similar

in morphology to our active vertex model (AVM), where the cells are not rod-like

and can be nearly isotropic in shape at times. Indeed, the large areas with low

nematic ordering raises questions as to how appropriate modelling these systems as

nematic truly is; a question that our work in Chapter 2 also raises. There have been

recent proposals that a more general description p-atic, particularly hexatic, order

may be more relevant [150]. However, a growing number of experimental studies are

seeking to detect nematic defects in these systems and finding that they are playing

functional roles in biological processes [29, 20, 151, 152], meaning there is still a

growing need for efficient detection methods.

Previous work studying defects in these systems used the method we implemented

in Chapter 2 [29, 20, 151]. As opposed to locating degenerate points in the nematic

field, we searched for defects by calculating the winding number on a pre-defined grid

of points in the field. However, while analysing defects in our AVM in the previous

chapter, it became clear that this method for detecting defects, which is the current

standard technique for epithelial tissues, was cumbersome and inefficient. This was

evidenced by the many steps needed to successfully implement the method, and the

need for thousands of defects to be detected to adequately discern the average tissue

stress and velocity fields, which are often the target of experimental studies. The

necessity of such large amounts of data suggests the method of defect detection is

inefficient and imprecise, which begs the question as to whether better methods of

detection are possible for these systems.

One possibility is to utilise machine learning to improve defect detection. Machine

learning methods are being exploited in an increasing variety of applications in ac-

tive nematic systems [153, 110, 154]. They have also been used to detect topological

defects in various systems [155, 118, 156], including cellular systems [119]. This pre-

vious study identified degenerate points in the nematic field of a cellular layer and
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then used a four layer, fully-connected neural network to perform a binary classifica-

tion by labelling the points as either +1/2 or −1/2 defects. However, as previously

discussed, this method is less applicable to experimental cellular systems where the

nematic field is not well-defined everywhere, and points with low nematic order do

not necessarily indicate the existence of a defect. Additionally, this study did not

demonstrate that its machine learning method outperformed existing techniques for

detection. As such, there is still a need to develop a machine learning method that

can be readily utilised in an experimental setting.

In this chapter, we address this problem by developing a methodology to detect

nematic defects in confluent tissues using a convolutional neural network (CNN).

We design the method such that it is well suited for use in systems that currently

lack effective detection techniques, is user-friendly and readily implementable on

experimental data. In contrast to previous work, we show that it outperforms cur-

rent detection techniques and further demonstrate its efficacy by finding the mean

velocity field around +1/2 defects. We compare this to defects detected using the

winding number method, highlighting the improvement in capturing properties of

topological defects with limited data.

3.2 Defect detection methodology

3.2.1 Acquisition of test and training data

For our method to be valuable, it needs to be suitable for use on experimental data.

For this reason, it takes as its input the x and y coordinates of each cells centre of

mass and the orientation of the long axis of each cell, both of which can be readily

acquired using standard segmentation software [157]. However, a large amount

of data is required to adequately train and test the model. To obtain sufficient
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amounts of data, we train and test our model using simulated data from the AVM

developed in Chapter 2. We implement it in an identical manner as that described

in Section 2.3.1, using the same parameter values as those used for the liquid state,

although we do not anticipate the state of the tissue affecting the validity of the

method. We then find the angle of the long axis of each cell using the method

described in Section 2.3.3 and its x and y coordinate from the centre of mass of its

vertices.

3.2.2 Identifying inputs to machine learning model

To process our input such that it is in a form that a machine learning model can

classify ±1/2 defects, we first identify ‘regions of interest’ (ROIs) within the domain.

As defects by definition occur in regions with low nematic order, we identify these

areas as ROIs. To do this, we interpolate our cell orientation data to a fine grid,

with grid spacing ∆x = ∆y = 0.2, where the average cell length is approximately 1

length unit. We then average each point over a sliding window, of size 9∆x× 9∆x,

to smooth out the data and create a nematic field (Fig. 3.1a and b). At each grid

point we then calculate the scalar nematic order parameter S = ⟨cos 2θ⟩, where θ is

the orientation of the field at that point and ⟨·⟩ represents a spatial average over a

sliding window of the same size as that used for the nematic field.

As we seek areas of low order, we identify contiguous areas in our domain where S

is below a threshold value Sth = 0.15. We then take the centres of mass of these areas

to be the centres of our ROIs, cropping the field in a square around these points

(Fig. 3.1b). The value of Sth is chosen such that it is high enough to capture all

disordered regions that may contain defects, but low enough such that these regions

are distinct and do not coalesce. Our ROIs are 9× 9 grid points in size. We size our

ROIs such that they contain 4-6 cells, large enough so as to capture the core of the

defect but small enough to isolate the defects and avoid capturing multiple defects



84 Chapter 3. Machine learning of nematic defects

in a single ROI. We then use our ROIs as inputs into a machine learning model that

classifies them as containing a +1/2 defect, −1/2 defect or neither (Fig. 3.1c).

The ROIs in our method are approximately two length units across, as this is

the approximate size of the defect cores in the AVM. However, this may not be the

case in experimental systems, where defects could be a variety of sizes relative to

the size of the cell. As such, when applying this method to the systems, the input

coordinates should be scaled such that the width of the defect core corresponds to

two units in the coordinate length-scale.

As the position of potential defect locations (the centres of our ROIs) can be

located anywhere in the system domain, our method is effectively off-lattice in its

detection, although they still lie on a fine grid. This is in contrast to the previously

developed method used in Chapter 2 [29, 20], which can only detect defects at

predefined locations on a coarse-grained lattice.

3.2.3 Model architecture and training

We use a CNN to classify our ROIs. A schematic of the architecture can be seen in

Fig. 3.1c. We use two convolutional layers, each detecting 32 features, the first has

feature detectors of size 6×6 and the second 3×3. We then follow these convolutional

layers with an additional fully-connected layer of 100 artificial neurons before our

output layer of three neurons, representing our three possible outputs, or classes, of

a +1/2 defect, −1/2 defect or no defect. We chose this architecture as it achieved

the highest classification accuracy on the training data, although we note that our

results are not sensitive to the particular architecture used and similar architectures

achieved a comparable, albeit slightly lower, accuracy.

Having a third output of no defect is key here and what makes our method par-

ticularly well suited to epithelial tissues. As the cells in our tissue do not have a
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...

...

Figure 3.1: Defect identification and classification procedure. (a) The x and y
coordinates of each cells centre of mass are found, the orientation of each cells long
axis is then plotted at these points. (b) This information is then interpolated to
a finer grid to form the nematic field of the system, where the average local scalar
nematic order parameter S can be calculated at each grid point using a sliding
window. Areas of low order (Sth < 0.15) are identified as possible defect regions
and the centres of mass of these regions are identified (blue dots). The nematic field
around these points is then cropped to form a region of interest (ROI) (blue box).
(c) These ROIs are then input into a machine learning model which classifies them
as a +1/2 defect, a −1/2 defect or not a defect.

well defined long axis, neighbouring cells are not always nematically aligned and

there can be regions with low nematic order that do not necessarily contain nematic

defects. Including an option for our CNN to classify an ROI as having no defect

accounts for this possibility.

The output of our convolutional and fully-connected layers are rectified linear

units, which take the form

aij = max

(
0,

K∑
k=1

wi
jka

i−1
k

)
, (3.1)
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where aij is the output of the j
th neuron in layer i, K is the number of inputs to this

neuron and wi
jk is the weight of the connection from the kth neuron in the previous

layer to jth in layer i. The output from the output layer L is known as a ‘softmax’

function, which takes the form

aLj =
ez

L
j∑3

j=1 e
zLj

, (3.2)

where zLj is the weighted sum of all the outputs from the previous the layer zLj =∑K
k=1w

L
jka

L−1
k . The idea behind softmax is that the outputs sum to one, meaning

they can be thought as the probability each class is the correct classification for the

current ROI. We define the classification of each ROI as the class with the largest

probability.

To generate training and testing data we manually label 5000 ROIs, using 4500

to train our model and saving 500 for testing. Manually labelling entails classifying

by eye each automatically detected ROI as containing no defect, a +1/2 defect, or

a −1/2 defect. To enlarge our training data we generate three new copies of each

training ROI by rotating each one by angles −π/2, π/2 and π. Also, as the type

of defect is invariant under reflections, we double this enlarged training data by

reflecting each ROI about its centreline, leading to 36000 training inputs. As we

only enlarge our training data so as to better tune the performance of our model, and

the testing data serves to check model performance, we do not enlarge our testing

data set.

We train our model by minimising the cross-entropy cost function, with an addi-

tional regularisation term, defined as

C = −
N∑
i=1

3∑
c=1

yi,c log pi,c +
λ

2

∑
j∈FC

wj , (3.3)

where N is the number of items in each batch of training data, yi,c is the correct
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label (0 or 1) for class c of the ith ROI and pi,c is the output from the softmax layer

of the network, the probability calculated by the model that the ith ROI belongs

to class c. To reduce overfitting to the training data, we use a process known as

regularisation on the fully-connected layer. This entails adding the second term to

the cost function, where the sum j is over weights connecting inputs or outputs to the

fully-connected layer FC and λ = 0.01 is the regularisation parameter. This term

penalises large weights and so favours correct classifications with smaller weights

that are less likely to get trapped in local minima upon fitting.

