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Abstract
New advances in data linkage provide mortality researchers with access to adminis-
trative datasets with millions of mortality records and rich demographic covariates. 
Although these new datasets allow for high-resolution mortality research, adminis-
trative mortality records often have technical limitations, such as limited mortality 
coverage windows and incomplete observation of survivors. We describe a method 
for fitting truncated distributions that can be used for estimating mortality differ-
entials in administrative data. We apply this method to the CenSoc datasets, which 
link the United States 1940 Census records to Social Security administrative mor-
tality records. Our approach may be useful in other contexts where administrative 
data on deaths are available. As a companion to the paper, we release the R package 
gompertztrunc, which implements the methods introduced in this paper.

Keywords Mortality estimation · Truncation · Statistical methods · Gompertz

Introduction

Researchers increasingly have access to large-scale individual-level administrative 
mortality records with rich demographic covariates (Bailey et al., 2022; Goldstein 
et  al., 2021; Mehta et  al., 2016). Despite the promise of these new administrative 
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datasets, these records are often only available for individuals who have died, with-
out information on survivors. This situation of having “deaths without denomina-
tors” makes it impossible to calculate occurrence–exposure mortality rates and to 
use the conventional tools of individual-level survival analysis (Alexander, 2018).

In this research, we present statistical methods for estimating mortality rates and 
differentials from a limited age window of death records. The situation we address 
is when we observe the distribution of age of death among members of a cohort for 
a left and right (henceforth, “doubly”) truncated range of ages. For example, the 
Social Security Numident records publicly released by the United States National 
Archives contains nearly every record of individuals who died after age 65 from 
1988 to 2005. For a very old cohort—e.g., those born in 1900—extinct cohort meth-
ods1 might allow traditional analysis and the reconstruction of the population at 
risk at each age. However, for most cohorts, we see only a portion of those who 
die, making it difficult to know how many people with certain characteristics were 
alive at each age. Our approach is to take advantage of the distributional information 
about the limited ages we observe. Using maximum likelihood methods that include 
information on the ages at which each cohort is truncated allows us to infer mortal-
ity rates without observing the full population at risk. This approach also allows 
multivariate methods in which mortality rates depend on individual risk factors.

The method we propose contrasts with the approach that is sometimes taken of 
comparing average ages of death within the observed age windows, both directly 
and using multivariate regression  (Lleras-Muney et  al., 2020; Saavedra, 2013). 
Such an approach can be biased in the presence of double truncation. The direction 
and magnitude of this bias are data dependent (Greene, 2003), so there are not any 
guaranteed empirical regularities. However, the observed direction in most empiri-
cal studies is towards 0, meaning that estimates from regression on age of death 
of truncated samples will generally be attenuated (biased towards 0) relative to the 
untruncated case.

Our immediate application of our new method is to the CenSoc datasets, which 
link 1940 U.S. Census records on individual characteristics with Social Security 
death records  (Goldstein et  al., 2021). However, the problem addressed by these 
methods may be applicable to other sources of population-level administrative mor-
tality records. These include the Chilean mortality registry release of a deaths-only 
dataset capturing deaths occurring from 2016 to 2021  (Chang et  al., 2022; Chil-
ean Ministry of Health, 2022), large-scale death registration data from genealogical 
databases  (Kaplanis et al., 2018; Koylu et al., 2021; Otterstrom & Bunker, 2013), 
and centenarian databases such as the International Database on Longevity2. Our 
methods may also be relevant in non-human contexts, such as the captive-cohort 
studies by Carey and colleagues, as well as capture–recapture approaches (Carey & 

1 For extinct cohorts (in which all members have died), it is possible to calculate mortality rates using 
the classical “extinct generations” methods. First, the total number of survivors at a given age can be 
found by summing up all the deaths occurring above that age. Then, the age-specific mortality rates can 
be estimated using the age-specific ratios of deaths to survivors.
2 These data are available here: www. super cente naria ns. org (Belzile et al., 2021)

http://www.supercentenarians.org
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Roach, 2020). Further, this approach may be useful for researchers using survey data 
linked to mortality records in settings where differential match rates for population 
sub-groups affect estimates of mortality. Specifically, occurrence–exposure methods 
that depend on correct linkage of death records can incorrectly infer that a difficult-
to-match person is a survivor, resulting in  the so-called “Methusala effect” (Black 
et al., 2017).

