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Abstract

If universal quantum computing is Tartarus, the mythical underworld where Titans
are tormented, then magic is Charon, the ferryman tasked to get you there.

Shifting perspective often reveals simpler solutions to hard problems. In this the-
sis, we shift our view of quantum computing from the Hilbert space picture to a
geometric picture of a discrete phase space on which computational elements can be
represented through quasi-probability distributions. In this new picture, we recog-
nize new ways to refine the theory of quantum computing.

Magic states play a crucial role in upgrading fault-tolerant computational frame-
works beyond classically efficient capabilities and simulation techniques. Theories
of magic have so far attempted to quantify this computational element via coarse-
grained monotones and determine how these states may be efficiently transformed
into useful forms. Using a quasi-probability representation of quantum states on a
discrete phase space, it is known that we can identify useful magic states by the
presence of negative probabilities. This thesis utilizes this representation to develop
a novel statistical mechanical framework that provides a more fine-grained descrip-
tion of magic state transformations as well as to develop classical algorithms that
simulate quantum circuits containing magic states more efficiently.

We show that majorization allows us to quantify disorder in the Wigner repre-
sentation, leading to entropic bounds on magic distillation rates. The bounds are
shown to be more restraining than previous bounds based on monotones and can be
used to incorporate features of the distillation protocol, such as invariances of CSS
protocols, as well as hardware physics, such as temperature dependence and sys-
tem Hamiltonians. We also show that a subset of single-shot Rényi entropies remain
well-defined on quasi-probability distributions, are fully meaningful in terms of data
processing and can acquire negative values that signal magic.

Moreover, we propose classical sub-routines that reduce the sampling overhead for
important classical samplers with run-times that depend on the negativity present in
the Wigner representation. We show that the run-times of our sub-routines scale
polynomially in circuit size and gate depth. We also demonstrate numerically that
our methods provide improved scaling in the sampling overhead for random circuits
with Clifford+T and Haar-random gates, while the performance of our methods
compares favorably with prior simulators based on quasi-probability representations
as the number of non-Clifford gates increases.
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To my father, who is the better doctor.
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Chapter 1

Introduction

1.1 How does this thesis shake up the quantum world?

I applied for a PhD because I was promised that quantum computers will outper-
form their classical counterparts, resulting in my financial prosperity. Nonetheless,
I have come to realize that the validity of this claim also constitutes a rich question
of fundamental and practical significance within quantum theory. Specifically, the
exact boundary between quantum and classical computational power is far from be-
ing fully characterized [7–11]. This boundary can be approached from both sides.
On one hand, clever people have demonstrated the difficulty in simulating certain
quantum processes classically [11–21]. Such results hint towards the ingredients
that may be sufficient to achieve quantum advantage. On the other hand, it is possi-
ble to keep oneself busy with the search for efficient methods to classically simulate
families of quantum circuits [22–28]. Such results provide insights on what ingredi-
ents are necessary for quantum advantage.

The question of efficient classical simulation of quantum circuits has recently re-
ceived vast attention due to the ongoing rapid development of quantum devices aim-
ing to supersede classical capabilities (e.g. [29–32]). Aided by powerful error mitiga-
tion techniques [33–37], noisy intermediate-scale quantum (NISQ) [38] devices aim
to deliver computational advantages, therefore fast and accurate outcome probabil-
ity estimation is a necessity for quantitative benchmarking of the devices [37,39,40].
For example, Google’s recent experimental realization of a quantum speed-up [30]
relies on classical estimation methods to predict statistical features of the outcome
probabilities.

It is expected that exact classical simulation of arbitrary quantum systems is in-
efficient in general, as the resource overhead exponentially grows with the size of
the system. Nevertheless, there are restricted classes of quantum circuits for which
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1.1. HOW DOES THIS THESIS SHAKE UP THE QUANTUM WORLD?

exact classical simulation is possible [41]. The most notable example is given by
circuits composed only with stabilizer states and gates in the Clifford group, which
can be efficiently simulated classically via the Gottesman-Knill theorem [42]. In this
thesis, we show progress in Born probability estimation of more general circuits with
efficient methods.

On the other hand, there has been rapid progress towards the goal of experimen-
tally achieving quantum computational fault-tolerance [43–57], promising to realize
quantum advantages. Work towards fault-tolerance is increasingly bridging the gap
between abstract theory and experiment. Extensive work is being done on error
mitigation [36,37,58–60] and the incorporation of hardware physics into the theo-
retical models [34, 35, 61–63]. For example, the XZZX code [33] is a variant of the
surface code that incorporates noise bias explicitly and has been shown to attain the
hashing bound of random codes [64].

Nevertheless, many challenges remain and there is increasing need for theory
to take into account physical limitations of the hardware involved. The surface
code [65–68] is a leading framework for fault-tolerance with very high error thresh-
olds. Within this scheme, Clifford unitaries can be implemented in a robust, fault-
tolerant way. However, we also know that it is impossible to have a universal set
of transversal gates [69] and although Clifford unitaries can be realized transver-
sally [70, 71], one needs to find ways around this restriction for gates that do not
admit efficient simulation. This can be achieved by injecting in quantum states,
called magic states, which promote the Clifford group to universal quantum com-
puting [72]. The obstacle to this is that these states are invariably noisy, so magic
distillation protocols involving stabilizer states and Clifford operations must be em-
ployed to purify many copies of the magic states and improve the overall perfor-
mance of the induced quantum gates [72–74]. A key question then arises about the
overhead on purifying many copies of a magic state into less noisy forms.

To address this, concrete distillation protocols have been developed, such as the
Bravyi-Haah qubit protocol that provides a quadratic reduction in noise per cy-
cle [75] as well as protocols based on CSS codes [70, 71]. Such distillation rates
have been improved in more recent works [73,76–78] and there have been propos-
als of protocols for qudits of odd dimension [79–83] as well as of protocols within a
full architectural analysis [84,85].

There is also analysis of magic protocols from the perspective of magic theories.
A number of magic theories exist [86–89], where magic states are viewed as com-
putational resource states with respect to a class of quantum operations that are
considered free [90]. One natural class of free operations are those obtained from

2



1.2. THESIS OUTLINE

Clifford unitaries, Pauli measurements and the ability to discard quantum systems.
However, there are also other candidates [91–93]. In any theory of magic, one route
to bounding distillation rates is through a magic monotone. A magic monotone M is
a real-valued function of any quantum state in a magic theory, so that M is monoton-
ically non-increasing under the free operations of the theory, reflecting the property
that free operations cannot generate magic. More precisely, given a magic theory
with a set of free states F and free operations O, we define a magic monotone as a
real-valued function M such that

1. M(σ) = 0, for all σ ∈ F , and (1.1)

2. M(ρ′) ≤M(ρ) whenever there exists E ∈ O such that ρ′ = E(ρ), for all ρ, ρ′.

In this thesis, we go beyond monotone descriptions of magic, by developing in-
stead a thermodynamic approach to magic state distillation which allows for a more
powerful description of magic state transformations.

1.2 Thesis outline

We begin by discussing a discrete phase space picture of quantum mechanics in
chapter 2. We then establish a mathematical framework of statistical mechanics
in the presence of negative probabilities in chapter 3. We use this framework to
derive novel results that directly relate to quantum computing in the following three
chapters (chapter 4, chapter 5, chapter 6). Finally, we propose ideas for future
research in chapter 7. A slightly more detailed description of the thesis’ main body
and the original work within each chapter now ensues.

Chapter 2: We start by justifying the use of a phase space picture with Wigner rep-
resentations for quantum objects rather than the Hilbert space picture. We proceed
by identifying geometric properties of discrete phase spaces that describe quantum
mechanical states and dynamics. We then construct the discrete phase space, dis-
cussing important distinctions between odd and even dimensions. We finally define
Wigner representations for quantum states and operations on discrete phase spaces,
firstly for odd dimensions and then for qubit systems. We identify families of oper-
ations that are important in magic distillation and classical simulation and discuss
how they connect to the geometry of the phase space. All major results in this chap-
ter are taken from the literature.

Chapter 3: We identify majorization theory, and its resulting entropic analysis,
as the natural method of describing transformations of state representations within
discrete phase spaces. This requires a novel extension of the scope of majorization

3



1.2. THESIS OUTLINE

from classical to quantum phase spaces, where negative probabilities necessarily
arise. Crucially, we develop a mathematical framework where majorization results
can be extended from proper probability distributions to quasi-probability distribu-
tions (henceforth quasi-distributions for brevity), such as the Wigner representations
introduced in the previous section. We first introduce non-monotonic Lorenz curves
and establish relative majorization conditions for quasi-distributions. We then pro-
ceed by developing Rényi entropies and divergences on quasi-distributions and prove
that they retain desired properties such as the data-processing inequality. All results
that extend majorization to quasi-distributions constitute original work.

Chapter 4: We are now in a position to apply our majorization results on the
Wigner representations of odd dimensional systems. We show how this gives rise
to a generalized family of bounds on the rate of magic distillation for protocols of
increasing complexity. We first consider protocols that possess a fixed point, such as
the large family of unital protocols that leave the maximally mixed state invariant.
We then discuss protocols with sub-linear correlations that admit nice descriptions
in the asymptotic limit, before finally addressing general protocols. The bounds
we derive take into account physical properties of the system such as Hamiltonian
dependence, beyond just properties of the magic states involved. All majorization
analysis, including the bounds derived using it, is novel in the context of magic.

Chapter 5: We extend the results to qubit systems. We spend the first part of this
chapter motivating a family of channels that is important for qubit magic distillation,
but also appropriate for our majorization framework. We then derive lower and up-
per bounds on qubit magic distillation rates that incorporate operational properties
of the protocols considered and provide tighter constraints than magic monotones.
The stochasticity results for magic distillation protocols, as well as the majorization
analysis and bounds are novel.

Chapter 6: We discuss improvements in classical sampling of quantum circuits
via well-known samplers that are based on the Wigner representation of the circuit
components. We generalize the Wigner representation into a family of represen-
tations, controlled by parameters that adjust how large the negativities within the
representation can be for any given circuit component. We develop classical algo-
rithmic routines that minimize this negativity sampling overhead by locally varying
the representations in polynomial run-time. Then, we use our sub-routines to nu-
merically demonstrate a reduced exponential negativity scaling for important circuit
architectures. The main sampling algorithm appears in the literature, while the two
sub-routines improving the sampling overhead are original.

4



Chapter 2

Discrete Wigner representations

Central to the results of this thesis is the correspondence between the Hilbert space
and phase space picture of quantum mechanics, a concept which is usually familiar
from classical statistical mechanics. In this chapter, we discuss representations for
quantum states and quantum operations of finite system dimension d in the form
of quasi-probability distributions on a discrete phase space [1, 94–98]. These con-
structions are discrete versions of the real-valued Wigner function that appears in
continuous quantum mechanics and quantum optics [94,99–101].

This chapter provides results that are mostly well-known in the literature, with a
few additions or restatements that assist our results in the following chapters. In
particular, we broadly motivate the need for a phase space picture in section 2.1,
before moving on to section 2.2 to describe the geometric elements comprising a
discrete phase space as well as the transformation that these elements admit. We
then describe how Pauli operators can be viewed as displacement operators on the
phase space and also explain why even and odd dimensional systems should be
treated separately in section 2.3. Finally, in section 2.4, we describe how to represent
systems of odd and even dimension on the phase space, following the construction
of [97] and of [1,98,102] respectively.

2.1 Why should we think in the phase space picture?

There are two equivalent representations of continuous quantum mechanics: the
density operator, and the quasi-distribution representation, as established in 1932
by Wigner [99]. The continuous quasi-distribution representation is now known as
the Wigner function and it encodes the same information as the density operator of a
state. Laws of quantum mechanics are expressible in both representations and, con-

5



2.1. WHY SHOULD WE THINK IN THE PHASE SPACE PICTURE?

versely, either representation may be better-suited for describing a certain law. For
example, evolving the Wigner function of a classical particle in time directly reduces
to the Liouville equation, elegantly revealing how classical statistical dynamics form
a subset of quantum theory.

Discrete phase spaces were considered in Wootters’ seminal work [94], aiming to
extend the Wigner function so it describes discrete degrees of freedom of a quan-
tum system, such as its spin. As is the case with continuous quantum mechanics,
the discrete Wigner representation is arguably a more natural framework in describ-
ing the behavior of discrete systems than the density matrix within certain contexts.
Pertinently, negativity in the Wigner representation is an indicator of superpolyno-
mial advantage in quantum computing [41,103–105]. This is the reason why work-
ing in the phase space picture is natural for the subsequent chapters that relate to
magic. Therefore, in this chapter, we study the geometric elements of a Wigner
representation, first developed by Wootters [94] and later expressed in slightly al-
tered forms [97, 98, 102], then we derive the various distinguishing properties that
stabilizer and magic states as well as Clifford channels possess on a discrete phase
space.

We should take a step back and ponder over why it is necessary to deal with odd
and even dimensional systems separately. Even though the Wigner representation
is a natural indicator of non-classical advantage in the computational paradigm of
magic state injection, this connection is even more satisfying in odd dimensions.
Remarkably, negativity of the Wigner representation, contextuality and magic are
three indicators of non-classicality that align exactly for the case of odd dimensional
systems [106]. We recall that contextuality refers to the inability to model the in-
herent randomness of a quantum measurement via a combination of predetermined
measurement outcomes [106].

This connection breaks down in even dimensions. The negativity of the Wigner
representation is no longer an indicator of non-classical states and operations. In
fact, the correspondence between stabilizer states and non-negative Wigner rep-
resentation breaks down for qubits. Furthermore, contextuality is now a neces-
sary but not sufficient condition for quantum advantage in computations with qubit
magic [106]. Work attempting to reconcile the satisfying bidirectional connection
between these notions is ongoing [98,102,105,107,108]. In section 2.3, we explain
that we are able to retrieve this connection by choosing a different, non-Hermitian
basis for even dimensional Wigner representations, at the cost of restricting the anal-
ysis to a subset of quantum states and channels.

6



2.2. GEOMETRY ON THE PHASE SPACE

2.2 Geometry on the phase space

We start by considering a d–dimensional quantum system with Hilbert space Hd for
any finite dimension d. Let {|0⟩ , |1⟩ , . . . , |d− 1⟩} denote the standard computational
basis, defined over Zd = {0, 1, . . . , d− 1}.

The phase space corresponding to Hd is defined as the 2–dimensional vector space
Pd := Zd × Zd. Any vector x := (x0, x1) ∈ Pd can be viewed as a pair of position
and momentum coordinates on a d× d square grid, with (0, 0) as the origin. It forms
the core link between the Hilbert space picture and the geometrical picture we will
discuss in the rest of the chapter. In order to describe the geometry of the phase
space we first require rigorous notions of its basic elements, such as points and lines,
and then examine the transformations between these elements, namely translations
and rotations.

The phase space is defined over the finite field Zd, so it is endowed with the usual
operations:

1. (scalar multiplication). For any point x ∈ Pd and k ∈ Zd, kx := (kx0, kx1);

2. (addition). For any two points x,y ∈ Pd, x+ y := (x0 + y0, x1 + y1);

3. (inner product). For any two points x,y ∈ Pd, x · y := x0y0 + x1y1.

We further define

J1 :=

(
0 1

−1 0

)
, (2.1)

and equip Pd with the symplectic inner product ⟨· , ·⟩ : Pd × Pd 7→ Zd,

⟨x , y⟩ := yTJ1x = x1y0 − x0y1. (2.2)

The symplectic product satisfies the following properties:

1. (anti-symmetry). ⟨x , y⟩ = −⟨y , x⟩;

2. (bi-linearity). ⟨αx+ βx′ , y⟩ = α ⟨x , y⟩+ β ⟨x′ , y⟩;

3. (alternation). ⟨x , x⟩ = 0.

2.2.1 Phase space elements for prime dimensions

The basic elements of the phase space are points and lines, as well as the possible
transformations one can perform on them. We develop these elements here.

7



2.2. GEOMETRY ON THE PHASE SPACE

The geometric notion of a line can be intuitively introduced on Pd,

a · x = k,a ∈ Pd, k ∈ Zd, (2.3)

where a is the direction vector.
Note that for non-prime dimensions, this notion of a line is not well-defined. As

an example, consider P4 and the line (1, 2) · x = 0. The dilation x → 2x, leads to a
different line (1, 0) · x = 0, with different direction vector a. This is a consequence
of the general property of a field Zn with composite n = ab, where elements a
and b have no multiplicative inverse and instead multiply together to the identity of
addition 0. In the specific example of Z4, the property manifests as 2 · 2 = 0.

For prime dimensions d, the direction vector a labels an equivalence class of par-
allel lines, while the constant k distinguishes between the lines of the class. There
are (d + 1) distinct choices for a, therefore d(d + 1) distinct lines in total. Note that
in prime dimensions d, dilations of the form x → cx, for c ∈ Zd, simply amount to
shifting the points along the same line, a → c−1a ∝ a, since any element c has a
multiplicative inverse. Therefore, from now on, we focus on phase spaces of prime
dimension d and discuss composite systems in section 2.2.2.

We then examine transformations between points on Pd. There are d2 translations
on Pd generated by addition of vectors, hence Pd can be considered as the Abelian
group of translations when equipped with vector addition. We will denote this group
T (Zd), or in shorthand notation T , to avoid ambiguity with the set Pd of points
on the phase space. Any translation x → x + ξ results in a change of constant
k → k − a · ξ in Eq. (2.3), so that the orbit of a line under the action of translations
is its equivalence class.

Rotations on Pd are represented by (2 × 2) matrices S : Pd 7→ Pd with det[S] = 1.
The non-zero determinant also guarantees an inverse rotation. There are d(d2 − 1)

rotations and they form a group under matrix multiplication, known as the symplec-
tic group SP(2,Zd). The name is justified based on the property that a symplectic
rotation S preserves the symplectic product, STJ1S = J1. Any rotation x → Sx

results in the change of direction vector a → S−1a, so that the orbit of a line under
the action of rotations passes through all equivalence classes once via the line with
the same constant k.

We now establish that the translations and rotations as defined above form the
group of symplectic affine transformations, which encompasses all possible transfor-
mations between lines on the phase space.

Claim 2.1. The group of line transformations on Pd is the semi-direct product of trans-
lations and rotations SP(2,Zd) ⋉ T defined as the Cartesian product SP(2,Zd) × T

8
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endowed with the composition rule

(S2, ξ2) ◦ (S1, ξ1) = (S2S1, ξ2 + S2ξ1), (2.4)

Proof. We first prove that SP(2,Zd)⋉T is a group. Closeness and associativity follow
from the closeness and associativity of SP(2,Zd) and T . The identity is (1, 0) and
every element (S, ξ) has inverse (S−1,−S−1ξ).

The group of translations T is a normal subgroup, since for any (1, ξ) ∈ T and
(S,z) ∈ SP(2,Zd)× T ,

(S,z) ◦ (1, ξ) ◦ (S,z)−1 = (S,z) ◦ (1, ξ) ◦ (S−1,−S−1z) = (1, Sξ) ∈ T . (2.5)

The group of symplectic rotations SP(2,Zd) is thus a subgroup of SP(2,Zd)⋉ T and
its intersection with T is simply the identity, SP(2,Zd) ∩ T = (1,0). Therefore,
SP(2,Zd)⋉ T splits over T and is the semi-direct product of SP(2,Zd) and T .

This crucial result will ensure a correspondence between the action of the Clifford
group on stabilizer states and transformations of lines on a discrete phase space.

2.2.2 Phase space elements for composite dimensions

The formalism readily generalizes to a system of n particles. For such a system, the
d–dimensional composite Hilbert space is

Hd = Hd1 ⊗Hd2 ⊗ · · · ⊗ Hdn , (2.6)

where d = d1d2 . . . dn and di is the dimension of the i–th particle Hilbert space.
The Hilbert space is defined over the Cartesian product of the finite fields Zd :=

Zd1 × Zd2 × · · · × Zdn. Therefore, the corresponding phase space is

Pd := Zd ×Zd ∼= Zd1 × Zd1 × Zd2 × Zd2 × · · · × Zdn × Zdn . (2.7)

Any vector in Pd is of the form

x = x1 ⊕ x2 ⊕ · · · ⊕ xn := (x1,0, x2,0, . . . , xn,0, x1,1, x2,1, , . . . , xn,1), (2.8)

where xi := (xi,0, xi,1) is the component vector in the factor phase space Pdi. The
symplectic inner product ⟨x , y⟩ := yTJnx is now defined by the generalized matrix

Jn :=

(
On 1n

−1n On

)
, (2.9)

where 1n and On are the n × n identity and zero matrices respectively. Claim 2.2
reduces calculations on phase spaces of product dimensions to calculations on the
factor phase spaces. For clarity it is stated in the context of two particles, but gener-
alization to the multi-particle case is obvious.
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2.3. DISPLACEMENT OPERATORS

Claim 2.2. For any two vectors x,y ∈ Pd with product dimension d = dAdB, x =

xA ⊕ xB and y = yA ⊕ yB, the following hold:

1. (distribution over addition). x+ y = (xA + yA)⊕ (xB + yB);

2. (distribution over inner product). x · y = (xA · yA) + (xB · yB);

3. (distribution over symplectic product). ⟨x , y⟩ = ⟨xA , yA⟩+ ⟨xB , yB⟩.

Proof. These geometric properties were first discussed in the context of discrete
phase spaces in [94]. The first two statements are a direct consequence of Eq. (2.8),
while the third statement is a direct consequence of Eq. (2.8) and Eq. (2.9).

Translations and symplectic rotations can simply be written as ξ = ξA ⊕ ξB and
S = SA ⊕ SB, while they satisfy Sx = (SA ⊕ SB)(xA ⊕ xB) = (SAxA)⊕ (SBxB). The
group SP(2,Zd)⋉ T retains its composition rule, Eq. (2.4), since

(SA2 ⊕ SB2, ξA2 ⊕ ξB2) ◦ (SA1 ⊕ SB1, ξA1 ⊕ ξB1)

=
(
(SA2SA1)⊕ (SB2SB2), (ξA2 + SA2ξA1)⊕ (ξB2 + SB2ξB1)

)
=(SA2SA1, ξA2 + SA2ξA1)⊕ (SB2SB2, ξB2 + SB2ξB1). (2.10)

2.3 Displacement operators

Generalized Pauli matrices X,Z : Hd 7→ Hd can be defined by their respective roles
as position and phase shift operators, acting on the basis states as follows,

X |k⟩ = |k + 1⟩ (2.11)

Z |k⟩ = ωk |k⟩ . (2.12)

Here ω := e2πi/d is the d–th root of unity and addition is taken modulo d.

Claim 2.3. For any dimension d, the Pauli operators X,Z satisfy:

1. (decomposition). X =
d−1∑
k=0

|k + 1⟩ ⟨k| and Z =
d−1∑
k=0

ωk |k⟩ ⟨k|;

2. (unitarity). X† = X−1 and Z† = Z−1;

3. (power rule). Xn |k⟩ = |k + n⟩ and Zn |k⟩ = ωnk |k⟩ for all n ∈ Zd;

4. (commutation). ZX = ωXZ.

Proof. These well-known properties can be found in e.g. [96,109].
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1. Both decompositions follow from the orthonormality of the computational ba-
sis.

2. Using property 1, it is readily seen that X†X = XX† = 1 and Z†Z = ZZ† = 1.

3. It follows from induction on Eq. (2.11) and Eq. (2.12).

4. It follows from the decompositions in property 1.

The X,Z operators act as orthogonal unit displacement operators corresponding
to the two orthogonal unit vectors on the phase space Pd. We generalize this corre-
spondence by assigning a displacement operator to every point of the phase space,

Dx := χ(x0, x1)Z
x1Xx0 , (2.13)

where in general there is a phase factor χ(x0, x1) expressed as a function of the phase
space point components (x0, x1).

The role of this phase factor is to ensure that the displacement operators satisfy
certain desired properties. These properties manifest differently in odd and even
dimensional systems, so we will treat these two cases separately. In particularly, for
odd prime dimensional systems we choose χ(x0, x1) = τ−x0x1, where the phase τ :=

−eiπ/d satisfies ω = τ 2. This choice of phase ensures Hermiticity of the displacement
operators leading to a real-valued Wigner representation, where stabilizer states and
Clifford operations are non-negatively represented. For qubit systems, we choose
χ(x0, x1) = 1, i.e. the phase factor is independent of the phase space coordinates.
This choice of phase does not guarantee Hermiticity of the displacement operators
leading to a complex-valued Wigner representation. However, it allows us to restrict
the computational framework to a carefully selected subset of states and Clifford
operations which admit real-valued Wigner representations, and where the stabilizer
states and operations within this subset are represented non-negatively, a crucial
property which fails in the qubit case if χ(x0, x1) = τ−x0x1.

We first describe the straightforward case of qudits for odd prime d, following the
construction of [97], and then we summarize the case of qubits, following our own
construction of [1] based on [98,102].

2.4 Phase space in odd dimensions

We focus statements on odd prime dimensions, and when relevant we comment on
their simple extensions to general odd dimensions via the tensor product construc-
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tion.
Recall that the displacement operators are

Dx := τx0x1Xx0Zx1 , (2.14)

They satisfy the following properties:

Claim 2.4. For any dimension d, the displacement operators satisfy:

1. (unitarity). D†
x = D−x = D−1

x ;

2. (closure under transposition). DT
(x0,x1)

= D(−x0,x1);

3. (vanishing trace). tr[Dx] = dδx,0;

4. (composition rule). DxDx′ = τ ⟨x , x′⟩Dx+x′;

5. (orthogonality). tr[D†
xDx′ ] = dδx,x′.

Proof. These properties of displacement operators also appear in e.g. [41,96]. They
are derived by use of the Pauli operator properties given in Claim 2.3 along with the
definition of τ .

1. The unitarity of the Pauli operators leads to

D†
x = (τ ∗)x0x1(Z†)x1(X†)x0 = τ−x0x1Z−x1X−x0 = D−1

x (2.15)

and

D−1
x = τ−x0x1ω(−x0)(−x1)X−x0Z−x1 = τx0x1X−x0Z−x1 = D−x (2.16)

because of the commutation property 4 of the Pauli operators and ω = τ 2.

2. ApplyingX repeatedly performs multiple unit shifts,Xx0 =
d−1∑
k=0

|k + x0⟩ ⟨k| and,

similarly, applying Z repeatedly adds multiple phases, Zx1 =
d−1∑
k=0

ωx1k |k⟩ ⟨k|.

Then, it is readily seen that

DT
(x0,x1)

= D∗
−(x0,x1)

= τ−x0x1X−x0Zx1 = D(−x0,x1). (2.17)

3. Using the repeated calculation from above,

tr[Dx] = τx0x1
d−1∑
k=0

ωx1k ⟨k|k + x0⟩ = τx0x1
d−1∑
k=0

ωx1kδx00 = τx0x1 dδx10 δx00 = dδx,0.

(2.18)
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4. By repeated use of the commutation property 4 and explicit calculation of the
phase factor in the last step,

DxDx′ =τx0x1Xx0Zx1τx
′
0x

′
1Xx′0Zx′1

=τx0x1+x
′
0x

′
1ωx1x

′
0Xx0+x′0Zx1+x′1 = τx1x

′
0−x0x′1Dx+x′ . (2.19)

5. Using the previous properties, tr[D†
xDx′ ] = τ (−x1)x

′
0−(−x0)x′1tr[D−x+x′ ] = dδx,x′.

The displacement operators thus form the generalized Pauli group,

GP := {τ kDz : k ∈ Zd, z ∈ Pd}. (2.20)

Due to the composition property 4, GP is a projective representation of the group of
translations T . By construction, the center of the group is the set of possible phases
{τ k1 : k ∈ Zd} for odd dimensions (in the case of even d, the condition becomes
k ∈ Z2d). There is an isomorphism between the group of translations and the group
of displacement operators modulo phases, T ∼ GP/{τ k1 : k ∈ Zd}.

For a system with composite Hilbert space, Hd = HdA ⊗HdB , with d = dAdB, the
displacement operators are defined as

DxA⊕xB
:= DxA

⊗DxB
, (2.21)

where xA⊕xB ∈ Pd. Therefore,DxA
, DxB

are completely uncorrelated and Claim 2.4
readily holds due to the composition properties laid out in Claim 2.2. We rederive
the composition property 4 here as a demonstration of algebraic manipulations in
composite spaces,

DxA⊕xB
Dx′

A⊕x′
B
= DxA

Dx′
A
⊗DxB

Dx′
B
= τ⟨xA , x′

A⟩DxA+x′
A
⊗ τ⟨xB , x′

B⟩DxB+x′
B

= τ⟨xA , x′
A⟩+⟨xB , x′

B⟩D(xA+x′
A)⊕(xB+x′

B)

= τ⟨xA⊕xB , x′
A⊕x′

B⟩D(xA⊕xB)+(x′
A⊕x′

B). (2.22)

Eq. (2.21) determines the way an odd dimensional phase space is built on its prime
dimensional factor phase spaces which act as building blocks. For n d–dimensional
particles, we would write GPn := {τ kDz : k ∈ Zd, z ∈ Pdn} with GP1 = GP.

2.4.1 Phase-point operators

We seek a basis for Hermitian matrices, so that we can represent any density operator
as a combination of this basis with real coefficients. Therefore, we define the phase-
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point operators via the displacement operators,

A0 :=
1

d

∑
z∈Pd

Dz; (2.23)

Ax := DxA0D
†
x =

1

d

∑
z∈Pd

ω⟨x , z⟩Dz for any x ∈ Pd. (2.24)

In the computational basis, the matrix elements of Ax are given by

⟨i|Ax |j⟩ = ω(i−j)x1δi+j,2x0 . (2.25)

The phase-point operator at the origin also acts as the parity operator,

A0 =
∑
k∈Zd

|k⟩⟨−k| . (2.26)

The following properties ensure that the phase-point operators comprise a Hermi-
tian orthonormal basis in the space of d–dimensional complex matrices and hence
quantum states in particular.

Claim 2.5. For odd prime dimension d, the phase-point operators satisfy:

1. (Hermiticity and unitarity). A†
x = Ax = A−1

x ;

2. (closure under transposition). AT(x0,x1) = A(−x0,x1);

3. (unit trace). tr[Ax] = 1;

4. (completeness relation).
∑

z∈Pd
Az = d1;

5. (orthogonality). tr[A†
xAx′ ] = dδx,x′.

Proof. This Claim is a collection of results that also appear in e.g. [41,96,100]. Note
that Eq. (2.26) can be reached with direct calculation from the definition Eq. (2.23)
and readily implies that A0 is unitary and Hermitian.

1. The statement follows by Eq. (2.24) combined with the Hermiticity and uni-
tarity of A0.

2. ATx = 1
d

∑
z∈Pd

ω⟨x , z⟩D(z0,−z1) =
∑

z∈Pd
ω⟨(−x0,x1) , z⟩D(z0,z1) due to the closure

under transposition property 2 of displacement operators.

3. We observe that tr[A0] = δk,−k = 1, since for odd dimensions k = −k in Zd only
when k = 0. Unitarity of the displacement operators (property 1) ensures that
tr[Ax] = 1 for any x.
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4. We can prove this statement by direct calculation, using the definition of phase-
point operators Eq. (2.24) and substituting Eq. (2.26).

5. Dropping the dagger due to Hermiticity and using the orthogonality of the
displacement operators according to property 5, the trace becomes

tr[A†
xAx′ ] =

1

d2
tr

[∑
z∈Pd

ω⟨x , z⟩Dz

∑
z′∈Pd

ω⟨x′ , z′⟩Dz′

]
= dδx,x′ . (2.27)

The phase-point operators extend easily to composite Hilbert spaces, once we
identify that for Hd = HdA ⊗HdB ,

A0⊕0 =
1

d

∑
x⊕y∈P2

d

Dx⊕y =
1

dAdB

∑
x∈Pd

∑
y∈Pd

Dx ⊗Dy = A0 ⊗ A0. (2.28)

Then, Ax⊕y = Ax ⊗ Ay and all properties in Claim 2.5 hold.

2.4.2 Wigner representation for states

We have established that any quantum state ρ ∈ B(Hd) can be decomposed to phase-
point operators,

ρ =
∑
z∈Pd

Wρ(z)Az. (2.29)

The coefficient distribution defines the Wigner representation of state ρ,

Wρ(x) :=
1

d
tr[Axρ]. (2.30)

Claim 2.6. The Wigner representation of a state ρ is

1. (real-valued). Wρ(x) ∈ R;

2. (normalized).
∑

z∈Pd
Wρ(z) = 1;

3. (bounded). |Wρ(x)| ≤ 1
d
.

Proof. These properties can also be found in e.g. [41].

1. The trace is invariant under transposition, Wρ(x)
∗ = 1

d
tr[(Axρ)

†], while the
cyclic property of the trace and Hermiticity of the phase-point operators ensure
that tr[(Axρ)

†] = tr[Axρ], concluding the proof.
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2. The linearity of the trace and the completeness relation of the phase-point
operators in Claim 4 immediately give the result.

3. Let {λi}i∈Zd
be the non-negative eigenvalues of ρ, summing to 1. Let {αx,i}i∈Zd

be the eigenvalues of Ax. For any x, αx,i ∈ {−1, 1}, due to the Hermiticity and
unitarity of the phase-point operators. Then,

|Wρ(x)| =
1

d
|tr[Axρ]| ≤

1

d

∣∣∣∣∣∑
i

αx,iλi

∣∣∣∣∣ ≤ 1

d

∑
i

λi =
1

d
. (2.31)

The first inequality follows from Theorem 1 of [110] for complex matrices,
while the second is the triangle inequality.

The Wigner representation is thus a bounded d2–dimensional quasi-distribution
over Pd. The support of a state is the set of points on the phase space over which
the Wigner representation is non-zero. Due to the the normalization property 2 and
boundedness property 3 of Claim 2.6, no state can have support over fewer than
d points on the phase space. Additionally, if a state has support over d points, its
Wigner representation must be uniform and equal to 1/d over the support.

We also list additional intuitive properties of the Wigner representation that assist
calculations.

Claim 2.7. The Wigner representation satisfies:

1. (additive over mixing). W∑
i piρi

(x) =
∑
i

piWρi(x);

2. (sharp for pure computational state). W|n⟩⟨n|(x) =
1
d
δx0,n for any n ∈ Zd ;

3. (multiplicative over tensoring). WρA⊗ρB(xA ⊕ xB) = WρA(xA)WρB(xB).

Proof. These statements simply follow from Claim 2.6.

1. This statement follows from the linearity of the trace.

2. This statement follows from direct calculation by substituting Eq. (2.30) into
the definition of the Wigner representation Eq. (2.30).

3. For a state ρ = ρA ⊗ ρB ∈ HdA ⊗HdB ,

Wρ(xA ⊕ xB) =
1

d
tr[AxA⊕xB

ρ] =
1

dA
trA[AxA

ρA]
1

dB
trB[AxB

ρB]

= WρA(xA)WρB(xB). (2.32)
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The Wigner representation thus acts as a joint quasi-distribution in a composite
Hilbert space. For computational states, it is a uniform distribution over a vertical
line for pure computational states. Expressing a state as a convex sum of com-
putational states results in expressing the state representation as a convex sum of
computational state representations.

One prominent magic monotone, as defined in Eq. (1.1), is the mana of a state [104],
defined as

M(ρ) := log(2sn(ρ) + 1), (2.33)

where the sum-negativity [104] is the sum of the negative components in the Wigner
representation,

sn(ρ) :=
∑

z:Wρ(z)<0

|Wρ(z)|. (2.34)

Using the fact that Wρ(x) is a normalized quasi-distribution, we can also write
M(ρ) =

∑
z |Wρ(z)|. Mana is an additive magic monotone, meaning that the contri-

butions of two subsystems can be simply added together,

M(ρ1 ⊗ ρ2) =M(ρ1) +M(ρ2). (2.35)

Because of this property, it is a useful monotone to characterize distillation of many-
copy states and it will appear repeatedly in comparisons with our results in chapter 4
and chapter 5.

As an example of computing a Wigner representation, the qutrit zero computa-
tional state |0⟩ has a Wigner representation consisting of three non-zero values at
phase space points (0, 0), (1, 0) and (2, 0). For qutrit states, there exists a canonical
magic state with maximal negativity in its Wigner representation, called the Strange
state [104],

|S⟩ := 1√
2
(|1⟩+ |2⟩). (2.36)

Its representation W|S⟩⟨S|(x) has a single negative value of −1/3 at x = (0, 0) and the
positive value 1/6 at all other points. We depict the representation of some quantum
states in Fig. (2.1).

