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A B S T R A C T

The past century has seen many of nature’s secrets unravelled by
the immensely successful theories of particle physics and general rel-
ativity, frameworks in which the world is described as a collection
of many quantum fields, lying on a background classical spacetime.
High-energy signals, originating naturally from the cosmos, or arti-
ficially from particle accelerators, held many empirical clues in sup-
port of these descriptions. In recent years, the formidable advances
in quantum control have brought to light a model-agnostic concep-
tion of physics, once thought to be merely philosophical, as an alter-
native path of fundamental investigations. This modern information
theoretic framework, eschews any description of nature beyond the
correlations between measurements predicted by quantum theory. In
this thesis, three questions of fundamental physics are studied from
the perspective of quantum information and quantum control.

5



P U B L I C AT I O N S

This thesis features work and figures that have appeared previously
in papers which were published throughout the course of my doc-
toral studies:

• [2] H Chevalier, AJ Paige, MS Kim. “Witnessing the nonclassical
nature of gravity in the presence of unknown interactions". Physical
Review A 102 (2), 022428 (2020).

• [3] H Chevalier, AJ Paige, H Kwon, MS Kim. “Violating the Leggett-
Garg inequalities with classical light". Physical Review A 103 (4),
043707 (2021).

• [4] H Chevalier, H Kwon, KE Khosla, I Pikovski, MS Kim. “Many-
body probes for quantum features of spacetime". AVS Quantum Sci-
ence 4 (2), 021402 (2022)

• [5] S Aimet, H Chevalier, MS Kim. “Gravity mediated entangle-
ment between light beams as a table-top test of quantum gravity".
arXiv preprint arXiv:2210.12713 (2022).

Sec. 3.2 is based on publication [3]. Sec. 4.3 is based on publication [4].
Secs. 5.2 and 5.3 are based on publications [2] and [5] respectively.

6



A C K N O W L E D G M E N T S

Knowledge is in the end based on acknowledgement.

— Ludwig Wittgenstein [6]

Science is one of the oldest and perhaps the most inclusive of human
family enterprises. No scientific work is ever done ex-nihilo, and the
product of this dissertation is no exception. I am deeply indebted
towards all those who have offered help, guidance, and support along
the way, from my first steps in science to the finalization of this thesis.

my supervisor , Myungshik Kim, for giving me precious guidance,
for the incredible opportunity to work in his exceptional re-
search group, for all of his encouragements and kind words,
in my highs and lows, from the very first day we met.

my collaborators , Alexander Paige, Hyukjoon Kwon and Kiran
Khosla, who have taught me much more physics than I can ever
remember, given me key insight and shared eye-opening ideas
without which none of our work would have been published. I
am also grateful to Stefan Aimet, for his excellent work.

the contributors , Anupam Mazumdar, Sougato Bose, Yue Ma,
Igor Pikovski, Dennis Ratzel, Benjamin Stickler, for friendly and
fruitful exchanges, and for their insightful comments on the
work presented in this thesis.

the cqd theory group, for having created a lively and collabora-
tive atmosphere at our EEE level 12 office.

the administrators , Miranda Toora, Andrew Williamson, Loli
Sanchez, Naho Ollason, for their kindness and hard work in
making student life at Imperial so carefree.

the cqd cohort, for all the good times of our first year in the
doctoral programme, and the unreal cohort lunches.

my dear family, Laurent and Li Chevalier, for their unwavering
moral and financial support throughout my lengthy studies, for
having brought me up into this world in an incredibly rich cul-
tural environment. Claire Chevalier for her contagious laugh-
ter, heartwarming presence and all of our common quirks. Yun-
lan Tang, for her uplifting love, her heartening smile, her be-
ing a woman one could only dream of marrying. Jean-Paul and
Geneviève Chevalier, for their unalterable kindness and help.
My cousins, uncles, aunts and others from all over the globe,
for making this family what it is.

7



my long time friends , without whom my life in Beijing, Paris
and London would have been a dull adventure: Armand Lizé,
Timmy Delage, Noelle Tang, Mathieu Dos Santos, Guirec Mor-
vant, Suzanne Angelo, Daniel Blengino, Domitille Schanne, Wei-
di Chang, Jules Maloigne, Aurélia Fava, Alice Dang, Riccardo
Scapin, many other Beijingers, Jules Poirson, Elisa Pheng, Mélo-
dy D’hondt, Arsène Pierrot, Augustin Vanrietvelde, Eytan Lévy,
William Beng.

the wonderful teachers and mentors , who shaped my pas-
sion for science, who helped me surpass myself, who believed
in me: Christophe Roche and Michèle Penhoat from Lycée Fran-
çais de Doha, Nicolas Ténart, Ali Bendaoud and Marie-Christine
Schaffhauser from Lycée Français International de Pékin, Preba-
garan Mouttou from Lycée Louis-le-Grand, Nicolas Choquet and
Christophe Lavault from Lycée Charlemagne, Matthieu Boffety
and Henri Benisty from Institut d’Optique Théorique et Appliquée.

the professors , who have taken me under their wings over the
past three years to assist them in teaching Mathematical Meth-
ods for the Physics MSc. at Imperial: Gunnar Pruessner, Rafi
Blumenfeld and Helen Fay Dowker.

the proofreaders , Timmy Delage, Armand Lizé, Claire Cheva-
lier, and Mathieu Dos Santos, whom I thank again for their pa-
tience and rigor.

the french quora community, for their support in my popu-
larization of physics, and for bringing about interesting ques-
tions and exchanges.

the artists and composers , who are too rarely acknowledged:
C418, DOMi & JD BECK, Austin Wintory, Simon Chylinski, Jere-
my Soule, Stafford Bawler, Todd Baker, Eric Prydz, J.S. Bach,
Guillaume de Machaut, and many others for having produced
musical marvels that have helped me focus, meditate and navi-
gate through my thoughts and emotions over the writing period
of this thesis.

redbean, the twelve-pound ball of fur, who has been an exemplary
cat and a faithful companion during the long nights of writing.

8



F O R E W O R D

The saddest aspect of life right now is that science
gathers knowledge faster than society gathers wisdom.

— Isaac Asimov [7]

In the four years of my doctoral training, I have sailed away from the
familiar shores of introductory physics and ventured into an incredi-
bly vast, sometimes tumultuous ocean of ideas, with the help of some
of the most talented and experienced sailors of the mind. The tools
I have gathered from quantum dynamics, quantum optics and quan-
tum information theory, have made for an interesting exploration of
table-top tests of fundamental physical hypotheses, such as realism,
gravitational signatures hidden in quantum motion, or quantum sig-
natures hidden in gravitational motion. This thesis summarizes my
explorations and recounts a journey that has taken place in troubled
times.

My PhD began in a context of rising populism and of post-truth
trends, in a time where a global pandemic put half of the world’s
population into lockdown, in a period of general bewilderment per-
taining to rapid human-induced climate change. In this landscape, I
would like to say a few words about the microcosm of academia and
our society, as I have come to perceive them.

The all-too-noble intellectual enterprise of academia, proudly with-
drawn – we like to believe – from the lowly society of the spectacle,
and thought to advance untroubled by commonplace vicissitudes, is
above all a human and social one. Yet, the current state of academia
also has a much less virtuous facet, one driven by a frantic race for
citations, and higher h-indices.

In a society obsessed with retweets, likes and drama, the financially
starved academic world has become an arena where researchers, as-
piring free athletes turned gladiators, have been told that there is but
one path to success: one where the raw numbers of citations and pub-
lications are worshiped as the ultimate value of science, and where
the strongest prevail and the rest perish.

The very community that draws its future contributors from a pool
of passionate and well-taught students, in promoting industrial-like
article production as the sole purpose of a scientist, has disparaged
teaching activities, pedagogical publications, and even peer-review-
ing, for their alleged lack of innovation and impact. In a world where
scientists are led to neglect outreach and teaching as second-rank
tasks, for the sake of publishing a plethora of oft-cited yet seldom
read papers, how can one be surprised by the widening schism be-
tween the scientific community and the rest of the society?
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The rise of post-truth movements, of fundamental misconceptions,
of mistrust in the intellectual elite, and ill-informed skepticism, is a
sadly obvious outcome for a society that has undervalued teaching.

My short venture into the academic world was not one driven by
extreme specialization and publications, but rather by the pleasure of
learning and teaching a wide variety of concepts. Contrary to most
PhD projects in which students are invited to delve as deep as possi-
ble into an incredibly narrow topic, the work presented in this thesis
reflects a spirit of breadth that I have always longed for: a wonderful
opportunity for which I thank my supervisor.

As an accidental symbol of breadth, it happens that the four publi-
cations on which this dissertation is based have been written in four
different cities: Dubai, Paris, London and Berkeley.

As a further token of my yearning to broaden my horizons, I have
elected to give a philosophical and historical cast to the introduction
of this dissertation. Not to make this thesis unduly pedantic, this is
rather to be taken as a tribute to my remarkably literate family: a
meager compensation for not having been, by far, the best student in
literature and history class.

Though I have grown to appreciate that historical, cultural, socio-
logical and philosophical knowledge are of great importance, I have
also observed that the scientific method, typically represented by the
technological wonders and horrors its application has allowed, is too
often falsely considered to be a mechanistic, lifeless and indoctrinat-
ing way of thinking, commonly opposed to the humanities.

Whereas most marvel at its practical outcomes, as a theorist I find
scientific thinking’s most precious gift to be that of structuring the
mind. Formulating logical quantitative predictions from finite, biased
and noisy data is an all but natural exercise for the ionic Bayesian cal-
culators that are our human brains. Especially so in a chaotic, highly
non-linear and complex world of intertwined influences acting on
different scales of space and time.

Making rational decisions, and actually solving problems of vari-
ous natures, requires a training of the mind in a simple and formal
context, where the intricacies of logic and the subtle purity of reason-
ing lay bare, unobscured by vernacular polysemy. Such is the land-
scape of introductory mathematics and basic sciences like physics.
In my view, this training may not only help sharpen the minds of
scientists: it is also a crucial exercise for anyone who endeavors to
formulate any hypothesis which bears some claim to reality.

But how would those outside of science know, if teaching has be-
come so unrewarding that even some of the most passionate peda-
gogues may consider other careers?
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OESMR Operational Eigenstate Support Macroscopic Realism

SESMR Supra Eigenstate Support Macroscopic Realism

SQUID Superconducting Quantum Interference Device
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N O TAT I O N S

∀ Universal quantifier

∃ Existential quantifier

∈ Set membership

:= Equal by definition

∝ Proportional to

∼ On the order of

≈ Approximately equal to

≲ Less or approximately equal to

O(f) Asymptotic domination by function f

[a,b] Closed real interval

[[n,m]] Integer interval {n,n+ 1, ...,m}

z∗ Complex conjugate of z

δij Kronecker symbol

δ(x) Dirac distribution

d̄x Reduced differential operator dx/2π

|E| Cardinality of set E

dim(E) Dimensionality of space E

MT Transpose of M

supp(f) Support of function f

∂xf Partial derivative ∂f
∂x

⊕ Direct sum

⊗ Tensor product(
n
k

)
Binomial coefficient n!

k!(n−k)!

m Meter

kg Kilogram

s Second

J Joule

K Kelvin

Hz Hertz

H Henry
 h Reduced Planck constant,  h ≈ 1.05× 10−34 J s

c Speed of light in vacuum, c ≈ 3× 108 m s−1

G Gravitational constant, G ≈ 6.67× 10−11 m3 kg−1 s−2

kB Boltzmann constant, kB ≈ 1.38× 10−23 J K−1
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1
P R O L O G U E

What we observe is not nature itself but
nature exposed to our method of questioning.

— Werner Heisenberg [8]

By way of an orthodox introduction, the overture of this thesis is an
invitation to reflect on the history of fundamental scientific research,
its inception, turning points, and developments. After a more specific
summary of the history of quantum field theories and the advent
of quantum information theory, the synopsis of this dissertation is
presented.

1.1 from deities to information : a story of receding ab-
solutes

The history of scientific knowledge, from the earliest myths, medieval
religious cosmogonies, to quantum theory and the measurement pro-
blem, is a multi-millennial tale of the tumultuous rapport between
beliefs and disbelief, between faith and skepticism, between the es-
tablishment of absolutes and their dissolution through relationalism.
In this opening section, we briefly look back on a long winding trail
across spacetime and civilizations, marked by a series of paradigm
shifts, originating in the Middle-Eastern regions, and leading us to
the septentrional city of Copenhagen.

1.1.1 The first awakenings to relativities

Our story finds its earliest roots five millennia ago, in an era dur-
ing which the entirety of scientific knowledge was sheltered within a
handful of ancient Egyptian and Mesopotamian temples, where un-
der the opaque veil of initiation rites, it remained secluded from the
plebeian agitations [9]. Before they drifted into the darkness of forgot-
ten history, these beacons of light few and far between had not gone
unnoticed. From the opposite shore of the Mediterranean, a thou-
sand kilometers northwards from the towering wonders of Giza, the
ancient Greeks had caught a glimpse of the shimmering Egyptian
lights: ancient mathematical, astronomical and medical knowledge
that shaped their natural philosophy.

Six centuries before the common era, Thales (Θαλῆς) of Miletus set
out on a journey to Egypt, to study among the priests of Memphis
and Thebes [10]. Upon his return he founded the oldest Hellenistic
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philosophical school, known as the Ionian school. Philosophers of the
Ionian school sought to relinquish mythology and supernatural hy-
potheses, in favour of rational explanations of the origins of the world
and of physical phenomena, based on experiments and observation.
Thales and his disciples, the physikoi (φυσιχοι), had revolutionized the
way the world was thought of: gone were the anthropomorphic gods
and heroes who wielded the power to shake the Earth. The physikoi
believed instead that the Earth floated on water, and that earthquakes
occurred as Earth was rocked by waves. In essence, the physikoi had
replaced beliefs in imaginary entities whose intentions would gov-
ern observable physical phenomena, with beliefs in physical models
which could intuitively account for the emergence of those phenom-
ena. Although this paradigm shift is seldom mentioned in scientific
curricula, I believe it is by no means less important than the more
popular ones that have followed.

In the story leading up to our current scientific understanding of
the world, the next paradigm shift has been long in coming. Two cen-
turies after Thales founded the Ionian school and transformed our
relationship to phenomenology, the Greek intellectual life became in-
creasingly centered around its capital city state [11]. Athens grew to
become a fertile ground for the advancement of science and philoso-
phy, and saw within its aristocracy the birth of Plato (Πλάτων), who
went on to become the founder of the academy (Ἀκαδημία). Among
his many contributions to human knowledge, Plato had been the pro-
ponent of an ontological stance, called dualism, which broadly postu-
lates a separation between the body and the soul, between the sensi-
ble world and the intelligible world. In particular, Plato believed that
true substances were not physical, but eternal forms of which bod-
ies are imperfect copies. Platonic dualism trickled its way through
the conceptions of one of his pupils, who, although not a believer
of platonic forms, turned out to become perhaps the most influential
thinker in the history of physics: Aristotle (Ἀριστοτέλης), founder of
the lyceum (Λύκειον).

Aristotelian physics divides the universe into corruptible spheres
made up of four elements, where humans lived; and unchanging ce-
lestial spheres made of a special weightless element called aether.
Although Thales and the physikoi had ventured into a new way of
thinking about phenomenology, the world-view of ontology that was
held by most European scholars throughout the middle-ages and up
to the seventeenth century, was due to Aristotle. The underlying pla-
tonic duality of Aristotelian physics, along with its conception of the
universe in terms of purpose rather than cause and effect, was not un-
befitting in the eyes of a society which became structured around the
institutionalisation of monotheistic absolutist religious doctrines. The
fifteenth and sixteenth centuries saw the first stirrings of the revolu-
tion to come, when Copernicus through the observation of planetary
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motion arrived at a conclusion last reached by Aristarchus (Ἀρίσταρ-
χος) of Samos eighteen centuries earlier: heliocentrism. Half a century
later, Kepler formulated laws of motion for celestial bodies which are
still of use to this day. In the wake of these findings, which shattered
the absoluteness of spatial position inscribed in Aristotelian physics,
a relational approach to the physics of motion became conceivable.
This constituted what is now called Galilean relativity. It was not long
before Huygens, Newton and Leibniz formulated the mathematical
concepts crucial to the expression of relationships between observed
phenomena involving the relative motion of massive bodies.

1.1.2 The Einsteinian relativities

In our fast paced narrative, we have followed the first known steps of
mankind towards a rational understanding of nature with the Ionian
school, and seen the persistence of Aristotelian physics through the
rise and fall of early empires, then brought to an abrupt end with
Galilean relativity and the advent of Newtonian physics.

This brings us to the eighteenth century, an epoch by which it
had become well accepted that motion was relative, and where the
mathematical formalization of physical models had gained impor-
tance, with notable contributions to the understanding of vibrating
motion and the behavior of gas owed to mathematicians like Taylor,
D. Bernoulli and Euler. Advances in more and more abstract math-
ematical models of physics continued towards the end of the eigh-
teenth into the nineteenth century, notably with the Langrangian and
Hamiltonian formulations of mechanics, which had established the
notion of energy as more fundamental than that of force. The study
of chemical reactions also saw the formulation of founding principles
such as the conservation of mass.

The nineteenth century was a time of countless substantial ad-
vances in the understanding of nature through new ontological mod-
els, such as fields in Maxwellian electromagnetism, the kinetic theory
of gases fundamental to thermodynamics, as well as groundbreaking
mathematical representations provided by the birth of Fourier analy-
sis. Despite the myriad of discoveries, the foundations of physics had
not evolved much since the Newtonian revolution in essence. Physics
was simply understood to be the study of the causal, deterministic (al-
though sometimes chaotic) relationship between naturally occurring
events. By the end of the nineteenth century, the success of classical
physics culminating in the engineering marvels that had driven in-
dustrial development, left little room for skeptical upheaval. Human
work was progressively replaced by machines, the exponential energy
production fueled by fossilized pre-historic life stoked productivity
and would constitute the stepping stones of social rights.
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The once so vast and arcane world had grown smaller and more
transparent. It was as though nature’s completely deterministic and
calculable inner workings had been fully exposed by Newtonian grav-
itation, Maxwell’s theory of electromagnetism, and the principles of
thermodynamics. History turned out to have been graceful to the
romantics, who found beauty far from the noxious smell of smoke
and soot of the newly industrialized society, and sought meaning be-
yond the cold, rational, mechanistic description of nature that marked
their time. Indeed, the failed detection of luminiferous ether in the
Michelson-Morley experiment [12], and the ultra-violet catastrophe,
would soon catapult mankind into foreign lands.

The result of the Michelson-Morley experiment from 1887 required
a new understanding of the propagation of light. It took the genius
mind of Einstein to devise a solution in 1905, provided by the the-
ory of special relativity [13]. In some sense, the inception of special
relativity marked the very first instance in which thinkers had taken
the Ionian school of thought to its pinnacle: in the face of reliable
empirical observations, one’s belief in metaphysical preconceptions,
however deeply rooted they may be, must yield to reason. What con-
stitutes a challenge in understanding special relativity, is not so much
its mathematical formulation, but rather that it dissolves the absolute-
ness of lengths, durations and simultaneity. While Galilean relativity
and heliocentricity were important paradigm shifts, they were ones
where human scale intuition had to take primacy over unverified be-
liefs. Einsteinian relativity took this a step further: one now had to
relinquish physical intuition and accept principles which could only
be arrived at through the mathematical analysis of empirical data,
that itself could only be collected through the use of measurement
devices which largely surpassed our bodily senses.

After another ten years, Einstein published the theory of general
relativity [14], which described mutual interactions between physi-
cal systems and the background on which they evolve, called space-
time. To this day, general relativity remains undisputed, and stands
as the best model of gravitation ever conceived. General relativity, at
its inception, provided explanations for the perihelion precession of
Mercury otherwise inexplicable with Newtonian gravity alone. This
new theory of gravitation also predicted the existence of objects that
Einstein himself thought to be unphysical, such as black holes and
gravitational waves. These objects have been directly observed a cen-
tury later [15, 16].

1.1.3 The quantum relativities

While the advent of Einsteinian relativity sent tremors throughout
the physical and philosophical communities, for its counter-intuitive
dissolution of the absoluteness of durations and lengths, a sword of
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Damocles still hung over the heads of all who held on to an ontolog-
ical vision of physics, including Einstein himself. In the beginning of
the twentieth century, in efforts to solve the ultraviolet catastrophe,
a new theory of physics called quantum theory, fathered by Planck,
Einstein, Heisenberg, Schrödinger and many others [17–20], came in
as a deluge that would soon unroot whatever was left of absoluteness
and deterministic conceptions of nature.

In this new theory, the fundamental object representing a physical
system was no longer a collection of point-like masses but a mysti-
cal wavefunction often denoted ψ, a field of complex numbers ex-
tending everywhere in spacetime, which does not predict determinis-
tic measurement outcomes, but instead provides probability distribu-
tions of such measurement outcomes, according to the Born rule [21].
Although quantum theory rapidly became an object of fascination
for its bizarre features, such as the uncertainty principle, the wave-
corpuscle duality and its non-deterministic nature, its quiet equations
that filled new manuscripts held greater changes within. It became
apparent within a few years that something unworldly hid beneath
the formalism, and in 1935 a critical challenge to quantum theory was
put forward by Einstein, Podolsky and Rosen, in a publication now
known as the EPR paradox [22].

The EPR paper claimed that quantum theory was incomplete, as
it allowed in certain cases for an action on a given particle to have
an instantaneous effect on the quantum state of a second particle, re-
gardless of their separation. Because this was at odds with special
relativity, the conclusion of the EPR paper was that quantum states
could not be ontic states, but merely epistemic ones1. In Einstein’s
view, physics consisted in studying nature for what it was, and any
indeterminism would arise from the lack of knowledge about an un-
derlying description, called hidden variable theory, which actually
captured the ontic states. What had happened in 1935 spoke volumes
about the extreme profoundness of the paradigm shift humanity had
arrived on the brink of: the first lucid encounter with quantum entan-
glement resulted in the straight negation of the theory’s completeness,
by some of its very pioneers!

The publication of the EPR paper further shook the foundations
of physics, and widened an existing chasm between Einstein and
Bohr [23], but remained an issue deemed too philosophical for most.
Although the immense power of quantum theory in its applications
to atomic, molecular and nuclear physics constituted the building
blocks of technologies that would come to shape the information era
almost a century later, its practical efficiency would marginalize fun-
damental research over decades to come.

It is in 1964 only that the EPR debate was finally stripped of its
cryptic philosophical apparel by Bell, who devised what is now con-

1 That is, states of knowledge of an agent, rather than objective states of reality.
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sidered to be the first ever experimental metaphysics protocol [24].
Bell had demonstrated that the existence of ontological local hid-
den variables, more fundamental than the quantum state, necessar-
ily implied a set of inequalities which now bear his name. These in-
equalities relating different measurement correlations performed on
a bipartite system, were predicted to be violated by quantum theory.
In 1969 the inequalities were reformulated to cater for experimental
tests [25] and the first experimental violations of Bell type inequali-
ties were reported in 1972 [26], followed by a refined test in the fol-
lowing years [27]. These early experiments were recently rewarded
with a Nobel prize. In 2015 a series of loophole free tests were carried
out [28–30], and have all conclusively violated Bell’s inequalities, in
accordance with the predictions of quantum theory.

The violation of Bell’s inequalities bore profound philosophical con-
sequences, as they invalidated all objective local theories of physics:
one cannot account for their violation without abandoning either lo-
cality or realism. A minority of physicists accepted forms of non-
locality for the sake of preserving the reality of the quantum state,
a position called ψ-ontic. Among the popular ψ-ontic interpretations
there is the Bohmian pilot wave theory [31], the many worlds inter-
pretation [32], spontaneous collapse models [33], and modal interpre-
tations [34]. On the other hand, a majority of the physical community
had gone the alternate route of ψ-epistemic-complete interpretations,
commonly referred to as Copenhagen-type interpretations, such as
quantum Bayesianism [35], quantum pragmatism [36], quantum em-
piricism [37] and the relational interpretation [38]. An excellent re-
view of arguments in the ψ-ontic/ψ-epistemic-complete debate can
be found in Ref. [39].

Let us pause and reflect on this state of affairs. The failure of local-
realism signifies that measurements do not merely reveal pre-existing
physical values contained within the object. To put it loosely, in ψ-
ontic interpretations, a measurement of the physical property of an
object reveals a pre-existing value, but this value was not contained
within the object, it depended on a non-local entity, such as a pilot-
wave or the context of the object. In Copenhagen-type interpretations,
physical properties of quantum systems effectively do not exist, or are
undefined, before the measurement. Physical values are thus bound
to the interaction between the agent and the system, and have no
existence before or without the measurement. In the language of the
relational interpretation2, one arrives at the conclusion that there are
only relative facts, some of which may be effectively stabilized by a
decoherence process [40].

As far as the elimination of absolutes goes, quantum theory may
be viewed as a culminating point, where after the successive disap-

2 I should disclose that at the time of writing, this is my preferred interpretation of
quantum theory. Informal thoughts can be found in Appendix A.
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pearance of ancient deities, of the Aristotelian celestial spheres, of
the absolute position of Earth, and of the absoluteness of lengths, du-
rations and simultaneity, the very intuitive absoluteness of measure-
ment values, outside of the specific relationship between a subject
and its object that the measurement constitutes, must be surrendered.
In that regard, quantum theory has constituted by far the most mind-
bending paradigm shift humanity has faced.

Contrary to previous revolutions, the advent quantum theory has
not just changed our conception of the world, it has transformed our
conception of how one should conceive of the world. Whereas physics
was previously thought to be the study of nature, a direct representa-
tion of reality, we have come to realize that it is but the study of our
knowledge of nature as it presents itself through the lens of measure-
ment devices. Regardless of one’s interpretation of quantum theory,
at its most fundamental level, physics no longer deals with well delim-
ited ontological systems, but rather with the dynamics of information,
of correlations, between sequences of interaction events.

1.2 a world of quantum fields and information

Much of our current understanding of the universe stems from the
standard model of particle physics. Fundamental research has long
been driven by the study of quantum field theories, and in this sec-
tion, we give a short historic overview of this incredibly fruitful ap-
proach, before we review the shorter, but no less exciting history of
quantum information theory, as another method to approach funda-
mental physics.

1.2.1 Some knowledge from quantum fields

Most of the historical breakthroughs that have brought us to our cur-
rent understanding of fundamental physics over the past century
have been owed to the immense success of quantum field theories.
The first steps of quantum field theory can be traced back to the
early 1920s, a time by which Heisenberg’s quantum mechanics had
matured enough to describe simple systems, such as harmonic oscil-
lators. It did not take a great leap of faith to imagine why electromag-
netism could be quantized, as the free electromagnetic field was well
known to be formally equivalent to arrays of such oscillators.

The possibility of a quantized free electromagnetic field was first
imagined two decades prior, by Einstein [18], and further motivated
by the works of Ehrenfest [41] and Debye [42] who had shown that
blackbody radiation could be accounted for, by having the electro-
magnetic field take on a discrete set of energies. Further hints came
from Einstein’s statistical treatment of fluctuations in the blackbody
radiation [43], derived from Planck’s law, a result which remained out
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of reach from standard quantum mechanics or classical electromag-
netism. The physical community stood ready for the advent of a quan-
tized field theory, and it was not long before it saw daylight in the
works of Jordan [44], in 1926. In the two years that followed, with the
combined mathematical brilliance of Heisenberg, Schrödinger and
Dirac, the once obscure and multifaceted theory of quantum mechan-
ics had become an imposing monument of sophistication. Dirac’s for-
mulation of quantum mechanics, the one most avant-garde and gen-
eral, exposed a boundless landscape of applications. Three distinct
programs of field quantization were launched.

While Jordan had successfully quantized the free electromagnetic
field, the quantization of an interacting field was first achieved by
Dirac [45]. Because of its Hamiltonian formulation however, Dirac’s
attempt was incompatible with the Lorentz invariance imposed by
Einstein’s special relativity. Dirac’s following and most distant en-
deavor was to unify his quantum field theory with relativity, a theory
that would later be called quantum electrodynamics. Such a program,
he thought, could not be accomplished in a single blow.

In early 1927, Heisenberg and Pauli had begun an enterprise of
their own, more ambitious even than that of Dirac, of which quantum
electrodynamics would be a particular case. Despite the involvement
of Jordan, Klein and Oppenheimer, the unforeseen and formidable
difficulties they had encountered forced them to tread more lightly,
in Dirac’s steps. The path Heisenberg and Pauli had traced led them
all the way to the edge of a conceptual abyss: renormalization of the
infinites; this marked the end of their collaboration in 1930.

Between 1928 and 1930, in a country that was slowly plagued by
Mussolinian ideas, Fermi, who paid more heed to mathematical prac-
ticality than formal desiderata like Lorentz invariance, had reformu-
lated Dirac’s quantum field theory [46]. Curiously enough, Fermi’s
nonchalance for foundations had in fact provided an elegant circum-
vention of the critical obstacle that had extinguished Heisenberg and
Pauli’s ambitions [47]. Though renormalization issues would linger
for decades to come, the formal foundations of modern quantum elec-
trodynamics were born.

The fundamental ideas of quantum field theory were deeply con-
sequential, as they had given rise to a new and formal definition of
the concept of particle. Fundamental particles, which formed all the
atoms of the inanimate, and weaved the dream-like molecules of the
living, were no longer corpuscles or waves, but excitations of the nor-
mal modes of a quantum field. The hunt for new particles had begun.

In 1930 as Ghandi led the first acts of civil disobedience against the
British Crown, Cockcroft and Walton had built the first particle accel-
erator in Cambridge, and performed the first artificial nuclear disin-
tegration in history [48]. Two years later, the neutron and the proton
were discovered. In 1935, as Hitlerian Germany re-armed in violation
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of the treaty of Versailles, the mysterious interaction between pro-
tons and neutrons within atomic nuclei found its first explanations in
the works of Yukawa [49], which marked the birth of the pion. After
the second world war, in 1947, physicists such as Feynman developed
new procedures to represent interactions [50], and the first instance of
pion was found in cosmic rays [51]. In the year that followed, the first
artificial pion was produced within a particle accelerator in Berke-
ley [52]. In 1952, the 1.3 GeV Brookhaven cosmotron began operation,
and a shower of new particles ensued.

By 1960 the once familiar botanical garden of known particles had
grown into an impermeable jungle. Gell-Mann and Zweig, in their
endeavour to find some order in the chaotic wilderness of particles,
developed the quark model in 1964 [53]. Quarks combine to form
hadrons, such as protons and neutrons. While initially perceived as
mere mathematical persiflage, the quark model found empirical sup-
port at only four years of age, in the Stanford linear accelerator [54].

While the invention of quarks had led to the establishment of quan-
tum chromodynamics – the quantum theory of the atomic nucleus –
it did not speak of the other fundamental forces, such as electromag-
netism and the weak force. It took several brilliant minds around
the planet another decade to form a unified picture, culminating in
the unification of the electroweak theory with quantum chromody-
namics, an edifice called the standard model of particle physics [55].
The standard model represents all observable phenomena, at the ex-
ception of gravity, with seventeen fundamental particles. Matter is
made of fermions, which break down into of six types of quarks, and
six types of leptons, while forces are carried by bosons, four gauge
bosons, and a single scalar boson called the Higgs particle. The quest
for fundamental particles predicted by the standard model reached
its grand finale in Geneva in 2012, where the detection of the final
missing piece, the Higgs boson, was confirmed in the Large Hadron
Collider [56].

Today, quantum field theory is widely regarded as the best theory
available to describe nature3, for its spectacular predictive power, as
illustrated by the detection of the Higgs boson almost half a century
after its prediction by the standard model. With empirical measure-
ments of the dipole moment of the electron in agreement with its
predictions up to eleven significant figures, quantum electrodynam-
ics stands out as the most accurately tested physical theory in the
history of mankind [57].

Given their glorious history and far reaching consequences, par-
ticularly in their applications to high energy particle physics, it is
not surprising that quantum field theoretic approaches, despite their
well-deserved reputation for difficulty, have become the mainstream

3 At the exception of gravitation, which to this day is best described by a classical field
theory given by Einstein’s theory of general relativity.
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path of study of fundamental physics. As any theory however, they
cannot be all-encompassing. And curiously enough, the earliest of
the known forces to have been studied by mankind, gravity, turns
out to be the one that seems to elude all techniques of quantization
that had worked for other forces. Despite the ingenious complexity
of quantum field theories and the steady humming of the ever more
power-hungry particle accelerators, it remains unknown whether or
not gravity can, or should be quantized.

1.2.2 Some wisdom from quantum information

Compared to particle physics, the quantum information theoretic ap-
proach to fundamental physics, is one much younger, much less on-
tologically committed, and much more attentive to the enigmatic fea-
tures of quantum theory for what they are.

It is one in which quantum weirdness, such as entanglement, is
not so much seen as the Achilles heel to our understanding of the
universe, but rather the Achilles lance waiting to pierce through the
fabric that ensheathes nature’s deepest secrets. Although this more
abstract formalism does not provide clear mental pictures of real-
ity humans are so fond of, the suspension of ontological beliefs it
stemmed from came with much less burdensome expressions, and
gave a global vantage point from which the raw structure of quan-
tum theory would be viewed unobstructed.

Carrying out investigations in a model-agnostic framework nat-
urally opened the way to the formulation of statements that tran-
scended any ontology: quantum information theoretic laws should
outlive the standard model. One of the earliest contributions of such
model-agnostic approaches to our fundamental understanding of na-
ture is Bell’s theorem. Since then, advances in quantum information
have been eye-opening in their own way.

As a prime example of the power of such modern frameworks,
the possibility of quantum teleportation was already inscribed in the
early formulations of quantum mechanics, owed to Dirac and Von-
Neumann, in the late 1920s. This mysterious phenomenon was how-
ever so deeply buried under a formalism exclusively devoted to the
description of matter and forces, that it had eluded physicists for over
half a century, before it was uncovered in the light of a more virginal
formulation of quantum theory [58]. In the even more abstract di-
agrammatic representation of quantum information theory [59], the
process of quantum teleportation has become essentially trivial.

Despite their youth, the information theoretic approaches bore gifts
to the investigation of fundamental physics that reached further than
their ability to unmask some ensconced features of quantum theory
such as teleportation: they provided a path to answer questions that
are entirely beyond the scope of particle physics. Bell’s theorem, once
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again, fell in this category, as it did not simply rule out classes of
interpretations of quantum mechanics, but spoke of any attempt to
describe observed correlations in any sort of objective local theory.

A much more recent and no less astounding discovery which was
also found through the information-theoretic formalism of the Bell-
CHSH theorem, originated in the works of Popescu and Rohrlich, in
1994. In a seminal paper [60], Popescu and Rohrlich had ventured
to propose a hypothetical post-quantum non-local correlation that
attained the maximal winning probability for the Bell-CHSH game
PPR = 1, while optimal classical and quantum strategies had respec-
tive win rates of PC = 0.75 and PQ = (2+

√
2)/2 ≈ 0.85. Interestingly,

the Popescu-Rohrlich (PR) post-quantum correlation still respected
the no-signalling condition4, and as such had no reason to be ruled-
out as unphysical. Could it be that a natural correlation stronger than
entanglement had yet to be discovered?

The beginning of an answer to this puzzle first appeared in 2000 in
the postgraduate works of Van Dam [61]. He had proven that in any
universe which admitted a PR process, all distributed computations,
no matter how costly, could be carried-out with the communication
of just a single bit. In other words, the existence of PR correlations
would trivialize communication complexity. This result, known as
Van Dam’s theorem, had essentially ruled out the PR correlations un-
der the plausible assumption that we should live in a universe with
a non-trivial communication complexity. This naturally led physicists
to wonder what could be said of correlations weaker than PR, but
stronger than quantum entanglement.

The year 2009 saw the birth of the concept of information causality,
a hypothesis by which “the information gain that Bob can reach about a
previously unknown to him data set of Alice, by using all his local resources
and m classical bits communicated by Alice, is at most m bits” [62]. This
can be viewed as a natural generalization of the no-signalling hy-
pothesis (m = 0). In the same article, it was demonstrated that there
could be no winning probability greater than what was attainable
with the entangled states of quantum theory, that would not violate
information causality. Such a result brought concrete justification to
the success of quantum mechanics: quantum theory was not merely
an accidental discovery that stemmed from the observation of black-
body radiation, which could one day be superseded by yet another
futuristic discovery featuring correlations stronger even than entan-
glement. Quantum entanglement, as it appears, turned out to be the
strongest possible natural correlation of any universe satisfying the
admittedly weak requirement of information causality.

4 Non-signalling theories are those in which no information can be transmitted faster
than causality, a critical condition to satisfy in order to be consistent with special
relativity.
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In the same spirit as thermodynamical laws, quantum information
theory which formulates what is or is not possible from an opera-
tional perspective, has become an ever growing area of interest, not
only to philosophers or computer scientists, but to physicists them-
selves.

1.3 thesis outline

Greek tragedies had a characteristic set of conventions: they usually
opened with a prologue (πρόλογος) in which the drama and the back-
ground of the story were introduced: the reader is now reaching the
end of the prologue.

This was traditionally followed with the parodos (πάροδος) where
the characters were introduced. In this thesis, the parodos is naturally
found in the next chapter, where the reader is reminded of some
familiar figures that take the form of theorems and definitions, and
where the language of the play is introduced: while Greek tragedies
were delivered in the Attic (Ἀττικὴ) and Doric (Δωρισμός) dialects,
our play will naturally draw heavily from the mathematical dialect.

The well acquainted reader may skip ahead to the three episodes
(ἐπεισόδια) where the story unfolds. As per the standard anatomy
of greek tragedies, the three episodes are interspersed with stasima
(στάσιμον), choral interludes commenting or explaining the situation.
Although a topic in theoretical physics does not make for a very
cathartic experience, there are inevitably some components of mime-
sis (μίμησις) in each of the stasimon, incorporating some re-production
of fundamental work upon which the core of the plot is founded.

Our first episode deals with a class of inequalities often said to be
the temporal counterpart of Bell’s, which are regarded as a necessary
condition for macroscopic realism. Their relationship to the classical-
ity of light in the quantum optical sense is investigated. In the second
episode, the story revolves around the minimum localization scale
of quantum systems imposed by gravitation, and an analysis of how
these effects may reveal themselves empirically in a quantum optome-
chanical experiment. In our final, and longest episode, we explore the
possibility of detecting non-classical signatures of gravity which relies
on the operational definition of quantum entanglement.

Finally, the exodus (ἔξοδος) marks the end of this play, with general
concluding remarks.



2
P R O PA E D E U T I C S

If I have seen further it is by standing on the shoulder of Giants.

— Isaac Newton [63]

This chapter provides the unfamiliar reader with important founda-
tional tools and ideas that will help understand the rest of the thesis.
The first section covers core mathematical objects, concepts, and prop-
erties which are ubiquitous in quantum theory, such as Hilbert spaces,
Lie algebras and tensor products. In the second section, the founda-
tions of quantum mechanics, from the Hamiltonian and Lagrangian
formalisms are revisited. In the third section, important tools from
quantum optics are presented. The fourth and final section introduces
the fascinating language of quantum information theory, and formal-
izes the notion of quantum entanglement.

2.1 elements of mathematics

In this opening section, we introduce many mathematical objects and
properties which are crucial to quantum theory. The aim is to pro-
vide a somewhat self-contained presentation of the most important
concepts for the purpose of this thesis. Inevitably, the work presented
in the following chapters does involve some other mathematical con-
cepts which, for the sake of conciseness, have not been formalized in
this introduction. These include Lebesgue measure theory, probabil-
ity theory, distribution theory and complex analysis, for which the
unversed reader may find helpful introductions in the excellent book
by Appel [64].

2.1.1 Hilbert spaces

Quantum mechanics speaks of the dynamics and evolution of quan-
tum states, which are commonly represented as projective rays of a
Hilbert space. But what does nature have to do with Hilbert spaces?
One may argue that the Hilbert space representation seems somewhat
artificially ad-hoc, and in point of fact it just works and has been work-
ing very well for quite some time. It is nonetheless possible to opt for
a more general perspective, which is called the algebraic formulation
of quantum mechanics, the foundations of which are C∗-algebras, in-
stead of Hilbert spaces. In 1943 however, the Gelfand-Naimark the-
orem [65] established that there was a representation of any alge-
bra of observables as operators on a Hilbert space. This showed the

34
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Hilbert space description to be a perfectly justified choice of conve-
nience rather than a fundamental natural fact. With this in mind, let
us now dedicate some time to the proper definition of Hilbert spaces.

The Hilbert space is a relatively sophisticated mathematical object.
Broadly speaking it is a type of vector space that is equipped with a
scalar product and which is complete. Let us properly define these
concepts (for a basic definition of vector spaces, see Appendix B).

Definition 1 (Scalar products). A complex scalar product1 on a complex
vector space V is an external binary operation ⟨_|_⟩ : V2 → C called a
sesquilinear form. It satisfies the five following conditions, the first two being
right linearity and left anti-linearity2:

1. ∀(x,y, z) ∈ V3,∀λ ∈ C, ⟨x|y+ λz⟩ = ⟨x|y⟩+ λ ⟨x|z⟩.

2. ∀(x,y, z) ∈ V3,∀λ ∈ C, ⟨x+ λy|z⟩ = λ∗ ⟨x|y⟩+ ⟨x|z⟩ .

3. ∀(x,y) ∈ V2, ⟨y|x⟩ = ⟨x|y⟩∗ (hermitian symmetry).

4. ∀x ∈ V , ⟨x|x⟩ ⩾ 0 (positivity).

5. ∀x ∈ V , ⟨x|x⟩ = 0 =⇒ x = 0V (definiteness).

In other words, a complex scalar product is a sesquilinear positive
definite form on the vector space V . With this definition at hand, we
introduce our first important property.

Theorem 1 (Cauchy-Schwarz inequality). The complex scalar product
satisfies the Cauchy-Schwarz inequality

∀(x,y) ∈ V2, ⟨x|x⟩ ⟨y|y⟩ ⩾ |⟨x|y⟩|2 ,

and the equality is realized if and only if ∃λ ∈ C, x = λy.

Proof. The case y = 0 is trivial. Suppose y ̸= 0 and let z = x−
⟨y|x⟩
⟨y|y⟩y

be the projection of x onto the hyperplane orthogonal to y. Then we
observe that ⟨y|z⟩ = 0 and x =

⟨y|x⟩
⟨y|y⟩y + z, thus one may establish

⟨x|x⟩ =
∣∣∣ ⟨y|x⟩⟨y|y⟩

∣∣∣2 ⟨y|y⟩+ ⟨z|z⟩ = |⟨x|y⟩|2
⟨y|y⟩ + ⟨z|z⟩ and the inequality fol-

lows from ⟨z|z⟩ ⩾ 0. Furthermore, if ∃λ ∈ C, x = λy then the equality
is trivial. Reciprocally the equality is equivalent to having z = 0which
immediately implies the colinearity of x and y.

Another ingredient we need in order to define Hilbert spaces is
the notion of completeness. For this, let us briefly go through some
rudiments of vector space topology. Basic definitions of metric spaces,
normed spaces and Cauchy sequences can be found in Appendix B.

1 Sometimes the scalar product is also called inner product.
2 One may well define the complex scalar product with right anti-linearity and left

linearity. We have chosen here to stay consistent with Dirac’s notations which are
widely employed in the quantum physics community.
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Definition 2 (Complete sets). A metric space E is said to be complete
when all Cauchy sequences of the set converge.

A simple example of set that is not complete is the set of rationals Q

equipped with the distance d(x,y) = |x− y|. Indeed, the sequence de-
fined by u0 = 1 and ∀n ∈N,un+1 = 1

2un + 1
un

is a Cauchy sequence
which does not converge in Q.

Definition 3 (Banach spaces). A normed vector space (V ,N) is called a
Banach space if it is complete.

If the Banach space has the structure of an associative algebra (that
is an associative inner multiplication which is distributive on its addi-
tion), then it is called a Banach algebra. We now arrive at the formal
definition of a Hilbert space.

Definition 4 (Hilbert spaces). A complex vector space H is said to be a
Hilbert space when the two following conditions are satisfied:

1. H is equipped with a complex scalar product.

2. H is complete.

Let us note that Hilbert spaces are Banach spaces, as they are com-
plete normed spaces. However, not all Banach spaces are Hilbert
spaces as there exist norms which cannot be induced from an inner
product. A famous class of examples is all vector spaces Cn,n ∈ N∗

equipped with the p-norm ∥x∥p = (
∑

i |xi|
p)1/p for p > 1 and p ̸= 2.

notation Before we move on to further concepts, a vector v of a
Hilbert space is often denoted as a ket |v⟩, which is the corresponding
Dirac notation. The dual element of a ket is called a bra and is denoted
⟨v|. It is worth noting that the application φv(x) : x 7−→ ⟨v|x⟩mapping
all elements x of a complex Hilbert space H to their scalar product
with the vector v is a linear map from H to C and so the shorthand
bra notation for this linear form can be seen as simply constructing
the scalar product by applying the bra ⟨v| to a ket |x⟩.

2.1.2 Operators on Hilbert spaces

Orthonormal bases3 are very useful for representing linear operators
(also called morphisms of vector spaces) due to the following impor-
tant property, that we shall prove using the power of Dirac’s notation.

Theorem 2 (Completeness relation). Let |i⟩i∈I be an orthonormal basis
of a Hilbert space H, then ∑

i∈I

|i⟩⟨i| = 1H. (1)

3 The existence of an orthonormal basis is guaranteed by the Gram-Schmidt procedure
in finite dimension and by Zorn’s lemma in infinite dimension, we shall take those
facts for granted for simplicity.
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Proof. Let |u⟩ ∈ H then ∃!(λi)i∈I ∈ C|I|, |u⟩ =
∑

i∈I λi |i⟩, indeed
the coefficients are simply the orthogonal projections onto each basis
direction λi = ⟨i|u⟩. We have |u⟩ =

∑
i∈I ⟨i|u⟩ |i⟩ =

(∑
i∈I |i⟩⟨i|

)
|u⟩ by

associativity. As this holds for all vector |u⟩, the result follows.

Let us suppose that we have a morphism U : E → F where the
input and output spaces are two finite dimensional vector spaces of
dimensions n,m ∈ N over a field F, for which we choose respective
orthonormal bases (vi)1⩽i⩽n and (wi)1⩽i⩽m. Then one can fully rep-
resent U through its action on the basis vectors. Indeed using two
completeness relations one can write

U = 1FU1E =
∑

(i,j)∈(I×J)

|wi⟩⟨wi|U |vj⟩⟨vj| ,

from which one can read off the matrix elements of the representation
of U in the considered bases as uij = ⟨wi|U|vj⟩.

The set of morphisms (of vector spaces) from E to F, denoted L(E, F)
is itself a vector space. We see from the matrix representation that if E
and F are n and m dimensional respectively, then dim(L(E, F)) = nm.
In fact it is important to note, for the theory of quantum channels,
that the vector space of operators between Hilbert spaces is also a
Hilbert space.

Quite often in quantum mechanics, we deal with morphisms the
input and ouput spaces of which are the same, they are called en-
domorphisms, and on a finite dimensional space they can be repre-
sented by square matrices. Let us briefly revisit some spectral theory
of endomorphisms.

Definition 5 (Trace and determinant). Let U ∈ L(E) be an endomor-
phism of the finite dimensional vector space E. Then its trace is the sum
of its eigenvalues Tr(U) =

∑
x∈σ(U) x.deg(x) and its determinant is the

product of its eigenvalues4 det(U) =
∏

x∈σ(U) x
deg(x).

Formally, it is possible to generalize the notion of trace to bounded
positive-semidefinite endomorphisms (which will be defined shortly)
of infinite dimensional Hilbert spaces. The notion of determinant can
also be extended to that of functional determinants [66]. While the
extension of the trace will be discussed further as it is noteworthy for
the density operator formalism, that of the determinant is beyond the
scope of this thesis.

Definition 6 (Diagonalizability). An endomorphism U ∈ L(E) of a vec-
tor space E over field F is said to be diagonalizable when there exists a basis
|i⟩i∈I of E in which U =

∑
i∈I λi |i⟩⟨i| where (λi)i∈I ∈ F|I| are some coeffi-

cients.

4 Note that trace and determinant are defined at the operator level, and as such do
not depend an any representation of the operator. They are similarity invariants.
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In other words, an endomorphism U is diagonalizable when there
exists a basis of vectors which are all eigenvectors of U. On a finite
dimensional space dim(E) = n ∈ N∗ this can be stated for matrix
representations as ∃P ∈ GL(n),∃D ∈ diag(n), U = PDP−1, that is,
there exists a similarity P transforming U into a diagonal matrix D.

Definition 7 (Boundedness). A morphism U ∈ L(E, F) between two
normed vector spaces E, F is said to be bounded when

∃M ∈ R∗
+, ∀x ∈ E, ∥U(x)∥F ⩽M∥x∥E.

This is denoted U ∈ B(E, F).

Definition 8 (Positivity). A hermitian5 endomorphism U ∈ L(H) of the
complex Hilbert space H is said to be positive-semidefinite (resp. positive
definite) when ∀ |x⟩ ∈ H, ⟨x|U|x⟩ ⩾ 0 (resp. ⟨x|U|x⟩ > 0). One denotes
this property U ⩾ 0 (resp. U > 0).

One immediately notices that U ⩾ 0 =⇒ σ(U) ⊂ R+ and because
eigenvectors are non-zero we also have U > 0 =⇒ σ(U) ⊂ R∗

+.
Reciprocally, if an endomorphism of H is hermitian and has a non-
negative (resp. positive) and bounded spectrum, then it is positive
semi-definite (resp. positive definite). In order to prove this however,
one needs the spectral theorem which will be introduced shortly.

Definition 9 (Adjoint). Let us consider a linear operator U ∈ L(E, F)
where E and F are two Hilbert spaces. The adjoint U† of U is the operator6

satisfying ∀(x,y) ∈ E× F, ⟨y|U(x)⟩ =
〈
U†(y)

∣∣x〉.
In the finite dimensional case, the adjoint operator U† is repre-

sented by the hermitian conjugate matrix M† which is the conjugate
transpose of the matrix M representing U. That is, in terms of matrix
elements we have m†

ij = m
∗
ji.

Let us note a simple but useful characterisation of positive semi-
definite operators.

Claim 1. Given a complex Hilbert space H, an endomorphism U ∈ L(H)

is positive semi-definite if and only if there exists an operator V ∈ L(H)

such that U = V†V .

Proof. Clearly, if U = V†V then it is hermitian and satisfies the prop-
erty ∀x ∈ H, ⟨x|U|x⟩ = ∥Vx∥2 ⩾ 0. The reciprocal requires the
spectral theorem. If U is hermitian then one can write its spectral
representation as U =

∑
i∈I λi |i⟩⟨i|, where λi ∈ R. The positive-

semidefiniteness condition yields ∀i ∈ I, λi ⩾ 0 hence defining
V =

∑
i∈I

√
λi |i⟩⟨i| ends the proof.

