
1

Gaussian Processes on Graphs via Spectral Kernel
Learning

Yin-Cong Zhi, Yin Cheng Ng, and Xiaowen Dong

Abstract—We propose a graph spectrum-based Gaussian pro-
cess for prediction of signals defined on nodes of the graph. The
model is designed to capture various graph signal structures
through a highly adaptive kernel that incorporates a flexible
polynomial function in the graph spectral domain. Unlike most
existing approaches, we propose to learn such a spectral kernel
defined on a discrete space. In addition, this kernel has the
interpretability of graph filtering achieved by a bespoke max-
imum likelihood learning algorithm that enforces the positivity
of the spectrum. We demonstrate the interpretability of the model
through synthetic experiments from which we show various
ground truth spectral filters can be accurately recovered, and
the adaptability translates to improved predictive performances
compared to the baselines on real-world graph data of various
characteristics.

Index Terms—Gaussian processes, graph signal prediction,
spectral kernel learning

I. INTRODUCTION

Graphs are highly useful data structures that represent
relationships and interactions between entities. Such relational
structures are commonly observed in the real-world, but can
also be artificially constructed from data according to heuris-
tics. The graph structure can be exploited in conjunction with
other auxiliary data to build more powerful predictive models.
One particular class of models that can be enhanced for graph
data is Gaussian processes (GP). As a kernel-based method,
GPs can be adapted to incorporate non-Euclidean distance
information through kernels derived on graphs. With the kernel
defined, the standard Bayesian inference machinery can be
directly applied to yield predictions, with the inherent benefit
of incorporating uncertainties.

Multi-output Gaussian processes (MOGP) are regression
models for vector-valued data. Given a set of input covariates
and the corresponding output vectors, the model makes vecto-
rial predictions given a novel input. In graph signal prediction
problems, each output signal can be viewed as a vector where
the dependency between elements of the signal is encoded in
the graph structure. At the same time, the dependency between
different graph signals can be modeled using a typical kernel
on the input covariates (e.g., the squared exponential kernel).
This leads to the formulation of separable kernels for MOGP,
as is the case in co-regionalization model in [1], which makes
choosing the overall kernel function straightforward. The two
kernels can be designed separately and combined by means

Yin-Cong Zhi and Xiaowen Dong are with the Oxford-Man Institute and
the Department of Engineering Science, University of Oxford, Oxford OX2
6ED, UK (e-mail: yin-cong.zhi@st-annes.ox.ac.uk; xdong@robots.ox.ac.uk).

Yin Cheng Ng is with Man AHL, London EC4R 3AD, UK (e-mail:
yincheng.ng@gmail.com).

of a Kronecker product. We refer to the kernel operating on
the inputs covariates as kernel on the input space, and the
kernel operating on the output signals as node-level kernel,
where the latter provides a measure of smoothness between
data observed on the nodes.

Smola et al. [2] have introduced the notion of kernel on
graphs, where kernel functions between nodes were derived
from a regularization perspective by solving for a reproducing
kernel hilbert space (RKHS). The resulting kernel is based on
the graph Laplacian, and this is closely related to graph signal
processing, which makes use of tools such as graph Fourier
transform and filtering [3], [4], [5]. One particular low-pass
filter defined in [3], commonly used to denoise graph signals,
also assumes the form of kernels on graphs. This was subse-
quently used in [6], [7] to construct a GP model on graphs for
predicting low frequency signals. However, the filter as defined
in [3], [6], [7] only has a low-pass nature and modifications
are required to adapt to band- or high-pass signals. The same
limitation also applies to other existing GP models developed
for graph-structured data such as [8], where the relationship
between the node observations is defined a priori based on
the assumption of low-frequency characteristics. Models will
need to make use of high frequency information to better
handle less smooth data such as in heterophilic graphs [9],
[10]. Addressing this limitation requires a different choice of
kernels with a spectrum that better adapts to the characteristics
of the data.

Learning kernels in the spectral domain have been studied in
the continuous case such as [11], [12], [13], but the extension
of the approach to a discrete graph space has yet to be
explored. In this paper, we propose a novel MOGP model
for graph-structured data, which uses a kernel on the graph
to measure node-level relationships in the data. We explicitly
relate this kernel to a graph filter, which is used to obtain
the target graph signals according to our generative model.
Importantly, the frequency response of the filter (hence the
spectrum of the kernel) is learned by adapting to the data,
thus making the resulting MOGP flexible in capturing different
signal characteristics.

Our model constitutes several unique contributions to the
literature: First, the model is designed to capture various
graph signal structures by incorporating a flexible polynomial
function in the graph spectral domain, producing a highly
adaptable model. Second, the polynomial function is learned
by maximizing the log-marginal likelihood while respecting a
constraint to enforce the positivity of the spectrum. The posi-
tivity constraint allows for a meaningful interpretation of the
learned models as graph filters, giving the modelers insights on



2

the characteristics of the data. Finally, we demonstrate that our
algorithm can recover ground truth filters applied to synthetic
data, and show the adaptability of the model on real-world
data with different spectral characteristics.

II. BACKGROUND

A. Gaussian Processes

A GP f is defined as

f(x) ∼ GP
(
m(x),K(x,x′)

)
(1)

for any inputs x,x′, where m(·) is the mean function, and
K(·, ·) is the symmetric and positive definite kernel function.
The mean function is often taken to be the zero function,
while for training inputs X = (x1, . . . ,xN ) and outputs
y = (y1, . . . , yN ), and a given novel point (x∗, y∗), the GP
forms the prior of a Bayesian regression model

P
(

y
y∗

)
∼ N

(
0,

[
K K∗

K>∗ K∗∗

])
(2)

such that Kij = K(xi,xj), K∗ =
(K(x1,x∗), . . . ,K(xN ,x∗)

> ∈ RN and K∗∗ = K(x∗, x∗).
To make predictions we condition on the training data to
obtain the posterior

P(y∗|y) ∼ N (K>∗K−1y , K∗∗ −K>∗K−1K∗). (3)

The distribution mean can be used as a point prediction while
the covariance allows the construction of confidence intervals
to provide a level of uncertainty. We will refer readers to [14]
for a more thorough tutorial of the GP models.

B. Kernels for Vector Valued Functions

The tasks of predicting vectorial values will require the
model f to be a multi-output function. Kernels for this type
of functions are formulated by the product of two kernels,
one for the inputs and the other on the elements of f . This is
described as separable kernels in [1], where between any two
inputs the function f will have the following form

Cov(f(x), f(x′)) = K(x,x′)H (4)

where H is of size M ×M such that M is the dimension of
the output of f . This matrix operates on the output elements
of f and thus it is referred to as the kernel on the output
space. When applied to X = (x1, . . . ,xN )>, the matrix can
be written in a compact manner through a Kronecker product

K(X,X) = K⊗H (5)

with Kij = K(xi,xj). K is therefore referred to as the kernel
on the input space.

C. Spectral Filtering on Graphs

Let G be a graph with vertex set V such that |V | = M ,
we define the notion of spectral filtering on graphs from the
graph Laplacian [15] defined as

L = D−A, (6)

where A is the adjacency matrix and D is the diagonal degree
matrix. Assuming that G is undirected, the Laplacian admits
the eigen-decomposition L = UΛU> where U contains the
eigenvectors and Λ is the diagonal matrix of eigenvalues. A
signal y ∈ RM on G can be viewed as a function

y : V → R, (7)

and the graph Fourier transform of the signal, defined as U>y
in [3], computes the spectrum of y to produce the amplitude
of each eigenvector (frequency) component. Filtering then
involves a non-negative function g(Λ) in the graph spectral
domain that may reduce or amplify each component leading
to a filtered signal

Ug(Λ)U>y. (8)

The term Ug(Λ)U> is therefore referred to as a filtering
function on the graph characterized by g.

D. Kernels and Regularization on Graphs

A property of kernel functions is provided by Bochner’s
theorem [16], which states that positive definite functions have
non-negative measures as the spectrum in the spectral domain.
On the discrete graph space, kernels are derived by the graph
Fourier transform and a non-negative transfer function. In this
section we briefly summarize the formulation of kernels on
graphs described in [2].