The remainder of the paper proceeds as follows: in  the  “Background” sec-
tion, we provide an overview of statistical methods for working with truncated 
data. The  “Motivating Examples” section gives motivating examples for our new 
method, and the “Methods: Maximum Likelihood Estimation of Doubly Truncated 
Data” section introduces our Gompertz maximum likelihood estimation method. 
The “Results” section presents analyses demonstrating that our approach allows us 
to remove the bias introduced by truncation and produce estimates comparable to 
external estimates using untruncated data. We conclude in the “Discussion” section 
with a discussion of key considerations for applying this method and directions for 
future research.

Background

The statistical problem of making inferences with truncated3 data has a long his-
tory in astronomy, economics, and survival analysis  (Ying et  al., 2020). A classic 
example from the demographic literature involves making inferences about changing 
population height (and health) from the heights of military recruits, who typically 
had to meet minimum height requirements and therefore under-counted short peo-
ple (Wachter & Trussell, 1982). Another canonical example from survival analysis 
literature is retrospective autopsy-confirmed studies of Alzheimer’s disease, wherein 
a subject is only observed if they die during the study’s doubly truncated observa-
tion window (Rennert & Xie, 2018).

In the context of survival analysis, left truncation is not usually considered a 
problem, with standard methods accounting for occurrences and exposure in the 
observed period. The more problematic double truncation, in which the only indi-
viduals observed are those experiencing an event within a left and right truncated 
time window, has become the focus of a growing body of research. The first non-
parametric maximum likelihood estimation methods (NPMLE) for doubly truncated 

3 For background, we distinguish between truncated and censored survival data  (Mandel, 2007). 
For censored survival data, the process generating the data is such that for some observations we only 
know whether they occurred before or after a given time point. An example of a censored dataset is the 
National Health Interview Survey (NHIS) Linked Mortality Files, which tracks deaths for participants 
in the NHIS between 1997 and 2002; any participant who did not die between 2000 and 2005 is alive. 
Thus, there is a measure of survivorship (population denominator) and researchers can use conventional 
survival analysis techniques such as Cox-proportional hazard models. In contrast, the data generating 
process for truncated data is such that we only observe deaths that occurred between the left and right 
truncation bounds, with no information on survivors. An example of a doubly truncated dataset is Cen-
Soc-Numident, which only includes those who died between 1988 and 2005, with no information on 
those who died outside of this window.
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survival data were introduced by Efron and Petrosian (1999). Recently, Rennert and 
Xie Rennert & Xie (2018) introduced methods for a Cox regression model with dou-
bly truncated data.

Regression of truncated normal data is a standard part of the econometrics 
toolkit (Greene, 2003). Regression estimates that do not account for truncation will 
be be biased, generally towards zero (Greene, 2003). Maximum likelihood estimates 
that account for truncation can remove this type of bias. The methods we present 
here can be seen as a way of adapting the parametric approach used in economet-
rics to mortality modeling. Like the econometric approach, we rely on parametric 
distributional assumptions and maximum likelihood estimation. But in our case, we 
use the Gompertz distribution rather than the normal distribution, in line with the 
almost universally observed tendency of mortality rates to rise exponentially with 
age (Gompertz, 1825). Another important difference is that the multivariate models 
we consider take the form seen in survival analysis, with covariates influencing the 
level of risk (usually proportionally), in contrast to regression models that predict 
the timing of an event.

Motivating Examples

The mortality differences observed between groups will tend to be smaller when 
there is truncation of youngest and oldest ages. We illustrate this tendency using two 
examples. The first, using simulated data, allows visualization of the effect of trun-
cation in a simple regression framework. The second, using ages of death of men 
and women born in 1900 in Sweden, shows the effect of truncation when comparing 
two group means.

A Regression Example

The regressions on age of death for person i have the form

where �0 is a general intercept, �t is the intercept for individuals born in year t, and 
� is the effect of a covariate Zi on age of death. This regression accounts for the 
composition of birth cohorts, which is critical to include since people born earlier in 
time will be observed dying at older ages.