5 Technically it can be shown, from the polarization identity and the Hellinger-Toeplitz
theorem, that a positive-semidefinite operator on a complex Hilbert space H is self-
adjoint and bounded.

6 One can prove the existence and uniqueness of such an operator using Riesz’s rep-
resentation theorem, however this is beyond the scope of this summary.
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Definition 10 (Remarkable properties). Let us consider a linear operator
U ∈ L(E, F) where E and F are two Hilbert spaces.

1. If U commutes with its adjoint, then it is said to be normal.

2. If U is equal to its adjoint, then it is said to be hermitian7.

3. If U†U = 1E, then U said to be isometric.

4. If E = F and U is isometric, then U is said to be unitary.

5. If U2 = U, then U is said to be a projector.

Note that in cases 1 and 2, we have E = F.

The set of unitary operators on a n-dimensional Hilbert space equi-
pped with the multiplication, has a group structure, is called the uni-
tary group and is denoted U(n).

Hermitian operators are of prime importance in the context of
quantum theory, let us remind some of their key properties.

Claim 2. Hermitian operators have real spectra.

Proof. Given the eigenequation U |v⟩ = λ |v⟩ one has ⟨v|U|v⟩ = λ∥v∥
and ⟨v|U†|v⟩ = λ∗∥v∥. Hermitian symmetry of U and ∥v∥ ̸= 0 yields
λ = λ∗ which ends the proof.

Claim 3. Hermitian operators have mutually orthogonal eigenspaces.

Proof. Consider two eigenequations U |v⟩ = λ |v⟩ and U |w⟩ = µ |w⟩.
Then ⟨w|U|v⟩ = λ ⟨w|v⟩ and ⟨w|U†|v⟩ = µ∗ ⟨w|v⟩. If U is hermitian,
then the two expressions are equal and the eigenvalues are real, so
we arrive at λ ⟨w|v⟩ = µ ⟨w|v⟩, which implies that either the two eigen-
values are equal, or the eigenvectors are orthogonal.

Let us now introduce an important type of projector.

Definition 11 (Orthogonal projectors). A projector Π ∈ L(E) of a
Hilbert space E is orthogonal when its kernel and support are orthogonal.

In quantum mechanics non-orthogonal projectors are very rarely
encountered, and so the orthogonality is usually omitted. We also
have the following important characterization that, in some textbooks,
is taken as definition.

Claim 4. A projector of a Hilbert space is orthogonal is and only if it is
hermitian.

7 More generally it would be said to be self-adjoint, however in the context of a Hilbert
space with a hermitian scalar product those two notions coincide.
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Proof. Consider a projector Π ∈ L(E). If it is orthogonal, then its
kernel and image are orthogonal supplements of the Hilbert space.
Let us now consider two vectors x,y ∈ E. Then ⟨y|Π(x)⟩ = ⟨Π(y)|x⟩
holds on ker(Π) as well as on supp(Π), as it takes the forms 0 = 0

and ⟨y|x⟩ = ⟨y|x⟩ respectively. Since E = ker(Π)⊕ supp(Π) the equa-
tion holds on E and thus Π is hermitian, by definition of the adjoint.
Conversely if Π is hermitian, then its kernel and support are two
eigenspaces associated with different eigenvalues, by claim 3. they
are thus orthogonal.

We now come to one of the most important mathematical theorems
in quantum mechanics.

Theorem 3 (Spectral decomposition theorem for normal operators).
Any normal operator U ∈ L(E) on a finite dimensional8 vector space E
can be orthonormally diagonalized. Conversely any orthonormally diagonal-
izable operator is normal.

Proof. We begin by the converse which is straightforward. Let U be
an orthonormally diagonalizable operator. Then there exists a uni-
tary similarity transformation P such that U = PDP† where D is
a diagonal operator. Then UU† = PDP†PD∗P† and using the uni-
tarity of P and the commutativity of diagonal operators gives the
normality of U. Reciprocally, we proceed by induction on the di-
mension of E. The case dim(E) = 1 is trivial. Let us consider a
normal operator U, an eigenvalue λ ∈ σ(U), the orthogonal pro-
jector Π onto the eigenspace Eλ = ker(U − λ1) and the orthogonal
projector Ξ onto the orthogonal complement E⊥λ . From Π + Ξ = 1

one has U = (Π+ Ξ)U(Π+ Ξ) = ΠUΠ+ ΠUΞ+ ΞUΠ+ ΞUΞ. We im-
mediately see that ΠUΠ = λΠ and ΞUΠ = 0 as the eigenspace is,
of course, stable through U. By normality of U the operator com-
mutes with U† and so the eigenspace is also stable through U† thus
ΞU†Π = 0, taking the hermitian conjugate of this equation yields
ΠUΞ = 0. Hence we are left with U = ΠUΠ + ΞUΞ. Since the first
term is already diagonal on Eλ one only needs to prove that the sec-
ond term is diagonalizable on E⊥λ , and since dim(E⊥λ ) ⩽ dim(E) − 1

by induction this reduces to proving that ΞUΞ is normal. Noting
that Π + Ξ = 1 we see that ΞUΞ = ΞU and ΞU†Ξ = ΞU†. Com-
bining this with the normality of U and the projector property we
have ΞUΞΞU†Ξ = ΞUU†Ξ = ΞU†UΞ = ΞU†ΞΞUΞ, which ends the
proof.

This powerful theorem allows us to have a handy way of writing
down all hermitian operators U as U =

∑
i∈I λi |i⟩⟨i|, which is called

8 This can be generalized to infinite dimensional vector spaces, even uncountably infi-
nite dimensions, however it requires the notion of spectral measure which is beyond
the scope of this thesis.
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the spectral representation. Note that (λi)i∈I is not necessarily an in-
jective sequence, as there can be degenerate eigenvalues. The spectral
representation is simply a real-weighted sum of spectral projectors,
the coefficients being the eigenvalues of the operator. An immediate
application of such a representation is the extension of numeric func-
tions to normal operators, as long as they are defined on their spectra.

Definition 12 (Functional extensions). A numeric function f : C → C

can be extended to all normal operators U of a Hilbert space H with spectral
representation U =

∑
i∈I λi |i⟩⟨i| as long as f is defined on σ(U), in the

following way: f(U) :=
∑

i∈I f(λi) |i⟩⟨i|.

In particular, positive-semidefinite operators have a well defined
square root, and a well defined absolute value |U| =

√
U†U. In order

to extend definitions of functions beyond normal operators, one can
rely on the analyticity of the function and the Banach algebra struc-
ture of operators, making sure that the operator norm does not ex-
ceed the function’s radius of convergence. In this sense, the exponen-
tial function can easily be extended to non-normal or non-diagonaliz-
able operators, however its familiar properties on the real or complex
sets will not always carry over, as we shall see at length in the next
section.

It would be unbecoming to conclude this section on Hilbert space
operators without mentioning some important representations of op-
erators and of the trace. Let us briefly revise these useful tools.

Claim 5. If U ∈ L(H) is a normal endomorphism of a Hilbert space H then

Tr(U) =
∑
i∈I

⟨i|U|i⟩ , (2)

for any orthonormal basis (|i⟩)i∈I of H.

Proof. Since U is normal, it is unitarily diagonalizable. That is, there
exists a unitary transformation P such that ∀i ∈ I, |i⟩ = P |i ′⟩ where
(|i ′⟩)i∈I is an eigenbasis of U, i.e. U = PdP† where d is diagonal.
Hence

∑
i∈I ⟨i|U|i⟩ =

∑
i∈I ⟨i ′|P†UP|i ′⟩ =

∑
i∈I di describes the sum

of eigenvalues of U.

This expression in fact is not only limited to normal endomor-
phisms, but to a broader class of operators that play an important
role in quantum theory.

Definition 13 (Trace class). Let U ∈ B(H) be a bounded endomorphism
of the complex Hilbert space H. Then U is said to be in the trace class if the
series

∑
i∈I ⟨i|

√
U†U|i⟩ converges, where |i⟩i∈I is an orthonormal basis of

H. In this case we have

Tr(U) =
∑
i∈I

⟨i|U|i⟩ .
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In finite dimension, all endomorphisms are obviously in the trace
class and the definition of the trace coincides with the matrix trace.
The set of trace class endomorphisms of H is a vector space denoted
B1(H). Equipped with the trace norm ∥U∥1 := Tr

(√
U†U

)
the trace

class set is a Banach space. It is also worth noting that the trace class
set is a bilateral ideal in the algebra of bounded endomorphisms, that
is, ifU is trace class and V is bounded, thenUV and VU are trace class.
Given this fact, let us briefly review some important properties of the
trace.

Claim 6 (Similarity invariance of the trace). Let U ∈ B1(H) be a trace
class operator on the Hilbert space H. Then Tr(U) is invariant under any
similarity (that stabilizes the set of bounded operators).

Proof. Consider any invertible endomorphism P on the Hilbert space
H. By introducing the notation uij = ⟨i|U|j⟩ for operators, and using
the inverse property (P−1P)ij = δij one has9

Tr
(
P−1UP

)
=

∑
i∈I

⟨i|P−1UP|i⟩

=
∑

(i,j,k)∈I3

⟨i|P−1|j⟩ ⟨k|P|i⟩ukj

=
∑

(j,k)∈I2

δk,jukj = Tr(U).

This statement is unsurprising in finite dimensions, as the trace of
an operator is the sum of its eigenvalues, it is to be invariant under
any change of matrix representation basis.

Claim 7 (Symmetry of the trace). Let UV ∈ B1(H) be a trace class
endomorphism of the Hilbert space H composed of the two endomorphisms
U,V on the same Hilbert space. Then one has VU ∈ B1(H) and the identity
Tr(UV) = Tr(VU).

Proof. Using two completeness relations in the definition of Tr(UV)
and orthonormality ⟨i|j⟩ = δi,j, one has

Tr(UV) =
∑

(i,j,k)∈I3

⟨i|j⟩ ⟨j|U|k⟩ ⟨k|V |i⟩ =
∑

(i,k)∈I2

uikvik,

which is invariant under the swap operation u↔ v.

Claim 8 (Cyclicality of the trace). (Uj)1⩽j⩽n ∈ (L(H))n be a family of
endomorphisms of the Hilbert space H where n ∈N∗, such that the ordered
product

∏n
j=1Aj is a trace class operator. Then for any cyclic permutation

σ ∈ Sn of the index set, one has Tr
(∏n

j=1Uj

)
= Tr

(∏n
j=1Uσ(j)

)
.

9 Let us insist again: in order to write the left-most quantity, one should also require
that P and its inverse be bounded.
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Proof. The result is trivial for n = 1 and already proven for n = 2

(symmetry of the trace). Suppose n ⩾ 3. The cyclic permutations of
the index set {1, ...,n} form a monogenous group. A valid generator
is the permutation σ = (n, 1, ...,n− 1), it is thus sufficient to prove
the trace invariance through this permutation. Let V =

∏n−1
j=1 Uj, by

symmetry of the trace one has Tr(VUn) = Tr(UnV) which proves that
the trace is invariant under σ.

Last but not least, it is worth mentioning at least three types of
matrix decompositions which the quantum theorist may find handy
to have kept in mind.

Theorem 4 (Polar decomposition). Let A ∈Mn(K) be a real or complex
square matrix, where n ∈ N∗. There exists a unitary matrix U ∈ Mn(K)

and a positive semi-definite matrix P ∈ Mn(K) such that A = UP, where
P = |A| =

√
A†A. If A ∈ GLn(K) then U is unique.

Proof. P = |A| is positive, by spectral theorem it can be decomposed as
P =

∑
i λi |i⟩⟨i| where ∀i, λi ⩾ 0 and where (|i⟩)i∈I is an orthonormal

basis. Define |ψi⟩ = A |i⟩, then ⟨ψi|ψi⟩ = ⟨i|A†A|i⟩ = ⟨i|P2|i⟩ = λ2i .
For indices i such that λi ̸= 0, one can define |ei⟩ = λ−1

i |ψi⟩. The
vectors (|ei⟩) thus defined form an orthonormal family of vectors.
This family can be extended to a basis by a Gram-Schmidt procedure.

Now let us define U =
∑

i |ei⟩⟨i|, which is unitary since it maps
an orthonormal basis to another. Assuming λi ̸= 0 one can establish
UP |i⟩ =

∑
k |ek⟩ ⟨k|P|i⟩ = λi |ei⟩ = A |i⟩. Otherwise UP |i⟩ = 0 = A |i⟩.

Hence A = UP on the orthonormal basis (|i⟩i∈I) which establishes
the matrix equation. Finally, if A is invertible, then so is P hence U is
uniquely determined as U = AP−1.

Here we have dealt with the left polar decomposition, one has the
same results with a right polar decomposition. Let us see an immedi-
ate and powerful consequence of this theorem.

Theorem 5 (Singular value decomposition). Let A ∈Mn(K) be a real
or complex square matrix, where n ∈ N∗. Then there exists two unitary
matrices U,V and a non-negative diagonal matrix S such that A = USV .

Proof. By polar decomposition one has A = WP where W is unitary
and P is positive semi-definite. By spectral theorem one can write
P = TST† where T is itself unitary and S is diagonal and non-negative.
Thus A = WTST† and the multiplicative group structure of unitary
matrices ends the proof.

Theorem 6 (Cholesky decomposition). Let A ∈ Mn(K) be a positive-
definite matrix. There exists a unique lower-triangular matrix L such that
A = LL†.
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Proof. Given a positive semi-definite matrix A ∈ Mn(K), by claim 1

one can write it as A = V†V for some square matrix V . A Gram-
Schmidt procedure allows to unequivocally write V = QR where Q
is unitary and R is upper-triangular. Thus A = (QR)†QR = R†R, and
defining L = R† yields the result.

Now that we have reviewed some of the most important results
about operators in Hilbert space, let us go back to the extension of
familiar functions to operators. One particular function that we can
extend to Hilbert space operators is the exponential function. Because
of its importance in physics, we shall devote the next section to some
of its crucial definitions and properties.

2.1.3 The exponential map

Let us go over some important properties of the exponential map. Al-
though the aim is to maintain a certain level of rigour, what is shown
here is best formulated within the framework of Lie groups, Lie alge-
bras and representation theory. For our purpose, we shall not delve
too deep in the theory, and refer the curious reader to Ref. [67] for a
comprehensive introduction. We simply give ourselves the following
definitions.

Definition 14 (Lie groups). A Lie group G is a group which is also a finite-
dimensional real smooth manifold, in which multiplication and inversion are
smooth maps, that is (x,y) 7−→ x−1y is a smooth mapping of G2 onto G.

Definition 15 (Lie algebras). A Lie algebra g is a vector space over a
field F equipped with a bilinear operator [_, _] : g2 → g called Lie bracket,
satisfying the following two properties

1. ∀x ∈ g, [x.x] = 0 (alternativity).

2. ∀(x,y, z) ∈ g3, [x, [y, z]] + [y, [x, z]] + [z, [x,y]] = 0 (Jacobi identity).

Claim 9. The Lie bracket is anticommutative, that is

∀(x,y) ∈ g2, [x,y] = −[y, x].

Proof. ∀(x,y) ∈ g2 we have [x+ y, x+ y] = [x,y] + [y, x] having used
the alternativity and bilinearity properties on the right hand side. Us-
ing alternativity on the left hand side yields the result.

For any associative algebra A the commutator [x,y] = xy− yx de-
fines a Lie bracket. In the remainder of this thesis, we shall use the
terms commutator and Lie bracket interchangeably, as we will work
in the associative algebras of endomorphisms of a vector space, or
that of square matrices.
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Definition 16 (Adjoint action). Given a Lie algebra g and x ∈ g, we
define the adjoint action of x on g as the map Adx : g → g, y 7−→ xyx−1,
and its derivative adx : g→ g, y 7−→ [x,y].

As stated in a previous section, one can easily extend the expo-
nential function to normal operators on a Hilbert space, by simply
writing down their spectral representation. However there is no rea-
son that the usual morphism realized by the exponential between
(C,×) and (C,+) be carried into a group morphism between opera-
tor groups. This is exemplified in the following important theorems.

Theorem 7 (Hadamard identity). For all couple of elements (u, v) of a
real Banach algebra

Adeu(v) = eadu(v). (3)

Proof. Consider the function defined on the real set f : t 7−→ etuve−tu.
One finds its first derivative to take the form d

dtf(t) = e
tu[u, v]e−tu. It

is also straightforward to establish the expression for the n-th deriva-
tive ∀n ∈ N, dn

dtn f(t) = etuadn
u(v)e

−tu. By analyticity of f on the
real set, its Maclaurin expansion is f(t) =

∑+∞
n=0 adn

u(v)t
n/n! which

at t = 1 yields the result.

As a simple but common use case of the Hadamard identity in
quantum theory, let us assume that we have two Hilbert space oper-
ators x,p ∈ L(H) which satisfy the commutation relation [x,p] = λ1

for some λ ∈ C, then epxe−p = x+ [x,p] = x+ λ1.
Let us further venture in the complications which arise with expo-

nentials on non-commutative algebras. Consider an operator algebra
A and an element (x,y) ∈ A2. If [x,y] = 0 then we can write10

ex+y =

+∞∑
n=0

(x+ y)n

n!
=

+∞∑
n=0

n∑
k=0

(
n

k

)
xkyn−k

n!

=

+∞∑
n=0

n∑
k=0

xkyn−k

k!(n− k)!
=

+∞∑
r,s=0

xrys

r!s!
= exey,

however this simple homomorphism property of the exponential map
breaks down when the algebra is not commutative (invalid binomial
expansion), as is the case in quantum theory. One may still wonder
whether there exists an element z ∈ A satisfying ez = exey. Intu-
itively, one can opt for z = log(exey) and write down the power series
log(t) =

∑+∞
n=1

(−1)n+1

n (t− 1)n. By substitution one can establish

log(exey) =
+∞∑
n=1

(−1)n+1

n

 +∞∑
k,l=0

xkyl

k!l!
− 1

n

.

10 Writing out the exponent technically assumes an underlying unital field of charac-
teristic 0, which will always be the case in quantum theory. Convergence issues are
not a concern when dealing with normal operators.
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By noticing that
∑+∞

k,l=0
xkyl

k!l! − 1 =
∑

k+l>0
xkyl

k!l! one arrives at an
obscure yet common identity in quantum theory, called the Baker-
Campbell-Hausdorff (BCH) formula.

Theorem 8 (Baker-Campbell-Hausdorff formula). Given two elements
x,y of a Banach algebra the exponentials of which are defined, we have

exey = exp

+∞∑
n=1

∑
k1+l1>0

...
∑

kn+ln>0

(−1)n+1

n

xk1yl1 ...xknyln

k1!l1!...kn!ln!

.

The way we arrived at the BCH formula is simply illustrative. This
identity has been thoroughly studied in the mathematics community
and for a complete picture and several derivations see Ref. [68]. In
quantum theory one will not have to deal with the full BCH expan-
sion in general. In order to unpack this formula, it is instructive to
inspect the first terms. The n = 1 term reads

∑
k1+l1>0

xk1yl1

k1!l1!
= x+ y+ xy+

x2 + y2

2
+ ...

The n = 2 term reads∑
k1+l1>0

∑
k2+l2>0

(
−1

2

)
xk1yl1xk2yl2

k1!l1!k2!l2!
=

(
−1

2

)
(x2+y2+xy+yx+ ...)

One notes that the n-th term contains contributions of order at least
n. From those two terms alone, one can write down the order 2 BCH
expansion as

exey = exp
(
x+ y+

1

2
[x,y] + ...

)
,

and one can show that terms of order n can be written with n nested
commutators. With some more tedious work one can arrive at the
order 3 BCH expansion

exey = exp
(
x+ y+

1

2
[x,y] +

1

12
([x, [x,y]] + [y, [y, x]]) + ...

)
. (4)

In standard quantum theory, it is quite common to have situations
where the second order nested commutators vanish, in this case we
have the following useful identity.

Theorem 9 (Disentangling theorem). Given two elements x,y of a Ba-
nach algebra, the exponentials of which are defined, if the nested commu-
tators satisfy [x, [x,y]] = [y, [y, x]] = 0 and we denote the commutator
[x,y] = c, then

ex+y = exeye−
1
2c = eyexe

1
2c. (5)
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Before moving on to another topic, let us go through another use-
ful and typical situation where some difficulties may arise when han-
dling the exponential map in non-commutative algebras.

Fundamental physical laws are often expressed as differential equa-
tions, the simplest of which are homogeneous linear first order ordi-
nary equations, which take the form y ′ = ay to be solved on an
interval of the real line with some initial condition.

In the case of commutative algebras, there is a well known so-
lution y(t) = exp

(∫t
t0
a(s)ds

)
y(t0), which comes from the simple

property of the exponential d
dte

f = f ′ef. This property itself can be
seen as arising from ∀n ∈ N∗, d

dtf
n = nfn−1f ′ combined with the

power series definition of the exponential function. However, in the
non-commutative case one has ∀n ∈ N∗, d

dtf
n =

∑n
k=1 f

k−1f ′fn−k.
Therefore

d

dt
ef = lim

n→∞ d

dt

(
1+

f

n

)n

= lim
n→∞

n∑
k=1

(
1+

f

n

)k−1
f ′

n

(
1+

f

n

)n−k

,

recognizing the limit of a Riemann sum, this takes the form

d

dt
ef =

∫1
0

esff ′e(1−s)fds = ef
∫1
0

Adesf(f ′)ds = ef
∫1
0

eadsf(f ′)ds,

where we have used the Hadamard identity Eq. (3) in the final step.
Hence, when one is faced with the seemingly simple differential equa-
tion y ′ = ay, in general the solution will have to take into account
non-vanishing commutators between a function and its derivative.
This results in the following theorem, which was first put forward
in Ref. [69].

Theorem 10 (Magnus’ theorem). Let a be a function of t in an associative
ring, and let y be a solution of y ′ = ay with y(0) = 1. Then under certain
convergence conditions, y can be written in the form y(t) = exp(Ω(t))

where Ω satisfies
d

dt
Ω =

+∞∑
n=0

Bn

n!
adnΩa,

where (Bn)n∈N is the Bernouilli sequence.

For a derivation of this theorem and more about its context, see
the extensive review Ref. [70]. For our purpose, we can note the three
first terms in the Magnus expansion:

Ω1(t) =

∫t
0

a(t1)dt1,

Ω2(t) =

∫t
0

dt1

∫t1
0

dt2[a(t1),a(t2)],

Ω3(t) =

∫t
0

dt1

∫t1
0

dt2

∫t2
0

dt3

[
a(t1), [a(t2),a(t3)]

]
+
[
a(t3), [a(t2),a(t1)]

]
.
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2.1.4 Tensor products

One last useful ingredient to formalize quantum theory for the pur-
pose of this thesis, is that of tensor products.

Definition 17 (Tensor products). A tensor product E⊗ F of two vector
spaces E, F over the same field F is a vector space associated with a bilinear
map E× F→ E⊗ F, (x,y) 7−→ x⊗y. A basis of E⊗ F is (vi⊗wj)(i,j)∈I×J

where (vi)i∈I and (wj)j∈J are respective bases of E and F.

From this construction it is clear that in finite dimensions one has
dim(E⊗ F) = dim(E)dim(F).

Definition 18. A tensor product H1⊗H2 of two Hilbert spaces H1,H2 is
the tensor product of the two vector spaces equipped with the inner product

∀ϕ1,ψ1 ∈ H1, ∀ϕ2,ψ2 ∈ H2,

⟨ϕ1 ⊗ϕ2|ψ1 ⊗ψ2⟩ = ⟨ϕ1|ψ1⟩1 ⟨ϕ2|ψ2⟩2 .

In quantum theory, it is common practice to omit the tensor mul-
tiplication between kets and instead of writing |ψ1⟩ ⊗ |ψ2⟩ opt for
|ψ1⟩ |ψ2⟩ and sometimes even |ψ1ψ2⟩ when the context is not am-
biguous. Tensor products on dual spaces yield the same rules for the
tensor product of bras. A noteworthy fact for the study of entangle-
ment theory, is that not all vectors |v⟩ in the Hilbert space H1 ⊗H2

can be factorized as |v⟩ = |v1⟩ ⊗ |v2⟩ where |v1⟩ ∈ H1 and |v2⟩ ∈ H2.

Definition 19. A tensor product A⊗ B of two algebras A,B is the algebra
obtained by the construction

∀a1,a2 ∈ A, ∀b1,b2 ∈ B, (a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2.

We have some useful identities combining tensor products and pre-
viously seen operations. For example, given two algebras A1,A2 and
A ∈ A1 and B,C ∈ A2 one has [A⊗ B,A⊗ C] = A2 ⊗ [B,C]. There
is also the interesting fact that given an analytic function f we have11

f(A⊗ 1) = f(A)⊗ 1. Finally, one has the following simple identity:
exp(A⊗ 1+ 1⊗B) = exp(A)⊗ exp(B).

Let us now see how the trace combines with tensor products.

Definition 20. Let A ∈ L(H1 ⊗H2) be an endomorphism of the tensor
product Hilbert space H1 ⊗H2. The partial trace of A over the Hilbert
space H1 is the application

Tr1(A) : L(H1 ⊗H2)→ L(H2), A 7−→
∑
i∈I

(⟨i|⊗ 1)A(|i⟩ ⊗ 1),

where (|i⟩)i∈I is any orthonormal basis of H1.

Let us note that the partial trace of an operator is another operator
on a smaller Hilbert space, as this will be important in the formaliza-
tion of quantum channels.

11 Assuming A is in a Banach algebra and that its norm is less than the radius of
convergence of f.
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2.2 elements of standard quantum physics

With all the required mathematical ingredients at hand, we are now
ready to revisit some foundations of modern quantum physics. In
particular, we review how one builds the quantum counterparts of
Hamiltonian mechanics, phase space formulations and Lagrangian
mechanics. The Schrödinger and Heisenberg pictures, akin to the Eu-
lerian and Lagrangian specifications of the classical flow field, are
also introduced.

2.2.1 Quantizing Hamiltonian mechanics

In this section we remind some basics of Hamiltonian quantum me-
chanics, starting from classical physics and building the canonical
commutation relations in quantum mechanics. In Hamiltonian theory,
the equations of motion of a system are derived from a Hamiltonian,
a function of phase-space variables, through an operation called Pois-
son bracket. The concept of phase space was developed at the end of
the 19th century by Ludwig Boltzmann, Henri Poincaré and Josiah
Willard Gibbs, and is a smooth manifold on which every state of a
system can be represented. A single classical particle’s state is de-
fined by its positions and momenta, which constitute a single point
in its 6-dimensional phase space. Let us define the Poisson bracket
explicitly.

Definition 21 (Poisson brackets between phase space variables).
Given a single particle with position vector x and momentum vector p, the
Poisson bracket between position and momentum variables satisfies the fol-
lowing three equations:

1. {xi,pj} = δi,j,

2. {xi, xj} = 0,

3. {pi,pj} = 0.

Definition 22 (Poisson brackets between phase space functions).
Given three functions f,g,h of phase space and two real numbers λ,µ, the
Poisson bracket satisfies the following four conditions:

1. {f,g} = −{g, f} (anticommutativity).

2. {λf+ g,h} = λ{f,h}+ {g,h} (linearity).

3. {f,gh} = {f,g}h+ g{f,h} (Leibniz rule).

4. {f, {g,h}}+ {h, {f,g}}+ {g, {h, f}} = 0 (Jacobi identity).
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One can notice in fact that the Poisson bracket is a type of Lie
bracket, with the additional Leibniz rule. The classical Hamiltonian
equations of motion take the simple form

df

dt
= {f,H}+ ∂tf, (6)

and one sees that for functions f that do not have explicit time depen-
dence ∂tf = 0, but only depend on time through the phase space vari-
ables, the evolution is entirely governed by the Poisson bracket with
the Hamiltonian. This case is quite common as it applies to any poly-
nomial of phase space variables with constant coefficients. In particu-
lar, Hamiltonians with no explicit time dependence induce dynamics
for which the energy is conserved {H,H} = 0 by anti-commutativity.
More generally, any function that does not have explicit time depen-
dence and which commutes with the Hamiltonian, is a conserved
quantity, also called a constant of motion.

To sum up, on classical phase space we have a simple multiplication
between observables, which are scalar functions of the phase space
variables, and a more sophisticated multiplication called the Poisson
bracket. In quantum phase space however, the simple multiplication
is not commutative. In combination with the Poisson bracket, this im-
poses a certain form for the non-commutativity as we shall see now.

Let us consider four operator-valued functions a1,a2,b1,b2 of the
phase space variables12. Then the Poisson bracket {a1a2,b1b2} can be
expanded in two ways. One can first expand the product a1a2 and
then expand b1b2:

{a1a2,b1b2} = a1(b1{a2,b2}+ {a2,b1}b2)

+ ({a1,b1}b2 + b1{a1,b2})a2,

or equivalently expand the b1b2 product first, and then a1a2:

{a1a2,b1b2} = b1(a1{a2,b2}+ {a1,b2}a2)

+ (a1{a2,b1}+ {a1,b2}a2)b2.

Expanding those two expressions, one sees that second and fourth
terms in the first expansion are respectively equal to the second and
third term in the second expansion. Equating the two expansions thus
imposes the condition

(a1b1 − b1a1){a2,b2} = {a1,b1}(a2b2 − b2a2).

We recognize a commutator, and we can understand this equation as
follows: the operations L : (a,b) 7−→ [a,b] and P : (a,b) 7−→ {a,b}, de-
fined on the space of couples of functions of the canonical variables,

12 It is common practice in introductory quantum mechanics to denote operator valued
quantities with a hat, however in the same way that vectors were not underlined or
denoted with an arrow, we shall omit hats on operators and trust the reader to
identify object types from context.
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commute. Since this commuting property holds on the whole func-
tion space, necessarily there exists a nonzero element κ in the center
of the group of functions over phase space (i.e. a scalar operator),
such that L = κP. We shall later justify why it turns out that κ = i h1,
where  h is the reduced Planck constant. In doing so, we will visit the
Schrödinger and Heisenberg pictures of quantum dynamics.

In other words, by letting go of the commutativity of the phase
space variables, hence making the algebra of functions defined on
phase space non-commutative, the Poisson structure is modified in
a way that is completely captured by the commutator between func-
tions. In particular, Hamilton’s equation (6) for a function with no
explicit time dependence can be written down using the commutator
as

df

dt
=

−i
 h
[f,H], (7)

which is called Heisenberg’s equation of motion. Furthermore, the
definition of the Poisson bracket between phase space variables can
now be rewritten with commutators as follows.

Claim 10 (Commutator between phase space variables).
Given a single particle with position vector x and momentum vector p, the
commutator between position and momentum operators satisfies the follow-
ing three equations:

1. [xi,pj] = i hδi,j,

2. {xi, xj} = 0,

3. {pi,pj} = 0.

Proof. This immediately follows from the relationship between Pois-
son bracket and commutator.

2.2.2 Schrödinger, Heisenberg and Dirac pictures

So far, we have seen that the failure of commutativity between func-
tions of phase space variables can only be made compatible with
Poisson brackets if the commutators are proportional to the Poisson
brackets. We have also shown that functions of phase space variables
which do not explicitly depend on time have their dynamics governed
by their commutator with the Hamiltonian function. Let us now ap-
proach the question of quantum dynamics from the point of view of
unitary transformations and Noether’s theorem.

The fundamental object in quantum mechanics one is introduced to
is the wavefunction ψ(x, t) which is a complex probability amplitude,
and belongs in the Hilbert space H of L2(R4, C) functions. If ψ is
normalized, it is associated to a pure physical state usually denoted
with a ket |ψ⟩, of which it is a position space representation. Any
unitary operation U defines an automorphism of both the state space
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H and of the space of its endomorphisms L(H). One can see this
through the following construction. Let |ψ⟩ , |ϕ⟩ ∈ H and |ψ ′⟩ = U |ψ⟩,
|ϕ ′⟩ = U |ϕ⟩ then〈

ϕ ′∣∣ψ ′〉 = (U |ϕ⟩)†U |ψ⟩ = ⟨ϕ|U†U|ψ⟩ = ⟨ϕ|ψ⟩ .

For all endomorphism O ∈ L(H) let O ′ = UOU† so that〈
ϕ ′∣∣O ′∣∣ψ ′〉 = ⟨ϕ|U†UOU†U|ψ⟩ = ⟨ϕ|O|ψ⟩ .

What this means is that the action of a unitary operation leaves the
physics unchanged, as the overlaps between states and the expecta-
tion values of operators are left invariant. In fact one also has the
converse statement: operations under which the physics is left un-
changed necessarily leave overlaps between any states invariant, they
are isometric endomorphisms, i.e. unitary operations.

We have seen that according to Hamiltonian theory, a closed sys-
tem’s evolution must be governed by its Hamiltonian. For a closed
system, this Hamiltonian is conserved, and so the system must be
time translation invariant according to Noether’s theorem. Let us con-
sider such a closed system the quantum state of which lies in a Hilbert
space H. Then time translation symmetry reads

∀ |ϕ⟩ , |ψ⟩ ∈ H, ∀dt ⩾ 0, ⟨ϕ(t+ dt)|ψ(t+ dt)⟩ = ⟨ϕ(t)|ψ(t)⟩ .

In light of our previous remark, it follows that there is an automor-
phism U(dt) of the state space and of the space of its endomorphisms.
The set of such unitary operators equipped the operator composition
has the structure of an abelian group, which means we can write
down ∀t ⩾ 0,∀n ∈ N∗, U(t) = U(t/n)n. Taking the limit n → +∞
and carrying out a quadratic expansion yields

∀t ⩾ 0, U(t/n) = 1+
t

n
U ′(0) +O(1/n2) ∼ exp

(
t

n
U ′(0) +O(1/n2)

)
,

so that one arrives at

U(t) ∼
t→0

exp
(
tU ′(0)

)
.

A consequence of this final equation is that the unitarity of U(t)
for any parameter t implies that the operator U ′(0) must be anti-
hermitian. To put it more mathematically, we have characterized the
generators of the time translation symmetry group13.

All things considered, we have established the existence of a her-
mitian operator, which will turn out to be the Hamiltonian up to a
scaling factor −H/ h, satisfying U ′(0) = −iH/ h. With such a prescrip-
tion, the unitary time propagator is found to be generated by the

13 We have assumed that this Lie algebra of generators is topologically star-shaped at
its identity element.
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time independent Hamiltonian: ∀t ∈ R, U(t) = exp(−iHt/ h). We
may now look at the action of this operation on the state space. We
obtain the simple equation ∀ |ψ⟩ ∈ H, |ψ(t)⟩ = exp(−iHt/ h) |ψ(0)⟩,
from which one establishes the famous Schrödinger equation through
a time differentiation

∀t ∈ R, i h
d

dt
|ψ(t)⟩ = H |ψ(t)⟩ . (8)

This formulation of quantum dynamics in which it is the quantum
states that evolves in time according to the unitary propagator is
called Schrödinger picture. As mentioned previously, one can also
adopt the dual point of view, in which the unitary propagator instead
conjugates the space of operators, and where the states are constants
of time. That is, we now define

OH(t) = exp(iHt/ h)OS exp(−iHt/ h),

where the H index indicates a Heisenberg operator, and the S index
indicates a Schrödinger operator. The dynamics of the operators is
then simply found to be the adjoint action of the time propagator14.

d

dt
OH(t) =

iH
 h

exp(iHt/ h)OS exp(−iHt/ h)

− exp(iHt/ h)OS exp(−iHt/ h)
iH
 h

,

=
i
 h

exp(iHt/ h)[H,OS] exp(−iHt/ h),

=
−i
 h
[OH(t),H].

One recognizes the Heisenberg equation of motion Eq. (7). In deriving
this result, we have thus effectively identified the generator of the
time propagator as being the Hamiltonian, shown that it must be
a hermitian operator, and that the κ coefficient relating the Poisson
to the Lie bracket must be purely imaginary. The reduced Planck
constant  h simply comes as a scaling factor that can be ignored when
working in natural units.

A third representation of quantum dynamics worth mentioning for
its importance in quantum field theory, is called Dirac picture. It is
essentially a hybridization of the Schrödinger and Heisenberg repre-
sentations when the dynamics is generated by a Hamiltonian that can
be split in two parts H = H0 +H1. In most encountered situations H0

represents a free Hamiltonian while H1 is an interaction term, usually
a small perturbation. Working in the Dirac representation amounts to
having operators evolve through the action ofH0 according to Heisen-
berg’s equation, and have states evolve through the action of H1 ac-
cording to Schrödinger’s equation. States and operators in the Dirac
picture, that we shall denote with a tilde, are then related to those

14 Assuming the Schrödinger operator itself does not carry an extra time dependence.
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in the Schrödinger picture via the following automorphisms of state
and operator spaces:∣∣ψ̃(t)〉 = exp(iH0t/ h) |ψ(t)⟩S ; Õ(t) = exp(iH0t/ h)OS exp(−iH0t/ h).

From this one can establish the corresponding equations of motion
for states and operators in the Dirac picture

i h
d

dt

∣∣ψ̃(t)〉 = H̃1

∣∣ψ̃(t)〉 ;
d

dt
Õ(t) =

−i
 h
[Õ(t),H0]. (9)

2.2.3 Quantum phase space

We have reviewed how in relinquishing the commutativity of func-
tions of the phase space variables, Hamilton’s equations of motion
may be cast into Heisenberg’s equations of motion. We have also seen
how the Hamiltonian generates a unitary propagator which is an au-
tomorphism of the state and operator spaces corresponding to time
evolution. One can view the dynamics as arising from the variation
of the observables themselves (Heisenberg picture) or of the quantum
state itself (Schrödinger picture).

Let us now step away from dynamics and think about quantum
states themselves. In classical physics, a single point-like system’s (on-
tic) state can be represented as a single point in phase space. If one
does not know precisely the position or momentum of the classical
system, then its (epistemic) state will be represented as a probability
distribution f(x,p) over phase space which evolves according to Li-
ouville’s equation15 ∂tf = −{f,H}. What would then be the quantum
counterparts to the ontic and epistemic classical states? In order to de-
termine this, one first needs to represent quantum states in position
and momentum spaces.

Consider the position operator X which is self-adjoint. By the spec-
tral theorem, one can find an orthonormal basis of the state space
made up of eigenvectors of X, and hence one has the completeness
relation

∫
R
dx |x⟩⟨x| = 1, where we have a Dirac overlap between nor-

malized eigenvectors ⟨x|x ′⟩ = δ(x − x ′). One can then write an ar-
bitrary quantum state |ψ⟩ as |ψ⟩ =

∫
R
dx ⟨x|ψ⟩ |x⟩, and the overlap

ψ(x) := ⟨x|ψ⟩ is called the wavefunction.
Let us now turn to the momentum operator P, which is by defini-

tion the generator of spatial translations |x+ δx⟩ = exp(−iPδx/ h) |x⟩.
Being a hermitian operator, one also has the completeness relation∫

R
d̄k hk |k⟩⟨k| = 1, where we have denoted d̄k = dk/2π and de-

fined |k⟩ so that P |k⟩ =  hk |k⟩. Note that the orthonormality is here
written as ⟨k|k ′⟩ = 2πδ(k ′ − k). By spectral decomposition of P one
can write exp(−iPδx/ h) =

∫
R

d̄k exp(−ikδx) |k⟩⟨k|, and so one has

15 Note that there is an extra sign compared to Hamilton’s equations.
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|x+ δx⟩ =
∫

R
d̄k exp(−ikδx) |k⟩ ⟨k|x⟩. Applying the bra ⟨k| to the pre-

vious equation yields

⟨k|x⟩ =
∫

R

d̄k ′ exp(−ikδx)2πδ(k ′ − k)
〈
k ′
∣∣x〉 = exp(−ikδx) ⟨k|x⟩ .

That is, ⟨k|x⟩ = exp(−ikx) ⟨k|0⟩. Finally the constant factor can be de-
termined by evaluating ⟨x|x ′⟩ =

∫
R

d̄k ⟨x|k⟩ ⟨k|x ′⟩ = | ⟨k|0⟩ |2δ(x ′ − x),
which imposes ⟨k|0⟩ = 1. We thus arrive at the important relationship

⟨k|x⟩ = e−ikx. (10)

This indicates that the position and momentum eigenstates are re-
lated by a Fourier transformation. As for the wavefunctions on po-
sition (or direct) and momentum (or reciprocal) space, they are also
related by a Fourier transform

F(ψ)(k) := ⟨k|ψ⟩ =
∫

R

dx ⟨k|x⟩ ⟨x|ψ⟩ =
∫

R

dx e−ikxψ(x).

A noteworthy consequence of this, is that the action of a momentum
operator in the position representation is simply the application of a
gradient Pψ(x) = − i

 h∂xψ(x).
We have now characterized representations of quantum states on

phase space. But what if, as can be the case in classical statistical
physics, one had some imperfect preparation of a quantum state?
Then in order to calculate the expectation value of an observable one
would have to average over fluctuations in the state preparation it-
self. This kind of statistical quantum states are captured by what are
called density operators. Suppose indeed that a pure quantum state
|ψi⟩ is prepared with a probability pi. Then the expectation value of
an observable O would take the form

⟨O⟩ =
∑
i

pi ⟨ψi|O|ψi⟩ =
∑
ij

pi ⟨ψi|O|j⟩ ⟨j|ψi⟩

=
∑
j

⟨j|

(∑
i

pi |ψi⟩⟨ψi|O

)
|j⟩ = Tr(ρO),

where we have introduced an orthonormal basis (|j⟩), a completeness
relation, and the operator ρ =

∑
i pi |ψi⟩⟨ψi|. This operator is a den-

sity operator, and one can easily check that it is hermitian, positive
semi-definite with unit trace. A density operator represents a pure
quantum state whenever it is itself a projector ρ2 = ρ, otherwise it
represents a mixed state. One of the most important mixed state aris-
ing in physics is the thermal state, and it takes the form

ρth =
e
− H

kBT

Tr
(
e
− H

kBT

) , (11)
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where kB is Boltzman’s constant. This is nothing more than a Boltz-
man distribution where the classical energy is replaced by the Hamil-
tonian operator. We will introduce other representations of the ther-
mal state shortly.

The density operator is the quantum counterpart of a classical epis-
temic state. One first observation supporting this is the form of its
evolution. In the Schrödinger picture, taking the Schrödinger equa-
tion and its hermitian conjugate yields d

dtρ(t) = i
 h [ρ,H]. We notice

that, just like Liouville’s and Hamilton’s equations differ by a sign,
this quantum Liouville equation and the Heisenberg equation also
differ by a sign. We can now take a further step and write out what is
the quantum phase space representation of states, by combining the
density operator with our previously established pure state represen-
tations on position and momentum space. This phase space represen-
tation was first proposed by Wigner and it reads

W(x,p) =
∫

R

dse−ips/ h
〈
x+ s

2

∣∣ρ∣∣x− s
2

〉
.

Contrary to the classical case, the Wigner distribution is not exactly
a probability distribution, but a quasi-probability distribution in that
in can take negative values. To convince ourselves that this function
behaves as a quasi-probability distribution, let us first note that it is
normalized. Indeed

∫
d̄pW(x,p)

 h =
∫
dsδ(p)

〈
x+ s

2

∣∣ρ∣∣x− s
2

〉
= ⟨x|ρ|x⟩,

and integrating over x yields
∫∫
dsd̄pW(p,x)

 h = Tr(ρ) = 1. Further-
more, the Wigner function yields expectation values of any functions
of phase space, a desirable property for an object that corresponds to
a probability distribution. Indeed, for any function f of the position
operator X one has∫∫

R2

dx
d̄p
 h
f(x)W(x,p) =

∫∫∫
R3

dxds
d̄p
 h
e−ips/ hf(x)

〈
x+ s

2

∣∣ρ∣∣x− s
2

〉
=

∫∫
R2

dxdsδ(s)f(x)
〈
x+ s

2

∣∣ρ∣∣x− s
2

〉
=

∫
R

dxf(x) ⟨x|ρ|x⟩

= Tr(f(X)ρ) = ⟨f(X)⟩ .

A slightly more contrived but very similar calculation also proves that
for any function g of the momentum operator P one has∫∫

R2

dx
d̄p
 h
g(p)W(x,p) = Tr(g(P)ρ) = ⟨g(P)⟩ .

There are other ways to represent quantum states in phase space, and
in order to build up another convenient representation, we shall later
introduce some of the most important quantum states. Before con-
cluding this short introduction to quantum phase space, let us look
at one of the most famous consequences of the non-commutativity
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between position and momentum operators, from the perspective of
measurement statistics.

Consider two hermitian operators A ′,B ′ and take their centered
counterparts A = A ′ − ⟨A ′⟩ ,B = B ′ − ⟨B ′⟩. One can rewrite the op-
erator product as AB = 1

2([A,B] + [A,B]+) where [., .]+ denotes an
anti-commutator. From this, one has

|⟨AB⟩|2 = ⟨AB⟩ ⟨BA⟩ = 1

4
⟨[A,B] + [A,B]+⟩ ⟨[B,A] + [B,A]+⟩ ,

where we have used the hermiticity of the operators. Let us note
that for hermitian operators ⟨[A,B]⟩ ∈ iR and ⟨[A,B]+⟩ ∈ R so that
⟨[B,A]⟩ = − ⟨[A,B]⟩ = ⟨[A,B]⟩∗. By linearity of the expectation value,
the cross terms vanish and one is left with

|⟨AB⟩|2 =
1

4

(
|⟨[A,B]⟩|2 + |⟨[A,B]+⟩|2

)
. (12)

Recall the Cauchy-Schwarz inequality ∥X∥2∥Y∥2 ⩾ |X.Y|2, where we
work with the Hilbert-Schmidt scalar product X.Y = Tr

(
Y†X

)
and

the associated norm ∥X∥ =
√
X†X. Let us now consider an arbitrary

quantum state ρ (a hermitian, positive semi-definite operator). Set-
ting X =

√
ρA and Y =

√
ρB in the Cauchy-Schwarz inequality

yields Tr(ρA2)Tr(ρB2) ⩾ |Tr(ρAB)|2. This relation may be equiva-
lently written as ⟨A2⟩ ⟨B2⟩ ⩾ |⟨AB⟩|2. We can now combine this with
Eq. (12) to obtain the following theorem due to Robertson [71]:

Lemma 1 (Robertson’s inequality). For all pair of observables A,B of a
quantum system in a given state, the following inequality holds

〈
A2
〉 〈
B2
〉
⩾
1

4

(
|⟨[A,B]⟩|2 + |⟨[A,B]+⟩|2

)
. (13)

One arrives at the Heisenberg inequality by dropping the (positive)
anti-commutator. For centered observables the variance takes the sim-
ple form ∆A = ⟨A2⟩, so Roberton’s inequality implies the relation
(∆A)(∆B) ⩾ 1

4
|⟨[A,B]⟩|2. Note that if we now shift back the opera-

tors so they are no longer centered, the inequality still holds, as extra
⟨A⟩2 1 terms leave the commutator invariant. Square rooting this last
inequality yields the Heisenberg uncertainty relations or principle:

Theorem 11 (Heisenberg’s uncertainty relations). For all pair of ob-
servables A,B of a quantum system in a given state, the following inequality
holds

σAσB ⩾
1

2
|⟨[A,B]⟩| . (14)

In particular from the canonical commutation relation [x,px] = i h1,
one obtains the famous relation σxσpx ⩾  h

2 . In the literature, the
notation ∆ instead of σ is widely adopted, although measurement
uncertainties are standard deviations.
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The Heisenberg uncertainty relations have a direct consequence on
the representation of states on quantum phase space. Contrary to clas-
sical physics, where the ontic state of a single particle was represented
as a point in phase space, in quantum physics, there must necessarily
be a spread of the corresponding probability density. In that sense,
the states that minimize the uncertainty relations will be interpreted
as being the most classical. Since the Heisenberg uncertainty relations
between position and momentum can essentially be seen as a Cauchy-
Schwarz inequality linking the position and momentum representa-
tions, and that we have shown that they are related to one another by
a Fourier transform, it should not come as a surprise that the states
saturating Heisenberg’s uncertainty relations should be gaussian in
some sense. Let us show this explicitly.

If we define the pure state with position representation

ψ(x) = (2πσ2x)
−1/4 exp

(
ip0x

 h

)
exp

(
−
(x− x0)

2

4σ2x

)
,

then by construction we have ⟨x⟩ = x0 and
〈
(x− x0)

2
〉
= σ2x. One can

express its Wigner function

W(x,px) =
∫

R

dse−ipxs/ hψ
(
x+

s

2

)
ψ∗
(
x−

s

2

)
,

=
1√
2πσ2

e
−

(x−x0)
2

2σ2

∫
R

dse
−i(px−p0)s

 h e
−s2

8σ2 ,

= 2 exp
(
−
(x− x0)

2

2σ2

)
exp

(
−
(px − p0)

2

2σ2p

)
,

where σp =  h2/(2σ2) and given three reals a,b, cwith a being strictly

positive we have used the formula
∫

R
dse−as2+bs+c =

√
π
ae

c−b2

a . We
see that in this form, this state which saturates the uncertainty rela-
tions has a gaussian phase space representation. The state we have
considered here plays an important role in quantum theory, and is
called a coherent state. In Sec. 2.3 we will take some time to further
develop other representations of coherent states, and in particular
shed some light on their relationship to states which are at the other
end of the spectrum of classicality, called Fock states.

2.2.4 Quantizing Lagrangian mechanics

In Sec.2.2.1 we have seen how to build quantum mechanics from clas-
sical Hamiltonian mechanics, by enforcing the compatibility of the
Poisson bracket with the Lie bracket. In doing so, we have estab-
lished Heisenberg’s equations of motion as a quantum analogue of
Hamilton’s classical equations. It is a well known fact that equations
of motion can also be built from the Lagrangian formalism, which
relies on the principle of stationary action. The action is a functional
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defined as the time integral of the Lagrangian S[q] =
∫
dtL(q(t), q̇(t))

and by enforcing stationarity δS = 0 one arrives at the Euler-Lagrange
equations ∂qL− ∂t(∂q̇L) = 0.

Quantum mechanics, as it turns out, can also be formulated by tak-
ing an action as the fundamental quantity. The notion of quantum
mechanical action was first introduced by Dirac, and laid the founda-
tions for what is now called the path integral formalism, a framework
that was largely developed by Feynman [72].