The graph Laplacian is the discrete counterpart of the
Laplace operator, therefore it has the property of quantifying
the smoothness of a function on the graph [17], [18]. When
finding a smooth model f for graph signal y, it is common to
solve for the following regularized problem

min
f
||f − y||22 +R(||f ||2), (9)

where we have the regularization function R on f . In the graph
case, R(||f ||2) = f>Pf where P often takes the form of
a penalty function of the graph Laplacian, i.e. P = r(L),
that penalizes specific graph spectral components of f . The
kernel function is then computed by K = P−1 in order for
Eq. (9) to have a representation in a RKHS, with Moore-
Penrose pseudoinverse used if P is singular [19]. The solution
of Eq. (9) then exists by the Representer Theorem [20]. More
generally, kernels on graphs assume the following form

M∑
i=1

r−1(λi)viv
>
i = Ur−1(Λ)U> = r−1(L) (10)

for diagonal matrix Λ containing the eigenvalues (i.e.,
{λi}Mi=1) of L in increasing order and U containing the
corresponding eigenvectors (i.e., {vi}Mi=1). Furthermore, this
definition is flexible in that different variations of the Laplacian
such as the normalized Laplacian

L̃ = D−
1
2 LD−

1
2 (11)

and scaled Laplacian

LS =
1

λmax(L)
L (12)

will both lead to valid kernels.



3

𝑦𝑛

𝑥𝑛

𝐺

𝐺𝑓𝑢𝑙𝑙

𝐁𝐁⊤

𝐊

Fig. 1: Illustration of graph data construction into input-output
pairs for a GP. Each column in blue is a graph signal that
indicates the value on the nodes, with a corresponding column
in red of input covariate below.

III. PROPOSED MODEL

A. Gaussian Processes for Graph Signals

Consider data pairs of the form {xn,yn}Nn=1 where each
output yn ∈ RM is a signals on a graph G of M nodes indexed
by some input covariates xn ∈ RC . One way to generate data
of this form is to consider G as a sub-graph of a bigger graph
Gfull, and the values on the remaining nodes Gfull\G are used
as xn. For example, in the context of predicting traffic flow
in a city, the network between the junctions will be Gfull and
we use the values at a fixed number of junctions as input xn
to predict the flow at the rest of the nodes used as the outputs
yn. When predicting a new signal, this makes the assumption
that if the traffic flows on two different days are similar on the
input junctions then they will be similar at the output junctions.
How each junction in yn behaves is then modelled by the sub-
graph containing only the output junctions (based on G). Fig.
1 visualizes these input-output pairs with associated kernel
matrices introduced later this section. Other setups are also
possible depending on the problem, for which we will refer
readers to our experiments in Section VI-C2 for further details.

From a generative model perspective, we assume each yn is
a realization of a filtering system Bf(xn) where B ∈ RM×M
is the graph filter, and f(·) ∈ RM is a simple MOGP function
with independent components evaluated at xn - the elements
in f are assumed to be independent GPs with identical kernel
function K on any two inputs xn and x′n. This leads to
Cov(f(xn), f(x′n)) = K(xn,x

′
n)IM , where IM ∈ RM×M

is the identity matrix. Graph information in yn is therefore
induced by the filtering matrix B, giving rise to the following
model

yn = Bf(xn) + εn, (13)

where εn ∼ N (0, σ2
ε IM ). The model in Eq. (13) is generic

in the sense that, depending on the design of B, we can
incorporate any characteristics of the signal yn in the graph
spectral domain.

The prior covariance between two signals yn and ym
can be computed as Cov(yn,ym) = E(yny>m) =
BE(f(xn)f(xm)>)B> = K(xn,xm)BB>, and if we let ỹ =
vec([y1, . . . ,yN ]), the covariance of the full data becomes

Cov(ỹ) = K⊗BB> + σ2
ε IMN , (14)

where Knm = K(xn,xm), and ⊗ denotes the Kronecker
product. The BB> term can be thought of as a kernel between
elements of each outputs yn, while K operates on the signals’
corresponding inputs xn and xm. Generally, K will be referred
to as the input kernel, while we will call BB> the node-level
kernel.

We now state our main model for prediction of graph
signals. Given the GP prior on f(x), the vectorized training
signals ỹ and test signal y∗ ∈ RM with given input x∗ follow
the joint distribution

P
([

ỹ
y∗

])
∼ N

(
0 ,

[
K⊗BB> K∗ ⊗BB>

K>∗ ⊗BB> K∗∗ ⊗BB>

]
+ σ2

ε IMN

)
,

(15)

where K∗ = (K(x1,x∗), . . . ,K(xN ,x∗)
> ∈ RN and K∗∗ =

K(x∗,x∗). For the inputs, the kernel K can be any existing
kernel such as the squared exponential or Matérn kernel. For
node-level, we consider B as a kernel on graphs that is based
on the scaled graph Laplacian of Eq. (12), and follows the
general form in Eq. (10) as B =

∑M
i=1 g(λi)viv

>
i = g(LS).

From this point onwards, λi and vi correspond to the eigen-
values and eigenvectors of LS , and g(λ) is the function in the
scaled graph spectral domain.

It is worth noting that in choosing a non-negative g, the
resulting B gives us two different interpretations of the model.
From a kernel perspective BB> forms the node-level kernel
to measure similarities on the elements of each signal yi,
and this corresponds to the kernel on the output space from
separable kernels defined in [1]. From the filtering perspective,
we identify that all kernels on graphs defined in [2] are of low-
pass nature, and suggest that this is restrictive and less suitable
to data that does not exhibit smoothness or a low-frequency
characteristic. In order for the model to become more adaptive,
we propose to use a more flexible spectral function so that it
can pick up on the likes of band- or high-pass data profiles.

B. Graph Spectral Kernel Learning

To achieve an increase in model flexibility, we use a
polynomial for the function g, while we give the model the
ability to adapt to the data by learning the polynomial shape
as part of the training step. We parameterize g as follows

g(λ) = β0 + β1λ+ · · ·+ βPλ
P =⇒ B =

P∑
i=0

βiL
i
S , (16)

with coefficients β0, . . . , βP learned via log-marginal likeli-
hood maximization. Learning of the coefficients is done by
optimizing them as hyperparameters which we will go into
more details in section IV.

There are a number of advantages of our model setup, in
particular:



4

• The kernel on graphs is learned rather than chosen a
priori, and the function that characterizes the kernel is a
flexible polynomial making the model highly adaptable to
data with different spectral properties. Moreover, existing
choices provided in [2] all consist of functions that have
polynomial expansions. Hence our model provides suit-
able approximations if data came from a more complex
generative model.

• The application of the P th power of the Laplacian corre-
sponds to filtering restricted to the P -hop neighbourhood
of nodes. Our polynomial is finite, thus the user can
control the localization in the kernel, a property that is
often desirable in graph-based models such as the graph
convolutional network (GCN) [21].

• The scaled Laplacian ensures the eigenvalues lie in the
full range [0, 1] regardless of the graph. Other alternatives
such as the normalized Laplacian L̃ = D−

1
2 LD−

1
2

often found in the literature of graph signal processing
[3] bounds the eigenvalues to be within [0, 2] and, by
subtracting the identity matrix, shifts the eigenvalues to
the range [−1, 1]. However, the eigenvalues of L̃ are
often not spread over the full domain [−1, 1], thus the
polynomial is only defined partially over this range.

As a remark, a suitable choice for the degree P is based
on a balance between the number of hyperparameters and
flexibility. A higher degree means more hyperparameters to
optimize but the polynomial can fit towards a more complex
shape. While we want g to have enough curvature, the degree
should be kept small to ensure g is smooth and easy to learn.
Practically we found a choice of P = 3 often leads to good
performances, and this is consistent with the observations that
have been made in the context of graph neural networks (e.g.,
[21] suggested that information propagation on graphs might
not benefit from going beyond the 3-hop neighbourhood).