2.4.3 Wigner representation for channels

A quantum channel E naturally admits a Wigner representation via its corresponding
Choi-Jamiołkowski state JE := (1⊗E)

∑
i,j |ii⟩ ⟨jj|. Therefore, the Wigner represen-

tation of a CPTP operation E : B(HdA) 7→ B(HdB) is defined as

WE(y|x) :=
1

dB
trB[AyE(Ax)] =

1

dB
tr
[(
ATx ⊗ Ay

)
JE
]
= d2AW 1

dA
JE
(x̄⊕ y), (2.37)
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Figure 2.1: State Wigner representations for qutrits. (a) The computational zero
state |0⟩ corresponds to the vertical line x0 = 0. (b) The maximally mixed state is an
equal mixture of the computational states {|0⟩ , |1⟩ , |2⟩}, so its representation is an
equal mixture of all three vertical lines. (c) A Wigner positive, non-stabilizer state
give in Eq. (2.59). (d) The canonical qutrit magic state, known as the Strange state.

where x̄ = (x0,−x1). Note that JE ∈ B(HdA ⊗ HdB) is a (dAdB)–dimensional state
and has trace dA, and so that 1/dAJE is a valid bipartite quantum state for any CPTP

operation. The definition can be inverted to give JE in terms of the operation Wigner
representation,

JE =
1

dA

∑
x∈PdA
y∈PdB

WE(y|x)
(
ATx ⊗ Ay

)
. (2.38)

For example, the two-qudit controlled-sum gate C−SUM :=
∑d−1

i,j=0 |i⟩⟨i|⊗|i+ j⟩⟨j| ∈
CL2 has distribution

WSUM(yA ⊕ yB|xA ⊕ xB) = δyA0,xA0
δyA1,xA1−xB1

δyB0,xA0+xB0
δyB1,xB1

. (2.39)

The definition in Eq. (2.37) allows for all the desired properties of the state Wigner
representation to transfer to the channel Wigner representation.

Claim 2.8. The Wigner representation of a CPTP operation E : B(HdA) 7→ B(HdB) is:

1. (real-valued). WE(y|x) ∈ R;

2. (normalized).
∑

z∈PdB
WE(z|x) = 1 for any x ∈ PdA;

3. (bounded). |WE(y|x)| ≤ dA
dB

;
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4. (transitive). WE(ρ)(y) =
∑

z∈PdA
WE(y|z)Wρ(z) for any y ∈ PdB ;

5. (distributive over tensoring). WE⊗F(x⊗ y) = WE(x)WF(y).

Proof. This Claim is reproduced from [93].

1. This statement is clear by the last expression of the definition in Eq. (2.37) and
the real-valued property 1 of the state Wigner representation.

2. Linearity of the trace sets the left hand side equal to trB

[
1
dB

∑
z∈PdB

AzE(Ax)
]
.

The completeness relation property 5 of Claim 2.5 simplifies the expression
to trB [E(Ax)] = trA[Ax] = 1, because quantum operations leave the trace
invariant.

3. This property is clear by the last expression in Eq. (2.37) and the boundedness
property 3 of the state Wigner representation.

4. We can decompose any state into phase-point operators according to Eq. (2.29),
so linearity of quantum operations and the trace imply that

WE(ρ)(y) =
∑

z∈PdA

1

d
tr[AyE(Az)]Wz(ρ).

Identifying the coefficient of Wz(ρ) in the sum as the Wigner representation of
operation E gives the result.

5. This property is clear by the first expression in Eq. (2.37) and the fact that
phase-point operators are distributive over tensor products.

Having developed representations for quantum states and channels, we can now
turn our attention to characterizing stabilizer states and Clifford channels which are
computationally important. We will see that stabilizer states correspond to uniform
lines on the phase space and Clifford channels correspond to symplectic affine trans-
formations, shown in Claim 2.1 to be the group of permissible line transformations.

2.4.4 The stabilizer formalism on the phase space

The Clifford unitaries for odd dimension d are defined as the normalizer of the gen-
eralized Pauli group,

CL := {U ∈ SU(d) : ∀x ∈ Pd, ∃(m,y) ∈ Z× Pd : U †DxU = τmDy}. (2.40)
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For n d–dimensional particles, we would write CLn := {U ∈ SU(dn) : ∀x ∈
Pd,∃(m,y) ∈ Z × Pdn : U †DxU = τmDy} with CL1 = CL. As already mentioned
in section 2.2, the group of translations on the phase space and the group of dis-
placement operators modulo phases are isomorphic. In other words, for a 1-qudit
system of dimension d, the group of translations T on Pd admits a projective rep-
resentation given by the displacement operators GP. Similarly, the Clifford group
CL admits a projective representation given by the symplectic affine transformations
SP(2,Zd) ⋉ T on Pd [111]. In particular, for an odd prime dimension d, there ex-
ists an isomorphism between the group of Clifford unitary transformations modulo
phases on the Hilbert space Hd and the group of symplectic affine transformations
on the corresponding phase space Pd,

CL/{τ k1 : k ∈ Zd} ∼ SP(2,Zd)⋉ Pd. (2.41)

In order to explicitly express a Clifford unitary in terms of its isomorphic represen-
tation, we first define a projective representation of SP(2,Zd) [88],

F =

(
α β

γ δ

)
7→ VF =

 1√
d

∑
j,k τ

β−1(δj2−2jk+αk2) |j⟩⟨k| , β ̸= 0,∑
k τ

αγk2 |αk⟩⟨k| , β = 0.
(2.42)

Recall that det[F ] = 1, so V †
F = V −1

F = VF−1 for all F . The unitaries VF rotate
displacement operators such that

VFDxV
†
F = DFx. (2.43)

Therefore, any Clifford unitary U can be represented as

UF,z = DzVF = VFDF−1z, (2.44)

where the inverse is given by U †
F,z = U−1

F,z = VF−1D−z = D−F−1zVF−1 = UF−1,−F−1z.
Two important examples of Clifford unitaries are the single-qudit Hadamard gate

H and phase gate S,

H :=
1√
d

d∑
j,k=1

ωjk |j⟩⟨k| = VF , F = ( 0 −1
1 0 ) (2.45)

S :=
d∑

k=1

τ k(k+1) |k⟩⟨k| = Dz′VF ′ , z′ =
(
0, 2−1

)
, FS = ( 1 0

1 1 ). (2.46)

They are Clifford because for any x ∈ Pd,

HD(x0,x1)H
† = D(−x1,x0) and (2.47)

SD(x0,x1)S
† = τx0D(x0,x0+x1), (2.48)
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Figure 2.2: Channel Wigner representations for qutrits. The Hadamard gate H
rotates state representations on the phase space by an angle of π/2 according to
Eq. (2.49), while the phase gate S translates them vertically according to Eq. (2.50).

while they also correspond to symplectic affine transformations as shown in Eq. (2.45)
and Eq. (2.46). These two matrices generate the d–dimensional group CL, for ex-
ample X = H−1ZH and Z = H2S−1H2S [88].

Their Wigner representations can be evaluated as

WH(y|x) = δy0,−x1δy1,x0 and (2.49)

WS(y|x) = δy0,x0δy1,x0+x1+2−1 (2.50)

which agree with the projective representations in Eq. (2.45) and Eq. (2.46). The
action of these two gates on the phase space is depicted in Fig. (2.2).

The importance of the phase-point operators as the basis for quantum states can
now become apparent due to the following result.

Claim 2.9 (Phase-point covariance [97]). The phase-point operators are covariant
under Clifford transformations. In particular,

UF,zAxU
†
F,z = AFx+z. (2.51)

Proof. We use the unitary decomposotion in Eq. (2.44) for Clifford UF,z. The rota-
tional part of the Clifford unitary on the operator gives

VFAxV
†
F = AFx. (2.52)

Then, the translational part gives the final result,

DzAFxD−z = AFx+z. (2.53)

Claim 2.10 (Wigner distribution covariance [97]). The Wigner representation of state
ρ is covariant under a Clifford transformation ρ 7→ ρ′ = UF,zρU

†
F,z. In particular,

Wρ(x) = Wρ′(Fx+ z). (2.54)
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Proof. Using the cyclic property of the trace and Claim 2.9,

Wρ(x) =
1

d
tr [Axρ] =

1

d
tr
[
UF,zAxU

†
F,zρ

′
]
= Wρ′(Fx+ z). (2.55)

The computational basis is taken as a subset of the stabilizer states STAB. We
obtain the full set of stabilizer states by the action of the Clifford group CL on one
computational basis state,

STAB := conv{U |0⟩⟨0|U † : U ∈ CL}. (2.56)

We have already established in Claim 2.7 that the Wigner representation of any
pure computational basis state is a uniform distribution over a vertical line (x0 =

k ∈ Zd) on the phase space Pd. The definition in Eq. (2.56) makes it immediately
apparent that the Wigner representation of any stabilizer state σ = U |0⟩⟨0|U † is in
fact a uniform distribution over a line on the phase space, obtained by applying the
symplectic affine transformation corresponding to U on the line x0 = 0.

Claim 2.11 (Stabilizer representation [97]). Let σ =
∑

i piUFi,zi
|0⟩⟨0|U †

Fi,zi
be any

mixed stabilizer state in Hd with odd d. Then, its Wigner representation is

Wσ(x) =
1

d

∑
i

piδvi0,0 ≥ 0, (2.57)

with vi := F−1
i (x− zi) for any x ∈ Pd.

Proof. Here, we make use of Claim 2.9 and Claim 2.10.

Wσ(x) =
1

d
tr

[
Ax

∑
i

pi UFi,zi
|0⟩⟨0|U †

Fi,zi

]
=

1

d

∑
i

pi tr
[
U †
Fi,zi

AxUFi,zi
|0⟩⟨0|

]
=

1

d

∑
i

pi tr
[
AF−1

i (x−z) |0⟩⟨0|
]
=
∑
i

pi W|0⟩⟨0|
(
F−1
i (x− z)

)
=

1

d

∑
i

piδvi0,0. (2.58)

Therefore, all stabilizer states σ ∈ F are represented non-negatively by the Wigner
representation. However, not all states with non-negative Wigner representations
are stabilizer states [112]. For example, the qutrit state

ρ =
1

5
(A(0,0) + A(0,1) + A(0,2) + A(1,2) + A(2,1)) (2.59)
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has a positive Wigner representation which is not a mixture of uniform distributions
over lines.

Wigner representations of quantum channels act as transition matrices for Wigner
representation of quantum states. In particular, channels that map a Hilbert space
to itself and have non-negative Wigner representation, like Clifford channels, corre-
spond to stochastic matrices that preserve the non-negativity of state Wigner repre-
sentations.

A circuit consisting of stabilizer operations, including preparation of input stabi-
lizer states and Clifford channels, can therefore be viewed as a process on a discrete
phase space where probability distributions are updated stochastically. Magic states
result in the stochastic processing of negativity.

2.5 Phase space in even dimensions

Having described the relatively straightforward case of odd dimensional systems in
detail, we now introduce a new construction for even dimensions, explicitly remark-
ing the differences.

2.5.1 Phase-point operators

Consider a n–qubit system with Hilbert space H⊗n
2 . The dimension of this system

is d := 2n and we define the corresponding phase space Pd := Zd × Zd, where all
vectors x = x1⊕x2⊕ · · · ⊕xn ∈ Pd satisfy the usual vector space operations as well
as the symplectic inner product ⟨x , y⟩, with arithmetic carried out modulo 2.

Recall that the n–qubit displacement operators Dx are defined as

Dx :=
n⊗
k=1

Zxk,1Xxk,0 , (2.60)

where the phase factor simply equals 1. These displacement operators satisfy the
same properties as in the odd dimensional case of Claim 2.4 with minor modi-
fications in global phases, except that they are not closed under transposition as
DT

(1,1) = −D(1,1).

Using these displacement operators, we can now construct new phase-point oper-
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ators defined as

A0 :=
1

2n

∑
z∈Pd

Dz; (2.61)

Ax :=
1

2n

∑
z∈Pd

(−1)⟨x , z⟩Dz for any x ∈ Pd. (2.62)

For single qubit systems, these operators look like

A(0,0) =
1

2
(1+X + Z + iY ), A(0,1) =

1

2
(1−X + Z − iY ),

A(1,0) =
1

2
(1+X − Z − iY ), A(1,1) =

1

2
(1−X − Z + iY ). (2.63)

Note that these operators are not unitary or Hermitian. Note also that A0 is not
equal to the parity operator

∑
k=0

∑
k∈Z2
|k⟩⟨−k| = 1 on qubits. We now prove the

properties of phase-point operators that survive the transition from odd dimensions
to n–qubit systems and are relevant in our construction of a qubit Wigner representa-
tion. Notably, the first property, that Ax is a real positive operator for qubit systems,
replaces the property of Hermiticity and unitarity for odd dimensional systems.

Claim 2.12. For systems of n qubits, the phase-point operators satisfy

1. (positivity). Ax ≥ 0;

2. (factorization). Ax =
⊗n

i=1Axj
, for x =

⊕n
i=1 xj;

3. (unit trace). tr[Ax] = 1;

4. (completeness relation).
∑

x∈Pd
Ax = 2n1n;

5. (orthogonality). tr[A†
xAy] = 2nδx,y.

Proof. The factorization property follows because A0⊕0 = A0 ⊗ A0 according to the
definition in Eq. (2.61), so it then follows that Ax⊕y = Ax ⊗ Ay from Eq. (2.62).

Ax is a real operator as a consequence of the fact that Dx ∈ R for all x. Moreover,
let {αx,i}i∈Zd

be the eigenvalues of Ax. For any x, we see that αx,i ∈ {0, 1}, by
direct calculation on the single qubit operators in Eq. (2.63) and the factorization
property 2 of Ax. Therefore, Ax is a positive operator for all x.

The proofs of the rest of the properties follow the same steps as the proof of
Claim 2.5, but we know make use of the definition of displacement operators in
Eq. (2.60).
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2.5.2 Wigner representation of qubit states

We have now established that every n–qubit state ρ ∈ H⊗n
2 can be decomposed to

the new phase-point operators,

ρ =
∑
z∈Pd

Wρ(z)Az, (2.64)

as the distribution given by the coefficients in the decomposition,

Wρ(x) :=
1

2n
tr[A†(x)ρ], (2.65)

is an informationally complete representation of n–qubit states. This follows from
the properties outlined in Claim 2.12. Notice that the definition is in terms of the
Hermitian conjugate of the phase-point operators.

The non-Hermiticity of the phase-point operators implies that in general the Wigner
representation is a complex function, Wρ(z) ∈ C. However, it turns out that the real
and imaginary parts of Wρ(x) are related to the quantum state in a meaningful way.
To show this, we first prove that useful algebraic properties from Claim 2.6 and
Claim 2.7 transfer from odd to even dimensional systems.

Claim 2.13. The Wigner representation of n–qubit systems satisfies:

1. (normalized).
∑

zWρ(z) = 1;

2. (bounded). Wρ(x) ≤ 1
2n

;

3. (additive over mixing). W∑
i piρi

(x) =
∑
i

piWρi(x);

4. (sharp for pure computational states). W|n⟩⟨n|(x) =
1
2
δx0,n for any n ∈ Z2 ;

5. (multiplicative over tensoring). WρA⊗ρB(xA ⊕ xB) = WρA(xA)WρB(xB).

Proof. The proofs of these statements are a reformulation of results in [102] and
follow exactly as in Claim 2.6 and Claim 2.7, with the exception of the boundedness
property, which we rederive here to highlight the differences:

Let {λi}i∈Zd
be the non-negative eigenvalues of ρ, summing to 1. Let {αx,i}i∈Zd

be
the eigenvalues of Ax. We have seen in the proof of Claim 2.12 that αx,i ∈ {0, 1} for
any x ∈ Pd. Then,

|Wρ(x)| =
1

2n
|tr[Axρ]| ≤

1

2n

∣∣∣∣∣∑
i

αx,iλi

∣∣∣∣∣ ≤ 1

2n

∑
i

λi =
1

2n
. (2.66)

The first inequality follows because both ρ andAx are positive semi-definite matrices,
while the second is the triangle inequality.
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We can now characterize the significance of the real and imaginary parts of Wρ(x).
Any n–qubit state ρ can be decomposed as

ρ =

[
1

2

(
ρ+ ρT

)]
+ i

[
−i
2

(
ρ− ρT

)]
, (2.67)

where the transposition is taken with respect to the computational basis. Because
ρ∗ = ρT in any basis, we can identify

ρ(0) :=
1

2
(ρ+ ρT ) = Re[ρ] and ρ(1) := i

[
−i
2
(ρ− ρT )

]
= Im[ρ], (2.68)

i.e. ρ(0) and ρ(1) are respectively the real and imaginary components of the density
matrix of ρ in the computational basis.

We will first prove Claim 2.14, which establishes a direct correspondence between
the real and imaginary components of a state’s Wigner representation to the real and
imaginary components of its density matrix in the computational basis.

Claim 2.14. Given ρ ∈ H⊗n
2 , we have that

Re[Wρ(x)] = WRe(ρ)(x) (2.69)

Im[Wρ(x)] = WIm(ρ)(x) (2.70)

for all x ∈ Pd with d = 2n and where the functions Re[ρ] and Im[ρ] are the real and
imaginary parts of the density matrix ρ respectively when expressed in the computa-
tional basis.

Proof. Using the identification ρ(0) = Re[ρ] and ρ(1) = Im[ρ], we can then decompose
Wρ(x) as

Wρ(x) =
1

2n
tr
[
A†

xρ
(0)
]
+ i

1

2n
tr
[
A†

xρ
(1)
]
, (2.71)

which follows from the fact that Ax is always real. Since ρ(0) and ρ(1) are themselves
real by their definition in Eq. (2.68), we conclude that tr[A†

xρ
(0)] and tr[A†

xρ
(1)] are

both real for all x ∈ Pd. Therefore,

Re[Wρ(x)] =
1

2n
tr
[
A†

xρ
(0)
]
= Wρ(0)(x) (2.72)

Im[Wρ(x)] =
1

2n
tr
[
A†

xρ
(1)
]
= Wρ(1)(x) (2.73)
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An n–rebit Wigner representation W (0)
ρ was introduced in [98], and is defined as

W (0)
ρ (x) :=

1

2n
tr[A(0)

x ρ], (2.74)

for all x ∈ Pd, where

A(0)
x :=

1

2n

∑
z∈P(0)

d

(−1)⟨x , z⟩Dz (2.75)

is defined in terms of the subspace P(0)
d := {x :

∑n
k=1 xk,0 · xk,1 = 0}.

By comparison between Eq. (2.65) and Eq. (2.74), we see that the difference be-
tweenWρ(x) andW (0)

ρ (x) comes down to the fact thatAx sums over all displacement
operators defined over the phase space Pd, whereas A(0)

x only sums over displace-
ment operators defined over the subspace P(0)

d .
By Eq. (2.60), we see that the condition ax · az = 0 implies D†

x = DT
x = Dx, i.e.

that Dx is closed under transposition and, in particular, real symmetric, from which
A

(0)†
x = A

(0)T
x = A

(0)
x , i.e. that A(0)

x is also real symmetric, immediately follows. Each
Dx ∈ P(0)

d lies inside the span of n–rebit states, since that is the vector space of all
real 2n × 2n symmetric matrices.

It will be helpful to introduce the complement of P(0)
d in Pd,

P(1)
d := {x :

n∑
k=1

xk,0 · xk,1 = 1}, (2.76)

and the set of real anti-symmetric phase-point operators

A(1)
x :=

1

2n

∑
z∈P(1)

d

(−1)⟨x , z⟩Dz for any x ∈ Pd. (2.77)

The anti-symmetry, A(1)†
x = A

(1)T
x = −Ax, follows from the anti-symmetry of the

displacement operators D†
x = DT

x = −Dx for x ∈ P(1)
d .

We have seen that every displacement operator is either symmetric and anti-
symmetric. The fact that A(0)

x only sums over symmetric displacement operators
defined on Pd is the reason why, unlike Ax, it fails to be locally tomographic. For
example, while A(0,0) =

1
2
(1+X + Z + iY ), A(0)

(0,0) =
1
2
(1+X + Z). However, some

global symmetric displacement operators are formed as a tensor product of anti-
symmetric local displacement operators. For instance, A(0,0)⊕(0,0) = A(0,0) ⊗ A(0,0)

sums over the global two-qubit symmetric displacement operator (iY )⊗ (iY ), which
is formed from the anti-symmetric local displacement operator (iY ) in each A(0,0).
Because A(0)

(0,0)⊕(0,0) also sums over (iY ) ⊗ (iY ), yet A(0)
(0,0) does not contain an (iY )

component, it is not locally tomographic.
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By Eq. (2.75) and Eq. (2.77), we see that each Ax splits up as

Ax = A(0)
x + A(1)

x (2.78)

We can correspondingly split up the Wigner representation of ρ as

Wρ(x) =
1

2n
tr
[(
A(0)

x + A(1)
x

)†
ρ
]
=

1

2n
tr
[
A(0)†

x ρ
]
+

1

2n
tr
[
A(1)†

x ρ
]
, (2.79)

where

W (0)
ρ (x) :=

1

2n
tr
[
A(0)†

x ρ
]
=

1

2n
tr
[
A(0)

x ρ
]

and (2.80)

W (1)
ρ (x) :=

1

2n
tr
[
A(1)†

x ρ
]
= − 1

2n
tr
[
A(1)

x ρ
]
. (2.81)

We can now prove the following result.

Claim 2.15. Given any n–qubit state ρ, we have that

W (0)
ρ (x) = Re[Wρ(x)] and (2.82)

W (1)
ρ (x) = iIm[Wρ(x)]. (2.83)

Proof. For k = 0, 1,[
W (k)
ρ (x)

]∗
=

1

2n
tr
[
A(k)†

x ρ
]∗

(2.84)

=
1

2n
tr
[
(A(k)†

x ρ)†
]

(2.85)

=
1

2n
tr
[
(−1)k(A(k)

x ρ)
]
= (−1)kW (k)

ρ (x), (2.86)

which implies that W (0)
ρ (x) = Re[Wρ(x)] is the real component, while W

(1)
ρ (x) =

iIm[Wρ(x)].

By combining Claim 2.14 and Claim 2.15, we arrive at

W (0)
x (ρ) = WRe[ρ](x). (2.87)

When ρ is an n–rebit state, it holds that Re[ρ] = ρ, so Wρ(x) = W
(0)
x (ρ).

In summary, the representationWρ(x) of an n–qubit state ρ is a real quasi-distribution
if and only if ρ is a rebit state, namely its density matrix contains only real elements
when expressed in the computational basis. Examples of such states include the
eigenstates of Pauli operators X and Z as well as the magic state |H⟩, which is the
(+1)–eigenstate of the qubit Hadamard operator,

|H⟩ := cos
π

8
|0⟩+ sin

π

8
|1⟩ . (2.88)

This state is equivalent to the canonical qubit magic state |A⟩ := 1√
2
(|0⟩ + ei

π
4 |1⟩ up

to a Clifford unitary [113], and thus can be used in a gadgetization circuit [72] to
implement the T–gate T := diag(1, eiπ/4).
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2.5.3 Wigner representation of qubit channels

As is the case in odd dimensions, the Wigner representation of qubit states induces
a corresponding Wigner representation of qubit channels. Let E be an arbitrary
channel from n to m qubits, and J (E) = (1 ⊗ E)(|ϕ+

n ⟩⟨ϕ+
n |) be its associated Choi-

Jamiołkowski state [114], where |ϕ+
n ⟩ is the canonical maximally entangled state on

two copies of the input system,

∣∣ϕ+
n

〉
:=

1√
2n

 ∑
k∈{0,1}n

|k⟩ ⊗ |k⟩

 . (2.89)

We can now define a Wigner representation [93] for a quantum channel E : B(H⊗n
2 ) 7→

B(H⊗m
2 ) as

WE(y|x) := 22nWJ (E)(x⊕ y). (2.90)

We now outline important properties of this representation.

Claim 2.16. The Wigner representation of a CPTP operation E : B(H⊗n
2 ) 7→ B(H⊗m

2 )

is

1. (normalized).
∑

z∈P2m
WE(z|x) = 1 for any x ∈ P2n;

2. (bounded). |WE(y|x)| ≤ 2n−m;

3. (transitive). WE(ρ)(y) =
∑

z∈P2n
WE(y|z)Wρ(z) for any y ∈ P2m;

4. (distributive over tensoring). WE⊗F(x⊗ y) = WE(x)WF(y).

Proof. The properties of this Wigner representation were also considered in [102].
The proof makes use of the definition in Eq. (2.90) and the properties of the

qubit state representation listed in Claim 2.13 and proceeds analogously to the odd
dimensional case of Claim 2.8.

The transitive property 3 and the tensoring property 4 ensure that the chosen
representation respects sequential and parallel composition of processes, i.e.,

WE◦F = WEWF , (2.91)

WE⊗F = WE ⊗WF . (2.92)

It therefore follows that a quantum channel E from n qubits to m qubits is repre-
sented as a stochastic map if and only if WE(y|x) ≥ 0 for all x,y. By inspection of
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Eq. (2.90), we equivalently have that the quantum channel E is stochastically repre-
sented if and only if the Choi state J (E) on n+m qubits is represented by a genuine
probability distribution on the phase space P2n+m .

We now proceed to characterize a subset of stabilizer states and Clifford opera-
tions that can be represented non-negatively by the qubit representation we have
developed.

2.5.4 The CSS formalism on the phase space

Unlike the odd-dimensional case, not all stabilizer states and Clifford operations
are represented non-negatively. For instance, the (+1)–eigenstate |+i⟩⟨+i| of Pauli
operator Y is a stabilizer state, but has a complex representation as it is not a rebit.
However, in this section, we describe an important subset of stabilizer states, called
CSS states [70, 71], which are also a subset of rebits, therefore they admit a real,
non-negative Wigner representation. Moreover, the class of quantum channel E with
CSS J (E) is stochastically represented.

In this section, we use the notation ⟨. . . ⟩ to denote the set of stabilizer generators
for some state |ψ⟩. The stabilizer generators generate the group of Clifford gates for
which state |ψ⟩ is a (+1)–eigenvalue. In Hilbert space H⊗n

2 , a set of n independent
stabilizer generators define precisely one state [42].

A pure CSS state on n qubits is any stabilizer state whose stabilizer group can be
generated by n Pauli observables that are individually of X–type or Z–type only. For
instance, |ϕ+⟩ := 1√

2
(|00⟩+ |11⟩) has the stabilizer group

S(
∣∣ϕ+
〉
) = ⟨X1X2, Z1Z2⟩, (2.93)

and is therefore CSS, while |ψ⟩ := 1⊗H |ϕ+⟩ is stabilized by

S(|ψ⟩) = ⟨X1Z2, Z1X2⟩, (2.94)

and therefore is not CSS, due to the stabilizer generators mixing X and Z operators.
It is shown in [98] that any pure n–rebit state is non-negatively represented if and

only if it is CSS. Therefore, Wρ is a valid probability distribution for all ρ ∈ CSS,
and we can extend this idea to quantum channels. A quantum channel E is CSS–
preserving if E(ρ) is a CSS state for all ρ ∈ CSS. It is completely CSS–preserving if
(1 ⊗ E)(ρAB) is CSS for any bipartite CSS state ρAB, regardless of the dimension of
system A. We therefore reach the following result.

Claim 2.17. A quantum channel E : B(H⊗n
2 ) 7→ B(H⊗n

2 ) admits a stochastic represen-
tation WE if J (E) ∈ CSS2n.
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Proof. |ϕ+
n ⟩ is a CSS state. For i = 1, 2, . . . , n, we have that

ZiZn+i
∣∣ϕ+
n

〉
=

1√
2n

 ∑
k∈{0,1}n

Zi |k⟩ ⊗ Zi |k⟩


=

1√
2n

 ∑
k∈{0,1}n

(−1)ki |k⟩ ⊗ (−1)ki |k⟩

 =
∣∣ϕ+
n

〉
. (2.95)

Therefore, |ϕ+
n ⟩ is stabilized by ZiZn+i for i = 1, 2, . . . , n. Furthermore, we have that

Xi |k⟩ = |k′⟩, where k′ is identical to k except that its i–th bit has been flipped. Since
the set of n–bit binary strings and the set of n–bit binary strings whose i–th bit has
been flipped are identical, we conclude that

XiXn+i

∣∣ϕ+
n

〉
=

1√
2n

 ∑
k∈{0,1}n

Xi |k⟩ ⊗Xi |k⟩

 =
1√
2n

 ∑
k∈{0,1}n

|k′⟩ ⊗ |k′⟩


=

1√
2n

 ∑
k′∈{0,1}n

|k′⟩ ⊗ |k′⟩

 =
∣∣ϕ+
n

〉
. (2.96)

Therefore, |ϕ+
n ⟩ is stabilized by XiXn+i for i = 1, 2, . . . , n. As ZiZn+i and XjXn+j

commute for all i, j = 1, 2, . . . , n, we have now found 2n commuting and indepen-
dent stabilizers for |ϕ+

n ⟩. We therefore conclude that the stabilizer group of |ϕ+
n ⟩

is
⟨ZiZn+i, XiXn+i⟩i=1,...,n. (2.97)

The proof is concluded by noticing that WE(y|x) is non-negative due to its defini-
tion Eq. (2.90) and normalized, therefore stochastic.

Claim 2.17 can be leveraged to identify stochastically-represented qubit Clifford
operations in a systematic way. We recall that the maximally entangled state |ϕ+

n ⟩
over two sets of n qubits is CSS for all n. Therefore, if E is completely CSS–
preserving, J (E) must also be a CSS state. By Claim 2.17, it follows that every
completely CSS-preserving operation is stochastically represented.

To motivate the class of completely CSS–preserving operations as operationally
significant, we highlight that they cover at least the following important stabilizer
operations:

1. Preparation of a CSS state;

2. Any gate from the group of n–qubit completely CSS–preserving gates,

G(n) := ⟨CNOTi,j, Zi, Xi⟩i,j=1,...,n,i ̸=j; (2.98)
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3. Projective measurement of any X– or Z–type Pauli observable, followed by a
completely CSS–preserving operation E± conditioned on the outcome ±1;

4. Tracing out;

5. Statistical mixtures of the above.

Therefore, all these operations are stochastically represented and we will prove this
after making these operations precise in chapter 5.

We conclude this section by emphasizing the power of the set of CSS operations.
Firstly, they can be promoted to universal quantum computing when supplemented
with rebit magic states [98]. Moreover, the gate set G(n) constitute those that can
be implemented fault tolerantly using defect braiding in surface codes construc-
tions [68]. Finally, we will see in chapter 5 that they form the basis of many im-
portant existing protocols for magic state distillation based on CSS codes before
proceeding to construct bounds on magic distillation via completely CSS–preserving
operations, namely CSS protocols.

In this chapter, we have identified that stabilizer states and CSS states are posi-
tively represented on discrete phase spaces of odd and even dimensions respectively.
Crucially, Claim 2.10 and Claim 2.17 respectively prove that Clifford operations in
odd dimensions and CSS-preserving operations in even dimensions admit represen-
tations that act stochastically on Wigner state distributions. In particular, the transi-
tivity property

WE(ρ)(y) =
∑
z∈Pd

WE(y|z)Wρ(z), (2.99)

derived for odd dimensions in Claim 2.8 and for even dimensions in Claim 2.16 sets
the scene for the development of a statistical mechanical framework that describes
quasi-distributions on the phase space, as we imminently discuss in chapter 3.
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Chapter 3

Majorization for quasi-distributions

Majorization [115,116] is a collection of powerful tools that has found many appli-
cations in quantum information theory [117–124]. It describes the disorder of dis-
tributions that undergo stochastic transformations, and in its simplest form defines
a pre-order on probability distributions. Therefore, it forms the basis for defining
entropies and relative entropies between states of a system [125].

The development of majorization theory and all known applications thus far con-
cern ordering of proper probability distributions. The aim of this chapter is to
rigorously extend majorization to quasi-distributions by identifying that stochastic
transformations are not restricted to proper probability distributions. This extension
constitutes a technical novelty in the majorization literature. We are motivated by
the phase space representation of quantum mechanics and more specifically by the
Wigner representation of magic theories, although our majorization extension can
find applications in other areas of physics, where negativity indicates non-classicality.

We begin this chapter in section 3.1 by providing a series of known definitions
of majorization on probability distributions before motivating the extension of these
definitions to the context of magic. We have seen that states are generally repre-
sented by quasi-distributions and free operations are represented stochastically, thus
we naturally obtain the stochastic update of distributions that contain negativity,

WE(ρ)(y) =
∑
z∈Pd

WE(y|z)Wρ(z). (3.1)

This was proven as a transitivity property of quantum channel representations on the
phase space in Claim 2.8 for odd dimensions and in Claim 2.16 for even dimensions.
In section 3.1, we argue that Eq. (3.1) allows us to define majorization on Wigner
distributions as long as WE is stochastic.

The rest of the chapter concerns itself with rigorously extending important ma-
jorization properties from the subspace of proper probability distributions to the

33
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quasi-distribution setting. We begin in section 3.2 by defining and extending the
idea of a Lorenz curve, a visual method of representing the majorization pre-order.
We then deal in section 3.3 with the most general form of majorization that we will
later encounter in our discussion of magic in chapter 4 and chapter 5. Finally, in
section 3.4, we show that relative majorization leads to a subset of well-behaved en-
tropies and relative entropies on quasi-distributions. In the following chapters, we
derive bounds on the resource cost of magic in terms of these entropic quantities.

3.1 Motivation in the context of magic

3.1.1 Definition of majorization

We start by presenting relevant definitions of majorization in order of increasing
complexity. These definitions have been motivated and developed in various fields
of quantum information, where describing order between non-negative probability
distributions has been of interest.

The simplest definition of majorization is critical in describing state transforma-
tions in the context of bipartite entanglement [117]. Given two distributions p =

(p1, . . . , pn) and q = (q1, . . . , qn) over n outcomes, we say that p majorizes q, de-
noted p ≻ q, if there exists a bistochastic map A = (Aij) such that Ap = q, where
bistochastic means that Aij ≥ 0 and

∑
iAij =

∑
j Aij = 1. Later on, we show the

known result [115] that the condition p ≻ q over probability distributions is equiv-
alent to at most n− 1 inequalities (Claim 3.10), which can be checked efficiently.

There is a natural generalization, which is called d–majorization [126], or in the
context of thermodynamics, thermo-majorization [127]. For a fixed probability dis-
tribution r = (r1, . . . , rn) with positive components, we define majorization relative
to r as p ≻r q, if and only if there exists a stochastic map A such that Ar = r

and Ap = q. The original majorization condition between probability distributions
corresponds to the case r = (1/n, . . . , 1/n).

In fact, we can further generalize to relative majorization [116,128–132], defined
as an ordering between pairs of vectors and write

(p, r) ≻ (q, r′) (3.2)

if and only if there is a stochastic map A such that Ar = r′ and Ap = q. We retrieve
d–majorization when r = r′.

We now proceed to motivate the use of majorization within magic theories, where
proper probability distributions need to be replaced with quasi-distributions. How-
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ever, as we see, the core aspect of majorization, i.e. the stochastic update of the
distributions, remains intact.

3.1.2 Majorization in resource theories of magic

Within the Wigner representation for the rebit model of qubit computation as well
as for computation with odd dimensional qudits, it is well-known that all posi-
tively represented states used in Clifford circuits admit an efficient classical sim-
ulation [98, 103], so negativity is a necessary resource for universal fault-tolerant
quantum computing [41]. Hence, the free states in any magic theory are required to
be a subset of

F := {ρ : Wρ(z) ≥ 0 for all z ∈ Pd}. (3.3)

Our focus is on states with negativity, so the particular choice of free states is not
critical for our analysis. The remaining component that defines any magic theory is
the set of free quantum operations. The most basic assumption we require on free
operations is that they send any free state to another free state.

Any magic state protocol will correspond to a quantum channel E , so from Eq. (2.37)
and Eq. (2.90) it admits a Wigner representation WE(y|z) that acts as a transition
matrix mapping phase space points z → y. We have shown that the representation
obeys the update property

WE(ρ)(y) =
∑
z∈Pd

WE(y|z)Wρ(z), (3.4)

for any ρ. Since the magic protocol sends free states to free states, E sends all
positively represented quantum state to other positively represented quantum states.
Therefore, if E is a free operation, its associated Wigner representationWE(y|z) must
be a stochastic matrix. For example, we saw in section 2.4.4 all odd dimensional
Clifford operations correspond to the symplectic transformations on the phase space,
hence stochastic matrices in the Wigner representation.

We note however, that not all stochastic maps on the phase space correspond
to valid quantum operations. The reason is that the maps must also respect the
symplectic affine structure of the phase space, which is an additional non-trivial
constraint.

In the context of magic distillation, we shall often assume that we have a magic
theory R = (F ,O) in which the free states F admit non-negative Wigner represen-
tations, while the free operations O are stochastic maps in the Wigner representa-
tion. Our analysis applies majorization to magic states at the level of the associated
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Wigner representations. The connection is clear when one rewrites Eq. (3.1) as

Wρ′ = WEWρ, (3.5)

where ρ′ := E(ρ), and adds the constraint τ ′ = E(τ), for some chosen reference state
τ ∈ F , implying that additionally

Wτ ′ = WEWτ . (3.6)

These two conditions in tandem define d–majorization (Wρ,Wτ ) ≻ (Wρ′ ,Wτ ′). Their
physical meaning in the context of magic is discussed at length in chapter 4 and
chapter 5.