The main motivation for us to briefly present the path integral for-
malism, is that Hamiltonian quantum mechanics is not Lorentz in-
variant. Taking the Hamiltonian as a fundamental quantity restricts
us to working in a given reference frame, whereas starting from an
action does not impose such a restriction. The starting point of the
path integral formulation is to reflect on the conditional probability
amplitude for a particle to find itself in the state |x+∆x⟩ at a time
t+∆t given that it was in the state |x⟩ at time t. Since the generator
of spatial translation is the momentum operator P and the genera-
tor of time evolution is the Hamiltonian operator H, this two-point
correlation function can be cast as

K(x+∆x, t+∆t|x, t) = ⟨x+∆x|e−iH∆t/ h|x⟩ = ⟨x|U(∆x,∆t)|x⟩ ,

where the operator U(x, t) = eiPx/
 he−iHt/ h realizes a spacetime

translation. For infinitesimal spacetime intervals, we have the first
order expression U = 1+ i

 h(Pdx−Hdt) which is the operator form
of the infinitesimal action dS = pdx− Edt. That is, one can rewrite
the action for a path between the spacetime events located at (x, t)
and (x+∆x, t+∆t) as ∆S =

∫t+∆t
t dt(pdx

dt − E) =
∫t+∆t
t dtL, where

we have recognized the Legendre transform relating the Lagrangian
to the Hamiltonian L = pdx

dt − E.
Assuming a non-relativistic Hamiltonian H = P2

2m + V(x) one can
then insert a completeness relation, and use Eq.(10) to obtain

K(x+∆x,t+∆t|x, t)

=

∫
R

d̄p
 h
⟨x|p⟩ ⟨p|U(∆x,∆t)|x⟩

=
∆→0

∫
R

d̄p
 h

(
1+

i
 h

(
p∆x−

(
1

2m
p2 + V(x)

)
∆t

)
+O(∆2)

)
=

∆→0

∫
R

d̄p
 h

exp
(
i
 h

(
p∆x−

(
1

2m
p2 + V(x)

)
∆t

)
+O(∆2)

)
=

∆→0

√
m

2iπ h∆t
exp

(
i
 h
∆S(x+∆x, t+∆t|x, t) +O(∆2)

)
,

where ∆S(x + ∆x, t + ∆t|x, t) = L(x, ẋ, t)∆t = (12mẋ
2 − V(x))∆t. In

other words, the infinitesimal propagator takes the form of a normal-
ized phase factor, and the phase is given by the infinitesimal change
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in the action. In order to propagate this formula to non-infinitesimal
spacetime intervals, one notices the decomposition rule

K(xf, tf|xi, ti) =
∫

R

dx ⟨xf|e−iH(tf−t)/ h|x⟩ ⟨x|e−iH(t−ti)/ h|xi⟩

=

∫
R

dxK(xf, tf|x, t)K(x, t|xi, ti),

which may be iterated in order to establish

∀n ∈N∗,

K(xn, tn|x0, t0) =

(
n−1∏
k=1

∫
R

dxk

)
n−1∏
k=0

K(xk+1, tk+1|xk, tk),

where
(∏n−1

k=1

∫
R
dxk

)
=

∫
R
dxn−1

∫
R
dxn−2...

∫
R
dx2

∫
R
dx1. If one

now fixes a spacetime interval, and uses the n-point decomposition
formula where n → +∞, one can express the total propagator as an
infinite product of integrals over infinitesimal propagators, for which
we have established a simple form given by Eq. (2.2.4). The product
of infinitesimal propagators reads

n−1∏
k=0

K(xk+1, tk+1|xk, tk)

=
( m

2iπ h∆t

)n
2

exp

(
i
 h

n−1∑
k=0

L(xk, ẋk, tk)∆t+O(n∆t2)

)
,

and carrying out the limit n→ +∞ one obtains

lim
n→+∞

n−1∏
k=0

K(xk+1, tk+1|xk, tk)

= lim
n→+∞

( m

2iπ h∆t

)n
2

exp
(
i
 h
S(xn, tn|x0, t0)

)
,

where we have used the evident additivity of the actions, and the fact
that ∆t scales as n−1 hence O(n∆t2) = O( 1n) ensures convergence.
Defining the functional integral, or path integral, as∫x(tf)=xf

x(ti)=xi

Dx[t] := lim
n→+∞

( m

2iπ h∆t

)n
2

(
n−1∏
k=1

∫
R

dxk

)
,

one arrives at the simple formula

K(xf, tf|xi, ti) =
∫x(tf)=xf

x(ti)=xi

Dx[t]e
i
 hS(xf,tf|xi,ti). (15)

What this formula says, is that the probability amplitude for a sys-
tem at position xi at time ti to find itself at position xf at time tf
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is given by a sum over all possible paths the endpoints of which are
(xf, tf) and (xi, ti), each term having a phase given by the classical ac-
tion associated to the path. This allows, with little effort, to formally
quantize any classical theory.

Given the definition of the functional integral, the path integral
at this stage looks more like a mathematical subtlety than a practi-
cal tool. As it stands, such a complex formula is indeed intractable,
however its main interest for our purpose is that it emphasizes the
importance of the classical action. Combined with the fact that classi-
cal physics is governed by the principle of stationary action, the path
integral provides a powerful tool to obtain semi-classical approxima-
tions. Using a stationary phase approximation, the leading term of
Eq. (15) reads K(xf, tf|xi, ti) ≈ Ne

i
 hS[xc], where N is some normaliza-

tion factor and xc is the classical solution.
To show this, let us go back to the case where our time interval is di-

vided into a large number n ∈ N∗, of regular sub-intervals such that
[0, t] =

⋃n−1
k=0 [tk, tk+1], and let us define the sequence of functions

Sn(x) : Rn → R by Sn(x) =
∑n−1

k=0 L(xk, ẋk, tk)∆t.
Let us fix n ∈ N∗, and consider the integral In =

∫
Rn dxe

iνSn(x),
where ν ∈ R∗. Then given a stationary point xc of Sn, a quadratic
expansion reads Sn(x) ≈ Sn(xc) + 1

2(δx)
Th(δx), where the deviation

to the stationary point is δx = x− xc and the hessian elements are
given by hij = ∂xi

∂xj
S(x = xc). Hence under the stationary phase

approximation (ν≫ 1) we establish

In ≈ eiνSn(x
c)

∫
Rn

d(δx)e
iν
2 (δx)Th(δx).

The Schwarz theorem ensures symmetry of h, and the spectral the-
orem yields the decomposition h = PωPT where P is an orthogo-
nal similarity, and ω = diag(ωkk) is a diagonal form of the hessian.
Hence (δx)Th(δx) = (δϕ)Tω(δϕ) where we have defined the normal
variable δϕ = PTδx. By orthogonality of P, this transformation has
unit Jacobian determinant, hence carrying out the change of variable
in the integral yields

In ≈ eiνSn(x
c)

∫
Rn

d(δϕ)e
iν
2 (

∑n
k=1(δϕk)

2ωkk).

This reduces to a product of Gaussian integrals, which can be ex-
pressed using standard techniques from complex analysis, and we
find

In ≈ eiνSn(x
c) 1√

det(h)

(
2iπ

ν

)n
2

.

Taking the limit n → +∞, In(2iπ)−n/2 becomes a path integral, xc

becomes the classical path, and Sn becomes an action. The remaining
factors simply contribute to the normalization. Hence setting ν = 1

 h

yields the announced result. This can in fact be interpreted as a proof
of the classical least action principle.
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2.3 elements of quantum optics

This section introduces a few ideas from the vast field of quantum op-
tics [73], which are of interest for the work presented in the rest of the
dissertation. In particular, two types of states which respectively best
capture the corpuscular and wavelike features of the electromagnetic
quantum field, are presented. The reader is also reminded of some
useful phase space representations, and of important properties of
the beam splitter.

2.3.1 Coherent states and Fock states

In quantum mechanics, a coherent state is loosely speaking the quan-
tum state of a quantum harmonic oscillator that behaves classically,
as we have seen, they minimize the uncertainty relations. Coherent
states are an accurate description of light at the output of a laser as
shown by Glauber [74].

A classical one dimensional harmonic oscillator of mass m and
angular frequency ω has Hamiltonian

H =
p2x
2m

+
1

2
mω2x2,

where px is its momentum, x its position. Hamilton’s equations of
motion read ∂tx = px/m and ∂tpx = −mω2x. One can symmetrize
those equations using the canonical transformation P = px/

√
mω

and X =
√
mωx leading to ∂tX = ωP and ∂tP = −ωX. This can be

combined in a single complex equation via α := (X+ iP)/
√
2 so that

Hamilton’s equations simply read ∂tα = −iωα.
Let us now turn to the quantum harmonic oscillator described by

the operator valued Hamiltonian

H =
p2x
2m

+
1

2
mω2x2,

which is clearly seen to be positive semi-definite by the evaluation
of ⟨ψ|H|ψ⟩. Furthermore, Heisenberg’s uncertainty relations impose
⟨p2x⟩ ⩾  h/(4 ⟨x2⟩) so that the expectation value of the Hamiltonian
is minimized by  hω/2 called zero-point energy. In contrast with clas-
sical physics, the ground state of the quantum harmonic oscillator
has non-zero energy. Following what was done for the classical os-
cillator, we define the dimensionless observables P = px/

√
m hω

and X =
√
mω/ hx. Then the commutator reduces to [X,P] = i1

and the Hamiltonian takes the form H = ( hω/2)(X2 + P2). From
(X − iP)(X + iP) = 2

 hωH − 1 we see that the Hamiltonian can be
rewritten in terms of two other operators, called bosonic ladder op-
erators, the annihilation operator a = (X+ iP)/

√
2 and the creation
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operator which is its conjugate. Using the ladder operators, we can
express the Hamiltonian as

H =  hω

(
a†a+

1

2
1

)
. (16)

The commutation relation between ladder operators [a,a†] = 1 can
in fact be taken as the starting point from which the dimension-
less position and momentum operators (also called quadrature op-
erators) can be reconstructed. As we can see, the ladder operators
are themselves not hermitian, however one can easily construct an-
other hermitian operator called the number operator N = a†a. What
can we say of its spectral properties? The spectral theorem tells us
that σ(N) ⊂ R. Claim 1 from the mathematical elements gives us
σ(N) ⊂ R+. But let us try to further characterize the spectrum by giv-
ing ourselves the d(n) linearly independent normalized eigenvectors
(|n⟩i)1⩽i⩽d(n) that span the eigenspace ker(N − n1). Then we can
write

∀i ∈ [[1,d(n)]], ∥a |n⟩i∥
2 = ⟨n|a†a|n⟩i = n ⟨n|n⟩i ,

which gives n ⩾ 0, and also |n⟩i ∈ ker(a) ⇐⇒ n = 0. Using the
bosonic commutation relations yields Na† |n⟩i = (n+ 1)a† |n⟩i and
the normalization condition implies a† |n⟩i =

√
n+ 1 |n+ 1⟩j. This

also gives a |n⟩i =
√
n |n− 1⟩h if n ̸= 0, and a |0⟩i = 0.

With this quick observation, we have already established that the
spectrum is positive, and either contains zero and is stable through
any translation n 7→ n+m, m ∈ N, or is stable through any trans-
lation n 7→ n+m, m ∈ Z. The second case is ruled-out as it would
contradict positivity. Hence we have identified the spectrum to be
exactly σ(N) = N, justifying the denomination “number operator”.
It remains to be shown that the eigenvalues are non-degenerate. We
proceed by induction from the non-degeneracy of the ground state
|0⟩ that we will demonstrate by proving that dim(ker(N)) = 1. We
have already shown that |0⟩i ∈ ker(a). Then working in the position
representation ψi(x) := ⟨x|0⟩i one has

|0⟩i ∈ ker(a) =⇒ ⟨x|a|0⟩i = 0⇐⇒ (x+ ∂x)ψi(x) = 0.

The equivalence stems from a = (X + iP)/
√
2 and the fact that the

action of the momentum operator on wavefunctions is a gradient.
That is, the eigenvectors |0⟩i in the position representation are so-
lutions of a first order homogeneous linear differential equation, a
set that is known to be one dimensional. We may thus drop the
degeneracy index for the ground state. For the inductive part, let
us suppose that the eigenvalues up to n ∈ N are non-degenerate.
Then consider two distinct eigenvectors |n+ 1⟩i and |n+ 1⟩j associ-
ated to the eigenvalue n+ 1. Then by non-degeneracy of eigenvalue
n one has a |n+ 1⟩j = a |n+ 1⟩i =

√
n+ 1 |n⟩. So one can write
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a† |n⟩ = 1√
n+1

a†a |n+ 1⟩i = 1√
n+1

a†a |n+ 1⟩j. Recognizing the num-

ber operator we arrive at
√
n+ 1 |n+ 1⟩i =

√
n+ 1 |n+ 1⟩j which

ends the proof. The independent eigenvectors of the number oper-
ator form what is called the Fock basis.

Coherent states of light or matter were introduced by Schrödinger
in the mid 1920s [75] and are formally defined by the eigenequation
a |α⟩ = α |α⟩, where α ∈ C. According to this definition, |0⟩ is an
example of coherent state. In order to find the form of other coher-
ent states, and show that this formal definition is consistent with the
minimal uncertainty claim we had formulated in the previous sec-
tion, let us investigate their expression in the Fock basis. We expand
the coherent state as |α⟩ =

∑+∞
n=0 ⟨n|α⟩ |n⟩ and write out its defining

eigenequation in that basis

a |α⟩ = α |α⟩ ⇐⇒
+∞∑
n=0

α ⟨n|α⟩ |n⟩ =
+∞∑
n=0

⟨n+ 1|α⟩
√
n+ 1 |n⟩ .

This reveals a first order recursive relation between the overlaps ⟨n|α⟩,
for which the solution is ∀n ∈ N, ⟨n|α⟩ = (αn/

√
n!) ⟨0|α⟩. The nor-

malization condition allows us to determine the first vacuum overlap
as ⟨α|α⟩ = | ⟨0|α⟩ |2

∑+∞
n=0

|α|2n

n! = 1, from which we establish the use-
ful expression, up to a global phase factor

|α⟩ = e−
|α|2

2

+∞∑
n=0

αn

√
n!

|n⟩ . (17)

An immediate observation is that there is no mutual orthogonality
between coherent states ⟨β|α⟩ = exp

(
|α−β|2/2

)
. Another interesting

way of constructing coherent states, is through the application of a
displacement operator on phase space defined by

D(α) = eαa†−α∗a. (18)

Setting x = αa† − α∗a and y = −αa† + α∗a in the BCH identity
exey = exp

(
x+ y+ 1

2 [x,y] + 1
12([x, [x,y]] + [y, [y, x]]) + ...

)
makes the

unitarity of the displacement operator immediately apparent, as one
finds D†(α) = D(−α) = D−1(α). Furthermore, the disentangling the-
orem Eq. (5) yields exp

(
αa†

)
exp(−α∗a) = exp

(
αa† −α∗a+ |α|2/2

)
,

which leads to a different form of the displacement operator

D(α) = e−
|α|2

2 eαa†
e−α∗a.

This final expression of the displacement operator elucidates its ac-
tion on the vacuum: |α⟩ = D(α) |0⟩.

In the spirit of the Schrödinger and Heisenberg pictures of quan-
tum dynamics, one can represent the action of the displacement op-
erator on the vacuum rather from its action on the ladder operators
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using the Hadamard lemma euve−u = eadu(v). Setting the operators
u := α∗a−αa† and v := a in the Hadamard lemma, yields

D†(α)aD(α) = a+α1,

which is a transformation commonly called Bogoliubov shift [76]. As
a consistency check, using the unitarity of the displacement opera-
tor, we find that the action of the displacement operator on the vac-
uum state indeed satisfies the defining property of a coherent state:
aD(α) |0⟩ = D(α)D†(α)aD(α) |0⟩ = D(α)(a+α1) |0⟩ = αD(α) |0⟩.

The Bogoliubov property also comes in handy when evaluating
quadrature moments of coherent states

⟨X⟩ = 1√
2
⟨0|D†(α)(a† + a)D(α)|0⟩

=
1√
2
⟨0|a† +α∗I+ a+α1|0⟩ =

√
2Re(α),

and similarly

⟨P⟩ = i√
2
⟨0|D†(α)(a† − a)D(α)|0⟩ =

√
2 Im(α).

From the unitarity of the displacement operator and the bosonic com-
mutation relations, the second order quadrature moments of coherent
states can also be established:〈

X2
〉
=
1

2

〈
a†2 + 2aa† + 1+ a2

〉
=
1

2
(α∗2 + 2|α|2 +α2 + 1),

and 〈
P2
〉
=
1

2
(2|α|2 + 1−α2 −α∗2).

We finally recover our very first statement about coherent states, as
the uncertainties turn out to satisfy σXσP = 1

2 , they indeed saturate
the Heisenberg bound. As such, coherent states are minimal uncer-
tainty states, and for this reason16 they are commonly considered to
be the most classical quantum states.

2.3.2 The Glauber-Sudarshan P representation

The relationship between coherent states and the classicality of quan-
tum states does not merely stop at our previous observations. One
can in fact build another representation of quantum states on phase
space, based on coherent states themselves, as an alternative to the
powerful Wigner representation. Such a representation is called the
Glauber-Sudarshan P function [77, 78]. The main interest of the P

16 Other noteworthy reasons include the associated field expectation value which cor-
responds to the classical form, and the good phase localization for high photon
numbers.
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function for the purpose of this thesis is that its non-negativity17 is
a necessary and sufficient condition for classicality, whereas the non-
negativity of the Wigner function is not sufficient to infer classicality.

To construct the P representation of a state, one must have a com-
pleteness relation with coherent states. Let us evaluate the integral
over the complex plane

∫
C
d2α |α⟩⟨α|, where d2α = dRe(α)dIm(α).

Using the Fock representation Eq. (17) one has∫
C

d2α |α⟩⟨α| =
∫

C

d2α e−|α|2
∑

(n,m)∈N2

αnα∗m
√
n!m!

|n⟩⟨m| .

In polar coordinates α = reiθ the surface element may be rewritten
as d2α = rdrdθ, and using Fubini’s theorem one arrives at∫

C

d2α |α⟩⟨α|

=
∑

(n,m)∈N2

|n⟩⟨m|√
n!m!

(∫
R+

dr e−r2rn+m+1

)(∫2π
0

dθ ei(n−m)θ

)
.

The integral over θ is simply 2πδn,m so this simplifies to∫
C

d2α |α⟩⟨α| = 2π
∑
n∈N

|n⟩⟨n|
n!

∫
r∈R+

dr e−r2r2n+1.

Finally by introducing the bijective change of variable s = r2 one
obtains ∫

C

d2α |α⟩⟨α| = π
∑
n∈N

|n⟩⟨n|
n!

∫
r∈R+

ds e−ssn = π1,

where in the last step we have identified the gamma function which
cancels out the factorial in the denominator, and used the complete-
ness of the Fock states. That is, one can now decompose a density
operator into matrix elements using coherent states by inserting two
completeness relations

ρ =
1

π2

∫∫
C2

d2αd2β ⟨α|ρ|β⟩ |α⟩⟨β| .

One can finally arrive at the P-representation of a quantum state, de-
fined as satisfying

ρ =

∫
C

d2αP(α) |α⟩⟨α| . (19)

The P distribution, like Wigner’s, is only a quasi-probability distribu-
tion, as it can take on negative values. States for which it is positive
are called classical, and are non-classical otherwise. The normaliza-
tion of the P distribution follows from Tr(ρ) =

∫
C
d2αP(α) = 1.

17 If the P-function can be expressed as a standard function, which as we shall see is
not always the case.
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Extracting the P function from its defining equation requires a little
bit of work. One way to arrive at it is to consider the “coherent state
matrix element”

⟨−β|ρ|β⟩ =
∫

C

d2αP(α) ⟨−β|α⟩ ⟨α|β⟩

= e−|β|2
∫

C

d2αP(α)e−|α|2eα
∗β−β∗α,

where we have used the result ⟨α|β⟩ = e−
1
2 (|α|2+|β|2)+α∗β. A two-

dimensional inverse Fourier transform, when there is convergence of
the integral, yields the result

P(α) =
e|α|2

π2

∫
C

d2β e|β|2 ⟨−β|ρ|β⟩ eβ∗α−βα∗
. (20)

Let us now devote some time to the determination of some impor-
tant P-representations corresponding to common states, such as the
coherent states themselves, Fock states and the thermal state.

For the coherent state the result is straightforward. The coherent
state overlap equation gives ⟨−α|β⟩ ⟨β|α⟩ = e−(|α|2+|β|2)−u∗β+uβ∗

,
hence

P(α) =
e|α|2−|β|2

π2

∫
C

d2s es
∗(α−β)−s(α∗−β∗) = δ(2)(α−β),

as expected from the fact that the P representation is a decomposi-
tion on the set of coherent states. For Fock states the overlaps read
⟨−β|n⟩ ⟨n|β⟩ = e−|β|2(−β∗β)n/n! so that one recognizes n-th order
derivatives of the integrand exponential factor of Eq. (20). Hence

P(α) =
e|α|2

π2
∂nα∂

n
α∗

n!

∫
C

d2βeβ
∗α−βα∗

=
e|α|2

π2n!
∂nα∂

n
α∗δ(2)(α).

Finding the P-representation of the thermal state requires more effort,
and we shall take it as an opportunity to view phase space represen-
tations of states from a more global perspective.

In the same way classical probability distributions f(x) on the real
space can be represented by their characteristic function, which is
their inverse Fourier transform C(k) =

∫
R
dx eikxf(x), one can intro-

duce a class of quantum mechanical characteristic functions called
the Cahill-Glauber functions

C(α, τ) = Tr
(
ρ exp

(
αa† −α∗a+

1

2
τ|α|2

))
. (21)

Let us focus on the case τ = 1 for which the characteristic function is
said to be normally ordered and denoted CN(α) = Tr

(
ρeαa†

e−α∗a
)

.
Using Eq. (19) one sees that

CN(α) =

∫
C

d2βP(β) ⟨β|eαa†
e−α∗a|β⟩ =

∫
C

d2βP(β)eβα∗−β∗α,
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so we identify the Fourier transform of the P-distribution. Inverting
this transformation yields a handy formula

P(α) =
1

π2

∫
C

d2β eβ
∗α−βα∗

CN(β). (22)

In the case τ = −1 one obtains what is called the anti-normally or-
dered characteristic function CA(α) = Tr

(
ρe−αa†

eα
∗a
)

, which hap-
pens to be the Fourier transform of another phase space representa-
tion, called the Husimi Q-function, and defined by Q(α) = 1

π
⟨α|ρ|α⟩.

Using the disentangling theorem Eq. (5) we see that the normally or-
dered and anti-normally ordered characteristic functions18 are simply
related through CN(α) = CA(α)e|α|2 .

We are now in a good position to work out the P-representation of
a thermal state. Recall the form of the thermal state Eq. (11). Com-
bined with the Hamiltonian expression Eq. (16), the insertion of two
completeness relations in the Fock basis allows to express the ther-
mal state as ρth = Z−1

∑
n∈N exp(−En/kBT) |n⟩⟨n| where the ener-

gies read En =  hω(n+ 1
2) and Z =

∑
n∈N exp(−En/kBT) in order

for the state to have unit trace. For ease of reading, let us intro-
duce the dimensionless variable λ =  hω/kBT ∈ R∗

+. Then we have
Z =

∑
n∈N e

−λ(n+ 1
2 ) = e−λ/2

1−e−λ , having detected a geometric sum. We
have therefore determined that the thermal state is simply a statisti-
cal mixture of Fock states that can be written as ρth =

∑
n∈N pn |n⟩⟨n|

where pn = (1− e−λ)e−nλ. It is useful to note that this can be entirely
expressed using the expected photon number. Indeed, one notices
that

n =
∑
n∈N

npn = (1− e−λ)
∑
n∈N

ne−nλ

= (1− e−λ)

(
−∂λ

∑
n∈N

e−nλ

)

= (1− e−λ)
e−λ

(1− e−λ)2

=
1

eλ − 1
,

and observing that e−λ = n
1+n one finds

ρth =
1

1+n

∑
n∈N

(
n

1+n

)n

|n⟩⟨n| . (23)

18 Let us simply mention that the case τ = 0 gives the Weyl ordered characteristic
function, and it corresponds to the Fourier transform of the Wigner distribution.
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From this one can establish the thermal state’s Husimi-Q representa-
tion as follows

Q(α) =
1

π
⟨α|ρth|α⟩

=
1

π
e−|α|2

∑
(n,m)∈N2

⟨m|ρth|n⟩
α∗mαn

√
m!n!

=
e−|α|2

π(1+n)

∑
n∈N

(
n

1+n

)n
|α|2n

n!
.

We arrive at the simple expression Q(α) = 1
π(1+n) exp

(
−

|α|2

1+n

)
. The

relationship to the P function is simple in Fourier space, as the char-
acteristic functions are simply related by an exponential factor. Carry-
ing out a Fourier transform, we find the corresponding anti-normally
ordered characteristic function

CA(β) =
1

π(1+n)

∫
C

d2α exp
(
−

|α|2

1+n

)
eβα∗−β∗α = e−(1+n)|β|2 ,

where the final equality was obtained by explicitly writing out the
algebraic forms of the dummy variable α = (q + ip)/

√
2 and the

function variable β = (x+ iy)/
√
2, as well as the differential element

d2α = 1
2dqdp. Doing so reveals gaussian integrals from which the

result is deduced. The normally ordered characteristic function thus
takes the very simple form CN(β) = exp

(
−n|β|2

)
and inverting the

Fourier transform yields

P(α) =
1

π2

∫
C

d2β exp
(
−n|β|2

)
eβ

∗α−βα∗
=

1

πn
exp

(
−
|α|2

n

)
. (24)

We see that the P-representation of the thermal state is a gaussian,
being positive it is thus a classical state. This concludes our overview
of the Glauber-Sudarshan P representation.

2.3.3 The beam splitter operator

This short section is devoted to the beam splitter, because of its im-
portance and its ubiquity in applied and fundamental physical ex-
periments. Its function is unimpressive: a beam splitter quite simply
splits light beams. This simple function is in fact one of the building
blocks of all sorts of interferometric protocols. Classically, it is an ele-
mentary object that is usually made up from a transparent glass slide
with some coating on one side. A cube formed by two pyramidal glass
pieces is also a common implementation of beam splitters. In quan-
tum optics, the beam splitter is also of special interest for its role in
simple yet subtle experiments testing the non-classicality of light [79].
Depending on the nature of the incident light, it was shown that the
beam splitter can act as a simple entangling device [80]. Its quantum
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mechanical description was at the center stage in the second half of
the 1980s [81]. We shall represent the beam splitter with the sketch in
Fig. 1 where light propagates from bottom to top. Let us first exhibit

Figure 1: The beam splitter B0 and its two input mode annihilation opera-
tors a and its two output mode annihilation operators b.

some simple properties of the beam splitter. The general quantum
operator corresponding to the beam splitting operation reads

B = e
θ
2 (a

†
LaR−aLa

†
R), (25)

where θ ∈ R. We evidently have unitarity of B. Hadamard’s lemma
gives the evolution of annihilation operators under the beam splitter
transformation

BaLB
† = exp

(
adθ

2 (a
†
LaR−aLa

†
R)

)
(aL).

Using the bosonic commutation relations, one notices the following
pattern:

∀n ∈N,


ad4n(aL) =

(
θ
2

)4n
aL

ad4n+1(aL) =
(
θ
2

)4n+1
aR

ad4n+2(aL) = −
(
θ
2

)4n+2
aL

ad4n+3(aL) = −
(
θ
2

)4n+3
aR

where we have omitted the index of the adjoint operation for legibility.
Thus we can write down the previous equation as

BaLB
† =

+∞∑
n=0

(−1)n
(
θ
2

)2n
(2n)!

aL +

+∞∑
m=0

(−1)m
(
θ
2

)2m+1

(2m+ 1)!
aR,
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and by recognizing the power series, this translates into a friendlier
expression

BaLB
† = cos

(
θ

2

)
aL + sin

(
θ

2

)
aR.

A similar derivation also yields

BaRB
† = cos

(
θ

2

)
aR − sin

(
θ

2

)
aL.

Noteworthy is the unit value of the quadratic sum of the coefficients,
which is consistent with the fact that those coefficients represent the
transmissivity and reflectivity of the lossless beam splitter. In the re-
mainder of this thesis we limit ourselves to 50:50 beam splitters. This
amounts to choosing19 θ = π/2 in Eq. (25). The beam splitter transfor-
mations in this case take the following form Ba

†
RB

† = 1√
2
(a†L + a†R)

Ba
†
LB

† = 1√
2
(a†L − a†R)

(26)

Now that we have characterized the action of the beam splitter
operator on the bosonic operators, let us take a closer looks at some
basic situations. Consider an input state which is a single photon in
the left mode |ψ⟩in = |1⟩L ⊗ |0⟩R then the output state reads

|ψ⟩out = B |10⟩ = Ba†L |00⟩ .

By unitarity of B and by the fact that its maps the vacuum to itself
(which is consistent with a passive component), we can write

|ψ⟩out = Ba
†
LB

†B |00⟩ = Ba†LB
† |00⟩ ,

thus Eqs.(26) give

|ψ⟩out =
1√
2
(|10⟩− |01⟩).

We observe that the output modes are entangled, but so far the re-
sult is not very impressive, the output is a superposition of the pho-
ton being in each one of the two output modes, the other being in
the vacuum state. What is perhaps more interesting is the Hong-Ou-
Mandel effect [82] which arises when the two input modes of the
beam splitter are in the single photon Fock state |ψ⟩in = |11⟩. Then
|ψ⟩out = Ba

†
La

†
R |00⟩. Inserting two B†B = 1 factors and using Eqs. (26)

gives

|ψ⟩out =
1

2
(a†L − a†R)(a

†
L + a†R) |00⟩ .

The commutation of bosonic operators acting on different modes re-
sults in the destructive interference of two paths, given by the cross

19 Letting θ = −π/2 was also possible but we have, quite arbitrarily, chosen the op-
posite. Changing sign is simply equivalent to flipping the beam splitter around its
phase-asymmetry plane.
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terms. The only terms that remain correspond to the two photons
emerging in the same mode, that is

|ψ⟩out =
1

2
(a†2L − a†2R ) |00⟩ = 1√

2
(|20⟩− |02⟩).

Let us now turn to an important case where the beam splitter does
not generate entanglement. Consider the situation where the input
state is a coherent state in the left mode, and the vacuum state in the
right mode |ψ⟩in = |α⟩L ⊗ |0⟩R, this reads

|ψ⟩in = DL(α) |00⟩ = eαa
†
L−α∗aL |00⟩ .

Expanding the exponential and inserting B†B gives a workable ex-
pression for the output state

|ψ⟩out =

+∞∑
n=0

1

n!
B(αa†L −α∗aL)

nB† |00⟩ .

By inserting n times a B†B factor and using Eqs. (26) we obtain

|ψ⟩out = e
α 1√

2
(a†

L−a
†
R)−α∗ 1√

2
(aL−aR) |00⟩ =

∣∣∣ α√
2

〉
L

∣∣∣−α√
2

〉
R

. (27)

As we can see, the output state consists of two coherent states and the
intensity in each mode is halved, as expected from a lossless beam
splitter, however in this case there is no entanglement whatsoever.

This concludes our short overview of useful results and definitions
from quantum physics. In the next section, we will take a step away
from standard quantum physics where quantum states and Hamilto-
nians are take the center stage, and instead introduce a more modern
framework in which it is the probabilities and measurements that be-
come the fundamental objects.

2.4 elements of quantum information theory

In the final section of this chapter, we present the basics of quan-
tum information theory. We briefly revise notions of classical states,
measurements and channels, and generalize these to their quantum
versions. We formalize the notion of quantum channels, and present
the theory of entanglement for pure and mixed states, along with
important criteria and measures.

2.4.1 Quantizing information theory

The information theoretic and operationalist approach to physics con-
sists in taking measurement results as central objects. After all, they
are the fundamental events on which the agent bases any ontologi-
cal model governing observed correlations between preparations and
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measurement outcomes. Let us in this perspective consider a physi-
cal system S on which we choose to measure the property P. We will
shortly give a formal definition of a measurement, but for now we
can formulate the most basic requirement that a measurement result
is a random variable which takes values on a set {e1, e2, ..., en} of n
outcomes that can very well be infinite. One may object that in this no-
tation we are limiting ourselves to countably infinite outcomes, how-
ever one should remember that the temptation for continuity stems
from an ontological postulate. Regardless of this postulate’s validity,
all measurements and operations are coarse grained and so any fea-
ture that hinges on the continuity assumption cannot be physical20.

This being said, a state S of the system S is a probability distribu-
tion over these measurement outcomes. Using a subtle argument of
finite speed of dynamical evolution [83], one may assume that car-
rying out a second measurement of the property P on the system
S immediately after having obtained a first measurement outcome ei,
would certainly yield the same outcome21. Hence, all singular proba-
bility distributions on the set of possible outcomes are special states of
perfect knowledge, called pure states. By contrast, all probability dis-
tributions which have support on more than one outcome are called
mixed states. It is not difficult to see that all distributions over the set
of outcomes can be expressed as a (normalized) linear combination of
singular distributions, which are orthogonal to one another. As such,
the set of pure states spans the state space S. Let us formalize this
concept through the following definition.

Definition 23 (Classical states and n-level systems). The classical
states of a system S are given by the vectors xT = (x1, ..., xn) for22 n ∈N∗,
where ∀i ∈ [[1,n]], xi ⩾ 0 and ∥x∥1 = 1, and where the canonical rep-
resentation basis is the set of pure states. Such systems are called n-level
systems.

The positivity and ℓ1 normalization amounts to having the state
represent a probability distribution over n ∈ N∗ outcomes. One no-
tices that a state x is a pure state if and only if it is normalized for
the ℓ2 norm, or equivalently, that its entrywise square represented by
(x2)T = (x21, ..., x2n) satisfies

∥∥x2∥∥
1
= 1. The complete state space is

then given by the closed convex hull of the set of pure states.
Before moving on to evolutions and measurements, let us briefly

clarify the geometry of the state space. It is worth noting that pure

20 Any feature that would be parametrized by a strictly continuous variable θ ∈ R is
indistinguishable from its restriction to the discrete set of rationals, as the topological
distance of Q to R is zero.

21 One may not even need to refer to dynamics, but invoke only the consistency in
time of measurement results, however this raises the delicate question of the very
definition and functions of a measurement.

22 Throughout this section we use the standard notations N = N ∪ {+∞} to denote the
topological closure of N, and N∗ = N\{0}.
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(a) State space for a 2-level classical sys-
tem.

(b) State space for a 3-level classical sys-
tem.

Figure 2: Representations of the unit 1-sphere S1 and 2-sphere S2 for the ℓ1

norm. The respective state space simplicies S are shown in blue.

states span the state space S, but do not form a basis of S. Although
they naturally form a basis of the vector space V they span, the state
space is a projective space, obtained by projecting the non-negative or-
thant of V onto the unit sphere for the ℓ1 norm. To make this clear, if
one considers for example a set of two classical pure states spanning
a plane, the ℓ1 unit sphere is a square, and the state space is simply
a one dimensional line which corresponds to the part of the square
which is included in the non-negative quadrant of the plane, as rep-
resented in Fig. 2a. Similarly, for three pure states spanning a whole
volume, the ℓ1 unit sphere is an octahedron, and its intersection with
the non-negative octant gives a triangle, as shown in Fig. 2b. For four
pure states, the state space would be a tetrahedron. In general the
state space spanned by n ∈ N∗ pure states is an n− 1 dimensional
simplex.

Now that we have characterized states of physical systems, let us
turn to their evolution and formalize the meaning of a measurement.
One basic requirement that can be enforced on a classical evolution
operator E is that it must transform valid states to other valid states,
that means that E must preserve the ℓ1 norm and stabilize the non-
negative orthant. An additional requirement, which is necessary in
order to avoid faster-than-light signalling [84], is that evolutions E

must be compatible with convex mixtures. Explicitly, this requirement
takes the form

∀(x,y) ∈ S2, ∀λ ∈ [0, 1], E(λx+ (1− λ)y) = λE(x) + (1− λ)E(y).

From those two basic requirements taken together one can establish
the following simple definition.
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Definition 24 (Classical evolutions). Evolutions E of a classical system
S are ℓ1 norm preserving positive linear operators of the vector space V

spanned by the pure states of S.

Since evolutions must be linear, they admit matrix representations
in the basis of pure states. The set of evolution matrices are called
stochastic matrices, transition matrices, or Markov matrices. They
transform probability vectors into other probability vectors.

We now turn to measurements. Operationally, a measurement M

is what gives answers to questions asked about a system S. Some
questions may have few outcomes, such as yes or no questions. For
example, one may ask whether the physical system S is in the state
e1. A more extreme and trivial example would be to ask if the sys-
tem is itself, for which there is technically only one outcome. On the
other end of the spectrum, one may ask a more general question such
as which of the states ei the system is in. This measurement M0 has
as many outcomes as there are degrees of freedom, and as such con-
stitutes the sharpest possible measurement. If one chooses to label
the measurement outcomes of M0 by the natural number k ∈ [[1,n]],
then it is a random variable K satisfying P(K = k) = eTkx. We see
that the measurement outcomes are represented by the elements ei
themselves. Any question about the system which admits m ∈ [[1,m]]

possible answers can in fact be formulated as a partition23 of the set of
pure states24, mapping each pure state to the set of outcomes [[1,m]].
This means that any m-outcome measurement M can be represented
by a set of m vectors of the form ∀k ∈ [[1,m]], µk =

∑
i∈Ik

ei, where
∀k ∈ [[1,m]], Ik ⊂ [[1,n]] is a set of indices labelling pure states on
which the measurement outcome is constant and equal to k25. The
probability that measurement M on the system S in the state x yields
outcome k is then P(K = k) = µTkx. The normalization condition
then reads

∑m
k=1 µ

T
kx = (

∑m
k=1 µ

T
k)x = 1, which is always satisfied

as
∑m

k=1 µ
T
k =

∑n
i=1 e

T
i = (1, ..., 1). In light of those remarks, let us

formally define a measurement on a classical n-level system.

Definition 25 (Classical measurements). Let S be an n-level classical
system where n ∈ N∗ and let us denote its set of pure states (ei)1⩽i⩽n.
For all m ∈ [[1,n]], any m-outcome measurement M is uniquely described
by a family of m vectors (µk)1⩽k⩽m which have non-negative components
and which satisfy

∑m
k=1 µk =

∑n
i=1 ei. Furthermore when the system S

is in state x, the measurement outcome is a random variable K satisfying
P(K = k) = µTkx.

We are now ready to formulate the quantum counterparts of the
classical definitions. To do so, we need only replace any state vec-

23 Reminder: a partition of a set E is a set of mutually exclusive subsets of E the union
of which is E.

24 This can be understood by the fact that any boolean function can be built from the
logical disjunction ∨ and the logical negation ¬.

25 The sets (Ik) form a partition of [[1,n]].
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tor x of the real Hilbert space V by a hermitian operator ρ on the
complex Hilbert space H. The non-negativity of x will be taken into
account by enforcing the positive semi-definiteness of the operator
σ(ρ) ⊂ R+. The inner product between vectors µTkx is replaced by
the Hilbert-Schmidt inner product Tr(M†

kρ). Correspondingly the ℓ1
normalization of the vector x translates to the Hilbert-Schmidt nor-
malization

√
Tr(ρ†ρ) = 1, which in the hermitian case reduces to

Tr(ρ) = 1, and which means that ρ must be in the trace class, as per
Def. 13. Analogous to the classical state where a state x is pure if and
only if

∥∥x2∥∥
1
= 1, a quantum state ρ is pure if and only if Tr

(
ρ2
)
= 1.

This leads to the following three fundamental quantum information
theoretic definitions.

Definition 26 (Quantum states). The quantum states of a system S are
given by unit trace hermitian positive-semidefinite operators ρ of a complex
Hilbert space H. Such objects are called density operators.

Definition 27 (Quantum evolutions). Evolutions E of a quantum system
S are linear super-operators, or maps, that stabilize the quantum state space.

Definition 28 (Quantum measurements). Let S be a quantum system
with n ∈N∗ pure states. For all m ∈ [[1,n]], any m-outcome measurement
M is uniquely described by a family of m hermitian positive semi-definite
operators (Mk)1⩽k⩽m which satisfy

∑m
k=1Mk = 1. Furthermore when

the system S is in state ρ, the measurement outcome is a random variable K
satisfying P(K = k) = Tr(Mkρ).

At this point we have laid out a convenient extension of classical
theory, and these definitions alone already lead to some interesting
questions. Although the transition from vectors to operators for states
and measurements may neatly account for the fact that quantum the-
ory is non-abelian, one may wonder why we are working on a com-
plex Hilbert space, rather than a real Hilbert space. One may also
ask what does the quantum state space look like, and how does its
dimension scale with the number of pure states. Another question
is the possibility of having a more explicit definition of a quantum
evolution. While we shall discuss the two former questions, the latter
requires more formalism and will be the topic of our next section.

An explanation for the necessity of complex Hilbert spaces, as op-
posed to real Hilbert spaces, lies within the continuity of quantum
evolutions. The continuity requires, for instance, all quantum evolu-
tions to admit n-th roots which are also valid evolutions. This is only
possible if the underlying field contains R and is algebraically closed.
A simple but illustrative example is the existence of square roots of
the negation for a single quantum bit, whereas no such operation is
possible on a single classical bit, or without using the imaginary unit
i. More remarkably, the use of complex numbers in physical theo-
ries is not a mere mathematical convenience or requirement, but was
recently shown to be a genuine empirical constraint [85].
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Before moving on to the characterization of quantum evolutions,
let us say a few words about quantum state spaces and introduce a
useful representation for the states of two-level quantum systems. It
is clear that classical information theory can be embedded into quan-
tum information theory, by simply taking classical state vectors to be
diagonal density operators, and classical measurement vectors to be
diagonal quantum measurement operators. Because of this, the fact
that quantum state spaces have higher dimensionality than classical
state spaces should not come as a surprise.

Explicitly, the set Mn(C) of complex n×n matrices is a 2n2 dimen-
sional real vector space. Hermitian symmetry reduces the dimension
by n(n− 1) + n = n2 and the unit trace constraint further fixes one
degree of freedom. In total the state space of an n-level quantum
system has dimension 2n2 − n2 − 1 = n2 − 1. As a consequence, a
two-level quantum system, called qubit, has state space dimensional-
ity 3 whereas the classical bit has state space dimensionality 1. For
three level systems, we have seen that the classical state space is 2-
dimensional and can be drawn as a triangle, while its quantum coun-
terpart, being 8-dimensional, cannot be drawn.

Let us turn to the simplest non-trivial quantum system, called qubit.
As per our previous remarks, qubit states are represented by 2× 2
hermitian matrices. One can opt for a natural representation using
the canonical (or computational) basis of the complex vector space of
such matrices and write

ρ = a |0⟩⟨0|+ c |0⟩⟨1|+ c∗ |1⟩⟨0|+ b |1⟩⟨1| =

(
a c

c∗ b

)
,

where a,b ∈ R and c ∈ C. This representation is quite straightfor-
ward, however it does not fully exploit the hermitian symmetry or
the unit trace, and the states in this basis have a complex coordinate,
which does little to help gain intuition about the state space.

One may instead embed the complex component into the basis ele-
ments themselves, and use a basis made up of a collection of matrices
that are already hermitian. One such basis is called the Pauli basis,
and is built from the unit matrix and the three Pauli matrices or oper-
ators. Explicitly in the computational basis, the Pauli basis elements
are given by

(1,X, Y,Z) =

((
1 0

0 1

)
,

(
0 1

1 0

)
,

(
0 −i

i 0

)
,

(
1 0

0 −1

))
. (28)

By defining the index notation (σ0,σ1,σ2,σ3) = (1,X, Y,Z) one can
check that Tr

(
σiσj

)
= 2δij, which makes this basis orthogonal. We

note that the three Pauli operators share the same spectrum {−1, 1},
and are all traceless. If we now examine the quantity

ρ =
1

2
(1+ µ1X+ µ2Y + µ3Z) =

1

2
(1+ µTσ), (29)
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where µ ∈ R3 and σT = (X, Y,Z) then ρ has unit trace and is her-
mitian. Furthermore, the spectrum of such quantity is found to be
σ(ρ) = {12(1− ∥µ∥),

1
2(1+ ∥µ∥)} where the norm is the Euclidean R3

norm. Thus, the positiveness of ρ simply requires ∥µ∥ ⩽ 1. The vector
µ representing the quantum state is called Bloch vector, and for valid
states it must lie in the closed unit ball. One can easily check that the
state ρ is pure if and only if ∥µ∥ = 1, that is to say that the pure states
lie on the Bloch sphere. The maximally mixed state is at the center of
the Bloch ball.

Worth noting, is that a qubits admit an infinite number of pure
states, whereas classical bits only admit two pure states. This gives
quantum theory an important feature that is not present in classi-
cal theory, called ensemble ambiguity. Specifically, there are infinitely
many ways to mix different pairs of pure states, to arrive at the same
mixed state.

The state space for a single qubit is, as we have seen, somewhat
more complicated than that of the classical bit, and already features
operational properties that are absent from classical theory. Let us
now complete this short overview on quantum states with an even
more interesting example, which is the composite system of two qu-
bits.

Given two qubits with respective pure state spaces in two Hilbert
spaces H1 and H2, the pure state of the composite system lives in the
tensor product space H12 = H1⊗H2. As previously defined, the gen-
eral quantum state ρ12 of two qubits is simply a unit trace, positive-
semidefinite operator of H12. The set of such operators constitutes
a 15-dimensional space. One can identify three important types of
bipartite states, which do not limit to qubits.

Definition 29 (Factorizable quantum states). A bipartite quantum state
ρ12 ∈ B1(H12) is said to be factorizable when there exists two local states
ρ1 ∈ B1(H1) and ρ2 ∈ B1(H2) such that ρ12 = ρ1 ⊗ ρ2. These are also
known as product states.

Definition 30 (Separable and entangled quantum states). A bipartite
quantum state ρ12 ∈ B1(H12) is said to be separable when it can be written
as a convex combination of product states. This is denoted ρ ∈ Dsep when
there is no ambiguity on the underlying Hilbert space. Otherwise, the state
is said to be entangled.

While factorizable and separable states correspond to either uncor-
related or classically correlated states, there is no classical counterpart
to entangled states. We have unveiled our very first definition of en-
tanglement, from which it is clear that a pure state is entangled if it
cannot be written as a product state. This negative definition of en-
tanglement is unfortunately all but practical, as the factorization may
not be obvious. We will later define entanglement in a much more
powerful framework, but for now, we can briefly work out a more
convenient representation to determine entanglement.
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Claim 11. All bipartite pure states |ψ⟩ may be decomposed in the form
|ψ⟩ =

∑
k

√
λk |ψk⟩ |ϕk⟩, where (|ψk⟩)k and (|ϕk⟩)k are orthonormal sets

of states.

Proof. Any bipartite pure state can be written in the computational
bipartite orthonormal basis as |ψ⟩ =

∑
ij aij |i⟩ |j⟩, where A = (aij)

is its matrix representation. By singular value decomposition Th. 5,
one may write A = USV where U,V are unitary matrices and S is
diagonal and non-negative, and we shall denote its coefficients

√
λk.

Thus aij = uik
√
λkvkj and we may rewrite our bipartite pure state as

|ψ⟩ =
∑

k

√
λk (

∑
i uik |i⟩) (

∑
j vkj |j⟩). Setting |ψk⟩ =

∑
i uik |i⟩ and

|ϕk⟩ =
∑

j vkj |j⟩ ends the proof.

This way of expressing bipartite pure states is sometimes called
Schmidt decomposition. The

√
λk numbers are called Schmidt coeffi-

cients, and the number of non-zero Schmidt coefficients defines the
Schmidt rank. With this handy decomposition, a bipartite entangled
pure state is simply a state which has Schmidt rank greater than 1.
This is of course only a first glimpse at entanglement theory, as the
Schmidt rank does not tell us how much entanglement there is in a
bipartite state, and does not work for mixed bipartite states. A deeper
investigation will be carried out in a later section.

Now that we have defined notable bipartite states, one may be in-
terested in knowing the state of only one of the subsystems. This is
done by tracing-out the system that is not of interest.

Definition 31 (Reduced quantum states). Given a bipartite quantum
state ρ12 ∈ B1(H12), the reduced state ρ1 is defined by taking the partial
trace

ρ1 = Tr2(ρ12) =
∑
k

(11 ⊗ ⟨k|2)ρ12(12 ⊗ |k⟩2),

where (|k⟩) is an orthonormal basis of the Hilbert space H2.

One can readily check that given an arbitrary bipartite separable
state ρ =

∑
k pkρ

(k)
1 ⊗ ρ(k)2 where pk is a probability distribution and

ρ
(k)
1,2 are local states, we have consistency Tr2(ρ12) =

∑
k pkρ

(k)
1 .

A noteworthy characterization of entangled states, is that a pure
entangled bipartite state has mixed reduced states. This is strongly
at odds with classical information theory, where one expects a com-
posite system to be in a pure state if and only if its subsystems are
also in pure states. An extreme example is the Bell state |ϕ+⟩⟨ϕ+|,
written as ρ12 = 1

2(|00⟩+ |11⟩)(⟨00|+ ⟨11|) in the computational basis,
for which the reduced local states are maximally mixed ρ1,2 = 1

211,2.
In order to gain deeper insight on quantum entanglement, we first
need to spend some time on quantum channels, and different types
of quantum operations.
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2.4.2 Quantizing information channels

We have so far introduced quantum states and measurements, and
only superficially mentioned quantum evolutions, which quite triv-
ially must map quantum states to other valid quantum states. Let us
now delve slightly further into the characterization and different rep-
resentations of quantum evolutions, also called quantum channels. A
formal definition of quantum channels is given by the Kraus repre-
sentation [86], sometimes also called operator-sum representation.

Theorem 12 (Kraus representation for quantum channels).
Valid quantum operations (evolutions or channels) are (super-)operations
E ∈ L(B1(H),B1(H

′)) of the form

E : ρ 7−→
n∑

i=1

AiρA
†
i , (30)

where n ∈ N and {Ai}1⩽i⩽n is a set of operators in L(H,H ′) that obey
the following condition

n∑
i=1

A
†
iAi = 1L(H). (31)

Proof. We begin by noting that for n,p ∈N any linear super-operation
E : B(H) −→ B(H ′) from a n-level quantum state space to a p-
level quantum state space can be written as E : ρ 7−→

∑
ij λijµiρµ

†
j ,

where λij are complex numbers, and (µi) is an orthonormal basis of
the space of rectangular complex matrices Mp,n(C) equipped with
the Hilbert-Schmidt inner product. Enforcing that E(ρ) be hermitian
amounts to the requirement ∀i, j, λij = λ∗ji. We may define another
basis of Mp,n(C) by constructing Dp =

∑
iUipµi. If we require this

new basis to be orthonormal then the transformation U must be a
unitary endomorphism of Mp,n(C). In this case we can also write

the reciprocal relation as
∑

p[U
†]pjDp =

∑
i

(∑
p[U

†]pjUip

)
µi = µj.

Substituting this back into the expression of E(ρ) one can establish

E(ρ) =
∑
ij

λij

(∑
p

[U†]piDp

)
ρ

(∑
q

UjqD
†
q

)

=
∑
pq

∑
ij

[U†]piλijUjq

DpρD
†
q

=
∑
pq

(
U†ΛU

)
pq
DpρD

†
q,

and since we require the evolved state to be hermitian, Λ itself must
be hermitian, hence by spectral theorem, the unitary change of ba-
sis matrix U can be chosen to be diagonalizing, that is the vectors
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(Dp) can be chosen to be eigenvectors of Λ associated to a set of real
eigenvalues γp. With this choice E(ρ) =

∑
p γpDpρD

†
p. If the eigen-

values γp are non-negative then defining Ap =
√
γpDp gives (30).