In addition, our setting is a more generalized version of that
in Section II.B of [6], where the terms in the regularizer Jp can
in theory be learned, but it does not have the advantage of the
proposed polynomial methods: first, it does not correspond to
a localised filtering; second, it has a high learning complexity,
which can reduce the regularizing effect of the norm and as a
result makes it more prone to over-fitting.

C. Equivalence to the Co-regionalization Model

The prior model in (15) follows the form of separable
kernels similar to the co-regionalization model in the literature
of kernels for vector-valued functions [1]. Our derivation
specifies the kernel on the output space more directly, but
in this section we show how we can arrive at our model
from the co-regionalization setup. Starting with the model
yn = f(xn) + εn for a GP function f(xn) ∈ RM , under
the setup of intrinsic co-regionalization model (ICM) [1], we
have

f(xn) =

Q∑
i=1

biu
i(xn) (17)

where u1(x), . . . , uQ(x) are i.i.d. variables following
GP(0,K(x,x′)) and bi ∈ RM for all i. This leads to a model
whose covariance is

Cov(f(xn), f(xm)) =

Q∑
i=1

Q∑
j=1

bib
>
j E(ui(xn)uj(xm))

=

Q∑
i=1

bib
>
i E(ui(xn)ui(xm))

= K(xn,xm)

Q∑
i=1

bib
>
i . (18)

Denoting B = (b1, . . . ,bQ), we can see that BB> =∑Q
i=1 bib

>
i , thus the covariance can be written as

Cov(f(xn), f(xm)) = K(xn,xm)BB>. When we have
N input-output data pairs, the full covariance of f̃ =
vec(f(x1), . . . , f(xN )) will follow the separable form
Cov(f̃) = K ⊗ BB>. Since a kernel on graphs is usually
a square matrix, our graph GP model is equivalent to ICM if
Q = M and the vectors bi combine into a matrix that takes
the general form of Eq. (10).

As an additional note, the covariance we derive is dependent
on the manner in which f(x1), . . . , f(xN ) are stacked into
a single vector (the covariance of ỹ is then formed from
the covariance of f plus a noise term). If we take f̃ =
vec((f(x1), . . . , f(xN ))>) instead, we will get the covariance
BB> ⊗K. These are simply different ways to represent the
prior covariance, and BB> and K still correspond to the input
and node-level kernels, respectively.

IV. OPTIMIZING GP LOG-MARGINAL LIKELIHOOD

The polynomial coefficients βi in the kernel on graphs are
found by maximizing the log-marginal likelihood on a training
set using gradient optimization. Let β = (β0, . . . , βP )>, and
let Ω contain β and all other hyperparameters, the GP log-
marginal likelihood is

L(Ω) = logP(ỹ|Ω)

= −1

2
log |ΣΩ| −

1

2
ỹ>Σ−1

Ω ỹ − NM

2
log(2π), (19)

where ΣΩ is the covariance of (14). As described in Eq. (13),
the term B = g(LS) also acts as a filter on the GP prior to
incorporate information from the graph structure. In order for
B to be a valid filter, we need to constrain B to be positive
semi-definite (PSD); in other words, we need to have g(λ) ≥
0 for all eigenvalues [3], [1]. Just optimizing β alone in an
unconstrained fashion will not guarantee this, thus we utilize
Lagrange multipliers to combine constraints with our main
objective function.

Assuming all hyperparameters are fixed (details of opti-
mizing for hyperparameters are presented in the experiments
section), our constrained optimization problem for finding the
optimal kernel on graphs is the following

min
β
− L(β)

subject to −Bvβ ≤ 0,
(20)



5

Algorithm 1 Constrained optimization of polynomial coeffi-
cients for GP log-marginal likelihood

1: Input: Initialization of β and L′
2: Solve for minβ L(β, Sm(L′)) using gradient descent:
βi → βi − γβ ∂L

∂βi
(β, Sm(L′)) for i = 0, . . . , P

3: Update L′:
L′ → L′ + γL

∂L
∂L′ (β, Sm(L′))

4: Repeat 2 and 3 until L converges
5: Output: β

where we express the log-marginal likelihood l as a function
of β and Bv ∈ RM×(P+1) is the Vandermonde matrix of
eigenvalues of the Laplacian with the following form

Bv =


1 λ1 λ2

1 . . . λP1
1 λ2 λ2

2 . . . λP2
...

...
...

. . .
...

1 λM λ2
M . . . λPM

 . (21)

It is easy to see that to have g(λ) ≥ 0 for all eigenvalues is
equivalent to setting −Bvβ ≤ 0. Hence, our objective function
now becomes

L(β,L) = −L(β) + L>(−Bvβ) = −L(β)− L>Bvβ (22)

where L ∈ RM is a vector of Lagrange multipliers. The
solution to this problem is guided by the Karush–Kuhn–Tucker
(KKT) conditions [22], which specifies that β∗ is the optimal
solution to Eq. (20) if (β∗,L) is the solution to

min
β

max
L≥0

L(β,L). (23)

Due to the non-convexity of the log-likelihood, the Lagrangian
is non-convex with respect to both variables and we instead
solve for the dual problem

max
L≥0

min
β

L(β,L) (24)

as this makes the function concave with respect to L [23], [24]
leading to an easier problem overall.

We find the solution by alternatively updating β and L
described in Algorithm 1. Here, we place a softplus function
on L defined as

Sm(L′) = log(1 + eL
′
) (25)

to keep the Lagrange multipliers positive during the optimiza-
tion. Due to the non-convexity of Eq. (24), Algorithm 1 may
only find a local optimum depending on the initialization.
A simple strategy to obtain a sensible initialization is to
maximize for the log-marginal likelihood (problem (20)
without the constraint on β), with initialization chosen from
a small set of values that lead to the highest log-marginal
likelihood. The solution to this unconstrained optimization is
then used as the initialization for β in Algorithm 1. Compared
to β, the algorithm is much more stable with respect to the
initialization of the log-Lagrange multiplier Sm(L), and we
found using either a fixed or random initialization worked well
in practice.

A. Scalability

By exploiting the Kronecker product structure of the covari-
ance matrix, inversion of Eq. (14) needed for Algorithm 1 and
GP inference can be reduced to a runtime of O(N3 + M3)
and thus avoiding the expensive O(N3M3). We manipulate
the covariance matrix in a similar fashion to [25], first re-
writing it as follows

Σ = BB> ⊗K + σ2
ε I

= (I⊗K)(BB> ⊗ I) + σ2
ε (BB> ⊗ I)−1BB> ⊗ I

=
[
I⊗K + σ2

ε ((BB>)−1 ⊗ I)
]
BB> ⊗ I

=
[
σ2
ε (BB>)−1 ⊕K

]
BB> ⊗ I (26)

for Kronecker sum ⊕. Next, take the eigen-decomposition
K = UKΛKU>K and BB> = UBΛBU>B , the above
equation becomes

Σ =
[
σ2
εUBΛ−1

B U>B ⊕UKΛKU>K
]
UBΛBU>B ⊗ I

= σ2
ε (UB ⊗UK)(Λ−1

B ⊕ΛK)

× (U>B ⊗U>K)(UBΛBU>B ⊗ I).
(27)

Each bracket can then be individually inverted by utilizing the
orthogonality of the eigenvector matrices and the full matrix
inverse becomes

Σ−1 =
1

σ2
ε

(UBΛ−1
B U>B ⊗ I)(UB ⊗UK)

× (ΛB ⊕Λ−1
K )(U>B ⊗U>K).

(28)

Computational complexity is therefore dominated by the two
eigen-decomposition of matrices of size N ×N and M ×M
giving an overall cost of O(N3 +M3).

Potential further reduction can come in the form of graph
coarsening to reduce signals’ dimension M while preserving
the spectral characteristics [26], as well as sparse GP varia-
tional inference [27]. We will leave these as future work.

V. RELATED WORK

Learning on graph-structured data has been studied from
both machine learning and signal processing perspectives such
as [3], [4], [28], [29]. Our model is unique in that it makes use
of tools from both fields to achieve interpretations of filtering
and kernel learning in the graph spectral domain.