To illustrate the relationship between degree of truncation and estimated regres-
sion coefficients, we conduct a simulation study. Specifically, we simulate4 a popula-
tion where half of all individuals have high socioeconomic status and the other half 
have low socioeconomic status. We designed the simulation such that the high soci-
oeconomic status individuals live on average 1 year longer than individuals with low 

age_at_ deathi = �0 + �tti + �Zi + �i,

4 We draw our simulated ages of death from a Gompertz distribution with parameters b = 0.1 and 
a = 0.0001.
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socioeconomic status. We then simulate 480 different mortality datasets, systemati-
cally varying the width of the truncation window width (1–30 years, increments of 1 
year) and the age at which the truncation window starts (ages 65–80, increments of 
1 year). On each simulated dataset, we fit a regression model estimating the associa-
tion between high socioeconomic status and longevity. Figure 1 plots the regression 
coefficients, standard errors, and t-statistics 

(
�1

SE(�1)

)
 for each dataset compared to the 

untruncated baseline. When the degree of truncation is higher (smallest window 
width), the coefficients, standard errors, and t-statistics are all attenuated. This simu-
lation demonstrates that double truncation can substantially attenuate regression 
coefficients.

To more clearly illustrate why double truncation can substantially attenuate 
regression coefficients, the panels of Fig. 2 below show the effect of a covariate 
on age of death, using simulated data drawn from normal distributions. The left 
panel shows the complete sample along with the estimated “effect” of the covar-
iate (0.45). The right panel shows what happens if observations were limited to 

Fig. 1  The ratio of truncated to 
untruncated regression statistics: 
standard errors (a), regression 
coefficients (b), and t-statistics 
(c) for different truncation win-
dows. A value of 1 corresponds 
to the truncated and untruncated 
statistic having the same value; 
values less than 1 correspond 
to the truncated statistic being 
smaller than the untruncated 
statistic. (Color figure online)
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ages 75 to 85. We can see that truncation removes the earliest and latest deaths, 
which also tend to be at the extremes of the covariate. The result is a flattening 
of the estimated slope to 0.15, only about one-third of its “true” value.

An Empirical Example

For our second example, we turn to real mortality data by comparing the ages of 
death of two groups, men and women born in 1900 in Sweden, based on cohort 
life tables in the Human Mortality Database (HMD). For this example, we focus 
on life expectancy at age 65, the average age of death conditional on survival to 
age 65 ( e(65) + 65 ). According to HMD, the average age of death for Swedish 
women who died after their 65th birthday was 82.7 years, and the average age 
for men was 79.1 years, a difference of 3.6 years. The distribution of deaths over 
age 65 and the corresponding averages are shown in the top panel of the figure, 
along with the count of deaths from the HMD cohort life table.

Now we consider the case of what would happen if we only had access to 
death counts from 1980 to 1989 for these male and female cohorts. We would 
then have death counts only from ages 80 to 89, instead of all deaths above 
age 65. The middle panel highlights the counts of deaths in this narrower age 
window and shows the corresponding averages. Now, the longevity difference 
between women and men would appear to be only about 0.5 years, less than one-
fifth of the difference in untruncated means. Truncation downwardly biases the 
observed differences in longevity.

Fig. 2  Simulated example of regression on effect of covariate on death age based on full data (left) and 
truncated death ages only (right). The truncation reduces the estimated “effect” by about 2/3, from 0.45 
to 0.15, in this example. Simulation is a  sample of 100 individuals following y = 30 + 0.5x + � , with 
x ∼ N(� = 100, � = 5) and � ∼ N(� = 0, � = 5)
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Accounting for Truncation

It is possible to account for truncation explicitly using maximum likelihood estima-
tion methods. Our approach, which we detail in the next section, allows a researcher 
to obtain estimates free of artificial downward bias, even when death counts are 
available for a limited range of ages. The results of applying this method (assuming 
Gompertz mortality) is shown in the lower panel of Fig. 3. We used the observed 

Fig. 3  Swedish deaths over 65 for male and female cohorts born in 1900. Data are from the Human Mor-
tality Database. The top panel shows the full distribution and the mean ages of death. The middle panel 
shows an artificially truncated age window covering ages 80 through 89 and the mean ages within this 
window. The bottom panel shows the results of fitting a Gompertz curve to the truncated observations 
using maximum likelihood and the estimates of the implied untruncated means. The estimates are very 
close to the actual values, and the estimated magnitude of the sex difference in e(65) is correct. (Color 
figure online)
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data from ages 80 to 89 to estimate the parameters of the Gompertz distribution. 
These estimated parameters were then used to describe the full distributions and 
their means. The dashed lines in the lower panel show the estimated full distribution 
(based only on the observations from ages 80 to 89) and the corresponding (now 
without bias) estimates of the means.