If one eigenvalue is negative, then we cannot have Kraus representa-
tion, and it turns out in this case that the superoperator represented
by Λ is no longer valid as it may transform states into matrices with
negative eigenvalues when embedded into a larger system. With the
positivity and hermiticity, we have shown that quantum maps admit
the Kraus form (30). The final requirement is trace preservation. This
reads

Tr(E(ρ)) =
n∑

i=1

Tr
(
AiρA

†
i

)
= Tr

[(∑
i

A
†
iAi

)
ρ

]
:= Tr(ρ),

which must hold for any unit trace matrix ρ, hence the requirement
(31).

In our proof of the Kraus representation, we have mentioned that
negative eigenvalues for the super-operator Λ lead to non-positivity-
preserving maps. To prove this, let us consider the general super-
operatorΛ that we may embed into a bigger bipartite super-operation
Λ⊗ 1. Considering a Bell-type state |ψ⟩ = d−1/2

∑d
i=1 |ii⟩ , we have

(Λ⊗ 1)(ρ) =
∑
i

γiDi |ψ⟩⟨ψ|D†
i =

∑
i

γi |ψi⟩⟨ψi| ,

from which we see that the γi are precisely the eigenvalues of E(ρ),
hence they must all be non-negative for the map to be valid. As a final
remark on the Kraus representation, let us note that it is not unique,
as any unitary mixing Bi =

∑
k uikAk also provides a valid Kraus

representation.
We shall refer to those quantum operations or quantum maps as

Completely Positive Trace-Preserving (CPTP) maps. Explicitly, the set
of valid quantum operations is a subset denoted CPTP(H,H ′) of
L(B1(H),B1(H

′)).
There are other important representations of CPTP maps. While

they shall not be of immediate use for the results presented in this
thesis, two conceptually rich representations deserve a brief mention.
The first one is the Choi matrix

J(E) = (E⊗ 1)
∑
ij

|ii⟩⟨jj| ,

which is constructed via the Choi-Jamiolkowski isomorphism [87].
Among its many strengths, the Choi representation makes transpar-
ent the fundamental state-operation equivalence. It also helps provide
a straightforward proof of the unitary mixing freedom of the Kraus
representation.

The second one worth a mention is the Stinespring representa-
tion [88], which relies on more general results from the structure of
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C∗-algebras, and the fact that any quantum operation can be seen as
a partial trace on the unitary evolution of a larger state in a larger
Hilbert space

E(ρ) = TrC[U(ρ⊗ |ψ⟩⟨ψ|)U†].

The Kraus formalism is sufficient however to establish with little ef-
fort some general properties of quantum maps. We shall now touch
on two properties that one can consider to be very basic requirements
that quantum channels should satisfy. Namely, that evolving a quan-
tum state through two channels sequentially, and that randomly se-
lecting a quantum channel to evolve a state through, should both
constitute valid quantum operations.

Claim 12. The sequential composition of two quantum channels is a quan-
tum channel. Explicitly:

∀(E,F) ∈ CPTP(H1,H2)×CPTP(H2,H3), F ◦ E ∈ CPTP(H1,H3).

Proof. Given three Hilbert spaces (Hi)1⩽i⩽3 and two CPTP maps
E : B1(H1) −→ B1(H2) and F : B1(H2) −→ B1(H3), there are
Kraus operators {Ai}1⩽i⩽n and {Bi}1⩽i⩽m, where (n,m) ∈ N2, rep-
resenting those two maps. We can then write the compound action
∀ρ ∈ B1(H1), F ◦ E(ρ) =

∑
ij BjAiρA

†
iB

†
j , which suggests to define

Cij = BjAi as the Kraus operators for the compound map. It is read-

ily checked that
∑

ijC
†
ijCij =

∑
iA

†
i

(∑
j B

†
jBj

)
Ai = 1L(H1), hence

the compound map is a valid quantum operation.

Claim 13. The set of quantum channels is convex. Explicitly:

∀p ∈ [0, 1], ∀E,F ∈ CPTP(H1,H2), pE+ (1− p)F ∈ CPTP(H1,H2).

Proof. Let us keep the Kraus representations of E and F introduced
in the previous proof, and consider the map G ∈ L(B1(H1),B1(H2))

defined by the Kraus operators

Ci =

{ √
pAi if 1 ⩽ i ⩽ n
√
1− pBi if n+ 1 ⩽ i ⩽ n+m

,

then we have

∀ρ ∈ B(H1),
n+m∑
i=1

CiρC
†
i =

n∑
i=1

AiρA
†
i +

n+m∑
i=n+1

BiρB
†
i = pE(ρ) + (1− p)F(ρ),

and
n+m∑
i=1

C
†
iCi = p

(
n∑

i=1

A
†
iAi

)
+ (1− p)

(
n+m∑
i=n+1

B
†
iBi

)
= 1L(H1),

which ends the proof.
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To illustrate the generality of this formalism, we can cast fundamen-
tal operations in the Kraus representation. The Kraus representations
for the preparation P of an n-level quantum state with spectrum (λi)

from the absence of any system, for the addition A of a system in such
state to a given system, and for the discarding D of that sub-system
from a bipartite system, are shown in Tab. 1.

Operation and Kraus operators Input-output spaces

P : (Pi)1⩽i⩽n = (
√
λi |ψi⟩)1⩽i⩽n {0}→ B1(H)

A : (Ai)1⩽i⩽n = (11 ⊗
√
λi |ψi⟩)1⩽i⩽n B1(H1)→ B1(H1 ⊗H2)

D : (Di)1⩽i⩽n = (11 ⊗ ⟨ψi|)1⩽i⩽n B1(H1 ⊗H2)→ B1(H1)

Table 1: Kraus representations of state preparation, addition and discarding.

We have established a formal criterion for quantum operations,
seen that they can be conveniently represented in the Kraus formal-
ism, and that state preparation, addition and discarding can all be
seen as quantum channels. To conclude our overview of quantum
operations, we now turn to three very important classes of quantum
operations, that will serve as foundation on which the theory of en-
tanglement is built.

Definition 32 (Local operations). Given three Hilbert spaces (Hi)1⩽i⩽3

the set of local operations denoted LO(H1 ⊗H2,H3) is the subset of all
operations E ∈ CPTP(H1 ⊗H2,H3) that admit a tensor product decompo-
sition as operations acting on each subsystem. Formally:

E ∈ LO(1⊗ 2, 3)
⇐⇒ ∃(E1,E2) ∈ CPTP(1, 3)×CPTP(2, 3), E = E1 ⊗ E2,

where we have only shown Hilbert space indices as a shorthand notation.

We remind that dimensions need not be preserved as discarding
and adding systems are valid channels. The above definition can nat-
urally be extended to a countable number n ∈N∗ of systems the state
spaces of which are (B(Hi))1⩽i⩽n. Local operations are all channels
that can be written as

E =

n⊗
i=1

Ei where ∀i ∈ [[1,n]], Ei ∈ CPTP(Hi,H ′
i).

Another important class of operations is called Classical Commu-
nication (CC). Classical states are the diagonal density operators in
the computational basis, and communication is captured by the re-
labelling of the system in which this information is contained.

A simple example to start with, is the case where system 1 is de-
scribed by a quantum system and a classical register and system 2

is just a quantum system. Then the transfer of classical information
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from system 1 to system 2 is simply written as the transformation
(|ψ⟩⟨ψ|1 ⊗ ρ1)⊗ ρ2 7−→ ρ1 ⊗ (ρ2 ⊗ |ψ⟩⟨ψ|2), where |ψ⟩i is a computa-
tional basis state for system i. In general CC operations between two
systems i and j are all maps of the form

Cij : ρ 7−→
∑
n

|ψn⟩⟨ψn|j ( ⟨ψn|ρ|ψn⟩i),

where |ψn⟩i,j are computational basis states for systems i and j.
Combining the two previous concepts, we arrive at a crucial class

of operations called Local Operations and Classical Communication
(LOCC).

Definition 33 (LOCC channels). The set of local-operations with classical
communication LOCC is the subset of CPTP of all operations E which are
finite combinations of LO and CC operations.

From this definition, it is immediate that LOCC is closed under
composition. As a basic example of LOCC operation between two
parties, one can consider the scenario where agent 1 performs a mea-
surement on his system, classically communicates the measurement
outcome to agent 2 who performs a unitary transformation on his
part of the system conditioned on the classical he received from agent
1. This sequence of operations reads

ρ 7→ (Mk⊗1)ρ(M†
k⊗1) 7→ (1⊗U(k))(Mk⊗1)ρ(M†

k⊗1)(1⊗U
†(k)),

where Mk are measurement operators used by agent 1 and U(k) is
the conditional local unitary applied by agent 2, which depends on
the classical parameter k.

With the proper definition of LOCC channels at hand, we are now
ready to formally establish the definition of entanglement, and to
explore some important properties of this non-classical class of corre-
lation.

2.4.3 Entanglement theory of pure states

In Sec. 2.4.1 we have briefly touched upon entanglement using the
Schmidt decomposition, and seen that pure bipartite entangled states
have mixed reduced states. Quantum entanglement is in fact one of
the most widely studied features of quantum information theory, and
is at the core of most non-classical effects that are sought after in
platforms for quantum computation, as well as in experimental tests
of fundamental physics. Because of its importance, let us take this
section to formalize the notion of quantum entanglement.

The traditional way the notion of entanglement is introduced in
late undergraduate courses, is in the context of violations of Bell-
type inequalities [24], which are a class of constraints on correlations
between pairs of observables, that must hold in any objective-local
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Figure 3: Setup of the CHSH experiment as illustrated in Ref. [1], where Al-
ice and Bob can each locally measure two different physical prop-
erties of a system, which for simplicity are assumed to take values
in {−1, 1}.

frameworks [89], such as hidden local variable theories. The sim-
plest example are the Clauser-Horne-Shimony-Holt (CHSH) inequal-
ities [25] which can be established by a simple thought experiment.

Consider a bipartite system, with two agents Alice and Bob that
can act on each sub-part of the system. We suppose that each agent
has two measurement devices to measure two properties of the sys-
tem they have, say Q,R for Alice and S, T for Bob, as sketched in
Fig. 3. To simplify calculations, one can assume without loss of gen-
erality that the measurement outcomes are included in the set {−1, 1}.
Let us further assume that Alice and Bob can select their measure-
ment devices randomly and independently of one another26, then
under the realism assumption, the quantity QS + RS + RT −QT is
well defined even if some measurements of those quantities are not
performed. Because this quantity takes values in the set {−2, 2}, if
Alice and Bob repeat the experiment many times, the empirical av-
erage will converge to a true expectation value which must satisfy
⟨QS+ RS+ RT −QT⟩ ⩽ 2. However, it is apparent that if Alice and
Bob share a bell state such as |ψ−⟩ = 1√

2
(|01⟩ − |10⟩) and choose

their measurement devices to measure the observables defined by
(Q,R,S, T) =

(
ZA,XA, −1√

2
(ZB +XB), 1√

2
(ZB −XB)

)
, then the expecta-

tion values satisfy ⟨QS⟩ = ⟨RS⟩ = ⟨RT⟩ = − ⟨QT⟩ = 1√
2

, so that the
CHSH inequality no longer holds.

The violation of Bell-CHSH inequalities are witnesses of non-class-
ical behavior, and imply that the state on which the bipartite local
measurements were performed must be entangled. While it is an im-
portant test of entanglement, Bell inequality violations do not quite
give the full picture of quantum entanglement. An obvious limitation
to such an approach of quantum entanglement is that it only yields
a “yes or maybe-not” answer about the presence of entanglement. It
turns out that Bell inequality violations are only witnesses of entan-
glement for pure states. If we more generally consider mixed states,
it was shown that some states that do not violate a CHSH inequality
can be LOCC-purified to be violating [90], a feature known as hidden
non-locality. Furthermore, those violations do not involve any notion

26 This can be ensured if the measurement device selection events are spacelike sepa-
rated, under the locality assumption.
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of degree of entanglement, and the amplitude of the violation does
not give a reliable measure of entanglement. In order to have robust
criteria and sufficient conditions to certify entanglement, or to estab-
lish a measure of it, we shall introduce a different framework.

We recall that physical observables X in quantum theory are hermi-
tian operators, and measuring the physical property X of a system in
state ρ amounts to randomly applying one of the spectral projectors
Pk of X to the state ρ and renormalizing the result. The probability
of applying Pk is given by Tr(Pkρ). This formalism, called Positive
Operator Valued Measurement (POVM) allows for a simple and prac-
tical theory of measurements, but it is not hard to imagine why it
does not quite capture all possible properties of physical systems:
common physical properties such as mass, entropy or temperature,
do not have associated quantum operators and so do not fit within
the POVM formulation. Let us now introduce the much more general
operational framework of resource theories.

Consider a general set S of states and a class of allowed operations
F, called free-operations. One can build an oriented graph in which an
edge si is linked to sj when it is possible to go from si to sj using
only operations in F. This defines a partial order on S that we can
reformulate and denote as

si ≻ sj ⇐⇒ ∃f ∈ F, sj = f(si).

Definition 34 (Free and resource states). The set Sfree ⊂ S that is left
invariant under free operations is called the set of free states. States that are
not free are called resource states.

Free states are the minimum of the state space for the partial order.
Now that we have defined resource states, let us also define an object
that quantifies the amount of resource in a resource state.

Definition 35 (Resource measures). Any function µ : S 7−→ R satisfy-
ing the condition ∀i, j, si ≻ sj =⇒ µ(si) ⩽ µ(sj) is called a resource
measure.

It is not hard to establish that there are as many non-equivalent
measures as there are permutations of incomparable states si. Let us
give a simple example in order to make things clear.

Consider the set S = {1, 2, ..., 16} and let us define the free operation
f : n 7−→ n/2 if n is even, f : n 7−→ n if n is odd. The set of free states
is Sfree = {1, 3, 5, 7, 9, 11, 13, 15} and the non-trivial chains of ordering
are (16 ≻ 8 ≻ 4 ≻ 2 ≻ 1); (12 ≻ 6 ≻ 3); (10 ≻ 5) and (14 ≻ 7). A valid
measure µ for this resource is, for instance, the distance to the set of
free states, in the sense of the number of required applications of f.
We have µ(16) = 4, and in this theory 16 is the most resourceful state.

Resource theories have bloomed in the late 2000s and have since
been applied to give a grounded framework for various physical
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quantities that are not suited for POVM descriptions. Resource formu-
lations have been established for entanglement [91], asymmetry [92],
state gaussianity [93], coherence [94] among others.

Let us now focus on the resource theory of entanglement, which
falls under the class of quantum resource theories. Quantum resource
theories are specified by a set of free quantum operations F which is
stable under composition and which contains the discarding channel.
Because state preparation is a quantum operation, there is a subset of
F called free states and denoted Fstates.

Definition 36 (Quantum resource measures). If S denotes the set of
quantum states, any function µ : S→ R which satisfies

∀E ∈ F, ∀ρ ∈ S,µ(ρ) ⩾ µ(E(ρ)),

is called a resource measure.

In other words, free operations always decrease the resource of a
state. It is clear that the resource measure must be a constant function
on Fstates. Let us now be more specific.

Definition 37 (Resource theory of entanglement). The resource theory
of entanglement is the quantum resource theory in which the free operations
are the LOCC operations.

Given this definition, the free states are called separable and the
resource states are called entangled. So far, we have simply redefined
entanglement in the framework of quantum resource theories: it is
the property that is not increasing through LOCC operations.

In order to have a clearer picture of what this means, one may
wonder under which conditions on the states ρ12 and σ12 there ex-
ist LOCC operations realizing ρ12 7−→ σ12. This question is unfortu-
nately quite difficult to answer in general. To begin our investigation,
we shall tackle a less ambitious question, by restricting ourselves to
the case of pure bipartite states. To this end we introduce the concept
of majorization.

Definition 38 (Majorization). For any two real vectors (u, v) ∈ Rn

where n ∈N∗, we say that v majorizes u, which is denoted v ≻ u, when

∀k ∈ [[1,n]],
k∑

i=1

v
↓
i ⩾

k∑
i=1

u
↓
i and

n∑
i=1

vi =

n∑
i=1

ui,

where the arrow superscript indicates that the vector components have been
sorted in decreasing order.

The majorization defines a partial preorder on Rn. It is trivially
reflexive, and easily checked to be transitive. It is only a preorder as
antisymmetry is not satisfied, given that two vectors that differ by a
nontrivial permutation of components majorize one another. While
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the majorization realizes a total preorder for n ∈ {1, 2}, this fails for
n ⩾ 3 as can be seen by taking uT = (5, 2, 1) and vT = (4, 4, 0).

Let us apply this relation to the space of vectors of [0, 1]n that lie on
the unit ℓ1 sphere, that is, to probability vectors. We define the two
vectors m and M such that ∀i ∈ [[1,n]], mi = 1

n , Mi = δi,1, which
correspond to a uniform distribution and to a point-like distribution
on the first index.

Claim 14. All probability vectors p satisfy M ≻ p and p ≻ m.

Proof. For all probability vector p, and by definition of M, it is clear
that ∀k ∈ [[1,n]],

∑k
i=1Mi = 1 ⩾

∑k
i=1 p

↓
i , hence M ≻ p. Let us now

show by contradiction that p ≻ m. Suppose that p is not equal to m,
then

∃k ∈ [[1,n]],
k∑

i=1

p
↓
i <

k

n
=⇒ ∃i ∈ [[1,k]],p↓i <

1

n
,

but we also have the implications

∃k ∈ [[1,n]],
k∑

i=1

p
↓
i <

k

n

=⇒
n∑

i=k+1

p
↓
i = 1−

k∑
i=1

p
↓
i >

n− k

n
=⇒ ∃i ∈ [[k+ 1,n]],p↓i >

1

n
,

which contradicts the fact that p↓ is ordered in decreasing values.

Although what we have shown may seem as yet another mathe-
matical curiosity, the following theorem actually gives a relationship
between majorization and convertibility through LOCC operation [1],
and is owed to Nielsen.

Theorem 13 (Nielsen’s theorem). There exists a deterministic channel
E ∈ LOCC realizing the evolution |ϕ⟩⟨ϕ| = E(|ψ⟩⟨ψ|) if and only if one has
the majorization λ(|ϕ⟩⟨ϕ|) ≻ λ(|ψ⟩⟨ψ|), where

λ : H1 ⊗H2 −→ [0, 1]dim(H1), |ψ⟩⟨ψ| 7−→ σ⃗(Tr2 |ψ⟩⟨ψ|),

is a function that maps pure bipartite states to the vectorized spectrum27 of
their reduced density operator on system 1.

In other words, the partial order induced by the existence of an
LOCC operation converting a state to another coincides, on the sub-
space of pure bipartite states, with the majorization partial preorder
on vectorized spectra of partial states. Returning to Claim 14, it is
now manifest why d-level Bell states |ψ⟩ = d−1/2

∑d−1
i=0 |ii⟩, d ⩾ 2,

are said to be maximally entangled. The corresponding reduced state

27 The vectorized spectrum is simply the representation of the spectrum as a vector,
where degenerate eigenvalues are repeated.
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reads ρ1 = d−1
∑d−1

i=0 |i⟩⟨i|, and its associated λ is the uniform proba-
bility vector, which is majorized by all other probability vectors. As a
consequence, Nielsen’s theorem implies that any bipartite pure state
can be constructed from Bell states |ψ⟩ using LOCC operations.

While we shall not make use of it in the work presented in the rest
of this thesis, it is worth mentioning that there is a unique measure
of pure bipartite state entanglement [95] satisfying28 µ(|ϕ+⟩) = 1 and
extensivity ∀k ∈N∗, µ(|ϕ⟩⊗k) = kµ(|ϕ⟩), which is the Von Neumann
entropy of the state S(ρ) = −Tr

[
ρ log2(ρ)

]
. This is proven using the

fact that there exists an asymptotic LOCC interconversion rate be-
tween any bipartite state |ψ⟩ and the Bell pair |ϕ+⟩ [96]. That is, one
can reversibly transform the state |ψ⟩⊗n to |ϕ+⟩⊗nS(ρ1) for n→ +∞
using LOCC operations, where S(ρ1) is the Von-Neumann entropy of
the reduced state Tr2(|ψ⟩⟨ψ|).

Thus far, we have managed to properly characterize and define a
measure for entanglement, by having restricted our analysis to pure
states. As announced previously, generalizing our results to mixed
states is not a simple matter. Yet, since physical experiments take
place in laboratories, not in Hilbert spaces, one never deals with rig-
orously pure states, and it is therefore of critical importance to extend
our criteria and measures of entanglement to mixed states. Before we
embark on the quest for general entanglement measures and criteria,
let us start with a simple example that serves to show how one should
exercise caution when relinquishing state purity. Let us consider two
Bell states29 |ϕ+⟩⟨ϕ+| and |ϕ−⟩⟨ϕ−|. With a simple coin toss, one can
construct the mixed bipartite state

ρ12 =
1

2
(|ϕ+⟩⟨ϕ+|+ |ϕ−⟩⟨ϕ−|).

We notice that in the computational basis, this state takes the form

ρ12 =
1

4
[(|00⟩+ |11⟩)(⟨00|+ ⟨11|) + (|00⟩− |11⟩)(⟨00|− ⟨11|)]

=
1

2
(|0⟩⟨0|⊗ |0⟩⟨0|+ |1⟩⟨1|⊗ |1⟩⟨1|),

so ρ12 turns out to be a separable state that merely exhibits classical
correlations! By writing the state in two unitarily equivalent ensem-
ble decompositions, we can view it as the mixing between two states
that are maximally costly in resource, but at the same time, the result-
ing state is clearly a free state. In other words, the way entanglement
behaves through state mixing is all but straightforward. So much so,
that determining whether two systems are entangled in the most gen-
eral setting has been shown to be a full-blown NP-hard problem [97].
Fortunately, topological properties will happen to help design suffi-
cient conditions for entanglement, as we shall see in the following

28 We remind a common notation for one of the Bell states
∣∣ϕ+

〉
= 2−1/2(|00⟩+ |11⟩).

29 We use the common notation
∣∣ϕ−

〉
= 2−1/2(|00⟩− |11⟩).
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section where we delve deeper into the theory of mixed state entan-
glement.

2.4.4 Entanglement theory of mixed states

There are essentially two approaches to dealing with the presence
of entanglement in mixed state, with their own strengths and weak-
nesses. The first one that we shall now introduce, is called entangle-
ment witnessing, and consists in giving a sufficient condition for the
state to be entangled. The second, less practical but more reliable one,
is to build a measure of entanglement.

Entanglement witnessing relies on the fact that entanglement is
convex resource theory.

Claim 15. The set Dsep of separable states is convex.

Proof. Recall that Dsep = {
∑n

k=1 pkσk ⊗ µk}, for some n ∈ N∗ where
(pk) is a discrete probability distribution and (σk), (µk) are sequences
of local states. Consider λ ∈ [0, 1] and ρ1, ρ2 ∈ Dsep, then there ex-
ists n,m ∈ N∗ and two probability distributions p,q and pairs of
sequences of local states (σ), (π) and (µ), (τ) such that

ρ3 := λρ1 + (1− λ)ρ2 = λ

n∑
k=1

pkσk ⊗ µk + (1− λ)

m∑
l=1

qlπl ⊗ τl.

By constructing the triplet of sequences, of coefficients and local states
((ri), (αi), (βi)) ∈ ([0, 1]×B1(H1)×B1(H2))

n+m satisfying

(ri,αi,βi) :=

{
(λpi,σi,µi) if 1 ⩽ i ⩽ n

((1− λ)qi,πi, τi) if n+ 1 ⩽ i ⩽ n+m
,

we see that the convex sum takes the form ρ3 =
∑

i riαi ⊗ βi where
(ri) is a probability distribution and (αi), (βi) are local states, thus
ρ3 ∈ Dsep.

This topological property, which on its own does not seem to sim-
plify the task at hand, in fact allows to use the geometric Hahn-
Banach theorem, also known as Mazur’s theorem.

Theorem 14 (Geometric Hahn-Banach theorem). In any Banach space
E with a non-empty closed convex subspace C ⊂ E, if an element x ∈ E is
not in C then there exists a hyperplane H that separates x from C, in the
sense that any continuous function taking value x and taking a value in C

must also take a value in H.

A formal proof of this theorem may be arrived at from elementary
functional analysis [98]. In the case of interest to us, since Dsep is a
closed convex subspace of the Banach space BH(H) of bounded self-
adjoint operators acting on the Hilbert space H, according to Th. 14,
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Figure 4: An illustration of the Hahn-Banach separation theorem applied to
the resource theory of entanglement.

for any entangled state ρ there must exist a hyperplane H ⊂ BH(H)

separating ρ from Dsep, as illustrated in Fig. 4. Since in the Banach
space BH(H), any hyperplane can be expressed as the kernel of a
linear form, and that inner-products φy : x 7−→ ⟨y|x⟩ with hermitian
parameter y span the dual Banach space (BH(H))∗, one can always
find an element W ∈ BH(H) such that H = ker(φW). By choosing
the sign of W accordingly, this leads to the important definition.

Definition 39 (Entanglement witnesses). For any given entangled state
ρ ∈ B1(H), any hermitian operator W satisfying both Tr(Wρ) < 0 and
∀σ ∈ Dsep, Tr(Wσ) ⩾ 0, is called an entanglement witness for the state ρ.

The practical advantage of entanglement witnesses is quite straight-
forward: one only needs to evaluate the expectation value of one ob-
servable W in order to infer the entanglement of ρ. As we have said
however, entanglement witnesses cannot detect all entangled states.
The negativity of their expectation value constitutes only a sufficient
condition for the entanglement of a state. Furthermore, the amplitude
of this expected value’s negativity does not provide any information
about the degree of entanglement of a state.

We will shortly come to the construction of quantities that allow
to make quantitative statements about entanglement, however at this
stage, we have only shown the existence of entanglement witnesses
and have yet to propose a practical construction. While the construc-
tion of witnesses is not always a simple matter, the following theorem,
sometimes referred to as the Positive Partial Transpose (PPT) criterion,
by Peres and Horodecki [99], often comes handy, and will in fact help
pave the way to measuring entanglement beyond witnesses.

Theorem 15 (Peres-Horodecki criterion). The partial transpose ρΓ of a
separable state ρ is positive.

Proof. Consider a separable state ρ12 =
∑n

k=1 pkσk ⊗ µk for some
n ∈ N∗ and some sequence of local states (σk) and (µk). Taking the
partial transpose on the space H2 one has ρΓ212 =

∑n
k=1 pkσk ⊗ µTk .
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Because µTk is a hermitian, positive semi-definite, unit trace operator,
it is also a valid state. ρΓ212 is thus a valid state and must therefore
have non-negative eigenvalues.

The set of PPT states is denoted DPPT. What the PPT criterion states,
is that we have the inclusion Dsep ⊂ DPPT. The contrapositive yields a
very approachable sufficient condition for entanglement: if the partial
transpose of a state has a negative eigenvalue, then it must be entan-
gled! It was shown that for a system of two qubits, or of a qubit and
a qutrit, the PPT criterion is a necessary and sufficient condition for
entanglement. For pairs of systems with more levels, such as a pair of
qutrits, there exist entangled states the partial transpose of which do
not have negative eigenvalues, a phenomenon called bound entangle-
ment [100].

While the PPT criterion gives a handy entanglement condition on
the paper, what can we say of its experimental implementation to test
mixed state entanglement in the laboratory? Partially transposing a
state cannot be physically done, as it is not a completely positive map.
To give an experimentally fitting condition, it would be desirable to
relate the PPT criterion to entanglement witnessing.

Claim 16. If ρ is an entangled state, then the projector |χ−⟩⟨χ−|Γ2 on an
eigenvector of ρΓ2 associated with a negative eigenvalue, is an entanglement
witness for ρ.

Proof. Consider an entangled state ρ. Its partial transpose admits a
negative eigenvalue, according to the PPT criterion, associated to an
eigenstate |χ−⟩. The projector onto this eigenvector constitutes an ob-
servable which has a negative expectation value on the partial trans-
pose Tr

(
|χ−⟩⟨χ−| ρΓ2

)
< 0. Because the trace is invariant under par-

tial transposition, we arrive at Tr
(
|χ−⟩⟨χ−|Γ2 ρ

)
< 0. Furthermore,

for any separable state σ, the positivity of its partial transpose gives
Tr
(
|χ−⟩⟨χ−|σΓ2

)
⩾ 0 thus Tr

(
|χ−⟩⟨χ−|Γ2 σ

)
⩾ 0.

This construction of an entanglement witness, based on the PPT
criterion, will turn out to be useful in a future chapter where we
shall present an investigation on the entangling capacity of the gravi-
tational interaction.

We close this short overview of mixed state entanglement with the
notion of entanglement monotone. Referring to our previous defini-
tion of a general resource measure Def. 36, an entanglement mono-
tone is typically defined in the following way.

Definition 40 (Entanglement monotones and measures). An entan-
glement monotone is a real valued function µ defined on the quantum state
space D satisfying the following three conditions:

1. µ is positive: ∀ρ ∈ D, µ(ρ) ⩾ 0.

2. µ is vanishing on the separable set: ∀σ ∈ Dsep, µ(σ) = 0.
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3. µ is monotonically decreasing on average under LOCC:

∀ρ ∈ D, µ(ρ) ⩾
∑
i

piµ

(
AiρA

†
i

pi

)
,

where {Ai} are the Kraus operators associated to an LOCC channel,
and pi = Tr

(
AiρA

†
i

)
.

If furthermore, the entanglement monotone coincides with the Von Neumann
entropy on the set of pure states, and that it is monotonically decreasing
under deterministic LOCC, then it is called an entanglement measure.

In some instances, additional properties are embedded into the def-
inition, such as convexity and extensivity. While there exists a large
zoo of entanglement measures and monotones [101], it will be suffi-
cient in the context of this thesis to define a particular function which
is in the natural continuation of our presentation around the PPT cri-
terion, called negativity.

Definition 41 (Negativity). The quantity N(ρ) = 1
2(
∥∥ρΓ2∥∥

1
− 1) defined

for all quantum states ρ, is called negativity.

State negativity has been proven to constitute an entanglement
monotone. Because it is quite involved, the interested reader is invited
to consult Ref. [102] for a detailed proof. The somewhat obscure def-
inition of negativity, involving the trace norm of a partial transpose,
hides a much more workable formulation, as we shall see now.

Claim 17. The negativity N(ρ) of a state ρ is the absolute sum of the nega-
tive eigenvalues of its partial transpose ρΓ2 .

Proof. The spectral decomposition of the partially transposed state
can be written as ρΓ2 =

∑
i λi |ψi⟩⟨ψi|, where

∑
i λi = 1 by invariance

of the trace under partial transposition. One can now express the neg-
ativity as N(ρ) = 1

2(
∑

i |λi|− 1) = 1
2

∑
i |λi|− λi and one recognizes

the negative part function.

As an entanglement monotone, compared to entanglement witness-
ing, the state negativity provides a much finer picture of the entangle-
ment of a given state. Experimentally however, evaluating the negativ-
ity of a state requires to reconstruct it via state tomography, which is
a much more costly procedure than the measurement of an entangle-
ment witness. We will have the opportunity to discuss entanglement
estimation and the value of tomography in Sec. 5.2.
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3
R E A L I S M A N D C L A S S I C A L I T Y

Reality exists in the human mind, and nowhere else.

— George Orwell [103]

One of the hallmarks of quantum theory is the existence of coher-
ent superposition of states. States which have coherence [94, 104] are
an important resource in applied physics, notably for the develop-
ment of quantum information and its applications [1], such as metrol-
ogy [105–107] or computation [108–112]. Despite their attractive op-
erational properties, quantum superpositions, which are absent from
classical physics, have long been at the core of fundamental issues,
famously illustrated by Schrödinger’s cat gedankenexperiment [113].
Making sense of the disconnect between quantum microscopic and
classical macroscopic regimes has resulted in the development of dif-
ferent models for and interpretations of open-system quantum dy-
namics [114–118]. To clarify the distinction between classical macro-
scopic regimes and quantum microscopic regimes, the Leggett-Garg
Inequalities (LGIs) were devised as a test of macroscopic-realistic the-
ories, generally regarded as a suitable class of description of classical
dynamics. In spite of this, it is unclear whether their violation is re-
lated to non-classicality.

In this chapter, we begin with a short review of LGIs from the foun-
dations of physics perspective. We then demonstrate that the Leggett-
Garg inequalities may not hold for the most classical states of light in
the quantum optical sense. After introducing a simple Mach-Zehnder
setup and showing how to obtain a violation with a single photon us-
ing negative measurements, we focus on classical states of light. By
using an appropriate assignment of variables, we show how one is
still able to perform negative measurements, and obtain a meaning-
ful violation in the presence of coherent states. Finally, we abandon
initial phase reference and demonstrate that the violation is still pos-
sible, in particular with thermal states of light, and we investigate the
effect of intermediate dephasing.

3.1 realism and the leggett-garg inequalities

In this section, we present the LGIs through a simple derivation,
which relies on three fundamental assumptions, which together con-
stitute the macroscopic realism hypothesis. We also introduce a pow-
erful framework to clarify, from a fundamental point of view, what
is really tested by the LGIs. In doing so, we will touch upon some
important nuances of macroscopic realism.
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3.1.1 The Leggett-Garg inequalities

Similar to Bell’s inequalities, which are based on correlations between
spatially separated systems and are a necessary condition for local re-
alism [24], the LGIs test the validity of classical descriptions through
the correlations between successive measurements in time of a single
system [119]. The LGIs are a consequence of macroscopic realism. As
we shall see in Sec. 3.1.3, since the LGIs were first proposed, several
subtleties regarding what is meant by macroscopic realism and the
precise significance of an LGI violation have been clarified [120–122].

As we have seen in Sec. 2.4.3, Bell’s inequalities were established as
a necessary condition for local realism, a philosophical position that
can be resumed in the conjunction of the following three assump-
tions:

1. (A1) Realism. This first assumption signifies that physical sys-
tems contain the information of the probability distribution of
outcomes of any measurements performed upon them. As a
consequence, this stance takes measurements to simply reveal
pre-existing physical values.

2. (A2) Locality. This second assumption is the postulate that event
A may only influence event B if B is in the light cone of A.

3. (A3) Induction. This third assumption presumes that an event
A cannot be influenced by future events.

Assumptions (A2) and (A3) are sometimes joint into what is called
local-causality. In a similar fashion, the LGIs are a necessary con-
dition for Macroscopic Realism (MR), which is often defined as the
conjunction of (A3) along with the two following assumptions:

1. (B1) Macroscopic Realism per se (MRps). This assumption states
that any macroscopic system having access to a set of distinct
macroscopic states must always be in one of those states at any
given time. This is quite an intuitive assumption, and a famous
example of its failure is illustrated by Schrödinger’s cat thought
experiment.

2. (B2) Noninvansive Measurability (NIM). This assumption pos-
its that the macroscopic state of a system can be measured while
inducing an arbitrarily little perturbation on that state.

In order to show how the LGIs must hold in any framework where
MR is assumed to be true, Leggett and Garg, in the same fashion
as Bell, invite us to consider a physical system which has a physical
property PQ, the measurement of which has two possible outcomes
Q ∈ {−1,+1}. Let us suppose that this property is measured at three
instants t1 < t2 < t3. The measurement outcomes can be respectively
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Q1Q2 Q2Q3 −Q1Q3 QLG

+ + − 1

+ − + 1

− + + 1

− − − −3

Table 2: All possible situations for charges in {−1,+1}.

denoted Qi, i ∈ {1, 2, 3}. By repeating the preparation process, one
can prepare multiple copies of the initial system, and label those ini-
tial systems with the letter r ∈N∗. The outcome of the measurement
at time ti for system number r can be written asQr(ti). For any given
copy of the system (or trial) let us define the following function

QLG = Q1Q2 +Q2Q3 −Q1Q3. (32)

All the possible measurement outcomes are recapitulated in Tab. 2.
We notice that the QLG function is less than or equal to 1 in all cases.
If we suppose that for each system, all of the three measurements
were effectively carried out, then one can build up the average values
for each term in Eq. (32), and it follows that

⟨QLG⟩1,2,3 = ⟨Q1Q2⟩1,2,3 + ⟨Q2Q3⟩1,2,3 − ⟨Q1Q3⟩1,2,3 ⩽ 1. (33)

The indices under the expectation value brackets indicate that we
are taking the statistical average over r when all of the three mea-
surements in time are carried out on each system, and the inequality
naturally follows from QLG ⩽ 1 for each trial.

Inequality (33), which also has a lower bound of −3 that shall not
be of use to us, may seem to be a strong statement, and deceitfully
looks like an LGI, yet as noted in [123, 124], neither realism nor non-
invasive measurability were necessary in our derivation. To be more
specific, whether the charge values Qi were measurement outcome
values or intrinsic values prior to measurement, QLG is always well
defined and the inequality will hold. However the significance of the
inequality is not the same in those two interpretations of the charge
values. Indeed, if the Qi merely designate measurement outcome val-
ues, the inequality is so weak that it will hold in any general theory,
classical or quantum, in which there are joint probability distributions
of repeated measurement outcomes.

This being said, let us suppose that assumptions (B1) and (B2) hold.
Then in this macro-realistic view in which Qi are the intrinsic val-
ues that the measurements merely reveal, the two first measurements
(should they be performed or not) do not affect the result of the final
measurement (as under NIM the intrinsic value of Q prior to the fi-
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nal measurement is unaffected). In this case, we have the following
equalities

⟨Q1Q3⟩1,2,3 = ⟨Q1Q3⟩1,3 and ⟨Q2Q3⟩1,2,3 = ⟨Q2Q3⟩2,3 . (34)

Finally, under the induction hypothesis, a system is not influenced by
the future measurements it may be subjected to, which translates to

⟨Q1Q2⟩1,2,3 = ⟨Q1Q2⟩1,2 . (35)

Consequently, the weak inequality Eq. (33) takes the following form
under the MR assumption

⟨Q1Q2⟩1,2 + ⟨Q2Q3⟩2,3 − ⟨Q1Q3⟩1,3 ⩽ 1. (36)

For legibility we will rewrite this LGI with correlation coefficients as

K = C12 +C23 −C13 ⩽ 1.

Let us bring up some important aspects of this deceptively simple
inequality and its derivation.

Though the LGI may look very much like inequality Eq. (33), the
statement of Eq. (36) is much more sophisticated and is not as triv-
ial as it looks. In particular, whereas the weak inequality Eq. (33)
only involves a single experimental setup, whereQ is measured three
times, the LGI gives constrains expectation values that are obtained
via three completely distinct experimental configurations, in each of
which Q is only measured twice per trial. As far as the assumptions
go, let us mention that macroscopicity is in fact not a direct require-
ment for the derivation of the LGI [125]. The reason macroscopicity
comes into play is that otherwise noninvasive measurability cannot
hold, as it would contradict quantum mechanical rules. Finally, it is
worth noting thatQi was assumed to take values in {−1,+1}, however
this assumption can be relaxed. The LGIs can be derived without di-
chotomic charges, they can in fact take values in a continuous set. It
is only required that ∀i, |Qi| ⩽ 1 as shown in Ref. [124].

This simple version and its derivation will suffice at this stage, but
we shall later carry out a more general derivation, as we will need to
loosen some assumptions on the observableQ, namely its dichotomic
property.

In the same way as the CHSH inequalities, the LGIs have been ex-
perimentally violated on a variety of platforms, such as superconduct-
ing qubits or atomic quantum walks [89, 126]. However, the conclu-
sive invalidation of macroscopic realism through an LGI violation is
more delicate to reach than the invalidation of local realism via a Bell-
CHSH violation. In the Bell test, one important loophole to address
is the communication loophole, which can be closed using space-like
separated measurement events. In the Leggett-Garg test however, suc-
cessive measurement events carried out on the same system may only
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be time-like separated, and as such macroscopic noninvasiveness can-
not be guaranteed in the same way. Earlier measurements could very
well be noninvasive directly, yet affect some hidden variables that
may affect the free evolution of the system until the next measure-
ment, an issue referred to as clumsiness loophole. Progress in recent
years have reduced the clumsiness loophole to the much less likely
collusion loophole [127]. Clumsiness-loophole free experimental pro-
tocols were implemented with superconducting qubits [128] and have
shown effective violation of the LGIs.

3.1.2 The ontic models framework

As previously defined, MRps seems to be a straightforward and un-
ambiguous statement: macroscopic systems must at all times be in
one of their accessible macroscopically distinct states. While the no-
tion of macroscopicity itself is not clear-cut, one may more impor-
tantly question the meaning of “state” the realism of which is being
referred to, as this is framework dependent. In the original formula-
tion by Leggett and Garg, the framework is quantum theory, hence
macroscopic realistic states are taken to be incoherent. In other words,
the realistic stance as formulated by Leggett and Garg amounts to
postulating that some states in the Hilbert space are not allowed by
some sort of superselection rule, namely those which would be super-
positions of macroscopic states. The relationship between negating su-
perpositions and realism is however not as simple. Let us summarize
an interesting investigation from Ref. [123].

The first objection one can make, is that there is nothing realistic
about forbidding (macroscopic or non-macroscopic) superpositions.
Realism simply requires that quantum theory be taken as represent-
ing (mind-independent) facts about the physical world. Denying su-
perpositions does not imply the endorsement of realism, as one can
claim that quantum theory with a superselection rule preventing su-
perpositions merely describes measurement outcomes, that is, one
can have an instrumentalist interpretation of a theory in which super-
positions are forbidden.

As such, denying superpositions is not a sufficient condition to
have a realist stance. It turns out that it is not a necessary condition
either, for superpositions in the quantum state do not necessarily lead
to indefiniteness of physical variables in the de Broglie-Bohm pilot
wave theory [129]. The pilot-wave model describes how the wave-
function of a system (up to and including the entire universe) always
evolves unitarily, but also specifies the precise position of particles at
any given time. All particles also have well-defined momenta at all
times, and hence move along smooth deterministic trajectories. These
momenta are determined by taking the gradient of the phase of the
manybody wavefunction; to put it informally, particles are pushed
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around directly by the wavefunction. Based on the hypothesis (which
may be assumed or derived) that the probability distribution over
initial configurations is determined by the Born rule, the pilot-wave
theory is a deterministic hidden variable theory (the hidden variables
being configurations of the physical degrees of freedom, for instance,
particle positions). In this model, measurement results are uniquely
determined by the initial configuration of the total system, the initial
wavefunction, and the interaction Hamiltonian between the measur-
ing device and the system being measured. In this framework, physi-
cal quantities for a system can take on definite values even when their
wavefunctions are in superposition states.

Another stance which may fall under quantum mechanical real-
ism, and most likely corresponds to what Leggett and Garg had in
mind, is one in which the wavefunction is taken to be a physical ob-
ject the collapse of which is a genuine physical process. This class
of models, such as the Diosi-Penrose model [130–132], or the Ghi-
rardi–Rimini–Weber theory [33], postulate the existence of additional
terms modifying the Schrödinger equation that must be stochastic
in order to avoid faster than light signalling [84], so that wavefunc-
tions sponatenously collapse. In the original argument by Leggett and
Garg, the realistically forbidden states would be superpositions of
two classical Superconducting Quantum Interference Device (SQUID)
states. Since the distinct classical states of a SQUID spatially over-
lap, spontaneous collapse theories which rely on spatial localisation
would not rule out LGI violations [133, 134].

In short, the pilot-wave theory, which is compatible with MR as pre-
viously cast, would predict LGI violations whenever standard quan-
tum theory does, and in the original setting of Leggett and Garg,
spontaneous collapse models would not rule out LGI violations. In
light of those observations, it is unclear whether the LGI violation
allows to invalidate a class of realist interpretations. The relationship
between LGIs and MR deserves more caution, and in order to clar-
ify our statements we will shortly introduce the ontic models frame-
work [135].

Before presenting this framework, it is useful to frame the LGI
setup in the language of operationalism. Any experimental process
can be divided into a preparation P, an evolution E and a measure-
ment M operation with outcomes Q = qi, and the whole experi-
ment is operationally defined by the conditional probability distri-
bution P(Q|P,E,M). Whenever two preparations or two transforma-
tions yield the same probability distribution, they are said to be opera-
tionally equivalent. Measurement procedures are operationally equiv-
alent when there is a bijection between their set of outcomes, and that
they have the same probability distribution.

In the setup considered to derive Eq. (33), we have considered the
preparation P of an initial state, and three measurement processes
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M1,2,3 with two intermediate evolutions E1,E2. The entire experimen-
tal procedure thus may be described by the joint probability distribu-
tion P(Q1,Q2,Q3|P,M1,E1,M2,E2,M3), from which one can extract
any marginal and correlation. Let us note that marginalizing over one
variable does not change the conditions, that is, for instance

⟨Q1Q3⟩M1M2M3
=∑

qi,qj

qiqjP(Q1 = qi,Q3 = qj|P,M1,E1,M2,E2,M3)

̸= ⟨Q1Q3⟩M1M3
.

As shown previously, the LGIs follow from the much more con-
straining conditions which relate joint probability distributions in
processes where only two measurements are carried out, to marginal
distributions for pairs of outcomes when all measurements are per-
formed. Explicitly (and omitting the preparation and evolutions for
legibility), the two conditions Eq. (34), can be written as{

P(Q2,Q3|M2,M3) =
∑

Q1
P(Q1,Q2,Q3|M1,M2,M3)

P(Q1,Q3|M1,M3) =
∑

Q2
P(Q1,Q2,Q3|M1,M2,M3)

,

and together represent a hypothesis that is referred to as Operational
Nondisturbance (OpND). The third condition Eq. (35) is simply time
ordering P(Q1,Q2|M1,M2) =

∑
Q3

P(Q1,Q2,Q3|M1,M2,M3).
In the previous section, we had simply assimilated OpND to NIM,

and as we see, the LGI violation can be viewed as a simple violation
of OpND. What requires more caution however, is the relationship
between MR and OpND, as OpND may come in different flavours. A
measurementMmight be OpND for all posterior measurement given
a specific preparation P, or be OpND for a given posterior measure-
ment for any preparation P, in which case we have specific OpND,
denoted OpNDspecific. In the strongest case, a measurement can be
OpND for all posterior measurements regardless of preparation P,
and is then said to satisfy complete OpND, denoted OpNDcomplete.

Let us now finally introduce the ontic models framework [135]. It
is a framework in which the system of interest is associated with an
ontic state λ ∈ Λ representing some ontological, intrinsic property,
independent of measurements. In the case of classical Hamiltonian
mechanics, this ontic state for a single particle is a point in phase
space. In ψ-ontic interpretations of quantum mechanics, this ontic
state is taken to be the wavefunction itself.

The preparation P of a system is represented by a probability dis-
tribution µP on the ontic state space. Evolutions are stochastic maps
τE(λ|λ0) of the ontic state space, giving the conditional probability
distribution to be in ontic state λ given an original ontic state λ0.
The sequential composition of a preparation and an evolution gives
another valid preparation µE◦P(λ) =

∫
Λ dλ

′µP(λ ′)τE(λ|λ ′). Measure-
ments M are described by a response function ξM(Q|λ), giving the
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probability of having outcome Q given the ontic state λ. One may
complement the description of a measurement to account for its ontic
disturbance, by associating to it an evolution map τM(λ|Q, λ0). Two
operationally equivalent measurements may not have equal response
functions, or equal ontic disturbance maps, a situation termed mea-
surement contextuality.

With this framework at hand, it becomes evident that there are two
ways to understand NIM. In its weaker version, NIM can be viewed
as OpND. In the stronger version, NIM corresponds to Ontic Non-
invasiveness (ONI). A measurement M of the physical property Q is
ontically noninvasive for outcome qi when its associated evolution
map satisfies τM(λ|Q = qi, λ0) = δ(λ− λ0). If M is ONI then regard-
less of the preparation procedure P, any measurements posterior to
M will have the same statistics whether or not M was carried out.
Hence ontic nondisturbance is stronger than the strongest form of
OpND. In short, we have the chain of implications

ONI =⇒ OpNDcomplete =⇒ OpNDspecific =⇒ LGI.

At this stage we have still not invoked any notion of MR. The point
of Leggett and Garg’s argument, is that combining MR with negative
measurements yields the strong ONI condition. In order to investi-
gate this more specifically, one first needs to have a proper definition
of MR.

In the ontic models framework, if M is the macroscopic measure-
ment of the physical property Q of a system in ontic state λ, then MR
is simply the requirement that the response function for any such
measurements ξM(Q|λ) takes values in {0, 1}, and coincides for opera-
tionally equivalent macroscopic measurements (i.e. the physical pres-
ence of the moon does not depend on how we look at it). In turn, this
means that the physical propertyQ is non-contextually value definite.
While this looks at odds with the Kochen-Specker theorem [136], MR
does not require the definiteness of all the system’s properties, but
only of its macroscopic ones.

We shall say that an ontic state is macroscopically definite when
all observable macroscopic properties are non-contextually value def-
inite, and two ontic states of such system are macroscopically distinct
when there exists at least one macroscopic property on which the two
ontic states have zero overlap. We are now ready to define different
flavours of MR and show which one in particular the LGI violation
may rule out.

3.1.3 Classes of macroscopic realism

As stated previously, MR regarding a macroscopic physical property
Q is a stance in which all ontic states are supposed to be macro-
scopically definite for Q. Let us consider the sequence of processes
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(P,M1,E2,M2) consisting of a preparation, a measurement of Q, an
evolution, and a second measurement of Q. Suppose that it is well
established that M1 is OpND for preparations giving rise to definite
values of Q. Then the macroscopic realist would expect identical mea-
surement statistics for M2 in the sequence (P,E2,M2).

Should there be a discrepancy, then it would seem like MR must be
false. Indeed, the existence of ontic states which are not macroscop-
ically definite for Q, can explain why M1 could be disturbing even
if it is OpND for preparations giving definite values of Q. Yet, with
closer inspection, not all versions of MR can be ruled out, as we shall
now discuss.

To present the three versions of MR, it is useful to introduce the
notion of operational eigenstate. Given an equivalence class of mea-
surements M̃ for the corresponding physical quantity Q̃, an oper-
ational eigenstate of Q̃ is the equivalence class of preparations P̃
giving the same point-like (i.e. Dirac delta for an uncountably infi-
nite number of outcomes, and Kronecker delta otherwise) probability
distribution over the set of measurement outcomes. Specifically, if
a system is prepared in the q operational eigenstate of Q̃, then all
measurements M ∈ M̃ will have outcome probability distribution
P(Q̃ = q ′) = δq,q ′ . If we denote the qi operational eigenstate equiv-
alence class as P̃qi

= {Pqi
| ∀M ∈ M̃, P(Q = q|Pqi

,M) = δq,qi
}, and

define µPqi
as the probability distribution that Pqi

gives rise to, then
for all ontic state λ ∈ Λ, for any measurement M ∈ M̃, and any qi
operational eigenstate preparation Pqi

∈ P̃qi
we have the characteri-

zation λ ∈ supp(µPqi
)⇐⇒ ξM(Q = q|λ) = δq,qi

.
The most general version of MR, called Supra Eigenstate Support

Macroscopic Realism (SESMR), regarding the property Q, simply pos-
tulates that all ontic states are macroscopically definite forQ, and that
all preparations can be written as convex mixtures of distributions σqi

over the ontic state space, explicitly µ(λ) =
∑

qi
αqi

σqi
(λ), which sat-

isfy the condition λ ∈ supp(σqi
) =⇒ ξM(Q = q|λ) = δq,qi

. SESMR
does not imply LGI, as verifying that M1 is OpND for all operational
eigenstate preparations, does not mean that it cannot be disturbing
for other macroscopically definite ontic states. That is, there are ontic
states λ ∈ Λ which do not belong to ∪qi

supp(µPqi
).