Laplacian-based functions in graph signal processing such
as graph filters have been applied to data with certain smooth-
ness assumptions, thus transforming data into one of low-,
band- or high-pass profiles [3], [4]. In contrast, our algorithm
learns the filter based on the data to exempt the need for
choosing the filter profile a priori. This extends the non-
probabilistic approach in [30], [31] with the added benefit of
producing a measure of uncertainty. From the kernel methods
perspective, our model is based on Smola et al [2] where
kernels are derived by regularization; the dependence on
graphs is achieved by using the graph Laplacian in place
of the Laplace operator, thus graph smoothness is enforced
on the function based on the connectivity of the graph. The
same concept is used in [32] to derive the graph equivalence
of the Matern class of kernels. We however take the more
flexible form of these graph Laplacian based kernels by using



6

a polynomial and adapting the shape to the data for better
performances.

The node-level kernel we have defined also bears similarity
to spectral designs of graph neural networks (GNNs) such
as [33], [34], [21], [35]. The work in [33] proposes to learn
a free-form graph filter, which does not guarantee its spatial
localization. The models in [34], [21] and more recently [36],
[35] do offer such localization property by controlling the
degree of the polynomial that is modelling the filter, while the
use of larger neighbourhoods while avoiding over-smoothing
on graphs was achieved through various additional tools such
as [37], [38], [39]. However, as neural network models they
typically require a large amount of training data, while being
a Bayesian model, the predictions our model makes also
provides a level of uncertainty, a property the neural network
based models lack.

In previous works relating to GP on graphs, our model
resembles that of [6], but with the distinction that the kernel
on the output space is learned instead of a chosen low-
pass filter. More importantly, Algorithm 1 demonstrates that
spectral kernel learning is possible on a discrete graph space.
Previously this concept has only been applied to learning
continuous kernels such as [11], and if one wishes to apply
a similar concept on graphs the method will not translate
trivially.

Other graph-based GP models are predominantly applied to
scalar output (instead of vector output or multiple output as
called in the GP literature) problems. The way the graph is
utilized follows a similar framework to graph neural network
models such as [21], with one representative approach being
local averaging of neighbourhood information for node level
classification [8]. More complicated aggregation functions
have since been applied as a linear function to the GP
covariance in [40], [41], [42]. Although these models may be
extended to vector outputs, they generally involve averaging
or smoothing of the data, and the resulting effect is similar
to a low-pass filter on the graph. Hence, these models are
likely to perform less well on data that are not customarily
smooth. Our model overcomes this issue through spectral
learning of the kernel on graphs to adapt to the data more
effectively. More recently, the use of spectral graph wavelets
are proposed in [43] to capture multi-scale information, while
models have expanded to using deep GPs [44] to effectively
predict vectorial graph signals, but this relies more on the
inference step and does not learn a kernel on the graph. Finally,
the convolutional patch-based technique in [45] has also been
extended to graph data [46]. This method can be viewed as
an extension to the approach in [8], but it is still based on
pre-defined kernel functions in the graph domain.

VI. EXPERIMENTS

In this section, we first present results on synthetic experi-
ments to demonstrate our algorithm’s ability to recover ground
truth filter shapes. We then apply our method to several real-
world datasets that exhibit different spectral characteristics to
show the adaptability of our model.

In all experiments, the GP prior will be in the form of Eq.
(15) and we consider baseline GP models from [6], [8], and
kernels on graphs defined in [2] in Eq. (17-20):
• Standard GP: B = I
• Global filtering: B = (I + αL)−1 [6]
• Local averaging: B = (I + αD)−1(I + αA) [8] where

we also added a weighting parameter α.
• Graph Laplacian regularization: BB> = L† (pseudo-

inverse of the Laplacian) [1]
• Regularized Laplacian: BB> = (I + αL̃)−1 [2]
• Diffusion: BB> = exp{(−α/2)L̃} [2]
• p-step random walk: BB> = (αI− L̃)p [2]
• Cosine: BB> = cos(L̃π/4) [2]
The kernel on the input space will be the squared exponen-

tial Kij = σ2
w exp{− 1

2l ||xi−xj ||22} applied to inputs xn and
x′n. The set of hyperparameters is Ω = {α, l, σ2

w, σ
2
ε }, and

these will be found in conjunction with the model parameters
β in our polynomial. The hyperparameters in the baselines
are found by maximizing the log-marginal likelihoods by
direct gradient ascent in the same manner as our models.
The predictive performance will be evaluated by the pos-
terior log-likelihoods logP(y∗|µ∗,Σ∗) for test signals y∗,
with GP posterior meaning µ∗ and covariance Σ∗ defined
in Eq. (3). To provide a measure of robustness, the test set
is split into 10 subsets for which we compute the batch
posterior log-likelihoods on each subset, and we report the
mean test log-likelihood and standard error, µ({l1, . . . , l10})
and std({l1, . . . , l10})/

√
10 respectively.

We would also like to investigate the effect of the constraint
on learning performance. To this end, we include our model
where we only solve the problem of Eq. (20) without the
constraint. In the real-world experiments, we include this
for polynomials of degrees 3 and 4, where the resulting
spectral functions are generally not always valid graph filtering
functions.

We provide the code for producing the results in this paper
in the following: https://github.com/yincong-zhi/Polynomial
Kernel Learning.

A. Initialization Strategy

Due to the highly non-convex structure of the GP log-
marginal likelihood, optimizing hyperparameters is heavily
reliant on the initializations. Here, we propose a procedure of
steps to get the best and most stable solution before passing
it to Algorithm 1.

The model parameters β are optimized with the hyper-
parameters giving the set of parameters to learn as Ω =
{β, l, σ2

w, σ
2
ε }. Based on a training set of {y1, . . . ,yN}, we

initialize

l = Mean({||y1||22, . . . , ||yN ||22}) (29)

σ2
w = Var([y1; . . . ; yN )] (30)

with σ2
w is set as the variance of the flattened vector from the

response data matrix [y1; . . . ; yN ]. We set the other parameters
by empirically testing a small range of values, using the
combination that leads to the highest log-marginal likelihood
as the initialization. Our procedure is as follows:

https://github.com/yincong-zhi/Polynomial_Kernel_Learning
https://github.com/yincong-zhi/Polynomial_Kernel_Learning
https://github.com/yincong-zhi/Polynomial_Kernel_Learning
https://github.com/yincong-zhi/Polynomial_Kernel_Learning


7

0.0 0.2 0.4 0.6 0.8 1.0
eigenvalues 

4

2

0

2

4

6
U

y

Synthetic data GFT coefficients

(a)

0.0 0.2 0.4 0.6 0.8 1.0
eigenvalues 

0.4

0.6

0.8

1.0

g(
)

Scaled Polynomials
g1( ), l = 163.15
g2( ), l = 172.37
g3( ), l = 171.39
g4( ), l = 172.23
( )

(b)

0.0 0.2 0.4 0.6 0.8 1.0
eigenvalues 

0.4

0.6

0.8

1.0

g(
)

Scaled Polynomials
SNR 20, l = -86.02
SNR 15, l = -92.25
SNR 10, l = -111.07
SNR 5, l = -157.68
SNR 0, l = -245.32
( )

(c)

0.0 0.2 0.4 0.6 0.8 1.0
eigenvalues 

4

2

0

2

4

U
y

Synthetic data GFT coefficients

(d)

0.0 0.2 0.4 0.6 0.8 1.0
eigenvalues 

0.0

0.2

0.4

0.6

0.8

1.0

g(
)

Scaled Polynomials

g1( ), l = -307.09
g2( ), l = -272.16
g3( ), l = -214.61
g4( ), l = -210.90
( )

(e)

0.0 0.2 0.4 0.6 0.8 1.0
eigenvalues 

0.0

0.2

0.4

0.6

0.8

1.0

g(
)

Scaled Polynomials

SNR 20, l = -86.02
SNR 15, l = -92.25
SNR 10, l = -111.07
SNR 5, l = -157.68
SNR 0, l = -245.32
( )

(f)

Fig. 2: Spectral kernel learning on synthetic Sensor graphs. We show the synthetic graph Fourier coefficients in (a) and (d)
(each colour represents a signal), and the scaled polynomials learned with their log-marginal likelihoods, for data with low-
(first row) and band-pass (second row) spectra. Ground truth polynomials are θ = (1,−1.5, 1.52/2,−1.53/6, 1.54/24) for the
low-pass (first 5 terms of e−1.5), and θ = (0, 1, 4, 1,−6) for the band-pass. Figures (b) and (c) compare the degrees of the
polynomial, (c) and (f) compare the SNR noise levels.