We minimise C using a stochastic gradient descent algorithm with a batch size of

N = 64 ROIs. That is, we calculate the cost function for groups of 64 ROIs, we then

use this to estimate the gradient of our cost function with respect to the weights of

our neurons and update our neuron weights according to

wi 7→


wi − η ∂C

∂wi
− λwi , if wi ∈ FC

wi − η ∂C
∂wi

, otherwise

(3.4)

where η is our learning rate. We then repeat this for another batch of ROIs, repeating

until we have used all of our training data. One run through all of the training data

is called an ‘epoch’. We train over 20 epochs with a learning rate of 0.05 for the

first ten epochs and 0.005 for the following ten. For each epoch, a random 10% of

our training images are held back for validation and used at the end of the epoch

to assess the accuracy of our model. Training for more than 20 epochs did not lead

to any appreciable improvements in validation accuracy.

When training the model we use a concept known as dropout on the fully-connected

layer, which involves not using a random 50% of the neurons in each training batch.

This helps to reduce overfitting to the training data, as the network is not over-reliant

on, and sensitive to, certain neurons. We implement our model in Python using the

TensorFlow library and initialise each weight with a Glorot normal distribution [158].
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This is a normal distribution with zero mean and variance σ2 = 2/(nin+nout), where

nin for a given weight is the number of inputs to the neuron the current weight is

providing an input for. Similarly, nout is the number of outputs from the neuron

in the previous layer the current weight is providing an output from. Scaling the

distribution in this way ensures all neuron inputs have similar initial distributions.

It also ensures these distributions are not too wide and the initial inputs to some

neurons are erroneously large in magnitude, which would increase the amount of

training needed to bring the inputs to the correct size.

3.2.4 Winding number calculation and comparison

Manually labelling the ROIs allows a direct comparison between our method and

the current standard technique used in defect detection, calculation of the winding

number, to be drawn, as we can also classify each ROI by calculating its winding

number. We can then find the accuracy of both methods when compared against

our manually labelled ROIs, our ‘ground truth’. Previous work on applying machine

learning to detect nematic defects in tissues has used the winding number as the

ground truth [119], thereby making it impossible to determine if the machine learning

method is superior to current techniques. We classify each ROI by calculating the

winding number, in the manner detailed in Section 2.3.4 on the fine grid around the

edge of the ROI.

3.3 Model performance

3.3.1 Classification performance

The mean performance of our CNN model with each training epoch can be seen

in Fig. 3.2a. After training, our model clearly outperforms the winding number for
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overall classification accuracy on the training data set, defined as the percentage of

correct predictions. However these are ROIs that our model is being trained on,

meaning it has ‘seen’ them before in previous training epochs. The real utility of

our method depends on its ability to classify ROIs it has not seen before, which

we test using the 500 ROIs in our test data set. Here our model is again more

accurate than the winding number, achieving an accuracy of 84.0% compared to the

winding numbers 76.6%, demonstrating that our method outperforms the current

most widely used technique.

+1/2 GT +1/2 NN +1/2 W

-1/2 GT -1/2 NN -1/2 W

(a) (b)

Figure 3.2: Machine learning model outperforms winding number classifier. (a) The
loss and validation accuracy of the neural network as it is trained. The dashed line
represents the accuracy of the winding number classification on the training data
(0.812). Error bars represent the standard error in the mean over 50 realisations.
(b) An example domain with defects detected using each method: our ground truth
(GT), neural network (NN) and winding number (W).

As an example of the defects detected using each method, we look at an example

domain from our AVM containing ROIs from our test data set (Fig. 3.2b). In line

with Fig. 3.2a, both techniques show good agreement with manually labelled defects

although the winding number appears to detect more false positives than the neural

network. To assess this further and properly delineate the efficacy of both methods,

we break down their performance for each class in Table 3.1. We calculate the
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+1/2 No defect -1/2 Total
P S F1 P S F1 P S F1 P S F1

NN 0.786 0.967 0.867 0.932 0.663 0.775 0.818 0.964 0.885 0.856 0.840 0.834
WN 0.729 0.974 0.834 0.960 0.457 0.619 0.707 1.000 0.828 0.819 0.766 0.743

Table 3.1: Performance of defect detection methods on test data. Precision (P),
sensitivity (S) and F1 score for each class, as well as an average over all classes,
weighted by the size of that class.

precision, sensitivity and F1 score of each method. The precision is defined as

P =
True Positive

True Positive + False Positive
, (3.5)

and determines what proportion of detections are correct. It quantifies how detri-

mental false positives are to performance. Sensitivity, on the other hand, examines

the role of false negatives in performance. It is defined as

S =
True Positive

True Positive + False Negative
, (3.6)

and establishes what proportion of true defects are actually identified. The F1 score,

defined as

F1 =
2PS

P + S
, (3.7)

is a weighted average of the precision and sensitivity and so is a broader metric of

performance.

Both methods display a similar pattern of having a higher sensitivity than precision

for both defect categories, but a higher precision than sensitivity when no defect

is present. Additionally, both methods exhibit a lower F1 score when no defect

is present, a reflection of the larger differential between precision and sensitivity

scores. Errors in both methods, therefore, primarily come from falsely detecting

defects, as opposed to missing defects that should be detected. This information is

lost when looking just at the weighted average values across all classes, which give

more comparable precision and sensitivity scores.
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Where the two methods differ is in our CNN model having consistently higher

F1 for each category. This is driven by its higher precision in each defect class

and higher sensitivity when no defect is present. The winding number, however, is

slightly more sensitive to detecting defects when they are present. Taken together,

these results show that the improved performance of our neural network compared

to the winding number primarily stems from it detecting fewer false positive defects.

It could be argued that precision and sensitivity should not be weighted equally, as

they are in the F1 score, and that there may be scenarios where ensuring detecting

as many defects as possible is more important than minimising detecting defects

that are not there. However, we now show that, while the winding number may

detect a slightly higher proportion of defects, the higher overall performance of our

model can manifest itself in a wider improvement to experimental results.

3.3.2 Impact on data analysis

While results thus far point to the effectiveness of our model. To show that this

realises itself in tangible improvements to wider results, we look at the ability of our

model, and the winding number, to ascertain the properties of defects. As discussed

previously, experimental studies are often more concerned with tissue properties

around defects than the positions of defects themselves [29, 20], as this allows one

to determine the collective behaviour of the tissue. Here we focus on calculating

the average velocity field around +1/2 defects, as this is usually of the most in

experiments, although we expect the ability of the different methods to capture

the velocity field efficiently is indicative of its efficacy in uncovering other tissue

properties, such as the stress field.

As we determined in Chapter 2, +1/2 defects in this AVM move in a tail-to-

head direction, indicating extensile behaviour. However, obtaining the characteristic

extensile flow field required averaging the velocity field over many simulations and
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(a) (b) (c)

Figure 3.3: Average velocity fields around +1/2 defects for (a) manually labelled
defects, (b) defects detected using the neural network and (c) defects detected using
the winding number. The single point correlation function (⟨vGT ·v✷⟩) between the
ground truth (GT) field and the neural network (NN) and winding number (W)
fields is also shown.

several thousand defects. While this was achievable in a numerical model, time

and cost constraints could make the requirements of such vast amounts of data to

understand the properties of these defects prohibitive in an experimental setting.

Due to the difficulty in collecting experimental data, it is therefore crucial that

defect properties can be discerned using a minimal amount of information.

The average velocity fields for manually labelled, winding number detected and

CNN detected defects, using 150 +1/2 defects detected from the test data set, can be

seen in Fig. 3.3. 150 defects were used as this was number of +1/2 defects manually

labelled in the test data set and so the largest number we could use to compare

the different methods. The manually labelled defects demonstrate the clearest tail-

to-head, vortical flow fields characteristic of extensile systems [66]. The flow field

around CNN detected defects clearly show better agreement with the manually

labelled flow field than the flow field found using the winding number, reflected in

the higher correlation between the two fields. The improvement between the two

methods is even more stark when looking at the difference in velocity magnitudes

between each method and the manually labelled flow field (Fig. 3.4). This illustrates

the impact of the reduced performance, particularly the reduced precision, of the

winding number and confirms the primacy of our model in detecting ‘better’ defects,

as the anticipated mean-field behaviour is clearer.
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(b)(a)

Figure 3.4: Difference in velocity magnitudes between average velocity fields for
manually labelled defects and (a) defects detected using the neural network and (b)
defects detected using the winding number.

Additionally, we compared the velocity field around defects detected using the

CNN and defects detected on the same data using the ‘on-lattice’ winding number

method used in the previous chapter (Fig. 3.5). The difference between the two is

even starker than between our model and the off-lattice winding number method

used in the present study. As well as highlighting the improvement using an off-

lattice method can bring, it further underlines the benefits of our model compared

to techniques used currently.