Since Wigner representations are in general quasi-distributions, it is important to
first check how majorization can be extended to these cases and what differences
quasi-distributions bring over genuine probability distributions. This is the topic of
this chapter.

3.1.3 Technical aspects of Wigner quasi-distributions

Having identified that our quasi-distribution of interest is the Wigner state distribu-
tion, we derive some novel technical properties of these distributions that will later
assist us in the definition of the Lorenz curve and explicit calculation of inequalities
arising from majorization. The core idea of this section’s contributions is to provide
easier handling of the Wigner representation of a many-copy state. This is important
later on, as magic state distillation is usually concerned with sending many copies of
a noisy magic state to fewer copies of a less noisy magic state

We first define the rescaled Wigner representation

Wρ|τ (z) :=
Wρ(z)

Wτ (z)
. (3.7)

This quantity is required for the definition of a Lorenz curve in section 3.2.1 within
the context of the Wigner representation. This distribution is well-defined if τ is a
full-rank stabilizer state, or, equivalently, Wτ being a proper probability distribution
with positive components. We can show that Wτ is multiplicative on tensor products
of states.

Claim 3.1. Let τA, τB be full rank stabilizer states on systems A and B, and let ρA, ρB
be arbitrary states on A,B. Then, the rescaled quasi-distribution obeys

WρA⊗ρB |τA⊗τB(zA ⊕ zB) = WρA|τA(zA)WρB |τB(zB). (3.8)
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Proof. This follows from the multiplicativity of the Wigner representation,

WρA⊗ρB |τA⊗τB(zA ⊕ zB) =
WρA⊗ρB(zA ⊕ zB)

WτA⊗τB(zA ⊕ zB)

=
WρA(zA)WρB(zB)

WτA(zA)WτB(zB)
= WρA|τA(zA)WρB |τB(zB). (3.9)

We now proceed to discuss component-multiplicity pairs, which constitute a useful
description of Wigner representations of many-copy states.

In general, a 1–copy d–dimensional state ρ is described by its d2–dimensional
Wigner representation Wρ. The distribution Wρ is defined on the phase space, but it
can be convenient to re-express this using vector notation. We discuss this in terms of
Wigner representations, but there is nothing to prevent the discussion from applying
to rescaled Wigner representations as well.

To each Wigner representation Wρ(z) we can associate component-multiplicity
pairs {(wi,mi)} where the value wi occurs in the distribution Wρ(z) with multiplicity
mi.

As an example, for the Strange state |S⟩ with

W|S⟩ = (−1/3, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6) (3.10)

we have the component-multiplicity pairs: {(−1/3, 1), (1/6, 8)}. However, we might
also wish more freedom and not require that the different wi values are all distinct.
For example, the component-multiplity pairs {(−1/3, 1), (1/6, 2), (1/6, 3), (1/6, 3)}
also describe W|S⟩.

This representation is more compact when a Wigner representation has a lot of
multiplicities, and allows for simple handling of multiple copies via the following
fact.

Claim 3.2. Consider two Wigner representations WρA(zA),WρB(zB) with component-
multiplicity pairs

{(wi,mi)} and {(w′
j,m

′
j)}, (3.11)

respectively. Then, {(wiw′
j,mim

′
j)} gives component-multiplicity pairs for WρA⊗ρB(zA⊕

zB).

Proof. This result is true because all components of WρA⊗ρB(zA⊕zB) are of the form
wiw

′
j and ∑

i

∑
j

mim
′
j =

∑
i

mi

∑
j

m′
j = d2Ad

2
B, (3.12)

where dA, dB are the dimensions of ρA, ρB respectively, and so the set {(wiw′
j,mim

′
j)}

contains exactly the Wigner components of WρA⊗ρB(zA ⊕ zB).
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The above result also applies when we consider rescaled Wigner representations,
crucially due to the multiplicativity result shown in Claim 3.1.

In the case of distillation protocols, we are interested in copies of distributions.
For this, we have the following result, following from combinatorics, which allows
us to simply characterize the Wigner representation of a multi-copy state in terms of
the representations of the individual states.

Claim 3.3. Suppose Wρ has a set of D component-multiplicity pairs {(wi,mi)}. Then,
Wρ⊗n has component-multiplicity pairs {(Wq,Mq)}, with index q running through all
vectors (q1, . . . , qD), where q1, . . . , qD are non-negative integers that sum to n, and

Wq =
D∏
i=1

wqii , (3.13)

Mq =

(
n

q1, q2, . . . , qd

) D∏
i=1

mqi
i . (3.14)

The term outside the product in the expression for Mq is the generalized binomial coef-
ficient, (

n

q1, q2, . . . , qd

)
:=

n!

q1! . . . qD!
. (3.15)

Proof. Denote by Cn
D := {k} the set of all vectors k := (k1, . . . , kD) with non-negative

integer components that sum to n, i.e.

0 ≤ k1, . . . , kD ≤ n and k1 + · · ·+ kD = n.

We proceed by induction. Assume n = 1 and let ki be the vector with its i-th
component equal to 1 and 0’s elsewhere. The set C1

D consists of all vectors of this
form, i.e.

C1
D = {ki}i=1,...,D (3.16)

It is also true by direct calculation that

(Wki
,Mki

) = (wi,mi). (3.17)

Therefore, {(Wk,Mk)}k∈C1
D

is a complete set of component-multiplicity pairs for Wρ.
Assume that {(Wk,Mk)}k∈Cn

D
as given in Eq. (3.13) and Eq. (3.14) is a complete

set of component-multiplicity pairs for the n–copy distribution Wρ⊗n = W⊗n
ρ . By

construction, W⊗(n+1)
ρ = W⊗n

ρ ⊗ Wρ, so it admits the complete set of component
multiplicity pairs

{(Wkwi,Mkmi)}, k ∈ Cn
D and i = 1, . . . , D. (3.18)
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Consider the component sum of distribution W⊗(n+1)
ρ ,

∑
k∈Cn

D

D∑
i=1

MkmiWkwi =
∑
k∈Cn

D

MkWk

D∑
i=1

miwi =

∑
k∈Cn

D

n!

k1! . . . kD!

D∏
i=1

mi
kiwi

ki

D∑
i=1

miwi =

(
D∑
i=1

miwi

)n( D∑
i=1

miwi

)
=

(
D∑
i=1

miwi

)n+1

=∑
q∈Cn+1

D

MqWq, (3.19)

where in the last expression, vectors q = (q1, . . . , qD) have non-negative integer
components that sum to (n+ 1) and

Mq =
(n+ 1)!

q1! . . . qD!

D∏
i=1

mi
qi , (3.20)

Wq =
D∏
i=1

wi
qi . (3.21)

We have used the multinomial expansion to proceed with the second and third equal-
ities in the derivation of Eq. (3.19).

We have achieved a regrouping of the distribution components. Every component
Wq is of the form Wkwi with qi = ki + 1 and qj = kj for j ̸= i and

∑
q∈Cn+1

D

Mq =
∑

q∈Cn+1
D

(n+ 1)!

q1! . . . qD!

D∏
i=1

mi
qi =

(
D∑
i=1

mi

)n+1

= d2(n+1), (3.22)

which is the dimension of W⊗(n+1)
ρ .

Therefore, {(Wq,Mq)}q∈Cn+1
D

contains exactly the components of W⊗n
ρ , completing

the proof.

The above result applies on rescaled Wigner representations as well and it will be
of assistance in deriving explicit bounds for important examples of magic distillation
processes in chapter 4.

3.2 Non-monotonic Lorenz curves
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A Lorenz curve is a powerful tool that provides a visual and compact description
of majorization. We begin our analysis by providing the well-known definition of
the Lorenz curve in the general context of real vectors. The definition allows us to
demonstrate in Claim 3.5 that comparison between Lorenz curves is equivalent to
the full set of majorization conditions for quasi-distributions, much like it is already
known to be the case for probability distributions [133]. Unlike a monotone func-
tion, Lorenz curves therefore contain the entire information that majorization can
provide us with.

3.2.1 Definition of a Lorenz curve

We make use of the notion of a Lorenz curve of a vector w ∈ Rn relative to some
other vector r ∈ Rn. Given a vector w we define w↓ to be the re-arrangement of the
components of w into decreasing order. Given two n–component vectors w and r,
we first define w̃ = (w̃i), where w̃i := wi/ri, as the vector of component-wise ratios
between w and r. We can now define the Lorenz curve of w relative to r, denoted
Lw|r(x), as the piece-wise linear function that passes through (0, 0) and the n points

(xk, Lw|r(xk)) =

(
1

R

k∑
i=1

rπ(i),
k∑
i=1

wπ(i)

)
, (3.23)

where R :=
∑n

i=1 ri and π is the permutation on n objects mapping w̃ to w̃↓. The
form of this requires that r has no zero components, which we shall assume without
loss of generality as the rank of a quantum state is not operationally meaningful. We
further define an elbow point of the Lorenz curve as any non-differentiable point of
the curve. They can only be located at (0, 0) and some xk = 1

R

∑k
i=1 rπ(i), as these

points are connected between them via line segments. Conversely, it is possible that
the slope at some xk does not change due to degeneracy in the values of the vector
components, hence the number of elbows is upper bounded by n + 1. For example,
elbow points are demonstrated in Fig. (3.1) as the points where the slopes of the
curve change.

In the usual case where w and r are both probability distributions the Lorenz curve
is defined on the interval [0, 1], and rises monotonically until it reaches the value 1

at x = 1. The value Lw|r(x) = 1 is a global maximum. Moreover, if w,w′, r, r′ are
all valid probability distributions with r, r′ having positive components, then

(w, r) ≻ (w′, r′) if and only if Lw|r(x) ≥ Lw′|r′(x),

for all x ∈ [0, 1]. This result is well-known; it is shown in [129] and we reproduce
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it in Claim 3.7 for completeness. It provides a simple way of computing whether
relative majorization holds between pairs of probability distributions.

However, if w is a quasi-distribution with negative values, and r a regular prob-
ability distribution things are different. Now the Lorenz curve is no longer mono-
tonically increasing, but is a concave function that breaks through the Lw|r(x) = 1

barrier at an interior point and attains some non-trivial maximum L⋆ above the value
1, before decreasing monotonically to Lw|r(x) = 1 at the end-point x = 1.

3.2.2 Extending Lorenz curves to quasi-distributions

We first verify that the Lorenz curve condition applies to quasi-distributions. This can
be done from first principles, but a simpler way is to use the equivalent result from
probability distributions and work on the differences. We first need the following
auxiliary result.

Claim 3.4. Let w be a quasi-distribution and let r be a probability distribution with
strictly non-zero components. Then, Law+br|r(x) = aLw|r(x) + bx for any constants
a > 0 and b ∈ R.

Proof. The Lorenz curve of aw+ br relative to r passes through (0, 0) and the points
(
∑k

i=1 rπ(i),
∑k

i=1(aw + br)π(i)) where π is the permutation that puts (awi/ri + b) in
non-increasing order. Since a > 0, the permutation π puts (wi/ri) in non-increasing
order too. We thus have(

k∑
i=1

rπ(i),
k∑
i=1

(aw + br)π(i)

)
=

(
k∑
i=1

rπ(i), a
k∑
i=1

wπ(i) + b
k∑
i=1

rπ(i)

)
,

so the value of the Lorenz curve at each point xk =
∑k

i=1 rπ(i) is given by

Law+br|r(xk) = aLw|r(xk) + bLr|r(xk) = aLw|r(xk) + bxk, (3.24)

so we have Law+br|r(x) = aLw|r(x) + bx for any x ∈ [0, 1] due to linearity.

We can then reduce to the problem of genuine probability distributions by first
masking the negativity in the quasi-distribution w, i.e. mixing it with the reference
distribution r until all components of w are non-negative, and then applying the
conditions for relative majorization. This negativity masking gives the Lorenz curve
condition on relative majorization.

Claim 3.5. Let w ∈ Rn,w′ ∈ Rm be quasi-distributions, and let r ∈ Rn, r′ ∈ Rm be
probability distributions with non-zero components. Then, (w, r) ≻ (w′, r′) if and only
if Lw|r(x) ≥ Lw′|r′(x) for all x ∈ [0, 1].
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Proof. Since the components of r are strictly positive, there always exists an ϵ > 0

such that wϵ := ϵw + (1 − ϵ)r is a genuine probability distribution. A similar result
holds for w′ and r′ and we choose ϵ sufficiently small so that both wϵ and w′

ϵ are
probability distributions. We now have that (w, r) ≻ (w′, r′) if and only if (wϵ, r) ≻
(w′

ϵ, r
′). This equivalence holds because there exists a stochastic map A such that

Aw = w′ and Ar = r′ if and only if

A[ϵw + (1− ϵ)r] = ϵw′ + (1− ϵ)r′ and Ar = r′. (3.25)

In terms of a Lorenz curve condition we have that (wϵ, r) ≻ (w′
ϵ, r

′) if and only if
Lwϵ|r(x) ≥ Lw′

ϵ|r′(x) for all x ∈ [0, 1]. Additionally, we use the result of Claim 3.4
that the Lorenz curve for any quasi-distribution obeys the relation

Law+br|r(x) = aLw|r(x) + bx, (3.26)

for any a > 0 and b ∈ R. This relation implies that Lwϵ|r(x) ≥ Lw′
ϵ|r′(x) if and only if

ϵLw|r(x) + (1− ϵ)x ≥ ϵLw′|r′(x) + (1− ϵ)x. Finally, the (1− ϵ)x terms cancel on both
sides and we get the required relative majorization conditions that (w, r) ≻ (w′, r′)

if and only if Lw|r(x) ≥ Lw′|r′(x) for all x ∈ [0, 1], as required.

We frame the result of Claim 3.5 in order to highlight the link between quasi-
distributions and probability distributions. This result therefore assumes that the
Lorenz curve condition holds for proper probability distributions, a known result
which we replicate later in Claim 3.7. Setting r′ = r in Claim 3.5 retrieves the
special case of d–majorization, which we discuss in more detail now.

3.2.3 Fixed-point majorization in magic theories

We now demonstrate the special case of d–majorization in the context of the Wigner
representation. Our aim here is to motivate the use of the Lorenz curve to visualize
magic and how one can compare states in terms of their magic.

We consider some σ ∈ F , and the resource theory Rσ which leaves its Wigner
representation unchanged. Specifically, given a theory of magic R = (F ,O), we
define the sub-theory Rσ = (F ,Oσ), by restricting the free operations

Oσ := {E ∈ O : E(σ) = σ}, (3.27)

to the subset that leave the distinguished state σ ∈ F invariant. This gives a sim-
ple way to break up any theory into smaller, more manageable parts where d–
majorization can be exploited to analyze each part, while the union over all sub-
theories still returns the parent theory R.
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3.2. NON-MONOTONIC LORENZ CURVES

We are interested in investigating the ability to transform many copies of a magic
state ρ towards a more pure form of magic. The state ρ is assumed to have negativity
in the Wigner representation, so Wρ(z) < 0 for some regions of z ∈ Pd. The state
σ is assumed to have a Wigner representation with Wσ(z) > 0 for all z in the phase
space. This is justified because a non-full rank state σ can be handled as a limiting
case in which we first add an infinitesimal fraction of depolarizing noise ϵ(1/d) and
then take ϵ→ 0.

The free operations within the magic theoryR are represented by stochastic maps,
and within Rσ by stochastic maps that leave Wσ invariant. Therefore, a necessary
condition for magic state transformations ρ1 → ρ2 within Rσ will be that

(Wρ1 ,Wσ) ≻ (Wρ2 ,Wσ), (3.28)

meaning that Wρ1 is more ordered than the quasi-distribution Wρ2 relative to Wσ. To
simplify notation, we denote by Lρ|σ(x) the Lorenz curve LWρ|Wσ(x), and therefore
have that

ρ1 → ρ2 within Rσ implies Lρ1|σ(x) ≥ Lρ2|σ(x), (3.29)

for all x ∈ [0, 1], which restricts the transformations that are possible. Note that
this is not a single numerical constraint, but a family of constraints. For n copies
of a qudit system of dimension d the number of terms in Wρ is d2n, so imposing the
Lorenz curve condition corresponds to exponentially many constraints.

We are now in a position to provide examples of how to construct non-monotonic
Lorenz curves for Wigner representations, and more generally quasi-distributions,
by computing the Lorenz curves corresponding to a family of qutrit magic states.
Specifically, we can define the ϵ–noisy Strange state as

ρS(ϵ) := (1− ϵ) |S⟩ ⟨S|+ ϵ
1

3
1, (3.30)

where ϵ is the depolarizing error parameter. This magic state is canonical in the
sense that any magic state ρ can be processed via Clifford operations [83, 134] and
put into this form for some ϵ ≥ 0. We will therefore use it as a prominent example
in chapter 5 to demonstrate our results. For now, it suffices to state that the Wigner
representation of the single-copy, ϵ–noisy Strange state is given by

WρS(ϵ)(z) = (1− ϵ)W|S⟩⟨S|(z) + ϵW 1
3
1
(z), (3.31)

due to property 1 in Claim 2.7. The representation contains a single negative com-
ponent

−v(ϵ) := −
(
1

3
− 4

9
ϵ

)
(3.32)
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Figure 3.1: “These Lorenz curves go to 11”. Traditionally, Lorenz curves for distri-
butions are monotone increasing cumulative functions that reach a maximum value
of 1. In contrast, Lorenz curves for quasi-distributions generally achieve values
higher than L(x) = 1 and can, in fact, reach arbitrarily high values due to the pres-
ence of negativity in their components. The above family of curves corresponds to
multiple copies of noisy Strange states ρ := ρS(ϵ)

⊗n (Eq. (3.30)) for n = 2, 4, 6 within
Rσ, where σ = 1/3. Solid lines represent pure Strange states, while dashed lines
represent ϵ–noisy Strange states with depolarizing error ϵ = 0.1.

located at the origin z = 0 and positive components

u(ϵ) :=
1

6
− 1

18
ϵ (3.33)

at the 8 phase space points z ̸= 0. We assume that ϵ < 3/4 to ensure the presence of
negativity in the Wigner representation.

Due to negativity, the ordering of the components of the rescaled Wigner repre-
sentation Wρn|σn(z) := Wρn(z)/Wσn(z), for ρn := ρS(ϵ)

⊗n, and σn := σ⊗n = (1/3)⊗n,
depends on whether −v(ϵ) is raised to an even or odd power. Treating the Wigner
representations as vectors, the component values wi and associated multiplicities mi

in the n–copy case are found to be

mi = 8i
(
n

i

)
, (3.34)

wi = ui(−v)n−i, (3.35)

where index i runs through 0, . . . , n, and we assume for simplicity that ϵ ≤ 3/7,
which implies that v ≥ u.
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Therefore, assuming further that n is even, we find the order in which we should
add up components, according to the definition of the Lorenz curve in Eq. (3.23). In
particular, all components with even i are positive, while the smaller i is, the larger
the contribution of v over u is, hence the larger the value of the component. Adding
up all the positive components, we see that the Lorenz curve Lρn|σn(x) reaches a
maximum value of

L⋆ := Lρn|σn(x⋆) =

n/2∑
i=0

m2iw2i =
1

2
+

1

2

(
15− 8ϵ

9

)n
> 1, (3.36)

which occurs at x = x⋆ given by

x⋆ =
1

2
+

1

2

(
7

9

)n
. (3.37)

We plot the Lorenz curves for different numbers of copies n and error rate ϵ in
Fig. (3.1) for the Strange state (Eq. (3.30)) in sub-theory R1/3, where the free chan-
nels are unital. We see that all Lorenz curves achieve values higher than 1, with
curves corresponding to higher numbers of copies n′ lying completely above curves
with fewer copies n, for ϵ = 0. It is therefore implied by Claim 3.5 that one can
transform many copies of the Strange state to few via unital channels. Introducing
non-zero noise lowers the Lorenz curves. If enough noise is introduced, a curve rep-
resenting a n′–copy state may intersect a curve corresponding to a noiseless n–copy
state with n < n′, thus indicating that the n′–copy state is too noisy to be transformed
to the noiseless n–copy state.

3.3 Relative majorization for quasi-distributions

In this section, we first prove a link between simple majorization and relative ma-
jorization in the context of quasi-distributions. This is well-known for probability
distributions (e.g. [131]), but entirely novel in the context of quasi-distributions.
We then use this result to complete the Lorenz curve condition in Claim 3.5 by prov-
ing the statement for proper probability distributions. Finally, we provide equivalent
formulations of relative majorization and prove some useful properties of the Lorenz
curves.

3.3.1 Relative majorization is still majorization

The following result is well-known for probability distributions [127, 133, 135] and
we extend it here to quasi-distributions. It is a satisfying connection between relative
majorization and simple majorization.
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Claim 3.6. Let w ∈ RN ,w′ ∈ RN ′ be quasi-distributions and r ∈ RN , r′ ∈ RN ′

probability distributions with positive rational entries given by ri = ai/K and r′i =

a′i/K for positive integers ai, a′i and K =
∑N

i=1 ai =
∑N ′

i=1 a
′
i. Then,

(w, r) ≻ (w′, r′) if and only if Γa(w) ≻ Γa′(w′), (3.38)

where the embedding map Γa : RN → RK is given by

Γa(z) :=
N⊕
i=1

ziηai =

(
z1
a1
,
z1
a1
, . . . ,

z1
a1
,
z2
a2
,
z2
a2
, . . . ,

z2
a2
, . . . ,

zN
aN

,
zN
aN

, . . . ,
zN
aN

)
, (3.39)

with ηai = (1/ai, 1/ai, . . . , 1/ai) the uniform distribution on ai elements.

Proof. We first note that the map Γa is stochastic and has a well-defined left-inverse
Γ−1
a : RK → RN given by

Γ−1
a (x) =

 a1∑
i=1

xi,

a1+a2∑
i=a1+1

xi, . . . ,

K∑
i=a1+···+aN−1+1

xi

 , (3.40)

that obeys (Γ−1
a ◦ Γa)(z) = z for all z ∈ RN . To obtain this inverse, we sum up

all components within each independent block ziηai that appears in Γa for all i =
1, . . . , N . It is not a right-inverse as not all vectors in RK is of the form of Eq. (3.39).

The Claim is equivalent to the statement that there exists a bistochastic map B

sending Γa(w) to Γa′(w′) if and only if there exists a stochastic map A sending w to
w′ and r to r′.

Suppose there is a stochastic map A such that Aw = w′ and Ar = r′. We define
B : RK 7→ RK by B := Γa′ ◦ A ◦ Γ−1

a so that it is stochastic as a composition of
stochastic maps and it preserves the uniform distribution in RK , since

B(1/K, . . . , 1/K) =
(
Γa′ ◦ A ◦ Γ−1

a

)(
Γa′(r)

)
= Γa′(r′) = (1/K, . . . , 1/K), (3.41)

therefore B is bistochastic. Finally, B maps the embedded distributions as follows,

BΓa(w) =
(
Γa′ ◦ A ◦ Γ−1

a

)(
Γa(w)

)
= Γa′(w′). (3.42)

Conversely, suppose a bistochastic map B exists sending Γa(w) to Γa′(w′). Again,
define A : RN 7→ RN ′ by A := Γ−1

a′ ◦B ◦ Γa so that it is stochastic as a composition of
stochastic maps and Aw =

(
Γ−1
a′ ◦B ◦ Γa

)
w = w′, as well as Ar = r′.

We note that the vectors r, r′ with rational components form a dense subset of the
positive probability distributions, and do not consider further technicalities that have
no impact on actual physical measurements, which always have a finite resolution.

Restricting the above result in the context of proper probability distributions, we
can replicate the Lorenz curve condition for probability distributions (see e.g. [130]).
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Claim 3.7. Given probability distributions w, r ∈ RN and w′, r′ ∈ RN ′ with r, r′

having positive components, then

(w, r) ≻ (w′, r′) if and only if Lw|r(x) ≥ Lw′|r′(x),

for all x ∈ [0, 1].

Proof. In the case of N = N ′ and r = r′ = η, where η = (1/N, 1/N, . . . , 1/N) is
the uniform distribution on N elements, the statement reduces to the Lorenz curve
condition Lw(x) ≥ Lw′(x) for all x, for simple majorization which follows immedi-
ately from the defining set of inequalities for majorization [115]. Namely, the Lorenz
curve Lw(x) for w is obtained from the partial sums of w sorted in non-increasing
order. It is also clear from the definition that the Lorenz curve of w is given by
Lw(x) = Lw|η(x).

To prove the general statement we reduce the relative majorization Lorenz curve
condition to standard majorization. Using the notation and assumptions of Claim 3.6
for distributions with rational components, we can define Γa(w),Γa′(w′) and the
uniform distribution η = (1/K, 1/K, . . . , 1/K).

The key ingredient in the proof is that the Lorenz curve of w relative to r coincides
with the Lorenz curve of Γa(w), namely

Lw|r(x) = LΓa(w)|η(x) = LΓa(w)(x) for all x ∈ [0, 1]. (3.43)

To see this we consider the elbows of Lw|r(x), as defined under Eq. (3.23)),

(xk, Lw|r(xk)) =

(
k∑
i=1

rπ(i),
k∑
i=1

wπ(i)

)
, (3.44)

where the permutation π sorts (wi/ri) in non-increasing order. Expressing Γa(w) as

Γa(w) =
1

K

N⊕
i=1

(
wi
ri
, . . . ,

wi
ri

)
, (3.45)

where (wi/ri, . . . , wi/ri) has ai elements, it is clear that permutation π sorts Γa(w)

in non-increasing order too. The Lorenz curve elbows (yk, LΓa(w)|η(yk)) occur at

yk =

aπ(1)+···+aπ(k)∑
j=1

1

K
=

k∑
i=1

aπ(i)
K

= xk (3.46)

and take values

LΓa(w)|η(yk) =
k∑
i=1

aπ(i)
1

K

wπ(i)
rπ(i)

= Lw|r(xk). (3.47)
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3.3. RELATIVE MAJORIZATION FOR QUASI-DISTRIBUTIONS

Therefore, the Lorenz curve of the embedded distribution coincides with the Lorenz
curve in the relative majorization setting.

Finally, we have (w, r) ≻ (w′, r′) if and only if Γa(w) ≻ Γa′(w′), which holds if
and only if LΓa(w)|η(x) ≥ LΓa′ (w′)|η(x) for all x ∈ [0, 1], which in turn holds if and
only if Lw|r(x) ≥ Lw′|r′(x), x ∈ [0, 1], which concludes the proof.

Having shown the Lorenz curve condition on probability distributions in Claim 3.7,
we have completed the proof of the Lorenz curve condition on quasi-distributions in
Claim 3.5. We now list a concise summary of useful equivalent formulations of
relative majorization on quasi-distributions.

Claim 3.8. Given quasi-distributions w,w′, r, r′, such that the components of r and r′

are positive, the following statements are equivalent:

(i) w′ = Aw and r′ = Ar for a stochastic map A;

(ii) Lw|r(t) ≥ Lw′|r′(t) for t ∈ [0, 1) and Lw|r(1) = Lw′|r′(1);

(iii)
n∑
i=1

|wi − rit| ≥
n∑
i=1

|w′
i − r′it| for all t ∈ R.

Proof. The equivalence between (i) and (ii) on quasi-distributions was proven in
Theorem 1 in the main text.

The equivalence between (i) and (iii) follows from a similar argument where we
mask negativity with a probability distribution. Namely, let ϵ > 0 be such that
w(ϵ) := ϵw + (1 − ϵ)r and w′(ϵ) := ϵw + (1 − ϵ)r′ are genuine probability distribu-
tions. This is guaranteed by picking a sufficiently small ϵ > 0, since r has positive
components. We now have that (w, r) ≻ (w′, r′) if and only if (w(ϵ), r) ≻ (w′(ϵ), r′).
Moreover, we have that for all c ∈ R,

∑n
i=1 |w(ϵ)i − ric| ≥

∑n
i=1 |w′(ϵ)i − r′ic|, which

leads to

n∑
i=1

∣∣∣∣wi − ri ϵ+ c− 1

ϵ

∣∣∣∣ ≥ n∑
i=1

∣∣∣∣w′
i − r′i

ϵ+ c− 1

ϵ

∣∣∣∣
Replacing t = (ϵ + c − 1)/ϵ, we see that t can attain any real value for c ∈ R, so we
deduce the required L1–norm condition on quasi-distributions w,w′.

The first statement in Claim 3.8 is simply the definition of majorization, the second
statement is the Lorenz curve condition and the third statement is one that we use in
showing that majorization is more powerful than the mana monotone (Eq. (2.33))
later on, in Claim 4.2.
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3.3.2 Lorenz curve properties

Aiming to obtain a firmer grip on the Lorenz curve formulation, we verify useful
properties in the context of quasi-distributions, starting from the simple property
that the Lorenz curve is concave.

Claim 3.9 (Concavity). Let w be a quasi-distribution and let r be a probability distri-
bution with non-zero components. Then, Lw|r(x) is a concave function on [0, 1].

Proof. Let x⋆ be the point where Lw|r(x) first attains it maximum. Therefore, on
[0, x⋆] the function rises monotonically to Lw|r(x⋆), via the sum of all positive en-
tries of w, taken in decreasing order. Likewise on [x⋆, 1], the function decreases
monotonically from its maximum via the partial sums of the negative entries of w
in decreasing order. Let f1(x) be equal to Lw|r(x) on [0, x⋆] and 0 otherwise. Also let
f2(x) be equal to Lw|r(x) on [x⋆, 1] and and 0 otherwise. By inspection both f1 and
f2 are concave functions, and f1(x) + f2(x) = Lw|r(x) for all x ∈ [0, 1]. However, the
sum of two concave functions is also concave which concludes the proof.

This result is known for the case of probability distributions, where the Lorenz
curve is in fact non-decreasing. It is also clear for quasi-probability distributions, as
we can inspect in Fig. (3.1), with the difference that now the concave Lorenz curve
contains segments with negative slope.

The following result reduces the Lorenz curve condition on the interval [0, 1] to
a the smallest set of independent inequalities one can condier, thus simplifying the
computation of relative majorization constraints in practical scenarios.

Claim 3.10 (Lorenz curve inequalities). Let w ∈ RN ,w′ ∈ RN ′ be quasi-distributions
and r ∈ RN , r′ ∈ RN ′ probability distributions with positive entries. Assume that
Lw′|r′(x) has t elbows at locations x1, . . . , xt. Then, Lw|r(x) ≥ Lw′|r′(x) for all x ∈ [0, 1]

iff Lw|r(xi) ≥ Lw′|r′(xi) for all i = 1, . . . , t.

Proof. If Lw|r(x) ≥ Lw′|r′(x) for all x ∈ [0, 1], then the condition on the elbows
follows trivially.

Conversely, assume Lw|r(xi) ≥ Lw′|r′(xi) for all i = 1, . . . t. Suppose on the con-
trary that Lw|r(x) dips below Lw′|r′(x) at some point x = y where xi < y < xi+1 for
some i. Then this implies

Lw|r(xi) ≥ Lw′|r′(xi)

Lw|r(y) < Lw′|r′(y)

Lw|r(xi+1) ≥ Lw′|r′(xi+1).

49



3.4. SINGLE-SHOT ENTROPIES ON QUASI-DISTRIBUTIONS

However, since Lw′|r′(x) is linear between xi and xi+1, the above conditions imply
that Lw|r(x) is not concave, which contradicts Claim 3.9. Therefore, Lw|r(x) ≥
Lw′|r′(x) for all x in [0, 1].

In fact, we reduce the result of Claim 3.10 to the first elbow, hence consider-
ing only the part of the Lorenz curves between the origin (0, 0) and the first elbow
(Eq. (3.23)).

Claim 3.11 (First elbow constraint). Let w ∈ RN ,w′ ∈ RN ′ be quasi-distributions and
r ∈ RN , r′ ∈ RN ′ probability distributions with positive entries. Denote the coordinates
of the first elbow of Lw|r(x) by (X0, L0) and the coordinates of the first elbow of Lw′|r′(x)

by (X ′
0, L

′
0).

Then, given any coordinates (x, L) and (x′, L′) on Lorenz curves Lw|r(x) and Lw′|r′(x)

respectively, where 0 < x ≤ X0 and 0 < x′ ≤ X ′
0, the process is possible only if

L

x
≥ L′

x′
. (3.48)

Proof. If the transformation is possible, then Lw|r(x) ≥ Lw′|r′(x) for all x in [0, 1].
Restricting to the initial line segment of Lw|r(x) joining (0, 0) to (X0, L0), we then
require that it be above the initial linear segment of Lw′|r′(x) joining (0, 0) to (X ′

0, L
′
0).

Since both these linear segments start at the origin, this condition is equivalent to
the slope of the initial segment of the input Lorenz curve being greater than or equal
to the slope of the initial segment of the output Lorenz curve. This slope constraint
is then equivalent to Eq. (3.48).

This simple condition ignores the rest of the Lorenz curves, but it can still be suffi-
cient to build, for example, magic bounds that beat bounds from certain monotones.
We call it the first elbow constraint and we use it in deriving some explicit upper
bounds on magic distillation rates in section 4.1.2 and section 4.2.2.

Moving on from Lorenz curves, we now turn our attention to the emergence of
single-shot entropies from relative majorization in the context of quasi-distributions.

3.4 Single-shot entropies on quasi-distributions

The obstacle in linking Wigner negativity on the phase space with macroscopic
thermodynamic notions, such as equilibrium free energy is that the Wigner rep-
resentation is generally a quasi-distribution, so the standard Boltzmann entropy
H(w) = −

∑
iwi logwi is not well-defined for representations w of states that admit
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negativities, let alone have a physically meaningful interpretation. However, in this
section we provide the tools to overcome this annoying hiccup. We do so by deriv-
ing in section 3.4.1 a wide family of entropic families that are well-defined on the
discrete phase space, and, more broadly, on the space of quasi-distributions of any
dimension. We then show in section 3.4.2 that these well-defined entropies allow us
to further define a notion of relative entropy on quasi-distributions that is physically
meaningful in terms of data processing. These functions form single-shot measures
of disorder between quasi-distributions and we derive them based on our work on
relative majorization of quasi-distributions that we have described thus far. The nar-
rative of these two sections takes the form of Claims that extend results known for
proper probabilities to the entire quasi-probability space.

3.4.1 Rényi entropies on quasi-distributions

To extend our majorization framework to a wide family of entropic functions, we
make use of known results from probability majorization theory to establish the
Schur-concavity of the Rényi entropy Hα [125], as given in Eq. (3.53), on quasi-
distributions, for a subset of α values. We consider the set of all quasi-distributions

QN =

{
w ∈ RN :

N∑
i=1

wi = 1

}
, (3.49)

which is a hyper-plane in RN .
We first need to define the notion of Schur-convex and Schur-convave functions

on a subset D ⊆ RN . A continuous, real-valued function f defined on D ⊆ RN is
called Schur-convex on the domain D if p ≺ q on D implies that f(p) ≤ f(q). A
continuous function f : D → R is called Schur-concave if (−f) is Schur-convex.

For any subset D ⊆ RN we further define

D↓ := {w ∈ D : w1 ≥ w2 ≥ · · · ≥ wN}. (3.50)

We now have the following fundamental result in majorization theory.

Claim 3.12 (Schur-Ostrowski criterion [115,136,137]). Let D ⊆ RN be a convex set
with non-empty interior, and invariant under permutations of vector components. Let
f : D → R be a continuously differentiable function on the interior of D and continuous
on the whole of D. Then f is Schur-convex on D if and only if f is a symmetric function
on D and

∂1f(w) ≥ ∂2f(w) ≥ · · · ≥ ∂Nf(w), (3.51)

for all w in the interior of D↓.
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The Schur-Ostrowski criterion is used to derive the monotonicity of the Rényi
entropy Hα on probability distributions. Since the set QN of quasi-distributions obey
the necessary conditions of the Schur-Ostrowski criterion, we can use it to establish
that the Rényi entropy Hα is well-defined and monotonic on the entire set QN . To
this end, we first state the following preliminary result, which follows directly from
Claim 3.12.

Claim 3.13. Let f be a real-valued continuous function defined on QN that is continu-
ously differentiable on the interior of QN . Then, f is Schur-convex on QN if and only if
it is a symmetric function and

∂1f(w) ≥ ∂2f(w) ≥ · · · ≥ ∂Nf(w), (3.52)

for all quasi-distributions w in the interior of Q↓
N .

The classical α–Rényi entropy [125] on a probability distribution p = (pi) is given
by

Hα(p) :=
1

1− α
log
∑
i

pαi , (3.53)

where α ≥ 0. This means the function is well-defined on Q+
N , namely the set of

quasi-distributions with non-negative components. We wish to extend the domain
to the whole of QN , but this requires that wαi be a real number for any wi ∈ R.