1) Find the optimal β and σ2
ε that maximize the log-

marginal likelihood by a grid search. We use σ2
ε ∈

{ 1
10σ

2
w,

1
5σ

2
w}, while for each elements βi we use βi ∈

{−10,−9, . . . , 10}.
2) Use the best combinations from grid search as initializa-

tions (along with initial l and σ2
w) for the unconstrained

problem, i.e., maximizing the log-marginal likelihood
with respect to {β, l, σ2

ε } by gradient ascent (σ2
w is

indirectly optimized through β.
3) Use the solution found in step 2 as the initializations to

Algorithm 1 and solve for β, while keeping all other
hyperparameters fixed.

As a final note, we follow a general rule for selecting the
learning rate for each parameter in the gradient optimization
as: choosing the largest r ∈ Z such that γp = 10r for
hyperparameter p, that leads to a consistent increase/decrease
in the objective function. This will require some tuning from
the user beforehand in order to ensure the algorithm converges
in a reasonable time.

B. Synthetic Experiments

1) Synthetic Filter Reconstruction: For the first experiment
we use synthetic signals which are generated following Eq.
(13) using a B with a known polynomial chosen beforehand.
The aim is to demonstrate that our model is able to recover
the polynomial shapes of the ground truth filters through
optimizing the GP log-marginal likelihood.

We set the underlying graph to be a 30-node Sensor
graph from the PyGSP library [47]. The Sensor graph has

an even spread of eigenvalues which helps the visualization
of the polynomial. Signals are first sampled independently
as y′1,y

′
2, · · · ∼ N (0, I). Using the scaled graph Laplacian

LS , we denote the ground truth filter as θ(LS) with co-
efficients (θ0, . . . , θQ). Each synthetic signal is then set as
yn = θ(LS)y′n and we corrupt it with noise at a signal-
to-noise ratio (SNR) of 10 dB. As the signals are sampled
independently, the kernel function is BB>⊗σ2

wI+σ2
ε I where

σ2
w is set to signal variance. Input covariates xi are not

required in this context as the input kernel matrix is already
defined as K = I. We denote the polynomials learned from
our algorithm as gd for degree d which has d+ 1 coefficients.
If the gd(λ) goes above 1 for any λ ∈ [0, 1], we can scale
it down as g′d(λ) = 1

cgd(λ) for c = maxx∈[0,1] gd(x). The
resulting g′d will be in the range [0, 1] making it easier to
compare different filters, and the c term can be absorbed into
the variance of the full kernel function, alleviating the need to
optimize for σ2

w.
In Fig. 2, we show the results from learning on synthetic

data with low- and band-pass spectrum (a high-pass spectrum
will simply have the reversed shape of the low-pass so we
will not present here due to the similarity). In Fig. 2a and
Fig. 2d we plot the graph Fourier coefficients U>y of the
generated signals (using the ground truth filters). The learned
polynomials with different degrees can be found in Fig. 2b and
2e along with the ground truth polynomial θ(·). Visually we
can see that using a polynomial with d = 2 and 3 respectively
capture the ground truth of low- and high-pass filters well
enough that higher degree no longer offers clear improvement.
This is also evident in the log-marginal likelihood, where we

PyGSP


8

0.0 0.2 0.4 0.6 0.8 1.0
eigenvalues 

4

2

0

2

U
y

Synthetic data GFT coefficients

(a)

0.0 0.2 0.4 0.6 0.8 1.0
eigenvalues 

0.0

0.2

0.4

0.6

0.8

1.0

g(
)

Scaled Polynomials (BA Graph)
g1( ), l = -142.57
g2( ), l = -96.94
g3( ), l = -72.66
g4( ), l = -67.30
( )

(b)

0.0 0.2 0.4 0.6 0.8 1.0
eigenvalues 

4

2

0

2

4

U
y

Synthetic data GFT coefficients

(c)

0.0 0.2 0.4 0.6 0.8 1.0
eigenvalues 

0.0

0.2

0.4

0.6

0.8

1.0

g(
)

Scaled Polynomials (BA Graph)

g1( ), l = -142.57
g2( ), l = -96.94
g3( ), l = -72.66
g4( ), l = -67.30
( )

(d)

Fig. 3: Synthetic filter reconstruction on a BA graph. (a) and (c) are signal graph Fourier coefficients, (b) and (d) are the
recovered polynomial filters of degree 1 - 4. Ground truth polynomials are θ = (1,−1.5, 1.52/2,−1.53/6, 1.54/24) for the
low-pass (first 5 terms of e−1.5) for (a) and (b), and θ = (0, 1, 4, 1,−6) for the band-pass (c) and (d).

TABLE I: Synthetic test log-likelihoods (standard error),
higher the better. Low, Band, High are pre-chosen ground
truth profiles, while Filtering is set to (I+L)−1 to match the
model of [6].

Model Low Band High Filtering
Degree 1 -13.79 (0.13) -81.02 (0.24) -132.05 (0.29) -38.18 (0.17)
Degree 2 -13.48 (0.14) -76.39 (0.22) -127.70 (0.30) -37.80 (0.17)
Degree 3 -13.23 (0.14) -65.54 (0.21) -127.24 (0.30) -37.95 (0.17)
Degree 4 -13.88 (0.13) -67.43 (0.22) -127.24 (0.31) -37.90 (0.17)
Standard GP -33.41 (0.13) -82.41 (0.19) -171.50 (0.37) -48.28 (0.19)
Laplacian [1] -156.44 (0.12) -96.94 (0.25) -205.54 (0.92) -190.52 (0.14)
Global Filtering [6] -15.90 (0.15) -83.03 (0.19) -204.43 (0.86) -38.80 (0.17)
Local Averaging [8] -30.23 (0.18) -99.26 (0.29) -424.96 (17.58) -70.79 (0.24)
Regularized Lap [2] -16.38 (0.15) -83.08 (0.19) -206.02 (0.95) -40.59 (0.18)
Diffusion [2] -15.81 (0.15) -82.42 (0.19) -205.91 (0.94) -38.76 (0.17)
1-Step RW [2] -17.74 (0.15) -83.13 (0.19) -356.29 (0.32) -39.85 (0.17)
3-Step RW [2] -19.00 (0.15) -88.03 (0.24) -173.31 (0.36) -45.14 (0.19)
Cosine [2] -19.56 (0.15) -86.35 (0.19) -185.03 (0.29) -38.97 (0.17)

see only little improvement for d > 2 for low-pass and d > 3
for band-pass spectra.

We next study the effect of noise on learning the spectrum,
using a degree 2 polynomial for low-pass and degree 3 for
band-pass. Fig. 2c and 2f show the spectrum learned for
various SNRs, where we can see visually that our model
recovers the true spectrum well for SNR 10 dB or higher. As
expected, the corresponding log-marginal likelihood steadily
decrease as SNR decreases when data becomes noisier.

2) Synthetic Filter Reconstruction Using Barabási–Albert
Random Graph: To show that our algorithm can generalize
to different graphs, we also try recovering graph filters on a
Barabási–Albert (BA) random graph in place of the Sensor
graph. Generally, BA graphs exhibit characteristics closer
to real world behaviours. We sample a graph of 30 nodes
generated from an initial 10 nodes, and each node added
is randomly connected to 5 existing nodes. Filter recovery
follows the same procedure as the previous section. Fig. 3
show the low- and band-pass filter shapes are still recovered
well using Algorithm 1.