(a) (b)

Figure 3.5: Mean tissue velocity fields around 150 +1/2 defects detected using (a)
our CNN model and (b) the winding number at predefined points in the domain,
used in Chapter 2.
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3.3.3 Sensitivity to grid size

Defect detection techniques can often be sensitive to the window size used to detect

them. While we choose our grid and window size to properly capture defects in our

system, if our trained model is to be readily usable on experimental data, it should

achieve accurate results over a range of window sizes. To investigate this, we assess

the accuracy of our trained model and the winding number method in classifying

the test data at different grid sizes. As our model takes as input a 9 × 9 grid of

points, changing the grid size is akin to changing the ROI size. We do not retrain

our model with inputs at the new grid size, we use the original model where the

weights were trained on data interpolated to the original grid size.

To enable comparisons with our ground truth, for each ROI we take the coordinates

of the centre and interpolate the cell data to a new grid size about this central point.

We look at a range of grid sizes from ∆x = 0.1, which gives an ROI with a window

length approximately one cell across, to ∆x = 0.8, meaning our interpolated grid

is of the same order as the typical cell length and the ROI window lengths are

approximately four times larger than the typical defect size. When smoothing the

interpolated field, we scale the size of our sliding window such that the area over

which we average is approximately constant.

The classification accuracy as a function of grid size can be seen in Fig. 3.6. With

the exception of the smallest grid size, our CNN consistently outperforms the wind-

ing number. Our method is also less sensitive to the grid size than the winding

number, whose performance drops sharply when the grid size varies from that which

gives the highest accuracy, and is not much better than random selection when the

grid size is greater than 0.5. The CNN, however, is able to maintain a level of accu-

racy greater than, or similar to, the winding number’s best performance even when

the ROI is approximately four times larger than the size of the defect (∆x = 0.4).

This demonstrates the robustness of our approach and the ability of method to de-
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tect defects even when the parameters of the model are not perfectly tuned to the

system.

3.4 Discussion

Here we have developed a new method for detecting nematic defects in confluent

tissues which, crucially, is readily implementable on experimental data. While there

are several steps in pre-processing the input data to prepare it for the CNN, all

that is required from users of the method is to input appropriately scaled cell co-

ordinates and orientations. Our model can therefore aid in the expanding study

of active nematic defects in biological systems [138]. Importantly, we demonstrate

that our method displays superior performance to the current standard use of the

winding number in detecting defects and in capturing the mean-field properties of

these defects. This reduces the amount of data required to obtain these properties,

potentially improving experimental data interpretation.

Figure 3.6: Classification accuracy vs. grid size for the CNN and the winding number
method.
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Interestingly, although the overall performance of our model is better, the winding

number is slightly more sensitive to detecting defects. This means there could be

applications where using the winding number would be more suitable, if the cost of

missing a defect in the domain is very high. However, the improved performance in

finding mean defect flow fields demonstrates that, in practice, the increase in overall

performance of our model makes it more advantageous. This improved performance

is likely due to the winding number only using information around the edge of the

ROI, where as our CNN can take advantage of spatial information and correlations

across the whole region.

In contrast to previous studies on using machine learning to detect nematic defects

[119], our method is specifically designed for noisy experimental systems where the

nematic field may not be well defined everywhere, and consequently low nematic or-

der may not guarantee the presence of a defect. However, we anticipate our method

will work well with any system whose nematic field can be easily interpolated to a

2D grid. Additionally, the approximate defect size must be known to properly scale

the interpolation grid and, consequently the ROI window size. Our grid sensitivity

study demonstrated that accuracy is maintained for window lengths between ap-

proximately 0.75wD and 2wD, where wD is the typical defect width, but outside of

this range the accuracy drops off. If wD can be approximated, the method developed

here should be applicable to a variety of experimental systems.



Chapter 4

Interfacial dynamics in growing

tissues

4.1 Introduction

4.1.1 Characterising interfacial dynamics

Many biological processes, from cancer metastasis to morphogenesis, rely on the

integration of cell proliferation and collective cell movement. While cell proliferation

is known to be regulated by the mechanical properties of the tissue [159], it is also

becoming increasingly clear that proliferation alters the properties, and consequently

the dynamics, of the tissue in return [109, 160, 161]. Whereas the forces generated

during cell division events are well understood [9], our understanding of how these

affect dynamics at the collective level is comparatively more limited [162]. This is

due to the difficulty in determining how cellular scale processes manifest themselves

as macroscopic dynamics.

A case in point is the dynamics of the interface of growing tissues. The tissue

97
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boundary does not grow in an ordered manner, but rather a chaotic one, and it is

unclear how cell division can produce such behaviour. Due to the chaotic dynamics,

it is also unclear how to characterise the dynamics of the interface. Some studies

describe the dynamics as governed by the onset of an instability of the tissue interface

[14, 45, 46, 47], while others characterise the fluctuations as arising due to the

intrinsic noise within the system.

If the latter approach is taken, the interface is characterised by calculating how

the roughness of the interface, or interface width, scales in space and time. If the

scaling for space and time can each be described by a single exponent, the values

these exponents take can be used to deduce which universality class the interface

growth belongs to [163]. A universality class is a collection of mathematical models

that exhibit the same scaling behaviour as the system is viewed at larger and larger

length-scales. In the context of interface growth, this allows one to write down

a canonical equation describing the growth process, as this equation possesses the

same scaling as that observed. This equation highlights the mechanisms governing

interface dynamics.

However, interface growth in biological systems has been characterised in this

manner experimentally [49, 50, 51, 52] and numerically [164, 165, 166, 167], and there

is disagreement as to which universality class it belongs to. Scaling in agreement

with the Kardar-Parisi-Zhang (KPZ) universality class has been observed [49, 164,

165, 166], which indicates the interface is governed by the KPZ equation, defined in

one spatial and one growth dimension as

∂th(y, t) = γ∂2yh(y, t) + λ[∂yh(y, t)]
2 + η, (4.1)

where h is the interface height, the growth dimension, and y is the spatial dimension.

The noise η is described by random Gaussian white noise of the type considered

in Chapter 2. The other two terms indicate the processes controlling interfacial
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dynamics. The first term on the RHS stems from surface tension and seeks to

smooth out fluctuations in the interface. The second term arises as the lowest order

term allowed by relaxing the enforcement of symmetry in fluctuations about the

mean interface position (i.e. by no longer requiring the equation be invariant to

the transformation h→ −h). This encodes lateral growth into the model, meaning

the interface grows normal to its local orientation, and makes interface growth non-

conservative, meaning it can grow by adding material to the interface.

As biological interfaces can grow either through non-conservative means via cell

division, or by spreading laterally outwards via cell migration, one would generally

expect these systems to belong to the KPZ universality class. However, scaling in

accordance with the Edwards-Wilkinson (EW) universality class has been found for

interfaces in active systems [168, 169]. This universality class is governed by the EW

equation, which is similar to the Eq. (4.1) but with the nonlinear term excluded

[163]. The exclusion of the nonlinear term enforces that interface growth be sym-

metric about the mean interface position, conserving overall interface length. This is

unlikely given that there are clear non-conservative growth mechanisms generated by

a proliferating, active material on one side of the interface and a void on the other.

The appearance of EW scaling is therefore likely due to the difficulty simulating

system sizes large enough to reach a regime where the effects of the nonlinearity can

be observed.

However, surprisingly, scaling consistent with the linear molecular beam epitaxy

(MBE) universality class has been reported [50, 51, 166]. This universality class,

sometimes referred to as the Mullins-Herring (MH) universality class, is governed

by the MH equation [170, 171]

∂th(y, t) = −K∂4yh(y, t) + η, (4.2)

where K is the surface diffusion coefficient. As the coefficient name suggests, the
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term on the RHS in Eq. (4.2) indicates that growth processes in the MBE univer-

sality class are dominated by surface diffusion effects. Such scaling would suggest

cell-cell junctions at the interface are weak, allowing cells to diffuse freely. The

appearance of this scaling is surprising, as this growth process is conservative. How-

ever, it opens up the possibility of further growth equations describing the process,

such as the one proposed by Villain, Lai and Das Sarma (VLDS) [172, 173]. Derived

to model MBE at high temperatures, the VLDS equation involves an additional of

the nonlinear correction ∂2y(∂yh)
2 to the MH equation. Although scaling consistent

with this equation has not been reported in the literature, the reporting of scaling

consistent with the MH equation means it could describe the growth processes at

long enough length scales or if fluctuations are sufficiently large.

Additionally, scaling inconsistent with any known universality class has been seen

[52, 174, 167]. As well as the difficulty modelling large enough systems, this de-

bate on the correct scaling often stems from subtleties in the models used, such as

heterogeneity in the surrounding environment [167], or the difficulty of using ex-

perimental data to perform the scaling analysis [175]. Nevertheless, taken together,

these results indicate that the universality class of, and hence mechanisms governing,

growing cellular interfaces is not settled.