The exponent function x 7→ xα is well-defined and real-valued if α is a rational
number of the form α = r/s where s is an odd integer and r ∈ N. However, we also
require that

∑
iw

α
i > 0 in order for the logarithm to return a real value. To ensure

this, we restrict to α = r/s with r = 2a being an even integer and s = 2b − 1 being
an odd integer, for some integers a, b ∈ N, which implies that the following are all
well-defined, real-valued expressions,

0 ≤ wαi = w
2a

2b−1

i =

(
w

1
2b−1

i

)2a

=
(
w2a
i

) 1
2b−1 = |wi|

2a
2b−1 .

We note that previous work [138] has considered the α = 2 entropy of Wigner
representations, and other work exists that uses the Wehrl entropy, based on the
Hussimi function of a quantum state [139].

We are now in a position to show thatHα(w) for α = 2a/(2b−1) is a Schur-concave
function on QN provided that a ≥ b.

Claim 3.14. If α = 2a
2b−1

for positive integers a, b with a ≥ b, then Hα(w) is well-defined
on the set of quasi-distributionsQN , and moreover if w ≻ w′ for two quasi-distributions
w,w′ ∈ QN then Hα(w) ≤ Hα(w

′).
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Proof. We have α = 2a
2b−1

≥ 2b
2b−1

> 1 and α is a rational with even numerator and
odd denominator, so

∑
iw

α
i > 0 and Hα(w) is well-defined for all quasi-distributions

w.
We also have that Hα(w) is well-defined, continuous, differentiable on the interior

of QN and symmetric in the components of w.
Consider the partial derivatives

∂Hα

∂wi
=

α

(α− 1)
∑

iw
α
i

(
−wα−1

i

)
. (3.54)

For α = 2a
2b−1

, with a ≥ b, we have that

α

(α− 1)
∑

iw
α
i

> 0. (3.55)

The first derivative of the function g(w) := −wα−1 is given by

g′(w) = −(α− 1)wα−2 = −(α− 1)w
2a−4b+2

2b−1 ≤ 0, (3.56)

because α > 1 and
w

2a−4b+2
2b−1 =

(
w

a−2b+1
2b−1

)2
≥ 0, (3.57)

so g(w) is non-increasing in w.
Therefore, whenever wi ≥ wj, we have that

−wα−1
i ≤ −wα−1

j , (3.58)

which implies that
∂Hα

∂wi
(w) ≤ ∂Hα

∂wj
(w), (3.59)

for any w in the interior of Q↓
N . Therefore, Hα is Schur-concave on QN and

Hα(w) ≤ Hα(w
′), (3.60)

for any quasi-distributions w,w′ that obey w ≻ w′.

While we have integers a, b such that 0 < α = 2a
2b−1

< 1 and Hα(w) is well-defined,
it turns out that monotonicity does not hold if we drop the condition a ≥ b. If
α = 2a/(2b−1) with α < 1, then g(w) := −wα−1

α−1
is no longer monotonic for all w ∈ R,

and the problem occurs when comparing wi < 0 and wj > 0. As an example of this
dependence of monotonicity on the domain of the function, consider the function
g(x) = 1

x3
which is monotone decreasing on both x < 0 and x > 0 separately,

however it is not monotone on the full real-line.
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We note that if α = r/s with both r and s odd, then Hα is not well-defined for all
quasi-distributions, although if the actual set of quasi-distributions has a sufficiently
bounded negativity, then log

∑
iw

α
i can still be obtained for r odd, provided the total

sum is never negative. For Wigner representations, this may require a stricter bound
than the generic bound |Wρ(z)| ≤ 1/d for a d–dimensional quantum system.

We also note that the set F := {2a/(2b − 1) : a, b ∈ N and a ≥ b} is dense in the
reals R>1, as any rational c/d with c > d can be approximated by c2n/(d2n − 1) ∈ F
for sufficiently large n.

We have that Hα is additive on products of quasi-distributions, which we state for
completeness.

Claim 3.15. For any w ∈ QN and w′ ∈ QN ′, we have

Hα(w ⊗w′) = Hα(w) +Hα(w
′), (3.61)

where α = 2a/(2b− 1) with positive integers a ≥ b.

Proof.

Hα(w ⊗w′) =
1

1− α
log
∑
i,j

[
wiw

′
j

]α
=

1

1− α
log

[∑
i

wα
i

∑
j

w′α
j

]

=
1

1− α
log

[∑
i

wα
i

]
+

1

1− α
log

[∑
j

w′α
j

]
= Hα(w) +Hα(w

′). (3.62)

The additivity property in representing many-copy magic states.
Applied to Wigner representations Wρ(z) for a quantum state ρ we have

Hα(Wρ) :=
1

1− α
log
∑
z

Wρ(z)
α, (3.63)

where α can take values of the form 2a/(2b − 1), for non-negative integers a, b. For
the noisy Strange state ρ = ρS(ϵ) (Eq. (3.30)), this becomes

Hα

(
WρS(ϵ)

)
=

1

1− α
log

[
8

(
1

6
− 1

18
ϵ

)α
+

(
−1

3
+

4

9
ϵ

)α]
(3.64)

We plot this entropy as a function of the index α and the error ϵ in Fig. (3.2). We see
that Hα

(
WρS(ϵ)

)
attains a negative value for α in the neighborhood of 1, at any value
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Figure 3.2: Rényi entropy Hα of the ϵ–noisy Strange state. Hα is increasing in α

and ϵ for the ϵ–noisy Strange state of Eq. (3.30). The rightmost dashed contour line
corresponds to Hα(WρS(ϵ)) = 0. In particular, Hα(WρS(0)) = 0 occurs at α ≈ 1.31.

of error ϵ for which WρS(ϵ)(z) also contains a negativity. This demonstrates Claim 4.9
that we prove later on, which establishes an equivalence between a negative Wigner
representation and a negative-valued entropy. We see in Fig. (3.2) that the more
noisy the state is, the closer it lies to the set of free states, therefore one needs to
restrict to a smaller neighborhood of α to find entropic negativity.

3.4.2 Rényi divergences on quasi-distributions

We now define the α–Rényi divergence, or relative entropy, for a quasi-distribution
w ∈ QN relative to a full-rank probability distribution r ∈ Q+

N as

Dα(w || r) :=
1

α− 1
log
∑
i

wαi r
1−α
i , (3.65)

where α = 2a/(2b− 1) for positive integers a ≥ b. The min-relative divergence is the
limit of the α–Rényi divergence, when α→∞,

D∞(w || r) := 1

α− 1
log
∑
i

wαi r
1−α
i . (3.66)

The physical motivation for defining these divergences is to quantify the entropic
distance between a magic state and a reference stabilizer state. Our magic bounds
later on will depend on how this distance varies before and after the application of
a magic-preserving channel. We therefore need to show that the divergence remains
meaningful under data processing, which is the goal of the rest of this section.
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It is clear that Dα(w || r) and D∞(w || r) remain well-defined when w is a
quasi-distribution. We can further prove the following result that relates the Rényi
divergence to the Rényi entropy on a dense subset of probability distributions.

Claim 3.16. Let w ∈ QN be a quasi-distribution and r ∈ Q+
N a probability distribution

with positive rational entries given by ri = ai/K for positive integers ai and K =∑N
i=1 ai. Then,

Hα(Γa(w)) = K −Dα(w || r), (3.67)

where α = 2a/(2b− 1) for positive integers a ≥ b.

Proof. For the given form of α and positive ri, i = 1, . . . , N , Dα(w || r) is well-
defined for all w. From the definition of Γa we have

Γa(w) =
N⊕
i=1

wi(1/ai, 1/ai, . . . , 1/ai). (3.68)

This leads to

Hα(Γa(w)) =
1

1− α
log

N∑
i=1

wαi a
1−α
i = K +

1

1− α
log

N∑
i=1

wαi r
1−α
i

= K −Dα(w || r), (3.69)

where in the first equality we used the definition of Hα (Eq. (3.53)), in the second
equality we substituted αi = ri/K, and in the last equality we used the definition of
Dα (Eq. (3.65)).

With this we now establish monotonicity for α–Rényi relative divergences.

Claim 3.17. Let α = 2a
2b−1

for any positive integers a, b with a ≥ b. Let w ∈ QN ,
w′ ∈ QN ′ and r ∈ Q+

N , r′ ∈ Q+
N ′ with positive rational components ai/K and a′i/K

respectively. Then Dα(w || r) ≥ Dα(w
′ || r′), whenever (w, r) ≻ (w′, r′).

Proof. The statement (w, r) ≻ (w′, r′) is equivalent to Γa(w) ≻ Γa′(w′). Therefore,
due to Claim 3.14 we have

Hα(Γa(w)) ≤ Hα(Γa′(w′)) (3.70)

which, due to Claim 3.16, is equivalent to

Dα(w || r) ≥ Dα(w
′ || r′). (3.71)
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Since the rationals are dense in the real numbers we can assume that any Wigner
representation considered in the following chapters has rational components with-
out affecting results.

In this chapter we have rigorously extended relative majorization to the entire
space of quasi-distributions of any finite dimension. Given the numerous applica-
tions of majorization on probability distributions in the context of quantum infor-
mation, we expect that our mathematical extension to quasi-distributions can lead
to new applications in tasks where characterizing non-classicalities is essential. Our
extension is summarized in Claim 3.8, where all the equivalent statements listed con-
stitute different ways of thinking about majorization of general quasi-distributions.

We make the first step in finding applications for this framework within the context
of magic state transformations. In chapter 4 and chapter 5, majorization on Wigner
representation of magic states will give rise to fundamental constraints on the re-
source cost of magic. For example, both Dα(w || r) (Eq. (3.65)) and D∞(w || r)
(Eq. (3.66)) will be shown to result in monotonicity conditions that lead to bounds
on general magic distillation rates. In order to achieve this, the data-processing
inequality we have derived in Claim 3.17 will be crucial.
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Chapter 4

Entropic constraints on
odd-dimensional magic distillation

In this chapter, we develop a framework to analyze magic state distillation protocols
in odd dimensions, where explicit physics of the system is incorporated in the dis-
tillation bounds. This is achieved by considering how a given magic state protocol
transforms a pair of quantum states – one being a noisy magic state, and the other
a stabilizer state that is distinguished by the physics of the system, such as a state
at a characteristic temperature, and acts as a reference state for the protocol. The
magic distillation bounds can then be expressed in terms of the physics of the refer-
ence state (e.g. free energy changes in the case of temperature). Such bounds are of
potential interest in assessing how physical features such as temperature, noise bi-
ases or fixed-point structure associated with restricted gate-sets constrain distillation
protocols [140–146].

The approach we take is most closely aligned with resource theories of magic,
although it differs in key ways. We obtain distillation upper bounds without em-
ploying monotones, as defined in Eq. (1.1), that quantify magic as a resource. We
instead employ the statistical mechanical tools and recent work in single-shot re-
source theories [120, 127, 133, 135, 147–149], detailed in chapter 3. Our analysis
relies on applying these tools on the discrete Wigner representation of quantum sys-
tems, which is detailed in chapter 2. Hence, our approach is more ambitious than
previous attempts that develop monotones to characterize magic. Monotones are
only capable of capturing properties of the input and output magic states. Instead,
our approach incorporates all the characteristics of the magic states as well as ref-
erence stabilizer states which probe the action of the magic protocol itself on the
phase space. We find that explicit properties of the protocol are thus reflected in our
bounds.
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4.1. CONSTRAINTS ON FIXED-POINT PROTOCOLS

Crucially, we focus on magic states with negativity in their Wigner representation,
which is known to be a necessary condition for universality in the state-injection
model [41, 42, 103, 150, 151]. However, taking a statistical mechanical perspective
in this context raises a problem: the standard Boltzmann entropy is not defined for
quasi-distributions. We circumvent this obstacle by making use of the majorization
theory discussed in chapter 3, which constitutes a more fundamental tool in statisti-
cal mechanics and leads to the emergence of entropies.

We consider families of magic protocols with increasing complexity and analyze
how increasingly more complex variants of majorization lead to bounds on magic
distillation rates. The simplest case we consider is for magic protocols that lead to
unital channels. These are a subset of protocols that leave invariant some distin-
guished state or have some equilibrium fixed-point structure. We then consider pro-
tocols that are non-equilibrium processes, but only generate sub-linear correlations
that enable a simple description in the thermodynamic limit before giving entropic
analysis that can be applied generally.

The relations between the sets of protocols considered are as follows:

Unital ⊂ local fixed-points ⊂ sub-linear correlations ⊂ general protocols.

A general schematic of the protocols we consider is provided in Fig. (4.2).
We provide explicit bounds for magic protocols that generate unital channels in

Eq. (4.5), as well as bounds that incorporate the temperature and Hamiltonian of
the system in Claim 4.5. We also compare our bounds with monotone bounds, as
shown in Fig. (4.3), and discuss extensions to more general scenarios.

We find that the analysis in the presence of negativity displays a range of fea-
tures that do not appear in classical statistical mechanics, and leads to a picture of
Wigner negativity in a quantum circuit being described as non-classical free energy
that is processed under stochastic dynamics illustrated in Fig. (4.1). This is demon-
strated by non-monotonic Lorenz curves as already displayed in Fig. (3.1), and by
single-shot entropies for general Wigner representations that are well-defined, obey
a data-processing inequality under operations that preserve Wigner positivity, such
as Clifford operations, and can take on negative values, introduced in Eq. (2.45).

4.1 Constraints on fixed-point protocols

We begin with fixed-point protocols as they require the simpler form of d–majorization,
instead of the full power of relative majorization, so they are simpler to visualize.
Recall from section 3.2.3 that, given a theory of magic R = (F ,O), we can restrict
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4.1. CONSTRAINTS ON FIXED-POINT PROTOCOLS

Figure 4.1: Probing magic protocols with reference states. A magic protocol
(top figure) converts n copies of some noisy magic state ρ with error parameter ϵ
to m copies of some less noisy state ρ′ with ϵ′ < ϵ. The physics of the protocol can
be analyzed by considering how it would transform some distinguished reference
stabilizer state τ⊗n (bottom figure). For the case where this reference state is a
thermal state at some temperature T our magic distillation bounds are functions
of T , the error parameters ϵ, ϵ′, and free energies F, F ′. In addition, a quantity ϕ

appearing in the bound of Eq. (4.14) relates the computational and energy bases,
and corresponds to the degree to which the Wigner negativity of ρ can be given a
sharp energy via the system Hamiltonian.

to a sub-theory Rσ = (F ,Oσ), where the free operations Oσ leave the state σ ∈ F
invariant. This is in fact always possible as we now show.

Claim 4.1. Let R = (F ,O) be a theory of magic. Then a transformation ρ1 → ρ2

is possible in R if and only if the transformation ρ1 → ρ2 is possible in at least one
sub-theory Rσ.

Proof. Suppose the transformation is possible in a Rσ via some E ∈ Oσ. But since
Oσ ⊆ O it is also possible in R. Conversely, suppose the transformation is possible
in R via some E in O. The free states F are a closed, bounded set and moreover the
image of F under the map E is in F . By Brouwer’s fixed-point theorem [152], this
mapping must therefore have a fixed point σ ∈ F , so E ∈ Oσ and the transformation
is possible in Rσ.

We can compare this approach with resource monotones. A complete set of mono-
tones {Mi}i is defined so that ρ → σ if and only ifMi(ρ) ≥ Mi(σ) for all i. In our
case the set of sub-theories {Rσ}σ∈F can therefore be viewed as a complete set of

60



4.1. CONSTRAINTS ON FIXED-POINT PROTOCOLS

Figure 4.2: Schematic of magic protocols in odd dimensions. The set of the
quantum channels which preserve Wigner positivity Omax is the largest set of free
operations for any magic protocol. It includes the stabilizer operations SO, which
consist of stabilizer state preparations, random mixtures of Clifford unitaries (RCU)
and Pauli measurements. We study sub-theories with operations in Oσ, which cover
all magic protocols according to Claim 4.1, but also include stochastic maps on the
phase space outside the image of CPTP operations. O1/d includes the set of d-
dimensional unital protocols.

of sub-theories fully characterizing the parent resource theory R, where the compli-
cated pre-order in R of states is now mapped to a simpler pre-order for a particular
Rσ. We proceed to show that a givenRσ can be approximated by a majorization pre-
order, which is later exploited in section 4.1 to compute magic distillation bounds
under distillation protocols with a fixed point.

4.1.1 General properties of fixed points

Here, we state some generic aspects of Lorenz curves for magic states, which allow
us to interpret previous magic monotones as features of the curves. The first result
gives a simple way to see that the mana (Eq. (2.33)) and sum-negativity (Eq. (2.34))
of a magic state is a monotone [104]. It is then evident that these two monotones
naturally arise due to more holistic majorization constraints.

Claim 4.2. Majorization in any Rσ implies the monotonicity of sum-negativity/mana.
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Proof. The sum-negativity of a magic state ρ can be written as sn(ρ) = 1
2
(
∑

z |Wρ(z)|−
1). We make use of the L1-norm form of relative majorization presented in Claim 3.8,
which states that w ≻r w′ if and only if∑

i

|wi − rit| ≥
∑
i

|qi − rit|, (4.1)

for all t ∈ R. Choosing t = 0 we get the single condition that
∑

i |pi| ≥ |
∑

i |qi|,
independent of the choice of r. Applying this to the Wigner representations of two
quantum states immediately gives the result.

If we have a magic state ρ that has negativity in its Wigner representation, then, as
discussed, its Lorenz curve attains values larger than 1, reaching a maximum L⋆ > 1

that depends on the particular state. There is a simple relation between L⋆ and
sum-negativity/mana, which is provided by the following result.

Claim 4.3. Given a magic state ρ, the maximum L⋆ of its Lorenz curve Lρ|σ(x) is
independent of the Rσ and equal to 1 + sn(ρ). Moreover, the majorization constraint is
stronger than mana in every Rσ.

Proof. We denote the Wigner representations of the states single-component vectors
w(ρ) = Wρ(z) and w(σ) = Wσ(z). Likewise, we write w(ρ|σ) = Wρ|τ (z). We choose
the component indexing so that w(ρ|σ)↓ = w(ρ|σ), so the components are sorted in
non-increasing order.

Note that all components of w(σ) are positive, so w(ρ|σ)k ≥ 0 if and only if w(ρ)k ≥
0 for any k = 1, . . . , d2.

Let k⋆ be the index of the smallest non-negative component of w(ρ|σ)↓. Then,
w(ρ)k < 0 if and only if k > k⋆, so the maximum of Lorenz curve Lρ|σ(x) takes the
value

Lρ|σ(xk⋆) =
k⋆∑
k=1

w(ρ)k, (4.2)

and is achieved at xk⋆ :=
∑k⋆

k=1w(σ)k. The location of this maximum varies with Rσ,
but its value is independent of σ,

L⋆ := Lρ|σ(xk⋆) =
∑

z:Wρ(z)≥0

Wρ(z)

= 1 + sn(ρ). (4.3)

Since mana is a monotonic function of sum-negativity,M(ρ) = log(2sn(ρ)+1), we
see that mana determines the peak of the Lorenz curve Lρ|σ(x). However, mana is
one of d2n constraints, so majorization is strictly a stronger constraint in any Rσ.
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Therefore, the mana of a state can be thought of as the maximum of its Lorenz
curve, independent of the reource theory Rσ. Using the Lorenz curve perspective, it
is also simple to construct new magic monotones. For example, within a given Rσ,
the area above the horizontal line y = 1 is a magic monotone.

Claim 4.4. Given a magic state ρ and a free state σ, let Aσ(ρ) be the area of the region
{(x, y) : 1 ≤ y ≤ Lρ|σ(x)}. Then Aσ(ρ) is a magic monotone for Rσ.

Proof. Consider the transformation ρ1 → ρ2 within Rσ. We have that Lρ1|σ(x) is
never below the curve Lρ2|σ(x), and therefore the region above L = 1 for ρ2 is a
subset of the corresponding region for ρ1. Thus, Aσ(ρ1) ≥ Aσ(ρ2), so Aσ is a magic
monotone in Rσ.

Note though, in contrast to mana, the area monotone is specific to Rσ, and its
value will vary as we change σ. Therefore, its monotonicity depends on the physics
of the fixed point and provides a means to analyze magic distillation only under free
operations that leave σ invariant. We can see an example of this monotone within the
resource theory R1/3 in Fig. (3.1). For two noisy Strange states of different number
of copies n and n′ > n, the Lorenz curve of the n′–copy state lies above the Lorenz
curve of the n–copy state, therefore A1/3(ρS(ϵ)

⊗n′
) > A1/3(ρS(ϵ)

⊗n) accordingly, for
a given error ϵ. One can also define an area monotone in the more general setting
of relative majorization, where one drops the fixed point emphasis.

4.1.2 Unital protocols

We now construct magic state distillation bounds for protocols that generate unital
channels, meaning that E(1/d) = 1/d, represented by the theory R1/d. This is a
broad family of channels and includes any noiseless unitary or Clifford dynamics on
systems of dimension d. Our approach works for any odd d, but for simplicity we
consider qutrit magic states (d = 3) and in particular the problem of purifying n

copies of a noisy Strange state ρS(ϵ)⊗n into a smaller number of copies n′ of a less
noisy Strange state ρS(ϵ′)⊗n

′, with ϵ′ < ϵ and n′ ≤ n. To this end, we consider the
transformation

ρS(ϵ)
⊗n −→ ρS(ϵ

′)⊗n
′
, (4.4)

and use the Lorenz curves computed in section 3.2.3 in order to bound the magic
distillation rate R(ϵ, ϵ′) := n′/n.

Distillation bounds can be obtained from any part of the Lorenz curve by imposing
the constraint that the Lorenz curve of the input state never dips below the curve of
the output. One simple constraint that proves sufficient for meaningful distillation
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bounds can be obtained by considering the initial slopes of the two Lorenz curves.
This is the first elbow constraint of Claim 3.11.

The coordinates of the first point after the origin for ρS(ϵ)⊗n as calculated in sec-
tion 3.2.3 are given by (1/9n, v(ϵ)n), while for ρS(ϵ′)⊗n

′ by (1/9n
′
, v(ϵ′)n

′
), and by

requiring that the initial slope for the input state Lorenz curve is larger than that of
the output state (Claim 3.11) we find that

R(ϵ, ϵ′) ≤ R∞ :=
log(3− 4ϵ)

log(3− 4ϵ′)
. (4.5)

The choice of denoting the bound by R∞ is explained in the derivation of Eq. (4.77)
in the context of single-shot entropies. For the limiting case of pure magic states on
the output (ϵ′ = 0), this simplifies to

R ≤ 1 +
log
(
1− 4

3
ϵ
)

log 3
. (4.6)

We compare this to two known distillation bounds based on magic monotones. The
bound based on mana (Eq. (2.33)) can be directly calculated as

R ≤ M(ρS(ϵ))

M(ρS(0))
= 1 +

log
(
1− 8

15
ϵ
)

log 5
3

. (4.7)

The max–thauma [153] is defined as

θmax(ρ) := logmin {2 sn(V ) + 1 : V ≥ ρ}, (4.8)

and can be calculated numerically via a semi-definite program. For the noisy Strange
state, the max–thauma bound coincides with the mana bound, and we find that they
are both looser than the majorization bound R∞ as shown in Fig. (4.3).

This figure includes numerical estimates of the optimal majorization bounds Rnum

obtained by considering the full Lorenz curve, which show that the bound R∞ can
be further improved. While this is an improvement on prior results, all known distil-
lation protocols have rates much lower than these upper bounds. It remains a major
open question to determine what are the best possible rates that can be achieved.

4.2 Magic free energy

In this section, we generalize our analysis from fixed-point theories to relative ma-
jorization, where it is no longer necessary to identify the, commonly complicated,
fixed points of the magic protocols. As this forms the subject of quantum thermody-
namics in the case of proper probability distributions, we take the approach of draw-
ing rigorous analogies between the fields of thermodynamics and magic, leading, for
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Figure 4.3: Magic distillation bounds from majorization of Wigner represen-
tations. The above plot shows distillation upper bounds for qutrits obtained from
majorization on unital protocols. The constraints are plotted as a function of the de-
polarizing error ϵ for a noisy Strange state (Eq. (3.30)). Numerical bounds Rnum are
obtained by using the entirety of the Lorenz curves, namely not only the first elbow
analysis, but the full set of majorization constraints. The bound R∞ follows from
a Lorenz curve analysis culminating in Eq. (4.5), while the bound R10 comes from
single-shot entropies on the Wigner representations of the states, as discussed later
in the derivation of Eq. (4.77). Bounds R∞, Rnum, R10 all provide stricter constraints
than mana [104] and max–thauma θmax [153] bounds for noisy Strange states.

example, to a computational analog of free energy, which captures the Wigner nega-
tivity present in a magic state. Therefore, we see that magic constitutes the potential
for quantum computational advantage, much like free energy constitute the poten-
tial for useful thermodynamic work. The way we proceed is by considering how the
protocol would disturb a reference equilibrium state τ to some different state τ ′, if
the protocol is applied to this reference state instead of the desired magic state.

We consider a magic distillation protocol on multiple identical qudits in a noisy
magic state ρ(ϵ), with noise parameter ϵ, sending

ρ(ϵ)⊗n −→ E(ρ(ϵ)⊗n) = ρ(ϵ′)⊗m (4.9)

with n ≥ 1, ϵ′ < ϵ and E denoting the quantum channel induced by the protocol.
We also assume each qudit has a Hamiltonian H and neglect interaction terms. We
choose some temperature T = (kβ)−1 where k is Boltzmann’s constant and β the
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inverse temperature. The reference equilibrium state of the n qudits is given by

τ⊗n =

(
e−βH

Z

)⊗n

. (4.10)

We may also assume that the reference state τ is not a magic state, and has a strictly
positive Wigner representation Wτ (z).

4.2.1 Sub-linear correlations in the thermodynamic limit

We firstly provide motivation drawn from thermodynamics as to why we expect the
output reference state to be in product form. Our general results in Claim 4.11 do
not require this property, but it is helpful for further simplification of expressions.

A given magic protocol on the n qudits will correspond to a quantum channel E .
We also assume for simplicity that UπE(X)U †

π = E(X) for all X and any permutation
Uπ of the m output subsystems. This is justified because the protocol on the input
magic state results in state ρ(ϵ′)⊗m, which is invariant under permutations. There-
fore, we are always allowed to symmetrize the output E(X) by performing a group
average over the permutation group for the output systems without changing the
performance of the distillation protocol on ρ(ϵ)⊗n. Thus, we can assume that E al-
ways outputs a symmetric state in general. This means that E(τ⊗n) is a symmetric
state on m subsystems, so by the quantum de Finetti theorem [154, 155] we have
that

E(τ) ≈
∫
dµ(x)τ ′⊗mx , (4.11)

for m ≥ 1, where dµ(x) is a probability measure over a set {τ ′x} of single qudit states.
To keep our analysis simple we make the following physical assumption. We as-

sume that in the asymptotic/thermodynamic limit n,m → ∞ the correlations gen-
erated on the reference equilibrium state are negligible. This implies that dµ(x) is
peaked on a particular state τ ′, and E(τ⊗n) ≈ τ ′⊗m. This scenario occurs in the
context of traditional thermodynamics, and states that the output system is well-
described by intrinsic variables that do not scale in m, and correlations are sub-linear
in m. In particular, this allows us to compute a free energy per qudit of the output
state.

Non-trivial correlations in the thermodynamic limit can also be considered, but
leads to a more complex analysis within our majorization framework of Wigner rep-
resentations. In this direction, we highlight recent work in majorization in which
stochastic independence and correlations are analyzed. It has been shown [156]
that stochastic independence (no correlations) of independent distributions can be
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viewed as a resource in an extension of catalytic majorization, and leads to a single-
shot operational interpretation of the Shannon entropy [157,158].

Our bound depends on the von Neumann entropy S(ρ) of a state, and the free
energy at a particular temperature. For a state τ = e−βH/Z, the Helmholtz free
energy F is given by

F := tr[Hτ ]− β−1S(τ) = −β−1 logZ, (4.12)

which is obtained from the internal energy via a Legendre transform [159].
The protocol transforms the equilibrium as τ⊗n → E(τ⊗n) = τ ′⊗m. The protocol

does not generate magic on its own, so we assume that the output state τ ′ is also
a Wigner-positive state. However, this is generally a non-equilibrium state for the
system. Despite this, it is useful to associate an effective Hamiltonian H ′ to the
output state by considering the change H → H ′ such that equilibrium is restored
at the reference temperature T . This Hamiltonian is defined by the expression τ ′ =

e−βH
′
/Z ′, and has free energy F ′ = −β−1 logZ ′.

The magic state protocol is now considered by how it transforms the pair of quan-
tum states (ρ⊗n, τ⊗n) and is then constrained by the relative majorization condition
(Wρ,Wτ ) ≻ (Wρ′ ,Wτ ′) that holds due to the protocol being a stochastic map in the
Wigner representation.

4.2.2 Temperature-dependent bounds

Here, we provide an analysis of the pair of transformations (ρ⊗n, τ⊗n)→ (ρ′⊗n, τ ′⊗n)

based on the Lorenz curve condition, exploiting the fact that the output state is
in product form in the presence of sub-linear correlations. In Claim 4.5, we obtain
magic distillation bounds that combine computational measures ϵ, ϵ′, with terms that
depend on the Hamiltonian H and reference temperature T of the physical system.
We state the result for the case of qutrits, where the magic state is taken as the
noisy Strange state ρS(ϵ) (Eq. (3.30)), but a similar analysis works for general odd
dimensional qudits.

Claim 4.5. Consider a magic distillation protocol on qutrits that transforms n copies of
an ϵ–noisy Strange state into m copies of an ϵ′–noisy Strange state, with depolarizing
errors ϵ′ ≤ ϵ ≤ 3/7. We also allow pre/post-processing by local Clifford unitaries.

Let T = (kβ)−1 be any finite temperature for the physical system and let H =∑
i∈Z3

Ei |Ei⟩⟨Ei| be the Hamiltonian of each qutrit subsystem in its eigendecomposition.
Assume that in the thermodynamic limit (n,m ≥ 1), the protocol applied to the equi-
librium state τ⊗n = (e−βH/Z)⊗n maps τ⊗n −→ τ ′⊗m, where we write τ ′ = e−βH

′
/Z ′

for some Hermitian H ′.
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Then the asymptotic magic distillation rate R = m/n is bounded as

R ≤
log
(
1− 4

3
ϵ
)
+ β(ϕ− F )

log
(
1− 4

3
ϵ′
)
+ β(ϕ′ − F ′)

, (4.13)

where F is the free energy of τ , and

ϕ := −β−1 log ζ (4.14)

with ζ given by the expressions

ζ :=
∑
i∈Z3

αie
−βEi , (4.15)

αk := ⟨Ek|Az⋆ |Ek⟩ , (4.16)

and Wτ (z) attaining a minimum at z = z⋆. The primed variables are defined similarly
for the output system.

Proof. For the sake of clarity, we write ρn := ρS(ϵ)
⊗n, ρ′m := ρS(ϵ

′)⊗m, τn := τ⊗m and
τ ′m := τ ′⊗m. We also assume, without loss of generality on the asymptotic distillation
rate, that n and m are both even.

To establish the distillation bound we consider the distillation protocol that gives
E(ρn) = ρ′m for the magic states. We then consider that the protocol transforms the
reference equilibrium state as E(τn) = τ ′m. Since we have a finite temperature we
have that τ and τ ′ are full rank stabilizer states and have a strictly positive Wigner
representation. The input and output magic states generally have Wigner represen-
tations that are quasi-distributions. For any such protocol we thus have

(Wρn(z),Wτn(z)) ≻ (Wρ′m(z),Wτ ′m(z)), (4.17)

or, equivalently, in terms of the relevant Lorenz curves,

Lρn|τn(x) ≥ Lρ′m|τ ′m(x) for all x ∈ [0, 1]. (4.18)

We now consider the rescaled Wigner representation Wρ|τ (z) := Wρ(z)/Wτ (z),
which is well-defined since τ is full-rank. Due to the multiplicative property of the
Wigner representation, the rescaled distribution is also multiplicative in the sense
that

Wρ⊗ρ′|τ⊗τ ′(z1 ⊕ z2) = Wρ|τ (z1)Wρ′|τ ′(z2), (4.19)

for any states ρ, ρ′ and any full-rank stabilizer states τ, τ ′. Therefore, we have that

Wρn|τn(z) =
n∏
i=1

Wρ|τ (zi) (4.20)

Wρn(z) =
n∏
i=1

Wρ(zi) (4.21)
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where z = ⊕ni=1zi ∈ Z2n
3 is the phase space point for the full system in terms of those

of the individual subsystems.
The points defining the Lorenz curve Lρn|τn(x) are obtained from sorting the com-

ponents of Wρn|τn(z) in non-increasing order and then computing the partial sums of
Wρn|τn(π(z)) where π is the permutation that realizes the sorting. However, similar
to the unital protocol analysis, we use the slope constraint (Claim 3.11) obtained by
considering the line segments connecting the origin to the first elbow of both Lorenz
curves.

The Wigner representation of a single noisy Strange state consists of 1 negative
component Wρ(0) = −v(ϵ) and 8 positive components Wρ(z) = u(ϵ) for z ̸= 0. The
Wigner representation of the full-rank, stabilizer equilibrium state τ is Wτ (z) > 0 for
all z ∈ Z2

3.
Assume that the smallest component of the distribution Wτ (z) is at z = z⋆. Since

the magic content of the state is unchanged under a Clifford unitary C, we can
instead consider the state

ρS(ϵ)→ CρS(ϵ)C
† = Dz⋆ρS(ϵ)D

†
z⋆
, (4.22)

which has its single negative Wigner component −v(ϵ) at the point z⋆.
The components of the rescaled distribution Wρn|τn for this transformed state are

given by (
−v

Wτ (z⋆)

)iz⋆ ∏
z ̸=z⋆

(
u

Wτ (z)

)iz
, (4.23)

where the integer indices obey the following conditions:

0 ≤ iz ≤ n for all z ∈ Z2
3, and

∑
z∈Z2

3

iz = n. (4.24)

We now compute the largest rescaled component. Firstly, note that n is even, so we
require that iz⋆ ∈ {0, 2, . . . , n} for the component to be positive. Then, we have that
v ≥ u because ϵ ≤ 3/7, and we have already ensured that Wτ (z⋆) ≤ Wτ (z) for all
z ∈ Z2

3. Therefore, the largest rescaled component occurs when iz⋆ = n and iz = 0

for z ̸= z⋆ and is equal to (v/Wτ (z⋆))
n. The coordinates of the first Lorenz curve

point after the origin are given by

(x0, L0) = ((Wτ (z⋆))
n, vn) (4.25)

Given a Hamiltonian decomposition,

H =
∑
i∈Z3

Ei |Ei⟩⟨Ei| , (4.26)
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we now express the coordinates of the first point in terms of free energy quantities.
We expand as follows

Wτ (z⋆) =
1

3Z
tr
[
Az⋆e

−βH] = eβF

3
tr

[
Az⋆

∑
i∈Z3

e−βEi |Ei⟩⟨Ei|

]

=
eβF

3

∑
i∈Z3

αie
−βEi =

eβF

3
ζ =

eβ(F−ϕ)

3
, (4.27)

where in the first equality we use the definition of the Wigner function, the second
equality follows from the decomposition in Eq. (4.26), the third from the definition
of αk in Eq. (4.16), the fourth from the definition of ζ in Eq. (4.15) and, finally, the
last equality follows from the definition of ϕ in Eq. (4.14). We can view ϕ as a magic
free energy in the sense that its definition is analogous to the classical free energy.
We can now express the coordinates of the input state using Eq. (4.25) as

(x0, L0) =

(
enβ(F−ϕ)

3n
, v(ϵ)n

)
. (4.28)

The output state obeys the same conditions, so we can express the coordinates of
the first elbow of the output Lorenz curve as

(x′0, L
′
0) =

(
emβ(F

′−ϕ′)

3m
, v(ϵ′)m

)
. (4.29)

If the largest rescaled component of a state is distinct with no multiplicities, then
these coordinates correspond to the first elbow of the corresponding Lorenz curve,
whereas if it appears multiple times, then the coordinates derived correspond to a
point on the interior of the line segment connecting the origin to the first elbow. In
both cases, the distillation bound remains the same, as is clear by its derivation in
Claim 3.11, given by L0/x0 ≥ L′

0/x
′
0, leading to

(
3v(ϵ)e−β(F−ϕ))n =

L0

x0
≥ L′

0

x′0
=
(
3v(ϵ′)e−β(F

′−ϕ′)
)m

. (4.30)

We note that 3v(ϵ′)e−β(F ′−ϕ′) > 1 always, as ρS(ϵ′) is not a free state, so the initial
slope of its Lorenz curve exceeds 1. Taking the natural logarithm on both sides and
rearranging gives the bound

m

n
≤

log
(
1− 4

3
ϵ
)
+ β(ϕ− F )

log
(
1− 4

3
ϵ′
)
+ β(ϕ′ − F ′)

, (4.31)

which completes the proof.

70



4.2. MAGIC FREE ENERGY

The following result shows that if the energy eigenbasis is a stabilizer basis then
the bound in Eq. (4.13) simplify further.