One can define a more constrained version of MR, which is termed
Operational Eigenstate Support Macroscopic Realism (OESMR). This
view assumes SESMR, but further posits that there are no ontic states
that cannot be accessed by an operational eigenstate preparation. That
is, Λ ⊂ ∪qi

supp(µPqi
). While more constraining, OESMR still does

not imply LGI. Even if M1 is OpND for all operational eigenstate
preparations, some unavoidable evolutions occurring after an oper-
ational eigenstate preparation may give rise to a valid ontic space
distribution µE◦Pqi

(λ) which cannot be expressed as some mixture of
operational eigenstate preparations. As such, the prepared state may
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evolve into a new distribution that can be, at least ontically, disturbed
by M1. In other words, the set of possible probability distributions
over the ontic state space is larger than the set of convex combina-
tions of operational eigenstate preparations. Within OESMR, LGI vio-
lations are allowed, not because there should be an ontic state that is
not macroscopically definite, nor because some ontic states cannot be
expressed as operational eigenstate preparations (like in SESMR), but
rather because some probability distributions over ontic states may
not be expressed as convex mixtures of operational eigenstates.

Finally, one can add to OESMR the assumption under which any
probability distribution over the state space may be expressed as
µ(λ) =

∑
qi
αiµqi

(λ). This posture is called Operational Eigenstate
Mixture Macroscopic Realism (OEMMR). OEMMR for the macroscopic
variable Q̃ essentially consists in asserting that all preparations P of a
system S can be written as mixtures of operational eigenstates of Q̃.

Macroscopic realists appear to be very naturally inclined to think
this way, and it implies that, whatever happens microscopically, macro-
scopic properties of unobserved systems will behave similarly to those
of observed systems. OEMMR implies LGI, as there exist no prepa-
ration states which cannot be expressed as mixtures of operational
eigenstates, meaning that M1 can never be operationally disturbing
if proven to be OpND for all operational eigenstates.

In light of these nuances of MR, it is apparent that, barring any sce-
nario where the measurements are proven to not be merely OpND
but fully ONI, an LGI violation may only rule out the strongest form,
OEMMR. To close our short presentation on foundational aspects
of the LGI, let us note that in their original argument, Leggett and
Garg claimed that MR entails ONI, which implies any form of NIM.
Should this be the case, then LGI violations would effectively inval-
idate MRps. This would put MR (regardless of its flavours, the dis-
cussion of which were brought about by different implications of the
weaker OpND condition) in jeopardy. Leggett and Garg’s argument
essentially consists in invoking negative-measurements (e.g. the ab-
sence of detection of a particle emerging from a double-slit) and a
post-selection, which under MR may be considered as forming an
ONI measurement procedure for certain outcomes. However, this con-
sideration cannot be framed in a model independent way. In the eyes
of a ψ-ontologist, for instance, negative measurements are as ontically
invasive as standard measurements.

3.2 violating the lgis with classical states of light

To no surprise, the LGIs have been experimentally violated with mi-
croscopic systems such as superconducting qubits and atomic quan-
tum walks [89, 126]. While the LGI violation is considered a relevant
witness of quantumness, and finding such violations is still an ac-
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tive area of interest [137–141], there exists another well established
notion of non-classicality of a state, in quantum optics. A state of
light ρ can be represented by a distribution in the complex plane as
ρ =

∫
P(α) |α⟩⟨α|d2α where |α⟩ are coherent states [77, 78]. The state

is said to be classical whenever P is a probability density function on
phase space [142], and non-classical otherwise. This criterion is jus-
tified by the fact that a coherent state is considered a classical pure
state [143], in the sense that it minimizes uncertainty relations and
is robust against decoherence [144]. By contrast, a superposition of
coherent states |α⟩ and |β⟩, is non-classical, and when the displace-
ment parameters α,β differ considerably, we obtain what is termed a
Schrödinger cat state [145]. Such a non-classical state, whose P repre-
sentation is not a probability density function, is a valuable resource
for quantum information tasks [146, 147], as indicators of quantum
behaviour. However, it turns out that classical states can very well
have quantum properties, as we shall show.

In this section, we show that classical states of light can violate LGI
inequalities. Violations of the LGI with light have already been estab-
lished [148–153], although with manifestly non-classical states such
as single photons Fock states. Violations based on the polarization de-
gree of freedom of a laser field were more recently shown to be possi-
ble [154], but constitute nothing more than a specific implementation
of a qubit to violate the LGI. By contrast we shall present a protocol
which uses measurements on the coherent state itself to achieve the vi-
olation. More importantly, the previously established violations have
not determined to what degree phase reference, which plays a cen-
tral role in the decoherence model explaining the quantum-classical
transition [155], governs the possibility of LGI violations. Here, we
demonstrate a violation of the LGI with a particularly simple setup
in which light is classical at each stage and the measurement itself is
not weak [156].

3.2.1 Setup and single photon quantum random walk

Before introducing the setup and illustrating an LGI violation, let us
briefly show how to establish the LGIs, and introduce useful nota-
tions as well as the notion of negative measurement. Following re-
view [124] we present a brief derivation of the LGIs.

Using the ontic models framework [135], let us suppose that the
system under study is prepared in the ontic state λ with a proba-
bility density µ(λ). A measurement that is performed at instant ti
results in the outcome function ξi(Qi|λ) which gives the probabil-
ity of obtaining the value Qi given the ontic state λ. Induction guar-
antees that preparing a measurement setup does not influence the
initial ontic state distribution µ(λ). Then P(Qi) =

∫
dλξi(Qi|λ). As-

suming NIM, the joint probability distribution for the two measure-
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ments reads Pij(Qi,Qj) =
∫
dλξj(Qj|λ)ξi(Qi|λ)µ(λ). Let us now re-

strict to (Qi,Qj) ∈ Si × Sj ⊂ [−1, 1]2. Si and Sj are the sets of val-
ues that Qi and Qj can respectively take, and those values are real
and absolutely less than or equal to unity. Then the correlation co-
efficient reads Cij =

〈
QiQj

〉
=

∑
(Qi,Qj)∈Si×Sj

QiQjPij(Qi,Qj). In-
serting the joint probability expression into the last equation gives
Cij =

∫
dλ ⟨Qi⟩λ

〈
Qj

〉
λ
µ(λ), where the expectation value is explicitly

⟨Q⟩λ =
∑

Q∈SQP(Q). Thus

K = C12 +C23 −C13

=

∫
dλ
(
⟨Q1⟩λ ⟨Q2⟩λ + ⟨Q2⟩λ ⟨Q3⟩λ − ⟨Q1⟩λ ⟨Q3⟩λ

)
µ(λ).

Therefore, having S1 × S2 × S3 ⊂ [−1, 1]3 yields

K = C12 +C23 −C13 ⩽ 1, (37)

regardless of the cardinality of the sets Si. In particular, it will be use-
ful in Sec. 3.2.2 to note that if (S1,S2,S3) = ({+1}, {0,+1}, {−1, 0,+1})
then the LGI (37) still holds.

Let us now show a simple violation in a Mach-Zehnder interfer-
ometer. Mach-Zehnder setups have been considered to test LGIs with
dichotomic variables [157], and featured for detailed proposals of LGI
violations with single electron transport [158]. We present the three
Mach-Zehnder setups, along with the notations and observable def-
inition, and give an example of LGI violation with macroscopic ob-
servables and negative measurement in the case of a single photon
input state.

We consider three setups as illustrated in figures 5a, 5b and 5c. All
in all, the ideal setup consists of two perfect mirrors, two or three
photon detectors and two identical 50:50 lossless beam splitters. For
our purpose the detectors need not be photon counters, but rather
simply detect the presence or absence of photons in the mode. The
general beam splitter operator is defined as B = e

θ
2 (a

†
LaR−aLa

†
R) where

a
†
L and a†R are bosonic creation operators in the left-hand and right-

hand field modes, and we shall fix θ = π/2 throughout this study.
Using Hadamard’s lemma and bosonic commutation relations, the
50:50 beam splitter acts upon photonic modes according to the fol-
lowing rules (see Sec. 2.3.3 for details): Ba

†
RB

† = 1√
2
(a†L + a†R)

Ba
†
LB

† = 1√
2
(a†L − a†R)

. (38)

There are two setups for the intermediate measurement, and this
is a requirement for ideal negative measurements, also known as
interaction-free measurements [159, 160]. Such measurements are im-
portant in order to have a meaningful LGI violation, as direct mea-
surements disturb the state and immediately invalidate the NIM hy-
pothesis. The idea of a negative measurement, in the single photon
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(a) Detector in the right
intermediate mode.

(b) No intermediate
detector.

(c) Detector in the left
intermediate mode.

Figure 5: Three setups for the two step quantum random walk. The states in
each space (input, intermediate, and output) are labelled accord-
ing to the intermediate detector’s position. Photons are detected
at the output of the Mach-Zehnder interferometer at two distinct
positions x = L and x = R.

case, is to say that by not observing a photon in one of the two detec-
tors, one can conclude its presence in the other mode without having
destroyed it. If an intermediate detector clicks, the trial is discarded,
but this case is accounted for when the detector is in the other mode.
Of course, even negative measurements do disturb the quantum state,
however from a realist’s point of view, it is but an update of an agent’s
knowledge of the state of the system.

Let us note that this measurement method is straightforward only
when the beam splitters are lossless and the detectors are ideal (no
dark current, and unity quantum efficiency), which we assume in this
work. We briefly discuss in the next section why this assumption does
not prevent our proposal from being viable.

This being said, let us consider a single photon arriving on the first
beam splitter from the left, so |ψ1⟩ = |10⟩ is the input state. With no
intermediate detection, the intermediate state between the two beam
splitters is the Bell pair |ψ2⟩ = 1√

2
(|10⟩− |01⟩), and the output state

is |ψ3⟩ = − |01⟩. If the intermediate detector is placed on the right
hand intermediate mode, then the only state that one can measure
negatively is |ψ2⟩R = |10⟩. Similarly, we will denote |ψ2⟩L = − |01⟩ the
only negatively measurable state when the detector is placed on the
left intermediate mode.

Those are negatively measured states in the sense that one can de-
duce their form from the absence of a click on the intermediate detec-
tor, which is a pivotal point to make in order to even consider NIM.
Hence all trials where the intermediate detector clicks have to be dis-
carded. The output states after negative intermediate measurement
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are then |ψ3⟩R = 1√
2
(|10⟩− |01⟩) and |ψ3⟩L = 1√

2
(|10⟩+ |01⟩), where

the index is a label for the position of the intermediate detector, and
is absent if no intermediate measurement is performed.

It should be stressed that discarding trials where the intermediate
measurement was not negative (i.e. a detector clicked) does not affect
the resulting statistics only if the discarded cases can be picked up
in the statistics in the symmetric setup, as illustrated with atomic
quantum random walks in [126].

We now define the Qi values to obtain a violation as follows. We
set Q1 = +1 when there is a photon in the left input mode and none
in the right input mode. This corresponds to the preparation. We
trivially set Q2 = +1 whenever the photon finds itself in either of the
intermediate modes. Finally, we set Q3 = +1 when the left output
detector clicks, and Q3 = −1 if the right output detector clicks.

Then it is straightforward to establish ⟨Q3⟩ = −1 and ⟨Q3⟩R,L = 0.
Trivially C12 = +1, and C13 = ⟨Q3⟩ = −1. Finally, as Q2 = +1 always
holds and trials where the intermediate detector clicks are discarded
(i.e. half of the trials for each intermediate detector position), one has
C23 = 1

2(⟨Q3⟩R + ⟨Q3⟩L). All in all K = +2 which violates (37).

3.2.2 Violation with coherent states

We now consider a coherent state impinging on the first beam splitter
from the left |ψ1⟩ = |α⟩L |0⟩R = DL(α)⊗ 1R |00⟩, where we have de-
fined the displacement operator D(α) = eαa†−α∗a. At the output of
the first beam splitter, the state of light is |ψ2⟩ =

∣∣∣α/√2〉⊗ ∣∣∣−α/√2〉.
Hence, the state at the output of the interferometer with no inter-
mediate measurement is given by |ψ3⟩ = |0⟩ ⊗ |−α⟩. In setups with
intermediate measurement where any detected flux results in a dis-
carded experiment, the negatively obtained states at the output are
|ψ3⟩R,L =

∣∣∣±α/√2〉⊗ ∣∣∣±α/√2〉.
Given the different output states, it may seem at first sight that the

LGI violation will immediately follow from what was already shown
for the single photon. However, the initial assignment for the observ-
ables Qi that lead to the single photon LGI violation, despite being a
good starting point, is problematic. The issue is twofold: the observ-
ables as defined previously are no longer well determined, and their
values can no longer be negatively measured with a state-selective
discarding. Let us explicitly make those points and present a solu-
tion.

First, keeping Q3 = +1 when photons impinge on the left detector
at the output, and none to the right, and Q3 = −1 when photons
impinge to the right and none to the left, would result in an observ-
able that does not have distinct states. Since there is not just a single
photon, both modes could carry photons at the same time, in which
case Q3 would have two simultaneous values.
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The second point is more troublesome. While with a single pho-
ton, trials that are discarded are picked up in the statistics using the
symmetric setup, this no longer holds with multiple photons. Indeed,
when a flux is detected at t2 then two cases arise: either there are no
photons in the other mode, or there are.

In the first case, the discarded trial is accounted for in the symmet-
ric setup. In the second case, however, the trials in which there were
photons in both output modes of the first beam splitter are simply
lost. This poses an issue with noninvasiveness as artificially selecting
only cases where all the flux is in one mode would completely alter
the C23 correlator.

We propose a way to solve this issue by choosing the set of val-
ues for Q2 to be {0,+1}. In particular, we include 0 specifically as a
possible value and will make use of its annihilating property. The as-
signments are summed up in Tab. 3 and the corresponding quantum
operators for observables Q2 and Q3 are shown in Eqs. (41) and (42).
Such an assignment was obtained as follows.

L R Q1 Q2 Q3

Vacuum Vacuum +1 0 −1

Vacuum Photons N.A. +1 −1

Photons Vacuum +1 +1 +1

Photons Photons N.A. 0 0

Table 3: Assignment of values for the observables, with respect to mode
states. L and R indicate modes that are respectively on the left hand
side and on the right hand side. For Q1 those are the input modes,
for Q2 those are the intermediate modes and for Q3, the output
modes. As the preparation of the experiment sets the right input
mode in the vacuum state, no values need to be assigned in other
cases for Q1, though any arbitrary value would be valid.

We setQ1 = +1when there are no photons in the right input mode.
Other cases concerning the first beam splitter’s input states never
occur as this is the way the experiment is prepared. The preparation
process results in Q1 = +1 constantly.

We furthermore set Q3 = −1 when the left detector does not click,
Q3 = +1 when the right detector does not click and the left detector
clicks, and Q3 = 0 when both detectors click. Note that when no
detectors click at all, Q3 = −1.

Finally we must be careful with the assignment ofQ2. In an attempt
to salvage noninvasive measurability, we will define Q2 = +1 when
all photons are in the same intermediate mode. Perhaps the most
important choice, and what saves the negative measurement method,
is the assignment Q2 = 0 if there are photons in both intermediate
modes or if there are no photons at all. This way, Q2 = +1 will be
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realized as long as exactly one of the two intermediate modes is in
the vacuum state, and Q2 = 0 otherwise.

Setting Q2 = 0 in the case where there are photons in both modes
may seem to make it so that the discarded trials, which are perma-
nently lost, in fact would not have had any impact on the C23 correla-
tion coefficient as C23 = ⟨Q2Q3⟩ =

∑
Q2Q3P23(Q2,Q3). So, be they

discarded or not, instances in which photons are in both intermediate
modes would not contribute to C23.

However, this reasoning is too hasty, as discarding cases when
Q2 = 0, while having no effect on the number of nonzero terms in
the sum defining C23, does nonetheless change the joint probability
distribution P(Q2,Q3).

Nevertheless, setting Q2 = 0 when both intermediate modes con-
tain photons does make it possible to save noninvasive measurability,
but in fact without discarding any trials that cannot be negatively dis-
tinguished. To show this, let us observe the four following cases that
make up all possible situations :

1. If the detector at t2 does not click, then

a) Either no photons are detected at t3 which means there
were no photons at all, so Q2 = 0.

b) Or photons are detected at t3, so Q2 = +1 because all
photons are in the other mode, then Q2 = +1 is known via
a negative measurement.

2. If the detector at t2 does click then

a) Either no detectors click at t3 in which case Q2 = +1 but
we can discard the trial, and this situation is taken into
account in the other setup where the intermediate detector
is positioned on the other mode.

b) Or detectors do click at t3 in which case Q2 = 0 because
there were photons in both modes. Then by having chosen
Q2 = 0 we do not need to actually take into account the
measurement at time t3 because Q2Q3 = 0 in any case.
This means that whether the t2 measurement was invasive
or not does not matter at all. Whether the Q3 value that is
obtained was a possessed value or a measured value plays
no role either. What matters is that at least one detector
clicks at t3, but the measurement outcome value is of no
importance.

In this manner, direct invasive measurements at t2 are either dis-
carded but not permanently lost, or a rigorously noninvasive t2 mea-
surement would contribute to C23 in the exact same way as the possi-
bly invasive real t2 measurement. Another way of phrasing what we
have done is that by settingQ2 = 0when there are photons in both in-
termediate modes, the only measurements that contribute to C23 are
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the negative measurements, which can be seen as noninvasive. All in
all, the whole argument to salvage noninvasive measurability hinges
on the use of the value 0 which is absorbing (or annihilating) for the
multiplication.

One point worth discussing is the exposure to a fair sampling loop-
hole. We have assumed here that all detectors are ideal, however
our assignment does not absolutely require unity quantum efficien-
cies and noiseless dynamics. To show that the experiment can work
in principle with imperfect detectors, consider an overall error rate
e and let us suppose all errors give the worst outcome (i.e. skews
the average K value the most towards an LGI violation) in which
Q1Q2 + Q2Q3 − Q1Q3 = 3. Then under macroscopic realism the
highest attainable value for K is (1+ 2e). If each of the three detec-
tors used to establish the Q values has a generic error rate (in telling
apart the vacuum from a non-vacuum state) ε, then the overall error
rate will be e = 1− (1− ε)3. Taking ε = 5% yields e = 0.15 so that
the K function threshold for an LGI violation may be shifted to 1.3.
As we shall see, this new threshold can be exceeded with a coherent
state input, as well as with a thermal state.

Let us now show that the violation is indeed achieved. To this end,
recall that the probability of detecting n photons in a coherent state
|α⟩ is Poissonian

pn(α) = e
−|α|2 |α|

2n

n!
. (39)

First C12 = ⟨Q2⟩ can be expressed by introducing the photon num-
bers nR and nL respectively in the right and left intermediate modes.
We may rewrite the event {Q2 = 0} explicitly from conditions on
photon numbers as

(
{nL > 0} ∧ {nR > 0}

)
∨
(
{nL = 0} ∧ {nR = 0}

)
,

and note that photon numbers in the two output modes are inde-
pendent of one another. Hence from Eq. (39) it is established that

C12 = P(Q2 = +1) = 4e−
3|α|2

4 sinh
(
|α|2/4

)
.

Next, C13 = ⟨Q3⟩ = −1 is straightforward as the output state when
there is no intermediate measurement is |0⟩ ⊗ |−α⟩, hence all the flux
arrives at the right hand output detector.

Finally C23 ∝ ⟨Q3⟩L + ⟨Q3⟩R = 0, because the beam splitters are
50:50. Since cases where possible interference may occur, and the vac-
uum, are assigned Q2 = 0, the situations that contribute to C23 are
those where photons impinge on the second beam splitter from only
one side. Then the detection probabilities are equal in both output
modes, and since Q3 takes opposite values in those cases, the aver-
age value is null. This results in the following LG correlation:

K(α) = 1+ 4e−
3|α|2

4 sinh
(
|α|2

4

)
, (40)

for which a plot is shown in Fig. 6.
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Figure 6: LG correlation function with respect to the modulus of the dis-
placement. Plot obtained for a coherent state input in the Mach-
Zehnder interferometer with appropriate observable value assign-
ment.

We observe a violation of the LGI which becomes maximal when
the average photon number |α|2 is just over 1. More precisely, the
maximum is reached at |α|2 = 2 ln(2), with a corresponding value
of K(αmax) = 1.5. Let us note that this maximum is reached when
the intermediate modes are equally balanced superpositions of the
vacuum state and all other Fock states 2−1/2(|0⟩+ |n > 0⟩).

We also note that the K function decays for high laser intensities.
This is due to our observable value assignment choice. Indeed, as the
laser field becomes more intense, trials in which all photons end up
in the same mode become less likely, so we should expect C12 to drop
to 0.

3.2.3 Violation with dephased states

Using the same setup and observable assignment, we let go of any
sort of phase reference in the input coherent state. That is to say, we
now consider the input state ρ1(α) =

∑+∞
n=0 pn(α) |n, 0⟩⟨n, 0|, where

pn(α) is given by Eq. (39). The output state is formally given by
ρ3 = BBρ1B

†B†. By linearity of all performed operations, we may
as well decompose our calculation step-by-step by considering Fock
input states ρ1(n) = |n, 0⟩⟨n, 0|. The state after the first beam splitter
reads ρ2(n) = 1

n!Ba
†n
L B† |0, 0⟩⟨0, 0|BanLB†, and beam splitter transfor-

mations (26) yield

ρ2(n) =
1

2n

n∑
k,ℓ=0

√(
n

k

)(
n

ℓ

)
(−1)k+ℓ |k,n− k⟩⟨ℓ,n− ℓ| .
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Let us begin by computing C12 = ⟨Q2⟩ where

Q2 =

+∞∑
n=1

|0,n⟩⟨0,n|+ |n, 0⟩⟨n, 0| . (41)

Since Q2 ∈ {0,+1} the expectation value is straightforwardly evalu-
ated to ⟨Q2⟩ = P(Q2 = +1). Because we assume 50:50 beam splitters,
we can write P(Q2 = +1) =

∑+∞
n=1

1
2n−1pn(α) = 2e

−|α|2
(
e|α|2/2 − 1

)
.

This result, for which we shall show a more general and direct deriva-
tion in a later section, is identical to the previously established expres-
sion for C12.

As previously argued C23 = 0, by virtue of the following inspection.
If photons are in both modes or there are no photons, then Q2 = 0, so
those cases, regardless of the obtained value of Q3, do not contribute
to C23. If photons are all in the same mode thenQ2 = +1 and because
the beam splitter is 50:50 the assignment of Q3 values results in an
overall average value of 0.

Finally, to compute C13, what we seek is ⟨Q3⟩ = Tr(ρ3Q3) where

Q3 =

(
+∞∑
n=1

|n, 0⟩⟨n, 0|− |0,n⟩⟨0,n|

)
− |0, 0⟩⟨0, 0| , (42)

so we may project out all components of the density operator for
which the product with Q3 would give an off-diagonal element. The
projected density matrices will be written with a tilde ρ̃. Applying
the beam splitter transformations (26), one finds the projected output
state ρ̃3(n) = |0,n⟩⟨0,n| (see Appendix C.1 for a detailed proof), so
that ρ̃3(α) =

∑+∞
n=0 pn(α) |0,n⟩⟨0,n|.

From this, one finds C13 = ⟨Q3⟩ = Tr(Q3ρ̃3(α)) = −1, which is
identical to the previously established C13 for a coherent input state.
Therefore the LG correlation function, which we note with a prime to
indicate dephased input, takes the same form as Eq. (40):

K ′(α) = 1+ 4e−
3|α|2

4 sinh
(
|α|2

4

)
. (43)

This shows that the LGI is violated even if the input state is com-
pletely decohered, and underlines the fact that the LGI violation with
a coherent state does not come the from quantum superposition in-
volved in |α⟩ when represented in the Fock basis.

Interestingly, similar calculations with a different photon number
probability distribution qn(λ) allow to compute K ′ for a thermal state.
Consider a thermal state at the left input mode of the first beam split-
ter ρ1(λ) =

∑+∞
n=0 qn(λ) |n, 0⟩⟨n, 0|, where qn(λ) = e−nλ(1− e−λ) and

λ =  hω/kBT ∈]0,+∞[ defines the temperature through the photon
energy  hω and the Boltzmann constant kB. As argued previously,
C13 = ⟨Q3⟩ = Tr(Q3ρ3(λ)) = −

∑+∞
n=0 qn = −1, and C23 = 0. We
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also find C12 =
∑+∞

n=1
1

2n−1qn(λ) = 2(1 − e−λ)
(

1
2eλ−1

)
through a

calculation that is similar to that previously presented. This yields

K ′(λ) = 1+ 2(1− e−λ)

(
1

2eλ − 1

)
. (44)

The LG correlation function in this case reaches its maximum value
KM = 2

(1+
√
2)2

+ 1 ≈ 1.343 at λM = ln
(
1+ 1/

√
2
)

, which shows LGI
violations to be allowed, in theory, with thermal states.

3.2.4 Violation with intermediate dephasing

Let us now examine the effect of decoherence after the first beam
splitter. To do so, we choose to write down the intermediate state
after the first beam splitter when there is no intermediate measure-
ment as ρ2(γ) = (1⊗∆γ)ρ2, where ∆γ is a dephasing channel which
simply introduces a damping factor γ ∈ [0, 1] on the off-diagonal
terms of the right intermediate mode, in the Fock basis. Formally,
∆γ is a super-operator with operator-sum (or Kraus) representation
{
√
γ1,
√
1− γ |n⟩⟨n|n∈N} where γ is the damping factor. In particu-

lar, ∆1 is the identity super-operator and ∆0 completely decoheres a
quantum state.

For an input Fock state ρ1(n) the intermediate state with decoher-
ence reads

ρ2(n,γ) =
1

2n

n∑
k,ℓ=0

√(
n

k

)(
n

ℓ

)
(−1)k+ℓ

× (γ+ (1− γ)δk,ℓ) |k,n− k⟩⟨ℓ,n− ℓ| ,

where δk,ℓ is a Kronecker symbol.
The C12 correlator is unaffected by decoherence, to show this we

note that

Tr(Q2ρ2(n,γ)) =
1

2n

n∑
k,ℓ=0

√(
n

k

)(
n

ℓ

)
(−1)k+ℓ

× (γ+ (1− γ)δk,ℓ) ⟨ℓ,n− ℓ|Q2|k,n− k⟩ .

From Eq. (41) one finds Q2 |k,n− k⟩ = (1− δn) (|0,n⟩ δk + |n, 0⟩ δk,n),
hence ⟨ℓ,n− ℓ|Q2|k,n− k⟩ = (1−δn)(δℓδk+δℓ,nδk,n). From this, one
can deduce Tr(Q2ρ2(n,γ)) = 1

2n−1 (1− δn), and the announced result
follows immediately. Note that the dephasing parameter γ does not
affect this correlator. Decoherence does not affect C23 either, as the tri-
als where Q2 = +1 is measured negatively correspond to completely
dephased states (all photons are in the same mode).
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However, the decoherence does affect C13 = ⟨Q3⟩. With calcula-
tions similar to those laid out previously, the relevant submatrix for
the trace reads

ρ̃3(n,γ) = (γ− 1)δn,0 |0, 0⟩⟨0, 0|+ γ |0,n⟩⟨0,n|

+
1

4n

(
2n

n

)
(1− γ)

(
|n, 0⟩⟨n, 0|+ |0,n⟩⟨0,n|

)
.

Thus Tr(Q3ρ̃3(n,γ)) = (1− γ)δn,0 − γ− 2δn,0
1
4n

(
2n
n

)
(1− γ), and per-

forming the weighted sum with the distribution given by Eq. (39)
gives ⟨Q3⟩ = −e−|α|2 − γ(1− e−|α|2). This results in a new LG corre-
lation function of two variables, the plot of which is shown in Fig. 7

for a few values of the damping factor γ. Its expression reads

K ′(α,γ) = 4e−
3|α|2

4 sinh
(
|α|2

4

)
+ (1− γ)e−|α|2 + γ. (45)

If the input state is a coherent state |α⟩, it turns out all the correlators
are identical. For completeness these correlators are derived explicitly
in Appendix C.2.

Figure 7: LG correlation function for coherent state or Poissonian Fock mix-
ture input, with respect to the modulus of the corresponding dis-
placement, for different values of the damping factor γ of the in-
termediate dephasing.

We observe that the LGIs are still violated even with strong deco-
herence. In fact, as long as the state after the first beam splitter is
not completely decohered (γ > 0), an LGI violation remains possible,
and the only way an LGI violation is realized for all non-zero laser
intensity is if there is strictly no loss of coherence (γ = 1).

The maximum with respect to the damping factor is achieved at
|α|2 = 2 ln(1+ γ). So we expect the maximal value to be reached at
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lower and lower laser intensities with increasing decoherence. The
corresponding maximum reads

K ′(αmax,γ) = 1+
γ

1+ γ
. (46)

This final form is consistent with previous results, yielding no LGI
violation for γ = 0 (complete decoherence) and a maximum of 1.5
when γ = 1 (no decoherence).

3.3 conclusion

In this chapter, we have reviewed some fundamental aspects of the
LGI, namely its relationship to macroscopic realism, and seen that
the significance of its violation must be treated with much more care
than in the case of Bell’s inequalities.

Despite being much more subtle to manipulate, the LGI violation
is commonly treated as a witness of non-classical behavior, almost on
the same footing as Bell’s inequalities. We have shown that by care-
fully thinking about observable assignments, it is possible to make
use of negative measurements and achieve an LGI violation with even
the most classical states of light.

In our presentation, we have progressively treated more and more
classical inputs. We have begun from the highly non-classical Fock
state, and proceeded to find a violation with the coherent state. We
have shown that our results were not affected by the loss of initial
phase reference, which allowed to contemplate, and indeed confirm
violations with thermal states. We have also considered the effect of
intermediate partial loss of phase reference, and demonstrated that
LGI violations remained possible. In the end, we have shown that
what pilots the LGI violation is the vacuum component of the state,
but it does not carry as strong a consequence as a Bell inequality
violation, which requires entanglement.

Should the proposed experiment with classical states of light be car-
ried out successfully, this would show consistency with the fact that
classical wave mechanics, being able to reproduce quantum random
walk statistics [161], may simulate an LGI violation.

All in all, we have shown that what the LGIs really tests, both from
a foundations of physics perspective, and from the operational quan-
tum information theoretic perspective, is perhaps much weaker than
one would think, from being first introduced to the LGIs as “temporal
Bell inequalities”.



4
W I T N E S S I N G N O N - S TA N D A R D Q U A N T U M
D Y N A M I C S

Il n’est pas certain que tout soit incertain.1

— Blaise Pascal [162]

Among the most remarkable features of quantum mechanics is the
Heisenberg uncertainty principle, which stems from the non-commu-
tativity of position and momentum operators. In practice, it dictates
that localizing a system more and more precisely comes with higher
uncertainty on its conjugate momentum. However the inclusion of
gravitational effects is predicted to result in the emergence of a fun-
damental limit to the localization scale, on the order of the Planck
length ℓp =

√
 hG/c3 ≈ 1.6× 10−35 m.

In this chapter, we present the so-called Generalized Uncertainty
Principle (GUP), which is a modification of Heisenberg’s uncertainty
relations that is necessary in order to maintain consistency with our
current knowledge of the gravitational interaction. We relate the GUP
to a deformation of the canonical commutation relation, and explain
the extent to which finding empirical evidence of the GUP is chal-
lenging. After introducing a novel approach, based on quantum con-
trol, we present a critical no-go theorem limiting such methods. We
demonstrate how one can circumvent this no-go theorem by taking
into account correlations in probes which are used to test the GUP.

4.1 the generalized uncertainty principle

In this section, we set the scene with a short review around the GUP.
We explain how it emerges, and mention some conceptual issues that
it entails. We also present the algebraic formulation of the GUP, on
which the experimental test of interest relies on.

4.1.1 Origins of minimum localization scales

Minimum localization scales are not predicted by quantum theory
alone. Indeed, Heisenberg’s uncertainty relations σxσp ⩾  h

2 do not
forbid arbitrarily fine squeezing of a quantum state in the position
space, at the expense of high uncertainty in momentum space. This
observation, though derived in a modern fashion from non-commut-
ativity through Robertson’s inequalities as shown in Sec. 2.2.3, can

1 Translation: It is not certain that all is uncertain.
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be established directly through a very general thought experiment,
owed to Heisenberg.

Consider the simple scenario where a quasi-monochromatic optical
wave of wavelength λ scatters from an electron, into a detector. This
process amounts to measuring the position of the electron, and the
uncertainty is naturally expected to be proportional to the wavelength
σx ∼ λ. The scattering event has a lower bound momentum exchange,
corresponding to the momentum of a single photon p = h

λ which
has been imparted to the electron. This yields the order of magnitude
σx ∼

 h
σp

.
Although this thought experiment may seem perfectly valid at first

sight, it shrouds an important assumption, according to which grav-
itational effects negligibly contribute to the dynamics which is es-
sentially governed by quantum electrodynamics. In many different
approaches, the inclusion of gravitational effects in the quantum dy-
namical description, assuming that the employed gravitational model
holds at the given length or energy scale, results in a modification of
Heisenberg’s uncertainty relations. Before exploring some of those ap-
proaches, the very first hints of a fundamental minimum localization
scales may already be found through rough estimates, using Newto-
nian gravity and by treating light as massive particle with an effective
mass m = E

c2 .
Suppose that the characteristic distance over which the electron

interacts gravitationally with the photon is ℓ, the characteristic grav-
itational acceleration of the electron is GE

c2ℓ2
which takes places over

a characteristic duration ℓ
c , leading to a characteristic gravitational

delocalization scale σG
x ∼ GE

c2ℓ2
( ℓc)

2 ∼ GE
c4 . Since the photon momen-

tum p = E
c is roughly the momentum uncertainty of the electron σp,

one arrives at σG
x ∼

Gσp

c3 ∼ G h
c3

σp
 h = ℓ2p

σp
 h . Roughly adding the uncer-

tainties, one arrives at σx ∼
 h
σp

+ ℓ2p
σp
 h , which constitutes the GUP. It

turns out that the full general relativistic treatment agrees with this
back-of-the-envelope estimation, as shown in Ref. [163].

A somewhat more formal approach to arrive at the minimum lo-
calization scale, is the argument of light ranging. Recall that in flat
Minkowski spacetime, assuming a (+,−,−,−) metric signature, the
line elements are given by ds2 = (cdt)2 − dx2. In the Newtonian
limit and denoting ϕ = Gm

r the Newtonian gravitational potential
sourced by an effective mass m, the Schwarzschild metric takes the
form ds2 = (1+ 2ϕ

c2 )(cdt)
2 − (1− 2ϕ

c2 )dx
2. For weak fields2 one sees

that for two events separated by a coordinate space interval dx, the
corresponding proper space interval with the gravitational field is
dxG = dx(1 − 2ϕ

c2 )
1/2 ≈ dx(1 − ϕ

c2 ), to first order. This means that
any given length ℓ in flat spacetime undergoes a gravitational distor-
tion σG

ℓ = ℓ ϕ
c2 . Let us now suppose that we would like to measure

2 Note that at the surface of the Sun where the acceleration of gravity is 28g, one has
ϕ/c2 ≈ 10−6. This illustrates why the weak field limit is valid in many cases.
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the space interval between two points separated by ℓ in flat space-
time, using light ranging. The lowest mass-energy introduced in the
interval by injecting an optical signal with associated wavelength λ
is the energy content of a single photon E = h

λc . The effective gravi-
tational field sourced by the weakest possible signal is then ϕ ∼ Gh

ℓλc

inducing a gravitational distortion σG
ℓ ∼ Gh

λc3 = ℓ2p/λ. The total length
uncertainty is then σℓ = λ+ ℓ2p/λ, and as we see, extremely long wave-
lengths may not resolve the distance properly, while extremely short
wavelength come with strong gravitational distortions. Somewhere in
the middle, for λ = ℓp one reaches the minimum uncertainty, which
is manifestly nonzero.

In addition to the simple light ranging thought experiment, there
are many other elementary arguments leading to this minimal length
scale as shown in Ref. [164]. One can establish the Planck limit from
the equalization of the Compton wavelength and the Schwarzschild
radius, by the analysis of the energy density of the gravitational field,
by investigating the minimal energy required to probe a small vol-
ume, to name a few. While these are many instructive heuristic ar-
guments for the existence of a minimum length scale, the earliest
formal indications of such a phenomenon originated from gravita-
tional instabilities arising in ultra-high-energy scattering in string the-
ory [165–167]. Interestingly, minimum spacetime intervals can also
be arrived at in loop quantum gravity, even though contrary to string
theory which relies on a fixed background metric, loop quantum grav-
ity identifies metric perturbations and gravitational field as the same
entity. More precisely, loop quantum gravity features discrete space-
time [168] in the sense of Wheeler’s quantum foam [169].

This preamble on minimum length scales and the GUP cannot be
closed without the mention of an important issue arising in light of
those observations, first considered in Ref. [170], pertaining to the
non-compactness of the Lorentz transformation group. On the one
hand, it seems that most approaches to quantum gravity, formal or
heuristic, agree on the existence of a fundamental minimum length.
On the other hand, special relativity dictates that all spacetime inter-
vals are reference frame dependent. How can one then make the claim
that physics does not change under passive transformations, if there
is to exist a fundamental length? To put it bluntly, how can there be
length-scale (or momentum scale) dependent effects and events if any
length interval (or system momentum) can be increased or decreased
when viewed from a Lorentz-boosted frame?

Understanding how loop quantum gravity and string theory avoid
this violation of Lorentz invariance is well beyond the scope of this
thesis. However, it is possible to explore the consequences of such a
violation in a formalism that was in fact established to address this
very issue, called Doubly Special Relativity (DSR). At its core, DSR
introduces a new invariant κ ∝ ℓ−1

p in addition to c, ensuring invari-
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ance of the Planck length [171], the Planck mass [172] or the Planck
energy [173]. Assuming this extra invariant comes with some interest-
ing consequences. For instance, under a boost in the z direction with
reduced velocity β, the usual Lorentz transformations for momentum
p ′
0 = γ(p0 −βpz);pz = γ(pz −βp0) take the modified form

p ′
0 =

γ(p0−βpz)
f(p0,pz)

p ′
x = px

f(p0,pz)

p ′
y =

py

f(p0,pz)

p ′
z =

γ(pz−βp0)
f(p0,pz)

,

where f(p0,pz) = 1+ ℓp((γ− 1)p0 − γβpz) gives a non-linear correc-
tion which vanishes as ℓp → 0. We note that intervals orthogonal to
the boost direction are modified. Algebraically, DSR changes the ac-
tion of the Lorentz group on the momentum space. Depending on
which version of DSR one is dealing with, other effects may include
a modification of the dispersion relation E2 = p2c2 +m2c4, implying
an energy dependent speed of light. In turn, this raises the issue of
large scale locality violation [174].

Another issue that is worth mentioning with DSR, is that for the
sake of preserving observer-independence (of length or energy scale
effects), non-linear modifications to the Lorentz action on momentum
space are introduced. However, these non-linear modifications spoil
the compatibility of reference frame change with the additivity of
momenta in composite systems. Under a modified Lorentz transfor-
mation Λ̃, the relationship between the total momentum of a bipartite
system and the momenta of its composites becomes frame-dependent
Λ̃(p1 + p2) ̸= Λ̃(p1) + Λ̃(p2). This paradox is termed soccer ball prob-
lem [175], and remains an open problem. Among proposed solutions,
one ad-hoc approach is to consider a rescaling of Planckian non-linear
effects so that f(p0,pz) = 1+

ℓp
N ((γ− 1)p0 − γβpz), where N is the

number of composites [173]. Such modifications of Planck scale cor-
rections, namely its implications for GUP phenomenology, will be the
central object of this chapter, as we shall see in Sec. 4.3.

To close this short overview of minimum length scales and discrete
spacetime, it is worth mentioning the possibility to preserve Lorentz
invariance while having a discrete spacetime in the framework of
causal sets [176]. In this theory, the causal structure of spacetime sub-
sumes the background manifold given by special relativity, and in-
stead simply consists of a partially ordered set of points. The main
assumption of causal set theory is that a causal set unequivocally
determines the macroscopic (coarse-grained) spacetime manifold. A
proof of such assumption has yet to be established, however some
edge cases have been addressed [177]. It was shown that despite hav-
ing a discrete spacetime, forming causal sets with randomized sets of
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spacetime points may preserve Lorentz invariance. It was shown in
Ref. [178], that a Poisson process fulfills the desired property.

4.1.2 Algebraic formulation

As we have seen, heuristic arguments as well as formal candidate the-
ories of quantum gravity predict a fundamental lower bound for the
localization scale of physical systems. One way to bridge this obser-
vation with the Heisenberg uncertainty relations consists in viewing
Planck scale corrections as arising from a modification of the canoni-
cal commutation relations.

The algebraic structure underlying the GUP stems from the as-
sumptions that the momenta in different directions commute, so as
to leave the translation group invariant, that the 3 dimensional rota-
tion group is not deformed, and that [x, x], [x,p] commutators are de-
formed. Under those assumptions, the required forms of the commu-
tators read [xi, xj] = (

 h
κc)

2a(p)iεijkJk and [xi,pj] = i hδijf(p), where
Jk is a rotation generator, ε is the Levi-Civita symbol, a(p) and f(p)
are arbitrary functions which depend only on the norm of the momen-
tum, and κ is a deformation parameter (κ → +∞ restores standard
physics). Further imposing compatibility with the Jacobi identities,
one arrives at the conditions da(p)

dp p.J = 0 and p−1f(p)
df(p)
dp = −

a(p)
κ2c2 .

Identifying J with the orbital angular momentum, the first condition
is always satisfied, so that one may freely choose f(p), which is cho-
sen to read f(p) = 1 + βp2 in Ref. [179]. Thus one can capture the
GUP through the modified commutation relation [x,p] = i h(1+βp2).
This quadratic dependence on the momentum is in accordance with
predictions from string theory [166, 167], and black hole physics [180,
181].

With this modified commutation relation at hand, the Heisenberg
uncertainty relation Eq. (14) then yields

σxσp ⩾
 h

2
(1+βσ2p +β ⟨p2⟩) ⩾

 h

2
(1+βσ2p). (47)

As a result an absolute lower bound for σx as a function of σp be-
comes apparent, and reads σmin

x =  h
√
β, as shown in Fig. 8. If one in-

troduces the dimensionless scalar β0 = βmpc
2 where mp =

√
 hc
G is

the Planck mass, then minimum localization scales on the order of ℓp
amounts to having β0 ∼ 1. It is worth mentioning that although this
deformation is the most widely studied, another form which reads
[x,p] = i h(1+ p2

κ2c2 )
1/2 was posited by having imposed da/dp = 0

when the angular momentum is not identified with the orbital an-
gular momentum [182, 183]. The inclusion of a linear term was also
considered in Ref. [184] in accordance with DSR. Finally, it should be
noted that the GUP can be arrived at by maintaining the standard
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Figure 8: Minimum localization scale with respect to the momentum uncer-
tainty for the standard uncertainty principle (shown in red) and
the GUP (shown in blue). The hatched area corresponds to regimes
that would be ruled out by empirical manifestations of GUP.

commutation relations, and instead defining a modified momentum
with high energy corrections, as shown in Ref. [184].

4.2 testing the generalized uncertainty principle

In this section, we touch upon the difficulty in observing evidence
supporting the GUP. We present a quantum optomechanical protocol
to test the GUP and we derive an observable non-standard signature
from first principles. We close this section with the presentation a
critical no-go theorem, which may put into question the relevance of
all tests of GUP relying on macroscopic probes.

4.2.1 Experimental approaches

The physics community has yet to establish a consistent framework
unifying gravitational and quantum effects. Despite the theoretical
hints towards Planck scale effects such as the GUP, for lack of em-
pirical evidence, the Planckian landscape has remained essentially
opaque and the different paths to quantum gravity difficult ones to
tread on. In hopes to gather some experimental data, in recent years
more and more investigations around the GUP have turned to phe-
nomenological aspects. Let us briefly review some notable attempts
in this direction, involving either microscopic experimental probes,
cosmic events or macroscopic experimental probes. On the grounds
that all quantum mechanical Hamiltonians are affected by the modi-
fications of the commutation relations (or equivalently by the defor-
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mation of the momentum operator), those proposals aim to test GUP
deviations to standard predictions.

In Ref. [185], the authors suggest to investigate deviations to well
known quantum effects such as the Lamb shift and the tunneling
current of a scanning tunneling microscope. If we consider the non
standard commutator [x,p] = i h(1+βp2), where β = β0

mpc2 , then the
Lamb shift for the ground state is shown to be perturbed from its stan-

dard form by ∆EGUP
0

∆E0
= 10β0

m
mp

E0

mpc2 ≈ 4.7× 10−49β0. With current
data indicating an agreement in the Lamb shift with standard predic-
tions up to 12 decimal places, this implies β0 ≲ 1036. The tunneling
current for realistic microscope parameters would deviate from stan-
dard predictions by the relative amount δI

I0
≈ 10−48β0, meaning that

for the excess non-standard current to induce an excess charge of one
electron, the wait time is τ = 1029β−1

0 s. With a readout time of 1 year,
the lack of deviations to standard theory would yield the constraint
β0 ≲ 1021.

On the other end of the macroscopicity spectrum, in Ref. [186],
the authors instead investigate non-standard deviations to the mass-
temperature relation for a Schwarzschild black hole of mass M. Con-
sidering the GUP form Eq.(47) σxσp ⩾  h

2 (1+ βσ
2
p), the relative devi-

ation to the Hawking temperature is found to be ∆T
TH
≈ β0m

2
p

4π2M
, to first

order in β0. For a Solar mass black hole, agreement with the Hawking
temperature would suggest β0 ≲ 1078. This temperature correction in
turn induces an additional perturbation in the Schwarzschild metric.
By characterizing the non-standard corrections to the Schwarzschild
metric of the form F(r) = 1 − 2GM

r + εG
2M2

r2
, with the relationship

β0 = −π2M2

4m2
p
ε2, the authors derive GUP effects on Mercury’s per-

ihelion precession, which after one revolution is found to take the
form ∆ϕ ≈ 6πGM

(1−e2)a
(1− ε

6), where e is the orbit eccentricity, a is the
semi-major axis, and the general relativistic prediction is recovered
when ε → 0. Comparing with current observational data, one has
the constraint ε ≲ 10−4 yielding β0 ≲ 1069. Measurements of peri-
astron shifts were also considered for quasars, but do not yield tighter
bounds for β0.

Let us finally turn to some experiments of particular interest for
the present thesis, which find themselves to be somewhere between
the cosmological scale and the atomic scale. In Ref. [187], an ultracold
ton-scale gravitational wave detector’s is analysed. Assuming again
the GUP form Eq.(47), the effect on the ground energy of the large
metallic bars reads E0 =

 hω0

2 ((1+ β
4 )

1/2 + β
2 ), where ω0 is the me-

chanical mode frequency. A bound on β0 can then be related to the

experimentally measured energy, this reads β0 < 2Emeasured
 hω0

mp

m
mpc

2

 hω0
.

The reported measurements yield β0 ≲ 1033. It was proposed in
Ref. [188], to test the non-standard deformations to commutation rela-
tions through their predicted effect on the motion of macroscopic har-
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monic oscillators, namely an anharmonic contribution. By inspecting
the amplitude dependent frequency shift ω̃ = (1+ β

2a
2
0)ω0 of a range

of mechanical oscillators, a relatively tight upper bound β0 ≲ 107

is established. Using bulk acoustic wave quartz oscillators, an even
tighter bound of β0 ≲ 104 was more recently established in Ref. [189].
Another proposal relying on a mesoscopic optomechanical setup to
probe deformations of the commutation relations was also put for-
ward, and will be the object of the next section.

4.2.2 The generalized optomechanical protocol

In this section, we revisit a toy model inspired from a proposal that
we term “optomechanical protocol” [190]. The optomechanical proto-
col suggests that one can gain information on the type of evolution
undergone by a mechanical oscillator by inspecting the non-linear
phase that the light picks up after having interacted with the oscilla-
tor.

A sequence of light pulses drives a mechanical oscillator around
a closed phase space trajectory, returning the oscillator to its initial
state (in the absence of commutator deformations), while imparting a
(mechanical state-independent) non-linear optical phase. This phase
is of interest as it may carry non-standard signatures and, as we shall
show from first principles, is quartic in the photon number if GUP
corrections exist, and is quadratic otherwise. In the remainder of this
section, we re-derive results of the optomechanical protocol in a more
general fashion, in the sense that we defer specifying a given form of
optomechanical coupling to the final steps of our derivation.

Let us consider a single particle of mass m that is harmonically
trapped with angular frequencyΩ, interacting with a single mode op-
tical field with annihilation operator a and angular frequency ΩF. In
standard quantum mechanics, the optomechanical Hamiltonian reads

Hs =
p2

2m
+
1

2
mΩ2x2 +  hΩF

(
a†a+

1

2

)
+ g(t)a†ax,

where x is the position of the particle with respect to its rest position,
p is its conjugate momentum, the s superscript stands for “standard”,
and where g(t) is the coupling function. Note that in our approach
we keep g(t) general. By rescaling the variables as q =

√
mΩx and

p→ 1√
mΩ

p we rewrite the previous equation as

Hs =
Ω

2

(
p2 + q2

)
+  hΩF

(
a†a+

1

2

)
+

1√
mΩ

g(t)a†aq.

We shall define Hs
1(t) = 1√

mΩ
g(t)a†aq as the interaction part, and

the free part as H0 = Ω
2

(
p2 + q2

)
+  hΩF

(
a†a+ 1

2

)
.

We seek to express the resulting oscillator-state-independent phase
accumulated by the light field at the end of the interaction. The fact
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that this phase term does not depend on the oscillator state is im-
portant as we seek to test modifications to the commutation rela-
tions. With no knowledge of the true commutation relations, the ini-
tial (ground) state of the mechanical oscillator is ill-defined. We will
work in the interaction picture, where operators A are transformed
as Ã(t) = eiH0t/ hAe−iH0t/ h. The unitary evolution of the system can
be written as ρ̃(t) = Ũ(t)ρ̃(0)Ũ†(t), and since its time derivative must
be consistent with the Liouville equation d

dt ρ̃(t) = − i
 h [H̃1(t), ρ̃(t)],

this requires the unitary propagator to satisfy d
dtŨ(t) =

−i
 h H̃1(t)Ũ(t).