Interfacial dynamics have also been described as being governed by the onset of

an instability in a variety of scenarios, usually by analysing hydrodynamic models

analytically. Active traction forces have been found to destabilise a spreading tissue

front in the absence of proliferation [14, 45]. Coupling these motility forces to the

tissue velocity field through alignment has also been shown to induce an instability

in a stationary front [46, 47]. Introducing special leader cells with higher motility

at the tissue front can also lead to fingering [176, 177], as can including a mechano-

chemical coupling [178]. Fingering instabilities have also been studied numerically,

with particle-based studies reporting that motility forces can induce fingering in a
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tissue in the absence of proliferation [179], in a similar manner to analytical models.

Most of these studies focus on the role of motility in precipitating the instability,

although tissue growth was also found to induce an instability at a boundary between

two tissues [180, 181], or when a tissue is growing into another viscous medium

[182, 183]. However, it has not been found to cause an instability in a tissue freely

expanding, where the dynamics of any other medium can be ignored.

4.1.2 Modelling growing tissues

Models incorporating growth and cell proliferation are becoming increasingly promi-

nent within active matter, and have been used to study a variety of phenomena.

Cell-based simulations have shown how cell division affects the structure of, and

fluidises, epithelial tissues [184, 185, 91, 186]. They have also delineated the effect

of cell division on different macroscopic dynamics, such as on coherent angular mo-

tion in morphogenesis [187] and how the interplay of mechanical stresses and cell

proliferation can drive fronts of growing cells [188]. However, due to the increase in

computational complexity as the number of cells increase, cell based models are lim-

ited in the length-scale of system they can model, leading to a need for methods that

can describe these growing systems in the hydrodynamic limit. At larger length-

scales, continuum models have been employed to study growing bacterial colonies

in two [56, 189] and three dimensions [190], while multiple studies have described

growing biological systems in 2D using a hybrid lattice-Boltzmann method (LBM)

[34, 191, 109].

While LBMs offer an incredibly efficient means of modelling growing systems,

previous LBM studies of active systems have either used periodic domains in which

the entire system is active, or have described the boundary of the active material

using a phase separating system with a phase field [109]. These approaches are valid

if the phenomena under study relate to behaviour in the bulk or if the system is not



102 Chapter 4. Interfacial dynamics in growing tissues

completely phase separated, i.e. the ‘vapour’ phase has a non-vanishing, albeit low,

density. However, they are not appropriate in systems with well-defined boundaries

and areas completely devoid of cells, such as expanding tissue layers or densely

packed bacterial biofilms. In such systems, properly capturing this separation is

important for describing the dynamics of the boundary, and the biological processes

that depend on this, such as wound healing [2].

In this chapter, we address this issue by introducing a novel LBM for growing

biological tissues capable of describing faithfully the dynamics of growing fronts.

Crucially, our method for modelling the interface of our tissue ensures there is no

low density vapour phase and our tissue has a sharp edge. Using this model, we study

the dynamics and stability of the growth front. We find that the interface of a tissue

growing due to bulk driven cell proliferation pertains to the KPZ universality class.

We then consider tissue growth with a density dependent proliferation regime where

proliferation occurs around the growing front, where we again find KPZ scaling in the

interface width for small system sizes. However, we also find a previously unreported

mechanical instability at larger system sizes, which we explain by performing linear

stability analysis on a minimal model for the front.

We first introduce our novel LBM for a growing system with a fluctuating interface.

We then charactise the scaling behaviour of the interface using a bulk driven growth

regime, followed by studying interface fluctuations using a density dependent growth

regime. We then examine the emergent instability and how it forms.
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4.2 Lattice-Boltzmann method

4.2.1 A lattice-Boltzmann method for a dry active fluid

As the starting point for our present model we take a recently developed LBM for a

dry active fluid system [106]. The efficiency of the LBM stems from solving, instead

of the hydrodynamic EOM, a simplified system that obeys the same hydrodynamic

symmetries as the real system, leading to identical behaviour in the hydrodynamic

limit [104, 192]. This simplified system describes the dynamics of a distribution

function f(t, r, ζ), which represents the distribution of mass at time t and position

r, moving with velocity ζ. From f the hydrodynamic variables of interest can then

be found

ρ(t, r) =

∫
dDζf(t, r, ζ), ρ(t, r)v(t, r) =

∫
dDζf(t, r, ζ)ζ , (4.3)

where D is the spatial dimension. We map this continuous distribution function

onto a lattice by discretising ζ into a finite number of velocity vectors cei. This

means we can describe the dynamics of f using the discretised Boltzmann equation

∂tfi + cei · ∇fi(t, r) = Ωi , (4.4)

where fi is the mass density moving with velocity cei and Ωi is a collision operator

that ensures matter in our system interacts while obeying the same symmetries as

the system we wish to mode.

We simulate Eq. (4.4) on a 2D triangular lattice (Fig. 4.1a), termed D2Q7 in stan-

dard LBM notation, meaning mass moves along lattice vectors ei = cos [(i− 1)π/6]x̂+

sin [(i− 1)π/6]ŷ for i ∈ {1, 2, ...6} and e0 = 0 corresponding to mass which is at rest.

The lattice speed c is the ratio of our grid spacing ∆x to time-step ∆t, which we

choose to be 1. The hydrodynamic variables of interest, cell density ρ and velocity
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(c)

(a)

Redistribution

(b) Streaming Redistribution

Repeat

h(y,t)

y

Figure 4.1: A LBM for a growing biological system. (a) We discretise our system
(left) onto a hexagonal lattice (middle), with each lattice point representing a num-
ber of cells. There is a growing front beyond which the distribution function fi is
zero in all lattice directions, (white sites in right). (b) Each time-step is subdivided
into a streaming step and redistribution step. In the streaming step, fi is advanced
by one time-step to get an intermediate distribution f ∗

i . A steady-state distribution
f ss
i is then calculated using f ∗

i and fi is redistributed such that it relaxes towards
f ss
i . (c) The growing periphery is enforced using a ‘bounce-back’ condition during
the redistribution step. When the density at a site is below a critical density ρc,
instead of relaxing fi towards the steady state distribution f ss

i , the directions of the
distribution function are reversed such that the mass that would next stream to an
empty site is now bounced back in the opposite direction (dashed arrow). The mass
just streamed from an empty site, which would be zero, is then set to stream back
out instead (dotted arrow).

v can then be calculated from fi using

ρ(t, r) =
6∑

i=0

fi(t, r) , v(t, r) =

∑6
i=0 fi(t, r) cei
ρ(t, r)

. (4.5)

We then evolve the discretised Boltzmann equation using the Bhatnagar-Gross-

Krook collision operator [193] with additional fluctuations ηi, meaning fi evolves

according to:

fi(t+∆t, r+ cei∆t) = fi(t, r)−
1

τ

[
fi(t, r)− fSS

i (t, r)
]
+ ηi(t, r) , (4.6)
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where τ is a relaxation parameter, ηi are random fluctuations and fSS
i is a steady

state distribution which respects the same symmetries as our system, meaning our

system obeys the correct symmetries as it relaxes towards fSS
i . While ‘steady state’

implies a quantity that does not change, fSS
i refers to the distribution function the

system would have were it in steady state given the current density and velocity

fields, and so it changes as these quantities change. We define fSS
i as

fSS
i = wiρ

(
1 + 4

ei · v∗

c
+ 8

(ei · v∗)2

c2
− 2

|v∗|2

c2

)
, (4.7)

where wi are lattice direction weights, with w0 = 1/2 and wi ̸=0 = 1/12, and v∗ is

our steady-state velocity that depends on the system we are modelling. We define

fSS
i in this way because, if v∗ = v, Eq. (4.7) would be the equilibrium distribution

used to model passive fluids in 2D with a triangular lattice, as it conserves mass

and momentum [192]. However, as active systems do not require the conservation

of momentum, we can choose v∗ to be any function of v and ρ that respects the

symmetries of the system of interest. As our focus here is to study the effects

of proliferation, here we choose v∗ = (1 − µ)v, where µ encodes dissipation arising

from friction with the substrate, although different forms of v∗ can be used to model

active self-propulsion [106]. As we have defined it, Eq. (4.6) always conserves mass

regardless of our choice of v∗, which is obviously not the case in a growing system.

However, choosing fSS
i so as to conserve mass allows easier control over precisely

how mass is added to our system and so how cell proliferation is modelled.

The fluctuations ηi in Eq. (4.6) are defined as

ηi(t, r) = η̃i(t, r)−
1

7

6∑
i=0

η̃i(t, r) , (4.8)

where η̃i is an uncorrelated random variable that is uniformly distributed between

[−σ, σ]. This form of noise is chosen so as to conserve mass, for reasons discussed
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previously.

We evolve Eq. (4.6) in two steps: a streaming step and a redistribution step

(Fig. 4.1b). In the streaming step fi is evolved by one time-step to give an inter-

mediate distribution f ∗
i (t + ∆t, r + cei∆t) = fi. In the redistribution step, fSS

i

is then calculated at each point by calculating the hydrodynamic variables based

on f ∗
i . We then relax f ∗

i towards fSS
i using Eq. (4.6) by replacing fi(t, r) with

f ∗
i (t+∆t, r+ cei∆t) on the right hand side. Fluctuations ηi are then added to give

the final distribution at the next time-step fi(t+∆t, rcei∆t).