Claim 4.6. Let H be a Hamiltonian H with spectrum {Ek}k∈Zd
. If H has a stabilizer

eigenbasis, then ϕ = Ek⋆ for some k⋆ ∈ Zd.

Proof. We first write αk as

αk = ⟨Ek| |Az⋆ |Ek⟩ = dW|Ek⟩⟨Ek|(z⋆) (4.32)

Since each |Ek⟩⟨Ek| is a stabilizer state, their Wigner representations have orthogonal
supports in the phase space, so only one of them, say k = k⋆ contains point z⋆ in its
support. Additionally, its distribution is uniform on its support, so W|Ek⋆ ⟩⟨Ek⋆ |(z⋆) =

1/d.
Therefore, only the coefficient αk⋆ is non-zero and

ϕ = −β−1 log

(∑
i

αie
−βEi

)
= Ek⋆ − kT log

(
dW|Ek⋆ ⟩⟨Ek⋆ |(z⋆)

)
= Ek⋆ . (4.33)

In order to isolate the effect of majorization on the magic distillation process,
we drop the freedom to pre/post-process the magic states via Clifford unitaries in
Claim 4.7. We illustrate explicitly that this comes at the expense of a more complex
final expression for the bounds due to the dependence of the largest component in
the rescaled distribution on a number of factors.

Claim 4.7. Consider a magic distillation protocol on qutrits that transforms

ρS(ϵ)
⊗n −→ E(ρS(ϵ)⊗n) = ρS(ϵ

′)⊗m

with n,m≫ 1.
Let each qutrit have a Hamiltonian H with energies E0, E1, E2 and stabilizer eigen-

states, and define Emax = max{E0, E1, E2} and Es as the eigenvalue of the Hamilto-
nian eigenstate whose Wigner representation overlaps the negative component of ρS(ϵ)
in the phase space. Let T = (kβ)−1 be any finite temperature and assume that in
the thermodynamic limit (n,m ≫ 1), the protocol applied to the equilibrium state
τ⊗n = (e−βH/Z)⊗n maps τ⊗n −→ τ ′⊗m, where we express state τ ′ as τ ′ = e−βH

′
/Z ′ for

some Hermitian H ′.
Define β⋆ = (kT⋆)

−1 through the relation

Emax − Es =: kT⋆ ln 2, (4.34)
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and define a threshold error,

ϵ⋆(β) :=

3− 9

4− 2β/β⋆−1
, for β ≤ β⋆

0, for β > β⋆.
(4.35)

Then, the distillation rate R = m/n of the magic protocol is bounded as:

R ≤



ln
(
1− 4

3
ϵ
)
+ β(Es − F )

ln
(
1− 4

3
ϵ′
)
+ β(E ′

s − F ′)
, ϵ ≤ ϵ⋆, ϵ

′ ≤ ϵ′⋆,

ln
(
1− 4

3
ϵ
)
+ β(Es − F )

ln
(
1
2
− 1

6
ϵ′
)
+ β(E ′

max − F ′)
, ϵ ≤ ϵ⋆, ϵ

′ > ϵ′⋆,

ln
(
1
2
− 1

6
ϵ
)
+ β(Emax − F )

ln
(
1− 4

3
ϵ′
)
+ β(E ′

s − F ′)
, ϵ > ϵ⋆, ϵ

′ ≤ ϵ′⋆,

ln
(
1
2
− 1

6
ϵ
)
+ β(Emax − F )

ln
(
1
2
− 1

6
ϵ′
)
+ β(E ′

max − F ′)
, ϵ > ϵ⋆, ϵ

′ > ϵ′⋆,

(4.36)

where F is the free energy of state τ and all primed quantities are similarly defined for
the ouptut system.

Proof. The proof proceeds in the same manner as in Claim 4.5 up to the point where
we need to evaluate Wρn|τn(z) and Wρn(z) explicitly, beyond which we do not have
the freedom of additional Clifford processing.

The equilibrium state at inverse temperature β on a single qutrit is given by τ =

e−βH/Z. Moreover, we have that τ is a full-rank stabilizer state, where β ≥ 0 and
H = E0 |ϕ0⟩⟨ϕ0| + E1 |ϕ1⟩⟨ϕ1| + E2 |ϕ2⟩⟨ϕ2| is an eigendecomposition of H. The state
τ can now be written as

τ =
e−βE0

Z
|ϕ0⟩⟨ϕ0|+

e−βE1

Z
|ϕ1⟩⟨ϕ1|+

e−βE2

Z
|ϕ2⟩⟨ϕ2| , (4.37)

where the eigenstates {|ϕk⟩⟨ϕk|} are pure, orthonormal stabilizer states, which can
be represented in terms of generalized Pauli operators. We are free to redefine the
computational basis so it coincides with the basis of H. Abstractly, let C be the uni-
tary transforming each |ϕk⟩⟨ϕk| to |k⟩⟨k|. Since the Clifford group is the normalizer
of the Heisenberg-Weyl group, C is a Clifford unitary. Therefore, C maps τ to an-
other stabilizer state that is diagonal in the computational basis, and we can assume
without loss of generality that τ is diagonal in {|0⟩ , |1⟩ , |2⟩}. This re-definition of the
computational basis means that the coordinates on the discrete phase space are also
permuted, so the negative Wigner component −v(ϵ) of the Strange state is in a new
position. We denote by Es the eigenvalue of H where the associated eigenvector has
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Figure 4.4: Qutrit phase space regions for Wρ|τ (z). Here, the negative component
of the magic state overlaps the Wigner representation of |0⟩. The rescaled distri-
bution attains a single value in each of the four regions, proportional to the value
depicted in the region, see Eq. (4.42).

Wigner representation overlapping the negative component of the state CρS(ϵ)C† in
the original phase space, hence also of the state Strange state ρS(ϵ) in the re-defined
phase space. The eigenvalue Es is unique, since the eigenstates form an orthonormal
basis.

The Wigner representation of state τ is then given by

Wτ (z) =
2∑

k=0

e−βEk

Z
W|k⟩⟨k|(q, p) =

2∑
k=0

e−βEk

Z
δq,k =

e−βEq

3Z
, (4.38)

where x labels one of the three vertical lines in the phase space. The rescaled Wigner
representation Wρ|τ (z) can now be computed. It has 9 components, but these come
with multiplicities. In total, there are four distinct values on the phase space, as
illustrated in Fig. (4.4).

We define vectors w(ρ),w(τ),w(ρ|τ) based on the values occurring inWρ,Wτ ,Wρ|τ

respectively and m as the vector of associated multiplicities of each value in Wρ(z).
Specifically, the component values and multiplicities of the relevant distributions in
the four distinct regions are given by

m := (1, 2, 3, 3), (4.39)

w(ρ) := (−v, u, u, u), (4.40)

w(τ) :=
1

3Z
(
e−βE0 , e−βE0 , e−βE1 , e−βE2

)
, (4.41)

w(ρ|τ) := 3Z
(
−veβE0 , ueβE0 , ueβE1 , ueβE2

)
. (4.42)
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Using this notation, the values and multiplicities of the n–copy distribution w(ρn|τn)
are computed according to the component-multiplicity pair analysis of section 3.1.3.
The values are given by

[w(ρn|τn)]ijk = (3Z)n(−v)n−αuαeβ(n−α)Eseβ(iE0+jE1+kE2), (4.43)

where the indices i, j, k are non-negative integers that obey the constraint α := i +

j + k ≤ n. The multiplicity of this above value is mijk with

mijk =
n!

i!j!k!(n− α)!
2i3j3k. (4.44)

The associated components of w(ρn) are given by

[w(ρn)]ijk = (−v)n−αuα, (4.45)

[w(τ)]ijk = (3Z)−ne−β(n−α)Ese−β(iE0+jE1+kE2). (4.46)

In order to construct the n–copy Lorenz curve Lρn|τn(x) we need to order the com-
ponents of the distribution, w(ρ|τ)ijk in decreasing order, and identify the sequence
of indices that give us Wρn(π(z)).

However, in order to obtain a non-trivial bound, it again suffices to use the con-
straint from the first elbow (x0, L0) of Lρn|τn(z). In order to calculate the coordinates
of the first elbow, we compute the largest component

wmax := max
i,j,k

[w(ρn|τn)]ijk, (4.47)

and determine the indices at which this occurs. Putting in the values from Eq. (4.45)
and Eq. (4.46), we obtain

(3Z)−nwmax = max
i,j,k

{
(−v)n−αuαeβ(n−α)Eseβ(iE0+jE1+kE2)

}
, (4.48)

where 0 ≤ i, j, k ≤ n and α := i + j + k ≤ n. Now for 0 ≤ ϵ ≤ 3/7, we have v ≥ u.
Since we assume that n is even, we need the sum α = i + j + k to be even too, so
that the expression is positive.

Given an even value for α, the term vn−αuαe−β(n−α)Es is fixed, so the expression is
maximized by setting the coefficient of the highest energy Emax equal to α. Hence,
we have

wmax = (3Z)nvnenβEs max
α=0,2,
...,n−2,n

{(u
v
eβ(Emax−Es)

)α }
. (4.49)

If the expression u(ϵ)
v(ϵ)

eβ(Emax−Es) is less than 1 then the maximum occurs at α = 0,
otherwise it occurs at α = n. For a fixed state τ , this transition is determined by the
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value of the depolarizing error parameter ϵ of the noisy magic state. The transition
occurs at ϵ = ϵ⋆ where

u(ϵ⋆)

v(ϵ⋆)
eβ(Emax−Es) =

3− ϵ⋆
6− 8ϵ⋆

eβ(Emax−Es) = 1. (4.50)

If Emax = Es, namely if the state negativity lies in the same phase space region
as the highest energy, this threshold is constant in temperature and given by ϵ⋆ =

3/7. However, the condition that ϵ⋆ ≥ 0 also implies a constraint on the effective
temperature of the stabilizer state. Specifically, there is a threshold temperature
value β⋆ given by

β⋆ :=
1

Emax − Es
ln 2, (4.51)

such that for the regime 0 ≤ β ≤ β⋆ a threshold error ϵ⋆ exists, and for β > β⋆ no
such transition exists, so we choose ϵ⋆ = 0. Therefore, the transition value for the
error is given by

ϵ⋆(β) :=

3− 9

4− 2β/β⋆−1
, for β ≤ β⋆

0, for β > β⋆.
(4.52)

The quantity w(ρS|σ)max is now given by

wmax =

(3Z)nvnenβEs , if ϵ ≤ ϵ⋆, (C1)

(3Z)nunenβEmax , if ϵ > ϵ⋆. (C2)

Case (C1) corresponds to (i, j, k) = (0, 0, 0), so the multiplicity is m000 = 1, while
Case (C2) corresponds to

(i, j, k) =

(0, n, 0), if Emax = E1,

(0, 0, n), if Emax = E2,
(4.53)

so the multiplicity in both cases is 3n.
Using that F = −β−1 logZ, the first elbow coordinates in the two cases are now

given by

(x0, L0) =


(

1
3n
e−nβ(Es−F ), vn

)
, ϵ ≤ ϵ⋆(

e−nβ(Emax−F ), (3u)n
)
. ϵ > ϵ⋆

(4.54)

Similarly, considering the output magic state with respect to state σ′, the image
of equilibrium state σ under the magic protocol, we get output Lorenz curve coordi-
nates,

(x′0, L
′
0) =


(

1
3n′ e−nβ(E

′
s−F ′), v(ϵ′)n

′
)
, ϵ′ ≤ ϵ′⋆(

e−n
′β(E′

max−F ′), (3u(ϵ′))n
′)
, ϵ′ > ϵ′⋆

(4.55)
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There are four combinations of coordinates, depending on the error parameters ϵ, ϵ′

for the input and output states. In each of these combinations, we simply use the
first elbow constraint, as described in Claim 3.11, and manipulate the coordinates as
in the proof of Claim 4.5, leading to the bounds in the statement of this theorem.

We devote the next section to discussing the results of Claim 4.5 and Claim 4.7.

4.2.3 Remarks on parameter-dependence of bounds

The bounds provided in Claim 4.5 and Claim 4.7 depend on:

• Quantum computational measures ϵ, ϵ′,

• Thermodynamic quantities β, F, F ′,

• Intermediate terms ϕ, ϕ′.

The intermediate terms specify how the energy eigenbasis of the system {|Ek⟩} re-
lates to the computational stabilizer basis {|k⟩}. In particular, the term ϕ quantifies
to what degree a sharp energy value can be associated to the negativity in the Wigner
representation. Its form is similar to F , which is why we say that ϕ can be viewed as
a magic free energy.

The coefficients αk may be negative for some k, when the Hamiltonian has non-
stabilizer eigenstates, but the quantity ϕ is always well-defined, since the function ζ
is always positive for τ in the interior of F . The quantity ϕ can diverge if the state τ
acquired zero Wigner components, which occurs for τ on the boundary of the set of
Wigner-positive states, and is not defined outside of F . Finally, if H has a stabilizer
eigenbasis then ϕ = Ei for some i, independent of the temperature T , as seen in
Claim 4.6.

Similar to the unital protocol bounds, the above result is based on only part of the
Lorenz curves and so can certainly be tightened with further analysis. The primary
role of the pre/post-processing by Clifford unitaries in Claim 4.5 is to simplify the
form of the bound, and allow it to be expressed in terms of the free energy per
particle in a way that does not depend on the parameters ϵ, ϵ′, β in a complex form.
In Claim 4.7, we give bounds in which one does not include these Clifford changes
of basis, thus having a more non-trivial dependency on the parameters.

The analysis makes other simplifying assumptions that could easily be dropped,
at the price of more complex expressions. We could perform similar analysis for
general qudits, and different choices of magic states, for example. It might also be
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Figure 4.5: Temperature-dependent bounds for magic distillation. Shown are
two contour plots of the bound on R(ϵ, β) for the case H = H ′ =

∑
k∈Z3

k |k⟩⟨k|
and ϵ′ = 0, where β is the inverse temperature and ϵ is the depolarizing error of
the input magic state. Figure (a) does not use any changes of Clifford basis, and
the form of the bound depends on both the error parameter and temperature. The
curved dashed line is ϵ⋆(β) and given by Eq. (4.36) and β⋆ = (kT⋆)

−1 is given by
E2 − ϕ = kT⋆ ln 2. Figure (b) assumes Clifford processing is used resulting in a
smoother bound. In both figures, the β = 0 line correspond to the unital bounds.

of interest to consider other choices of reference states τ that are more appropriate
to the hardware physics, for example for photonic set-ups [160].

The assumption which is non-trivial is that we neglect correlations in the reference
state in the thermodynamic limit. However, for more general scenarios one could
make use of variational tools such as the Bogoliubov inequality [161] for approxi-
mating the free energy of a system via product states, to obtain similar bounds.

The simplest special case to consider is where the HamiltonianH is diagonal in the
computational basis, and H = H ′, implying that the protocol leaves the reference
equilibrium state unchanged, hence it corresponds to a Gibbs-preserving map [162].
For the limiting case of ϵ′ → 0 we obtain Fig. (4.5) which is a contour plot of the
bound on R as a function of inverse temperature β and the depolarizing error ϵ
for the noisy input magic states. In this figure we show both the bounds without
the power of Clifford pre/post-processing (in (a) – Eq. (4.36)) and with Clifford
processing (in (b) – Eq. (4.13)). As a pedagogical explanation, we can consider a
temperature limitation that allows a device to operate with thermal operations only
below a certain β. Then, we would read the vertical line on the plot to decide what
is the upper bound on the input noise level to achieve a certain distillation bound.
In the more general case, ∆F := F ′ − F ̸= 0, so the protocol, when applied to the
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Figure 4.6: Variation of distillation bounds with Hamiltonian. We illustrate vari-
ation of the bound in Eq. (4.13) with respect to the system Hamiltonian. We fix
(ϵ, ϵ′, β) = (0.1, 0.0, 0.2) and look at a family of Hamiltonians for the qutrit systems,
given by H = A0 and H ′ = (1 − p − q)A0 + pA(1,2) + qdiag(0, 1, 2), with varying
parameters p, q, and where A0 and A(1,2) are phase-point operators.

reference state, adds or extracts free energy from the system.

We demonstrate change of the bounds with respect to a varying output Hamil-
tonian example in Fig. (4.6). In particular, we create a parameterized family of
Hamiltonians and explore how our bounds vary in terms of the parameters. The dis-
tillation bound contours depend on the specifics of the Hamiltonian, and they allow
us to identify regimes where the bound attains low values and where it saturates to
1 for a fixed choice of error rates ϵ, ϵ′.

4.3 General entropic constraints

4.3.1 Shifting from Lorenz curves to entropies

We have considered Wigner representations of magic states within a statistical me-
chanical setting in which it was argued that magic can be viewed as a non-classical
form of free energy. This was done at the level of majorization constraints that ap-
pear due to Clifford operations being described by stochastic maps in the Wigner
representation. In this representation, non-equilibrium states with substantial free
energy have Lorenz curves that deviate noticeably from the line y = x. We also
found that when considered in a distillation protocol, magic could also be linked to
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physical free energies in a non-trivial way. We therefore ask:

Is it possible to make a more direct link between magic and free energy or entropy?

One obstacle to linking with macroscopic, equilibrium free energy is that the
Wigner representation is generally a quasi-distribution, so the Boltzmann entropy

H(w) = −
∑
i

wi logwi (4.56)

of the Wigner representation is not defined outside the set F , let alone have a phys-
ically meaningful interpretation.

However, it turns out that the analysis for the temperature-dependent bound
given by Eq. (4.13) implicitly made use of the single-shot Rényi divergence [125]
D∞(p || r).

Claim 4.8. Let τ be in the interior of F . Then D∞(Wρ || Wτ ) is well-defined for all ρ,
and the following hold:

1. D∞(Wρ || Wτ ) ≥ 0 for all quantum states ρ.

2. D∞(Wρ || Wτ ) = 0 if and only if ρ = τ .

3. D∞(Wρ⊗2n || Wτ⊗2n) = nD∞(Wρ⊗2 || Wτ⊗2) for any n ∈ N.

4. D∞(Wρ || Wτ ) ≥ D∞(WE(ρ) || WE(τ)) for any free operation E such that E(τ) is
in the interior of F .

Proof. Since τ is in the interior of F , its Wigner representation obeys Wτ (z) > 0

for all points z in the phase space. In general, Wρ(z) is a quasi-distribution, but
the given form of α ensures that Wρ(z)

α ≥ 0. Therefore D∞(Wρ || Wτ ) is always
well-defined.

1. We have that
D∞(Wρ || Wτ ) = logmax

z

Wρ(z)

Wτ (z)
, (4.57)

so 2D∞(Wρ ||Wτ ) equals the slope of the Lorenz curve Lρ|τ (x) at x = 0. Since Lρ|τ (x) is
a concave function passing through (0, 0) and (1, 1) this implies that Lρ|τ (x) ≥ x for
all x ∈ [0, 1], and in particular its slope at x = 0 is always greater than or equal to 1,
which implies D∞(Wρ || Wτ ) ≥ 0 for all ρ.

2. D∞(Wρ || Wτ ) = 0 implies that maxz
Wρ(z)

Wτ (z)
= 1 and the initial slope of Lρ|τ (x)

is 1. From the concavity of the function and the fact that Lρ|τ (1) = 1, this implies
that the slope of Lρ|τ (x) must equal 1 throughout the interval [0, 1] and this, together
with the definition of the Lorenz curve, implies that Wρ(z)/Wτ (z) = 1 for all z.
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Since the Wigner representation ρ 7→ Wρ(z) is bijective this implies that ρ = τ only.
The converse holds by inspection.

3. Given a vector w ∈ RN , it is generally the case that maxk wk ̸= maxk |wk|.
However, we do have that

max
k1,k2

(wk1wk2) = max
k1,k2
|wk1wk2|, (4.58)

and if additionally wk ≥ 0 for all k, then we also have for 2n copies that

max
k1,k2,...,k2n

(wk1wk2 · · ·wk2n) = (max
k
|wk|)2n, (4.59)

and also,

max
k1,k2,...,k2n

(wk1wk2 · · ·wk2n) = max
k1,k2,...,k2n

(
|wk1wk2| · · · |wk2n−1wk2n|

)
=

(
max
k1,k2

(wk1wk2)

)n
.

(4.60)

If we now let w = Wρ|τ (z) := Wρ(z)/Wτ (z) we have

max
z1,z2,...,z2n

2n∏
k=1

Wρ|τ (zk) =

(
max
z1,z2

Wρ|τ (z1)Wρ|τ (z2)

)n
, (4.61)

and therefore taking logarithms we have thatD∞(Wρ⊗2n || Wτ⊗2n) = nD∞(Wρ⊗2 || Wτ⊗2)

as required.
4. The free operation E in the Wigner representation corresponds to a stochastic

map, which sends Wτ (z) to WE(τ)(z), which is another strictly positive probability
distribution on the phase space, due to E(τ) being in the interior of F . Moreover,
(Wρ,Wτ ) ≻ (WE(ρ),WE(τ)). As shown in the main text this condition holds if and only
if Lρ|τ (x) ≥ LE(ρ)|E(τ)(x) for all x. In particular, this implies the slope at the origin
of the input curve is never less than the slope at the origin of the output curve, and
hence the result follows.

The reason for the power of 2 in the third property is that the maximization is
sensitive to the presence of negativity in the Wigner representation. An important
remark is that the state dimension does not enter the proof of the theorem, so this
result is directly transferable to our qubit analysis in chapter 5, once we have defined
a well-behaved Wigner representation.

Considering the unital magic protocol E that transforms n copies of a magic state
ρ to m copies of ρ′, and combining property 3 and property 4, we obtain

m

n
≤
D∞(Wρ || W1/d)

D∞(Wρ′ || W1/d)
. (4.62)
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By substituting ρ = ρS(ϵ) and ρ′ = ρS(ϵ
′) for d = 3, we retrieve the bound R∞

in Eq. (4.5), justifying its index. This is because this bound is derived using the
first elbow constraint (Claim 3.11) on the input and output Lorenz curves, which is
equivalent to the formulation of the Rényi divergence D∞ given by Eq. (4.57).

4.3.2 Entropic measure of magic disorder

We can go further, and show that in fact a range of Rényi entropies remain both
well-defined and meaningful in the Wigner representation. The α–Rényi entropy
was defined in section 3.4 as

Hα(w) :=
1

1− α
log
∑
i

wαi , (4.63)

for quasi-distribution w.
We can prove the following result, which establishes the equivalence between

Wigner negativity and the existence of negative Rényi entropy.

Claim 4.9. A quantum state ρ has Wigner negativity if and only if Hα(Wρ) < 0 for
some α = 2a

2b−1
, with positive integers a ≥ b.

Proof. If we have Hα(Wρ) < 0 for α > 1, then it follows that log
∑

zWρ(z)
α > 1.

However, it is known that Hα is always non-negative on probability distributions, so
Wρ(z) must be a strict quasi-distribution with negativity.

Conversely, suppose ρ has negativity in its Wigner representation. This in particu-
lar implies that

∑
z |Wρ(z)| > 1. We now consider

∑
zWρ(z)

2a
2b−1 for positive integers

a ≥ b. We have that∑
z

Wρ(z)
2a

2b−1 =
∑
z

|Wρ(z)|
2a

2b−1 =
∑
z

|Wρ(z)|1+ϵ, (4.64)

where ϵ = α− 1 = 2a
2b−1
− 1 > 0. By choosing the positive integers a and b sufficiently

large we can make ϵ arbitrarily close to 0. This implies that there exists a sequence
ϵn = αn − 1 = 2an

2bn−1
− 1 with integer pairs an, bn such that∑

z

|Wρ(z)|1+ϵn →
∑
z

|Wρ(z)| > 1, (4.65)

as n increases. Since 1
1−αn

< 0 for any n it follows that

Hαn(Wρ) =
1

1− αn
log
∑
z

Wρ(z)
αn < 0 (4.66)

at some point in the sequence, which completes the proof.
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Therefore, the statistical mechanical description of Clifford operations provides a
setting in which negative entropy is fully meaningful, and quantifies the fact that
magic states are more ordered than a perfectly sharp, deterministic classical state
w = (1, 0, . . . , 0) with zero entropy. We note that prior work has shown that nega-
tive conditional entropy [163] arises in the context of quantum correlations, but is
unrelated to the present negative entropy.

The α→ 1 limit of the Rényi entropy diverges if negativity is present, however we
can assign a meaningful value to the residue at α = 1. We write the entropy as

H1+ϵ(Wρ) = −ϵ−1 log
∑
z

|Wρ(z)|1+ϵ (4.67)

with ϵ → 0+ through a sequence of rational values. We recall that mana can be
written as a sum of the Wigner components in absolute vale,M(ρ) = log

∑
z |Wρ(z)|,

and now we express mana as an entropic limit,

M(ρ) = − lim
ϵ→0+

ϵH1+ϵ(Wρ). (4.68)

Therefore, the mana of a state ρ is minus the residue of the pole at α = 1 for
Hα(Wρ), and quantifies the divergence of the Rényi-entropy as we approach the
limiting Shannon entropy H(Wρ).

We also note that the Rényi entropy can be described as a q–deformation of the
Shannon entropy [164], and that Hα(p) can be related to the q–derivative of free
energy. For this, the Rényi parameter becomes a temperature term α = T0

T
where

T0 is a reference temperature and derivatives are considered via the limit T → T0.
Therefore, if we try to push this to the present setting, the presence of Wigner neg-
ativity would correspond to a divergence in the first derivative of an effective free
energy as T → T0. It is interesting to speculate whether this non-classicality could
be interpreted in terms of a phase transition [165].

4.3.3 General entropic distillation bounds

We now extend to Rényi divergences of finite α for Wigner representations with
the aim of deriving an infinite family of entropic bounds for magic transformations,
parameterized by parameter α. In section 3.4, we defined the α–Rényi divergence
Dα(w || r) as

Dα(w || r) :=
1

α− 1
log
∑
i

wαi r
1−α
i ,

where α = 2a/(2b − 1) for positive integers a ≥ b. This is well-defined for quasi-
distribution w and probability distribution p with positive components, which corre-
sponds to a state lying in the interior of F , in the context of Wigner representations.
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Claim 4.10. Let τ be in the interior of F . If α = 2a
2b−1

for positive integers a, b with
a ≥ b, then the α-Rényi divergence Dα(Wρ || Wτ ) is well-defined for all states ρ, and
the following hold:

1. Dα(Wρ || Wτ ) ≥ 0 for all quantum states ρ.

2. Dα(Wρ || Wτ ) = 0 if and only if ρ = τ .

3. Dα(Wρ⊗n || Wτ⊗n) = nDα(Wρ || Wτ ) for any n ∈ N.

4. Dα(Wρ || Wτ ) ≥ Dα(WE(ρ) || WE(τ)) for any free operation E such that E(τ) is in
the interior of F .

Proof. Since τ is in the interior of F , its Wigner representation obeys Wτ (z) > 0

for all points z in the phase space. In general, Wρ(z) is a quasi-distribution, but for
α = 2a/2b − 1 we that Wρ(z)

α ≥ 0. Therefore Dα(Wρ || Wτ ) is always well-defined
and real-valued.

1. Dα is Schur-convex and every pair (Wρ,Wτ ) majorizes the pair (W1/d,W1/d), so

Dα(Wρ || Wτ ) ≥ Dα(W1/d || W1/d) =
1

α− 1
log
∑
z

W1/d(z) = 0. (4.69)

2. In the inequality of property 1, equality holds iff Lρ|τ (x) = L1/d|1/d(x) = Lτ |τ (x)

for all x ∈ [0, 1] due to Claim 3.8 which in turn holds iff ρ = τ .
3. This property follows from the multiplicativity of the Wigner representation. In

particular,

Dα(Wρ⊗n || Wτ⊗n) =
1

α− 1
log
∑
z

Wρ⊗n(z)αWτ⊗n(z)1−α

=
1

α− 1
log
∑
z

n∏
i=1

Wρ(zi)
αWτ (zi)

1−α

=
1

α− 1
log

n∏
i=1

∑
zi

Wρ(zi)
αWτ (zi)

1−α

=
n∑
i=1

1

α− 1
log
∑
z′

Wρ(z
′)αWτ (z

′)1−α

= nDα(Wρ || Wτ ). (4.70)

4. This follows immediately from the fact that (Wρ,Wτ ) ≻ (WE(ρ),WE(τ)) for any
free quantum channel E that sends τ into the interior of F , and the Schur-convexity
of Dα.
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Note again that, crucially, the state dimension does not enter the proof of the
theorem, so α-Rényi entropies will be used in our qubit analysis in chapter 5.

The properties of the Rényi divergence immediately yield a family of magic distil-
lation bounds.

Claim 4.11. Consider a general magic state distillation protocol on odd prime dimen-
sion qudits, that converts a magic state ρ⊗n −→ E(ρ⊗n) = ρ′⊗m and let τ be any
full-rank stabilizer reference state on a qudit. Then, the distillation rate R := m/n is
upper bounded as

R ≤ Dα(Wρ || Wτ )

D̃α(ρ′, τ ′)
, (4.71)

where α = 2a
2b−1

for any positive integers a, b with a ≥ b and the average divergence per
qudit

D̃α(ρ
′, τ ′) :=

1

m
Dα(Wρ′⊗m || Wτ ′m), (4.72)

between the output magic state ρ′⊗m and τ ′m = E(τ⊗n).

Proof. The bound is a direct consequence of the properties of the α–Rényi divergence
in Claim 4.10.

Due to the action of the magic protocol channel, we get

Dα(Wρ⊗n || Wτ⊗n) ≥ Dα(Wρ′⊗m || Wτ ′m). (4.73)

We can use the additivity to rewrite this as

nDα(Wρ || Wτ ) ≥ m
1

m
Dα(Wρ′⊗m || Wτ ′m). (4.74)

Since ρ′⊗m ̸= τ ′m, we have Dα(Wρ′⊗m || Wτ ′m) > 0, which directly leads to the bound

m

n
≤ Dα(Wρ || Wτ )

D̃α(ρ′, τ ′)
. (4.75)

While this bound is abstract in its present form, it does suggest future applications
by viewing D̃α(ρ

′, τ ′) within the context of hypothesis testing [166], as a measure
of distinguishability between ρ′⊗m and the m qudit state τ ′m. However, in order to
properly link with hypothesis-testing one would have to first extend such results to
quasi-distributions.

If correlations in τ ′m between subsystems can be neglected, then τ ′m = τ ′⊗m for
some qudit state τ ′ and

D̃α(ρ
′, τ ′) = Dα(Wρ′ || Wτ ′), (4.76)
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which gives a generalized version of Claim 4.5, with a term such as Dα(Wρ || Wτ )

that behaves essentially as an α–free energy difference [135] in the Wigner repre-
sentation.

We can illustrate a basic application of the general bound in Eq. (4.71) for the case
of unital magic protocols. In this case it is easy to see that the above bound reduces
to the simple form

R ≤ Rα :=
2 log d−Hα(Wρ)

2 log d−Hα(Wρ′)
. (4.77)

In particular, for the case of noisy Strange states (Eq. (3.30)) on qutrits and ϵ′ = 0,
this bound becomes

R ≤ Rα =
2(1− α) log 3− log

[
8(1

6
− ϵ

18
)α + (−1

3
+ 4ϵ

9
)α
]

2(1− α) log 3 + α log 6− log(8 + 2α)
. (4.78)

This upper bound can be numerically minimized over α, for any ϵ. The cases R10 and
R∞ are shown in Fig. (4.3) and numerical evidence shows that index 10 is an integer
which lies close to the index of the optimal bound. It is clear that different values of
α allow Rα to capture different aspects of the full set of majorization conditions, or
equivalently, of the Lorenz curve constraint. For example, R∞ captures exactly the
first elbow constraint (Claim 3.11), while R10 captures more aspects of the Lorenz
curve than just the first elbow up to ϵ ≈ 0.40 as Fig. (4.3) suggests for the noisy
Strange state.

In summary, this chapter has presented a methodology for deriving bounds on
magic distillation rates of odd dimensional systems based on the statistical mechan-
ics of the Wigner representation. We start off with providing a bound (Eq. (4.5)) for
unital protocols, which outperforms previous bounds that are based on monotones.
Then, we demonstrate how majorization bounds reflect properties of the magic pro-
tocols and physical properties of the device performing the distillation by deriving
bounds inspired from thermodynamics in Claim 4.5 and Claim 4.7. Finally, we gen-
eralize these results in establishing entnropic bounds that apply in the context of
any odd dimensional magic state transformation in Eq. (4.62) and Claim 4.11. We
extend this generalized family of magic distillation bounds to qubits in chapter 5.
To this end, we identify a subset of universal qubit computation in which the crucial
entropic properties of Claim 4.8 and Claim 4.10 naturally extend to qubits.
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Chapter 5

Entropic constraints on qubit magic
distillation

Most quantum algorithms are formulated for systems of qubits, so an important
question remains whether a similar description to the odd dimensional framework
discussed in chapter 4 exists for qubits. In this case, well-known obstacles exist,
as was apparent in the qubit constructions of chapter 2 due to qubits having non-
trivial Wigner representations [167]. For instance, recall that the odd dimensional
Wigner representation [97] cannot provide a positive representation for all qubit sta-
bilizer states and operations, and the link between Wigner negativity and quantum
computational power breaks down [106, 168]. Although substantial work has been
done to develop representations in which all qubit stabilizer operations are non-
negatively represented [105, 107], these representations no longer factorize over
tensor product composition, a key property needed in the odd dimensional case to
obtain bounds on distillation rates. This is no surprise, since it is known to be impos-
sible to construct a multiplicative representation in which every Clifford operation is
represented stochastically [167]. We therefore exert an effort in justifying that the
CSS subclass of stabilizer operations, introduced in section 2.5.4, is computationally
important and admits a powerful Wigner representation that allows us to transfer
results from chapter 4 to qubits.

Almost all protocols [72,75–77,169] to-date for qubit magic distillation make use
of a sub-class of stabilizer codes, known as Calderbank-Shor-Steane (CSS) codes [70,
71]. CSS codes can be constructed from two classical linear codes and therefore the
CSS construction allows one to draw on a plethora of results from classical coding
theory to construct quantum codes with desirable properties. For instance, it has
been shown that CSS codes are optimal when it comes to constructing quantum
error correcting codes that support a transversal T–gate [170], a key feature in
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many of the aforementioned distillation protocols.

We first discuss CSS protocols, then distinguish an important sub-class of proto-
cols, which we call CSS code projections, before finally applying majorization to the
protocols in order to obtain magic distillation bounds. Our first result is to engineer
a set of channels O, including state preparations, gates and measurements, which is
useful in terms of universality and practical due to the fact that it admits a stochastic
description on the phase space, allowing for majorization constraints. We then show
how our framework can exploit core structures in CSS code distillation protocols
and arrive at upper and lower bounds which act as trade-off relations between im-
portant performance metrics of CSS code distillation protocols such as the desired
output accuracy and the acceptance probability.

Throughout this chapter we will make use of some simplifying notation and ter-
minology, which we lay down here. Given a 1–qubit operator O, and a binary vector
u := (u1, . . . , un) ∈ Zn2 let us denote

O(u) := Ou1 ⊗ · · · ⊗Oun . (5.1)

Furthermore, we use ⟨· , ·⟩ to denote the symplectic inner product, where the ar-
guments are phase space vectors, while we also borrow the notation ⟨. . . ⟩ from
section 2.5.4 to denote the set of stabilizer generators for a given state. The partial
trace tr[a,b][·], denotes tracing on subsystems a through b inclusive. A Pauli observ-
able is called X–type or Z–type if it is a sequence of 1–qubit Pauli X operators or
1–qubit Pauli Z operators respectively. A n–k distillation protocol is a magic distilla-
tion protocol that converts n copies of a specified magic state to k copies of a purer
magic state. Finally, the set of free operations will be specified in each section, but
the set of free states F will commonly be the set of convex combinations of CSS

states, unless specified otherwise.

5.1 CSS magic protocols

In section 2.5.4, we discussed the CSS formalism, which forms the basis for the
magic distillation protocols we will be discussing in this chapter. We first discuss
the stochasticity of completely CSS–preserving operations, starting from the unitary
operations (section 5.1.1) and moving to the measurements (section 5.1.2), before
combining them (section 5.1.3) into one set that constitutes the general form of CSS
protocols.
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5.1.1 Completely CSS–preserving unitaries

We recall from section 2.5.4 that the set of completely CSS–preserving unitaries is

G(n) := ⟨{CNOTi,j, Zi, Xi}i,j=1,...,n,i ̸=j⟩. (5.2)

The n–qubit CSS–preserving unitaries are [98]

G+(n) := ⟨{H(n),CNOTi,j, Xi, Zi}i,j=1,...,n,i ̸=j⟩, (5.3)

where H(n) := H⊗n is the collective Hadamard gate on n–qubits.