Since the interaction Hamiltonians do not necessarily commute at
different times, the propagator solving the equation takes the form
Ũ(t) = exp(Θ(t)) where Θ(t) =

∑+∞
k=1Θk(t) is given by a Magnus

series (see Sec. 2.1.3 for details).
Because the first order unequal time commutators are scalars, only

the two first terms in the Magnus expansion are non-vanishing. Ex-
plicitly these terms are

Θ1(t) = −
i
 h

∫t
0

dt1H̃1(t1)

Θ2(t) =
1

2

(
−i
 h

)2 ∫t
0

dt1

∫t1
0

dt2[H̃1(t1), H̃1(t2)].

With those two terms we have exactly solved the dynamics, as the
interaction Hamiltonian at any time commutes with the commutator,
all following terms of the Magnus expansion are zero. To lighten the
notations, let us define g ′(t) = g(t) cos(Ωt) and g ′′(t) = g(t) sin(Ωt),
(note that the primes do not represent derivatives) so that one may
rewrite the interaction term as H̃s

1(t) = a†a(g ′(t)q+ g ′′(t)p)/
√
mΩ.

The first term in the Magnus expansion then reads

Θ1(t) = −
i
 h

1√
mΩ

a†a(G ′(t)q+G ′′(t)p),

where G ′ =
∫t
0 g

′(t1)dt1, G ′′ =
∫t
0 g

′′(t1)dt1, and the second term
reads

Θ2(t) = −
i(a†a)2

2 hmΩ

∫t
0

dt1(g
′(t1)G

′′(t1) − g
′′(t1)G

′(t1)),

where we have applied the standard commutation relation [q,p] = i h.
Hence we find that the propagator takes the form

Ũ(t) = exp
(
−
i
 h

(a†a)2

mΩ
F(t)

)
exp

(
−
i
 h

a†a√
mΩ

(G ′(t)q+G ′′(t)p)
)

,

(48)

where F(t) = 1
2

∫t
0

dt1(g
′(t1)G

′′(t1) − g
′′(t1)G

′(t1)) gives a phase

term which is independent of the mechanical oscillator’s state and
is quadratic in the photon number.
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We now introduce the GUP modification to the commutation re-
lations. While it is possible3 to analytically work out the dynamics
of the system by imposing [x,p] = i h(1 + βp2), we instead work
with the usual commutation relations but redefine the momentum
as p → p(1 + β

3 p
2), as in Refs. [185, 191], which yields the modi-

fied commutation relations. The Hamiltonian, with reduced variables,
now takes the form

H =
Ω

2

(
p2 + q2

)
+  hΩF

(
a†a+

1

2

)
+

1√
mΩ

g(t)a†aq+
1

3
mΩ2βp4 +O(β2).

We will not carry out any perturbative treatment of the coupling term
g(t), we simply expand the Hamiltonian in orders of β and keep the
order 1 correction, assuming that higher order terms are negligible4.
We furthermore neglect possible corrections to the optical Hamilto-
nian. Let us also note that the extra interaction term due to the GUP
correction changes the ground state, which is why we will focus on a
state-independent non-standard signature.

We shall now define

H1(t) =
1√
mΩ

g(t)a†aq+
1

3
mΩ2βp4,

as the interaction term. In the same manner as the standard phase
was found, we work in the interaction picture where the propagator
satisfies the differential equation d

dtŨ(t) = − i
 hH̃1(t)Ũ(t). In order

to compute the Magnus terms, one needs to express the different
commutators between H̃1 at different times, and while the p4 term
does give rise to many non-vanishing higher-order commutators, to
first order in the GUP correction β, the Magnus expansion only has 5
non-vanishing terms. We have explicitly:

H̃1(t) =
1√
mΩ

g(t)a†aq̃(t) +
1

3
mΩ2βp̃4(t), (49)

where q̃(t) = cos(Ωt)q+ sin(Ωt)p and p̃(t) = cos(Ωt)p− sin(Ωt)q
is given by well-known commutator dynamics. Using standard com-
mutation relations, one establishes the following commutator expres-
sions:

[q̃(t1), q̃(t2)] = i h sin(Ω(t2 − t1)),

∀n ∈N∗, [q̃(t1), p̃n(t2)] = ni hp̃n−1(t2) cos(Ω(t2 − t1)).
(50)

To order 1 in β, it is clear that the first commutator [H̃1(t1), H̃1(t2)]

will take the form C + βp̃3 + O(β2), where C commutes with the

3 But prohibitively complicated.
4 Higher order terms in β come with higher powers of the operators. The assumption

that higher order corrections are negligible assume some reasonably localized state
in the (q,p) phase space, which is the case for low energy states.
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interaction Hamiltonian. So the next order nested commutators are
all at least of order 1 in β. After some calculations (see Appendix D.1
for details) the fifth order commutator is found to be:

[H̃1(t1), [H̃1(t2), [H̃1(t3), [H̃1(t4), H̃1(t5)]]]] =

4!
3
(a†a)4(i h)4β

1

m

4∏
j=1

g(tj) cos
(
Ω(t5 − tj)

)
− (t4 ↔ t5), (51)

where (t4 ↔ t5) signifies that there is an extra term that is identical
up to a swap between two time arguments.

The fifth order Magnus term, which is an integral of such fifth order
nested commutators (up to some permutations of time indices), is par-
ticularly interesting as it is independent of the mechanical-oscillator
operators q̃(t) and p̃(t). In order to further work out its form, we note
that it is a quintuple nested integral of 22 nested commutators [192].
Using the shorthand H̃i := H̃1(ti) and defining the nested integral
operator ∫

(5,t)
dt5 :=

∫t
0

dt1

∫t1
0

dt2

∫t2
0

dt3

∫t3
0

dt4

∫t4
0

dt5,

this term takes the explicit form given in Eq. (52).

Θ5(t) =

(
−i
 h

)5 ∫
(5,t)

dt5
(

−
1

30
[H̃5, [H̃4, [H̃3, [H̃2, H̃1]]]] +

2

15
[H̃1, [H̃5, [H̃4, [H̃2, H̃3]]]]

−
1

30
[H̃1, [H̃4, [H̃3, [H̃2, H̃5]]]] −

1

30
[H̃1, [H̃5, [H̃3, [H̃2, H̃4]]]]

+
1

15
[[H̃5, H̃1], [H̃4, [H̃2, H̃3]]] +

1

15
[[H̃4, H̃1], [H̃5, [H̃2, H̃3]]]

−
1

60
[[H̃2, H̃3], [H̃5, [H̃4, H̃1]]] +

1

15
[[H̃3, H̃1], [H̃5, [H̃2, H̃4]]]

−
1

60
[[H̃2, H̃4], [H̃5, [H̃3, H̃1]]] −

1

60
[[H̃2, H̃5], [H̃4, [H̃3, H̃1]]]

−
1

60
[[H̃3, H̃4], [H̃5, [H̃2, H̃1]]] −

1

60
[[H̃3, H̃4], [H̃1, [H̃2, H̃5]]]

−
1

60
[[H̃5, H̃1], [H̃3, [H̃2, H̃4]]] −

1

60
[[H̃4, H̃1], [H̃3, [H̃2, H̃5]]]

−
1

60
[[H̃3, H̃5], [H̃4, [H̃2, H̃1]]] −

1

60
[[H̃3, H̃5], [H̃1, [H̃2, H̃4]]]

−
1

60
[[H̃4, H̃5], [H̃1, [H̃2, H̃3]]] −

1

60
[[H̃2, H̃3], [H̃1, [H̃4, H̃5]]]

−
1

60
[[H̃2, H̃4], [H̃1, [H̃3, H̃5]]] −

1

60
[[H̃2, H̃1], [H̃4, [H̃3, H̃5]]]

−
1

60
[[H̃4, H̃5], [H̃3, [H̃2, H̃1]]] −

1

60
[[H̃3, H̃1], [H̃4, [H̃2, H̃5]]]

)
.

(52)



4.2 testing the generalized uncertainty principle 128

Fortunately, simplifications are possible, as 18 of those nested com-
mutators are of the form [[H̃1(ti), H̃1(tj)], [H̃1(tk), [H̃1(tl), H̃1(tm)]]].
Looking at Eqs. (74) and (75), we see that they are at least quadratic
in β. To first order in β we are thus left with the four terms

Θ5(t) =

(
−i
 h

)5 ∑
σ∈S

∫
(5,t)

dt5λσ

× [H̃1(tσ(1)), [H̃1(tσ(2)), [H̃1(tσ(3)), [H̃1(tσ(4)), H̃1(tσ(5))]]]], (53)

where we have defined the set S the elements of which are the permu-
tations (σ1,σ2,σ3,σ4) = ((54321), (15423), (14325), (15324)) and their
associated coefficients λσ1

= λσ3
= λσ4

= − 1
30 and λσ2

= 2
15 . Combin-

ing the previous equation with Eq. (51) one arrives at the following
expression which holds for arbitrary coupling functions g(t), to first
order in β:

Θ5(t) = −
i
 h

4!
3
(a†a)4

β

m

∑
σ∈S

∫
(5,t)

dt5λσ 4∏
j=1

g(tσ(j)) cos
(
Ω(tσ(5) − tσ(j))

)
− (tσ(4) ↔ tσ(5))

 . (54)

Similar to the pulsed regime considered in Ref. [190], this fifth Mag-
nus term, which is proportional to the GUP correction β, contributes
to the propagator as a highly non-linear phase factor depending on
the fourth power of the photon number.

This is to compare with the standard case of unmodified com-
mutation relations, where the analogous oscillator-state-independent
phase factor exp

(
− i

 hm(a†a)2F(t)
)

in Eq. (48), is quadratic in the pho-
ton number. Our formula is valid for any optomechanical coupling
function g(t). In the next section we shall analytically apply it to the
case where the coupling function consists of four pulses, as was con-
sidered in Ref. [190].

4.2.3 The four pulse case

We now make use of our general formula for a single particle, with a
specific and relatively simple coupling function. To do so, it is useful
to first define f(t1, ..., t5) =

∏4
j=1 cos

(
Ω(t5 − tj)

)
. In the context of

pulsed interaction, the coupling term is well approximated by a sum
of Dirac distributions g(t) = λ

∑3
i=0 δ(t− τi). The Dirac delta inter-

action leaves the mechanical oscillator’s state fixed over the duration
of the pulse which is identical to the approximation used for pulsed
optomechanics (up to a global phase on the light). Here a succession
of four Dirac pulses at instants (τi)0⩽i⩽3 is considered, where λ ⩾ 0

is a coupling strength.
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After some calculations shown in Appendix D.2, the fifth order
Magnus term can be found to read

Θ5(t) = −
i
 h

4!
3
(a†a)4

β

m

λ4

30

3∑
i1i2i3i4=0

{

H(t, τi4 , τi3 , τi2 , τi1)

(∫τi4

τi3

ds−

∫t
τi4

ds

)

+H(t, τi1 , τi4 , τi3 , τi2)

(
4

∫τi4

τi3

ds− 4

∫τi1

τi4

ds−

∫τi3

0

ds

)

+H(t, τi1 , τi3 , τi2 , τi4)

(∫τi1

τi3

ds

)

+H(t, τi1 , τi3 , τi4 , τi2)

(∫τi1

τi3

ds

)}
f(τi1 , τi2 , τi3 , τi4 , s).

(55)

In the particular case where the interaction instants are τk = t0 +

kθ = t0 + k
π
2Ω , where θ is a quarter of the oscillator period, and for

times t > t0 + 3θ after which all four matter-field interactions have
taken place, one finds a closed form result

Θ5(t) =

(
−i
 h

)
4!
3
(a†a)4

β

m

λ4

30Ω

5(9π− 16)

32
.

All higher order Magnus terms vanish, hence the solution obtained
from the Θi, 1 ⩽ i ⩽ 5 is exact, to order 1 in β. We observe that this
fifth-Magnus term is a constant of time for t > t0 + 3θ, which is ex-
pected as the full system undergoes free evolution. Similar to what
was found in Ref. [190], this mechanical-state-independent phase fac-
tor increases as the fourth power of the optical intensity (a†a) and
the interaction strength λ.

4.2.4 A no-go theorem for macroscopic probes

We have seen in Sec. 4.1.1 that the existence of a fundamental min-
imum length scale is at odds with Lorentz invariance, and that this
issue, should it be addressed through doubly special relativity, leads
to the soccer ball problem for composite systems. It turns out that,
beyond doubly special relativity, fundamental issues when dealing
with many-body systems are already apparent as soon as a modifi-
cation of commutation relations is assumed. Such issues are of con-
cern for quantum gravity phenomenology: the optomechanical proto-
col [190] focuses on detecting non-standard effects on the motion of
the center of mass of an optically driven mechanical oscillator, while
in Ref. [187], Planckian effects are sought in the energy of a longitu-
dinal normal mode of a 2 ton aluminum bar.

Whereas heuristic arguments presented in Sec. 4.1.1 do lead to
Planck scale effects in single high energy physical systems, one may
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object that the center of mass is merely a geometrical construct, rather
than a real physical object, and as such achieving Planck scale local-
ization of a center of mass of a macroscopic probe may be irrelevant.

Such experimental proposals to probe Planck scale effects with
macroscopic systems have led to upper-bound constraints on β0, and
it is taken for granted that Planck scale regimes should become ob-
servable when experiments unravel deviations to standard predic-
tions around β0 ∼ 1. However, as argued in Ref. [193], while mod-
ifications to commutation relations [x,p] = i h(1 + βp2) may have
amplitude β for the position and momentum of a fundamental par-
ticle, there is no evidence suggesting that those modifications may
be extrapolated to center of mass coordinates and total momentum
of a many-body system. This can be clarified in a straightforward
calculation. If one considers the center of mass coordinates of a com-
posite system of N equally massive subsystems X = 1

N

∑N
k=1 xk and

P =
∑N

k=1 pk with a deformed commutator [xi,pj] = i h(1+ βp2j )δij
then

[X,P] = i h

(
1+

β

N2
P2 +

β

N

N∑
k=1

(
p2k −

P2

N2

))
, (56)

where we have expanded and simplified the center of mass variables
commutator 1

N

∑
i,j[xi,pj]. In the quasi-rigid limit (∀i, pi ≈ P/N),

which justifies the center of mass variable description of a composite
system, the variance of the momentum distribution over the subsys-
tems vanishes, so that [X,P] ≈ i h

(
1+ β

N2P
2
)

, thus deformations to
the center of mass commutator are suppressed by the (potentially
macroscopic) number of constituent particles. In other words, having
experimental evidence which set the upper bound β0 < 1 does not
necessarily invalidate GUP corrections, as they may simply not be
detectable in such regimes. If experiments on electrons have GUP cor-
rection amplitudes of order β ∼ 1, Eq. (56) suggests that the relevant
Planckian regime may have much lower corrections. For the coherent
control of a picogram mass [194], assuming GUP corrections β0 ∼ 1

for a nucleon, Planck scale corrections may range anywhere within
the interval 10−32 ≲ β0 ≲ 10−16. This leads to an important ques-
tion: are many-body macroscopic systems relevant probes for Planck
scale behaviour?

To phrase the problem in other words, while microscopic systems
require energy levels far out of reach to test β0 ∼ 1 GUP corrections,
macroscopic systems have become an interesting avenue to attempt
reaching the β0 ∼ 1 regime, however the expected non-standard cor-
rections may become attenuated by the very number of constituents
of the probe thus displacing the relevant regime to probe consider-
ably below β0 ∼ 1.

Another fundamental question, that we shall not attempt to tackle
in this thesis but worth mention, arises at the sight of Eq.(56): which
physical systems are “fundamental enough” to be affected by the full
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magnitude of the GUP correction β0 ∼ 1? In the next section, we will
discuss at length how to circumvent the no-go theorem by relinquish-
ing the quasi-rigid limit, and attempt to answer the first question
positively. Specifically, we will show how macroscopic probes may
still very well be relevant probes for Planckian effects.

4.3 going beyond the no-go theorem

In this section, we show how an accurate description of macroscopic
probes to test the GUP may constitute a way out of the no-go theorem.

4.3.1 Underlying principle

As we have seen, the GUP correction amplitude β0 may be sup-
pressed when working with center of mass coordinates of a many-
body system. Although the scaling of the suppression is unknown
in general [195], from Eq. (56) one can expect a scaling somewhere
between 1/N (for uncorrelated systems) and 1/N2 (for rigid systems).
However, in specially correlated fine-tuned systems, it may be that
some Planck scale effects could become amplified: this would be
the case if some signature of the GUP correction is found to have
a superquadratic scaling with the number of elementary constituents,
overcoming the suppression of the GUP correction itself.

In what follows, we carry out this investigation in the context of the
optomechanical protocol, which we extend to the case of a non-rigid
many-body probe. In the optomechanical protocol, the non-standard
signature arising from the interaction between a single mode optical
field with a many-body system will be taken to be a phase termΦ that
is quartic in the photon number and is independent of the state of the
many-body mechanical system. To be clear, the goal of the presented
study is not to determine an absolute GUP correction amplitude β0.
Rather, regardless of β0, in the hypothesis where the correction scales
in βN = O( 1

N2 ), proving that the non-standard signature ΦN scales
superquadratically will result in an overall amplification ΦN(βN) of
Planckian effects.

In order to observe superquadratic scaling, one must first be able
to fully characterize the dynamics of many-body systems in a suffi-
ciently general manner to allow for a broad type of interaction pat-
terns and couplings between subsystems. This accurate description is
what has motivated the generalization of the optomechanical proto-
col. In the next sections, we derive closed form formulas for the dy-
namics of the many-body optomechanical probe, and show numerical
evidence of superquadratic scaling.
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4.3.2 General dynamics of the many-body probe

Let us extend our analysis to the case of N ∈ N∗ harmonically cou-
pled identical trapped particles. The total Hamiltonian to first order
in β can be written as H(t) = H0 +H1(t) where the free Hamiltonian
is

H0 =  hΩF

(
a†a+

1

2

)
+

N∑
i=1

(
1

2m
p2i +

1

2
mΩ2x2i

)

+
1

2
mΩ2

c

N−1∑
i=1

(xi+1 − xi)
2,

however our approach does not require a specific potential term, and
holds for general potentials of the form m

2 x
Thx where h is a sym-

metric matrix (Hessian of the potential). The interaction Hamiltonian
is

H1(t) =

N∑
i=1

gi(t)xi(a
†a) +

(
β

3m

) N∑
i=1

p4i , (57)

where Ωc is the coupling frequency between neighboring oscillators.
In the same way as before, the time propagator in the interaction pic-
ture satisfies the differential equation d

dtŨ(t) = − i
 hH̃1(t)Ũ(t). Thus

the propagator satisfies Ũ(t) = exp
(∑+∞

k=1Θk(t)
)
, as it is given by

a Magnus series. We are led to expressing nested self-commutators
of the interaction Hamiltonian. Expressing the interaction Hamilto-
nian (57) in the interaction picture, one arrives at an expression simi-
lar to Eq. (53) for the fifth order Magnus term:

Θ5(t) =

(
−i
 h

)5 ∫
(5,t)

∑
σ∈S

λσFσ,

where to first order in β one has

Fσ =
β

3m
(a†a)4

N∑
i1,i2,i3,i4,i5=1

gi1(tσ(1))gi2(tσ(2))gi3(tσ(3))gi4(tσ(4))

× [x̃i1(tσ(1)), [x̃i2(tσ(2)), [x̃i3(tσ(3)), [x̃i4(tσ(4)), p̃
4
i5
(tσ(5))]]]]

− (tσ(4) ↔ tσ(5) ∧ i4 ↔ i5).
(58)

In order to express the nested commutator in general, we claim that
[x̃i(t1), p̃j(t2)] := Cij(t1− t2) is a c-number. Indeed, one can write the
free Hamiltonian H0 as

H0 =  hΩF

(
a†a+

1

2

)
+

1

2m
pTp+

1

2
mxThx,

where h is a symmetric matrix characterising the potential term. One
can define the normal variables as (ϕ,π) = (ω

1
2PT
√
mx,ω− 1

2PT 1√
m
p),
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where ω2 = PThP = diag(ω2
i ) is the diagonal form of the h matrix,

consisting of the squares of the normal frequencies, and where P is
the orthogonal transformation matrix. Let us stress that m is a scalar
and ω is a diagonal matrix. With those normal variables, the free
Hamiltonian takes the simple form

H0 =  hΩF

(
a†a+

1

2

)
+
1

2

N∑
i=1

ωi(π
2
i +ϕ

2
i ).

We furthermore note that because PTP = IN, the transformation is
canonical [ϕi,πj] = i h

√
ωi/ωj

∑N
k,l=1 PkiPljδk,l = i hδij. For sim-

plicity we will rewrite the variable transformations as x = Oϕ and
p = O ′π where O and O ′ are orthogonal matrices. Using the short-
hand notation for the free propagator U0(t) := e

−iH0t/ h one can now
establish that

[x̃i(t1), p̃j(t2)] = [U†
0(t1)xiU0(t1),U

†
0(t2)pjU0(t2)]

= [U†
0(t1)(Oϕ)iU0(t1),U

†
0(t2)(O

′π)jU0(t2)]

=

N∑
k,ℓ=1

OikO
′
jℓ[ϕ̃k(t1), π̃ℓ(t2)].

In the rotating frame, we have ϕ̃k(t1) = cos(ωkt1)ϕk + sin(ωkt1)πk
and π̃ℓ(t2) = cos(ωℓt2)πℓ − sin(ωℓt2)ϕℓ, from which it follows that

[x̃i(t1), p̃j(t2)] = i h
N∑

k=1

OikO
′
jk cos(ωk(t2 − t1)),

which proves that Cij(t1 − t2) is a c-number. Thus the commutators
take the form Cij(t1 − t2) = i h

∑N
k=1OikO

′
jk cos(ωk(t2 − t1)) where

O and O ′ are some scaled normal mode transformation matrices de-
fined by O = 1√

m
Pω−1/2 and O ′ =

√
mPω1/2.

One can now express the nested commutators as

[x̃i1(tσ(1)), [x̃i2(tσ(2)), [x̃i3(tσ(3)), [x̃i4(tσ(4)), p̃
4
i5
(tσ(5))]]]]

= 4!
4∏

s=1

Cisi5(tσ(s) − tσ(5)),

and Eq. (58) can be cast as

Fσ =
β

m

4!
3
(a†a)4

N∑
j=1

[
4∏

s=1

(
Dj(tσ(s), tσ(5))

)
− (tσ(4) ↔ tσ(5))

]
,

where Dj(t, t ′) =
∑N

i=1 gi(t)Cij(t− t
′). Hence the fifth Magnus term

is found to read

Θ5(t) =

(
−i
 h

)5
4!
3

β

m
(a†a)4

∑
σ∈S

λσ

∫
(5,t)

dt5

N∑
j=1

[(
4∏

s=1

Dj(tσ(s), tσ(5))

)
− (tσ(4) ↔ tσ(5))

]
. (59)
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At this stage, it becomes apparent that the problem reduces to the
knowledge of the normal modes and frequencies through the explicit
formula Dj(t, t ′) = i h

∑N
i=1 gi(t)

∑N
k=1OikO

′
jk cos(ωk(t− t

′)).
We have thus found an analytical form for the mechanical-state-

independent phase factor. As in the single oscillator case, this factor
depends on the fourth power of the optical intensity, however the
expression now involves the mechanical properties of the body de-
scribed by its normal mode transformations and associated frequen-
cies. To no surprise, if the potential terms correspond to coupled
trapped particles, one recovers Eq. (54) by setting N = 1, for which
the normal mode transformations are trivial.

Finding how Θ5(t) should scale with the number of particles N
generally is not evident. In what follows, we will consider once again
a pulsed regime where four pulses of light interact with the system,
which will consist of many copies of a mechanical oscillator which
are coupled to the neighboring oscillators, and show numerically that
there can be superquadratic scaling.

4.3.3 Scaling of the non-standard signature

We seek to use our general formula given by Eq. (59) in the case
where four pulses of light are sent through a lattice of N coupled
oscillators (or sites). That is, we consider coupling functions of the
form gk(t) = λ

∑3
i=0 δ(t− (t0 + iT + (k− 1)τ)) where λ is a coupling

strength, T is the time separating two pulses for a given site, and τ
the time taken by the pulse to travel from one site to the next one. We
shall work under the assumption that T ⩾ Nτ, which means that the
pulse is re-injected only once it has finished interacting with all the
lattice sites. The setup and the interaction functions are illustrated in
Fig. 9.

After some calculations similar to those previously undertaken for
the single oscillator driven by pulsed light (see Appendix D.3 for
details), one arrives at the following expression for the fifth order
Magnus term:

Θ5(t) = −
i
 h

4!
3

β

m
(a†a)4

N∑
i1i2i3i4j=1

N∑
ν1ν2ν3ν4=1

(
4∏

s=1

Oisνs
O ′

jνs

)
λ4

30
×

3∑
α1α2α3α4=0

{
H(t, θ4, θ3, θ2, θ1)

(∫θ4

θ3

ds−

∫t
θ4

ds

)

+H(t, θ1, θ4, θ3, θ2)

(
4

∫θ4

θ3

ds− 4

∫θ1

θ4

ds−

∫θ3

0

ds

)

+H(t, θ1, θ3, θ2, θ4)

(∫θ1

θ3

ds

)
+H(t, θ1, θ3, θ4, θ2)

(∫θ1

θ3

ds

)}
φν1ν2ν3ν4

(θ1, θ2, θ3, θ4, s),
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Figure 9: Generalization of the optomechanical protocol where the single
trapped particle is replaced with a lattice of coupled oscillators.
Each lattice site is affected 4 times by a light pulse, with time sepa-
ration T . The time taken for the pulse to go from a site to the next
is noted τ. The pulse is re-injected only once it has interacted with
the whole lattice i.e. T ⩾ nτ.

where we have definedφν1ν2ν3ν4
(t1, ..., t5) =

∏4
s=1 cos(ωνs(ts − t5))

and ∀r ∈ {1, 2, 3, 4}, θr := t0 +αrT + (ir − 1)τ.
Note that if the oscillators are uncoupled, the normal mode trans-

formations are trivial and one has Oisνs
O ′

jνs
= δis,νs

δj,νs
. In this case

the fifth Magnus term reads

Θ5(t) = −
i
 h

4!
3

β

m
(a†a)4

N∑
j=1

λ4

30

3∑
α1α2α3α4=0

{
H(t, θ4, θ3, θ2, θ1)

(∫θ4

θ3

ds−

∫t
θ4

ds

)

+H(t, θ1, θ4, θ3, θ2)

(
4

∫θ4

θ3

ds− 4

∫θ1

θ4

ds−

∫θ3

0

ds

)

+H(t, θ1, θ3, θ2, θ4)

(∫θ1

θ3

ds

)
+H(t, θ1, θ3, θ4, θ2)

(∫θ1

θ3

ds

)}
φjjjj(θ1, θ2, θ3, θ4, s).

The vector of normal frequencies is simply ωT = Ω(1, 1..., 1) and we
have θk = t0+αkT +(j− 1)τ so the Heaviside functions only depend
on the α dummy variables. The functions φjjjj are thus identical and
the sum over j simply gives a multiplication by the number of lat-
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tice sites N. That is, one obtains N times the Magnus term given by
Eq. (77). The absence of coupling between the oscillators is equivalent
to repeating the single oscillator experiment a number of times, from
which one does expect a linear increase of the non-standard signa-
ture picked-up by the light. By fixing N = 1 one naturally recovers
Eq. (77).

As shown in Fig. 10a, numerics reveal the presence of superqua-
dratic scaling, at least up to N = 5, for coupling frequencies Ωc

equal to a tenth or a half of the trap frequency that we chose to be
Ω = 2π× 105Hz to facilitate comparison with Ref. [190]. The plot-
ted quantity is an absolute phase factor |Φ(N)| for N ∈ {1, 2, 3, 4, 5}
defined by Θ5(t) =

−i
 h

4!
3

β
m(a†a)4 λ4

30Φ(N). In general this is a compli-
cated factor, depending on the coupling g(t), the trapping frequencies
of each lattice sites, and the coupling frequencies between them. We
have assumed the form given by the last equation, i.e. we work in
pulsed regime, and the pulses are separated by a quarter trapping
period which is assumed to be the same for all sites, and we have
further assumed τ = T/(2N).

For coupling frequencies that are comparable or greater than the
trap frequency, we see in Fig. 10b that there remains an advantage,
however for the considered coupling frequencies, the absolute phase
factor is not an increasing function of the number of sites.

4.4 conclusion

In this chapter, we have introduced the GUP as possible gravitational
signature that should affect quantum mechanical motion, from heuris-
tic arguments, and presented its important algebraic formulation, be-
fore reviewing some traditional and modern approaches to gather
empirical evidence supporting the GUP.

In particular, we have revisited a proposal to indirectly test non-
standard deviations to quantum dynamics: an optomechanical pro-
tocol that aims to detect highly nonlinear phase terms that should
arise in the optical field driving a mechanical oscillator, as a result of
modifications of commutation relations. Although rigid macroscopic
systems are not viable probes for Planck scale effects, as the GUP cor-
rections to the commutation relations of center of mass variables of
such systems are expected to scale as the squared inverse of the num-
ber of constituents, the more general case of correlated many-body
systems was left unexplored.

In the presented work, we have considered the motion of such sys-
tems in general and, to first order in the GUP corrections, we have
derived the full dynamics for completely general light-matter cou-
pling functions. We have provided a derivation of explicit forms for
the fifth order Magnus term which consists of a phase factor that is
independent of the mechanical oscillator’s state. Many parameters
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(a) Case Ωc < Ω.

(b) Case Ωc ⩾ Ω.

Figure 10: Log-log representation of the absolute phase factor as a function
of the number of lattice sites, for different coupling frequencies
Ωc. Trap frequency Ω = 2π× 105Hz. Delay time T = π/(2Ω) and
τ = T/(2N). The uncoupled case is represented by black dots and
scales linearly with the number of lattice sites, while quadratic
scaling is represented by black crosses. The absolute phase factor
under nonzero coupling is represented with diamonds, and dom-
inates the quadratic scaling, however the scaling with N is not
always increasing.
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of correlated many-body systems could be tuned, such as the retar-
dation time taken by the optical signal between two lattice sites, or
the spatial width of the optical pulse. Limiting ourselves to a pulsed
regime, we have demonstrated that superquadratic scaling was al-
ready possible up to N = 5 subsystems by tuning only the coupling
frequency between lattice sites.

The work presented in this chapter offers new perspectives for con-
trolled many-body quantum dynamics, and may help to re-affirm
finely tuned macroscopic probes as potential amplifiers for testing
quantum gravitational effects. In addition to showing how macro-
scopic probes may be relevant to test Planck scale physics, the general
calculations laid out in this work may benefit further investigations
and tests of fundamental physics using optomechanical systems.



5
W I T N E S S I N G N O N - C L A S S I C A L G R AV I T Y

Rien n’est beau comme la pesanteur dans les plis fugitifs
des ondulations de la mer ou les plis presques éternels des montagnes.1

— Simone Weil [196]

Gravitation is quite paradoxically the earliest of physical interactions
to have been studied by mankind, through the movement of planets,
falling objects, and ballistics, yet it is to date the only known inter-
action that physicists fail to describe in a way that is consistent with
all other forces. The quest for a unified theory, loosely referred to as
quantum gravity, is still in its infancy, largely because catching sight
of empirical data either supporting or rejecting hypotheses about the
quantum nature of gravity is extremely demanding.

In this chapter, we recapitulate the quantum gravity problem, and
present some of the challenges in finding evidence for quantum grav-
ity. Having set the context, we introduce some modern and game-
changing strategies for quantum gravity phenomenology based on
quantum information and quantum control. We go into some detail
in refining a widely acclaimed proposal, which consists in testing the
entangling capacity of gravitation, and we show how it may yield
results even in the presence of unwanted, and ill-characterized in-
teractions. Finally, we consider a variant of such a protocol, which at
first glance may seem less reasonable than its original version, as it in-
volves probing gravitational properties sourced by light. We present
some arguments explaining why such a variant should not be dis-
missed too hastily.

5.1 non-classicality of gravity

In this section, we review the main challenges that lie on the path
to a quantum theory of gravity. We present traditional and modern
approaches to obtain empirical clues towards quantum gravity, and
focus on a particular proposal which has attracted much attention.

5.1.1 The odyssean quest for quantum gravity

Contemporary physics is in a peculiar state: it seems to have given
a clear description of phenomena ranging from the inner workings

1 Translation: Nothing is as beautiful as gravity in the fugacious crests of the undulating sea
or the near eternal ones of the mountains.
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of the atomic nuclei, all the way up to planetary and stellar dynam-
ics. However, as it stands today, our understanding of the universe
could be considered somewhat two-faced. On the one hand Einstein’s
theory of General Relativity (GR) has provided undisputed predic-
tions of the dynamics of systems governed by gravity. On the other
hand quantum field theories, such as the standard model of particle
physics, have been able to describe with extreme accuracy the behav-
ior of systems governed by all other known interactions.

Taken separately, these two spearheads of modern physics are noth-
ing short of theoretical marvels in their own domains of validity.
However, contrary to other classical field theories that were super-
seded and unified into a quantum field theoretic framework, called
the standard model, GR has so far been particularly resistant to all
quantization attempts and up to this day remains a completely classi-
cal field theory. The methods that were successful when dealing with
the interactions of the standard model simply do not work with GR.
To be more precise, it is not so much that GR cannot be quantized,
but rather that its quantized version is non-renormalizable [197, 198].

While it may look like the quest for quantizing gravity is just an-
other human fantasy, this endeavour is not merely motivated by math-
ematical aesthetics. On top of all the issues arising when considering
gravitational corrections to the uncertainty principle, as discussed in
Chapter 4, GR on its own suffers from internal issues, such as the ap-
parition of singularities in black holes. Furthermore, the current jux-
taposition of GR and quantum field theory, referred to as quantum
field theory in curved spacetime, implies that black holes emit ther-
mal radiation and thus may destroy information, which is in contra-
diction with quantum theory [199]. Another motivation for a unified
framework is the fact that mass-energy distributions exist in quantum
superpositions, however GR simply cannot provide a description of
the gravitational field sourced by such a quantum distribution.

Besides the herculean mathematical issues arising in attempts to
quantize gravity, the quest for such a unified framework has been
hampered by the downright lack of empirical evidence of any quan-
tum gravitational effects. Such an obstacle was unfortunately baked
into the very nature of the two theories: because of the sheer weak-
ness of the gravitational interaction compared to the known quantum
forces, the quantum effects of gravity, should they exist, are expected
to become appreciable only at the Planck scale. As such, the direct
observation of a graviton is an almost unfathomably distant dream.
To give a figure of merit, even with a Jupiter-mass2 noiseless graviton
detector placed in close orbit around a neutron star, the frequency of
graviton detections is expected in the most optimistic case to be on
the order of once per century [200].

2 A matter system much more massive than Jupiter would collapse under its own
weight to superatomic densities.
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Faced with the next-to-impossible direct detection of the graviton,
many phenomenological models have been put forward in the hopes
to find some clues towards quantum gravity. Phenomenological mod-
els do not aim to provide a fundamental description of quantum grav-
ity, but rather aim to extend what is already known in a specific di-
rection so as to formulate deviations from standard theory. Instead of
seeking the direct detection of a graviton, one may hope to observe
some other types of quantum gravitational effects. Most of those ef-
forts have been traditionally directed towards high energy processes.

For instance, evidence for quantum gravity in colliders may take
the form of modifications of standard model cross sections, or the
production of black holes. In astrophysics, one can seek excess super-
novae cooling [201], a diffuse cosmic gamma-ray background [202], or
re-heating of supernovae remnants [203]. As mentioned in Sec. 4.1.1,
DSR predicts an energy-dependent speed of light, and this may be
picked-up by the observation of energy-dependent arrival times of
high energy photons from gamma ray bursts [204]. Lorentz invari-
ance violations or objective collapse models [130] may also be tested
by studying the flux-ratio of cosmogenic neutrinos species [205].

So far we have mainly talked about the conceptual and empirical
hardship one faces in attempts to quantize gravity or to find evidence
of quantum gravitational effects. It should be noted that quantum
theory itself is riddled with foundational and interpretation issues,
namely regarding the measurement problem [114]. Because of this,
some work has been done towards an opposite approach, in which it
is not gravity that is to be quantized, but rather quantum theory that
should be “gravitized” [132, 206].

This reflection must give us pause: with no current empirical devia-
tions to standard GR and quantum theory, it is unclear what it sought
after or what is designated by “quantum gravity”. In fact, quantum
gravity may not imply the quantization of gravity. To make room for
the possibility that gravity may be an emergent phenomenon, rather
than a fundamental interaction, one must contemplate the possibil-
ity that quantizing gravitational degrees of freedom may be of no
avail [207]. With this in mind, the quest for quantum gravity3 may
more conservatively be defined as any approach that aims to solve
the problem of describing gravitational interactions sourced by quan-
tum distributions of mass-energy.

5.1.2 Quantum control based proposals

Looking back at the long history of quantum gravity phenomenol-
ogy, one may regret that finding empirical hints may hinge on our
capacity to characterize physical systems in extremely high energy
settings, be it in the uninviting neighborhood of a black hole singular-

3 One may opt for the less committing terminology of “non-classical gravity”.
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ity, in the hardly accessible fossilized early universe, or in extremely
expensive yet inadequately energetic accelerators sheltered beneath
the landscapes of Geneva. Although table-top tests of quantum grav-
ity have long been considered to be impossible, recent years have
seen a series of experimental and engineering breakthroughs in the
fine coherent control of larger and larger quantum systems, which
in conjunction with the immense progress of quantum information
theory, have opened up new avenues to tackle quantum gravity phe-
nomenology from the comfort of a laboratory.

One such table-top proposal was studied in Sec. 4.2.2 to test the
generalized uncertainty principle [190]. Many table-top proposals us-
ing low-velocity, high-mass, long coherence time systems, have been
put forward to test quantum gravitational features. In Ref. [208] Bose-
Einstein condensates are proposed to test the non-gaussianity of the
dynamics induced by non-classical gravity. Bose-Einstein condensates
are also put forward in Ref. [209], where the authors claim that gravi-
tational decoherence may be probed in the gravitational self-energies
of condensates with different geometries. In Refs. [210, 211] optome-
chanical systems are suggested as a platform to detect the minute
gravitational fields sourced by positional cat states of massive sys-
tems. This being said, one particular kind of approach to table-top
tests of quantum gravity that has recently received much attention, is
based on quantum entanglement.

We have mentioned in our closing of Sec. 5.1.1 that a primary chal-
lenge to establishing a quantum theory of gravity, is the very clarifi-
cation of what is meant by quantum, as opposed to classical. Many
features described by quantum mechanics and absent from classical
physics may include quantum tunneling, Heisenberg’s uncertainty re-
lations, or coherent superpositions of states. What the advent of quan-
tum information theory has brought to the table, are proper, model-
independent and operational notions of non-classicality, essentially
classes of correlations. Among those operational notions, quantum
entanglement has been at the center of attention. This non-classical
correlation that we have presented at length in Sec. 2.4 cannot be
increased through local operations and classical communication, by
definition. Because of this unambiguous and model-agnostic defini-
tion, many modern proposals to test gravitational non-classicality
have been centered around the detection of entanglement generated
by the gravitational coupling between two or more systems [212–214].
We shall refer to these as Gravity Mediated Entanglement (GME) pro-
tocols.

The foundational bedrock of such experiments is the quantum in-
formation theoretic fact that entanglement cannot be generated under
LOCC operations. As such, any experimental manifestation of entan-
glement between systems the dynamics of which can be proven to be
mainly gravitational, is proof that one cannot model the gravitational
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interaction as the action of a classical channel. As it stands, this re-
sult has also been derived from locality and the interoperability of
information in broader frameworks such as constructor theory [215],
which does not assume quantum theory nor general relativity, and
does not commit to any kind of dynamics for the mediator. Investiga-
tions from the basic framework of generalized probabilistic theories
(a subset of which is quantum theory) have led to a similar conclu-
sion [216]. Namely, it was shown using the diagrammatic language of
quantum process theory (see Ref. [59] for a thorough and pedagogical
introduction) that one cannot have the conjunction of the following
three hypotheses

1. Gravity has the capacity to generate entanglement.

2. Gravity mediates the interaction between two systems.

3. Gravity is classical.

While this holds true for entanglement, it is of course no longer the
case when one considers a weaker quantum correlation such as dis-
cord, which can increase through LOCC operations. It was recently
shown that a fully classical model treating gravitation as a weak con-
tinuous measurement of position [217] may not generate entangle-
ment, but may generate discord between two systems [218].

While the aforementioned protocols to test GME seem more promis-
ing than the presumed dead-end of direct graviton detection, they suf-
fer from the weakness of the gravitational coupling. By relying on the
entanglement of the motional states, these proposals essentially try
to pick up contributions from the quadratic term in the Newtonian
gravitational potential expansion

HG = −
Gm2

d

(
1+

(x1 − x2)

d
+

(x1 − x2)
2

d2
+O

((
x1 − x2
d

)3
))

,

where x1 and x2 label the two system’s positions with respect to their
respective trap centers, and it is assumed (x2 − x1) ≪ d. The order
0 term is an offset, the linear term is local and as such does not en-
tangle the motional states. It is only at the quadratic order that cross
terms between operators of the two systems appear, effectively induc-
ing a two-mode squeezing. As a figure of merit, for micro-particles of
mass 10−7kg trapped with a frequency ω = 105Hz and a trap separa-
tion distance d = 10−4m, the ratio between consecutive terms in the
expansion is 10−12.

There exists a very different flavour of GME protocol, that we shall
very appropriately refer to as Doubly Interferometric Gravity Medi-
ated Entanglement (DIGME) protocol, which was proposed by Bose et
al. [219] and Marletto and Vedral [220]. Instead of relying on motional
states, the DIGME protocol relies on a phase entanglement in a dou-
bly interferometric setup. At the cost of requiring massive cat-states,
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Figure 11: The three steps of the DIGME protocol.

this approach has two salient advantages compared to the direct anal-
ysis of motional states. The first one, is to have an entanglement signal
that is amplified by the minuteness of the Planck constant. The sec-
ond, is that this entanglement is driven by the much stronger linear
term of the gravitational potential expansion, instead of the quadratic
term. Let us dedicate the next section to a more detailed overview of
the DIGME setup. Throughout the remainder of this thesis, we shall
refer to the admittedly more fleshed out proposal by Bose et al., upon
which most of the work presented here was based.

5.1.3 The massive DIGME protocol: first pass

Let us present in a nutshell the Bose et al. DIGME proposal, as orig-
inally exposed. Essentially, this proposal consists in splitting two lo-
calized systems by entangling their spatial positions to their spin de-
gree of freedom, through a Stern-Gerlach type process. Under some
assumptions that we shall discuss in further details, the phase accu-
mulated by each pair of position states will differ, and will depend
on HG/ h. This phase information can then be stored into the spin
degree of freedom by refocusing the massive systems, and thus en-
tanglement may be read off from bipartite spin measurements.

Explicitly, the DIGME proposal breaks down in three steps: a spin-
dependent spatial splitting, a free-fall, and a refocusing, as shown
in Fig. 11. Let us introduce the respective states |L⟩ , |C⟩ , |R⟩ for left,
center and right position eigenstates for each system, of identical ef-
fective mass m. The center state |C⟩1,2 of each system is taken to be
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the eigenstate corresponding to the origin of each system’s position
coordinate x1,2 = 0. We further denote d > 0 the separation between
the two central states. Under the assumption that the massive system
is always in a (superposition of) position eigenstate(s), that we shall
refer to as Position Eigenstate Approximation (PEA), the initial state
of the bipartite system is written as |ψ(ti)⟩ = |C, s+⟩ |C, s+⟩, where
|s+⟩ = 1√

2
(|sL⟩+ |sR⟩). After the spin dependent spatial splitting, the

state reads

|ψ(0)⟩ = 1

2
(|L, sL⟩+ |R, sR⟩)(|L, sL⟩+ |R, sR⟩) =

1

2

∑
ij∈{L,R}

|i, si⟩
∣∣j, sj〉 .

With a Newtonian gravitational potential, assuming that the posi-
tional drift between the systems evolving under their mutual gravi-
tational influences is negligible, the noiseless state after a free-fall of
duration τ is given by

|ψ(τ)⟩ = 1

2

∑
ij∈{L,R}

e−iϕij(τ) |i, si⟩
∣∣j, sj〉 , (60)

where ϕij(tf) = ϕij(τ) = −Gm2τ
 hdij

and dij is the distance between the
two systems in the positional state |ij⟩. By refocusing the two systems,
one can discard the position dependence and find a final bipartite
spin state |ψs(τ)⟩ = 1

2

∑
ij∈{L,R} e

−iϕij(τ)
∣∣si, sj〉. In the ideal scenario

that is considered here, the refocusing disentangles the positions from
the spins in a very short time compared to the free-fall duration, and
as such one can trace out the position degree of freedom without
introducing noise in the spins. In Sec. 5.2.1, we will turn back to this
assumption, in particular in combination with the PEA.

Assuming that the splitting and refocusing shift the positions of
both systems by the same amount δ, we have dRR = dLL = d so
that one can instead look at the relative phases ∆ϕij(τ) = ϕij(τ) −ϕ

where ϕ = −Gm2τ/ hd, which is non-vanishing only for i ̸= j. Up to
a global phase, it is then established that the final spin state reads

|ψs(τ)⟩ =
1

2
(|sL⟩ ⊗ (|sL⟩+ ei∆ϕLR |sR⟩) + |sR⟩ ⊗ (|sR⟩+ ei∆ϕRL |sL⟩)).

An elementary entanglement condition for this state can be derived
from the very definition of non-separability. Indeed, one can rewrite
the state as |ψs⟩ = 1√

2
(|sL⟩⊗ |a⟩+ |sR⟩⊗ |b⟩) where we have the linear

dependence equivalence

|a⟩ ∝ |b⟩ ⇐⇒ ∃α ∈ R, eiα |sL⟩+ eiα+∆ϕLR |sR⟩ = ei∆ϕRL |sL⟩+ |sR⟩ .

From this, it becomes apparent that the state may be factorized if
and only if (α−∆ϕRL,α+∆ϕLR) ∈ (2πZ)2. That is, a necessary and
sufficient condition for entanglement reads ∆ϕRL +∆ϕLR /∈ 2πZ.
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Associating the |sL,R⟩ spin states with the eigenbasis of the Pauli
Z operator, explicitly Z |sL⟩ = |sL⟩ and Z |sR⟩ = − |sR⟩, one can easily
establish the following expectation values4 on the state |ψs⟩{

⟨X⊗Z⟩ = 1
2(cos(∆ϕRL) − cos(∆ϕLR))

⟨Y ⊗ Y⟩ = 1
2(cos(∆ϕRL −∆ϕLR) − 1)

,

where X, Y are the two other Pauli operators as defined in Eq. (28). Un-
der the separability condition, ∆ϕLR+∆ϕRL ∈ 2πZ it becomes appar-
ent that one necessarily has ⟨X⊗Z⟩ = 0 and ⟨Y ⊗ Y⟩ = − sin2(∆ϕRL).
In light of this observation, Bose et al. define the simple criterion
| ⟨X⊗Z⟩+ ⟨Y ⊗ Y⟩ | > 1 as a sufficient condition for entanglement.

As a figure of merit, let us consider the following set of parameter
values: d = 400 µm, δ = 125 µm,m = 10−14 kg. Then the sufficient
condition is met after a free fall duration of around 8 seconds. As we
can see, by having turned the weakness of the Planck constant into
an advantage that helps compete against the weak Gm2 factor, the
DIGME approach yields much more promising (or much less inaus-
picious) prospects for the test of quantum gravitational effects. While
the DIGME protocol has impressively allowed to even consider prob-
ing quantum gravitational effects in a laboratory, the required effec-
tive masses and interaction durations remain well beyond what is
currently achievable.

As presented at this stage, there are some challenges the DIGME
protocol is faced with, which do not fall under engineering capabili-
ties, but are more intrinsic to the platform and the model itself. The
main physical limitation to GME revelation is the presence of un-
wanted quantum forces whenever one makes use of matter. Even with
the elimination of residual electrostatic or dipole-dipole interactions,
there is no circumventing the Casimir interaction, a macroscopic force
first predicted by Hendrick Casimir [221] during his study of the Van
der Waal’s forces between a pair of polarizable molecules, arising
from the vacuum fluctuations of the electromagnetic field.

In the original proposal by Bose et al., this effect is not omitted,
but rather taken care of by having a voluntarily coarse entanglement
criterion. That is, the entanglement condition may require much more
phase signal than actually needed to have an entangled state. While
this increases the required interaction time τ, in return one can be
confident that in regimes where the gravitational coupling is much
stronger than the Casimir coupling (which entails a closest approach
distance), any data satisfying the entanglement condition may not
have appeared through the Casimir interaction alone.

Clarifying this statement about empirical data supporting GME
will be the center of our focus in the next sections. We will spend
time to extend and formalize the DIGME proposal, to include mixed
states and decoherence, devise a way to overcome the Casimir closest

4 It is understood that |ψs⟩ and the relative phases ∆ϕ are functions of τ.
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approach limit, establish an optimal entanglement witness, and touch
upon a loophole in certifying GME in the presence of ill-determined
entangling forces. The following analysis will serve to illustrate the
robustness of DIGME approaches.

5.2 the massive digme protocol : second pass

In this section, we go over the DIGME protocol, present a new en-
tanglement witness, and show how to account for noisy states and
decoherence. We show how one can conclusively infer GME from
empirical data.

5.2.1 The position eigenstate approximation

In our first pass of the DIGME protocol, we have presented two theo-
retical simplifications: using position eigenstates, and assuming that
tracing out the motional degree of freedom after refocusing does not
completely decohere the spin state. Although these simplifications
help focus on the key ideas, it should be noted that they are contradic-
tory. Should the states be rigorously δ-distributed in position-space,
then drift can absolutely not be neglected. Let us re-derive and for-
malize the dynamics without relying on the PEA, and by considering
the possibility of having mixed initial trapped motional states, par-
ticularly initial thermal states, for their ubiquity in experiments. We
will find that the resulting corrections to the PEA are negligible for a
reasonable range of trapping frequencies and temperatures.

Let us now represent the initial state of the system with the density
operator ρi which is a product of two motional states in a superpo-
sition of spin states, separated by distance d. At the end of the split-
ting operation, which is a spin-controlled spatial displacement by ±δ,
the system is in state ρ(0) which is two spatial superpositions. The
free-fall duration is labelled by τ, after which the state is ρ(τ). The
non-adaptive refocusing merges the positional superpositions with-
out taking into account drift during free-fall, and results in a final
state that depends on the free-fall duration ρf(τ).

As in the original proposal, we assume that the splitting and refo-
cusing operations can be carried out in a short time compared to the
free-fall duration, and use a Newtonian potential for gravity. Since
d/c ≪ τ, this is a completely valid static limit to the fully general
relativistic description [222], which formulates the same predictions
in the case of superposition of geometries [223].