4.2.2 Incorporating cell proliferation and the tissue bound-

ary

From this model, we incorporate both cell proliferation and a growing tissue bound-

ary. To model cell proliferation, in-between the streaming and redistribution steps,

we add mass at a chosen a site by increasing fi of two opposite lattice vectors, for

example f1 and f4, by ρcell/2. Here ρcell corresponds to the mass of one cell. The

direction in which mass is injected is chosen at random and replicates the extensile

nematic nature of cell division [109]. We determine the number of sites at which

we inject mass by setting growth to be at a constant rate g. The number of sites

to be randomly selected is then ns = g mtot/ρcell, where mtot is the total cell mass,

found by summing ρ over all lattice points. Proliferation sites are then selected, with

replacement, at random until enough mass has been added to the system. Time or

position dependant proliferation rates can then be implemented depending on the

probability distribution from which proliferation sites are selected.

Here, we look at two growth regimes. Initially, we select proliferation sites from

a uniform distribution, meaning proliferation in the active portion of our tissue

is equally likely in any occupied site in the bulk or at the interface, meaning the
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majority occurs in the bulk. We use the phrase ‘active portion’ because, as the tissue

grows and the interface advances, we advance the rear wall of the model with it. This

greatly improves efficiency and reflects the fact that biological tissues typically have

a section near to the boundary that is actively proliferating, with cells far from the

boundary becoming quiescent. Secondly, we implement a more biologically relevant

growth regime where the local proliferation rate is dependent on the local density

in the system, which concentrates proliferation to the interfacial region. This is

motivated by increased cell density causing increases in tissue pressure away from

the tissue boundary, [79], which can inhibit cell proliferation [38]. Now, when a

lattice site is randomly selected, cell division occurs with probability pdiv(r), which

decays linearly with the local density according to

pdiv(r) =


1− ρ(r)/ρ0 , if ρ(r) > ρc

0 otherwise

(4.9)

where ρ0 the critical density above which proliferation ceases. This regime models

a scenario where crowding suppresses proliferation due to increased compressive

stresses, such as in epithelial layers [194], meaning the bulk of the tissue becomes

quiescent.

While growth in the form of mass injection can be readily implemented within

the LBM framework, a key difficulty in applying it to a growing system is how the

interfacial dynamics should be captured. Here, our key innovation is to use a two

step thresholding method to accomplish this task. Specifically, our method ensures

that the ‘vapor’ phase is completely devoid of any mass, which also distinguishes

our method from existing LBM applied to phase separating systems. This allows

the proper modelling of the tissue layers boundaries using a LBM for the first time.

We achieve this by developing a type of freely moving bounce-back method. In

the redistribution step, if the density at a given site is below a threshold value ρc,
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instead of relaxing towards fSS
i , the directions of f ∗

i are reversed such that f ∗
i = f ∗

j

where ej is the reverse direction of ei (1 ↔ 4, 2 ↔ 5, 3 ↔ 6). This means the mass

just streamed to a given node in the stream step is reflected such that it now travels

back in the direction it came from (Fig. 4.1c). This ensures that any mass that

would be streamed ‘out’ of the system in the next time-step is rebounded back in

and the lattice site it would be streamed to remains empty. This ensures that at the

edge of the tissue there is one lattice site with ρ < ρc and beyond this the system

is devoid of mass. This mimics a surface tension like force and allows our LBM to

easily model sharp interfaces such as an epithelial tissue edge.

4.2.3 Implementation details and algorithm

We implement our LBM on rectangular domains with periodic boundary conditions

at the top and bottom boundaries, and a bounce-back condition at the rear wall.

We initialise our system by setting the initial velocity field to zero everywhere and

generating an initial density distribution with a flat interface, centered around some

initial average density ρinit, uniformly distributed on [0.9ρinit, 1.1ρinit]. From these

initial distributions we calculate an initial fSS
i , which we set as our initial fi.

The algorithm then proceeds in the following steps:

1. Streaming step to generate intermediate distribution f ∗
i (t+∆t, r+cei∆t) = fi.

2. Calculate ρ and v from f ∗
i .

3. Add mass from cell proliferation.

4. Calculate v∗ and hence fSS
i .

5. Redistribution step:

• If ρ(r) ≥ ρc: redistribute fi = f ∗
i −

[
f ∗
i − fSS

i

]
/ τ .
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• If ρ(r) < ρc: for i > 0, set fi = fj where ej is the reverse direction of ei

(1 ↔ 4, 2 ↔ 5, 3 ↔ 6).

6. Add noise: fi → fi + ηi, provided ρ > ρc.

7. Correct any negative values of fi that arise from adding noise:

• If f0 < 0: set f0 = 0. This will change the density, so rescale each

direction according to fi → ρfi/Σjfj.

• If fi < 0 for i > 0: Set fj = fj + |fi| where ej is the reverse direction of

ei (1 ↔ 4, 2 ↔ 5, 3 ↔ 6) and set fi = 0.

As our tissue grows we advance the rear wall such that it is always at least

max(50, 10w) lattice units behind h̄. We use system parameters ∆x = 1, ∆t = 1,

ρc = 0.05, τ = 1, ρinit = 0.1, σ = 0.01, µ = 0.001, g = 0.001 and ρcell = 0.01. For

the density dependent growth regime we use ρ0 = 0.15.

4.3 Bulk driven growth

We initially investigate a regime where proliferation is taken to happen uniformly

across the active portion of the tissue, meaning the majority of it occurs in the bulk.

To examine how the interface evolves, we calculate the interface width w, defined

as the standard deviation of the interface height h(y, t)

w(t) =

√
1

L

∫ L

0

[
h(y, t)− h̄(t)

]2
dy , (4.10)

where L is the width of the domain. How the interface scales in time and space can

be completely described by two scaling exponents α and β. The growth exponent

β describes how w grows before it reaches its steady-state, saturation value w∞ at

time t∞, that is w ∼ tβ (t ≪ t∞). The roughness exponent α describes how w∞
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scales with the system size L, wsat ∼ Lα (t≫ t∞). The time for the system to reach

steady-state then scales according to the dynamic exponent z = α/β, meaning

t∞ ∼ Lz. For KPZ scaling one would expect α = 1/2 and β = 1/3, leading to

z = 3/2, whereas scaling consistent with MBE would give α = 3/2 and β = 3/8,

leading to z = 4.

We implement our LBM on rectangular domains of different widths L. Fig. 4.2a

shows the time evolution of w for different system sizes, showing, as anticipated,

that each systems interface grows at the same rate but that larger systems permit

rougher interfaces. Upon rescaling w and t by the appropriate KPZ exponents, L1/2

and L3/2 respectively, we find a very good curve collapse, indicating the system is

exhibiting KPZ scaling (Fig. 4.2b). This is underlined in Fig. 4.2c and d, which show

the appropriate scaling of w∞ and t∞ with L.

4.4 Density dependent growth

4.4.1 Interface growth

We now implement a more realistic scenario, where proliferation concentrated to-

wards the boundary of the system. We do this by implementing a density dependent

growth regime following Eq. (4.9), keeping other parameters the same. Upon study-

ing the growth of the interface in this regime, we again see KPZ scaling for systems

with L < 640, however, for larger system sizes KPZ scaling is not observed and the

interface width appears to diverge (Fig. 4.3a).

To investigate the cause of this divergence, we plot the steady-state profile of the

boundary for systems of different sizes (Fig. 4.3b). Surprisingly, upon doing this

we see that, for sufficiently large L, the interface is subject to a system-spanning

mechanical instability, at the largest wavelength permitted by the system. To gain
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(b) (c)

(d)

(a)

Figure 4.2: Bulk driven growth exhibits KPZ scaling. (a) Time evolution of the in-
terface width w for systems of different length L. (b) Curves collapse when rescaled
by KPZ exponents. The dashed line showing scaling t1/3 highlights the correspond-
ing KPZ growth exponent. KPZ scaling of (c) w∞ and (d) t∞ with L. The dashed
line is a guide showing KPZ scaling for (c) the roughness exponent α, w∞ ∼ L1/2 and
(d) the dynamic exponent z, t∞ ∼ L3/2. All results are averaged over 30 independent
simulations.

an insight into the cause of the instability, we studied proliferation in the tissue

in the area around the most advanced (hmax) and least advanced (hmin) positions

of the interface. We define these areas as rectangular regions extending 10 lattice

sites above and below hmax or hmin, and 20 lattice sites into the bulk. We find that,

for larger system sizes, there were more proliferation events around hmax than hmin,

although this bias was not seen for smaller system sizes (Fig. 4.3c). This led us to

hypothesise that a local increase in the proliferation rate around protrusions to the

interface could lead to an increase in the local interface velocity, thus driving the

instability (Fig. 4.3c, inset). To understand the mechanism driving the instability

further we now develop a minimal model of interface growth in our system.