In this example, our estimate of the difference between life expectancy at age 65, 
based only on observations from ages 80 to 89, is about 4.0 years. This estimate is 
not exactly equal to the “true” value of 3.6 years, but is no longer subject to the 
strong downward bias from truncation shown in the middle panel, where the esti-
mated difference in life expectancy is only 0.5 years.

In theory, the maximum likelihood procedure will give accurate estimates, as 
long as the distributional assumptions are correct. In practice, each estimate will 
be subject to the random effects of finite population size. Additional error is gener-
ated by departures from the underlying distribution that is assumed—in this case, 
the Gompertz distribution.

This example illustrates our two main points: 

1. Estimation of group differences in average age of death will be downwardly 
biased, often greatly, by truncation.

2. Estimates that account for truncation can correct for this bias and provide a more 
accurate description of group differences.

These same points carry over from the comparison of the means of two groups 
to the more general case of multiple regression on age at death. The estimates of 
“effects” on age of death will generally be biased toward zero, and accounting for 
truncation using maximum likelihood aims to remove this bias.

Methods: Maximum Likelihood Estimation of Doubly Truncated Data

With parametric assumptions, maximum likelihood methods enable estimation of 
age-specific mortality with multivariate predictors, adapting the usual method of 
parametric survival analysis to our specific case of observing only those individu-
als who die. The likelihood associated with a set of observed ages of death xi with 
parameters � (e.g., the intercept and slope of the log-Gompertz curve, which may 
themselves be functions of covariates) is given by the product of the normalized 
densities, with truncation on the right at age xr

i
 and on the left at age xl

i
:

where f is the density and F is the cumulative distribution.
For example, a proportional hazards model for the effect of covariates on mortal-

ity takes the following form. The hazard of an individual i aged x with covariates Zi 
is given by

(1)L(�) =
∏

i

Li(�) =
∏

i

f (xi|�)
F(xr

i
|�) − F(xl

i
|�)

,
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with a baseline hazard schedule over age x of h0(x) . If the baseline is Gompertz,

where a0 and b0 are baseline Gompertz parameters. Alternatively, we can write

where ai is the individual-level Gompertz intercept, modeled as a0e(�Zi).
In this case, the observed data would contain for each person values xi for the 

age of death, Zi for covariates (e.g., years of education, place of birth), and the right 
and left truncation ages xr

i
 and xl

i
 for each cohort. The model estimates would be the 

parameter values â
0
, b̂

0
, and �̂.

The truncated maximum likelihood approach works with a single or multiple 
cohorts. In the latter case, the truncation ages xr

i
 and xl

i
 can vary and be indexed for 

each individual according to the ages of observation for the cohort an individual 
belongs to. In the results presented here, we model common a0 and b0 Gompertz 
parameters across cohorts, with a common effects � also applying to all cohorts. 
However, it is also possible to allow the “Gompertz intercept” ( a0 ) to vary among 
cohorts, as well as the “Gompertz slope” ( b0 ) and even the effects ( �).

The MLE standard errors are found using conventional methods, calculating the 
square root of the diagonal elements of the inverse negative Hessian matrix (Greene, 
2003). The standard errors of our estimated parameters generally increase with the 
degree of truncation, holding constant sample size. Intuitively, when we are only 
able to see observations from part of the underlying distribution, our estimates of the 
underlying distribution will be more uncertain. Compared to estimates of the trun-
cated data from conventional methods such as OLS regression on age of death or 
Cox-Proportional Hazards models, our MLE estimates are generally larger in abso-
lute value and have larger standard errors. For convenience, researchers may wish to 
use conventional methods in the exploratory research phase.

One of the crucial assumptions of our method is that the age distribution of deaths 
within the window of observation is proportional to the true underlying cohort life 
tables. With linked data such as CenSoc, this means that linkage rates may vary by 
group and by cohort, but within each group and cohort they should have no variabil-
ity by age. Changes in the completeness of death registration over time can distort 
the age distribution of deaths observed for a cohort. Migration can also distort the 
age distribution of observed deaths. We do not address issues with the underlying 
data in this paper.5 Instead, we focus on methods of estimation to be used with accu-
rate, if limited, deaths by age.

(2)hi(x|�) = h0(x)e
�Zi ,

(3)hi(x|�) = a0e
b0xe�Zi ,

(4)hi(x|�) = aie
b0x,

5 In the CenSoc data, we address death registration completeness by applying weights that reproduce the 
national number of deaths by age and year. When studying immigrants, we limit observations to those 
that we know were present in the United States at the beginning of our observation window. Similar 
approaches should be taken when working with other datasets.
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As a companion to the article, we have developed a publicly available R package 
gompertztrunc that implements the methods described in this paper  (Breen et  al., 
2022). The package can be installed from the Comprehensive R Archive Network 
(CRAN).