3) Synthetic Predictive Signals: The main advantage of our
spectral kernel learning approach is that we no longer need
to worry if the kernel suits the profile of the data. As the
models we considered for baselines have low-pass designs,
they will not suit the likes of band- and high-pass data. In
the previous section, we used K = I due to the signals
being sampled independently. Although this allowed us to see
the full effect of the node-level kernel on the log-marginal

likelihood, it cannot be used for inference as predictions from
the posterior will be the same as the prior. We now carry out
a similar synthetic experiment as that in [7] which defines a
non-identity K. This means we can compute the GP posteriors
which are the predictive performances of GP models, therefore
demonstrating that spectral kernel learning also translates into
better predictive performances, especially on band- and high-
pass data.

We start by sampling a positive definite matrix C from the
inverse Wishart distribution with identity hyperparameter. The
size of C is of N×N where N corresponds to the number of
signals, here N = 30. We then draw M samples fromN (0,C)
to create our data matrix ∆ of size M ×N . Each column in
∆ is of dimension M , forming a signal on the graph. We use
a Sensor graph again with M = 25 nodes with Laplacian LS .
Next, let ri denote the ith row of ∆, we filter this signal by

yi = θ(LS)ri. (31)

We test on 4 different ground truths θ, this includes firstly
the same low- and band-pass polynomials as the previ-
ous section, as well as the addition of a high-pass θ =
(0, 1.5, 1.52/2, 1.523/6, 1.54/24) (first 5 terms of e1.5 − 1),
and finally we also test on θ(L) = (I + αL)−1 for α = 1
which is also low-pass but matches the generative model of
[6]. The prior covariance between signals yi and yj will be
CijBB>. Hence C can be used as the covariance matrix on
the input space and input covariates xi are again not required.
The full kernel of the GP becomes

C⊗BB> + σ2
ε I. (32)

After running Algorithm 1 of log-marginal likelihood max-
imization, we compute the posterior by conditioning on the
first 20 signals P(y∗|y1, . . . ,y20), to get the posterior log-
likelihood on the remaining test signals. We present these
performances against the baselines in Table I, with the Fil-
tering column corresponding to θ(L) = (I + L)−1. Where
there are significant improvements are on band- and high-pass
data, which demonstrates our model’s ability to capture the
higher frequency elements in the data, on low-pass signals the
baseline profiles now match the data, leading to a number
of models producing similar test log-likelihoods to that of
the polynomials. The difference is expectedly the smallest be-
tween the polynomials and global filtering [6] on the Filtering



9

TABLE II: Real world test log-likelihoods (standard error), higher the better.

MODEL fMRI fMRI WEATHER WEATHER UBER UBER
(Training) (21 signals) (42 signals) (15 signals) (30 signals) (10 signals) (20 signals)
Degree 2 Polynomial 35.36 (0.36) 36.26 (0.49) -11.58 (3.37) -7.10 (2.27) -13.51 (4.40) -8.68 (2.84)
Degree 3 (unconstrained) 35.33 (0.36) 36.00 (0.70) -12.77 (2.48) -6.61 (2.23) -12.50 (4.17) -8.27 (2.68)
Degree 3 Polynomial 36.15 (0.37) 36.45 (0.35) -9.09 (2.49) -5.03 (2.39) -12.48 (4.16) -8.27 (2.69)
Degree 4 (unconstrained) 36.15 (0.37) 36.00 (0.54) -9.48 (2.22) -4.85 (2.43) -12.36 (4.13) -8.47 (2.76)
Degree 4 Polynomial 35.34 (0.36) 36.00 (0.54) -7.47 (2.28) -4.85 (2.43) -12.34 (4.13) -8.26 (2.67)
Standard GP 11.92 (0.09) 11.57 (0.12) -55.59 (4.40) -53.91 (3.97) -27.72 (1.21) -26.70 (1.44)
Laplacian [1] -17.09 (0.10) -16.41 (0.11) -67.04 (1.60) -66.58 (1.60) -29.16 (0.93) -28.42 (0.95)
Local Averaging [8] 11.50 (0.10) 11.44 (0.13) -51.88 (5.05) -51.54 (5.09) -28.93 (1.22) -27.81 (1.44)
Global Filtering [6] 9.38 (0.11) 10.49 (0.13) -50.97 (4.98) -50.37 (5.22) -29.15 (1.33) -28.06 (1.57)
Regularized Laplacian [2] 11.66 (0.10) 11.44 (0.13) -52.29 (5.05) -52.01 (5.01) -27.52 (1.22) -26.59 (1.44)
Diffusion [2] 11.55 (0.10) 11.45 (0.13) -51.27 (5.27) -50.88 (5.40) -27.84 (1.26) -26.90 (1.49)
1-Step Random Walk [2] 10.86 (0.12) 11.13 (0.14) -60.28 (4.95) -55.93 (4.22) -28.65 (1.24) -26.99 (1.46)
3-Step Random Walk [2] 11.36 (0.09) 11.39 (0.09) -73.09 (8.25) -76.99 (8.84) -32.59 (1.64) -28.29 (1.59)
Cosine [2] 10.09 (0.11) 10.55 (0.14) -54.99 (4.60) -53.83 (4.01) -27.64 (1.18) -26.64 (1.44)

0.0 0.2 0.4 0.6 0.8 1.0
eigenvalues 

0.0

0.5

1.0

1.5

|U
y|

fMRI

(a)

0.0 0.2 0.4 0.6 0.8 1.0
eigenvalues 

0

2

4

6

8

10

12

14

|U
y|

Weather

(b)

0.0 0.2 0.4 0.6 0.8 1.0
eigenvalues 

0

1

2

3

4

5

|U
y|

Uber

(c)

0.0 0.2 0.4 0.6 0.8 1.0
eigenvalues 

0.50

0.25

0.00

0.25

0.50

0.75

1.00

g(
)

fMRI

g2( )
g3( ) uncons
g3( )
g4( ) uncons
g4( )

(d)

0.0 0.2 0.4 0.6 0.8 1.0
eigenvalues 

0.2

0.0

0.2

0.4

0.6

0.8

1.0

g(
)

Weather
g2( )
g3( ) uncons
g3( )
g4( ) uncons
g4( )

(e)

0.0 0.2 0.4 0.6 0.8 1.0
eigenvalues 

0.4

0.6

0.8

1.0

g(
)

Uber
g2( )
g3( ) uncons
g3( )
g4( ) uncons
g4( )

(f)

Fig. 4: (a) - (c) Real world data magnitude of graph Fourier transform coefficients of the training signals |U>y|. (d) - (f)
Polynomial filters learned on the corresponding datasets (on the larger training set). The polynomials generally picked up
non-low-pass elements, leading to the predictions in Fig. 5 varying in a more similar manner to the test signals.

ground truth. Overall, using a polynomial still offers marginal
improvements on low-pass data, but is the most advantageous
when there are higher frequency elements.

From the two synthetic experiments, we can conclude that
a degree 1 polynomial can be too restrictive as we are fitting
the spectrum into a straight line. Thus, when applied to real
world data, we will only consider a lowest degree of 2 as this
will ensure a level of curvature in the filter we learn.

C. Real World Data

In real world experiments, the graph may not always be
available and sometimes needs to be constructed. We will
detail how the graph is constructed in each experiment, with
the requirement for the graph to be connected and not having
multiple components. This is due to the fact that each compo-
nent may have different spectral profiles, while we only learn a

single filter. In the case graphs have more than one component,
it would be more suitable to use multiple GPs.