Any unitary U+ ∈ G+(n) can be written as U+ = [H(n)]aU for some a ∈ {0, 1}
and U ∈ G(n). This follows from the commutation relations satisfied by the gen-
erators of G(n) and the fact that H(n) is self-inverse. In particular, we have that
H(n)CNOTi,j = CNOTj,iH(n) and H(n)Xi = ZiH(n).

Since every generator of G(n) is in turn a generator of G+(n′) for all n′ ≥ n,
every member of G(n) is completely CSS–preserving. Therefore, the only members
of G+(n) that are not also completely CSS–preserving are those of the form H(n)U

for some U ∈ G(n), since H(n) is not a member of G(n′) for any n′ > n. We conclude
that G(n) must be the group of completely CSS–preserving unitaries on n–qubits.

5.1.2 Completely CSS–preserving measurements

The projective measurement of any n–qubit Pauli observable S is carried out using
two projectors P±(S) :=

1
2
(1n ± S) corresponding to the outcomes ±1. We can then

denote the post-selection channel for the ±1 outcome as P±(S) := P±(S)(·)P±(S).

We now establish which Pauli observables can be projectively measured in CSS–
preserving and completely CSS–preserving ways. The latter form elements of the
CSS formalism that we can describe stochastically with the Wigner representation
that we developed in section 2.5.

Claim 5.1. Let S be a Pauli observable on n qubits, and ρ be a CSS state on (n +m)

qubits for any m ≥ 0. Then the state σ± obtained by projectively measuring S on the
final n qubits of ρ and post-selecting on the ±1 outcome,

σ± :=
[1m ⊗ P±(S)](ρ)

p±
, p± := tr

[
[1m ⊗ P±(S)]ρ

]
(5.4)

is a CSS state if and only if S is X–type or Z–type. Moreover, if S is neither X–type
nor Z–type, then there exists a CSS state ρ such that σ± are not CSS for any m.
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Proof. We first establish that if S = X(a) and ρ is a pure state |ψ⟩⟨ψ|, then σ± are
CSS. Let the stabilizer group of |ψ⟩ be

⟨(−1)b1X(a1), . . . , (−1)brX(ar), (−1)br+1Z(ar+1), . . . ,−(1)bn+mZ(an+m)⟩, (5.5)

where each ai is a non-zero (n + m)–bit string and each bi is a binary digit. Then,
the (un-normalized) state obtained by projectively measuring S on the final n qubits
of |ψ⟩ and post-selecting on the ±1 outcome is

[1m ⊗ P±(X(a))] |ψ⟩ =
[
1

2
(1n+m ± 1m ⊗X(a))

]
|ψ⟩ = P±(X(a′)) |ψ⟩ (5.6)

where a′ := 0m ⊕ a and 0m is the m–dimensional zero vector.
There are now two possibilities:

1. X(a′) commutes with Z(ai) for all i in the range r + 1 ≤ i ≤ n + m. There-
fore, either X(a′) or −X(a′) stabilizes |ψ⟩, so either P+(X(a′)) |ψ⟩ = |ψ⟩ and
P−(X(a′)) |ψ⟩ = 0, or P−(X(a′)) |ψ⟩ = |ψ⟩ and P+(X(a′)) |ψ⟩ = 0.

2. X(a′) does not commute with Z(ai) for at least one i. Without loss of gener-
ality, choose i in the range r + 1 ≤ i ≤ r + c for some c ≥ 1. We then have that
P±(X(a′)) |ψ⟩ = 1√

2
|ϕ±⟩, where |ϕ±⟩ are respectively stabilized by

⟨(−1)b1X(a1), . . . , (−1)brX(ar),±X(a′), (−1)(br+1⊕br+2)Z(ar+1 ⊕ ar+2), . . . ,

(−1)(br+1⊕br+c)Z(ar+1 ⊕ ar+c), (−1)br+c+1Z(ar+c+1), . . . , (−1)bnZ(an)⟩, (5.7)

where ⊕ denotes additional modulo 2, from which we see that |ϕ±⟩ are both
CSS states.

Summarizing these possibilities, we conclude that, given any pure CSS state |ψ⟩ on
n qubits, the state obtained from projectively measuring X(a) on the last n qubits
and post-selecting on the ±1 outcome,

|ϕ±⟩ :=
1
√
p±

[P±(X(a′)) |ψ⟩] = 1
√
p±

[1⊗ P±(X(a)) |ψ⟩], (5.8)

where p± := tr[1m ⊗ P±(X(a)) |ψ⟩⟨ψ|], is always CSS.
Since the projective measurement of −X(a) requires the same projectors as that

of X(a), the above argument carries over directly for S = −X(a) and ρ = |ψ⟩⟨ψ|. By
reversing the roles of X and Z, the argument also carries over to S = ±Z(a) and
ρ = |ψ⟩⟨ψ|. Therefore, by decomposing an arbitrary CSS state ρ on n+m qubits into
a statistical mixture of pure CSS states, we can show that the state σ± obtained from
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projectively measuring a Pauli observable S on the final n qubits and post-selecting
on the ±1 outcome is CSS if S = ±X(a) or S = ±Z(a).

We next prove that, if S ̸= ±X(a) and S ̸= ±Z(a) for all n–bit strings a, then
it is always possible to find a pure CSS state ρ on n qubits alone such that σ± are
not CSS. This argument will only be made for positive Pauli observables, since the
projective measurements for ±S involve the same projectors.

Recall that every positive n–qubit Pauli observable S can be represented as

S =
n⊗
i=1

Qi, for i ∈ {1, X, Y, Z}. (5.9)

When S ̸= X(a) and S ̸= Z(a) for all possible a, there are three possibilities:

1. Qi ̸= Y for all i. In this case, Qi = 1, X, Z, and there must exist j and k for
which Qj = X while Qk = Z.

Let us define the sets X := {i ̸= j|Qi = X}, Z := {i ̸= k|Qi = Z} and
N := {i|Qi = 1}. Consider the CSS state |ψ⟩ defined by the stabilizer group

STAB(|ψ⟩) := ⟨{Zi|i ∈ N}, {Zi|i ∈ Z}, {Xi|i ∈ X}, Zj, ZjXk⟩. (5.10)

By construction, S commutes with every generators of STAB(|ψ⟩) except Zj.
Therefore, P±(S) |ψ⟩ = 1√

2
|ϕ±⟩, where |ϕ±⟩ are stabilizer states defined by sta-

bilizer groups

STAB(|ϕ±⟩) = ⟨{Zi|i ∈ N}, {Zi|i ∈ Z}, {Xi|i ∈ X},±S,ZjXk⟩
= ⟨{Zi|i ∈ N}, {Zi|i ∈ Z}, {Xi|i ∈ X}, XjZk, ZjXk⟩. (5.11)

where we obtained the second equality by multiplying ±S by every othere
generator except for ZjXk. This shows explicitly that |ϕ±⟩ are not CSS states.

2. There is an odd number w of values for i at which Qi = Y .

Let us define the sets X := {i|Qi = X},Y := {i|Qi = Y },Z := {i|Qi = Z} and
N := {i|Qi = 1}. Let j be a member of Y. Where Y contains more than one
member, let k be another member of Y besides j.

Consider the CSS state |ψ⟩ defined by the stabilizer group

STAB(|ψ⟩) =
〈
{Zi|i ∈ N}, {Zi|i ∈ Z}, {Xi|i ∈ X}, X⋆,

{ZiZk|i ∈ Y , i ̸= j, k}, Zj
〉
, (5.12)

where X⋆ :=
(
(−1)(w−1)/2

∏
i∈Y,i ̸=j Xi

)
.
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By construction, S commutes with every generator of STAB(|ψ⟩) except Zj.
Therefore, P±(S) |ψ⟩ = 1√

2
|ϕ±⟩, where |ϕ±⟩ are stabilizer states defined by the

stabilizer groups

STAB(|ϕ±⟩) =
〈
{Zi|i ∈ N}, {Zi|i ∈ Z}, {Xi|i ∈ X}, X⋆,

{ZiZk|i ∈ Y , i ̸= j, k},±S
〉

=
〈
{Zi|i ∈ N}, {Zi|i ∈ Z}, {Xi|i ∈ X}, X⋆,

{ZiZk|i ∈ Y , i ̸= j, k},±Yj
〉
, (5.13)

where we obtained the second equality by multiplying ±S by every other gen-
erator. This explicitly shows that |ϕ±⟩ are not CSS states.

3. There is an even number w of values for i at which Qi = Y .

Let us define the sets X := {i|Qi = X},Y := {i|Qi = Y },Z := {i|Qi = Z} and
N := {i|Qi = 1}. Let j and k be two distinct members of Y. Where Y contains
more than two members, let l be another member of Y besides j and k.

Consider the CSS state |ψ⟩ defined by the stabilizer group

STAB(|ψ⟩) =
〈
{Zi|i ∈ N}, {Zi|i ∈ Z}, {Xi|i ∈ X}, X⋆,

{ZiZl|i ∈ Y , i ̸= j, k, l}, ZjXk, Xk

〉
, (5.14)

where now X⋆ :=
(
(−1)(

w−2
2 )∏

i∈Y,i ̸=j,kXi

)
.

By construction, S commutes with every generator of STAB(|ψ⟩) except for
Xk, which means P±(S) |ψ⟩ = 1√

2
|ϕ±⟩, where |ϕ±⟩ are defined by the stabilizer

groups

STAB(|ϕ±⟩) =
〈
{Zi|i ∈ N}, {Zi|i ∈ Z}, {Xi|i ∈ X}, X⋆,

{ZiZl|i ∈ Y , i ̸= j, k, l}, ZjXk,±S
〉

=
〈
{Zi|i ∈ N}, {Zi|i ∈ Z}, {Xi|i ∈ X}, X⋆,

{ZiZl|i ∈ Y , i ̸= j, k, l}, ZjXk,±XjZk
〉
, (5.15)

where the second equality was obtained by multiplying ±S by every other
generator. This explicitly shows that |ϕ±⟩ are not CSS states.

We therefore group Pauli observables of the forms ±X(a) or ±Z(a) together as
CSS observables. Furthermore, we highlight the fact that Claim 5.1 shows CSS

observables to be the only Pauli observables whose projective measurement can be
carried out in a completely CSS–preserving way (m > 0).
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5.1.3 General CSS protocols

Essential to the application of majorization to magic state protocols is identifying
a sufficiently large subset of stabilizer states and Clifford operations that can be
stochastically represented. In section 2.5.4, we mentioned that all completely CSS–
preserving channels are stochastically represented and listed a substantial subset of
Clifford operations that fall under this description. We now provide a proof of this
by utilizing the rigorous definitions of the previous sections.

Claim 5.2. Any sequential composition of the following operations:

1. Preparation of a CSS state;

2. Any gate G ∈ G(n);

3. Projective measurement of any X– or Z–type Pauli observable, followed by a com-
pletely CSS–preserving operation E± conditioned on the outcome ±1;

4. Tracing out;

as well as statistical mixtures of such processes, is completely CSS–preserving.

Proof. Let {Ei} be a set of completely CSS–preserving operations from n to m qubits,
and let ρ be a state on (a + n) qubits. Given any probability distribution, we then
have that

σ :=

(∑
i

pi1a ⊗ Ei

)
ρ =

∑
i

pi[(1a ⊗ Ei)ρ], (5.16)

is a CSS state, since (1a ⊗ Ei)ρ is a CSS state on (a + m) qubits due to Ei being
completely CSS–preserving. Therefore, any statistical mixture of completely CSS–
preserving channels (between the same input and output systems) are also com-
pletely CSS–preserving.

Furthermore, let E be a completely CSS–preserving channel from n to m qubits,
and let F be a completely CSS–preserving channel from m to l qubits. Letting ρ

once again be a CSS state on (a + n) qubits, we have that (1a ⊗ F) ◦ (1a ⊗ E)ρ is
another CSS state, since (1a ⊗ E)ρ must be a CSS state due to E being completely
CSS–preserving, which (1a ⊗ F) would map onto another CSS state since F is also
completely CSS–preserving. Therefore, any sequential composition of completely
CSS–preserving channels (where the input of one channel matches the output of the
other) is also completely CSS–preserving.

All that remains is to prove that the listed stabilizer operations are completely
CSS–preserving.
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1. Preparation is CSS preserving as the tensor product of two CSS states is also
CSSstate.

2. Gates G ∈ G(n) are completely CSS–preserving since their Choi matrices are
CSS.

3. Let {P±(S) := P±(S)(·)P±(S)} be the projective channels carrying out a mea-
surement of the CSS observable S, and ρ be a CSS state on (n+m) qubits. From
Claim 5.1, we see that (1m⊗P±(C)))ρ = p±σ±, where p± := tr[(1m⊗P±(S))ρ]

and σ± are CSS states. Therefore, since E± are completely CSS–preserving, we
have that σ′ :=

[∑
± 1m ⊗ E± ◦ 1m ⊗ P±(S)

]
(ρ) =

∑
± p±[1m ⊗ E±](σ±) is also

CSS.

4. Consider tracing out m qubits from n. Since we can freely relabel subsystems,
we can, without loss of generality, only consider tracing out the last m qubits
of n. Since tracing out is unaffected by first performing a computational basis
measurement on the last m qubits. Let |ψ⟩ be a pure CSS state on (a + n)

qubits, we have that

1a ⊗ tr[n−m,n] [|ψ⟩⟨ψ|] =
∑

k∈{0,1}m
tr[a+n−m,a+n]

[
1a+n−m ⊗ |k⟩⟨k| |ψ⟩⟨ψ|

1a+n−m ⊗ |k⟩⟨k|
]
. (5.17)

We then observe that

1a+n−m ⊗ |k⟩⟨k| = P+((−1)k1Za+n−m+1) ◦ · · · ◦ P+((−1)kmZa+n), (5.18)

and so by Claim 5.1, (1a+n−m⊗|k⟩⟨k|) |ψ⟩ is a (sub-normalized) pure CSS state
of the form

√
pk |ϕk⟩⊗|k⟩, where |ϕk⟩must be a CSS state on the first (a+n−m)

qubits in order to keep the complete state CSS, and pk is the probability of
getting the |k⟩ outcome in the computational basis measurement. Therefore,

1a ⊗ tr[n−m,n][|ψ⟩⟨ψ|] =
∑

k∈{0,1}m
tr[a+n−m,a+n][pk |ϕk⟩⟨ϕk| ⊗ |k⟩⟨k|]

=
∑

k∈{0,1}m
pk |ϕk⟩⟨ϕk| , (5.19)

which is a CSS state on (a + n − m) qubits. Therefore, by decomposing an
arbitrary CSS state ρ on (a + n) qubits as a statistical mixture of CSS states,
we can show that 1a+n−m ⊗ tr[n−m,n][ρ] must be CSS, which implies tracing out
subsystems is completely CSS–preserving.
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CSS protocols can therefore be viewed as the maximal class O of completely CSS–
preserving operations.

Consider now any quantum circuit E formed from preparing CSS states, perform-
ing gates from the larger group of CSS–preserving unitaries, discarding qubits and
projectively measuring CSS observables. Let UH(n) := H(n)(·)H(n). We make the
following observations.

• Given any n–bit string a, because UH(n)X(a)UH(n) = Z(a), and every CSS

observable S on n qubits is of the form ±X(a) or ±Z(a), we have the conjuga-
tion relation P±(S)UH(n) = UH(n)P±(S

′), where S ′ := H(n)SH(n) is another
CSS observable. Therefore, letting E be the projective measurement of a CSS

observable S, we conclude that E◦UH(n) = UH(n)◦E ′, where E ′ is the projective
measurement of the CSS observable S ′.

• Given any n–qubit state ρ, we have that H(n)ρH(n) ⊗ σ = H(n)ρH(n) ⊗
H(m)σ′H(m), where σ′ := H(m)σH(m) is also CSS state since H(m) is CSS–
preserving on m qubits. Therefore, letting E be the channel introducing a CSS

state σ, we conclude that UH(n) ◦ E = E ′ ◦ UH(n+m), where E ′ is the channel
introducing another CSS state σ′.

• Let R be any subset of m qubits out of n. We then have trR ◦ UH(n) = UH(n−
m) ◦ trR.

• As we have already seen in section 5.1.1, given any completely CSS–preserving
n–qubit unitary channel U , we have that UH(n) ◦ U = U ′ ◦ UH(n), where U ′ is
another completely CSS–preserving unitary channel.

We also saw in section 5.1.1 that any CSS–preserving unitary channel can be writ-
ten as [UH(n)]b ◦ U+, where U+ is a completely CSS–preserving unitary channel, and
b is a binary digit. After decomposing every CSS–preserving unitary in E into this
form, we can conjugate any collective Hadamard gate to the end of the circuit as de-
scribed above. Therefore, E is operationally equivalent to a CSS protocol described
by a subset of O, followed by a collective Hadamard gate conditioned upon certain
some measurement outcomes obtained during the protocol. We conclude that E can
be converted reversibly into a CSS protocol using Clifford post-processing, which
implies CSS–preserving and completely CSS–preserving unitaries generate equally
powerful distillation protocols.

94



5.2. CSS CODE PROJECTIONS

Figure 5.1: Schematic of qubit magic protocols. The set of CSS protocolsO, which
include the family of CSS code projections as a subset according to Claim 5.5, are a
subset of the stochastically represented CPTP maps. Elements of O include impor-
tant distillation codes, such as the 7–1 and 23–1 CSS distillation protocols based on
the Steane [[7, 1]] and Golay [[23, 1]] codes, respectively [169].

5.2 CSS code projections

We now discuss an elementary protocol for distilling magic, which was proposed in
the seminal work [72] and forms a suclass of CSS protocols. It is performed via pro-
jecting onto the code-space of a quantum error correcting code. The basic method
involves taking n copies of your noisy magic state ρ⊗n, measuring the stabilizer gen-
erators of an [[n, k]] code C, and post-selecting on the no-error syndrome. The net
effect is to project onto C. Conditional on no errors being detected in the syndrome
measurements, one then decodes onto k output qubits, whereas when an error is
detected the output state is simply discarded.

In general, the protocol will only succeed probabilistically with some acceptance
probability p. The core idea is analogous to stabilizer code projections [171] in that
if the likelihood of an undetectable error occurring is less than the input error rate ϵ,
then the post-selected output state will have a higher per-copy fidelity with the target
magic state of choice. Many other examples are based on CSS codes, for instance the
15–1 protocol [72] based on the [[15, 1]] punctured Reed-Muller code [172,173], and
the protocols based on Steane [[7, 1]] and Golay [[23, 1]] CSS codes analyzed in [169].
A general schematic of the protocols we considered is provided in Fig. (5.1).
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5.2.1 Definition of CSS code projections

We can write any CSS code projection as a completely positive trace non-increasing
map EP for the given CSS code C as

EP(·) := tr[1,n−k][U ◦ P(·)], (5.20)

where we have defined U := U(·)U † and P := P (·)P for the decoding unitary U and
code-space projector P of C respectively. Given n copies of a noise magic state ρ, EP
acts as

EP(ρ⊗n) = pρ′, (5.21)

where ρ′ ∈ B(Hk
2) is the output magic state on k qubits and we have defined the

acceptance probability p := tr[Pρ⊗n] for a single successful run of EP . Distillation of
the magic state ψ := |ψ⟩⟨ψ| is successful if the output ρ′ from a successful run has a
greater per-copy fidelity with respect to a target (pure) magic state of choice than ρ.

The majorization tools that we want to apply to the protocols do not immediately
apply to the projection EP as we require trace-preservation. However, this can be
fixed by simply recording the success (labeled ‘0’) or failure (labeled ‘1’) of EP in an
ancillary qubit, and without loss of generality we can assume an arbitrary CSS state
σ on k qubits is outputted in case of failure. We can therefore extend EP into the
following completely positive trace preserving (CPTP) map which describes the CSS

code projection:

E(·) := EP(·)⊗ |0⟩⟨0|+ tr[P(·)]σ ⊗ |1⟩⟨1| , (5.22)

where P := P (·)P := (1n − P )(·)(1n − P ) performs a projection onto the orthogonal
complement of C. Under such a channel, n copies of ρ are mapped onto

E [ρ⊗n] = pρ′ ⊗ |0⟩⟨0|+ (1− p)σ ⊗ |1⟩⟨1| := ρp, (5.23)

which captures the structure of the probabilistic distillation protocol.

5.2.2 Stochasticity of CSS code projections

It is not obvious from the definition in Eq. (5.22) that CSS code projections form a
subset of CSS protocols, therefore we prove this fact here, establishing the stochas-
ticity of such protocols. Our strategy is as follows: we first establish in Claim 5.3
that the decoding unitary appearing in EP is completely CSS–preserving. We then
prove in Claim 5.4 that a convex combination of terms in the form of a projective
measurement Pk followed by some completely CSS–preserving post-processing Ek is
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stochastically represented. We then bring these two results together in Claim 5.5 by
identifying that the channel E in Eq. (5.22) constitutes a sum of two terms in the
form Ek ◦ Pk, therefore it is a stochastically represented CSS protocol.

We first demonstrate that any CSS code can be decoded using a completely CSS–
preserving unitary. This result allows for the use of simple explicit expressions to
describe very general CSS code projections.

Claim 5.3. Let S := ⟨{(−1)biSi}i=1,...,n−k⟩ be the stabilizer group defining an [[n, k]]

CSS code, where

Si =

X(ui) for 1 ≤ i ≤ r

Z(vi) for r + 1 ≤ i ≤ n− k
(5.24)

in which ui,vi are non-zero n–dimensional binary vectors and bi ∈ {0, 1} is a binary
digit for all i.

Then, there exists a completely CSS–preserving unitary U such that

U((−1)biSi)U † =

Xi for 1 ≤ i ≤ r

Zi otherwise.
(5.25)

Proof. The proof proceeds by construction.
Let us first consider the X–type generators of S without their signs, i.e. X :=

{X(ui)}i=1,...,r. We will prove that there exists a sequence of CNOT operations that
transforms X(ui) to Xi for all 1 ≤ i ≤ r.

Let G be the group formed by the set of positive X–type n–qubit CSS observ-
ables under matrix multiplication, i.e. G := ({X(a)|a ∈ {0, 1}n}, ·), and let G′ be
the group formed by the set of n–dimensional binary strings under binary addition
of corresponding entries, i.e. G′ := ({0, 1}n,⊕). Then G ∼= G′ under the intuitive
isomorphism X(a)↔ a.

We can represent an m–tuple A of m positive X–type n–qubit CSS observables,
A := (X(a1), . . . , X(am)) where ai ∈ {0, 1}n for 1 ≤ i ≤ m, as the columns of an
n×m matrix

MA :=

 | . . . |
a1 . . . am

| . . . |

 . (5.26)

Because no element of X can be formed by multiplying other elements together,
their image in G′, {ui}i=1,...,r, is a set of r linearly independent elements in Vn, the
n–dimensional vector space over F2. Therefore, MX has rank r.
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We now demonstrate that the following two operations on MA can be accom-
plished by performing sequences of CNOT operations on all the members of A si-
multaneously:

1. (Swapping rows j and k). The unitary operation USWAP (·) := USWAP (·)U †
SWAP ,

where USWAP := CNOTj,kCNOTk,jCNOTj,k, swaps qubits j and k. Therefore,
the matrix MA′ representing the m–tuple

A′ := (USWAP (X(a1)), . . . ,USWAP (X(am)) (5.27)

can be obtained from MA by swapping rows j and k.

2. (Adding row j to row k). The action of CNOTj,k on Xk is

CNOTj,kXiCNOTj,k =

XjXk for i = j

Xi otherwise.
(5.28)

Therefore,

CNOTj,kX(a)CNOTj,k = X(a⊕ ajηk) := X(a′), (5.29)

where ηk is an n–bit string with 1 in the k–th entry and 0 everywhere else. In
words, a′ is formed from adding the j–th entry of a to its k–th entry. Therefore,
the matrix MA′ representing the m–tuple

A′ := (CNOTj,kX(a1)CNOTj,k, . . . ,CNOTj,kX(a1)CNOTj,k) (5.30)

can be obtained from MA by entry-wise binary addition of row j to row k.

We further demonstrate that Gauss-Jordan elimination reduces to a sequence of
such row swaps and additions on Vn. For a vector space over a general field F ,
Gauss-Jordan elimination is a sequence of three moves:

1. Swap the positions of two rows.

2. Add to one row a non-zero scalar multiple of another.

3. Multiply any row by a non-zero scalar.

Since the only scalars available in F2 are 0 and 1, the third move has no effect when
F = F2 and can be neglected, while the second move reduces to the entry-wise
binary addition of rows.
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We now note that we can perform Gauss-Jordan elimination on MX and convert
it into its unique reduced row echelon form,

DX :=

[
1r,r

On−r,r

]
, (5.31)

where 1r,r is an r × r identity matrix while On−r,r is a (n− r)× r null matrix.
The CNOT sequence corresponding to this Gauss-Jordan elimination, which we

can denote by the unitary operation UX (·) := UX (·)U †
X , accomplishes UX (X(ui)) =

Xi.
We next consider the Z–type generators of S without their signs, i.e. Z :=

{Z(vr+1), . . . , Z(vn−k)}. The action of CNOTj,k, on Zi is

CNOTj,kZiCNOTj,k =

ZjZk for i = k

Zi otherwise,
(5.32)

so UX only transforms positive Z–type CSS observables into other positive Z–type
CSS observables, i.e. we can find n–bit binary strings {v′

i}i=r+1,...,n−k such that
UX (Z(vi)) = Z(v′

i) for all i in the range r + 1 ≤ i ≤ n− k.
However, since the X–type generators of S commute with the Z–type generators,

Z(v′
i) must commute with X1 through Xr for all i in the range r + 1 ≤ i ≤ n − k.

Therefore, Z(v′
i) acts non-trivially on qubits r + 1 through n only.

Everything that we have done for the X–type generators can then be repeated for
the Z–type generators. The only thing that needs to be checked is that, when we
represent the m–tuple B := (Z(a1), . . . , Z(am)) of m positive Z–type n–qubit CSS

observables as the columns of a matrix MB, row addition on MB can be performed
by executing a CNOT operation on all elements of B simultaneously, just as in the
case of X–type CSS observables. This is confirmed via Eq. (5.32), which implies

CNOTj,kZ(a)CNOTj,k = Z(a⊕ akηj) := Z(a′) (5.33)

where we see that a′ is formed by adding entry k in a to entry j. Therefore, the
matrix MB′ representing the m–tuple

B′ := (CNOTj,kZ(a1)CNOTj,k, . . . ,CNOTj,kZ(am)CNOTj,k) (5.34)

can be obtained from MB by adding row k to row j.
We conclude that there also exists a sequence of CNOT operations UZ := UZ(·)U †

Z

such that UZ(Z(v′
i)) = Zi for all i in the range r + 1 ≤ i ≤ n − k. Since Z(v′

i) acts
non-trivially on qubits r + 1 through n only for all i in the range r + 1 ≤ i ≤ n − k,
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we can choose UZ to act only on qubits r+ 1 through n, and so UZ(Xi) = Xi for all i
in the range 1 ≤ i ≤ r.

We now have

(UZ ◦ UX )[(−1)biSi] =

(−1)biXi for 1 ≤ i ≤ r

(−1)biZi for r + 1 ≤ i ≤ n− k.
(5.35)

Defining UC(·) := UC(·)U †
C , where UC :=

[∏n−k
i=r+1X

bi
i

] [∏r
i=1 Z

bi
i

]
, we see that

(UC ◦ UZ ◦ UX )[(−1)biSi] =

Xi for 1 ≤ i ≤ r

Zi for r + 1 ≤ i ≤ n− k.
(5.36)

Since UX , UZ , UC are completely CSS–preserving, as they are sequences of CNOT

gates or local qubitX and Z gates, we have constructed a completely CSS–preserving
unitary U := UCUZUX that completes the Claim.

We next identify a collection of primitive channels that are stochastically repre-
sented and which can be arbitrarily combined to construct magic protocols.

Claim 5.4. Let {Pk} be a set of projective channels on n qubits defined as Pk(X) :=

pkPkXPk, where pk is a probability and Pk is a product of commuting projectors onto
the eigenspaces of CSS observables. Furthermore, let {Ek} be a set of completely CSS–
preserving channels from n to m qubits.

Then,
∑

k Ek ◦ Pk is stochastically represented whenever
∑

k pkPk = 1n.

Proof. Let ρ be a CSS state on (n + a) qubits. By repeated applications of Claim 5.1
to each projection forming the product Pk, we obtain

(1a ⊗ Pk)ρ = pktr[(1a ⊗ Pk)ρ]σk, (5.37)

where σk is a CSS state on (n+m) qubits. Therefore,

σ := 1a ⊗

(∑
k

Ek ◦ Pk

)
ρ =

∑
k

pktr[(1a ⊗ Pk)ρ](1a ⊗ Ek)(σk). (5.38)

Since Ek is completely CSS–preserving, (1a⊗Ek)(σk) is a CSS state. When
∑
pkPk =

1n, we have that
∑

k pktr[(1a ⊗ Pk)ρ] = 1, which means σ is a CSS state. We con-
clude that, if

∑
pkPk = 1n, then

∑
k Ek ◦ Pk is completely CSS–preserving and thus

stochastically represented.

We are now in a position to prove that CSS code projections are stochastic.
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Claim 5.5. The quantum channel for any n–k CSS code projection is a completely
CSS–preserving operation, and hence it is stochastically represented.

Proof. Let C be an [[n, k]] CSS code. The trace-preserving version of its code projec-
tion can be represented as

E(ρ) := tr[1,n−k][U ◦ P(ρ)]⊗ |0⟩⟨0|+ tr[P(ρ)]σ ⊗ |1⟩⟨1| , (5.39)

where U := U(·)U and P := P0(·)P0 for the decoding unitary U and codespace
projector P0 of C, and P := P 0(·)P 0 for P 0 := 1n − P0.

Let the code-space of C be stabilized by S := ⟨{Si}i=1,...,n−k⟩, where {Si}i=1,...,n−k is
a set of (n− k) commuting and independent n–qubit CSS observables, of which the
first r ≤ n− k are X–type while the rest are Z–type.

Let us define channels E0, E1 as

E0(·) := (tr[1,n−k] ◦ U)(·)⊗ |0⟩⟨0| , and (5.40)

E1(·) := σ ⊗ |1⟩⟨1| tr(·) (5.41)

We can then express E as E = E0 ◦ P + E1 ◦ P.
By Claim 5.3, C can be decoded by a unitary U = [H⊗r ⊗ 1n−k−r]V for some

V ∈ G(n). Since the Hadamards before V only take place on qubits 1 through n− k,
we have by the cyclic property of the trace that

E0(·) = (tr[1,n−k] ◦ V)(·)⊗ |0⟩⟨0| , (5.42)

where V(·) := V (·)V †. We thereby see from Claim 5.2 that E0 and E1 are both
completely CSS–preserving.

Let s be an n–bit string denoting the outcome of the syndrome measurement for
C, where si is the outcome of measuring the observable Si. By definition, P0 projects
onto the subspace corresponding to the zero syndrome outcome, and is therefore
the product of commuting CSS projectors that successively project onto the (+1)–
eigenspaces of each Si, i.e.

P0 =
n−k∏
i=1

P0(Si), P0(Si) :=
1

2
(1n + Si). (5.43)

Furthermore, we have that

E1 ◦ P(X) = σ ⊗ |1⟩⟨1| tr
[
P 0XP 0

]
= σ ⊗ |1⟩⟨1| tr

[
P 0X

]
(5.44)

Now P 0 =
∑

s ̸=0 Ps, where each Ps is a product of commuting projectors onto the
(−1)si eigenspace of each Si, i.e.

Ps =
n−k∏
i=1

Psi(Si), Psi(Si) :=
1

2
(1n + (−1)siSi). (5.45)
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Substituting into Eq. (5.44), and defining Ps := Ps(·)Ps, we obtain

E1 ◦ P(X) = σ ⊗ |1⟩⟨1| tr

[(∑
s̸=0

Ps

)
X

]
=
∑
s̸=0

σ ⊗ |1⟩⟨1| tr [PsXPs]

=
∑
s ̸=0

E1 ◦ Ps. (5.46)

We have thereby shown that E = E0 ⊗ P0 +
∑

s ̸=0 E1 ⊗ Ps, in which Ps is a prod-
uct of commuting projectors onto the eigenspaces of CSS observables such that∑

s Ps = 1n, and E0 and E1 are both completely CSS–preserving channels. Therefore,
by Claim 5.4, we conclude that E can be stochastically represented.

The stochasticity of CSS code projections allows us to describe induced state trans-
formations via relative majorization, thereby the entropic results of chapter 4 of odd
dimensions are transferable to qubits, as discussed in the following section.

5.3 Entropic bounds for CSS protocols

CSS circuits become capable of universal quantum computation with the injection of
rebit magic states [98, 108], which are real and therefore represented in Eq. (2.65)
by valid quasi-distributions with negative probabilities. So far we have established
the stochasticity of CSS protocols. In this section, we therefore turn our attention to
deriving constraints on magic distillation performed by CSS protocols based on the
statistical mechanics of the Wigner representation.

It turns out that it is natural to study the quantity ∆Dα that expresses the differ-
ence of the output from the input divergences between magic and reference states,
which we define in Eq. (5.48). In section 5.3.1, we provide abstract bounds on
generic CSS protocols in terms of ∆Dα, given in Claim 5.6. In section 5.3.2, we
specialize in CSS code projections and prove several technical aspects of ∆Dα which
we use to demonstrate the existence of upper and lower bounds on the number
of input copies n in Claim 5.9. The upper bounds appear conditionally on the α–
Rényi entropy of the input magic state. We then derive explicit expressions for these
bounds in Claim 5.13 that are applicable in the context of any CSS code projection.
In section 5.3.3, we discuss an example application of our bounds on Hadamard
state (Eq. (2.88)) distillation and finally, as a sanity check, we show in section 5.3.4
that our bounds are non-trivial, by comparing them with a simpler data-processing
inequality applicable directly on the quantum density matrices of the magic states.
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5.3.1 Bounds on generic CSS protocols

Since every CSS protocol is stochastically represented, we can use the α–Rényi di-
vergence as defined in Eq. (3.65) with properties outlined in Claim 4.10, to obtain
the following family of constraints on rebit magic distillation.

Claim 5.6. Let ρ be a noisy rebit magic state, and τ be a CSS state in the interior of
F . If there exists a CSS distillation protocol E such that ρ′ = E(ρ⊗n) and τ ′ := E(τ⊗n)
is also in the interior of F , then

∆Dα ≥ 0, (5.47)

for α = 2a
2b−1

with positive integers a, b such that a ≥ b, where

∆Dα := nDα(Wρ || Wτ )−Dα(Wρ′ || Wτ ′). (5.48)

Proof. The result follows by direct substitution of ρ′, τ ′ and use of the properties in
Claim 4.10.

Similarly to the odd dimensional scenario, the reference process τ⊗n → τ ′ can
be viewed in three different ways: (1) as a variational parameter, (2) as encoding
physics of the quantum device, or (3) as a way to exploit structure in a family of
protocols, which we now elaborate on in turn.

Firstly, it can simply be treated as a variational parameter, which can be optimized
over to obtain the following set of monotones on CSS protocols

Λα(ρ) := inf
τ∈F

Dα(Wρ || Wτ ), (5.49)

for α = 2a/(2b−1) with positive integers a, b such that a ≥ b, and where the infimum
is taken over the convex set of CSS states F . For odd dimensional systems, we can
obtain the same family of monotones, for example by letting F denote the set of
stabilizer states STAB. To see that Eq. (5.49) constitutes a monotone family for
CSS protocols, we recall Dα(Wρ || Wτ ) ≥ 0 for all ρ, τ , with equality if and only if
ρ = τ according to Claim 4.10. Given any rebit state ρ, let τρ be a solution to the
optimization problem in Eq. (5.49). Then if there exists a CSS protocol E such that
E(ρ) = ρ′, we obtain

Λα(ρ) = Dα(Wρ || Wτρ) ≥ Dα(Wρ′ || WE(τρ)) ≥ Λα(ρ
′), (5.50)

where the first inequality follows from generalized relative majorization and the
second inequality follows by the definition in Eq. (5.49). Therefore, the set of all
well-defined {Λα} form an infinite set of monotones on the class of CSS protocols. It
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is straightforward to see that Λα are sub-additive, i.e. Λα(ρ⊗n) ≥ nΛα(ρ) (which fol-
lows from the additivity of the generalized α–Rényi divergences). Therefore, these
Λα monotones allow us to set global bounds on any CSS protocol. More precisely,
if there exists a completely CSS–preserving distillation protocol E ∈ O such that
E(ρ⊗n) = ρ′, then the overhead n is lower bounded as

n ≥ Λα(ρ
′)

Λα(ρ)
. (5.51)

Secondly, the reference process can be chosen appropriately to encode the par-
ticular physics of a protocol (or family of protocols) of interest. For instance, in
section 4.2.2, the Gibbs state defined at reference temperature T is assumed to be
preserved in order to encode some background temperature or free energy produc-
tion that takes place during the distillation protocol.