Consider two identical particles of mass m that are initially in a
product of two arbitrary motional states and in a superposition of
spin states ρi = (π1 ⊗ ρ+)⊗ (π2 ⊗ ρ+), where we have denoted the
spin state ρ+ := 1

2(|sL⟩+ |sR⟩)(⟨sL|+ ⟨sR|), which will provide labels
for the displacements. As in the original proposal, the spin-controlled
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spatial splitting is assumed to simply shift the positions, such that the
momentum expectation values at the beginning of the free fall van-
ishes. The splitting operation reads (DL ⊗ |sL⟩⟨sL|+DR ⊗ |sR⟩⟨sR|)⊗2,
where Dµ = D(κµ) = eκµa

†−κ∗
µa is the displacement operator as de-

fined in Eq. (18), and κR = −κL = κ ∈ R+. We denote δ the physical
distance by which the state is displaced, so κ = δ

√
mω/2 h where ω

is some initial trap frequency.
In the noiseless case, the final state obtained at the end of the free-

fall after the refocusing operation, which is the Hermitian conjugate
of the splitting, reads

ρf(τ) =
1

4

∑
αβµν

(D†
α ⊗D

†
β)Ud(Dα ⊗Dβ)ρ

i(Dµ ⊗Dν)Ud(D
†
µ ⊗D†

ν),

where the sum is carried out over (α,β,µ,ν) ∈ {L,R},Ud is the unitary
propagator generated by the Newtonian gravitational Hamiltonian
Hd = (p21+p

2
2)/2m−Gm2/(d+x2−x1) for a duration τ, and G is the

gravitational constant. One can view the action of the displacement
operators as an origin shift of the positions, which can be absorbed
in the separating distance d. Explicitly, this amounts to defining dis-
tinct propagators through (D†

µ ⊗D†
ν)Ud(Dµ ⊗Dν) := Udµν

where
dµν = d− δµ + δν ∈ {d− 2δ,d,d+ 2δ}. Thus, we have transposed the
situation where we had three distinct relative displacements, to one
where we have three distinct separations and propagators acting on
the same initial state. Then, by pulling out the potential offset term
−Gm2/dµν from the Hamiltonian, the matrix elements sαβµν of the
reduced spin state Trmotion[ρ

f(τ)] =
∑

αβµν sαβµν

∣∣sαsβ〉〈sµsν∣∣ read

sαβµν =
1

4
exp

[
−iGm2τ

 h
Q

(1)
αβµν

]
Tr
[
/Uαβ

† /Uµν(π1 ⊗ π2)
]
, (61)

where we have introduced ∀n ∈ N, Q(n)
αβµν = 1

dn
αβ

− 1
dn
µν

, and where

/Uαβ are propagators generated by the Hamiltonians with vanishing
potential offset. In doing so, we have represented the propagation of
the full system up to a shift of position operator origins, as a sum
of four pairwise evolutions, three of which are distinct. The result
obtained with the PEA approximation can be arrived at by discarding
the remaining trace.

Up to now, what we have done was valid for position coordinates in
the open disc of convergence of the analytic expansion of the potential
term. Let us restrict ourselves to the case where |x2−x1|≪ d−2δ and
inspect some results we might infer with a truncated potential. With
an order 1 truncation the BCH identity gives

/U
†
αβ /Uµν = e−iτ3G2m3Q

(4)
αβµν/6

 hD
(
θαβµν

)
⊗D

(
−θαβµν

)
, (62)

where θαβµν =
GmQ

(2)
αβµντ√
2

[
τ
2

√
mω
 h − i

√
m
 hω

]
. As classical intuition

would suggest, the two particles are displaced towards one another
and acquire opposite momenta.
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By further restricting ourselves to the case of two initially identical
motional states π1 = π2 = π, we obtain

Tr
[
/Uαβ

† /Uµνπ
⊗2
]
= e−iτ3G2m3Q

(4)
αβµν/6

 he−|θαβµν|
2

(
CN

(
θαβµν

2

))2

,

(63)
where CN : λ 7−→ Tr

[
πeλa

†
e−λ∗a

]
is the normally ordered characteris-

tic function of π [73]. From Eq. (24), the spin density matrix elements
for an initial thermal state with ⟨N⟩ = n is deduced to obey

sαβµν =
1

4
e−iGm2τQ

(1)
αβµν/

 he−iG2m3τ3Q
(4)
αβµν/6

 he−(n
2 +1)|θαβµν|

2

. (64)

The first phase factor was the only term accounted for in our first
pass of the DIGME protocol. The second phase factor comes in as
a first order phase correction. The third factor corresponds to a first
order decoherence effect due to the drift of the particles. Detailed
derivations of Eqs. (63) and (64) can be found in Appendix E.1.

Let us now evaluate the validity of the PEA approximation. To
facilitate comparison, we work with the parameters of the original
proposal, (d = 400 µm, δ = 125 µm, m = 10−14 kg) and with a
sensible trapping frequency ω = 103 Hz [224]. For the fastest oscil-
lating terms (αβµν = LRRL) we have |Q(1)| ∼ 3.6 × 103 m−1 and
|Q(4)| ∼ 6.2× 1014 m−4. The first phase reaches unit radian after a
characteristic free-fall duration τ ∼ 4.4 s. After 10 seconds of free-fall,
the phase correction is approximately 4× 10−12 rad and the decoher-
ence factors are exp

(
−2.8× 10−8

)
and exp(−0.014) respectively for

zero temperature and T = 7.6 mK (n = 106). This shows the PEA to
be perfectly valid for the purpose of this proposal.

In the PEA, the reduced spin state can be considered pure and
reads |ψs(τ)⟩ = 1

2(|00⟩+e
i∆ϕLR |01⟩+ei∆ϕRL |10⟩+ |11⟩) up to a global

phase, where ∆ϕµν = Gm2τ( 1d − 1
dµν

). This is the form that was
directly posited in the original proposal, and we shall take it as our
noiseless state.

It was furthermore argued that the original parameters constitute
a regime in which Casimir-Polder (CP) interactions may be neglected.
The CP potential [225] reads VC

µν = −α(R, ϵ)/(dµν+ x2− x1)
7, where

the coupling constant α(R, ϵ) =
(
ϵ−1
ϵ+2

)2 23 hcR6

4π depends on the radius
R of the microspheres and their relative permittivity ϵ. Inclusion of
the CP interaction leads to the following form for the spin density
matrix elements:

sαβµν =
1

4
exp

(
−iτ
 h

(
Gm2Q

(1)
αβµν +αQ

(7)
αβµν

))
× Tr

[
/Uαβ

† /Uµν(π1 ⊗ π2)
]
. (65)

With R ≈ 10−4 m, which roughly corresponds to a diamond micro-
sphere of mass 10−14 kg and ϵ ≈ 5.7, the most rapidly evolving terms



5.2 the massive digme protocol : second pass 150

have a gravity frequency of 0.226 Hz and a CP frequency 0.016 Hz.
This confirms that the dynamics is dominated by the gravitational
coupling for closest approach kept above roughly 200 µm.

Because we will shortly demonstrate how to overcome this CP clos-
est approach limit, it is worth showing that the PEA is still valid in
a smaller setup separation. If we decrease the separation distance d
from 450 µm to 350 µm, the closest approach distance is reduced to
100 µm such that for the |RL⟩ pair the dynamics is dominated by CP
coupling. Specifically, the CP potential becomes roughly 4 times as
strong as the gravitational potential. While this will require more cau-
tion in interpreting the entanglement as arising from gravity, working
in this tighter setup lowers the required free-fall duration for an ap-
preciable phase to τ ≈ 54ms. In this regime, after 1 second of free-fall,
the phase correction is approximately 7.03× 10−14 rad and the de-
coherence factors are exp

(
−5× 10−11

)
and exp

(
−2.5× 10−6

)
respec-

tively for zero temperature and T = 7.6 mK (n = 106). This warrants
our unreserved use of the PEA in the remainder of this chapter.

5.2.2 An optimal entanglement witness

Let us now cast the entanglement condition shown in Sec. 5.1.3 into
the formal language of entanglement witnessing. We will also use
the tools presented in Sec. 2.4.4 to build another witness which will
pick up entanglement immediately as the free-fall stage begins, and
consider a decoherence effect.

From the pure spin state resulting from the PEA, one can read off
∆ϕLR + ∆ϕRL ∈ {2nπ | n ∈ Z} as a necessary and sufficient condi-
tion for separability. We have seen that | ⟨X⊗Z⟩+ ⟨Y ⊗ Y⟩ | > 1 is a
sufficient condition for entanglement, where X, Y,Z denote Pauli op-
erators. Formally, this amounts to choosing

W0 = I⊗ I+X⊗Z+ Y ⊗ Y,

as an entanglement witness [226], as for any separable two qubit state
ρ, Tr(W0ρ) ⩾ 0. In the noiseless case, entanglement is revealed after
roughly 8 seconds of free-fall, as shown in Fig. 12.

Although the order of magnitude for the required free-fall time
is promising, it would still correspond to a falling distance of a few
102 meters on Earth, and is still 3 orders of magnitude above the
coherence times observed in cutting edge matter-wave interferome-
try with much less massive particles [227]. Let us investigate how
to shorten this characteristic duration, which would help make the
protocol more robust to decoherence.

To illustrate the effect of decoherence, we choose a scattering term
that induces an exponential dephasing of local motional states [228].
With no further knowledge of the practical implementation of this
experiment, this model may only serve as an example, but is repre-
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Figure 12: Tr(W0 |ψs⟩⟨ψs|), where W0 is the entanglement witness put for-
ward in [219], as a function of free-fall time under decoherence
rates γ. Lighter lines represent stronger decoherence, and the
dashed line is the negativity limit. At γ = 0.03 the witness can
no longer reveal entanglement.

sentative of what would a priori affect any real implementation [229],
and it is a relevant one to examine as it affects the coherence that
matters most for any interference to take place. We shall denote the
off-diagonal damping rate γ. Explicitly in the local position eigenstate
basis {|L⟩ , |R⟩}, the decoherence after duration τ acts as a dephasing
channel π 7−→ (1− p)π+ pZπZ where p = (1− e−γτ)/2. Numerics
show that the original witness W0 fails to detect any entanglement
for γ ⩾ 0.03 s−1. In an ideal zero-temperature noiseless scenario,
it requires over 8 seconds of free-fall time for entanglement revela-
tion when in fact state negativity [230] N(ρs) =

∑
λ∈Sp(ρs)∩R−

|λ| is
achieved immediately, as shown in Fig. 13. For this reason, relatively
low decoherence rates will result in failure of entanglement witness-
ing.

To build another entanglement witness with a few local Pauli mea-
surements in the spirit of [231], we use the PPT-criterion [99]. We
assume ϕ = ∆ϕLR ≫ ∆ϕRL,∆ϕ, which amounts to neglecting all but
the phase induced by the strongest interacting pair of states. The final
spin state reads |ψs(ϕ)⟩ = 1

2(|00⟩ + |01⟩ + eiϕ |10⟩ + |11⟩) under the
PEA, with corresponding density operator ρs(ϕ) := |ψs(ϕ)⟩⟨ψs(ϕ)|.
The eigenstate associated with the negative eigenvalue of the par-
tially transposed spin state ρΓ2s (ϕ) takes the following expression:
|χ−(ϕ)⟩ = 1

2(|00⟩ + ie
−iϕ/2 |01⟩ − ieiϕ/2 |10⟩ − e−iϕ |11⟩). At ϕ = 0
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Figure 13: Negativity of the spin state with respect to free-fall time under
decoherence rates γ. Lighter lines represent stronger decoherence,
and the dashed line is the negativity limit. Negativity is an entan-
glement monotone, and the state is entangled when the negativity
is positive.

one has 4 |χ−⟩⟨χ−| = I⊗ I− X⊗ X+ Z⊗ Y − Y ⊗ Z, therefore the fol-
lowing operator defines a witness:

W1 = 4 |χ−⟩⟨χ−|Γ2 = I⊗ I−X⊗X−Z⊗ Y − Y ⊗Z.

This witness reveals entanglement immediately after the start of
the free-fall, as shown in Fig. 14, as long as the decoherence rate γ
satisfies γ < (ωRL +ωLR)/2 where the ω are respective coupling
strengths ωµνt = ∆ϕµν, see Appendix E.2. With the original param-
eter settings, the witness works in principle for γ < 0.0627 s−1. Nu-
merics show that the state is in fact not entangled for any higher
decoherence rates, hence our witness is in this sense optimal.

While having a witness that detects entanglement with arbitrarily
small phase signal may be advantageous, one must now imperatively
take into account other entangling forces, such as the CP interaction,
which will necessarily contribute to the entanglement detection. In
the following section, we will discuss how to rigorously formulate sta-
tistical statements on the influence of non-gravitational interactions in
the observed data.

5.2.3 GME in the presence of unknown interactions

In order to ensure that the final entangled spin state was induced by a
gravitational propagator in the presence of other interactions, such as
CP, that we for now assume we have good knowledge of, we adapt the
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Figure 14: Tr(W1 |ψs⟩⟨ψs|) as a function of free-fall time under decoherence
rates γ. Lighter lines represent stronger decoherence, and the
dashed line is the negativity limit. The witness in theory can re-
veal entanglement even for relatively strong decoherence rates if
the free-fall time is kept short. This comes at the expense of ex-
pectation values that are closer to zero.

approach developed in [232] for entanglement verification. In using
such statistical methods, we assume the experiment can be repeated,
for instance with particle recycling as outlined in [211]. The likelihood
ratio test being the most powerful test for a given confidence level,
according to the Neyman-Pearson lemma [233], we look at likelihood
ratios between

• The null hypothesis H0: “The observed state is entangled state and
results from CP interactions without gravity.”

• The alternative hypothesis Ha: “The observed state is entangled
and results not only from CP coupling but also from a gravitational
interaction.”

It should be noted that ruling out H0 in favor of Ha is essentially
making two statements. The first one is that the observed empirical
data is highly unlikely to have occurred without gravitational cou-
pling. The second, is that the data corresponds to an entangled state.
We begin by focusing on ruling out the absence of gravitational con-
tribution.

To obtain the likelihood ratios, in general one can choose to mea-
sure a list of bipartite Pauli observables σ = [σ1, ...,σl], N ∈ N∗

times each. Each bipartite observable has 4 eigenstates which can
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be listed as e = [|e11⟩ , ..., |e14⟩ , |e21⟩ , ..., |el4⟩]. This list defines a 4l-
dimensional probability vector

p = [pij]1⩽i⩽l,1⩽j⩽4 = [Tr
(
ρ
∣∣eij〉〈eij∣∣)].

The data n = [n11, ...,n14,n21, ...,nl4] is a list of number of occur-
rences of measurement outcomes, each corresponding to an obtained
eigenstate. The probability of obtaining the empirical data vector n
from state ρ is given by the joint probability distribution

P(n|ρ) =
∏
ij

p
nij

ij

def.
= L(ρ|n),

and defines the likelihood L(ρ|n) of the state ρ given the empirical
data vector n.

The likelihood ratio, assuming the alternative state is obtained at
the end of the experiment, reads

Λa =
L(ρ0(γ, t)|na)

L(ρa(γ, t)|na)
,

where ρ0 is the spin state obtained at the end of the experiment un-
der an exclusively CP induced evolution (null hypothesis state), ρa
is the spin state obtained under the full CP and gravitational prop-
agator (alternative hypothesis state), and na is an empirical vector
obtained from measurements on ρa. The free-fall duration τ is cho-
sen as the minimizing argument for the witness expectation value in
the alternative hypothesis, so as to maximize the probability of certi-
fying entanglement. Let us note that this makes τ dependent on the
decoherence rate γ.

In order to have numbers suitable for numeric encoding, we shall
use the logarithmic likelihood ratio λa = −2 log(Λa), which reduces
to the scalar product λa = 2na.(log(p

a
) − log(p

0
)) in the alternative

hypothesis, where the subscripts for the probability vectors indicate
to the state (ρ0 or ρa) they correspond to. For the W1 witness mea-
surement, we have l = 3 and the data na is a vector which encodes 3N
empirical measurement outcomes (N for each of the bipartite Pauli
observable X⊗X, Y⊗Z,Z⊗ Y) on ρa. High values of λa strongly sup-
port the alternative hypothesis.

To determine what value of λa is sufficiently high, what we would
aim to achieve in the DIGME protocol is to minimize false positives,
that is, to have a small significance level α or equivalently a high
confidence level 1− α. For a desired significance level α we define a
minimum λmin by

P(λ0 ⩾ λmin) = α,

where λ0 is the likelihood ratio λa assuming the null hypothesis is
true. That is, the lower the significance level, the lower the probabil-
ity that the likelihood ratio λa exceeds the threshold λmin under the
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Figure 15: W1 measurement state distinction success rates for a 99% con-
fidence threshold, with respect to the number of bipartite Pauli
measurements, for noiseless (black) and noisy scenarios (gray).
The crosses correspond to the original setting with separation dis-
tance d = 450 µm while the dots correspond to d = 350 µm.

null hypothesis, i.e. the lower chance of a false positive (erroneous
rejection of the null hypothesis).

In practice, we generate multiple data vectors n0 assuming the null
hypothesis is true, and use the distribution of the resulting λ0 for dif-
ferent values of N. For α = 1%, λmin is then the 99-th percentile of the
obtained λ0. Once the λmin(N,γ, τ(γ)) are determined, one can gener-
ate the λa from data where the alternative hypothesis is assumed true
and inspect the frequency of λa ⩾ λmin. This frequency is termed state
distinction success rate, and is what has been plotted in Fig. 15 for a
confidence level of 99%, for the original parameter settings, and for a
closer separation d = 350 µm. For the original separation d = 450 µm,
in the noiseless case as well as with decoherence rate γ = 0.03 s−1,
102 measurements of W1, obtained with 3 × 102 repetitions of the
experiment is enough to consistently rule out ρ0. In the closer sep-
aration setting d = 350 µm certifying the alternative state reliably,
requires around 103 repetitions.

As stated previously, one must also be able to certify entangle-
ment from the empirical data. We see from Fig. 17 that even if, with
d = 450 µm, 102 and γ = 0.03 s−1, a number of 102 witness mea-
surements is sufficient to rule out H0, there is only a 70% chance
for entanglement to be certified. Conversely, in the closer separation
setup d = 350 µm the resulting state is more entangled, which makes
the entanglement certification more likely to succeed, but ruling out
H0 becomes more demanding. In any case, with this approach, the
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Figure 16: Tomographic state distinction success rates, for a 99% confidence
threshold, with respect to the number of bipartite Pauli mea-
surements, for noiseless (black) and noisy (gray) scenarios. The
crosses correspond to the original separation distance d = 450 µm
while the dots correspond to d = 350 µm.
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Figure 17: Probability of observing a negative empirical W1 witness aver-
age, with respect to the number of bipartite Pauli measurements,
for noiseless (black) and noisy (gray) scenarios. The crosses cor-
respond to the original separation distance d = 450 µm while the
dots correspond to d = 350 µm.
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DIGME protocol no longer requires working in a regime where CP
coupling is negligible.

Hence, from the repeated measurement of a single entanglement
witness, provided good enough knowledge of non-gravitational in-
teractions, one can confirm the presence of an entangled state that
could not have been obtained without a gravitational contribution.
The statistical approach shown here in the case of CP coupling may
very well be applied to rule out many other versions of the null hy-
pothesis. One could for instance choose to include a dipole-dipole
interaction term, or test some modified versions of gravity such as
derived in [234].

One may wonder whether quantum state tomography could be
more reliable for our hypothesis testing. In fact, to rule out H0, the
witness measurement and the state tomography are equivalently ef-
ficient even in a regime dominated by CP interactions, that is, with
the separation d brought down to 350 µm, as shown by the dotted
plots in Fig. 15 and Fig. 16. In both tomographic and witness mea-
surement cases, the CP limit can be overcome, and distinguishing the
two states reliably requires around 103 bipartite Pauli measurements,
that is, around 3× 102 witness measurements, or 102 state tomogra-
phies. While it seems that witness measurement and full tomography
may be equivalent, we will shortly see why the latter method allows
to draw more ironclad conclusions on GME from the observed data.

Before we move on to the non-monotonicity loophole, one may ob-
ject that in order to carry out our hypothesis testing, we have assumed
good knowledge of the non-gravitational interactions. What if there
are uncertainties in the non-gravitational couplings? It happens that
the CP coupling constant α(R, ϵ) is a perfect example of a quantity
that cannot be precisely known, as it depends on the geometry of the
never strictly spherical microdiamonds. At first glance from Eq. (65)
it seems that an uncertainty in the CP coupling strength could poten-
tially generate a wide range of null hypotheses, some of which may
account for the observed data assuming Ha. The task we are faced
with is now to rule out all modified but plausible versions of H0, in
which α is modified from its predicted value, in favor of Ha. The rea-
son why this may look like a dead-end is that the witness expectation
values ⟨W1⟩0 and ⟨W1⟩a measured on the two possible states after a
fixed free-fall duration τ may very well coincide if α is modified. Let
us show a precise example.

For the original separation distance d = 450 µm, where the CP
coupling is negligible compared to the gravitational coupling, it is
quite unlikely that any uncertainty on the CP would account for any
observed data (this would require over 500% uncertainty on the cou-
pling α). However, the whole point of our analysis is to explore the
possibility of overcoming the CP closest approach limit. In the tighter
setup with d = 350 µm, not having precise knowledge of α becomes
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Figure 18: Witness measurement success rates with d = 350 µm,γ = 0.3 s−1

of ruling outH0 (dots) or the modifiedH0 (tri markers) in favor of
Ha, with respect to the number of bipartite Pauli measurements.

more problematic. With this closer separation setting and a decoher-
ence rate of γ = 0.3 s−1 the proposed optimal free-fall duration for
witnessing entanglement is τ = 0.34 s. Numerics show that for this
free-fall duration, a modified null hypothesis state where α ′ = 1.087α
will yield the same witness expectation value. In other words, a 9%
uncertainty on α is enough for witness measurement values on the
null-hypothesis state to converge to the same value as in the alterna-
tive hypothesis.

To solve this type of issue, a well known method exists and is some-
times referred to as a differential measurement. It consists is exploit-
ing the fact that the CP potential follows a 1/r7 law, whereas the grav-
itational follows 1/r, which would incur a discrepancy in the data as
soon as the experiment is repeated with a new separation distance.
Some reflection reveals that in fact, no such manipulation is neces-
sary, as the DIGME protocol happens to already be differential, and
so is intrinsically robust to this type of uncertainties. Let us clarify
this observation.

Although one can imagine a modified α that could make the null
and alternative witness expectation values coincide, in fact discrepan-
cies will still appear in the individual Pauli observables constituting
the witness measurement. This is corroborated by the plot shown in
Fig. 18 where we observe that the state distinction success rate still in-
creases with the number of measurements, despite having performed
α → 1.087α for the null hypothesis state. This modification of α in
the null hypothesis does increase the required number of repetitions
to rule out H0, but does not make this task impossible. The number
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of bipartite Pauli measurements for a good state distinction success
rate goes from a few 103 to a little less than 104.

Looking back at the spin density matrices in the null and alterna-
tive hypotheses, one notices that they can never be made equal by
any amplification or damping of the coupling constants. This is be-
cause in Eq. (65) the Q(1) and Q(7) quantities are non-proportional
tensors, they are differences between several proximities to different
powers. From this general observation, one even obtains for free the
robustness against any unwanted effects the potentials of which are
not 1/r, such as dipole-dipole interactions, which would involve a
Q(3) quantity that is linearly independent of Q(1) and Q(7).

5.2.4 Closing the non-monotonicity loophole

Finally, we address a potential loophole to which a witness measure-
ment approach is exposed. We describe how full tomography can
provide a solution. We present results from tomographic simulations
which provide an order of magnitude for the number of measure-
ments required.

We have shown that by analyzing the witness Pauli measurements,
it was possible to consistently state with a high degree of statistical
confidence not only that the state is entangled but also that the state
was produced by a gravitational interaction as opposed to merely a
CP interaction. On its own, this would already constitute a highly
significant observation, but there remains a critical loophole. Since
entanglement witnesses are not entanglement monotones, one could
argue that we have not explicitly shown that gravity has increased
the entanglement. Indeed, the null hypothesis state is already entan-
gled, with negativity N(ρ0) > 0, and there may well exist other valid
quantum states ρ ′a that are indistinguishable from ρa by only look-
ing at the witness statistics, and that may have negativities satisfying
N(ρ0) > N(ρ ′a) > 0. One such loophole state is shown and its con-
struction explained in Appendix E.3. No matter how such a state
may arise, a way forward to eliminate this loophole can be provided
by using full tomography to calculate an entanglement monotone, as
we shall demonstrate.

Quantum state tomography is a method to estimate quantum states
from a complete set of measurements on many copies of the same
state. It has been widely studied in general [1, 235] as well as in its
application to entanglement verification [236]. Tomographic data al-
lows one to reconstruct states, and in turn make statistical statements
regarding entanglement monotones. To construct our state estimators,
we use the popular method of maximum likelihood estimation [237].
While it was pointed out that this may not always be the most accu-
rate estimation method [238], it is sufficient for our purpose, and has
been extensively used in experiments [239–241].
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Setting

Repetitions
9 90 9× 102 9× 103

d = 450µm
γ = 0 1.8% 40.7% > 99.9% > 99.9%

γ = 0.03 2.6% 2.8% 66.3% > 99.9%

d = 350µm
γ = 0 1.2% 7.5% 53.2% > 99.9%

γ = 0.3 1.7% 4.1% 10.2% 88.7%

Table 4: Probability for the reconstructed alternative hypothesis state to
have a higher negativity than the 99-th percentile most entangled
reconstructed null hypothesis state, with respect to the number of
Pauli measurements. Results shown for the original and shorter sep-
aration distances, and for the noiseless and strongest decoherence
rate cases.

We seek to predict how reliably the experiment with tomographic
data can certify gravitationally induced entanglement growth. To this
end, we simulate a series of full tomographies on ρ0 and ρa, and re-
construct their corresponding maximum likelihood states ρML follow-
ing a fixed-point iterative method [242]. Explicitly, the maximum like-
lihood state can be obtained from the empirical data vector n = [ni]

containing the number of occurrences of the Pauli-measurement out-
come |ei⟩⟨ei| as it solves ρML = R(ρML)ρML, where

R : ρ 7−→ 1

∥n∥1

∑
i

ni

Tr(ρ |ei⟩⟨ei|)
|ei⟩⟨ei| .

Then the constructed sequence of two-qubit density matrices defined
by ρ0 = I4/4 and ∀k ∈ N, ρk+1 = NTr (R(ρk)ρkR(ρk)) where NTr des-
ignates trace normalization, converges heuristically to the maximum
likelihood state. We end the algorithm at the 100th iteration. Among
103 state reconstructions using 9× 10measurements, the fidelity [243]
F(ρ100, ρ) =

(
Tr
(√√

ρ100ρ
√
ρ100

))2 between the simulated states is
at least 90% and on average 95%. Among 103 state reconstructions
using 9× 103 measurements, the fidelity is always over 99%.

From the maximum likelihood reconstructed states, we find differ-
ent negativity distributions in the two hypotheses. The results are
summed up in Table 4, and show that in the original separation
d = 450 µm a few 103 Pauli measurements is enough to consistently
reject the null hypothesis and loophole states when γ = 0.03 s−1, and
for the closer setup d = 350 µm where the CP interaction becomes
significant, 104 Pauli measurements is sufficient to reject the null hy-
pothesis and loophole sates around 90% of the time when γ = 0.3 s−1.

It should therefore be possible, by reconstructing the state from
tomographic data on a relatively large but not unreasonable number
of measurements, to obtain reliable proof of entanglement growth by
gravitational interaction even in the presence of other stronger and
possibly ill-known couplings, and decoherence.
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5.3 the photonic digme protocol

In this section, we present a variant of the DIGME protocol, which
uses light instead of matter. We motivate this investigation in light of
our previous analysis, having established that repeatability is crucial
for a conclusive GME certification. We give a figure of merit for the
required light pulses in order to have an appreciable phase.

5.3.1 Motivations for a photonic protocol

As innovative as it is, the massive DIGME protocol’s implementation
faces several experimental challenges and limitations, some of which
pertain to engineering and experimental capabilities, while others are
intrinsic to the protocol. From the point of view of experimental im-
plementation, among the most critical obstacles, we may mention the
coherent control of a microdiamond of mass on the order of 10−14 kg,
which is several orders of magnitude beyond current cutting-edge
quantum control [227, 244, 245]. What’s more, the mismatch between
nitrogen vacancy centers and centers of mass will induce a torque,
the absence of which anyhow does not eliminate the issue of free-
rotation [246]. Another concern as we have seen in the previous sec-
tion, is the importance of repeatability in order to build up statistics.
Ideally, one may achieve repeatability by recycling the particles, but
the amount of trials one may run over a fixed time span may be lim-
ited by overheating issues [247–251]. Finally, we have discussed at
length the effect of the CP interaction, which may only be accounted
for with even greater repeatability.

From the theoretical perspective, the massive DIGME may only test
the non-relativistic Newtonian regime of gravity, but may not capture
features of gravity as a relativistic quantum field [252].

To resolve, or rather circumvent, some of the hurdles the massive
DIGME proposal has to overcome, we present in this section an al-
ternate approach, where we consider light beams as our gravitational
split source. General relativity predicts that radiation, as much as mat-
ter, sources a gravitational field, the properties of which have been ex-
tensively studied [253–258]. We will chose the polarization-dependent
beam-splitting as an optical equivalent to the Stern-Gerlach opera-
tion which performs a spin-dependent spatial splitting. While in the
massive DIGME one measures a spin entanglement witness, we now
consider the measurement of a polarization entanglement witness.

An immediate advantage of the photonic DIGME protocol is the ab-
sence of any unwanted interactions other than gravity. The effect of
the direct short-range photon-photon scattering [259] can be safely ne-
glected as long as the beams are not overlapping, and for low-energy
photons. Thus, in the photonic DIGME protocol, the challenge to over-
come is no longer the discrimination between different competitive
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sources that may generate entanglement, but the certification of en-
tanglement with a weak signal.

It is not hard, however, to imagine why such a variant may be pro-
hibitively challenging, and perhaps why it has not been considered
in the literature: the phase signal due to the gravitational coupling of
light is expected to be extremely small. Furthermore, as we shall see,
contrary to the massive DIGME protocol, one cannot have light beams
interact along the whole interferometer length, further reducing the
phase signal. Far from claiming to have found a revolutionary near
term implementation of DIGME, the analysis presented here rather
serves as a first attempt to quantify how challenging this approach may
be. As previously stated, even if the entanglement generation may
be weaker than in the massive DIGME - which as should be noted
requires unreasonably large masses for appreciable signal- there is
certainly a case for such an investigation in light of near-future exper-
imental and technological advances. Modern laser technology [260,
261] allow for great tuneability and control of high-intensity light
beams, as well as practical repeatability. While a single photon may
only have a negligibly small effect on gravity mediated entanglement
due to its small coupling to gravity, the collective effect and reliabil-
ity of light as a source of entanglement generation may outscore any
massive counterpart as a platform for witnessing GME.

Another advantage of the photonic DIGME, beyond experimental
considerations, is its relevance in the investigation of both relativistic
and quantum effects. Due to the easier tuneability of frequency - as
opposed to mass - finer features of gravity and other deviations from
classicality may be more easily probed. Furthermore, light may be
viewed as a more convincing candidate, insofar as some gravitational
degrees of freedom can be claimed to be quantized when DIGME ex-
periments are performed within light-crossing times between spatial
branches [262].

Incidentally, the investigation presented here may also be seen as
way to practically demonstrate the gravitational coupling of light
beams for the first time, regardless of entanglement. Various aspects
of detecting the gravitational field of light beams were considered in
Ref. [263]. Very recently, investigations around light have gained in
popularity in regards to relativistic tests of GME, as shown by the re-
cent study of photon-matter entanglement in Ref. [264], and photon
self-interactions in Ref. [265].

Our presentation is structured as follows. We begin by describing
the setup and introducing basic notions and approximations. We give
a brief overview of the path integral description of the experiment,
and how one extracts a phase signal. We also present some instructive
and well-established calculations on the metric perturbations sourced
by a single circularly polarized light pulse and introduce further
helpful notations. Building on this basic situation, we construct the
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metric perturbation for two counter-propagating pulses and derive
the action for two circularly polarized counter-propagating, spatially
separated light pulses. After showing some numerical estimations
of the gravitationally generated phase, we discuss some further di-
rections worth examining, such as improvements, further challenges,
and more sophisticated models to describe the photonic DIGME pro-
tocol.

5.3.2 Setup and assumptions

Figure 19: The double Mach-Zehnder interferometer setup of the photonic
DIGME protocol. Two pulses of length L impinge on polariz-
ing beam splitters, as they enter interferometer arms of length
D which, for certain states, entangles their polarization degree
of freedom with their output mode. With the use of waveplates,
each beam splits into left and right circular polarization. Each
pair of counter-propagating pulses interact gravitationally. Upon
recombination, entanglement is witnessed through local polariza-
tion measurements.

Let us consider a setup consisting of two Mach-Zehnder interfer-
ometers, as shown in Fig. 19, that receive two counter-propagating
light pulses as inputs. The length of each interferometer is D and
the transverse separation of the two centers is d. Each input pulse
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enters through a polarizing beam splitter. The reason why we chose
two counter-propagating light pulses is that co-propagating pulses in
vacuum do not interact [255, 266].

In general, the DIGME protocol consists of systems Qa, a ∈ {1, 2},
that are both described by a spatial state x⃗saa (t), which is made to
depend on an internal degree of freedom sa. In the massive case,
this internal degree of freedom was taken to be the spin of a particle
whereas for light, we shall take it to correspond to its polarization
state. The internal configuration between two of the four different
branches is then described by a state |σ⟩ =

⊗
a |sa⟩. After passing the

light pulses through the beam splitter, separating light into horizon-
tal or vertical polarization, a quarter-waveplate may be used to corre-
spondingly have right-handed and left-handed circular components
in output modes. At the end of the gravitational phase induction,
the light pulses pass again through quarter-waveplates before pass-
ing through a beam splitter to detect the entanglement. Each beam
splitter is assumed to be lossless 50:50.

Similar to the massive DIGME, once each of the two light pulses are
in a spatial superposition entangled to their polarization degree of
freedom, each branch will pick up a gravitationally generated phase.
Even though light beams in coherent states [267–270] may contain a
high expected photon number which may source an appreciable met-
ric perturbation, let us note right away that they cannot be used for
the DIGME protocol. Un-squeezed coherent states do not become en-
tangled under beam splitting [271]. Because of this, in the remainder
of this analysis, we focus on states for which the beam splitter is en-
tangling, and we defer to a later section a discussion of such states.
At the end of the gravitational interaction stage, the total position-
polarization state will have evolved to have an identical expression to
Eq.(60)

|ψ(τ)⟩ = 1

2

∑
ij∈{L,R}

e−iϕij(τ) |i, si⟩
∣∣j, sj〉 ,

from which one can read the final bipartite polarization state after
refocusing

|ψs⟩ =
1

2
(|sL⟩ ⊗ (|sL⟩+ ei∆ϕLR |sR⟩) + |sR⟩ ⊗ (|sR⟩+ ei∆ϕRL |sL⟩)),

where exactly like in Sec. 5.1.3 we have left unspecified a global phase,
and defined ∆ϕLR := ϕLR −ϕ;∆ϕRL := ϕRL −ϕ and ϕRR = ϕLL = ϕ.

The gravitational interaction before the light pulses impinge on the
first mirror is discarded, as we assume that the splitting and refo-
cusing durations in the transverse direction are negligible compared
to the travel time in the longitudinal direction, where the interaction
takes place. Furthermore, by using appropriate waveplates one can
always ensure that the four different branches are all described by
either left or right-handed circular polarization states [272]. The rea-
son why we assume circular polarization in the longitudinal stage
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is not fundamental, but will simplify calculations as the associated
the stress-energy density is constant. One may very-well relinquish
this assumption, however longitudinally polarized pulses have stress-
energy densities which are modulated along the propagation direc-
tion [273].

Given our setup and assumptions, the photonic DIGME consid-
ered here is operationally equivalent to the massive DIGME. Con-
trary to the massive DIGME, where the entangling phases are easily
expressed under the Newtonian approximation and a Schrödinger
propagator, there are no such simple toy models in the photonic case.
In the following sections, we will take on the calculation of the entan-
gling phases, which constitutes the main task of this investigation.

5.3.3 Metric perturbation of a light pulse

In the massive DIGME protocol as we have presented it, we have
assumed a Newtonian gravitational action-at-a-distance. In order to
enforce the locality of the gravitational field, a Lorentz-covariant de-
scription of the DIGME setup using path integrals was recently pro-
posed [274]. We adopt this approach due to its freedom of choice in
inserting the desired quantities which couple to each other gravita-
tionally through the action.

Let us briefly go over the path integral description of the DIGME
protocol. Given that the internal degree of freedom is entangled with
the spatial mode, the time evolution operators can be expressed as
Ui→f =

∑
σ |σ⟩ ⟨σ| ⊗ Uσ

i→f where Uσ
i→f is defined from the initial

and final total states
∣∣Ψi,f

〉
of the system and fields. We assume that

the field and the systems are not entangled with each other at the
beginning and end of the protocol. Let us state the assumptions in
Ref. [274], adapted for the purpose of our analysis:

1. Gravity is assumed to be weak (ϕ/c2 ≪ 1 where ϕ can be taken
to be an effective Newtonian potential).

2. The beam splitter does not couple to the gravitational field, and
its action is only correlated with the spatial motion of the polar-
ization state.

3. Loop corrections are assumed to be negligible, that is, we work
in the stationary phase approximation.

4. The spatial modes of the different branches are assumed to be
mutually orthogonal.

Under these approximations, the unitary time evolution operator for
a polarization configuration σ reads Uσ

i→f ∝ exp
{(

iSσ

 h

)} ∣∣Ψf
〉 〈
Ψi
∣∣,

where Sσ is the joint on-shell action. There exists a decomposition of
the action into S = S0 + SF with S0 serving as a global phase that is
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independent of σ and a phase which captures the field mediation SF.
The phase can then be expressed as

ϕσ =
SσF[x

sa
a ,F[xsaa ]]

 h
.

The gravitational field sourced by systems considered in the DIGME
protocol can be described as a perturbation of the Minkowski back-
ground metric ηµν. The action for such a linearized theory of gravity
may be derived using standard general relativity [275]. We express
the gravitational field F sourced by light as gµν = ηµν + hµν where
|hµν|≪ 1. We will work with the signature (−,+,+,+). The on-shell
action, after integration by parts, takes the form

SσF =
1

4

∫
d4xhµνT

µν, (66)

where Tµν is the energy-momentum tensor. Here we work in the
Lorentz gauge ∂νh̄µν = 0, where we denote the trace reversal of a
tensor hµν by h̄µν = hµν − 1

2ηµνh and h = ηµνh
µν as the trace

of hµν. The retarded solution of the linearized Einstein field equa-
tions [266, 274] is

hµν(t, x⃗) =
4G

c4

∫
dx ′3ηµαηνβ

T̄αβ(⃗x ′, tr)
|⃗x− x⃗ ′|

, (67)

where tr := t− |⃗x− x⃗ ′|/c defines the retarded time.
In order to determine the action in the photonic DIGME protocol,

we need to establish the form of the stress energy tensor, and the
metric perturbation. To do so, let us start by inspecting a simpler
situation: the stress energy components and metric perturbations as-
sociated with the propagation of a single light pulse over a distance
D, as was carried out in Ref. [273].

The energy-momentum tensor of a single pulse Tµν
0 needs to ac-

count for contributions from the emitter and the absorber, to sat-
isfy energy-momentum conservation. In free space and flat space-
time [276] we can express Tµν using the field strength tensor Fµν

as Tµν
0 = 1

µ0

(
FµαFνα − 1

4η
µνFαβF

αβ
)
, where µ0 = 4π · 10−7 H ·m−1

is the vacuum permeability. Considering an electromagnetic plane
wave propagating in vacuum in the z-direction, the corresponding
energy-momentum tensor depends only on ct− z. The energy den-
sity is given by u = 1

2(ε0|E⃗0|
2+ 1

µ0
|B⃗0|

2) = ε0|E⃗0|
2, where the vacuum

permittivity is ε0 = 8.85 · 10−12 F ·m−1.
Thus the only non-vanishing components of the stress-energy ten-

sor are given by T000 = T0z0 = Tz00 = Tzz0 = u, and it follows that
the only non-vanishing components of the metric perturbation for a
single pulse are h00 = hzz = −h0z = −hz0 = h

p
0 . All in all, the en-

ergy density for a pulse propagating in the +z direction is a function
of the combination ct− z only. We consider a pulse model in which
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T0
µν = Au(ct− z)δ(x)δ(y), where A is the effective area of the pulse

in the xy-plane.
Consequently, evaluating the 00-component of Eq. (67) yields

h
p
0 =

4GA

c4

∫
dz ′

u(ctr(x,y, z, t, z ′) − z ′)√
ρ(x,y)2 + (z ′ − z)2

, (68)

where tr = t−
√
ρ(x,y)2 + (z− z ′)2/c is the retarded time, and we

define ρ(x,y) =
√
x2 + y2. To work out the integral, we perform the

variable substitution ζ(x,y, z, z ′) = (z ′ − z) +
√
ρ(x,y)2 + (z ′ − z)2 in

Eq. (68) and arrive at

h
p
0 =

4GA

c4

∫ζ(x,y,z,b)

ζ(x,y,z,a)
dζ
u(ct− ζ− z)

ζ
. (69)

The integration boundaries a,b of each pulse contribution are chosen
from the intersection of the world sheet boundaries of each pulse with
the past light cone J− of an observer located at spacetime position
xµ = (x,y, z, t). By denoting the pulse length L, one may define the
auxiliary integration boundaries ā, b̄ as solutions of tr(z ′) = z ′+L

c

and tr(z ′) = z ′
c . Explicitly: ā(x,y, z, t) = z+

(ct−L−z)2−ρ(x,y)2
2(ct−L−z)

b̄(x,y, z, t) = z+
(ct−z)2−ρ(x,y)2

2(ct−z)

.

Using these auxiliary boundaries, one can rewrite the integration
boundaries a,b as

[a,b] =



∅, ā < b̄ < 0 < D (Zone I−)

∅, 0 < D < ā < b̄ (Zone I+)

[0, b̄], ā < 0 < b̄ < D (Zone II)

[ā, b̄], 0 < ā < b̄ < D (Zone III)

[ā,D], 0 < ā < D < b̄ (Zone IV)

[0,D], ā < 0 < D < b̄ (Zone V)

The different zones are shown in Fig. 20. Zones I± are causally dis-
connected from the pulse emission and thus correspond to vanishing
metric perturbations. Zone II is defined by the pulse emission from
the mirror, zone III only describes the free propagation of the pulse
(excluding emission and absorption), zone IV describes pulse absorp-
tion only, while zone V describes both emission and absorption.

For circularly polarized pulses, the energy density is constant along
the propagation axis u(ct− z) = u0, and so Eq. (69) takes the simple
form

h
p
0 [x,y, z, t] =

4GA

c4
u0 ln

(
ζ(x,y, z,bx,y,z,t)

ζ(x,y, z,ax,y,z,t)

)
, (70)

where we use an index notation for legibility ax,y,z,t := a(x,y, z, t)
and similarly for b.
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Figure 20: Sketch of the spacetime diagram of a single pulse propagating in
the z direction. The various zones define different metric pertur-
bations and arise from the intersection of the pulse’s world sheet
with the past light cone J− of a spacetime event xµ. The world
sheet of the single pulse is spanned by A,B,C,D. The pulse be-
gins to be emitted at event A, and its emission ends at B. Its ab-
sorption starts at C and ends atD. Figure adapted from Ref. [266].

5.3.4 Estimation of the entangling phase

With this preliminary investigation, we are now ready to discuss the
case of interest for DIGME. We consider two counter-propagating
identical laser pulses, each with stress-energy tensor Tµν

a . We assume
that the effective size of the two pulses is much smaller than their sep-
aration, so that diffraction effects are not a concern. The total stress-
energy tensor takes the form

Tµν(t, x⃗) =
2∑

a=1

Tµν
a = Au0

2∑
a=1

δ(x− xa)δ(y− ya), (71)

where A is the effective area of each pulse in the transverse plane
and (xa,ya) are the respective positions of the pulses in the xy-plane.
The two counter-propagating light pulses evolving parallel to the z-
axis are initially separated by a distance approximately equal to D,
with a sufficient separation along the x-axis D ≪ x2 − x1 ̸= 0. We
also set y1 = y2 = const.

In the framework of linearized gravity, we obtain the total metric
perturbation for two pulses by adding the separate contributions of
each single pulse. For two counter-propagating pulses along the z-
direction that have respective transverse x coordinates x1,2, we obtain:

hp[x,y, z, t] = hp1 [x,y− y1, z, t] + hp2 [x,y− y2, z, t]

= hp0 [x− x1,y− y1, z, t] + hp0 [x− x2,y− y2,−z+D, t].
(72)
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(a) Time t = 2. (b) Time t = 4.

Figure 21: Plots of the total metric perturbation hp sourced by two counter-
propagating pulses located at x1 = 1, x2 = 2 in the xz-plane.
Parameter values D = 5,L = 1 and 4GA

c4
u0 = c = 1. Lengths are

in units of ct.

The total metric perturbation hp for two counter-propagating light
pulses in the xz-plane is represented in Fig. 21.

We are now in good position to express the action associated with
the process of interest. By substituting Eq. (71) into Eq. (66), one can
establish

SσF = κ

∫∞
z=−∞ dz

∫τ
t=0

dt

{
ln
(
ζ(0, 0, z,b0,0,z,t)

ζ(0, 0, z,a0,0,z,t)

)
+ ln

(
ζ(x1 − x2, 0,−z+D,bx1−x2,0,−z+D,t)

ζ(x1 − x2, 0,−z+D,ax1−x2,0,−z+D,t)

)
+ ln

(
ζ(x2 − x1, 0, z,bx2−x1,0,−z,t)

ζ(x2 − x1, 0, z,ax2−x1,0,z,t)

)
+ ln

(
ζ(0, 0,−z+D,b0,0,−z+D,t)

ζ(0, 0,−z+D,a0,0,−z+D,t)

)}
,

(73)

where τ is the interaction time and κ := 4GA2u20/c
4. The values for

x1,2 used for the different spatial branches are shown in Table 5.

Mode pair

x-coordinate
x1 x2

LL 0 d

LR 0 d+∆x

RL ∆x d

RR ∆x d+∆x

Table 5: The values for x1,2 in Eq. (73) are shown for the different spatial
branches LL, LR, RL, RR.
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From the expression of the action, we can now proceed to find
the phase evolution associated with the counter-propagation of light
pulses in each pair of modes. Given that hp0 [x, ·] = h

p
0 [−x, ·], we con-

sider the relative phase factor ei∆ϕRL for the pair of modes |RL⟩ that
are the closest to one another:

∆ϕRL =
Au0

 h

∫∞
z=−∞ dz

∫τ
t=0

dt
{
h
p
0 [d−∆x, 0,−z+D, t]

+ hp0 [d−∆x, 0, z, t] − hp0 [d, 0,−z+D, t] − hp0 [d, 0, z, t]
}

.

To numerically integrate hp0 [x,y, z, t] with sufficient accuracy, the z-
integration limits increase with the interaction time τ. As we can see
from Fig. 22 showing the integrand of the relative phase, this relative
phase ∆ϕRL = ϕRL −ϕLL is computed by taking those z values that
are still causally connected to the emission of the two light pulses
up to interaction time τ into account. Entanglement is not generated
for events that are spacelike separated, in accordance with previous
findings [274]. As one can notice from Fig. 22, the integrand of the
relative phase converges as the interaction time τ is increased. This is
due to the finite length of the interferometer D.
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Figure 22: Plot of the integrand of the relative phase ∆ϕRL with parameters
D = 3m and L = 1 m in the tz-plane. We have set 4GA

c4
u0 = c = 1.

Lengths are in units of ct.

In the massive DIGME protocol, the particles are kept at constant
separation, hence the phase accumulation grows with the interferom-
eter length (as its square root in the case of freely falling masses). In
the photonic protocol, increasing D beyond many pulse lengths does
not give more phase signal, as the pulses are counter-propagating
and most of the relative phase accumulation occurs when the pulses
are close to each other.
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As the numeric evaluation of the total phase term requires incor-
porating large sections of the full spacetime integral

∫∞
z=−∞ ∫τ

t=0 dtdz

for which no substantial phase is accumulated, we can restrict the
integration domain to 0 ⩽ t ⩽ 2D/c and −D − L ⩽ z ⩽ D + L, a
spacetime region encapsulating the pulse crossing and mutual inter-
action process, which will give a reasonable approximation to the
actual accumulated phase.

Once this phase is evaluated, we certify entanglement in the same
way as in the massive DIGME propocol. In Sec. 5.2.2 we have estab-
lished an optimal witness W1 = 1⊗1−X⊗X−Z⊗ Y − Y ⊗Z, where
{1,X, Y,Z} forms the set of single qubit Pauli operators. In the noise-
less scenario, the witness expectation value is simply

Tr[W1 |θ⟩⟨θ|] = 1− (sin (∆ϕLR) + sin (∆ϕRL))

−
1

2
(1+ cos (∆ϕLR −∆ϕRL)) ,

where |θ⟩ is the bipartite pure polarization state. This witness will
pick up entanglement, in the noiseless case, as soon as the relative
phase accumulation is appreciable.

Let us now give some parameters which would yield an apprecia-
ble relative phase. For the calculation to be valid, we remind that
diffraction and interference effects must be neglected, thus we must
operate in the limit d − ∆x ≫ λ where λ is the central wavelength
of the pulse. To conservatively satisfy this condition, let us choose λ
such that d−∆x = 10λ. To arrive at a figure of merit on the feasibility
of the protocol, let us enforce the condition ∆ϕRL ∼ 1 rad and deter-
mine corresponding parameters satisfying this. In a later section, we
shall discuss this figure of merit with regards to its current feasibility
and the challenges to overcome.

Considering typical over-the-counter nanosecond pulsed lasers, we
assume a central wavelength λ = 1µm and a pulse length L = 0.3m.
Choosing a splitting distance ∆x = 1 cm satisfying ∆x = d− 10λ in
order to have negligible beam overlap, we also set a typical laboratory
friendly interferometer length D on the order of a few meters so that
D/L ≈ 10. Since for a laser with power P we have P = Au0c, we can
write κ = 4GA2u20/c

4 = 4GP2/c6. Numerics show that achieving an
appreciable relative phase of ∆ϕRL ≈ 0.29 rad requires a power on
the order of P ≈ 30PW. Such a pulse contains an average photon
number N = PLλ/(hc2) ≈ 1026, an admittedly demanding figure, as
we shall discuss in the next section. This estimate may be refined by
considering higher-order contributions in the quantum field theoretic
formulation, and accounting for the bandwidth of the pulse.
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5.3.5 Future challenges

We have seen that the photonic DIGME protocol may sidestep some
difficult problems arising in the matter version, and shown that one
could in principle generate appreciable phase with light pulses. This
being said, the implementation of the photonic DIGME protocol is
by no means straightforward. To formulate more precise claims on
its feasibility, we lay out some further questions that may constitute
interesting future investigations.