1) fMRI Dataset: In the first real-world experiment we
consider data from functional magnetic resonance imaging
(fMRI) where an existing graph of 4465 nodes corresponds
to different voxels of the cerebellum region in the brain (we
refer to [6], [48] for more details on graph construction and
signal extraction). A graph signal is the blood-oxygen-level-
dependent (BOLD) signal observed on the voxels. Due to the
size of the full graph, we use a small subset of nodes. To
achieve a connected sub-graph, we first sample 500 nodes
randomly and pick the largest component, which gives us a
Gfull of size 37. We then take the readings on the first 10
nodes as xn along with the corresponding outcome signals
yn on the remaining 27 nodes (yn ∈ R27) which form
the underlying graph on the outcome signals. The dataset
contains 292 signals for which we train on a sample of up



10

Test Signal

0.5

0.0

0.5

1.0

1.5

(a)

Predictive Mean

0.5

0.0

0.5

1.0

1.5

(b)

Low-Pass Kernel Predictive Mean

0.5

0.0

0.5

1.0

1.5

(c)

Node Standard Deviation

0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42

(d)

Low-Pass Kernel Node Standard Deviation

1.55

1.56

1.57

1.58

1.59

1.60

1.61

(e)
Test Signal 2

2.5

2.0

1.5

1.0

0.5

0.0

(f)

Predictive Mean 2

2.5

2.0

1.5

1.0

0.5

0.0

(g)

Low-Pass Kernel Predictive Mean 2

2.5

2.0

1.5

1.0

0.5

0.0

(h)

Node Standard Deviation 2

0.28

0.30

0.32

0.34

0.36

0.38

(i)

Low-Pass Kernel Node Standard Deviation 2

1.540
1.545
1.550
1.555
1.560
1.565
1.570
1.575
1.580

(j)

Fig. 5: Test signals zt from Weather dataset (a) z>t Lzt = 19.84 & (f) z>t Lzt = 36.35; GP predictions from degree 3 polynomial
zp (b) z>p Lzp = 16.28 (g) z>p Lzp = 29.56 (d) and (i); from a low-pass of [6] zl (c) z>l Lzl = 6.69, (h) z>l Lzl = 8.06, (e)
& (j) representing the low-pass nature of all baselines. The difference in graph smoothness between the test signals and the
predictions are bigger in the low-pass, showing that the model over-smooths compared to the degree 3 polynomial, while the
standard deviations show that our model is also far more certain in the predictions.

to 42 signals to learn the hyperparameters, we then compute
the posterior to predict the remaining 250 test signals. The
model’s polynomial filters are presented in Fig. 4d while the
GFT coefficients are displayed in Fig. 4a to show how the
polynomials resembled the data. The posterior log-likelihoods
are presented in the first two columns of Table II, where we see
our polynomial learning was significantly better than any of
the baseline models. The polynomial results did have slightly
higher standard error, which may be due to the model not
consistently producing equally high likelihoods for every test
signal, but all polynomials produced higher test log-likelihoods
than all baselines. The spectrum of the data has a relatively
smooth shape as shown in Fig. 4a and so a low degree
polynomial was able to capture the spectrum well and using a
higher degree has little improvements on the performance. Our
adaptive approach to training the GP resulted in much higher
posterior log-likelihoods, indicating that we get a prediction
with much higher certainty. In our next experiment, we also
visualize the improved certainty that our model predicts with.

2) Weather Dataset: We now consider the temperature
measurement in 45 cities in Sweden available from SMHI
[49]. Using the cities’ longitude and latitude, we construct
a k-nearest neighbour graph for k = 10 using the function
from PyGSP [47]. For this dataset, we perform the task of
next-day prediction, where each xn ∈ R45 is the temperature
signal on day n, and the corresponding yn ∈ R45 is the
temperature signal on day n + 1. The weather dataset is the
smoother of the examples we consider, but some minor high
frequency elements can still be observed in Fig. 4b. We have
a total of 90 input-output pairs, and we randomly sample
30 signal pairs (xn,yn) for training and hyperparameters
learning, and predict the signals on the other 60 pairs divided
into 10 subsets to give us a mean and standard error in the
same way in the previous dataset. The results are presented

in Table II middle two columns and the polynomial filters
are shown in Fig. 4e, where again, we can see the significant
difference between the polynomial models and the baselines.
Furthermore, by doing next-day prediction, our signals are on
the whole graph, allowing us to visualize them in Fig. 5. Here,
we compared the predictions of a degree 3 polynomial, and
that of [6] which represents a typical low-pass filter, something
all baseline models have in common. We also reported the
graph smoothness of each signal in the figure, defined as
z>Lz, and generally we would want the graph smoothness
of the prediction to be similar to that of the test signal. We
can conclude from Fig. 5 that our model is superior in terms
of both the prediction and uncertainty: visually the polynomial
predictions better resembled the ground truth due to the small
amount of high-pass picked up by the polynomial. This is
also reflected in the predictive mean having a level of graph
smoothness more similar to the test signals, while the graph
smoothness from the low-pass is much smaller implying its
predictions are over-smoothed. The standard deviations are
also much lower from the polynomials meaning our model
predicts with much more certainty, this is one of the main
reasons the polynomial log-likelihoods are much higher.

3) Uber Dataset: The final dataset is Uber rides in New
York City for the month of September 2014. The dataset
contains locations for pickups at M = 29 taxi zones which
form the nodes of a graph, and edges are constructed based
on a k-nearest neighbour graph using k = 4. The hourly
number of Uber pickups in each zone is a signal on the graph
(more information on the dataset can be found in [50]). We
randomly select 9 zones as inputs such that each xn ∈ R9;
on the remaining 20 zones, we ensure they form a connected
graph, and the values form the output signals yn ∈ R20.
The test performances can be found in the final two columns
in Table II, where the mean and standard errors are over

PyGSP


11

10 splits like previous experiments. The data is of low- and
high-pass nature as shown by the GFT coefficients 4c and
reflected by the filters learned in Fig. 4f, thus all our models
offered improvements compared to the baselines due to the
high frequency information picked up in polynomial filter.
Similar to the fMRI dataset, the standard errors of our models
are slightly higher than the baselines, this again is due to the
model not predicting some test signals as well as others, but
all polynomial predictions still had higher log-likelihoods than
all baselines.

VII. CONCLUSION

We have developed a novel GP-based method for graph-
structured data to capture the inter-dependencies between
observations on a graph. The kernel on graphs adapts to
the characteristics of the data by using a bespoke learning
algorithm that also provides a better interpretability of the
model from a graph filtering perspective. Our model was
superior in better capturing the smoothness of the data, and
predicting with a higher level of certainty. Promising future
directions include the extension of the model for application
in classification and improvement in scalability of the model.

REFERENCES

[1] Mauricio A Alvarez, Lorenzo Rosasco, Neil D Lawrence, et al. Kernels
for vector-valued functions: A review. Foundations and Trends® in
Machine Learning, 4(3):195–266, 2012.

[2] Alexander J Smola and Risi Kondor. Kernels and regularization
on graphs. In Learning Theory and Kernel Machines: 16th Annual
Conference on Learning Theory and 7th Kernel Workshop, COLT/Kernel
2003, Washington, DC, USA, August 24-27, 2003. Proceedings, pages
144–158. Springer, 2003.

[3] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega,
and Pierre Vandergheynst. The emerging field of signal processing on
graphs: Extending high-dimensional data analysis to networks and other
irregular domains. IEEE signal processing magazine, 30(3):83–98, 2013.

[4] Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF Moura, and
Pierre Vandergheynst. Graph signal processing: Overview, challenges,
and applications. Proceedings of the IEEE, 106(5):808–828, 2018.

[5] Siheng Chen, Aliaksei Sandryhaila, José MF Moura, and Jelena Ko-
vacevic. Signal denoising on graphs via graph filtering. In 2014 IEEE
Global Conference on Signal and Information Processing (GlobalSIP),
pages 872–876. IEEE, 2014.

[6] Arun Venkitaraman, Saikat Chatterjee, and Peter Handel. Gaussian
processes over graphs. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
5640–5644. IEEE, 2020.

[7] Arun Venkitaraman, Saikat Chatterjee, and Peter Händel. Predicting
graph signals using kernel regression where the input signal is agnostic
to a graph. IEEE Transactions on Signal and Information Processing
over Networks, 5(4):698–710, 2019.

[8] Yin Cheng Ng, Nicolò Colombo, and Ricardo Silva. Bayesian semi-
supervised learning with graph gaussian processes. In Advances in
Neural Information Processing Systems, pages 1683–1694, 2018.

[9] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,
and Danai Koutra. Beyond homophily in graph neural networks: Current
limitations and effective designs. Advances in Neural Information
Processing Systems, 33:7793–7804, 2020.

[10] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi
Gupta, Omkar Bhalerao, and Ser Nam Lim. Large scale learning on
non-homophilous graphs: New benchmarks and strong simple methods.
Advances in Neural Information Processing Systems, 34:20887–20902,
2021.

