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Thomas Paine

Abstract

In 2017, Abramsky, Dawar, and Wang published a paper which gave a comonadic
characterisation of pebble games, tree-width, and k-variable logic, a key trio of
related concepts in Finite Model Theory. In 2018, Abramsky and Shah expanded
upon this to give an analogous comonadic characterisation of Ehrenfeucht-
Fraisse games, tree-depth, and bounded quantifier rank logic. A key feature of
these papers is the connection between two previously distinct subfields of logic
in computer science; Categorical Semantics, and Finite Model Theory. This
thesis applies the ideas and techniques in these papers to give a categorical ac-
count of some cornerstone results of Finite Model Theory, including Rossman’s
Equirank Homomorphism Preservation Theorem, Courcelle’s Theorem (on the
model-checking properties of structures of bounded tree-width), and Gaifman’s
Locality Theorem.
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Chapter 1

Introduction

1.1 Thesis Overview

The pebbling and Ehrenfeucht-Fraisse comonads were introduced by Abram-
sky, Dawar, and Wang in [1] and by Abramsky and Shah in [5] respectively. In
short, this thesis explores those comonads and their application to some topics
in Model Theory and Finite Model Theory.

This thesis will consist of four main chapters, the first of which being a tech-
nical introduction. In the introduction, we cover the necessary model theoretic
background needed to understand the aforementioned comonads and the rest of
the thesis, in addition to giving a presentation of the comonads. This material
is entirely recapping from both [1] and [5] in addition to some material one may
find in a standard source on finite model theory such as [13] or [17]. The sole
exception to this is the treatment of constants in the relational signature, and
free-variables in a first-order formula, which was initially demonstrated in [26]
by the present author.

In more detail, the introduction will cover notions of quantifier rank and
variable count for first-order formulae, and the corresponding notions of tree
depth and tree width for first-order structures. The relationship between these
can be seen by the canonical query of a first-order structure, which allows us
to see the relationship between the pre-ordered class of finite first-order struc-
tures of bounded tree depth (respectively tree width) and the poset of positive
existential first-order formulae of bounded quantifier rank (respectively vari-
able count). In addition, we cover relations between first-order structures that
compare them based on which first-order formulae they satisfy, which are essen-
tially graded versions of homomorphisms and elementary equivalence, and see
how these relations can be expressed using the Ehrenfeucht-Fraisse and pebble
games. Lastly in the introduction we cover the comonads themselves, with a
family of comonads corresponding to the Ehrenfeucht-Fraisse games and pebble

5



6 CHAPTER 1. INTRODUCTION

games respectively. There are two key features of the comonads; firstly, the
co-Kleisli morphisms out of the comonads correspond to winning strategies in
the games (for one of the players) and hence correspond to relations between
first-order structures, and secondly, the co-algebras of the comonads correspond
exactly to witnesses for bounded tree depth or bounded tree width (known as
forest covers).

The second chapter follows very closely with the paper [26] (written by the
present author). The paper seeks to expand on one the key results from [27]
known as Rossman’s Equirank Homomorphism Preservation Theorem, which
says that any first-order formula preserved under homomorphisms is seman-
tically equivalent to a positive existential formula of the same quantifier rank.
This is an improvement upon the ordinary Model Theoretic version of the Homo-
morphism Preservation Theorem which says that a first-order formula which is
preserved under homomorphisms is equivalent to a positive existential formula
of potentially any quantifier rank. The aims of the paper, and what is pre-
sented in the second chapter of this thesis, is to give an account of Rossman’s
Theorem using the comonadic framework in the introduction, and to work to-
wards Abramsky’s conjectured generalisation of Rossman’s Theorem, that any
first-order formula that is preserved under homomorphisms is equivalent to a
positive existential formula of the same quantifier rank and variable count. The
conjecture remains unproven, though a special case of it is proved in the second
chapter, and we outline a number of possible methods for proving the general
case.