Results

To assess the accuracy of estimates from the truncated Gompertz approach, we ana-
lyze the relationship between education and old-age mortality. We use education as 
our substantive example because of the extensive literature investigating the relation-
ship between education and longevity (Halpern-Manners et al., 2020; Lleras-Muney 
et al., 2020; Rogers et al., 2010). This analysis enables us to (1) assess the goodness-
of-fit of the model to a single cohort, (2) show how our approach removes the bias 
in regression estimates that do not account for truncation, and (3) illustrate how the 
application of our method to truncated cohorts in the CenSoc data, for which only 
deaths are available, produces estimates that are comparable to other sources using 
full occurrence–exposure estimates.

A Single Cohort Example, with Graphical Diagnostics

We first apply our truncated Gompertz model to estimate the association between 
high school completion and longevity in the CenSoc-DMF dataset. The CenSoc-
DMF file links the 1940 Census to mortality records from the Death Master File 
(DMF), which has nearly complete death coverage from 1975 to 2005 (see Online 
Appendix  Sect. B for details on CenSoc datasets). We restrict our analysis to the 
birth cohort of 1910 because focusing on a single cohort allows for a straightforward 
graphical assessment of the goodness-of-fit of our model.

To assess model fit, we compare our empirical and model-based distributions of 
ages of death. Figure 4 shows a histogram of the number of deaths for this cohort 
for those who completed high school (panel a) and those who did not (panel b). 
The solid lines plot the corresponding Gompertz-model-based estimates of the dis-
tribution of deaths within the cohort. To construct these figures, we first plot the 
empirical distribution of deaths for the cohort of 1910, disaggregated by high school 
completion status. Next, we overlay onto each histogram our truncated Gompertz-
model-based estimate of the distribution of deaths, disaggregated by high school sta-
tus. We calculate our model-based estimates of the distribution of deaths separately 
by high school completion status. Specifically, we convert the estimated hazards ( hx ) 
into the estimated number of deaths ( dx ) using life table relationships. We then scale 
the number of model-estimated deaths to exactly match the number of empirical 
deaths within our observed truncated window.

Panel (c) shows the log hazard rate for the inferred observed (dashed lines) and 
the modeled (solid lines) log hazard rates. Since true hazard rates are not comput-
able due to the lack of population denominators, we use the results of the model 
to estimate rates. The modeled Gompertz hazard schedule is used to estimate 
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survivorship to age 66 (or the lowest fully observable age of death) for each level of 
a covariate. Then, real death counts are used to compute hazard rates for each subse-
quent observable age. In this application, we see that the inferred observed hazards 
closely track the modeled hazards and are approximately proportional.

These graphical diagnostic checks allow researchers to check whether two key 
modeling assumptions are met: that the distribution of deaths within a cohort fol-
lows a Gompertz distribution, and coefficients have proportional effects on hazards 

Fig. 4  For CenSoc-DMF cohort of 1910: a shows a histogram of age of death for those who did and did 
not complete high school; the black curves show our Gompertz-based model estimates of the number of 
deaths. b plots the model-based hazard ratio estimates (solid lines) vs. the inferred observed hazard ratios 
(dashed lines) for those who completed high school (blue) and those who did not (red). (Color figure 
online)
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at all ages. The gompertztrunc R package includes functions to implement these 
diagnostic checks.

Evidence of Reduced Bias

To demonstrate that our truncated Gompertz model produces estimates with reduced 
bias, we fit our model to three datasets varying in their degree of truncation. Our 
truncated Gompertz model produces consistent estimates of the association between 
education and longevity, while conventional methods produce estimates downwardly 
biased by the truncation.