4.4.2 Linear stability analysis

The mechanism driving the instability is unclear as, while cell proliferation has been

found to induce an instability at the tissue boundary when it is growing into another

viscous medium [180, 182, 183, 181], an instability arising from a purely proliferative
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(c)(a) (b)

Figure 4.3: A system spanning instability causes divergence from KPZ scaling. (a)
Interface growth curves for systems with L < 320 collapse when rescaled by KPZ
exponents, but diverge for L > 320. (b) Examples of steady-state profiles of the
interface position h shifted by the average interface position h̄ for systems with
L = 320 (light blue), L = 640 (dark blue) and L = 1280 (black). (c) Probability
distributions for the difference between the number of cell divisions ∆ρcell around
hmax and hmin for L = 40 (light blue) and L = 640 (dark blue). (inset) Schematic
of the proposed instability mechanism, proliferative regions are shown in dark blue.
The more advanced sections of the interface are more proliferative. All results are
averaged over 30 independent simulations.

system expanding into a void has not been reported in the literature. To illustrate

the mechanism at play, we write down an EOM for the interface position h. Our

numerical results suggest that for the instability to occur we require the growth rate

of the interface to increase as we move from hmin to hmax, and so depend on h.

This can be understood by considering what happens when the boundary locally

advances. Any local increase in h will necessarily have a lower density than the area

preceding it and so a higher likelihood of cell division. Due to friction, and the limits

on how quickly information can propagate in the system, the effect of these changes

in density can only propagate back into the bulk at a finite speed. Consequently,

if the timescale for cell proliferation is shorter than that of this propagation, areas

where the interface is more advanced grow faster. Along with this, surface tension,

coming from the bounceback condition in our LBM, also clearly has an effect on

interface dynamics. The dynamics of h can thus, to lowest order, be described by

∂th(y, t) = kh(y, t) + γ∂2yh(y, t) , (4.11)
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where k is the growth rate and γ the surface tension. While this is obviously a

very simple, minimal model for our interfacial dynamics, it is the simplest means

of introducing the proliferation difference between the peak and trough into an

analytical model. We note that this equation is far more general than our LBM

and applies to any system in which the growth rate of the interface depends on its

position.

Introducing growth in this way allows us to illustrate the instability mechanism

as, by adding a small amplitude perturbation of the form δh = h0e
ωt+iqy, where

|δh| ≪ 1 and ω describes the growth rate of each wave number q, to a flat interface

in a frame of reference comoving with the mean interface height, yields the dispersion

relation

ω(q) = k − γq2 , (4.12)

which can be seen in Fig. 4.4.

From Fig. 4.4 it is clear that the fastest growing mode will always be the largest

one permitted by the system, the system size, and that the growth rate can be

Figure 4.4: Growth rate of perturbations of different wave numbers. Perturba-
tions only become unstable at wave numbers q <

√
k/γ, corresponding to lengths

L >
√
γ/k. Beyond this threshold, the fastest growing mode is always the longest

wavelength permitted by the system.
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positive if wave numbers less than
√
k/γ are permitted, corresponding to system

sizes L >
√
γ/k. This is why the instability is only seen at sufficiently large system

sizes, as the system only becomes unstable at a critical length Lc =
√
γ/k. However,

we note that Lc is dependent on system parameters and so may not be very large if

the growth rate is sufficiently fast or the surface tension weak.

To demonstrate this instability mechanism, we implement a different growth regime

while keeping the overall growth rate constant. We restrict growth to being in the

first 30 columns of lattice sites from the rear wall, but uniform within this region,

such that width of proliferating tissue is constant. We do this in a system of size

L = 640, where the instability was previously observed. While the biological plau-

sibility of this scenario is debatable, introducing this type of growth removes the

purported instability mechanism as the width of proliferating region is constant

across the entire domain length L and so independent of the interface position. As

can be seen in Fig. 4.5, introducing this growth regime eliminates the instability.

These results suggest that any growing system where the number of constituents

that are able to proliferate increases locally where the interface advances could be

susceptible to this system spanning instability.

(a) (b) (c)

Figure 4.5: Restricting proliferation to the bulk removes the instability. (a) Time
evolution of w when proliferation is (blue) density dependent and (orange) permitted
only in the bulk. Stars indicate times at when profiles of the same colour are depicted
in b and c.Time evolution of the interface position h shifted by the average interface
position h̄ for a system of size L = 640 with (a) density dependent proliferation
and (b) proliferation restricted to the bulk, away from the interface. Darker colours
indicate later times.
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4.5 Discussion

In this chapter, we present a novel LBM for modelling growing, active systems. Our

bounce-back method for the interfacial dynamics ensures well-defined, freely moving

boundaries that allow for the proper physics of growing tissues to be captured using

a LBM. Using this model, we demonstrate that the growth of the boundary driven

purely by proliferation displays KPZ-like scaling, but also displays an instability in

a physiologically relevant proliferation regime where proliferation is concentrated at

the boundary. We formulate an analytical theory to demonstrate this instability

arises due to a proliferation rate dependant on the position of the interface. This

theory is more general than the specific model in which we observed the instability,

and asserts that any system where the local growth rate is dependent on the inter-

face position will be susceptible to this instability. These findings demonstrate the

efficacy of using this LBM, as its mesoscopic scale and efficiency made it possible

to simulate large enough systems to observe this instability and allow us to clearly

exhibit KPZ scaling.

The results presented here are for a single value of the friction coefficient µ, al-

though our results do not qualitatively change over a range of µ values. However,

we note that for very high values of µ the system appears to undergo a roughen-

ing transition, where the steady-state interface width becomes independent of the

system size L. Roughening transitions are known to occur when fluctuations at the

interface of a given system are sufficiently suppressed [163]. However, due to the

suppressed fluctuations, the interface in this regime is very ordered and flat and it

it most likely not a physically relevant regime.

Obtaining KPZ scaling at small system sizes suggests that, if stable, growing tissue

interfaces belong to the KPZ universality class. This emphasises that lateral growth

and surface tension effects control the dynamics of the interface. This is in contrast
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to the MBE scaling found previously [50, 51], that would indicate surface diffusion

is controlling the process. The generality of our LBM adds further weight to this

finding as it suggests that all systems that obey the same symmetries as those in

our model exhibit KPZ scaling.

The onset of an instability at larger sizes is unexpected, as an instability arising

from a purely proliferative system freely expanding into a void has not previously

been reported in the literature. This highlights that proliferation should be consid-

ered along with motility in studies examining the stability of tissue interfaces. The

role of motility has been studied in depth, while its interplay with growth has been

less explored in theoretical investigations. The appearance of this instability sug-

gests the tissue boundary in experimental systems may be susceptible to a fingering

instability. However, as the most unstable mode in our model is the largest permit-

ted by the system, this would suggest the typical size of the fingers seen would be

of the order of the size of the system, which is not the case experimentally. This

could be due to experimental systems not being large enough to be in the unstable

regime. However, as we formulated our LBM through considering the symmetries

of the system, it is difficult to link parameters in the LBM to parameters in exper-

imental systems and obtain a value for the typical length-scale at which we expect

the instability to occur experimentally. Nevertheless, as this instability is not seen

experimentally, this study indicates that the chaotic dynamics seen in experimental

wound healing assays could be governed by fluctuations that scale according to the

KPZ universality class.



Chapter 5

Conclusions

5.1 Summary of Results

Confluent tissue layers are ubiquitous throughout our bodies, from endothelial cells

lining the inner surface of blood vessels [27], to epithelial layers lining our intestines

[195], kidneys [29] and lungs [22]. Their dynamics play crucial roles in many bio-

logical process, yet often these dynamics, and many of the phenomena contingent

upon them, are poorly understood. In this thesis we have sought to characterise

confluent tissue dynamics and understand how they emerge from the microscopic

behaviour of constituent cells. Due to the different interactions involved in these

different phenomena, and different length-scales at which they occur, they cannot

be studied simultaneously. Here we have focussed on nematic collective behaviour,

and nematic defects that arise as a result of this, as well as the dynamics of the

boundary of a growing tissue. We have done this using physical theories, employing

tools from the emerging field of active matter physics, in an effort to strip away

complexity from these systems and pinpoint the underlying physical mechanisms

behind these processes.

117
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In Chapter 2 we investigated the cause of the extensile nematic behaviour recently

observed in epithelial tissues [29]. This has attracted much recent interest due to

the biological process extensile +1/2 defects were found to control, cell extrusion,

but also because epithelial cells generate contractile nematic forces, with how the

behaviour transitions to extensile at the tissue level being unclear. Thus far this

behaviour has been largely understood through the emerging paradigm of charac-

terising biological systems as active nematic systems [86, 85]. However, epithelial

layers do not possess the typical ingredients of an active nematic material as they

are not rod-shaped and display polar motility.

Due to this, we focussed on the role of polar forces and showed, through hydro-

dynamic modelling of solid and fluid tissues, that fluctuating polar traction forces

arising from cell-substrate interactions manifest in extensile behaviour in the ne-

matic field. When polar fluctuations are included along with fluctuating active cel-

lular contractility, we find that both extensile and contractile behaviour is possible

depending on which type of active fluctuations dominate over the other. Extensile

behaviour, therefore, is still possible in the presence of contractile nematic forces.