The third way of interpreting the reference process is by choosing it appropriately
in order to exploit some structural symmetry of CSS protocols. We demonstrate this
in the next section with CSS code projection protocols.

5.3.2 Bounds on CSS code projection protocols

We will now see that there is a natural choice of CSS states τ and τ ′ such that
τ⊗n → τ ′ common to all n–k CSS code projections, based on the intuition that the
code projection component EP of the channel in Eq. (5.22),

E(·) := EP(·)⊗ |0⟩⟨0|+ tr[P(·)]σ ⊗ |1⟩⟨1| ,

is always sub-unital. To see this we first note that the identity operator on n qubits
can be decomposed as 1n = P + P for the code-space projector P of any [[n, k]] CSS

code. Therefore, E1n always acts as

E1n = EP+P = EP . (5.52)

Since P is the logical identity on k logical qubits, i.e.,

P =
∑

k∈{0,1}k
|kL⟩⟨kL| ≡ 1L, (5.53)

the decoding of P in Eq. (5.52) must give an output state that is proportional to
the maximally mixed state on k physical qubits, and so (omitting normalization
constants) we obtain E(1n) ∝ 1k. Therefore, the code projection component of the
distillation channel is indeed sub-unital. Finally we note that since P is a rank-2k

projector, the acceptance probability associated with this protocol is p = tr
[
P 1n

2n

]
=
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2k−n. Putting this all together, we find that under any n–k CSS code projection the
maximally mixed state on n qubits gets mapped to

E

[(
1

2

)⊗n
]
= τn,k, (5.54)

where we have defined the output state

τn,k := 2k−n
1k

2k
⊗ |0⟩⟨0|+ (1− 2k−n)σ ⊗ |1⟩⟨1| , (5.55)

which only depends on the number of stabilizer generators n− k of the CSS code.
We can therefore conclude that, if there exists an n–k CSS code projection such

that ρ⊗n 7→ pρ′, then ∆Dα ≥ 0, where

∆Dα := nDα

(
Wρ

∣∣∣∣∣∣∣∣W1

2

)
−Dα

(
Wρp || Wτn,k

)
, (5.56)

which we define over the restricted domain n ∈ [k,∞], so that the number of logical
qubits cannot exceed the number of physical qubits.

For any given p and rebit state ρ, we have the following continuous function of n
defined on the interval n ∈ [k,∞),

∆Dα :=Dα(Wρ⊗n || W
[12 ]

⊗n)−Dα

(
Wρp || Wτn,k

)
=nDα(Wρ || W1

2
)−Dα

(
Wρp || Wτn,k

)
, (5.57)

which gives change in distance, as measured by the α–Rényi divergence, between
two quasi-distributions and their reference probability distributions. This allows us
to express the necessary condition in Claim 5.6 specialized to the transition ρ⊗n →
pρ′ under a n–k CSS code projection via ∆Dα ≥ 0.

It will also be quite useful to introduce the following general mean Qα(· || ·) on
the quasi-distributions w := (w1, . . . wN)

T , r := (r1, . . . rN)
T , which we define via

Qα(w || r) := 2(α−1)Dα(w || r) =
N∑
i=1

wαi r
1−α
i . (5.58)

We now have the following technical result, which will allow us to simplify the
expression of our constraint functions ∆Dα.

Claim 5.7. Consider the rebit quantum states ρ0, ρ1, τ0, τ1, where τi for i ∈ {0, 1} lie in
the interior of F . Moreover, let ψ0, ψ1 be two perfectly distinguishable register states in
F such that tr[ψ0ψ1] = 0. Then, the following identity holds,

Qα(Wp0ρ0⊗ψ0+p1ρ1⊗ψ1 || Wq0τ0⊗ψ0+q1τ1⊗ψ1)

= pα0 q
1−α
0 Qα(Wρ0 || Wτ0) + pα1 q

1−α
1 Qα(Wρ1 || Wτ1), (5.59)
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which in turn implies the inequality

Qα(Wp0ρ0⊗ψ0+p1ρ1⊗ψ1 || Wq0τ0⊗ψ0+q1τ1⊗ψ1) ≥ pα0 q
1−α
0 Qα(Wρ0 || Wτ0). (5.60)

Proof. By assumption the register states ψ0, ψ1 have zero overlap:

tr[ψ0ψ1] = 2
∑
u

Wψ0(u)Wψ1(u) = 0. (5.61)

Now since ψi ∈ F we must have Wψi
(u) ≥ 0 for all u ∈ P and for each i ∈ {0, 1}.

We can thus conclude from Eq. (5.61) that

V0 := supp(Wψ0) ⊆ ker(Wψ1); (5.62)

V1 := supp(Wψ1) ⊆ ker(Wψ0). (5.63)

With this in hand, we can explicitly evaluate:

Qα(Wp0ρ0⊗ψ0+p1ρ1⊗ψ1 || Wq0τ0⊗ψ0+q1τ1⊗ψ1)

=
∑
u∈P

[∑
v∈V0

(p0Wρ0(u)Wψ0(v))
α (q0Wτ0(u)Wψ0(v))

1−α+

∑
v∈V1

(p1Wρ1(u)Wψ1(v))
α (q1Wτ1(u)Wψ1(v))

1−α

]

=
∑
u∈P

[
pα0 q

1−α
0 Wρ0(u)

αWτ0(u)
1−α

∑
v∈V0

Wψ0(v) + pα1 q
1−α
1 Wρ1(u)

αWτ1(u)
1−α

∑
v∈V1

Wψ1(v)

]
=pα0 q

1−α
0

∑
u∈P

Wρ0(u)
αWτ0(u)

1−α + pα1 q
1−α
1

∑
u′∈P

Wρ1(u
′)αWτ1(u

′)1−α

=pα0 q
1−α
0 Qα(Wρ0 || Wτ0) + pα1 q

1−α
1 Qα(Wρ1 || Wτ1), (5.64)

where in the third equality we used the normalization of the representation. The
inequality in the statement of the Claim then follows from the fact that both terms
on the right hand side of Eq. (5.59) must be non-negative, completing the proof.

With this property in hand we can make the non-trivial n–dependence in ∆Dα

more explicit and moreover we highlight in Claim 5.8 the fact that, in case of a
failed run, the choice of CSS state the system is left in is arbitrary.

Claim 5.8. Let us define the functionQα(w || r) := 2(α−1)Dα(w || r), for quasi-distribution
w and probability distribution r with positive components. Let the maximally mixed
state on k qubits be written as 1k/2k,. Then, we have:

∆Dα = n (1−Hα[Wρ]) + k − 1

α− 1
log

[
pαQα

(
Wρ′

∣∣∣∣∣∣∣∣W1k/2k

)
+ (1− p)α

(
1

2n−k − 1

)α−1
]
.

(5.65)

It follows that the function ∆Dα is independent of the choice of state σ.
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Proof. By Claim 5.7, we have the following expansion

Qα

(
Wρp || Wτn,k

)
= pα

(
2k−n

)1−α
Qα

(
Wρ′ || W1k

2k

)
+ (1− p)α

(
1− 2k−n

)1−α
Qα (Wσ || Wσ)

=
(
2n−k

)α−1

[
pαQα

(
Wρ′ || W1k

2k

)
+ (1− p)α

(
1

2n−k − 1

)α−1
]
,

(5.66)

where in the last equality we have usedQα(r || r) = 1 for all probability distributions
r. Therefore, since Dα(· || ·) = 1

α−1
logQα(· || ·) we have

Dα

(
Wρp || Wτn,k

)
= n− k + 1

α− 1
log

[
pαQα

(
Wρ′ || W1k

2k

)
+ (1− p)α

(
1

2n−k − 1

)α−1
]
.

(5.67)

Substituting Eq. (5.67) and Dα

(
Wρ

∣∣∣∣∣∣∣∣W1

2

)
= 2 − Hα[Wρ] into Eq. (5.57) gives the

result as claimed.

By inspection, the form for ∆Dα given in Claim 5.8 has no dependence on σ. This
also follows from a resource-theoretic argument. In particular, we observe that the
following quantum channel is straightforwardly stochastically represented for any
state ω ∈ F

E ′(·) := 1⊗ P0(·) + σ′tr⊗ P1(·), (5.68)

where Pk(·) := |k⟩⟨k| (·) |k⟩⟨k| for k = 0, 1, since it is a composite channel formed
from elements in O. It then follows that for any σ′ in the interior of F , we have

Dα

(
Wρp || Wτn,k

)
≥ Dα

(
WE ′(ρp) || WE ′(τn,k)

)
≥ Dα

(
W(E◦E ′)(ρp) || W(E◦E ′)(τn,k

)
= Dα

(
Wρp || Wτn,k

)
. (5.69)

We therefore conclude that

Dα

(
E ′(Wρp) || E ′(Wτn,k

)
)
= Dα

(
Wρp || Wτn,k

)
, (5.70)

and thus the corresponding bounds are unaffected by the choice of the reference
state σ.

We now highlight some properties of the relative entropy difference ∆Dα stem-
ming from basic properties of α–Rényi entropies and divergences.

Claim 5.9. The relative entropy difference ∆Dα satisfies the following properties:

1. ∆Dα is concave in n on the domain n ∈ [k,∞];
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2. ∆Dα is negative in the limit where n = k:

lim
n→k+

∆Dα < 0; (5.71)

3. If Hα[Wρ] > 1, then ∆Dα is also negative in the asymptotic limit

lim
n→∞

∆Dα < 0, (5.72)

for p < 1, any rebit states ρ, ρ′, and α = 2a
2b−1

with positive integers a, b such that a ≥ b.

Proof.

1. Let us define the function

g(n) :=

[
c1 + c2

(
1

2n−k − 1

)α−1
]
. (5.73)

We can now re-express ∆Dα from Claim 5.8 as

∆Dα = n (1−Hα[Wρ]) + k − 1

α− 1
log g(n), (5.74)

and since the first term is linear we need only check the second derivative of
the second term to establish that ∆Dα is concave. We have

∂2n∆Dα = − 1

α− 1
∂2n log g(n)

= −

[
log 2 c22

k+n
(
c1
(
2k + (α− 1)2n

) (
2n−k − 1

)α
+ c2

(
2n − 2k

))
(2n − 2k) (c12k (2n−k − 1)α + c2 (2n − 2k))

2

]
.

(5.75)

Since c1, c2 ≥ 0 for all ρ′ and p, the term in square brackets is non-negative for
all n > k, α > 1, ρ′ and p (strictly positive for p < 1), which implies ∂2n∆Dα is
non-positive everywhere on our restricted domain. Therefore ∆Dα is concave,
as claimed.

2. Recalling that α > 1, we have from Claim 5.8 that

lim
n→k+

∆Dα = lim
n→k+

{
n (1−Hα[Wρ]) + k − 1

α− 1
log

[
c1 + c2

(
1

2n−k − 1

)α−1
]}

= −kHα[Wρ′ ]−
1

α− 1
lim
n→k+

{
log

[
c1 + c2

(
1

2n−k − 1

)α−1
]}

= −∞ < 0, (5.76)

so long as c2 > 1, which is true if and only if p < 1.
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3. We have:

lim
n→∞

∆Dα = lim
n→∞

{
n (1−Hα[Wρ]) + k − 1

α− 1
log

[
c1 + c2

(
1

2n−k − 1

)α−1
]}

= k − 1

α− 1
log[c1] + lim

n→∞
{n (1−Hα[Wρ])}

= k −Dα

(
Wpρ′ || W1k

2k

)
+ lim

n→∞
{n (1−Hα[Wρ])}

= Hα[Wpρ′ ]− k + lim
n→∞

{n (1−Hα[Wρ])}

=


−∞, Hα[Wρ] > 1,

Hα[Wpρ′ ]− k, Hα[Wρ] = 1,

+∞, Hα[Wρ] < 1.

(5.77)

Therefore, if Hα[Wρ] > 1 then limn→∞ ∆Dα < 0, as claimed.

An immediate consequence of Claim 5.9 is that if ∆Dα is non-negative anywhere
on its well-defined domain, i.e., an n–k CSS code projection protocol is not com-
pletely ruled out for any number of input copies n, then it has one or two roots
located at nαL and nαU . These roots correspond to lower and upper bounds on the
permissible code length n, respectively. More formally, we arrive at the following
statement.

Claim 5.10. Let ρ be a noisy magic state on H2. If ρ⊗n 7→ pρ′ under a n–k CSS code
projection with acceptance probability p, then we have the following lower and upper
bounds on n, respectively

n ≥ nαL := inf
n
{n : ∆Dα ≥ 0}, (5.78)

n ≤ nαU := sup
n
{n : ∆Dα ≥ 0}, (5.79)

for α = 2a
2b−1

with positive integers a, b such that a ≥ b. Moreover, if there exists an α

such that Hα[Wρ] > 1, we obtain a finite upper bound on n from this latter expression.

We highlight that n in Claim 5.10 refers to the code length of a single run of a
distillation protocol, as opposed to the the asymptotic overhead. However, single-
run n still constitutes a useful metric for analyzing the actual resource cost of a
given stage of a protocol. Moreover, distillation costs are typically dominated by the
final round of a multi-stage distillation protocol, see for example [43] and references
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contained therein, so we expect the above bounds to be particularly informative in
this context.

For sufficiently low k, these bounds can be computed numerically using basic root-
finding methods. However, it turns out that by upper bounding nαU and lower bound-
ing nαL, we can find useful closed analytic forms for upper and lower bounds on n.
To this end, let us first define the trace norm, also known as the Schatten-1 norm of
an operator X,

∥X∥1 := tr|X| = tr
√
X†X. (5.80)

For a vector w ∈ Rd, this reduces to the ℓ1–norm,

∥w∥1 :=
d∑
i=1

|wi|. (5.81)

For a Hermitian matrix H, ∥H∥1 = ∥λ∥1, where λ denotes the vector of the eigen-
values of H. Using these standard norms, we can reproduce a basic result stating
that two states being close is equivalent to their Wigner representations being close.

Claim 5.11. If ∥ρ− σ∥1 ≤ δ for states ρ, σ ∈ B(H⊗n
2 , then ∥Wρ −Wσ∥1 ≤ δ, where the

Wigner representations Wρ,Wτ are defined according to Eq. (2.65).

Proof. The operator ρ− σ is Hermitian, so we can write out its eigendecomposition
as

ρ− σ =
∑
i

λi |λi⟩⟨λi| . (5.82)

Then, we can proceed as follows,

∥Wρ −Wσ∥1 =
∑
z

|Wρ(z)−Wσ(z)| =
1

2n

∑
z

∣∣tr[A†
z(ρ− σ)]

∣∣
=

1

2n

∑
z

∣∣∣∣∣∑
i

λi ⟨λi|A†
z |λi⟩

∣∣∣∣∣ ≤ 1

2n

∑
z,i

|λi|
∣∣⟨λi|A†

z |λi⟩
∣∣

=
1

2n

∑
z,i

|λi| ⟨λi|A†
z |λi⟩ =

∑
i

|λi| ⟨λi|

[
1

2n

∑
z

A†
z

]
|λi⟩

=
∑
i

|λi| = ∥ρ− σ∥1. (5.83)

The inequality is an application of the Cauchy-Schwarz inequality, and it is followed
by employing the properties of positivity and completeness for the qubit phase-point
operators as laid out in Claim 2.12.

110



5.3. ENTROPIC BOUNDS FOR CSS PROTOCOLS

We can further bound the entropic distance between representations when the
states are δ–close.

Claim 5.12. Let ρ and σ be two quantum states on H⊗n
2 such that ∥ρ− σ∥1 ≤ δ. Then,

Hα(Wρ)−Hα(Wσ) ≤
α

α− 1
log (1 + 4nδ). (5.84)

Proof. We restate Theorem 7 of [174] for two 4n–dimensional probability distribu-
tions w,w′,

|Hα(w)−Hα(w
′)| ≤ α

α− 1
log (1 + 4n∥w −w′∥1). (5.85)

We can show that this continuity statement on the α–Rényi entropies applies to
quasi-distributions as well. The proof of this is essentially reliant on the monotonicity
of p–norms,

∥w∥p ≥ ∥w∥q, for 1 ≤ p < q ≤ ∞, (5.86)

which also holds for quasi-distributions w of dimension 4n, where

∥w∥p :=

(
4n∑
i=1

|wi|p
)1/p

. (5.87)

The result then follows immediately from Claim 5.11.

We are now in a position to derive analytic constraints on n–k CSS code projection
protocols.

Claim 5.13. Let ρ be a rebit magic state and assume that ρ⊗n → pρ′, under a CSS code
projection, where

∥∥ρ′ − ψ⊗k
∥∥
1
≤ δ and ψ is a pure rebit magic state.

Then, for all α = 2a/(2b− 1) with positive integers a, b such that a ≥ b, we have the
following family of upper bounds on n,

n ≤
k [Hα(Wψ)− 1] + α

1−α log
p

1+4δ

Hα(Wρ)− 1
, (5.88)

when Hα(Wρ) > 1 and the following family of lower bounds on n,

n ≥
k[1−Hα(Wψ)]− α

1−α log
p

1+4δ

1−Hα(Wρ)
, (5.89)

Hα(Wρ) < 1.
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Figure 5.2: (Lower bound comparison). We plot lower bounds on the number of
copies n of the noisy H–state (1 − ϵ) |H⟩⟨H| + ϵ1

2
required to distill a single output

qubit |H⟩ with output noise ϵ′ = 10−9 and acceptance probability p = 0.9 under
a CSS code projection protocol, plotted as a function on input noise ϵ. Our lower
bound from majorization (maj.) is shown to be tighter those from mana [104] and
generalized robustness (GR) in [89]. However, it only outperforms the lower bound
from projective robustness (PR) in [175] in the high p, high ϵ regime.

Proof. From Claim 5.7, we have

Qα(Wρp || Wτn,k
) ≥ pα

(
1

2n−k

)1−α

Qα

(
Wρ′
∣∣∣∣W1/2k

)
. (5.90)

Since for α > 1, log x/(α − 1) is a monotonically increasing function in x ∈ R, it
follows that

Dα(Wρp || Wτn,k
) ≥ 1

α− 1
log

[
pα
(

1

2n−k

)1−α

Qα

(
Wρ′
∣∣∣∣W1/2k

)]
(5.91)

= Dα(Wρ′ || W1/2k) +
α

α− 1
log p+ (n− k) (5.92)

= k −Hα(Wρ′) +
α

α− 1
log p+ n, (5.93)

where in the final equality we used the identity Dα(Wρ || W1d/d) = 2 log d−Hα(Wρ).
We can make use of the continuity of the α–Rényi entropy from Claim 5.12 to

further lower bound this divergence as

Dα(Wρp || Wτn,k
) ≥ k −Hα(Wψ⊗k)− α

α− 1
log (1 + 4δ) +

α

α− 1
log p+ n

= k [1−Hα(Wψ)]−
α

1− α
log

p

1 + 4δ
+ n, (5.94)

where the equality follows from the multiplicativity of the α–Rényi entropy.
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Figure 5.3: Finite bounds on CSS code lengths for magic state distillation pro-
tocols. We plot upper and lower bounds on the number of copies n of the noisy
H–state (1− ϵ) |H⟩⟨H| + ϵ1

2
required to distill a single output qubit |H⟩ with output

noise ϵ′ = 10−9 via projection onto the code-space of an [[n, 1]] CSS code. The shaded
purple region shows the accessible region of parameter space prescribed by the in-
tersection of our numeric upper bound nU (red curve) defined in Claim 5.10 and the
lower bound from projective robustness (PR) introduced in [175] (blue curve). The
analytic upper bound n∗ (dashed yellow curve) defined inEq. (5.100) is shown to
form a good approximation to the numeric bound nU . (a) Bounds for p = 0.1. (b)
Increasing p to p = 0.9 the upper bounds become considerably tighter.

This gives rise to the following upper bound on the relative entropy difference
∆Dα := nDα(Wρ || W1/d)−Dα(Wρp || Wτn,k

) as follows

0 ≤ ∆Dα ≤ n
(
1−Hα(Wρ)

)
+ k
(
Hα(Wψ)− 1

)
+

α

1− α
log

p

1 + 4δ
. (5.95)

This gives a weaker but still necessary constraint on the transformation ρ⊗n 7→ ρp

and (1/2)⊗n 7→ τn,k, which we rearrange to write as

n(Hα(Wρ)− log d) ≤ k(Hα(Wψ)− 1) +
α

1− α
log

p

1 + 4δ
. (5.96)

Therefore, for Hα(Wρ) > 1, we can rearrange Eq. (5.96) to obtain Eq. (5.88),
whereas for Hα(Wρ) < 1 we obtain Eq. (5.89), which completes the proof.

5.3.3 Hadamard state distillation

As an explicit example illustrating the results of Claim 5.13, we discuss here the n–1
distillation of the Hadamard state which is given in Eq. (2.88). It is sufficient to
consider input magic states of the form

ρH(ϵ) := (1− ϵ) |H⟩⟨H|+ ϵ
1

2
, (5.97)
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with 0 ≤ ϵ ≤ 1 depolarization noise, since any other input magic state ρ can be
converted into this form via the pre-processing channel

Eprep(·) :=
1

2
1(·)1+

1

2
H(·)H (5.98)

without altering its fidelity with respect to the Hadamard state |H⟩.
In Fig. (5.2) we plot the performance of our lower bounds applied to any CSS

code projection protocol for a noisy H–state. In all parameter regimes, our lower
bounds are observed to be tighter than mana [104] and the generalized robustness
bound of [89]. Our lower bound gives tighter constraints than the p–independent
projective robustness bound [175] in the high p, high ϵ regime. Outside of this
regime, however, our upper bound is still able to give additional constraints over
the projective robustness bound. In particular, in Fig. (5.3) we plot the combined
information of our upper bound with the lower bound from projective robustness.
As illustrated, combining our upper bound with a lower bound significantly restricts
the parameter regime in which distillation is allowed.

Taking CSS protocols to be our free operations, the appearance of upper bounds
on n might first seem to contradict a resource theory perspective, where, since dis-
carding subsystems is a CSS operation, we would anticipate n + 1 copies of a noisy
magic state to be at least as good as n copies at distilling magic. However, in spe-
cializing to code projection protocols, we are in fact considering a resource theoretic
approach to magic subject to the additional constraint (1/2)⊗n → τn,k. Crucially, the
output state depends non-trivially on n.

For n–1 CSS code projection protocols of Hadamard distillation, one can also show
that there always exists a valid set of indices α such that

Hα

(
WρH(ϵ)

)
≥ Hα

(
W|H⟩⟨H|

)
> 1, (5.99)

for all ϵ for which WρH(ϵ) contains a negative component. This is illustrated in
Fig. (5.4), where we see that even the ϵ = 0 condition gives a finite range of α
such that Hα(W|H⟩⟨H|) > 1. We can therefore conclude that n–1 CSS code projection
protocols for H–state distillation are ruled out in the limit n→∞ as there is always
valid upper bound on n.

Moreover, we find that for the n–1 Hadamard-state distillation protocols, the upper
bound in Eq. (5.88) takes on a particularly simple form. By evaluating the α = 2

condition explicitly, we find that given a code projection E such that E [ρH(ϵ)⊗n] = pρ′,
where ∥ρ′ − |H⟩⟨H|∥1 ≤ ϵ′, then

n ≤ n∗ =
2 log

(
1+4δ
p

)
1− log[1 + (1− ϵ)2]

. (5.100)
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Figure 5.4: α–Rényi entropies & magic distillation We plot the condition in
Claim 5.10 for the existence of finite upper bounds on n in an n–1 CSS distilla-
tion for the qubit H–state distillation, signified by region where Hα[Wρ(ϵ)] > 1. Even
in the limit of zero input noise ϵ = 0 we obtain a valid set of permissible α, which
implies that H–state distillation under n–1 CSS code projection is ruled out in the
asymptotic limit n → ∞. We further highlight that the noise level ϵ = 0.3 (dashed
curve) is outside of the region where ρ(ϵ) is magic (0 ≤ ϵ < 1 − 1√

2
), and therefore

Wρ(ϵ) is a proper probability distribution at ϵ = 0.3, which is why Hα is only seen to
satisfy standard monotonicity properties at this input error.

This expression captures the fact that under a CSS code projection protocol, there is
a fundamental trade-off between acceptance probability and output fidelity. In par-
ticular, for any fixed code length n and input noise ϵ > 0, we cannot simultaneously
obtain zero output noise ϵ′ = 0 and unit acceptance probability p = 1. To further
investigate this trade-off, in Fig. (5.5)(b) we plot the maximum achievable fidelity
with respect to the Hadamard state,

Fmax(ρ) = max
E

{
⟨H| ρ′ |H⟩ : E(ρ⊗n) 7→ pρ′

}
, (5.101)

under an n–1 CSS code projection. The maximization is performed over the accep-
tance probability that defines the set of all CSS code projection protocols.

5.3.4 Majorization bounds and data processing

We have seen that stochastically represented [[n, k]] code projection protocols give
rise to a set of no-go results according to Claim 5.13, in the form of a set of upper
bounds on n. By comparing to the data-processing inequality (DPI) on quantum
states [114], we see that although the existence of upper bounds is a generic feature
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Figure 5.5: Majorization gives independent constraints over DPI. (a) Shown is
how (scaled) ∆nU := nDPI

U − nmaj
U varies over all possible values of acceptance prob-

ability p and a realistic range of input noise ϵ, with fixed ϵ′ = 10−9. Whenever we
have log10(∆nU + 1) > 0 means that upper bounds from majorization give tighter
constraints than the DPI, reaching ∆nU = O(104) in the low p, low ϵ regime. (b)
We show the trade-off relation given by bounds on the maximum achievable fidelity
Fmax(ρ) vs. target acceptance probability p, under an n–1 CSS code projection, where
ρ = 3

4
|H⟩⟨H| + 1

8
1. For p above a given threshold (≈ 0.6) no perfect distillation is

theoretically possible, even for n→∞ copies of the input state. Majorization (maj.)
is shown to give stronger constraints than that of DPI.

of code projection protocols, exploiting the stochasticity of the protocol representa-
tions gives strictly stronger bounds.

To begin, we note that if there exists a (stochastic or otherwise) code projection
channel E that maps ρ⊗n → pρ′, then the DPI for quantum channels states that

∆D̃α := nD̃α

(
ρ

∣∣∣∣∣∣∣∣12
)
− D̃α (ρp || τn,k) ≥ 0, (5.102)

for all α ∈ (1,∞) [176], where D̃α(ρ || τ) is the sandwiched α–Rényi divergence
[177,178] on the normalized quantum states ρ and τ , which is defined for α ∈ (1,∞)

as

D̃α(ρ || τ) :=
1

α− 1
log tr

[(
τ

1−α
2α ρτ

1−α
2α

)α]
. (5.103)

Now if ρ⊗n → pρ′ under any such channel, then we have the following family of
upper bounds on n,

n ≤ ñU := min
α

max
n
{n : ∆D̃α ≥ 0}. (5.104)

which turns out to be finite whenever α is such that Hα(ρ) > 1.
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Since one can also obtain upper bounds from simple data processing of quantum
states, we now ask whether majorization gives genuinely new constraints on magic
state distillation using CSS protocols that go beyond DPI constraints. Since our ma-
jorization conditions are a consequence of the stochastic representation of all CSS
operations, while the DPI arises from the fact that all quantum channels are CPTP,
this question may be loosely rephrased as asking whether stochasticity imposes ad-
ditional constraints beyond those imposed by CPTP on CSS magic state distillation.

Fig. (5.5) shows that we can answer this question in the affirmative, since our
majorization upper bound is observed to impose much stronger restrictions than
that given by the DPI over a wide range of parameter regimes. For example, in
Fig. (5.5)(a) the low acceptance probability p and input noise ϵ regime, we find the
difference in upper bounds ∆nU := nDPI

U − nmaj
U is of the order 104. We thus con-

clude that the upper bounds on CSS code projections stemming from majorization
on quasi-distributions go beyond those of DPI.

Overall, we have overcome known obstacles in the qubit Wigner representation,
to develop a meaningful statistical mechanical framework that allows us to derive
bounds on qubit magic distillation in the form of relative entropy changes between
the magic states and reference “free” states throughout the distillation process. To
this end, we first establish in Claim 5.5 the stochasticity of a particular, useful sub-
class of stabilizer protocols, called the n–k CSS code projections. We then proceed to
demonstrate how our statistical mechanical framework on quasi-distributions from
chapter 3 leads to the existence of upper and lower bounds on the number of in-
put copies n in Claim 5.9, before deriving explicit expressions for these bounds in
Claim 5.13.

We can view the derived bounds as non-trivial trade-off relations between protocol
parameters, including the input and output number of copies n, k, errors ϵ, ϵ′ as
well as the protocol success probability p or fidelity of the output state δ, i.e. the
distance δ of the output state from a pure magic state. Therefore, they provide
significant constraints on the parameter regimes that magic distillation is allowed in
the context of qubit CSS code projections. Our lower bounds complement previous
work on lower bounds from qubit magic monotones, while the appearance of upper
bounds is striking as they constitute the first set of trade-off relations that act as
fundamental upper bounds on the resource cost for a family of distillation protocols.
Upper bounds are therefore particularly promising in bounding allowed parameter
regimes.
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Chapter 6

Faster Born probability estimation

In chapter 4 and chapter 5, we have utilized the Wigner representation of quantum
states and channels to characterize magic state transformations in qudit systems of
odd and even dimension d respectively. The work of the preceding two chapters
thus sets bounds on the potential of quantum processes to provide quantum compu-
tational advantage. In this chapter, we explore the boundary between classical and
quantum computational capabilities, via a different approach: we enhance the abil-
ity of classical estimation methods to approximate quantum processes. For this pur-
pose, we use a family of representations, called frames, that generalize the Wigner
representations used in the previous chapters. The negativity present in these rep-
resentations is still the central figure of merit, but it now manifests itself as the cost
of the classical sampling algorithms we use to sample quantum circuit probabilities.
We therefore develop methods to parameterize the frames that represent a given
quantum circuit, allowing us to minimize the total negativity present, by varying the
parameters.

This chapter is organized as follows. In section 6.1, we review known methods
of classical estimation of quantum probabilities and outline our original contribu-
tions. In section 6.2, we provide parameterizations applicable to quasi-probability
representations for qudits of any dimension, as well as the main known sampling
algorithm that uses quasi-probability representations of the components of a given
quantum circuit. In section 6.3, we outline our results within the context of the cur-
rent state of quasi-probability simulators, and then we proceed to describe our two
novel sub-routines in detail in section 6.4 and section 6.5.
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6.1 Techniques for quantum probability estimation

6.1.1 Review of probability estimation methods

Probability estimation methods are varied and aim to explore the efficiency of circuit
sampling or simulation beyond the regime of quantum circuits that admit tractable
classical representations. The estimation methods we mention throughout this chap-
ter can be classified under one of two leading approaches [89,179]. The first involves
stabilizer rank-based simulators [113, 180–185], which rely on approximating the
circuit components by stabilizer operators. Every state or operation is assigned an
exact or approximate stabilizer rank [181] indicating the number of stabilizer (Pauli)
operators required to perform an exact or approximate decomposition of that com-
ponent. If a circuit component is non-classical, its stabilizer rank grows large thus
inducing an exponential run-time cost for the estimation of the outcome probability.
Algorithms based on stabilizer decompositions have been very successful in estimat-
ing outcome probabilities of circuits dominated by Clifford gates and supplemented
by a few types of magic states [113,179,180]. These Clifford simulators are general-
ized from pure to noisy settings by the recently proposed density-operator stabilizer-
rank simulator [89]. Furthermore, computing the stabilizer rank of arbitrary gates
appears to be an intractable problem in the general case, so recent improvements on
computing stabilizer rank bounds for specific non-Clifford states enhance run-times
significantly [186].

The other family of estimation methods relies on quasi-probabilistic representa-
tions of circuit components [40, 89, 92, 187–189] which are more general forms of
Wigner representations, as we discuss in section 6.2. Such methods are in principle
directly applicable to any quantum circuit without the need for state decomposi-
tions, in particular circuits with induced noise. They are based on the notion of a
frame representation for the components of the circuit [95,96]. Specifically, all com-
ponents are represented by quasi-distributions in a certain frame and sampling on
these distributions can be performed. Since any state or gate admits such a represen-
tation, quasi-probability simulators naturally apply to arbitrary circuits with noise.
Many such frames have been studied [95–97, 189–192], and the run-time depends
on the total negativity that is present in the circuit representation [187]. A notable
frame simulator is the dyadic frame simulator [89] which relies on operator decom-
positions into stabilizer dyads |L⟩ ⟨R|, where |L⟩ and |R⟩ are pure stabilizer states.
This method assigns dyadic negativity to non-classical elements, which quantifies
the extent to which the operator’s optimal linear decomposition into stabilizer dyads
departs from a convex combination. The dyadic simulator is a state-of-the-art quasi-
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probability frame simulator for qubits, as demonstrated by its low run-time scaling
O(40.228t) with t non-Clifford gates [89]. However, optimizing the decomposition of
an operator in dyads is computationally challenging.

Stabilizer rank simulators generally offer two advantages over estimation methods
based on frame representations. Firstly, they can be used for sampling the circuit
output probabilities, which can be viewed as a stronger notion of simulation than
probability estimation. Frame representation methods produce probability estimates
with additive precision, which does not suffice for sampling [21,180]. Secondly, the
stabilizer-rank algorithms developed in [89,113,180] are quadratically faster as they
achieve a scaling of O(20.228t) in the asymptotic limit. However, specialized simula-
tors (e.g. [113,180]) suffer from additional polynomial run-time factors, which tend
to be more significant compared to the exponential run-time for the experimentally
relevant case of big circuits with a low number of non-Clifford elements. Recently,
an algorithm of additive precision [179] has also been shown to asymptotically out-
perform the methods of [113,180], at least in certain parameter regimes.

6.1.2 Novel contributions to improved estimation

In this chapter, we focus on quasi-probability estimation methods based on frame
representations and look for a way to improve the performance of outcome prob-
ability estimation. Recently, there has been a proposal of a Monte Carlo sampling
algorithm which allows for quasi-probability estimation of circuits that contain a
bounded amount of negativity in their representation [187]. For classes of circuits
in which negativity grows only polynomially in the number of input states, this es-
timation algorithm is efficient. The negativity of the circuit therefore indicates the
hardness of the probability sampling problem. Although the negativity scales expo-
nentially with the number of non-Clifford gates, the scaling factors hugely depend
on the frame choice. Until now, however, the same fixed representation has been ap-
plied on every circuit component and the flexibility on reducing negativity has been
limited.

Our aim is to explore the extent to which varying the frame representations of the
components in a given circuit can lead to a reduction in the total circuit negativity.
To this end, we propose a pre-processing routine for any general quantum circuit,
which aims at reducing the negativity overhead required for probability estimation.
Our proposed routine consists of two distinct sub-routines:

1. Circuit gate merging: We introduce the idea of merging gates together into
new n–qudit gates for fixed n in the context of reducing sampling overhead.

120



6.2. PRELIMINARIES

This sub-routine reduces the negativity of the entire circuit and is independent
of the estimation method used.

We demonstrate numerically that the average negativity reduction over a ran-
dom ensemble of circuits is greater as the number of non-Clifford elements,
e.g., T gates, increases and is comparable to recent asymptotic negativity
bounds [89, 193, 194]. Our routine does not depend on the specifics of the
circuit gate set and can therefore be used in cases of gates which are hard to
decompose, e.g., Haar-random gates.

2. Frame optimization: We introduce the idea of using different frames to rep-
resent the input and output phase spaces of the gates in the circuit. This is
inspired by work in continuous variables [195], but our approach is novel in
the context of discrete quasi-probability sampling methods.

We argue that this sub-routine compliments gate merging as an additional
source of negativity reduction when merging is no longer efficient. We then
demonstrate numerically that instances of Clifford+T circuits and circuits with
Haar-random gates admit significant negativity reductions by introducing ad-
ditional frames in the circuit representation.

We note that a polynomial run-time for these classical sub-routines with respect to
the circuit size should be guaranteed to effectively reduce the overall run-time of the
sampling method. As proof of principle, we provide explicit algorithms in the main
text that ensure this condition for each sub-routine.