Specifically, we fit models using ordinary least squares (OLS) regression on 
age of death6 and the Gompertz MLE approach described by Eqs. (1) and (2) to 
two different CenSoc datasets  (Goldstein et al., 2021). The first is based on death 
records in the Death Master File (DMF), and contains nearly complete coverage of 
men dying at age 65 and older from 1975 to 2005. The second is based on more 
recently released Numident data provided through the National Archives (Breen & 
Goldstein, 2022). Numident data include more detailed information but span a more 
limited high coverage period for men over age 65: 1988 to 2005. The two datasets 

Fig. 5  Association between education (years) and longevity, using two methods. Comparison of regres-
sion on age of death (red) to the Gompertz maximum likelihood approach (blue). Results demonstrate 
downwardly biased coefficients for regression on age of death because truncation is not accounted for. 
For a more direct comparison between our Gompertz model results and estimates from linear regression 
on age of death, we converted our hazard ratios into estimates of additional life expectancy at age 65. See 
Online Appendix Sect. A.1 for details on this conversion. (Color figure online)

6 We use OLS regression on age of death to illustrate how conventional methods perform in the pres-
ence of double truncation, because OLS regression has been applied to analyze CenSoc data (Fletcher & 
Noghanibehambari, 2021; Lleras-Muney et al., 2020). We note that survival methods such as Cox pro-
portional hazards regression models are also generally biased in the presence of double truncation (Ren-
nert & Xie, 2018).
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overlap to a large degree, since most deaths in the Numident also are captured in the 
Death Master File, so we would expect similar estimates from both datasets.

Figure 5 compares the potentially biased results of regression on age at death to 
the MLE approach that accounts for truncation. In this example, we analyze cohorts 
born from 1905 to 1914. This minimizes truncation in the distribution of men dying 
at age 65 and older captured in the DMF, which includes records from 1975 to 2005. 
For the birth cohort of 1910, the DMF includes records from ages 65 to 95. In con-
trast, the age window covered by the Numident, which includes records from 1988 
to 2005, is narrower, ages 78 to 95.

The estimates shown in red are from the OLS regression on age at death. Because 
they do not account for truncation, the estimates based on a narrower age range are 
biased downwards. Whereas the estimate from the wide-coverage DMF is about 0.2 
years of increased longevity at age 65, the estimate from Numident is about half this 
size, or about 0.1. To check if truncation differences are responsible for the differ-
ence in regression estimates, we artificially truncated the DMF data to the same year 
coverage as the Numident. Comparing the estimates in red in the second column 
(from the DMF truncated to 1988 to 2005) and third column (from Numident for the 
same years), we see that they now give similar estimates of about 0.1.

The blue estimates are from the Gompertz proportional hazards model. To allow 
comparison with the regression model, we have re-calculated the estimated propor-
tional hazards effects in terms of the difference in remaining life expectancy at age 
65. Now the estimates from our Gompertz proportional hazards models for all three 
sources are highly comparable, with overlapping uncertainty intervals.

Our conclusions from these results are that, for the CenSoc datasets, 

1. Regression on age of death produces downwardly biased longevity effects over 
age 65 with truncated data.

2. The magnitude of this bias depends on the degree of truncation.
3. It is possible to obtain less biased estimates using maximum likelihood approaches 

that explicitly account for truncation. We obtain similar estimates for the less 
severely truncated data (DMF, 1975–2005), the narrower coverage data (Numi-
dent, 1988–2005), and the artificially truncated data (DMF, 1988–2005).

Comparison with External Estimates

The above analysis demonstrates that estimation that accounts for truncation can 
create comparable estimates of the educational gradient across CenSoc datasets 
of varying source and truncation degree. One can also compare these estimates to 
those from other studies estimating the association between education and longev-
ity. Rogers et al. (2010) published estimates of U.S. adult mortality risk by educa-
tional degree, including post-secondary degrees. Recently, Halpern-Manners et  al. 
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(2020) used an internal version of the Numident and DMF linked to the 1940 Cen-
sus to estimate association between education and longevity. Furthermore, Lleras-
Muney et al. (2020) estimated the educational gradient across states using both the 
untruncated Census Tree dataset7 and the truncated CenSoc-Numident dataset, find-
ing the double truncation of the CenSoc-Numident downwardly biased estimates of 
the education gradient by a factor of nearly 4.

In Table 1, we compare our estimates of the association between an additional 
year of education and longevity to those from the three studies. Despite substantial 
difference in study design—each study uses different birth cohorts, methods, and 
mortality data—the estimates generally align closely. However, there is one notable 
exception: the estimate using conventional linear regression on age of death with the 
highly truncated CenSoc-Numident dataset is highly attenuated, only 25% of the full 
estimate. This example demonstrates that using this method can explicitly account 
for double truncation and produce estimates comparable to those made from untrun-
cated data. 