We then illustrated our findings by examining the dynamics of +1/2 defects in an ac-

tive vertex model (AVM) with purely polar active forces, where exclusively extensile

behaviour was seen. This numerical work also allowed us to show the equivalence be-

tween this widely used method for determining the nature of nematic behaviour and

the method used in our analytical findings, in which we calculated the correlation

⟨v · (∇ ·Q)⟩, as we could also calculate the correlation numerically. Our motivation

for describing the nematic behaviour using this correlation stemmed most studies

characterising systems as extensile or contractile by the sign of the activity coeffi-

cient α in the active nematic term α ·(∇·Q). Determining the sign of the correlation

allows one to ascertain the nature of the nematic field under the systems dynamics

even in the absence of explicitly nematic active forces.
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There are several important implications that result from our findings. The first

is the key role cell-substrate interactions play in governing the collective nematic

behaviour. Previous studies have focussed on the role of cell-cell interactions in con-

trolling collective behaviour [85, 20, 86], with our work highlighting that key features

of the system are missed if cell-substrate interactions are neglected. Secondly, our

findings highlight the vital role fluctuations play in dictating the collective behaviour

of the system, which many studies on active nematics neglect to include. Addition-

ally, characterising nematic behaviour using the correlation ⟨v · (∇·Q)⟩ represents a

new perspective for viewing active nematic systems, as this incorporates the effects

of fluctuations and allows a more complete picture of the systems dynamics to be

gained. Finally, due to the use of a hydrodynamic model, this result is far more

general in its application than just epithelial tissues, suggesting polar fluctuations

driving nematic behaviour in any disordered system of elongated or deformable con-

stituents. For example, it could explain the extensile nematic behaviour seen in

system of vibrated rods [146].

During our investigation in Chapter 2, it became clear that current defect detection

techniques in confluent tissues are inefficient and require large amounts of data to

properly analyse defects in the system. While it was possible to collect this data in

our numerical model, this may not be the case in experimental studies, where data

is much more costly to collect. Moreover, this emergent behaviour is much harder

to characterise if it cannot be reliably identified.

This type of identification task, where effective theoretical approaches are lack-

ing, is well suited to machine learning methods, specifically convolutional neural

networks (CNNs). Due to this, we developed a CNN to detect nematic defects in

confluent tissues. Upon identifying regions of low orientational order, our method

classifies these regions as containing no defect, a +1/2 defect or a −1/2 defect. In

contrast to other studies [119], including a third category for the region not contain-
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ing a defect accounts for the nematic field in confluent cell layers often being poorly

defined, with a region of low orientational order not necessarily meaning a defect

is present like it does in other systems. Upon training our model using manually

labelled data collected from an AVM, we demonstrated that our CNN outperforms

current detection methods. This led to improvements in determining the properties

of defects, and therefore the collective behaviour, in the tissue. This has the poten-

tial to improve the analysis of experimental data, obtaining tissue properties in noisy

environments where the average signal may be very weak. Additionally, although

our focus here has been on confluent tissues, our method is readily implementable

on any system which can be reliably cast in the form of the inputs to our model:

where each constituent is described by a single x and y coordinate, as well as an

orientation.

In Chapter 4 we studied the dynamics of the boundary of a growing tissue interface.

This phenomena has been widely studied due to its relevance to wound healing,

however, the role of growth is often ignored at the expense of traction forces and

collective migration. In addition to a lack of understanding of how proliferation

manifests in the macroscopic dynamics of the boundary, it also is unclear exactly

how the dynamics of the boundary should be described. The dynamics have been

characterised by determining conditions dictating the stability of the interface [14,

45, 46, 47], although it is not clear from experiments whether an instability is present

or if the fluctuations of the interface are merely the result of intrinsic noise within

the system [164, 165, 166, 167].

We aimed to clarify these points by studying a growing tissue using a novel lattice-

Boltzmann method (LBM) that incorporates a sharp boundary akin to what is

found in epithelial tissues. To focus on the role of cell proliferation, this is the only

activity we included in our model. We find that, for sufficiently small systems, the

interface is stable and fluctuations grow according to the Kardar-Parisi-Zhang (KPZ)
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universality class. However, for larger systems, where proliferation is dependent on

the local density in the tissue, the system becomes unstable and a system-spanning

instability governs the dynamics of the interface. Through a minimal analytical

model we demonstrate that the instability arises due to a coupling between the area

of tissue actively proliferating and the position of the interface.

Our study indicates that, in the absence of motility and if growth is sufficiently

slow, tissue interface growth is stable and belongs to the KPZ universality class.

While KPZ scaling has been found before in particle based models [164, 165, 166],

obtaining it using our LBM allows a broader conclusion about tissue behaviour to be

drawn, as the model is based on the symmetries of confluent tissues, as opposed to a

particular incarnation of them. It also highlights that growth can cause the interface

to become unstable and begs the question as to whether this should be included

more widely along with motility when the stability of the interface is characterised.

Further, as we found the system becomes unstable, but only above some critical

length, it remains unclear whether edge dynamics seen in experiments are unstable

or merely a result of system noise. Finally, this work demonstrates the efficacy of our

LBM to model growing tissues and properly capture the dynamics of the interface,

as its mesoscopic scale and efficiency made it possible, for the parameter regime we

used, to simulate large enough systems to observe KPZ scaling and the instability.

5.2 Future Work

The different findings in this thesis raise numerous questions and directions for

further research. Our work on extensile nematic collective behaviour focussed on

the disordered regime, however, epithelial layers can collectively migrate with a

non-zero mean velocity. Although the dynamics here are clearly dominated by polar

forces, it would be interesting to examine the effect this has on the behaviour of



122 Chapter 5. Conclusions

the nematic field and whether this promotes, or inhibits, extensile forces. Moreover,

while epithelial layers do not show orientational order at long length and time-scales,

other confluent tissues of different cell types, such as fibroblasts, do [21]. Further,

fibroblasts also exhibit contractile collective behaviour [28]. It would therefore be

interesting to examine effects of polar forces on the active nematic behaviour of the

system in the presence of order in the nematic field, to investigate whether this

promotes contractile behaviour.

In addition, although our numerical findings using the AVM supported our results

in the case of passive nematics, we are still yet to illustrate the case where a change

in behaviour occurs as active contractility and cell shape fluctuations increase in

magnitude. Introducing active contractile nematic forces to our AVM [196], and

investigating defect dynamics as they are increased in magnitude, would demonstrate

this and allow us to examine this transition in more detail.

This would also allow a more thorough investigation into the relative roles of

cell-cell and cell-substrate interactions in tissue dynamics. Current methods for ex-

perimentally determining the internal stress in cell layers assume cell-substrate in-

teractions arising from active traction forces are negligible, and that experimentally

measured traction forces on a substrate are entirely the result of cell-cell interactions

[197]. From this assumption, Bayesian inference techniques are used to deduce the

internal tissue stress from the measured traction forces. However, our results in

Chapter 2 point to the importance of cell-substrate interactions in controlling tissue

collective behaviour. If the proportion of the measured traction that is generated

from active traction forces is non-negligible, this could cause a significant error in the

calculated stress field. Using the AVM, where we have access to all the component

forces in the tissue, along with the resultant traction force cells exert, would allow

us to investigate in detail whether this is the case and what impact the inclusion of

active traction forces has on the measured tissue stress. This could have a profound
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impact on our understanding of the contributions different forces and interactions

have on the internal state of the tissue.

Our defect detection method could be readily implemented to aid analysis on this

extended AVM. It could also be valuable to the field to extend this method to detect

other defect types, such as ±1 defects. Integer defects have been engineered to arise

in cellular systems [198, 199] and have also been linked to morphogenetic processes

[31, 200], making effective methods to detect increasingly relevant. Moreover, using

machine learning methods creates the possibility of being able to differentiate be-

tween different types of +1 defect, such as aster and spiral defects. The difficulty

here, however, would be obtaining the necessary training data, as ±1 defects very

rarely form in the AVM, meaning a different or modified model would be needed.

The investigation in Chapter 4 focussed on the role cell proliferation plays in tissue

interface dynamics. However, this process often occurs in tandem with collective

cell migration at the tissue edge. As previous work has shown how motility and

collective motion can be introduced into our LBM model [106], the next step in this

investigation would be to introduce this along with proliferation to investigate how

the two different forms of activity integrate to govern the dynamics of the front.

While we do not anticipate this would alter the KPZ scaling of a stable interface,

how motility forces impact the stability of the interface is far from trivial and could

stimulate further theoretical investigation. Additionally, active nematic stresses

have previously been studied in connection to tissue interface stability [14, 45]. It

would, therefore, be interesting to implement a nematic field in our LBM, to enable

us to study how active nematic forces integrate with cell proliferation and motility

to govern interfacial dynamics. More broadly, there is currently no active nematic

LBM for a dry system, so its development would be beneficial for the field of active

matter.

Further, as previously discussed, our investigation focussed on a single value of
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frictional dissipation in our system, and at very high values of friction our system

appears to undergo a roughening transition, where the steady-state interface width

becomes independent of the size of the system [163]. Although this is most likely not

a physically relevant regime, investigating the nature of the transition in detail, and

the impact of friction on the system more generally, would aid our understanding of

the model.