The third chapter is work entirely novel to this thesis. The key result of
this chapter is the demonstration of a family of adjunctions between first-order
structures and a definable subcategory of Kripke structures. We show that one
part of the adjunction also tracks first-order formulae of bounded quantifier rank
(or bounded variable count) to modal formulae, so that one can express graded
versions, or indeed the ordinary version, of elementary equivalence as a form of
bisimulation between Kripke structures. We go on to show that the definable
subcategory of Kripke structures is actually the Eilenberg-Moore category, the
category of coalgebras, for the comonads. This tells us in particular that a
pre-image of a first-order structure under the second part of the adjunction is a
forest-cover for that structure, and we investigate the relationship between the
first-order formulae satisfied by a first-order structure and the modal formulae
satisfied by a Kripke structure that is its pre-image. We go on to show that if we
view the pre-image as a labelled, directed graph rather than a Kripke structure,
we in fact get an exact correspondence between monadic second-order formulae
satisfied by the graph and the initial first-order structure. Interestingly, this
result provides another approach to proving one of the key steps in Courcelle’s
Theorem, that any monadic second order formula is linear time checkable on
first-order structures of bounded tree-width, which we explain in more detail in
the chapter.
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The fourth and final chapter is also novel to this thesis, and in it we explore
the notion of locality through the Ehrenfeucht-Fraisse comonad. Locality is a
notion for first-order structures borrowed from Graph Theory, which bounds
the range of quantifiers in a first-order formulae by distance, where distance is
defined for a first-order structure via its Gaifman graph. We define a localised
subfunctor of the Ehrenfeucht-Fraisse comonad and see how it tells a similar
story to the Ehrenfeucht-Fraisse comonad but for localised formulae and a lo-
calised version of the Ehrenfeucht-Fraisse game. We also define the notion of
“Reachability” and show it characterises precisely the tightest locality bound
for which the local and ordinary Ehrenfeucht-Fraisse games coincide. Interest-
ingly, we see the corresponding “Reachability” subfunctor of the Ehrenfeucht-
Fraisse comonad is actually a comonad, unlike the general local versions which
are simply functors, and hence have identified a non-trivial subfunctor of the
Ehrenfeucht-Fraisse comonad which is also a comonad. We go on to consider
how the localised subfunctors can also give an account of local forms of elemen-
tary equivalence using the construction from the third chapter. This allows us
to express a weakened version of Gaifman’s Theorem in our framework, which
is a key Theorem when considering locality in Model Theory, and essentially
says that for any first-order formula there is an equivalent local formula. This
expression leads us to conjecture a version of Gaifman’s Theorem where we use
Reachability rather than ordinary locality.

1.2 Logic and Structures

Throughout this thesis we will be interested primarily in first-order logic (FO),
fragments of FO, and their interplay with relational structures. We shall start by
showing their duality using canonical queries and term structures, and see how
this relationship tracks when restricted to fragments of FO and subcategories of
relational structures respectively. We shall then see how particular comonads
effectively capture all of the discussion about structures of bounded tree width
and tree depth.

We shall fix a finite set σ of relations, which shall be referred to as our
vocabulary or signature. The set σ will contain only relations, each with some
arity, which is a positive integer saying how many inputs the relation takes.
We shall largely be considering FO formulas over σ, constructed using atomic
relations, negations, binary connectives {∧,∨}, and quantifiers {∃x,∀x} for any
variable x. A sentence will be a formula with no variables occurring free in
it, and we shall use L to denote the set of sentences over σ. We will use L(l)
to denote the set of formulas over σ whose free variables occur among the set
x1, ..., xl (so L = L(0)). We shall say a formula is positive existential if it is built
only using connectives {∃x,∨,∧} and primitive positive if it is built using only
{∃x,∧}, and we shall use superscripts + and prim respectively to denote these
fragments. Since ∨ and ∧ distribute over one another, any positive existential
formula can be written as a disjunction of primitive positive ones.

A first-order structure over σ, which we will sometimes call a σ- structure, is a



8 CHAPTER 1. INTRODUCTION

set (sometimes referred to as the universe) A, equipped with relations RA ⊂ Al
for each R ∈ σ where l is the arity of R. We often write A |= R(a1, ..., al)
instead of (a1, ..., al) ∈ RA. We will refer to first-order structures using letters
A,B,C and use the same symbol to refer to both a structure and its universe.
Given two structures A,B a homomorphism (or morphism) f : A → B is
on ordinary set-map with the extra condition that if A |= R(a1, ..., al) then
B |= R(f(a1), ..., f(al)) for every R ∈ σ and tuple of A. For each l, we define a
category Rσ(l), with objects (A, ā), where A is a first-order structure and ā is
an l-tuple of A. Morphisms f : (A, ā) → (B, b̄) will be first-order morphisms f
that also satisfy f(ai) = bi for each i = 1, ..., l. We will just write Rσ for Rσ(0).
We will write (A, ā) |= φ(x̄) for for the usual satisfaction relation between a
first-order structure (A, ā) ∈ Rσ(l) and a first-order formula φ ∈ L(l), where
the ai interpret the free variables xi. We will often leave the free variables in a
first-order formula implicit. Given a structure (A, ā) ∈ Rσ(l), the substructure
induced by some subset A′ ⊂ A, is the structure with universe A′ ∪ {a1, ..., al},
with relations restricted from A (ie for b̄ a tuple of A′ of length equal to the
arity of some R ∈ σ, A′ |= R(b̄) ⇐⇒ A |= R(b̄)). Note that the inclusion map
from an induced substructure to a structure is always a morphism.

Throughout this thesis we will define various fragments of first order logic
in a syntactic fashion though we are almost always interested in the semantic
content of a formula. Two formulas φ, ψ ∈ L(l) are semantically equivalent
(or sometimes said FO equivalent), written ψ ≡ φ, if for every (A, ā) ∈ Rσ(l),
(A, ā) |= φ ⇐⇒ (A, ā) |= ψ. Often times we may leave semantic equivalence
implicit (eg we may say a formula is positive existential when we mean it is
semantically equivalent to a positive existential formula).

Both first-order structures and first-order sentences can given a pre-order
(many of which are in fact lattices, though we shall not exhibit the details).
The canonical query and term structure constructions show us the relationships
between these.