Required Width of Truncation Window

The Gompertz proportional hazards model introduced in this paper requires a suf-
ficiently wide window of deaths to produce reliable estimates. To illustrate, we 
constructed subsamples of the CenSoc-Numident cohort of 1910 with differently 
truncated windows of observed deaths by systematically varying the start and end 
ages of our observed window. For each subsample, we used the truncated Gompertz 
model to estimate the hazard ratio for the association between an additional year of 
education and longevity.

Figure 6 displays the estimated hazard ratios from this exercise. Generally, when 
the truncation window becomes too narrow, our model estimates become unreliable. 
For example, when we consider estimates from truncated windows less than five 
years in length, the estimated hazard ratios are close to 1, erroneously indicating that 
education has almost no association with longevity. Windows that do not contain the 
empirical modal age at death are generally less reliable. However, estimates from 
truncated windows 10+ years in length are highly consistent. Broadly, we recom-
mend that caution be exercised if the mortality window is fewer than 12 years in 
length. Relatedly, when combining multiple cohorts for a common estimate, care 
should be taken to exclude cohorts with severe truncation, as this risks downwardly 
biasing estimates even within the MLE framework.

7 The Census Tree data matches the 1940 Census to vital statistics from the FamilySearch database, a 
genealogy platform with over 12.6 million registered users.
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Discussion

In this paper, we provide a new method for estimating age-specific mortality rates 
from counts of deaths for partially observed (truncated) cohorts. Our principal goal 
was to estimate mortality rates from newly released administrative data records, 
such as the death records from the U.S. Social Security Administration. However, 
we anticipate this method will be applicable to other sources, such as oldest-old 
mortality studies where only deaths are counted. Our approach may also be used 
as an alternative to occurrence–exposure methods when there are concerns about 
numerator–denominator mismatch.

We propose a maximum likelihood approach that explicitly accounts for age 
truncation at lower and higher ages and estimates the truncation-adjusted param-
eters of the Gompertz mortality model. Our approach can be used for a single cohort 
or multiple cohorts combined. In this paper, we model the effect of covariates in a 
proportional hazards framework, but this model may be extended to include varia-
tion in the Gompertz slope of mortality by age. We fit these models using standard 
numerical optimization, but Bayesian approaches may also be used, particularly to 
add multi-level structure to the model.

Fig. 6  Acceptably wide observation windows. Values are estimated hazard ratios of the education gradi-
ent for men born in 1910, using CenSoc-Numident data, with different combinations of truncation limits. 
The best estimate of the hazard ratio is 0.97, which is computed using the widest observation window 
possible (17 years). Light gray tiles are observation windows where the model captures the best estimate 
of the hazard ratio in a 95% confidence interval. Estimates inside the black outline indicate that the trun-
cation window contains the modal age at death, which is 84 years in these data. This experiment indi-
cates that truncation windows of approximately 10–12 years or more usually produce reliable estimates. 
Windows as narrow as 8–9 years may also be sufficient for estimation if the data contain the mode of the 
empirical mortality distribution
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We test our method by estimating the effect of educational attainment on male 
old-age mortality. First, we find that, in this setting, the proportional hazards’ 
Gompertz model fits well, using graphical displays to show the linearity and pro-
portionality of death rates broken down by educational attainment. Second, in the 
presence of double truncation, our method produces larger estimates (less attenua-
tion bias) of the association between education and mortality than does the existing 
approach of regressing on age at death. Even when the window of observed ages 
changes, our method produces comparable results. Finally, we find that our esti-
mates of the magnitude of the effect of education on mortality are comparable with 
published estimates using other data sources that do not suffer from truncation.

Together, these results give us confidence that the truncated Gompertz model can 
be applied to other topics that influence mortality, including a wide range of socio-
economic covariates. Topics that can be studied with the CenSoc data include the 
effects of wages and occupation, family structure, immigration by country of origin, 
geographic variation, and any other question for which census data can be of use. As 
a  complement to the paper, we introduce a publicly available R package gompertz-
trunc implementing the methods described in this paper.

Despite the promise of this approach, there are several considerations and limi-
tations for researchers implementing this method that warrant discussion. First of 
all,  a number of computational issues can arise when maximizing the likelihood. 
These include dependency on starting values, particularly for complex models, and 
are especially pronounced for smaller samples or higher degrees of truncation. We 
note that a sufficiently wide window of deaths is required to produce reliable esti-
mates. If the degree of truncation is high (window of death coverage is less than 10 
to 12 years), we recommend researchers exercise caution in applying this method. 
Sensitivity to starting values and instability with smaller sample sizes are problems 
general to maximum likelihood estimation.8

In general, the computational demands of the current approach are intensive, and 
we run into additional computational challenges when introducing models with a 
large number of parameters. Large-scale fixed-effect models, for example of siblings 
or small geographic areas, are not possible with our current computational approach.