There is still much to understand about the emergent behaviour of confluent tis-

sues, with physical theories offering a wide variety of tools and concepts through

which to characterise and investigate this behaviour. This work focusses on only

sections of the broad array of phenomena available for study. However, we hope the

tools and understanding developed here provide, and stimulate, fruitful avenues of

future research into these important biological systems.
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and B. Ladoux, “The role of single-cell mechanical behaviour and polarity in

driving collective cell migration,” Nature Physics, vol. 16, no. 7, pp. 802–809,

2020.

[19] M. Ozawa, S. Hiver, T. Yamamoto, T. Shibata, S. Upadhyayula, Y. Mimori-

Kiyosue, and M. Takeichi, “Adherens junction regulates cryptic lamellipodia

formation for epithelial cell migration,” The Journal of cell biology, vol. 219,

no. 10, p. e202006196, 2020.

[20] L. Balasubramaniam, A. Doostmohammadi, T. B. Saw, G. H. N. S. Narayana,

R. Mueller, T. Dang, M. Thomas, S. Gupta, S. Sonam, A. S. Yap, Y. Toyama,
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Universal Dynamics of Tumor Growth,” Biophysical Journal, vol. 85, no. 5,

pp. 2948–2961, 2003.

[52] J. Galeano, J. Buceta, K. Juarez, B. Pumariño, J. De la Torre, and J. M.

Iriondo, “Dynamical scaling analysis of plant callus growth,” Europhysics Let-

ters, vol. 63, no. 1, pp. 83–89, 2003.

[53] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost,

M. Rao, and R. A. Simha, “Hydrodynamics of soft active matter,” Reviews of

Modern Physics, vol. 85, no. 3, pp. 1143–1189, 2013.

[54] F. Ginelli, F. Peruani, M. H. Pillot, H. Chaté, G. Theraulaz, and R. Bon,
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tissues as active foams,” Nature Physics, vol. 17, no. 7, pp. 859–866, 2021.

[93] B. Monier, M. Gettings, G. Gay, T. Mangeat, S. Schott, A. Guarner, and

M. Suzanne, “Apico-basal forces exerted by apoptotic cells drive epithelium

folding,” Nature, vol. 518, no. 7538, pp. 245–248, 2015.



Bibliography 137

[94] X. Li, A. Das, and D. Bi, “Mechanical Heterogeneity in Tissues Promotes

Rigidity and Controls Cellular Invasion,” Physical Review Letters, vol. 123,

no. 5, p. 58101, 2019.

[95] D. Bi, X. Yang, M. C. Marchetti, and M. L. Manning, “Motility-driven glass

and jamming transitions in biological tissues,” Physical Review X, vol. 6, no. 2,

p. 021011, 2016.

[96] V. Petrolli, M. Le Goff, M. Tadrous, K. Martens, C. Allier, O. Mandula,
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R. M. Merks, T. Schmidt, and L. Giomi, “Cytoskeletal Anisotropy Controls

Geometry and Forces of Adherent Cells,” Physical Review Letters, vol. 121,

no. 17, p. 178101, 2018.

[121] D. Volfson, S. Cookson, J. Hasty, and L. S. Tsimring, “Biomechanical ordering

of dense cell populations,” Proceedings of the National Academy of Sciences

of the United States of America, vol. 105, no. 40, pp. 15346–15351, 2008.

[122] G. Duclos, C. Blanch-Mercader, V. Yashunsky, G. Salbreux, J. F. Joanny,

J. Prost, and P. Silberzan, “Spontaneous shear flow in confined cellular ne-

matics,” Nature Physics, vol. 14, no. 7, pp. 728–732, 2018.

[123] N. D. Bade, R. D. Kamien, R. K. Assoian, and K. J. Stebe, “Edges impose

planar alignment in nematic monolayers by directing cell elongation and en-

hancing migration,” Soft Matter, vol. 14, no. 33, pp. 6867–6874, 2018.

[124] T. B. Saw, W. Xi, B. Ladoux, and C. T. Lim, “Biological Tissues as Active

Nematic Liquid Crystals,” Advanced Materials, vol. 30, no. 47, p. 1802579,

2018.

[125] A. Baskaran and M. C. Marchetti, “Hydrodynamics of self-propelled hard

rods,” Phys. Rev. E, vol. 77, p. 011920, Jan 2008.

[126] S. P. Thampi, A. Doostmohammadi, R. Golestanian, and J. M. Yeomans,

“Intrinsic free energy in active nematics,” EPL (Europhysics Letters), vol. 112,

no. 2, p. 28004, 2015.



Bibliography 141

[127] S. Santhosh, M. R. Nejad, A. Doostmohammadi, J. M. Yeomans, and S. P.

Thampi, “Activity Induced Nematic Order in Isotropic Liquid Crystals,” Jour-

nal of Statistical Physics, vol. 180, p. 699–709, 2020.

[128] S. Thutupalli, M. Sun, F. Bunyak, K. Palaniappan, and J. W. Shaevitz, “Di-

rectional reversals enable Myxococcus xanthus cells to produce collective one-

dimensional streams during fruiting-body formation,” Journal of the Royal

Society Interface, vol. 12, no. 109, p. 20150049, 2015.

[129] F. Vafa, M. J. Bowick, B. I. Shraiman, and M. C. Marchetti, “Fluctuations

can induce local nematic order and extensile stress in monolayers of motile

cells,” Soft Matter, vol. 17, pp. 3068–3073, 2021.

[130] T. Svitkina, “The actin cytoskeleton and actin-based motility,” Cold Spring

Harbor Perspectives in Biology, vol. 10, no. 1, p. a018267, 2018.

[131] L. Chen, C. F. Lee, and J. Toner, “Mapping two-dimensional polar active fluids

to two-dimensional soap and one-dimensional sandblasting,” Nature Commu-

nications, vol. 7, p. 12215, nov 2016.

[132] R. Aditi Simha and S. Ramaswamy, “Hydrodynamic fluctuations and instabil-

ities in ordered suspensions of self-propelled particles,” Physical review letters,

vol. 89, no. 5, p. 058101, 2002.

[133] S. Ramaswamy, R. A. Simha, and J. Toner, “Active nematics on a substrate:

Giant number fluctuations and long-time tails,” Europhysics Letters, vol. 62,

no. 2, pp. 196–202, 2003.

[134] S. Mishra, A. Simha, and S. Ramaswamy, “A dynamic renormalization group

study of active nematics,” Journal of Statistical Mechanics: Theory and Ex-

periment, vol. 2010, no. 2, p. P02003, 2010.



142 Bibliography

[135] S. Shankar, S. Ramaswamy, and M. C. Marchetti, “Low-noise phase of a two-

dimensional active nematic system,” Physical Review E, vol. 97, p. 012707,

jan 2018.

[136] P. Sartori and C. F. Lee, “Scaling behaviour of non-equilibrium planar N -

atic spin systems under weak fluctuations,” New Journal of Physics, vol. 21,

p. 073064, jul 2019.

[137] L. Chen, J. Toner, and C. F. Lee, “Critical phenomenon of the order-disorder

transition in incompressible active fluids,” New Journal of Physics, vol. 17,

p. 042002, 2015.

[138] A. Doostmohammadi, J. Ignés-Mullol, J. M. Yeomans, and F. Sagués, “Active

nematics,” Nature Communications, vol. 9, no. 1, p. 3246, 2018.

[139] L. Giomi, M. J. Bowick, X. Ma, and M. C. Marchetti, “Defect annihilation

and proliferation in active Nematics,” Physical Review Letters, vol. 110, no. 22,

pp. 1–5, 2013.

[140] L. D. Landau, E. M. Lifshitz, A. M. Kosevich, J. B. Sykes, L. P. Pitaevskii,

and W. H. Reid, Theory of Elasticity: Volume 7. Course of theoretical physics,

Elsevier Science, 1986.

[141] A. Maitra and S. Ramaswamy, “Oriented Active Solids,” Physical Review

Letters, vol. 123, no. 23, p. 238001, 2019.

[142] M. R. Shaebani, A. Wysocki, R. G. Winkler, G. Gompper, and H. Rieger,

“Computational models for active matter,” Nature Reviews Physics, vol. 2,

no. 4, pp. 181–199, 2020.

[143] X. Yang, D. Bi, M. Czajkowski, M. Merkel, M. L. Manning, and M. C.

Marchetti, “Correlating cell shape and cellular stress in motile confluent tis-



Bibliography 143

sues,” Proceedings of the National Academy of Sciences of the United States

of America, vol. 114, no. 48, pp. 12663–12668, 2017.

[144] A. J. Vromans and L. Giomi, “Orientational properties of nematic disclina-

tions,” Soft Matter, vol. 12, no. 30, pp. 6490–6495, 2016.
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cell dynamics and epithelial tension during morphogenesis of the Drosophila

pupal wing,” eLife, vol. 4, p. e07090, jun 2015.

[162] V. Hakim and P. Silberzan, “Collective cell migration: a physics perspective,”

Reports on Progress in Physics, vol. 80, no. 7, p. 076601, 2017.

[163] A.-L. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth. Cam-

bridge University Press, 1995.
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