[11] Andrew Wilson and Ryan Adams. Gaussian process kernels for pattern
discovery and extrapolation. In International conference on machine
learning, pages 1067–1075. PMLR, 2013.

[12] Yves-Laurent Kom Samo and Stephen Roberts. Generalized spectral
kernels. arXiv preprint arXiv:1506.02236, 2015.

[13] Jian Li, Yong Liu, and Weiping Wang. Automated spectral kernel learn-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 4618–4625, 2020.

[14] Christopher KI Williams and Carl Edward Rasmussen. Gaussian
processes for machine learning, volume 2. MIT press Cambridge, MA,
2006.

[15] Fan R. K. Chung. Spectral graph theory. Regional conference
series in mathematics. no. 92. Published for the Conference Board
of the mathematical sciences by the American Mathematical Society,
Providence, R.I., 1997.

[16] Lynn H Loomis. Introduction to abstract harmonic analysis. Courier
Corporation, 2013.

[17] Alex J Smola and Bernhard Schölkopf. From regularization operators
to support vector kernels. In Advances in neural information processing
systems, pages 343–349, 1998.

[18] Alex J Smola, Zoltan L Ovari, and Robert C Williamson. Regularization
with dot-product kernels. In Advances in neural information processing
systems, pages 308–314, 2001.

[19] Enrico Bozzo. The moore–penrose inverse of the normalized graph
laplacian. Linear Algebra and its Applications, 439(10):3038–3043,
2013.

[20] Sun Yuan Kung. Kernel methods and machine learning. Cambridge
University Press, 2014.

[21] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In International Conference on Learning
Representations, 2017.

[22] Harold W Kuhn and Albert W Tucker. Nonlinear programming.
In Traces and emergence of nonlinear programming, pages 247–258.
Springer, 2014.

[23] Rafail N Gasimov. Augmented lagrangian duality and nondifferentiable
optimization methods in nonconvex programming. Journal of Global
Optimization, 24(2):187–203, 2002.

[24] Mokhtar S Bazaraa and Jamie J Goode. A survey of various tactics for
generating lagrangian multipliers in the context of lagrangian duality.
European Journal of Operational Research, 3(4):322–338, 1979.

[25] Xingyue Pu, Siu Lun Chau, Xiaowen Dong, and Dino Sejdinovic.
Kernel-based graph learning from smooth signals: A functional view-
point. IEEE Transactions on Signal and Information Processing over
Networks, 7:192–207, 2021.

[26] Andreas Loukas and Pierre Vandergheynst. Spectrally approximating
large graphs with smaller graphs. In International Conference on
Machine Learning, pages 3237–3246. PMLR, 2018.

[27] James Hensman, Alexander Matthews, and Zoubin Ghahramani. Scal-
able variational gaussian process classification. In Artificial Intelligence
and Statistics, pages 351–360. PMLR, 2015.

[28] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and
Pierre Vandergheynst. Geometric deep learning: going beyond euclidean
data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[29] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and S Yu Philip. A comprehensive survey on graph neural net-
works. IEEE Transactions on Neural Networks and Learning Systems,
2020.

[30] Xuan Zhang, Xiaowen Dong, and Pascal Frossard. Learning of struc-
tured graph dictionaries. In 2012 IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 3373–3376. IEEE, 2012.

[31] Dorina Thanou, David I Shuman, and Pascal Frossard. Parametric
dictionary learning for graph signals. In 2013 IEEE Global Conference
on Signal and Information Processing, pages 487–490. IEEE, 2013.

[32] Viacheslav Borovitskiy, Iskander Azangulov, Alexander Terenin, Peter
Mostowsky, Marc Deisenroth, and Nicolas Durrande. Matern gaussian
processes on graphs. In International Conference on Artificial Intelli-
gence and Statistics, pages 2593–2601. PMLR, 2021.

[33] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spec-
tral networks and deep locally connected networks on graphs. In 2nd
International Conference on Learning Representations, 2014.

[34] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convo-
lutional neural networks on graphs with fast localized spectral filtering.
In Advances in neural information processing systems, pages 3844–
3852, 2016.

[35] Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning
arbitrary graph spectral filters via bernstein approximation. Advances
in Neural Information Processing Systems, 34:14239–14251, 2021.

[36] Yushun Dong, Kaize Ding, Brian Jalaian, Shuiwang Ji, and Jundong
Li. Adagnn: Graph neural networks with adaptive frequency response
filter. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, pages 392–401, 2021.



12

[37] Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare
Alippi. Graph neural networks with convolutional arma filters. IEEE
transactions on pattern analysis and machine intelligence, 44(7):3496–
3507, 2021.

[38] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann.
Predict then propagate: Graph neural networks meet personalized pager-
ank. In International Conference on Learning Representations, 2019.

[39] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive
universal generalized pagerank graph neural network. In International
Conference on Learning Representations, 2021.

[40] Felix Opolka and Pietro Lio. Bayesian link prediction with deep
graph convolutional gaussian processes. In International Conference
on Artificial Intelligence and Statistics, pages 4835–4852. PMLR, 2022.

[41] Pengyu Cheng, Yitong Li, Xinyuan Zhang, Liqun Chen, David Carlson,
and Lawrence Carin. Dynamic embedding on textual networks via a
gaussian process. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 7562–7569, 2020.

[42] Zhaoyang Liu, ShaoYuan Li, Song can Chen, Yao Hu, and Sheng-Jun
Huang. Uncertainty aware graph gaussian process for semi-supervised
learning. In AAAI, 2020.

[43] Felix Opolka, Yin-Cong Zhi, Pietro Lio, and Xiaowen Dong. Adaptive
gaussian processes on graphs via spectral graph wavelets. In Interna-
tional Conference on Artificial Intelligence and Statistics, pages 4818–
4834. PMLR, 2022.

[44] Naiqi Li, Wenjie Li, Jifeng Sun, Yinghua Gao, Yong Jiang, and Shu-
Tao Xia. Stochastic deep gaussian processes over graphs. Advances in
Neural Information Processing Systems, 33, 2020.

[45] Mark Van der Wilk, Carl Edward Rasmussen, and James Hensman.
Convolutional gaussian processes. In Advances in Neural Information
Processing Systems, pages 2849–2858, 2017.

[46] Ian Walker and Ben Glocker. Graph convolutional gaussian processes.
In ICML, 2019.

[47] Michaël Defferrard, Lionel Martin, Rodrigo Pena, and Nathanaël Per-
raudin. Pygsp: Graph signal processing in python. https://github.
com/epfl-lts2/pygsp, 2017.

[48] Hamid Behjat, Ulrike Richter, Dimitri Van De Ville, and Leif Sörnmo.
Signal-adapted tight frames on graphs. IEEE Transactions on Signal
Processing, 64(22):6017–6029, 2016.

[49] Swedish Meteorological and Hydrological Institute (SMHI). http:
//opendata-download-metobs.smhi.se/, 2013. [Online]. Accessed: 2019-
02-13.

[50] Dorina Thanou, Xiaowen Dong, Daniel Kressner, and Pascal Frossard.
Learning heat diffusion graphs. IEEE Transactions on Signal and
Information Processing over Networks, 3(3):484–499, 2017.

http://opendata-download-metobs.smhi.se/
http://opendata-download-metobs.smhi.se/

	Introduction
	Background
	Gaussian Processes
	Kernels for Vector Valued Functions
	Spectral Filtering on Graphs
	Kernels and Regularization on Graphs

	Proposed Model
	Gaussian Processes for Graph Signals
	Graph Spectral Kernel Learning
	Equivalence to the Co-regionalization Model

	Optimizing GP Log-Marginal Likelihood
	Scalability

	Related Work
	Experiments
	Initialization Strategy
	Synthetic Experiments
	Synthetic Filter Reconstruction
	Synthetic Filter Reconstruction Using Barabási–Albert Random Graph
	Synthetic Predictive Signals

	Real World Data
	fMRI Dataset
	Weather Dataset
	Uber Dataset


	Conclusion
	References