The most critical drawback of using light in the DIGME protocol
is by far the weakness of the gravitational effects of light, and so the
need for quite intense light pulses. It would be tempting to think that
current laser technology boasting petawatt ultrashort pulses [277]
may already allow the implementation of the protocol. However there
are at least two issues that arise. First is the control of high-intensity
light pulses, which are known to damage the optical components
constituting the whole apparatus. Second, and more serious, is the
fact that high-power laser pulses are simply not usable for DIGME
proposals as they are classical light states (in the sense that their
Glauber-Sudarshan P function is positive), and as such, are not entan-
gled through beam splitting. To carry out a DIGME experiment, one
thus has to resort to non-classical states light, for which high average
photon number states are much harder to achieve. To have an ideal
comparison with the massive case, in the photonic DIGME proposal,
one would like to obtain the maximally entangled state after beam
splitting in each interferometer |ψ⟩out =

1√
2
(|N⟩x |0⟩z + |0⟩x |N⟩z), of-

ten called NOON state, the generation of which has been widely
studied [278–283]. That being said, current high-NOON states con-
tain N < 10 photons, and as such the generation of an appreciable
metric perturbation from a NOON state will remain hardly conceiv-
able in the near future.

Nevertheless, it can be argued that the photonic DIGME protocol
deserves further attention. As we have said, having a very low single-
shot phase signal does not necessarily constitute an insurmountable
obstacle. Some features of the photonic version, such as absence of
non-gravitational entangling forces between the light pulses, com-
bined with the use of an optimal entanglement witness, and the
rate at which measurements can be repeated, may tip the scale in
its favor. While current NOON states are very weak, this limitation
is not fundamental, barring any spontaneous collapse process a la
Penrose [131] which would in any case also affect the matter DIGME
protocol. For instance, the approach presented in Ref. [284] to gen-
erate NOON states with large N is, in principle, scalable up to arbi-
trarily high photon numbers. Worth considering, is also the genera-
tion of approximate NOON states from two-mode squeezed vacuum
states [271].
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To increase the gravitational phase signal, one may also consider
using fiber loops in the split branches of the interferometers. Along a
single loop, the light pulses cross one another in opposite directions
twice. In a rough first approximation, we can generalize our estimate
to l loops by multiplying the phase by a factor 2l, where the length D
for the single-shot experiment would correspond to the length of half
a loop. In all due rigour, one should carry out the derivation of the
metric perturbations in the loop geometry where the light beams are
not always counter-propagating in a fixed direction, one also needs to
take into account the stress-energy contribution of light propagating
in a medium as laid out in Ref. [255]. This is by no means a straightfor-
ward analysis, as adding fibers and having the light follow a longer
optical path also comes with drawbacks, such as pulse broadening,
power loss, thermal noise, birefringence etc...

Another issue, that is not specific to the photonic version however,
is the presence of background noise. Although the photonic variant
is devoid of additional unwanted known interactions, there remains
background noise from the surrounding mass distribution. One way
to offset the noise is to consider a background with a quasi-static
mass density distribution. The experiment may be run first with co-
propagating light pulses. In vacuum, the pulses will not interact and
thus any signal will be due to noise. This noise may then be offset
from the signal obtained with counter-propagating pulses.

Another advantage of the photonic version is worth mentioning: to
increase the interaction strength, the separation between the closest
branches of the light beams may be tuned to be very small, even
completely superimposed. This is conditioned to interference being
accounted for, and the experimental ability to distinguish between the
pulses at close distances with the inclusion of diffraction effects [285].
One would also need to rule out the contribution of direct photon-
photon scattering.

In analogy to the generalisation to arbitrary geometries and qudits
for the massive DIGME protocol [286, 287], one may also consider an
array of light beams to boost the gravitational phase induction. In this
manner, it may be interesting to examine whether there is any setup
that entangles faster than the one studied in this work.

The photonic implementation may open up a new window into
investigating gravity mediated entanglement, and using photons, as
opposed to massive objects in a near-future experiment could also
shed light on other theoretical aspects and features of gravity that
cannot be witnessed using the latter.

5.4 conclusion

Recent proposals aiming to witness GME between two systems [219,
220] have given a second wind to the age-old investigation of unified
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quantum gravity. Although the experimental requirements remain fu-
turistic, some important theoretical questions, such as the plausibility
of using position eigenstates, the possibility of a better witness, the
necessity of a CP closest approach limit, and the significance of exper-
imental data, were left open. In our investigation, we have addressed
those questions and shown that the position eigenstate is a valid ap-
proximation, for the calculation of entanglement, to a good range of
thermal states in the predicted experiment durations. By introducing
an optimal entanglement witness, we were able to show that entan-
glement revelation is possible in less free-fall time, with higher deco-
herence rates. We have furthermore demonstrated that a statistical ap-
proach to the witness method decomposed into Pauli measurements
allowed to discern gravitational from uncertain non-gravitational con-
tributions. We have spelled out and closed a potential loophole in the
witness based approach to establishing the entangling capacity of the
gravitational interaction.

While our first analysis aimed to refine and improve certain aspects
of the massive DIGME proposal, we have also studied a photonic vari-
ant motivated by some potential advantages, despite the well-known
weak coupling of light to gravity. First and foremost the usage of light
instead of matter relieves us of unwanted and otherwise unavoidable
entangling effects such as dipole-dipole interactions or Casimir cou-
pling, and difficulties in controlling the motion of massive objects
such as microdiamonds with an nitrogen vacancy center. Second, the
doubly interferometric setup may also serve to demonstrate gravita-
tional coupling between light beams, through dephasing, rather than
spatial deflection. Furthermore, a photonic experiment allows us to
build up statistics more reliably than with matter, and the certifica-
tion of entanglement unavoidably will require many repetitions of bi-
partite Pauli measurements. Last but not least, the photonic DIGME
protocol is a fully relativistic test of GME, and as such may be seen
as testing relevant aspects of the quantum nature of gravity. In our
analysis, we considered the basics of the experimental implementa-
tion using two Mach-Zehnder interferometers and derived the metric
perturbation sourced by two counter-propagating light pulses using
linearized gravity. Through the path integral formalism, we have de-
rived the action of the pulses leading to gravitational phase induction,
and for some parameters we have given a figure of merit of the aver-
age photon number required for an appreciable signal.



6
E P I L O G U E

Never let the future disturb you. You will meet it, if you have to,
with the same weapons of reason which today arm you against the present.

— Marcus Aurelius [288]

In this thesis, which now draws to a close, we have presented var-
ious investigations of fundamental physics using the tools of quan-
tum information theory and quantum control. In particular, we have
examined how table-top experiments revolving around correlations
– between quantum measurements, between the degrees of freedom
of a quantum probe, or of quantum theory itself – may shed light on
basic conceptions we hold about nature.

In our introductory chapter, we have given some historical back-
ground, both from the point of view of epistemology on the time scale
of the millennium, and from the point of view of modern physics of
the last century. This was followed by an extensive presentation of key
results and concepts from mathematics, quantum physics, quantum
optics and quantum information theory, in our second chapter, which
served as a foundation to the work presented in this dissertation. In
the following three chapters, which formed the core of this thesis, we
have contextualized and reported the results of various explorations.
These have ranged from fundamental considerations at the crossroads
between foundations of physics and quantum optics, to the quest for
empirical evidence of gravitational deviations to quantum dynamics
in optomechanics, and the pursuit of non-classical signatures of the
gravitational interaction.

In Chapter 3, we investigated the Leggett-Garg inequalities which
constrain the two-point correlations of measurement results obtained
on a given system at various points in time. It was already estab-
lished, in the foundations of quantum mechanics, that these inequali-
ties could only test the most constrained type of macroscopic realism.

From a practical stance, their violation is widely considered a wit-
ness of non-classical behavior. In order to scrutinize its value as a
witness of non-classicality, we have taken as a benchmark the well for-
malized definitions of classicality from the realm of quantum optics.
To do so we have examined the possibility of violating the Leggett-
Garg inequalities using coherent states of light in a Mach-Zehnder in-
terferometer. The main challenge on the way to establish a non-trivial
violation with coherent states, was to find an observable assignment
which would simultaneously be macroscopically definite when using
coherent states, and that could allow ideal negative measurements.
After having found such an assignment, we have demonstrated that
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coherent states, despite being the golden standard of classicality in
quantum optics, do violate the Leggett-Garg inequalities.

In an endeavour to more precisely determine the origin of the vi-
olations, we have considered surrendering phase reference by taking
decohered input states. The possibility of a violation with a thermal
state was an unexpected discovery. In the setting considered in our
analysis, it turned out that the Leggett-Garg inequalities were essen-
tially testing the minuteness of the vacuum component in a given
state, be it coherent or not. There are two manners in which to inter-
pret this result, the first (and rather trivial one), is that even the most
classical state of light is in fact simply non-classical, and unsurpris-
ingly violates the Leggett-Garg inequalities. The second speaks rather
of the Leggett-Garg inequality as a witness of non-classicality: while
it may be a useful signature, their violation certainly does not carry
as strong a consequence as that of Bell’s.

In point of fact, the Leggett-Garg inequalities, contrary to Bell’s, are
not necessary and sufficient conditions for macroscopic realism, for
lack of an equivalent Fine theorem [289]. Tighter conditions, called
“no-signalling-in-time” were put forward [157], and may prove both
more easily violable and interpretable. An interesting follow up in-
vestigation at the confluence with the quest for empirical evidence of
non-classical gravity, would be the conception of a no-signalling-in-
time violating protocol involving gravitational motion, building on
an approach which made use of the Leggett-Garg inequalities [290].

In Chapter 4, we revisited an optomechanical protocol which aims
to uncover deviations to standard quantum mechanical predictions
due to gravity, taking the form of a generalized uncertainty principle.
The optomechanical protocol under study was designed to detect a
nonlinear phase contribution that would arise from the deformation
of the equal time commutation relations between the position and
the momentum of a mesoscopic oscillator driven by an optical field.
Not long after such proposals were put forward, approaches of this
kind to test Planck scale physics were faced with a critical no-go the-
orem, stating that the amplitude of the non-standard deformations
had no reason to be the same for elementary particles and for mas-
sive composite systems of such particles. Particularly, when the sys-
tems under study are described by their center of mass coordinates
and total momenta, non-standard corrections were shown to decay
with the square of the number of elementary constituents, under the
quasi-rigid approximation.

In order to circumvent the no-go theorem, we began by re-deriving
the non-standard signature captured by the optomechanical protocol
from first principles, using the interaction picture and directly calcu-
lating the time propagator of the optomechanical system using a Mag-
nus expansion. A significant hurdle on the way to our objective was
the quartic momentum term arising in the non-standard interaction
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Hamiltonian, which set the motion-independent phase to be the fifth
order Magnus term. An admittedly heavy expression. Relinquishing
the mechanical oscillator’s rigidity, by describing it as a correlated
many-body system the internal energy of which is given by a general
hessian, only added to the arduousness of the algebra. These efforts
did not go unrewarded, as we have presented a main result featur-
ing a closed form expression of the non-standard signature, which is
valid for all many-body systems perturbed by an optical field, with
an arbitrary optomechanical coupling function, to first order in the
non-standard correction.

We have applied our result to the case of coupled mechanical os-
cillators, evolving under a pulsed optical interaction, and derived a
more specific closed form expression. Interestingly, numerics have re-
vealed a superquadratic scaling of the non-standard signature, with
the number of constituents of the system, demonstrating that reso-
nance effects involved in internal motional correlations may amplify
non-standard signals in spite of decaying non-standard corrections.
The generality of the results we have shown may serve future investi-
gations of fundamental physics using optomechanics.

From the theoretical perspective, our analysis revolved around a
protocol aiming to test the generalized uncertainty principle. While it
has been widely investigated by the physics community, only modi-
fications to the uncertainty relating the position and momentum con-
jugate observables have been considered. There is no mention in the
literature, to this day, of the generalization of the time-energy uncer-
tainty relation. This is problematic as the heuristic arguments giving
rise to generalized uncertainty principles should not only affect the
uncertainty in lengths, but by relying on general-relativistic consid-
erations (namely black hole mechanisms) should also result in addi-
tional uncertainties in durations. The difficulty in establishing modi-
fied time-energy uncertainty relations arises from the fact that time is
not a quantum observable1 hence the standard operator approach to
derive Heisenberg inequalities, from commutation relations that are
to be deformed, do not apply. A possible path of investigation would
be to incorporate effects expected from quantum gravity into a recent
derivation of the time-energy uncertainty relations [291] based on the
Page-Wootters relational time [292].

In Chapter 5, we introduced improvements and variants to an ex-
perimental proposal designed to expose non-classical features of grav-
itation, specifically through its possible entangling capacity. We have
first considered the original proposal which uses massive systems
as a platform for gravity mediated entanglement, and shown that it
was viable even for realistic thermal motional states. To demonstrate
its robustness, we have proposed an optimal entanglement witness,

1 A time observable would result in an unbounded Hamiltonian, as per Pauli’s objec-
tion.
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and shown that the careful statistical analysis of Pauli measurement
outcomes involved in the witness expectation value estimation, may
allow to certify gravitational entanglement despite the presence of
other, potentially stronger entangling interactions (such as Casimir
coupling). We have also shown that the actual differential nature of
the protocol makes the statistical analysis tolerant to uncertainties in
non-gravitational couplings, and that using state tomography would
further allow to close a non-monotonicity loophole.

Apart from conceptual improvements that may alleviate the chal-
lenging requirements of the massive version of the experiment, we
have also considered using light pulses as an alternate platform for
the doubly interferometric gravitational entanglement. Motivated by
the establishment of a witness that may detect entanglement for arbi-
trarily weak phase signal and the importance of repeatability, it was
a natural continuation to consider a photonic variant, given the sta-
tistical reliability of optical experiments, and the absence of Casimir
coupling. We have derived a formula for the entangling phase using
the path integral formalism, based on previous results on the metric
perturbations sourced by a light pulse, and given a figure of merit of
the required optical power required to achieve an appreciable phase.

Some future directions worth exploring include testing the entan-
gling capacity of the Casimir-Polder interaction itself, as a first step
towards the more ambitious gravitational test. The doubly interfer-
ometric protocol in combination with statistical analysis may also
be able to rule out some models of non-local gravity [234]. Further
analysis of this setup may also contribute to investigations into the
discreteness of time [293].

All in all, the investigations presented in this thesis serve to illus-
trate how fundamental questions about nature, be it about the elu-
sive quantum-classical boundary, or about the possibly related quest
for a theory of quantum gravity, could benefit from the theoretical
framework and the experimental platforms of the flourishing field of
quantum information science.

The general outlook for quantum information science is a very ex-
citing one. Many challenges for fundamental physics lie ahead, and
the combined efforts from the high energy physics and the quantum
information communities may enkindle the new paradigm shift from
which, one would hope, a better understanding of gravity and the
measurement problem would emerge.

From the perspective of funding volume all around the world, it
seems like the early 2020s marked the beginning of a new era, driven
by the vast amount of resources pouring into the development of
quantum technologies for their strategic applications. These range
from quantum sensing [294, 295], to quantum secure communica-
tions [296], all the way up to hybrid computational methods like
quantum approximate optimization algorithms [297] which already
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draw interest from financial businesses [298]. Recent years have also
seen the humble beginnings of the quantum internet [299] and the
first audacious claims of quantum supremacy [300].

The immense practical outcomes of quantum theory had once si-
phoned talents and attention away from its most fundamental as-
pects. It now seems like the new generation of quantum technologies,
with their ever more miraculous potential applications, may inciden-
tally grant precious resources to research efforts in the foundations of
quantum theory: perhaps the most exciting theory of nature mankind
has ever designed. One that finds itself at the crossroads between
physics, computer science and philosophy. Predicting the future has
always been a risky endeavor, but the new formulations of quantum
theory [301, 302], based on measurement outcomes, their correlations
and fundamental information theoretic principles, could turn out to
be the ones to stand the test of time.



Part III

A P P E N D I X
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C O M P L E M E N T S T O C H A P T E R 1

digressio personalis

This section contains a few opinionated words to explain why I find
Relational Quantum Mechanics (RQM) convincing. Let us begin with a
modest but fascinating question, the investigation of which may shed
some light on common ontological beliefs: is π a physical constant or
a mathematical number?

My take on this question, is that the tempting and seldom ques-
tioned dichotomy between what is physical, and what is mathemati-
cal, may be yet another Aristotelian delusion. π, one may say, is a ge-
ometric constant, and hence belongs to mathematics. However, what
is geometry, but the physics of the vacuum1? As it appears, π may
serve as a prime example to show why the mathematical-physical di-
chotomy must be left behind. Had the universe not been locally flat,
or more drastically dynamical, triangles would not have had constant
sums of angles, and the perimeters of circles would have had vari-
able relationships to their radii. Looking back at history, with what
we now know of the much more sophisticxated theory of differential
geometry that underpins general relativity, it is not surprising that π
was discovered so early on: it is after all one of the first numbers one
arrives at through a direct experience of the world.

At this stage, it merely seems that I am stating the obvious: some
mathematical objects have marked physical manifestations. Further-
more, this does little to prove that the mathematical-physical distinc-
tion is invalid. Indeed, one may ask the same question about another
number: is the imaginary unit i a physical constant, or a mathemati-
cal number? While it seems harder to make a case for the physicality
of i by geometrical arguments, it was recently proven that physical
theories, based on real numbers only, cannot be consistent with quan-
tum mechanical experiments [85]. As such, the presence of complex
numbers in our current description of nature is not a simple matter of
algebraic convenience, it says something much deeper about physics.

If mathematical objects and relations are necessary components of
our description of phenomena, on what grounds may one claim that
they should not be physical? This rhetorical question may look like
I am making a case for ψ-ontology, however I follow this with an-
other query: to the reader who is convinced that the concepts of π
and i among others, are mathematical rather than physical, what then
qualifies a concept to be physical?

1 With no matter, and no fields, but spacetime.
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It is my sentiment that many, perhaps even some physicists, would
come up with an example of a physical concept, such as the elec-
tron. Surely, the electron is more physical than π, is it not? It is an
all too common fallacy to attribute some substance to a concept by
having merely named it. While in the everyday vernacular, we refer
to the electron as if it were an ontological object, as some sort of tan-
gible substance in the vicinity of another palpable substance called
the atomic nucleus, the electron is above all a mathematical concept,
best defined in the theory of quantum electrodynamics. The simple
statement “the electron exists“, in all due rigor is but a practical for-
mulation of “to the best of our knowledge, based on empirical data from
which correlations were analysed, there exists a consistent correspondence
between the relationships inferentially linking together a set of mathematical
concepts to the concept of electron, and the relationships causally linking
together a set of observed events“. That is to say, (successful) physical
concepts are mathematical concepts which, in their inferential rela-
tionships to their neighbouring concepts, weave the same patterns
as the network of observed influences in which the corresponding
phenomenon is observed2. In short, physicality is the consistency of
a correspondence between metaphysical relations and observed phe-
nomenological relations. So where does this leave us with regards to
RQM?

In my view RQM epitomizes an understanding of physics as a
discipline that is not tasked with the establishment of an ontology,
but rather as a human enterprise seeking to speak of nature. RQM,
I gather, constitutes the final steps of the “epistemologization” of
physics. To clarify this statement, let us take a step back and won-
der what it means to have knowledge of a concept A.

Knowledge of a conceptA does not simply come from having given
it a label. Rather, the very definition of a concept emerges from its
relationship to surrounding concepts: this is the very purpose of dic-
tionaries, which do not give any absolute, immediate, fundamental
meaning to any word, but rather weave a web of relationships be-
tween different words, called definitions. The same observation holds
for the truth or falsehood of any logical statements, which are essen-
tially relational values: True and False are values which simply divide
statements within a scientific theory into two equivalence classes. A
statement is only true, or false, with respect to a consistent set of
axioms3.

If there is no absolute meaning to a word, or absolute truth to a
statement, should there be any reason why the lack of absolute facts
in RQM be of particular concern? While RQM may seem radical at
first reading, I have grown to believe that on the contrary, postulating

2 For a much more rigorous presentation of causal-inferential theories, I strongly rec-
ommend Ref. [303].

3 Barring issues of undecidability, which do not arise without multiplication, such as
in Presburger arithmetics [304].
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a fundamental absolute ontology, be it deities, celestial spheres, phys-
ical properties or measurement results, is a much more radical stance,
perhaps the vestige of an Aristotelian fantasy that is drawing its last
breaths.



B
C O M P L E M E N T S T O C H A P T E R 2

b.1 algebraic structures

Definition 42 (Groups). A set E equipped with an internal binary opera-
tion + : E2 → E is said to be a group when the following three conditions
are satisfied:

1. ∀(x,y, z) ∈ E3, (x+ y) + z = x+ (y+ z) (associativity).

2. ∃e ∈ E, ∀x ∈ E, x+ e = e+ x = x (identity element).

3. ∀x ∈ E, ∃y ∈ E, x+ y = y+ x = e (inverse element)1.

Moreover, if ∀(x,y) ∈ E2, x+y = y+ x then the group is said to be abelian
or commutative.

We can now use the concept of group to build up more sophisti-
cated structures, such as the field.

Definition 43 (Fields). A set F equipped with two internal binary opera-
tions +, · : F2 → F is said to be a field when the following three conditions
are satisfied:

1. (F,+) is an abelian group (we shall denote its identity element 0).

2. (F\{0}, ·) is an abelian group.

3. ∀(a,b, c) ∈ F3, a · (b+ c) = a · b+ a · c (distributivity).

From this, one arrives at the concept of vector space.

Definition 44 (Vector spaces). A set V equipped with an internal binary
operation + : V2 → V and an external binary operation · : F × V → V is
said to be a vector space over the field F when the following six conditions
are satisfied:

1. (V ,+) is an abelian group.

2. F is a field (multiplicative identity denoted as 1).

3. ∀(a,b, v) ∈ F× F× V , a · (b · v) = (ab) · v (compatibility).

4. ∀v ∈ F, 1 · v = v (identity element of scalar multiplication).

5. ∀(a,u, v) ∈ F× V × V , a · (u+ v) = a · u+ a · v (distributivity).

1 It can technically be shown that the left inverse is equal to the right inverse, and
so forms a unique bilateral inverse. For simplicity we have embedded this into the
definition of a group.
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6. ∀(a,b, v) ∈ F×F× V , (a+ b) · v = a · v+ b · v (distributivity).

When F = R or F = C then V is called respectively a real vector space or a
complex vector space.

b.2 topology

Definition 45 (Metric spaces). A set E equipped with a real valued func-
tion d : E→ R is said to be a metric space, and d is called a distance, when
the four following conditions are satisfied:

1. ∀(x,y) ∈ E2, d(x,y) ⩾ 0 (positivity).

2. ∀(x,y) ∈ E2, d(x,y) = d(y, x) (symmetry).

3. ∀(x,y) ∈ E2, d(x,y) = 0 =⇒ x = y (identity of indiscernibles).

4. ∀(x,y, z) ∈ E3, d(x, z) ⩽ d(x,y) + d(y, z) (triangle inequality).

Definition 46 (Normed spaces). A vector space V over field F equipped
with a real valued function N : V → R is said to be a normed vector space,
and N is called a norm, when the four following conditions are satisfied:

1. ∀x ∈ V , N(x) ⩾ 0 (positivity).

2. ∀x ∈ V , N(x) = 0 =⇒ x = 0V (identity of indiscernibles).

3. ∀(λ, x) ∈ F× V , N(λx) = |λ|N(x) (homogeneity).

4. ∀(x,y) ∈ V2, N(x+ y) ⩽ N(x) +N(y) (triangle inequality).

Claim 18. A normed vector space (V ,N) is also a metric space where the
distance is defined as d : (x,y) 7→ N(y− x) and is called the norm induced
metric.

Proof. Properties 1, 3 and 4 of the distance are directly inherited from
properties 1, 2 and 4 of the norm. Property 2 follows from the homo-
geneity of the norm, as N(x− y) = N(−(y− x)) = |− 1|N(y− x).

Claim 19. A vector space V equipped with an inner product is a normed
vector space, where the norm is defined by ∀x ∈ V , ∥x∥ =

√
⟨x|x⟩.

Proof. Positivity is trivial. Identity of indiscernibles follows immedi-
ately from the definiteness of the inner product. Homogeneity follows
from sesquilinearity and the fact that ∀λ ∈ C,

√
λλ∗ = |λ|. The triangle

inequality follows from the Cauchy-Schwarz inequality.

Definition 47 (Cauchy sequences). A sequence (un) ∈ EN of elements
of the metric space (E,d) is said to be a Cauchy sequence when

∀ε > 0, ∃n0 ∈N, ∀p,q ⩾ n0, d(up,uq) ⩽ ε,

where d is the distance with which the metric space E is equipped.
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Intuitively one can say that a Cauchy sequence is any sequence for
which the terms uniformly get closer to each other.

Definition 48 (Converging sequences). A sequence (un) ∈ EN of ele-
ments of the metric space (E,d) is said to converge when

∃ℓ ∈ E, ∀ε > 0, ∃n0 ∈N, ∀n ⩾ n0, d(un, ℓ) < ε.

b.3 linear algebra

Definition 49 (Linear independence). A family (vi)i∈I of vectors of a
vector space V over the field F is said to be linearly independent when∑

i∈I

λivi = 0V =⇒ ∀i ∈ I, λi = 0F.

Definition 50 (Spanning vectors). A family (vi)i∈I of vectors of a vector
space V over the field F is said to span V when

∀v ∈ V , ∃(λi)i∈I ∈ F|I|, v = λivi.

Definition 51 (Bases). A basis2 of a vector space V is any family of vectors
(vi)i∈I which is linearly independent and spans V .

In a nutshell, a basis B of a vector space V is simply a family of vec-
tors with respect to which any other vector admits a decomposition,
and this decomposition is unique. Another way to say it, is that bases
are the spanning families of minimal cardinality, or equivalently, the
linearly independent families of maximal cardinality. This fact leads
to the following definition.

Definition 52 (Dimension). The dimension dim(V) of a vector space V
is the cardinality of its bases.

Combining this with the definition of the scalar product one has
the following important definition.

Definition 53 (Orthonormal bases). A basis B = (vi)i∈I of a vector
space V is said to be orthogonal if ∀(i, j) ∈ B2, i ̸= j =⇒ ⟨vi|vj⟩ = 0.
Additionally, if ∀i ∈ I, ∥vi∥ = 1 then the vectors are said to be normalized,
the basis B is said to be orthonormal and the following relationship holds
∀(i, j) ∈ I2, ⟨vi|vj⟩ = δij.

Definition 54 (Kernels). Let U ∈ L(E, F) where E and F are two vector
spaces. The kernel ker(U) is defined by

ker(U) = {x ∈ E | Ux = 0F},

it is the vector subspace of E which is mapped onto 0F by U.r

2 One can prove that all vector spaces admit bases, using Zorn’s lemma.
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Definition 55 (Eigenelements). Let U ∈ L(E) be an endomorphism of
the vector space E over the field F. An element λ ∈ F is an eigenvalue of U
if and only if

dim(ker(U− λ1E)) ⩾ 1,

the vector space ker(U− λ1E) is then called the eigenspace associated to the
eigenvalue λ, and its non-zero elements are called eigenvectors. The set σ(U)
of eigenvalues of U is called its spectrum3. If dim(ker(U− λ1E)) = 1 then
the eigenvalue λ is said to be non-degenerate. Otherwise, it is degenerate and
its order of degeneracy deg(λ) is the dimension of the associated eigenspace.

3 Formally the spectrum is a set, not a list, and so does not take into account repetitions
due to degeneracy.
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C O M P L E M E N T S T O C H A P T E R 3

c.1 projected output state

We prove the expression ρ̃3(n) = |0,n⟩⟨0,n| as follows.
The intermediate state is

ρ2(n) =
1

2nn!

n∑
k,ℓ=0

(
n

k

)(
n

l

)
(−1)k+ℓa

†k
L a

†n−k
R |0, 0⟩⟨0, 0|aℓLan−ℓ

R .

Applying the beam splitter transformation (26) yields

ρ3(n) =
1

22nn!

n∑
k,ℓ=0

(
n

k

)(
n

ℓ

)
(−1)k+ℓ(a†L − a†R)

k(a†L + a†R)
n−k

|0, 0⟩⟨0, 0| (aL − aR)
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n−ℓ,

which can be expanded into

ρ3(n) =
1

22nn!
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(
n
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)(
n

ℓ

)
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×
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)
× (−1)k+ℓ−i−j

√
(i+ p)!(n− i− p)!(j+ q)!(n− j− q)!

× |i+ p,n− i− p⟩⟨j+ q,n− j− q| .

Then in the evaluation of Tr(Q3 |i+ p,n− i− p⟩⟨j+ q,n− j− q|) the
only non-vanishing terms satisfy either (p = n− i)∧ (q = n− j) or
(q = −j)∧ (p = −i). Note that both cases account for n = 0. Hence,
the relevant submatrix for the calculation of ⟨Q3⟩ is deduced to take
the simple form

ρ̃3(n) =
1

22n

[
|n, 0⟩⟨n, 0|

(
n∑

k,ℓ=0

(
n

k

)(
n

ℓ

)
(−1)k+ℓ

)

+ |0,n⟩⟨0,n|

(
n∑

k,ℓ=0

(
n

k

)(
n

ℓ

))]
− |0, 0⟩⟨0, 0| δn,

where a vacuum contribution was subtracted to correct for the n = 0

case. Since the first double-sum equals δn and the second equals 22n,
the announced result is obtained.
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c.2 coherent input with dephasing

We consider the input state ρ1 = |α⟩⟨α|. Then the intermediate state
with dephasing can be written using Eq. (39) as

ρ2(α,γ) =
∣∣∣ α√

2

〉〈
α√
2

∣∣∣⊗ [γ ∣∣∣−α√
2

〉〈
−α√
2

∣∣∣
+ (1− γ)

+∞∑
n=0

pn

(
α√
2

)
|n⟩⟨n|

]
.

It should be noted that the summed over element |n⟩⟨n| designates
a Fock state, while

∣∣∣ α√
2

〉〈
α√
2

∣∣∣ are coherent states. The first correlator
C12 = ⟨Q1Q2⟩ = ⟨Q2⟩ is

Tr[Q2ρ2(α,γ)]
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which can be simplified to

Tr[Q2ρ2(α,γ)] =
+∞∑
n=1

2γe−
|α|2

2 pn

(
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2

)
+ (1− γ)2e−
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(
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2

)
.

Hence we find C12 = 2e−|α|2/2(1− e−|α|2/2) which, as announced, is
the same as with the depolarized case. This is not surprising as phase
noise does not change the photon number statistics and there has not
been any interference at this stage.

Let us now proceed with the C13 = ⟨Q3⟩ correlator. The output
state can be written as

ρ3(α,γ) = γ(|0⟩⟨0|⊗ |−α⟩⟨−α|)

+ (1− γ)

+∞∑
n=0

pn

(
α√
2

)
B
∣∣∣ α√

2

〉〈
α√
2

∣∣∣⊗ |n⟩⟨n|B†.

In the calculation of Tr[Q3ρ3(α,γ)] the first term is unproblematic (it
gives −γ as all the flux is in the right output mode). Let us focus on
the second term where there is interference between a coherent state
and a Fock state. We write B

∣∣∣ α√
2

〉
|n⟩ = e−|α|2/4

∑+∞
k=0

αk√
2kk!

B |k,n⟩,
so that〈

α√
2

∣∣∣ ⟨n|B†Q3B
∣∣∣ α√

2

〉
|n⟩ = e−

|α|2

2

+∞∑
k,ℓ=0

α∗ℓαk

√
2k+ℓk!ℓ!

⟨ℓ,n|B†Q3B|k,n⟩ .
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Standard calculations using Eqs. (26) and (42) give ∀(ℓ,m,k,n) ∈N4

⟨ℓ,m|B†Q3B|k,n⟩ = −δℓδmδkδn +

√
(k+n)!(ℓ+m)!√
2k+nk!n!ℓ!m!

× (δℓ+m,k+n − (−1)k+ℓδℓ+m,k+n),

from which one finds〈
α√
2

∣∣∣ ⟨n|B†Q3B
∣∣∣ α√

2

〉
|n⟩ = −e−|α|2/2δn.

Hence C13 = −e−|α|2 − γ(1− e−|α|2).
Finally, as previously argued, C23 = 0 by the fact that Q3 is on

average null for trials where Q2 = +1.
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d.1 nested commutators

Recall that the interaction Hamiltonian in the Dirac picture reads

H̃1(t) =
1√
mΩ

g(t)a†aq̃(t) +
1

3
mΩ2βp̃4(t).

Then to first order in β one has

[H̃1(t1), H̃1(t2)] =
1

mΩ
(a†a)2g(t1)g(t2)[q̃(t1), q̃(t2)]

+

√
mΩ3

3
β(a†a)

(
g(t1)[q̃(t1), p̃4(t2)] + (t1 ↔ t2)

)
.

Using the commutator expressions (50), the previous equation takes
the explicit form

[H̃1(t1), H̃1(t2)] = i h
1

mΩ
(a†a)2g(t1)g(t2) sin(Ω(t2 − t1))

+
4

3
i h
√
mΩ3β(a†a)

(
g(t1)p̃

3(t2) cos(Ω(t2 − t1)) − (t1 ↔ t2)
)

. (74)

Since the first term commutes with H̃1, the next nested commutator
to first order in β takes the simple form

[H̃1(t1), [H̃1(t2), H̃1(t3)]] = 4(a
†a)2(i h)2Ωβg(t1)g(t2)

×
(
p̃2(t3) cos(Ω(t3 − t1)) cos(Ω(t3 − t2)) − (t2 ↔ t3)

)
. (75)

The following term is then found to be

[H̃1(t1), [H̃1(t2), [H̃1(t3), H̃1(t4)]]] = 8(a
†a)3(i h)3β

√
Ω

m

×
(
g(t1)g(t2)g(t3)p̃(t4)

3∏
i=1

cos(Ω(t4 − ti)) − (t3 ↔ t4)
)

,

yielding the following form of the fifth order commutator:

[H̃1(t1), [H̃1(t2), [H̃1(t3), [H̃1(t4), H̃1(t5)]]]] =

4!
3
(a†a)4(i h)4β

1

m

4∏
j=1

g(tj) cos
(
Ω(t5 − tj)

)
− (t4 ↔ t5),

as announced.
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d.2 fifth magnus term in the pulsed regime

To work out an analytical expression for the fifth Magnus term, we
begin with Eq. (54) that we rewrite as

Θ5(t) = −
i
 h
8(a†a)4

β

m
(λ1T1 + λ2T2 + λ3T3 + λ4T4).

The λk are known. We seek to express the Tk terms when the in-
teraction g takes the form g(t) = λ

∑3
i=0 δ(t − τi) with no further

specification for τi. Let us define f(t1, ..., t5) :=
∏4

j=1 cos
(
Ω(t5 − tj)

)
.

Then

Tk = λ4
3∑

i1i2i3i4=0

∫
(5,t)

dt5{
δ(tσk(1) − τi1)δ(tσk(2) − τi2)δ(tσk(3) − τi3)δ(tσk(4) − τi4)

× f(tσk(1), tσk(2), tσk(3), tσk(4), tσk(5))
}

−
{
δ(tσk(1) − τi1)δ(tσk(2) − τi2)δ(tσk(3) − τi3)δ(tσk(5) − τi4)

× f(tσk(1), tσk(2), tσk(3), tσk(5), tσk(4))
}

.

Showing explicit calculations for the first term σ1 = (54321) we have

T1 = λ4
3∑

i1i2i3i4=0

∫
(5,t)

dt5δ(t5 − τi1)δ(t4 − τi2)δ(t3 − τi3)

×
{
δ(t2 − τi4)f(t5, t4, t3, t2, t1) − δ(t1 − τi4)f(t5, t4, t3, t1, t2)

}
.

Integrating the δ distributions yields

T1 = λ4
3∑

i1i2i3i4=0

H(t, τi4 , τi3 , τi2 , τi1)

×

(∫t
τi4

ds−

∫τi4

τi3

ds

)
f(τi1 , τi2 , τi3 , τi4 , s),

where H(a,b, c,d, e) designates the succession of Heaviside functions
H(a,b, c,d, e) = H(a− b)H(b− c)H(c− d)H(d− e). In a similar fash-
ion, from σ2 = (15423) we obtain

T2 = λ4
3∑

i1i2i3i4=0

H(t, τi1 , τi4 , τi3 , τi2)

×

(∫τi4

τi3

ds−

∫τi1

τi4

ds

)
f(τi1 , τi2 , τi3 , τi4 , s).
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For the third permutation σ3 = (14325), one finds

T3 = λ4
3∑

i1i2i3i4=0(
H(t, τi1 , τi4 , τi3 , τi2)

∫τi2

0

ds−H(t, τi1 , τi3 , τi2 , τi4)
∫τi1

τi3

ds

)
f(τi1 , τi2 , τi3 , τi4 , s).

Finally, from σ4 = (15324) it follows that

T4 = λ4
3∑

i1i2i3i4=0(
H(t, τi1 , τi4 , τi3 , τi2)

∫τi3

τi2

ds−H(t, τi1 , τi3 , τi4 , τi2)
∫τi1

τi3

ds

)
f(τi1 , τi2 , τi3 , τi4 , s).

Summing up these expressions, noting that λ1 = λ3 = λ4 = − 1
30 and

λ2 = 4
30 one arrives at

4∑
k=1

λkTk =
λ4

30

3∑
i1i2i3i4=0

{
H(t, τi4 , τi3 , τi2 , τi1)

(∫τi4

τi3

ds−

∫t
τi4

ds

)

+H(t, τi1 , τi4 , τi3 , τi2)

(
4

∫τi1

τi3

ds−

∫τi3

0

ds

)

+H(t, τi1 , τi3 , τi2 , τi4)

(∫τi1

τi3

ds

)

+H(t, τi1 , τi3 , τi4 , τi2)

(∫τi1

τi3

ds

)}
f(τi1 , τi2 , τi3 , τi4 , s).

(76)
Thus the fifth order Magnus term can be expressed as follows:

Θ5(t) = −
i
 h

4!
3
(a†a)4

β

m

λ4

30

3∑
i1i2i3i4=0

{

H(t, τi4 , τi3 , τi2 , τi1)

(∫τi4

τi3

ds−

∫t
τi4

ds

)

+H(t, τi1 , τi4 , τi3 , τi2)

(
4

∫τi4

τi3

ds− 4

∫τi1

τi4

ds−

∫τi3

0

ds

)

+H(t, τi1 , τi3 , τi2 , τi4)

(∫τi1

τi3

ds

)

+H(t, τi1 , τi3 , τi4 , τi2)

(∫τi1

τi3

ds

)}
f(τi1 , τi2 , τi3 , τi4 , s).

(77)
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For completeness, the closed form result is obtained by taking Eq. (77)
and specifying ∀k ∈ {0, 1, 2, 3}, τk = t0 + kθ where θ = π

2Ω > 0 and
assuming t > t0 + 3θ.

It is then established that
4∑

k=1

λkTk =
λ4

30

3∑
i1i2i3i4=0

{

H(i4, i3, i2, i1)

(∫t0+i4θ

t0+i3θ

ds−

∫t
t0+i4θ

ds

)

+H(i1, i4, i3, i2)

(
4

∫t0+i1θ

t0+i3θ

ds−

∫t0+i3θ

0

ds

)

+H(i1, i3, i2, i4)

(∫t0+i1θ

t0+i3θ

ds

)

+H(i1, i3, i4, i2)

(∫t0+i1θ

t0+i3θ

ds

)}
f(t0 + i1θ, t0 + i2θ, t0 + i3θ, t0 + i4θ, s).

One can simplify the expression of the integrand by noticing that
f(t0+ i1θ, t0+ i2θ, t0+ i3θ, t0+ i4θ, s) =

∏4
k=1 cos

(
Ω(s− t0) +

ikπ
2

)
,

and with the affine change of variable u = Ω(s− t0), one has∫t0+βθ

t0+αθ

f(t0 + i1θ, t0 + i2θ, t0 + i3θ, t0 + i4θ, s)ds =

1

Ω

∫βπ
2

απ
2

4∏
k=1

cos
(
u−

ikπ

2

)
du,

and the result follows.

d.3 fifth magnus term in the extended case

To compute the fifth order Magnus term in this case, we can start by
making Eq. (59) more explicit by writing out

4∏
s=1

Dj(tσs , tσ5
) =

N∑
i1i2i3i4=1

gi1(tσ1
)...gi4(tσ4

)fi1i2i3i4(tσ1
, ..., tσ5

),

where fi1i2i3i4j(tσ1
, ..., tσ5

) :=
∏4

s=1Cisj(tσs − tσ5
) and

Cisj(tσs − tσ5
) = i h

N∑
ν=1

OisνO
′
jν cos(ων(tσs − tσ5

)).

Thus one can write

fi1i2i3i4j(tσ1
, ..., tσ5

)

=  h4
N∑

ν1ν2ν3ν4=1

(
4∏

s=1

Oisνs
O ′

jνs

)
φν1ν2ν3ν4

(tσ1
, ..., tσ5

),
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where we have defined

φν1ν2ν3ν4
(tσ1

, ..., tσ5
) :=

4∏
s=1

cos(ωνs(tσs − tσ5
)).

From this, one can express the fifth Magnus term as

Θ5(t) =

(
−i
 h

)5

 h4
4!
3

β

m
(a†a)4×

∑
σ∈S

λσ

N∑
i1i2i3i4j=1

N∑
ν1ν2ν3ν4=1

(
4∏

s=1

Oisνs
O ′

jνs

)
×∫

(5,t)
dt5gi1(tσ1

)...gi4(tσ4
)φν1ν2ν3ν4

(tσ1
, ..., tσ5

) − (tσ5
↔ tσ4

).

We may write

gi1(tσ1
)...gi4(tσ4

) = λ4
3∑

α1α2α3α4=0

4∏
r=1

δ(tσr − θ(αr, ir)),

where θ(αr, ir) := t0 + αrT + (ir − 1)τ for convenience. We shall
lighten the notation to θr bearing in mind that it is a function of
αr and ir. The task is now reduced to expressing the integral∫

(5,t)
dt5

(
4∏

r=1

δ(tσr − θr)

)
φν1ν2ν3ν4

(tσ1
, ..., tσ5

) − (tσ4
↔ tσ5

).

After similar calculations as for the single oscillator driven by pulsed
light, one arrives at

∑
σ∈S

λσ

∫
(5,t)

dt5

(
4∏

r=1

δ(tσ(r) − θr)

)
×φν1ν2ν3ν4

(tσ(1), ..., tσ(5)) − (tσ(4) ↔ tσ(5)) ={
λ1H(t, θ4, θ3, θ2, θ1)

∫
D1

ds+ λ2H(t, θ1, θ4, θ3, θ2)
∫
D2

ds

+ λ3

(
H(t, θ1, θ4, θ3, θ2)

∫
D3

ds+H(t, θ1, θ3, θ2, θ4)
∫
D ′

3

ds

)

+ λ4

(
H(t, θ1, θ4, θ3, θ2)

∫
D4

ds+H(t, θ1, θ3, θ4, θ2)
∫
D ′

4

ds

)}
φν1ν2ν3ν4

(θ1, θ2, θ3, θ4, s)

where (λ1, λ2, λ3, λ4) = (−1
30 , 4

30 , −1
30 , −1

30 ) are the coefficients associ-
ated with the permutations and the integration domains are given by
oriented intervals (and unions of)

D1 = [θ4, t]∪ [θ4, θ3]; D2 = [θ3, θ4]∪ [θ1, θ4],

D3 = [0, θ2]; D ′
3 = [θ1, θ3]; D4 = [θ2, θ3]; D ′

4 = [θ1, θ3].
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Hence the fifth Magnus term takes the following expression:

Θ5(t) = −
i
 h

4!
3

β

m
(a†a)4

N∑
i1i2i3i4j=1

N∑
ν1ν2ν3ν4=1

(
4∏

s=1

Oisνs
O ′

jνs

)
λ4

30
×

3∑
α1α2α3α4=0

{
H(t, θ4, θ3, θ2, θ1)

(∫θ4

θ3

ds−

∫t
θ4

ds

)

+H(t, θ1, θ4, θ3, θ2)

(
4

∫θ4

θ3

ds− 4

∫θ1

θ4

ds−

∫θ3

0

ds

)

+H(t, θ1, θ3, θ2, θ4)

(∫θ1

θ3

ds

)
+H(t, θ1, θ3, θ4, θ2)

(∫θ1

θ3

ds

)}
φν1ν2ν3ν4

(θ1, θ2, θ3, θ4, s).
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e.1 spin density matrix expression

We present explicit derivations of Eq. (63) and Eq. (64). We express
the two copies of an arbitrary initial state with their P-representations
so that

(π⊗ π) =
∫∫
d2εd2ζP(ε)P(ζ) |εζ⟩⟨εζ| .

From Eq. (61) the spin density matrix elements are found to be

sαβµν =
1

4
e−iGm2τQ

(1)
αβµν/

 h
∫∫
d2εd2ζP(ε)P(ζ)Tr

[
/Uαβ

† /Uµν |εζ⟩⟨εζ|
]
.

Combining this with (62), it follows that

sαβµν =
1

4
e−iGm2τQ

(1)
αβµν/

 he−iG2m3τ3Q
(4)
αβµν/6

 h

×
∫∫
d2εd2ζP(ε)P(ζ)

〈
ε
∣∣ε+ θαβµν

〉 〈
ζ
∣∣ζ− θαβµν

〉
.

The remaining double integral turns out to be quite simply expressed
as∫∫
d2εd2ζP(ε)P(ζ) ⟨ε|ε+ θ⟩ ⟨ζ|ζ− θ⟩

= e−|θ|2
(∫
d2εP(ε)e

1
2 (ε

∗θ−θ∗ε)
)(∫

d2ζP(ζ)e
1
2 (θ

∗ζ−ζ∗θ)
)

= e−|θ|2F(P)

(
θ

2

)
F(P)

(
−
θ

2

)
= e−|θ|2

(
CN

(
θ

2

))2

,

where we have dropped the indices for θ and used the fact that the
P-function is real, so has an even Fourier transform F(P), which co-
incides with the normally ordered characteristic function. This yields
Eq. (63). Furthermore, if the initial local motional state is thermal with
average photon number ⟨N⟩ = n, then the characteristic function is
CN(λ) = e−n|λ|2 , as was shown at length in Sec. 2.3.2, which yields
Eq. (64).
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e.2 decoherence rate limit

We demonstrate the decoherence rate limit for our witness. For any
Hermitian 4 by 4 matrix ρ = (ρij)1⩽i,j⩽4 one can compute

Tr(W1ρ) = Tr(ρ) + 2 Im{ρ12}+ 2 Im{ρ13}

− 2Re{ρ14}− 2Re{ρ23}− 2 Im{ρ24}− 2 Im{ρ34}.

Without decoherence, the spin state after free fall of duration t reads

ρs(γ = 0) =
1

4


1 e−i∆ϕLR e−i∆ϕRL 1

ei∆ϕLR 1 ei(∆ϕLR−∆ϕRL) ei∆ϕLR

ei∆ϕRL ei(∆ϕRL−∆ϕLR) 1 ei∆ϕRL

1 ee−i∆ϕLR e−i∆ϕRL 1

 .

With the inclusion of a decoherence rate γ, the spin state takes the
form ρs = ρs(γ = 0)⊙ Γ , where ⊙ designates a Hadamard product in
the bipartite spin computational basis, and the matrix Γ is defined by

Γ =


1 e−γt e−γt e−2γt

e−γt 1 e−2γt e−γt

e−γt e−2γt 1 e−γt

e−2γt e−γt e−γt 1

 .

Then the witness expectation value is given by

Tr(W1ρ) = 1− e
−γt (sin(∆ϕLR) + sin(∆ϕRL))

−
1

2
e−2γt(1+ cos(∆ϕLR −∆ϕRL)).

Writing ωµνt = ∆ϕµν a first order expansion around t = 0 gives

Tr(W1ρ) = (2γ− (ωLR +ωRL))t+ o(t),

so there is no more immediately witnessed entanglement for decoher-
ence rates greater than the average of the two path coupling frequen-
cies γ ⩾ (ωRL +ωLR)/2.

e.3 non-monotonicity loophole state

We simulate a 3× 103 element string of Pauli measurement outcomes,
obtained from 103 measurements of W1 on ρa. Given this data, we
construct a state ρ ′a that is at least as likely as ρa given the data but
has a negativity that is lower than that of the null hypothesis state
ρ0. Explicitly, for separation distance d = 350 µm, decoherence rate
γ = 0.3 s−1 with corresponding free-fall duration τ = 0.34 s, one
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has N(ρ0) ≈ 0.108 > N(ρ ′a) ≈ 0.104 where with a rounding to 3
significant figures the loophole state ρ ′a takes the form

0.256 0.009+ 0.012i 0.042− 0.174i 0.212+ 0.010i

0.009− 0.012i 0.244 0.109− 0.022i −0.008+ 0.004i

0.042+ 0.174i 0.109+ 0.023i 0.246 0.017+ 0.161i

0.212− 0.011i −0.008− 0.004i 0.017− 0.161i 0.254

 .

To obtain such a state, we have made used of a constrained op-
timization method (sequential least squares programming) over all
valid 2-qubit quantum states. The cost function to minimize was the
negative logarithmic likelihood ratio given the data, under the con-
straint that the state should be less negative than the null hypothesis
state.

For completeness we remind a parametrization of the 2-qubit state
space. By Cholesky decomposition of positive-semidefinite density
matrices (see Sec. 2.1.2 for details) one can write any density matrix
as ρ = LL†, where L is a lower diagonal matrix with real diagonal
coefficients

L =


l1 0 0 0

l5 l2 0 0

l8 l6 l3 0

l10 l9 l7 l4

 .

The set of such matrices is a 16-dimensional real vector space. There
are 4 degrees of freedom for the diagonal terms and 12 for the off-
diagonal ones. The unit trace condition imposes Tr(ρ) = Tr(LL†) = 1

so that
∑10

i=1 |li|
2 = 1. Thus, the state space can be viewed as con-

stituting a 9-sphere. One can parametrize this with 15 real angles, as
expected from Sec. 2.4.1 by defining l1 = cos θ1, l2 = sin θ1 cos θ2 up
to l9 = (eiϕ9

∏8
i=1 sin θi) cos θ9, l10 = eiϕ10

∏9
i=1 sin θi. Note that

l1, ...l4 do not require eiϕ phase terms since they are real. Hence we
have the 15 real parameters θ1, ...θ9, and ϕ5, ...,ϕ10 on which to run
the constrained optimization.
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