Our proposed method may also not be appropriate in certain contexts. We empha-
size that the method is only as good as the data: if the distribution of deaths in the 
population is not well represented by the sample of available data, then estimates 
for mortality can be mistaken with patterns of undercounts. Researchers should take 
care to validate the mortality coverage of their data and consider using weights to 
account for potential disparities in coverage by age and period. High net migration 
occurring in the ages of observation can also distort cohort death distributions, and 

8 It is common practice to use OLS estimates to set starting values; by default, the gompertztrunc R 
packages uses estimates from linear regression converted to hazards but also allows users to custom-
ize starting values. Since regression estimates can be be biased downwards in the presence of trunca-
tion, researchers may also want to scale up starting values determined by OLS. For example, simulations 
imply that OLS estimates of remaining years of life for CenSoc-Numident data are usually deflated by a 
factor of 2–3. (However, note that OLS estimates and hazard ratios do not scale linearly (Pang and Han-
ley, 2021); see Online Appendix Sect. A.1 for details on converting between the two).
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ideally only immigrants present at the beginning of the truncation window should be 
included in studies. As discussed previously, the method is less reliable if there are 
very few years of data available, especially if observed data are suspected to exclude 
the peak of the mortality distribution.

Our parametric method relies on the Gompertz model, which is well known to fit 
well for adult populations in their 70s and 80s. At older and younger ages, however, 
the Gompertz model may not necessarily be ideal, and it may become important to 
include a Makeham term at younger ages or a tapering “logistic” term at older ages. 
We also assume a common Gompertz slope parameter and proportional hazards. 
Further, the lack of population denominators makes it impossible to assess propor-
tionality with common methods such as plotting Kaplan-Meier curves. Researchers 
can, however, use the graphical diagnostic tools in the gompertztrunc R package to 
roughly gauge proportionality from inferred observed hazard rates, as in Fig. 4.

As a final consideration, researchers studying change over time from one birth 
cohort to the next should be cautious in interpreting their results. Observed cohort 
trends could result from real changes in effects over time, age effects introduced by 
observation of different cohorts in different age ranges, variation in departures from 
model assumptions, or a combination of these. Researchers should verify that the 
individual cohort data are representative of the population distributions and not sub-
ject to extreme degrees of truncation. If there are sufficient data to do so, researchers 
may want to restrict all cohorts of interest to a common range of ages at death.

Many of these limitations represent promising extensions to our parametric 
Gompertz model and avenues for future research. We are investigating techniques 
for incorporating large numbers of fixed effects (e.g., sibling fixed effects). The 
functional form of the covariates (and of the baseline hazard) is flexible. We use 
the Gompertz form here with the proportional hazards assumption (estimating one 
common Gompertz slope b0 for all cohorts and sub-groups). But it is possible to 
fit hierarchical models that allow for arbitrary structure in how parameters co-vary. 
For example, one might want to allow the Gompertz slope to vary (slowly) over 
time and differ between sub-groups. It is also possible to use other parametric forms 
besides the Gompertz, incorporating mortality deceleration at very old ages, or a 
Makeham constant. It is also possible, as Alexander (2018) has shown, to estimate 
the principal components of known age schedules (e.g., from HMD) and penalize 
estimates that differ from these schedules, as described by linear combinations of 
these components.

The truncated Gompertz MLE approach proposed here offers a method of mortal-
ity estimation for situations where population denominators are either unavailable or 
unreliable. While most literature on truncated data focuses on one-sided truncation, 
our method offers a solution for circumstances where data are doubly truncated, 
especially where doubly truncated survival analysis methods are impossible due to 
lack of information on the population at risk. Our parametric Gompertz method is 
straightforward and appropriate in contexts that are well described by Gompertz’s 
law. Our method helps ameliorate bias introduced by double truncation, allowing 
researchers to make estimates directly comparable to those from conventional meth-
ods applied to untruncated data. We anticipate the increasing utility of this method 



1 3

Mortality Modeling of Partially Observed Cohorts Using… Page 19 of 20    36 

in the growing landscape of administrative death records that often lack a measure 
of the population exposed to risk.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s11113- 023- 09785-z.
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