6.2 Preliminaries

6.2.1 Frame representation of quantum circuits

We first give a brief overview on classical circuit sampling based on the method
of frame representation. This is a generalization of the Wigner representation pre-
sented in chapter 2. Suppose that an N–qudit quantum circuit C is composed of the
initial state preparation ρ, sequential quantum gates U1, U2, . . . , UL and the measure-
ment effect E. The outcome probability of the quantum circuit

pC = tr[UL . . . U2U1ρU
†
1U

†
2 . . . U

†
LE] (6.1)

can be estimated by describing the quantum state ρ as quasi-distributions over phase
space points λ ∈ Z2N

d and the quantum operations Ui as the transition matrices of
the distributions. More specifically, a phase space can be constructed from a frame
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defined as a set of operators F := {F (λ)} and its dual G := {G(λ)} [95, 96], such
that any operator O is expressed as

O =
∑
λ

tr[F (λ)O]G(λ). (6.2)

For a given frame, the outcome probability can be expressed in terms of the repre-
sentation as

pC =
∑

λ0,...,λL

WE(λL)

[
L∏
l=1

WUl
(λl|λl−1)

]
Wρ(λ0), (6.3)

where we define

Wρ(λ) = tr[F (λ)ρ], (6.4)

WU(λ
′|λ) = tr[F (λ′)UG(λ)U †], and (6.5)

WE(λ) = tr[EG(λ)]. (6.6)

The notation is suggestive as the frame representation is a generalized version of
the Wigner representation discussed in chapter 2. In the case where 1) ρ and E are
products of local initial states and measurement effects, 2) Wρ(λ0) and WE(λL) are
classical probability distributions, and 3) WUl

(λl|λl−1), for ℓ = 1, . . . , L, are classical
conditional probability distributions for all l, efficient classical simulation is possi-
ble, where the sampling run-time scales polynomially with N and L [103]. The
simulation is performed by sampling the trajectories of (λ0, . . . ,λL) from the initial
distribution P (λ0) = Wρ(λ0) and the transition matrix at each step Pl(λl|λl−1) =

WUl
(λl|λl−1), which leads to the probability estimate, p̂C = WE (λL). Taking an av-

erage overM probability estimates converges to the Born probability asM increases.

6.2.2 Overhead of classical simulation

Non-classicality in the quantum process is represented by negativities in Wρ(λ) or
WU(λ

′|λ), which gives rise to quasi-probabilities. In general, Wρ(λ) and WU(λ
′|λ)

consist of real components that can attain negative values, while satisfying the nor-
malisation conditions, ∑

λ∈Z2N
d

Wρ(λ) = 1 and (6.7)

∑
λ′∈Z2N

d

WU(λ
′|λ) = 1 for all λ ∈ Z2N

d . (6.8)

Despite the presence of negativities in the distributions and update matrices, Monte
Carlo methods can still be used with adjustments as introduced by Pashayan et
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al. [187] in order to perform probability sampling. This can be done by sampling
over P (λ0) = |Wρ(λ0)|/

∑
λ0
|Wρ(λ0)| for the initial state preparation and taking the

transition matrix of Pl(λl|λl−1) = |WUl
(λl|λl−1)|/

∑
λl
|WUl

(λl|λl−1)| for the quantum
gate, while keep track of the signs. In this case, the probability estimate is modified
to

p̂C = sign

(
Wρ(λ0)

L∏
l=1

WUl
(λl|λl−1)

)
×Nρ

(
L∏
l=1

NUl
(λl−1)

)
WE(λL), (6.9)

where we have defined

Nρ :=
∑
λ0

|Wρ(λ0)| (6.10)

NUl
(λl−1) :=

∑
λl

|WUl
(λl|λl−1)| . (6.11)

In order to converge to the Born probability, one can similarly take the average of
increasingly many probability estimates sampled over trajectories (λ0, . . . ,λL) using
distributions P (λ0) and Pl(λl|λl−1).

This directly relates the total amount of circuit negativity to the computational
overhead: the larger the negativity in the circuit, the more samples required for an
accurate estimation.

Claim 6.1 (Pashayan et al. [187]). The outcome probability pC of the quantum circuit
C can be estimated by p̂C from the number of samples

M ≥M(ϵ, δ) =
2

ϵ2
N2
C ln(2/δ), (6.12)

with at least probability 1− δ of having error less than ϵ. Here,

NC = Nρ ×

[
L∏
l=1

max
λ0,...,λL−1

NUl
(λl−1)

]
×max

λL

|WE(λL)| , (6.13)

is the (maximum) circuit negativity.

As is clear by Eq. (6.12)), the negativity of the circuit acts as an overhead for the
convergence time of the sampling algorithm, therefore it is desirable to reduce it
before executing the sampling by considering different frame choices.

6.3 Main results

In this section, we develop a pre-processing routine to reduce the negativity of the
circuit, which in turn reduces the number of samples required to estimate the out-
come probability of the circuit. Our routine is applicable to any general circuit con-
sisting of a product input state and product measurement, but independently of the
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Figure 6.1: Sketch of routine on a toy circuit. The first step (a) → (b) is gate
merging, here implemented with n = 2. Gates that share input and output wires
merge in the schematic way depicted in the figure. The second step (b) → (c)
is frame optimization, here implemented with ℓ = 2 in a block B comprising the
three merged gates. The optimization results into updated frames G ′4,G ′7, while the
remaining frames that connect the block B to the rest of the circuit components are
left unchanged at this optimization cycle.

input state dimension, the gate set (e.g. Clifford unitaries or Haar-random gates)
and adaptive operations based on intermediate measurement outcomes.

6.3.1 Frame parameterization

The central focus of our work is to consider frame parameterizations that are allowed
to vary across the circuit. It is clear from the definitions that the circuit negativity
of a given circuit in Eq. (6.13) depends on the choice of the frame G and its dual
G. Note that G and G are uniquely defined by each other for phase space dimension
equal to d2, where d is the qudit dimension. We therefore make the dependence
clear by labelling the representation functions by G:

W G
ρ (λ) = tr[F (λ)ρ], (6.14)

W
G′|G
U (λ′|λ) = tr[F ′(λ′)UG(λ)U †], and (6.15)

W G
E (λ) = tr[EG(λ)], (6.16)

where we used different frames, G and G ′, for the input and output wires respectively
in the definition of W G′|G

U .

In order to ensure that the number of frames does not grow exponentially with
the number of qudits N , we restrict to product frames that are constructed as tensor
products of single qudit frames. This allows us to parameterize each single qudit
phase space separately, rather than the entire N–qudit phase space. Therefore, we
reserve the label G for denoting single qudit frames and the boldface symbol G for
denoting a set of single qudit frames. The negativity of each circuit component can
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now be expressed as

NG
ρ =

∑
λ

∣∣WG
ρ (λ)

∣∣ , (6.17)

N
G′|G
U = max

λ

[∑
λ′

∣∣∣WG′|G
U (λ′|λ)

∣∣∣] , and (6.18)

NG
E = max

λ

∣∣WG
E (λ)

∣∣ , (6.19)

where G,G′ contain elements from the complete set of frames required to represent
the circuit. In practice, each circuit component is parameterized only via the frames
that correspond to its input and output wires. For example, in Fig. (6.1)(b), when
parameterizing the first gate in the sequence, we can simply consider G as the set
{G1,G2} and G′ as the set {G3,G4}. If only a unique frame representation G is used
for all circuit components, then G = G′ = {G} in the expressions above and the
label can be dropped, simplifying to the notation of the previous section. The total
negativity of the parameterized circuit can now be expressed as a function of the
circuit frame set G:

NC(G) = NG
ρ ×

[
L∏
l=1

N
G′|G
Ul

]
×NG

E . (6.20)

We note that Claim 6.1 still holds by replacing NC with the more general form
NC(G). Our main objective is to study the reduction of this circuit negativity by
tuning G.

6.3.2 Examples of frame parameterizations

While our results are general and applicable to any family of parameterized frames,
in this chapter we deal with two examples of explicit, product frame parameteriza-
tions: (i) parameterized Wigner frames and (ii) rotated Pauli frames.

Parameterized Wigner frames employ the conventional phase space of the discrete
Wigner representation [96, 97]. As a reminder, we re-express the discrete displace-
ment operator for a d–dimensional system as

D(p, q) = χ(−2−1pq)ZpXq, (6.21)

where χ(q) = ei(2π/d)q. For a qubit system (d = 2), this takes the form D(p, q) =

ipqZpXq. It can be generalized to an N–qudit system as

D(λ) =
N⊗
i=1

D(pi, qi) , (6.22)
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where λ := (p1, q1, p2, q2, . . . , pN , qN)
T ∈ Z2N

d denotes a phase space point of the
whole system. We then define the frame F = {F (λ)} := {D(λ)F0D

†(λ)} and its
dual frame G = {G(λ)} := {D(λ)G0D

†(λ)} using the following reference operators:

F0 =
1

d

∑
λ

[
1

g(λ)

]
D(λ) (6.23)

G0 =
1

d

∑
λ

g(λ)D(−λ) , (6.24)

where we introduced the parameterization function g(λ). Note that the following
relation holds:

g(λ) = tr [G0D(λ)] , (6.25)

so the parameterization function g(λ) : Z2N
d 7→ C \ {0} can be fully characterized

by the reference operator G0. In order to impose that W G
ρ (λ) is real-valued and that∑

λW
G
ρ (λ) = 1, we need the additional conditions g∗(ω) = g(−ω) and g(0) = 1,

which are equivalent to G†
0 = G0 and tr[G0] = 1 respectively. By taking g(λ) = 1

for all λ, the conventional discrete Wigner representation [97] is recovered. One
can calculate the quasi-distributions of circuit elements via Eq. (6.14)-Eq. (6.16)
using the defined frame and dual frame. In odd dimensions, the parameterized
Wigner frame is a good choice for Clifford dominated circuits as Clifford gates do
not possess any negativity in the conventional Wigner representation. Therefore,
g(λ) = 1 is already optimal for most circuit elements when considered in isolation
and constitutes an obvious starting point for frame optimization.

In the qubit case, it is known that the Hadamard and CNOT gates have non-zero
negativity even in the conventional Wigner representation [196], which motivates
us to introduce the next frame parameterization, valid only for qubits: the rotated
Pauli frames.

Rotated Pauli frames are based on the Bloch decomposition of a quantum operator.
Consider the set of displacement operators for a single qubit {D(λ)} as defined in
Eq. (6.21) for λ ∈ Z2

2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. The usual Bloch vector for a
single-qubit state ρ can be written as

Wρ(λ) =
1

2
tr [ρD(λ)] , (6.26)

and this defines a quasi-distribution with frame {1
2
D(λ)}. We can define a new

frame by applying a rotation to the space of the Bloch vector. Let us consider
a rotational angle vector θ := (θX , θY , θZ) and a corresponding rotation operator
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R(θ) := R(θZ)R(θY )R(θX), where R(θX) := e−iθXX/2 and similarly for Y, Z. Apply-
ing this to the Bloch vector in Eq. (6.26) results in a set of rotated displacement
operators, parameterized by θ:

Dθ(0, 0) := 1, (6.27)

Dθ(0, 1) :=

(
− sin θY e−iθX cos θY

e+iθX cos θY sin θY

)
, (6.28)

Dθ(1, 0) :=

(
cos θY cos θZ e−iθX (sin θY cos θZ + i sin θZ)

e+iθX (sin θY cos θZ − i sin θZ) − cos θY cos θZ

)
, (6.29)

Dθ(1, 1) :=

(
cos θY sin θZ e−iθX (sin θY sin θZ + i cos θZ)

e+iθX (sin θY sin θZ − i cos θZ) − cos θY sin θZ

)
. (6.30)

Then, we define the frame F = {F (λ)} and its dual frame G = {G(λ)} as

F (λ) :=
1

2N
Dθ(λ), (6.31)

G(λ) := Dθ(λ) , (6.32)

which provide a parameterized frame representation for a qubit. This can be gener-
alized to an N–qubit system via

Dθ(λ) =
N⊗
i=1

Dθi(λi) (6.33)

with θ = (θ1,θ2, . . . ,θN), where θi is the rotational angle vector for the i–th qubit.
The rotated Pauli frames possess the desired property that all stabilizer states and
Clifford gates have zero negativity in the conventional Bloch frame representation
with θ = (0, 0, 0). Thus, when a given qubit circuit is dominated by Clifford gates, it
can be advantageous to employ the rotated Pauli frame.

6.3.3 Pre-processing routine for negativity reduction

The central idea of our pre-processing routine for negativity reduction can now be
expressed by the following lower bounds on gate negativity.

Claim 6.2. For two consecutive gates U and V , the following bounds on negativity hold:

N
G|G
V N

G|G
U ≥ min

G′
N

G|G′

V N
G′|G
U ≥ N

G|G
V U , (6.34)

where G and G′ are frame sets that represent gates U, V and UV .
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Proof. The first inequality holds since G is one specific choice of the optimization
variable set G′. The second inequality is due to Claim 6.3 in the next section.

Claim 6.2 motivates us to introduce two sub-routines applicable to any quasi-probability
estimation algorithm with run-time cost determined by the circuit negativity.

The second inequality in Claim 6.2 suggests that merging two gates into one is
generally advantageous in minimizing the total negativity. This leads to the first
pre-processing sub-routine, gate merging. The inequality is independent of the spe-
cific frame parameterization and can be directly extended to an arbitrary number of
gates. The trade-off is that the merged gate may be of a larger size. For example, if
U and V are 2-qudit gates sharing one wire between them, gate V U will be a 3-qudit
gate. The dimension of the merged gate increases exponentially as the number of
qudits involved becomes larger, hence one should truncate the maximum number of
qudits acted on by the merged gates, which we define as the spatial parameter n.

The first inequality in Claim 6.2 states that, unless the frames between two gates
in sequence are already optimal, we can always reduce the total negativity of the
two gates by optimizing the frames they share. This leads to the second sub-routine,
frame optimization. The optimization can be directly generalized to a circuit block
B containing a sequence of ℓ frames G by simultaneously optimizing all the frames
in the block, minG NB(G). The temporal parameter ℓ is the number of frames to be
optimized in one optimization cycle. The optimization takes place iteratively in the
sense that every optimization cycle optimizes the frames within a block, taking as an
initial state the optimized frames obtained from the previous cycle. This ensures that
negativity cannot increase above its initial value, no matter how many optimization
cycles occur.

Given fixed values for the truncation parameters n, ℓ, we show in the following
two sections that the total run-time τ of our routine is polynomial in the number of
circuit components,

τ = O(N,L2). (6.35)

In general, larger n or ℓ give larger negativity reduction at the cost of additional
classical computation.

We note that gate merging yields lower negativity than any frame optimization be-
tween the gates. However, fixing n < N prevents us from merging gates indefinitely,
so frame optimization can then be used for further negativity reduction.

We present an algorithm for Born probability estimation, including our complete
pre-processing routine and sampling, in Algorithm 1 and illustrate its implementa-
tion on a toy circuit in Fig. (6.1). In the following two sections, we discuss in more
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Algorithm 1 Outcome probability estimation with merging and optimization
Input: AnN–qudit quantum circuit C with a product input state ρ = ρ1⊗· · ·⊗ρN ,
the list of gates U = {U1, ..., UL}, and the product measurement operator E =

E1 ⊗ · · · ⊗ EN ; the spatial parameter n; the temporal parameter ℓ; the desired
accuracy ϵ.

1: Run gate merging (Sub-routine 1) with the input gate sequence and n and return
the merged gate sequence {V1, ..., VL′} with L′ ≤ L consisting of gates acting on
at most n qudits.

2: Run frame optimization (Sub-routine 2) with the merged circuit and ℓ and return
the optimized frame sequence Gopt.

3: Run a sampling algorithm to achieve the input accuracy ϵ according to Eq. (6.12)
using the quasi-probability representations of the merged circuit obtained with
the optimized frame sequence Gopt.
Output: pest, the estimated outcome probability.

detail how the two sub-routines, gate merging and frame optimization, can be imple-
mented. For clarity, we focus on qubit circuits and on the frame parameterizations
introduced in the previous section, although our methods are general.

6.4 Gate merging

The central idea of our first sub-routine, gate merging, is that the sampling cost of a
merged circuit block consisting of multiple quantum gates is in general lower than
sequential sampling of each gate. More precisely, this can be summarized as the
following observation:

Claim 6.3. Let {U1, U2, . . . , Uk} be a sequence of quantum gates. The negativity of the
merged gate U = Uk . . . U2U1 is always less or equal to the product of the individual
negativities, i.e.,

NG
U ≤

k∏
i=1

NG
Ui
, (6.36)

for any frame set G assigned to the gate sequence.

Proof. It is sufficient to prove the statement for two gates U and V . By noting that
the quasi-probability of the merged gate is expressed as

WG
V U(λ3|λ1) =

∑
λ2

WG
V (λ3|λ2)W

G
U (λ2|λ1), (6.37)
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the negativity of the gate can be bounded as

NG
V U = max

λ1

∑
λ3

∣∣WG
V U(λ3|λ1)

∣∣
= max

λ1

∑
λ3

∣∣∣∣∣∑
λ2

WG
V (λ3|λ2)W

G
U (λ2|λ1)

∣∣∣∣∣
≤ max

λ1

∑
λ2

∣∣WG
U (λ2|λ1)

∣∣∑
λ3

∣∣WG
V (λ3|λ2)

∣∣
≤ NG

U max
λ2

∑
λ3

∣∣WG
V (λ3|λ2)

∣∣
= NG

V N
G
U . (6.38)

We then apply this argument iteratively to any sequence of gates {U1, U2, . . . , Uk} to
obtain Eq. (6.36), which completes the proof.

Such a negativity reduction can be exemplified by considering the Toffoli gate,
which can be optimally decomposed into four T gates [197] along with Clifford
gates and Pauli measurements. We compare the negativity of the Toffoli gate itself
and its decomposed gate sequence using the Pauli frame, where the negativity only
comes from non-Clifford gates. One can readily observe that the Toffoli gate nega-
tivity NPauli

Toffoli = 2 is lower than the total negativity of the decomposed gate sequence[
NPauli
T

]4
= 4.

The idea of reducing the negativity of quantum gates by merging ( Eq. (6.36))
can be compared to the sub-multiplicativity of magic state negativity characterized
by the robustness measure (R), which obeys R(ρ1 ⊗ ρ2) ≤ R(ρ1)R(ρ2) [193]. In
particular, the robustness of the T state is equivalent to the negativity of the T gate
from the sampling cost viewpoint, as one T gate can be constructed using a single
T state along with Clifford gates [113]. In [193], the asymptotic negativity per
single T gate is limt→∞

[
R
(
|T ⟩⊗t

)]1/t ≈ 20.272 which provides a lower bound on their
sampling run-time Ω(40.272t).

In order to compare this with the gate merging method, we consider an n–qubit
block consisting of Clifford+T gates (see Fig. (6.2)(f) for an example with n = 5).
This can be compared to considering n T states in the robustness measure, having
the same number of qubits (i.e. the size of Hilbert space) in the block to evaluate
the negativity.

Fig. (6.2)(a-d) show the distribution of the negativity of 1000 random n–qubit
blocks consisting of 100 Clifford gates and t T gates. We observe that the negativity
per T gate after merging the gate sequences in a random n–qubit block can be oc-
casionally lower than the robustness measure of n T states [193]. We also note that
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the negativity reduction works efficiently when the number of T gate in the block, t,
increases. For example, when n = 5 and t = 15, 95% of the randomly chosen merged
blocks yield negativity per T state lower than the robustness measure. We also plot
in Fig. (6.2)(e) the average negativity per T gate versus t, demonstrating that it is
decreasing, which implies that our approach can prove efficient when the structure
of the gate block considered becomes more complicated.

The main advantage of our approach is that it is not limited to a particular type
of gate set, e.g. Clifford+T circuits, but can be directly applied to any types of
quantum gates. The aforementioned approaches using stabilizer rank, robustness
and generalized robustness rely on the gadgetization of a non-Clifford gate using
magic states. Therefore, evaluating the classical overhead should be preceded by
finding an optimal Clifford gadget with minimum resource of magic. On the other
hand, gate merging does not have such a limitation, so it can be useful when the
efficient decomposition of a quantum circuit into non-stabilizer states and Clifford
gates is non-trivial. We also highlight that merging gates reduces the negativity
independently of the choice of frames.

We now describe the gate merging method for a generic N–qubit quantum circuit
with L gates. This can be done by grouping the quantum circuit into n–qubit blocks
(see Fig. (6.1)(a)→(b)), then Claim 6.3 guarantees that the negativity of each block
is reduced after merging the gate sequences in it. There are various ways of group-
ing the circuit into n–qubit blocks, but we introduce the iterative Sub-routine 1 for
concreteness. The broad idea of the sub-routine is to iteratively connect any yet un-
merged (disjoint) gates. All gates remain in the set Udisj until they either finally act
on n qubits or cannot connect to other gates anymore, when they are move to the
output set Umerged.
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Figure 6.2: Gate merging analysis. Histograms of 1000 random Clifford+T circuits
with N = 5 consisting of 100 1-qubit and 2-qubit Clifford gates, supplemented by
t T gates and merged using spatial parameter n = 5. The leftmost (blue) solid line
with the gray region depict the average and standard deviation of each histogram.
The brown and green solid lines (from right to left) represent the higher averages
of the corresponding histograms for n = 3 and 4 respectively. Vertical dashed lines
provide some state-of-the art scalings, more specifically from left to right: O(20.228t)
of the Bravyi-Gosset algorithm from [113] based on the stabilizer rank, O(40.228t)
of the dyadic frame simulator from [89] and the lower bound Ω(40.272t) based on
the robustness of magic from [193]. As t increases, we observe a higher frequency
of circuits with log negativity squared per T gate lower than the robustness lower
bound: (a) 71%, (b) 81%, (c) 89%, (d) 95%. (e) Histogram average for n = 3, 4, 5

against t. (f) Example 5–qubit merged gate U made up from Clifford gates (CNOT

and H) and T gates.
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Sub-routine 1 Gate merging
Input: List of gates U = {U1, ..., UL} in

qudit quantum circuit C and spatial
parameter n.

1: Define list of merged gates Umerged ← {}, and
list of disjoint gates Udisj ← {}

2: for Ui ∈ U do
3: Set target gate Utarget ← Ui

4: for V ∈ Udisj do
5: if Utarget shares a wire with V then

Remove V from Udisj.
6: if rank(UtargetV ) > dn then

Add V to Umerged.
7: else if rank(UtargetV ) ≤ dn then

Utarget ← UtargetV .

8: Add Utarget to Udisj.

9: for Ui ∈ Umerged do
10: Set target gate Utarget ← Ui

11: for V ∈ Udisj do
12: if rank(UtargetV ) ≤ dn then

Utarget ← UtargetV .

13: Add Utarget to Udisj.

14: Append Udisj to Umerged.
Output: Umerged.

At every step, a target gate Utarget, the algorithm searches through the disjoint
gates to find the next one that is connected to Utarget. We therefore require to search
less than L gates for every Utarget, while the cost of merging two gates (i.e., mul-
tiplying) is O(22n), which is a constant as we fix n < N . So the full gate merging
sub-routine scales as O(22nL2). The computational cost to compute the transition
matrix WG

U for n–qubit unitary U and its negativity also exponentially scales with n

as there are O(22n) possible phase space points for a n–qubit system.

As we can observe from the scaling, the limiting factor of gate merging is the
spatial parameter n, which stems from the exponential growth of the dimension
of Hilbert space by increasing the number of qubits. We find numerically that a
practical choice for the spatial parameter n is n ≤ 5. As this is a fundamental
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property of a quantum system, a similar issue arises in the robustness measure as
evaluating the robustness of R(|T ⟩⊗n) and finding its optimal decomposition among
O(2n

2
) stabilizer states is in general a challenging task for a large n [193].

Due to the computational need to truncate the spatial parameter n < N , a question
arises of whether there exist new methods of manipulating the circuit frames and
further reducing the total negativity, after gate merging is completed. We provide
a positive answer to this question in the following section, where we describe our
second sub-routine, frame optimization.

6.5 Frame optimization

Frame optimization aims to reduce the total circuit negativity by optimally choosing
frames for different circuit components. As we discussed in section 6.3.1, we can
introduce specific frame parameterizations, such as parameterized Wigner frames or
rotated Pauli frames, and iteratively choose the frames throughout the circuit.

Sub-routine 2 Frame optimization
Input: Quantum circuit C and temporal

parameter ℓ.
1: Determine the total number of frames, |Gopt|,

in the circuit C.
2: Define the set of reference frames,

Gopt ← {G1, . . . ,G|Gopt|}.
3: Fix the number of optimization cycles c.
4: for i = 1, . . . , c do
5: Choose a subset G(i)

target ⊂ Gopt with at
most ℓ frames.

6: Find a circuit block B containing the
frames in G(i)

target.

7: Find G(i)

target = argminG(i)
target

NB

(
G(i)

target

)
.

8: Update the corresponding frames in Gopt

with G(i)

target.

Output: Gopt.

In principle, the best strategy in terms of achieving the highest negativity reduction
would be to carry out global optimization over all circuit frames, requiring that the
number of parameters to be optimized should scale with the number of qubits N and
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Figure 6.3: Optimization block toy model. Example of how to form a block when
Gtarget is given in the case of n = 2 and ℓ = 2. Only relevant frames are shown. When
Gtarget = {G1,G2}, the corresponding block B1, which contains all circuit elements
connected to the frames in Gtarget, is B1 = {ρ1, ρ2, U1, U2}. When Gtarget = {G3,G4},
then the corresponding block is B2 = {U2, U3, U4}.

circuit length L. In this chapter, we show that local optimization, with only a fixed
number of parameters, is sufficient to achieve considerable negativity reduction and
scales only linearly in N and L. This optimization sub-routine is implemented by
dividing the circuit into blocks containing at most ℓ frames to be optimized, for a
fixed temporal parameter ℓ.

To perform the frame optimization on a quantum circuit C consisting of an in-
put state ρ, a gate sequence {U1, ..., UL} and a measurement effect E, we need
to start from an initial frame parameterization. We denote this parameterization
as Gopt = {G1, . . . ,G|Gopt|}, where |Gopt| is the number of frames to be optimized.
The procedure is outlined in Sub-routine 2 and explained here. We take a subset
G(1)

target ⊂ Gopt with up to ℓ frames (either sequentially or randomly) and create the
block B of circuit components which are attached to those ℓ frames. Keeping all
other frames in the block B fixed with the corresponding frames in Gopt, we want to
minimize the total negativity of the block NB over all possible choices for Gtarget, so
that the minimum

min
Gtarget

NB(Gtarget). (6.39)

occurs at G(1)

target allowing us to update the corresponding frames in Gopt, which is
the end of the first cycle in our frame optimization. We repeat this process c times
by choosing another set of ℓ frames as the new G(i)

target, i = 1, . . . , c. The number of
optimization cycles c can be chosen arbitrarily, for example it can be chosen as c ≥
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Figure 6.4: Frame optimization analysis. Plots showing reduction in the circuit
negativity logNC(Gopt) after c optimization cycles for a circuit consisting of 2-qubit
Haar-random gates with N = 6 and L = 15 and for carious spatial and temporal pa-
rameters, n and ℓ. The optimization is carried out sequentially from the first frame
to the last frame. optimization is performed via the basin-hopping algorithm as in-
troduced in [198]. (a) Results after frame optimization with rotated Pauli frames.
The reference frame is the standard Pauli operators. The total negativity continu-
ously decreases as we optimize more frames. (b) Results after frame optimization
with parameterized Wigner frames. The reference frame is the conventional phase
space operators for the Wigner representation. Most of the negativity reduction oc-
curs near the initial states and the measurements.

|Gopt|/ℓ, with the aim of optimizing all frames in the circuit at least once. The order
in which frames are optimized can also be chosen arbitrarily and can potentially
result in a different overall negativity reduction.

We demonstrate the local frame optimization method with an example. Let us
consider the initial part of a simple general circuit depicted in Fig. (6.3) for the
case of n = 2 and ℓ = 2. To perform the (i)–th optimization cycle we consider
G(i)

target = {G1,G2}, we consider the corresponding block B1 = {ρ1, ρ2, U1, U2}, which
is a set of all circuit components connected to the frames in G(i)

target. Then, the explicit
optimization we perform is

min
G(i)

target

NB1

(
G(i)

target

)
=

min
{G1,G2}

Nρ1(G1)Nρ2(G2)NU1(G2)NU2(G1), (6.40)

where NX(GX) is the negativity of component X as a function of GX with all other
frames fixed to the corresponding ones in Gopt. As an additional example, we
could have considered the set G(i)

target = {G3,G4} corresponding to the block B2 =

{U2, U3, U4} in Fig. (6.3). Then, the block negativity we optimize is NB2(G
(i)
target) =
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Figure 6.5: Reduction in sampling overhead. Histograms of the deviation of
estimated probability pest from actual outcome probability psim (as calculated by
Qiskit [199]) for 500 circuits consisting of 2-qubit Haar-random gates with N = 3,
L = 8 and ℓ = 1. The number of samples taken for each circuit is 106, which
took around 10 seconds on a standard computer. The plot shown is truncated at
|pest − psim| = 4.0 to demonstrate the advantage of our routines clearly. The advan-
tage is amplified as N and L increase.

NU2(G3)NU3(G4)NU4(G3,G4).
Note that at each optimization step, previously optimized frames in Gopt are used

in the next optimization cycle. This ensures that the negativity never increases com-
pared to the initial frame choice {G1, . . . ,G|Gopt|} between optimization cycles.

The presented local optimization method is efficient in the number of circuit com-
ponents. Consider an N–qubit circuit of length L where each of L gates acts on at
most n qubits. Then, there are at mostN+nL different frames to be optimized. Since
ℓ is fixed, each optimization cycle takes a constant amount of time O(1). Therefore,
the frame optimization of the entire circuit scales as (N + nL) × O(1) = O(N,L).
Note that the exact value depends on truncation parameters n and ℓ as well as the
specifics of the circuit and its frame parameterization.

Fig. (6.4) shows the performance of the frame optimization for a circuit with
N = 6 and L = 15 consisting of 2-qubit Haar-random unitaries, which are in gen-
eral difficult to be simulated with stabilizer-based simulators because they do not
admit efficient decompositions. In Fig. (6.4)(a), we use rotated Pauli frames as our
frame parameterization and initialized each frame in the circuit to the set of stan-
dard qubit Pauli operators. In Fig. (6.4)(b), we choose parameterized Wigner frames
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as our frame parameterization and initialize each frame in the circuit to the set of
conventional phase space operators corresponding to g(λ) = 1 (see section 6.3.2).
We can observe that the largest negativity reduction comes from gate merging with
higher n, but the frame optimization also achieves a significant negativity reduction.
In general, larger ℓ results in lower negativity after optimization of all frames with
fixed n. In the case of parameterized Wigner frames, together with gate merging,
we could considerably decrease the initial log-negativity from ∼27.3 to ∼8.9 with
truncation parameters n = 4 and ℓ = 5, which means that we need ∼ 22×18 times
less samples to reach a given accuracy for probability estimation.

We demonstrate the practical significance of our routine, by sampling 500 circuits
consisting of Haar-random gates, with the results presented in Fig. (6.5). Unmerged
circuits represented entirely by Wigner frames do not show any signs of conver-
gence to the actual probability distribution. Merged circuits clearly converge a lot
better, especially when their frame representation is optimized, illustrating the posi-
tive effect of both of our sub-routines in reducing the run-time cost of the sampling
algorithm.
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Chapter 7

Outlook

Short summaries of the work in this thesis are provided in section 1.2, with more
involved descriptions at the start/end of each chapter, so, for everyone’s sake, I will
directly proceed with discussing promising lines for future research.

We have described how relative majorization can be used to establish upper bounds
on magic distillation protocols that take into account additional physics of the sys-
tem. Our bounds exploited relatively simple aspects of the Lorenz curves of the
quasi-distributions, so it would be of interest to sharpen these bounds and obtain a
better handle on the Lorenz curve structure in the n → ∞ limit. In this vein, it is
possible to analyze what features of single-shot entropies can be extended to quasi-
distributions in a sensible form [166,200]. This raises interesting questions as we no
longer have a notion of typicality and the central limit theorem does not apply. That
said, for special states such as the Strange state, the asymptotic behavior is relatively
simple, so exact asymptotics for this are expected to be possible.

Our work on distillation bounds is reminiscent of the second law of bipartite en-
tanglement [117], where majorization is employed to establish entanglement en-
tropy as the unique asymptotic measure of this resource. However, our analysis
provides upper and lower bounds that exhibit a considerable gap, so that more
than one of the entropies stemming from our magic majorization framework are
valid asymptotic measures. The reason is that stochastic majorization only approxi-
mates the action of magic-preserving channel representations on state distributions.
In particular, the Clifford group acts exactly via symplectic affine transformations
G(C) := SP(2,Zd)⋉Z2

d on state distributions on the discrete phase space. Analyzing
the majorization of group G(C) would provide exact magic distillation rates with a
unique entropy.

There are strong results on group majorization in the mathematical literature [201–
203], which can be exploited to derive a finite set of conditions in terms of semi-
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definite programs, provided that the group has certain properties. A notable struc-
ture that could be exploited for G–majorization is when G is a finite reflection group.
For this, the G–majorization pre-order is guaranteed to be described by a finite list of
conditions [201], just as is the case for the relative majorization ordering. Therefore,
one route would be to construct concrete lower bounds on distillation rates by con-
sidering reflection subgroups of G(C), for which the majorization relation reduces
to a finite set of conditions. An eligible group is SP(2,Zd), the symplectic subgroup
of G(C), which can lead to a significant refinement of our stochastic bounds. On the
other hand, if the subgroup considered is too simple, the distillation bounds obtained
may be trivial. An example of this is when we restrict to the set of Weyl-covariant
channels [204], which are represented by a convex mixture of displacement oper-
ators on the phase space. Initial work has shown that the majorization conditions
for Weyl-covariant channels can be solved exactly in terms of discrete Fourier trans-
forms, however it is found that the resultant distillation rates are trivial.

More generally, majorization of quasi-distributions has not been considered in
quantum physics before, and therefore these methods could find application in other
studies of non-classicality in quantum systems [205–211]. For example, the topic
of G–majorization has been extensively studied, but to our knowledge there has
not been work on relative G–majorization. This would correspond to transforma-
tions that are not unital. Physically, this regime would correspond to a form of
thermo-majorization obtained from looking at the action of the Clifford group at a
micro-canonical level, and then reducing to a small subsystem [159]. While this
seems like a painful thing to consider, there is motivation for this beyond the aim
of magic protocols: in the case of classical statistical mechanics on a phase space
this is precisely the situation, albeit in the continuum limit. Statistical mechanics of
actual systems obey Hamiltonian dynamics, thus they automatically respect a sym-
plectic form [159, 212]. Therefore, the pre-order of statistical mechanical states
with respect to phase space dynamics preserving a Gibbs state must correspond to a
symplectic majorization condition.

Of course, technical features arise in the continuum limit when considering dis-
tributions on an unbounded phase space. Recently, there has been a comprehensive
extension of some majorization tools to continuous phase spaces [213], where quan-
tum states are represented by the original continuous Wigner function. This work
raises the straightforward question of extending our results from discrete to contin-
uous quantum mechanics. Some of our results are readily extendable, but in order
to define and study analogs of α-Rényi entropies for continuous representations, one
would first have to provide additional technical contributions by extending the full

140



Outlook

majorization framework we use. In this context, Clifford channels are replaced by
Gaussian operations and our results can have impact on quantum optics, such as the
characterization of resource theories of non-Gaussianity [214], or the quantum Hall
effect [215].

In the particular context of qubits, complex majorization constraints arise natu-
rally when we extend our setup from rebit to all qubit states. The Wigner repre-
sentations are complex due to the non-Hermiticity of the operator basis {Ax}. We
expect such constraints to take the form of a duplet of constraints between the real
parts and imaginary parts of the Wigner representation independently. In the con-
text of non-Hermitian quantum mechanics [216], results on complex majorization
would also benefit theories that require an ordering between Hamiltonian eigenval-
ues, such as quantum thermodynamics.

In the interests of expanding the family of operations included within our qubit
framework, a natural extension of the qubit framework would be to generalize our
results to more sophisticated protocols. For instance, we might ask how the use
of m intermediate Clifford measure-and-update operations performed during the
distillation may affect these fundamental constraints. One would expect to be able
to obtain more refined bounds as a function of m. Moreover, while many protocols
are based on CSS codes in part due to their relative ease of construction via tri-
orthogonal matrices [75], it would be of interest from an operational perspective to
see whether an extension to the full set of Clifford operations on qubit systems is
possible.

A clear direction for our work on probability estimation is to improve the clas-
sical optimization performed for the frame representation, which currently acts as
a black-box. One can investigate the possibility of performing frame optimization
analytically, at least for particular classes of quantum circuits. Additional assump-
tions will likely be required for the circuit structure, but finding optimal frames an-
alytically would eliminate the hidden constant run-time costs of black-box classical
algorithms currently employed for the optimization. The difficulty arises when one
considers the total negativity of a random sequence of Clifford and magic gates. For
example, initial analysis reveals that although a Clifford gate C and a T gate can
independently admit representations FC and FT with zero negativity respectively,
when considered in sequence (C, T ), the total negativity is not zero, and in fact it is
minimized by a representation sequence different to (FC , FT ). In order to obtain a
theoretical handle, one could therefore start by considering very strict, brick-layered
universal architectures that allow for an analytical calculation of optimal represen-
tation sequences. An alternative route involves the study of random Clifford+T
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circuits via standard group representation theory, such as Clifford t-designs [217].
The technical step would involve translating the analysis into the frame representa-
tion, obtaining bounds on negativity and thus proving average-case guarantees for
the sampling overhead of quasi-probability simulators.
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