We can turn L(l) into a pre-order as follows (writing → for the order re-
lation): φ → ψ if and only if for every (A, ā) ∈ Rσ(l), if (A, ā) |= φ then
(A, ā) |= ψ, in other words if φψ is a tautology. This is clearly transitive, and
further turns L(l) into a poset since we are interested in formulae only up to
semantic equivalence. We write (A, ā) → (B, b̄) for (A, ā), (B, b̄) ∈ Rσ(l) as a
shorthand for ∃f : (A, ā) → (B, b̄) ∈ Rσ(l). This is once again a transitive
relation, however we do not get a poset this time is (A, ā) � (B, b̄) does not
imply (A, ā) ≡ (B, b̄), let alone equality. In addition, Rσ(l) is a proper class
rather than just a set.

The canonical query transports structures to primitive positive first-order
sentences as follows:

Definition 1.2.1. Given (A, ā) ∈ Rσ(l), a canonical query for (A, ā) is any
φ ∈ L satisfying the following two properties:

1. (A, ā) |= φ
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2. For any (B, b̄) ∈ Rσ(l), (B, b̄) |= φ if and only if (A, ā)→ (B, b̄)

Though we state them separately, condition 1 is clearly implied by condition
2 since there is always the identity map from a structure to itself. The following
lemma asserts that every finite structure (ie first-order structure with a finite
universe) has a primitive positive first-order canonical query, and taken with the
above definition it follows that we can map finite structures onto a sub-poset of
first-order formulas.

Lemma 1.2.2. For any finite (A, ā) ∈ Rσ(l), there exists φ ∈ Lprim(l) that is
a canonical query for (A, ā)

Proof. For some ordering of the universe of A := {a1, ..., al, al+1, ..., am} (where
a1, ..., al make up the tuple ā), define φ(A,ā), to be:

φ(A,ā)(x̄) := ∃xl+1, ...,∃xm
∧
{R(xi1 , ..., xij ) : R ∈ σ, (ai1 , ..., aij ) ∈ RA}

Now φ(A,ā) asserts there are some m (not necessarily distinct elements) of
a structure who satisfy at least all of the same atomic relations as the corre-
sponding elements of A. Hence a morphism from f : (A, ā)→ (B, b̄) is precisely
the same as finding set of witnesses for φ(A,ā) in B (via f(ai) :=witness for xi
in B).

Example 1.2.3. Suppose A = {a} is a one element structure that satisfies only
a single unary predicate P ∈ σ. Then φA = ∃x1P (x1), and φ(A,a) = P (x1).

The construction in the reverse direction is known as a term structure:

Definition 1.2.4. Given φ ∈ L(l), a term structure for φ is a structure (A, ā) ∈
Rσ(l) such that φ is a canonical query for (A, ā).

Any primitive positive formula has a term structure:

Lemma 1.2.5. Let φ ∈ Lprim(l). Then φ has a term structure.

Proof. Suppose for convenience that variables x1, ..., xl do not occur bound in
φ, and no variable in φ is bound more than once. Define Cφ to be the structure
with universe {ci : xi occurs in φ} ∪ {c1, ..., cl} to ensure we have a witness
for each of the free variables, even if they satisfy no relations, distinguished
elements (c1, ..., cl), and satisfy atomic relations R(ci1 , ..., cim) if and only if
R(xi1 , ..., xim) occurs in φ. If we use the canonical query construction defined
above on Cφ we will get back φ as required.

Between the term structure and canonical query construction, we have es-
sentially identified the pre-ordered class of finite first-order structures (under
→), with the poset of primitive positive formulae under implication, modulo
the following lemma:

Lemma 1.2.6. If A is a term structure for φ ∈ Lprim(l), then for any ψ ∈
Lprim(l), (A, ā) |= ψ if and only if φ→ ψ is a tautology.
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Proof. Now let (C, c̄) ∈ Rσ(l) be some arbitrary structure such that (C, c̄) |= φ,
we must show (C, c̄) |= ψ. By above, there exists some (B, b̄) a term structure for
ψ, which must satisfy (B, b̄)→ (A, ā) since (A, ā) |= ψ. Now since (C, c̄) |= φ we
have (A, ā)→ (C, c̄), and hence (B, b̄)→ (C, c̄), so we can conclude (C, c̄) |= ψ.
The reverse direction is immediate.

1.3 Grading by Variable Count and Quantifier
Rank

We will be interested in graded fragments of first-order logic, as they can be more
tractable than full first-order logic (see [9] and [18]), and in addition, full first-
order logic can be too powerful when considering finite structures (for instance,
two finite structures that are elementarily equivalent are actually isomorphic).
To that end, we define quantifier rank and variable count.

Definition 1.3.1. For a formula φ ∈ L(l), its quantifier rank is the maximum
nesting depth of quantifiers occurring in it:

• If φ is atomic, it has quantifier rank 0

• If φ is of form χ∧ψ or χ∨ψ, it has quantifier rank equal to the maximum
of the quantifier rank of χ and ψ

• If φ is of form ¬χ, it has quantifier rank equal to that of χ

• If φ is of form ∃xχ or ∀xχ, then it has quantifier rank equal to that of
χ plus one.

The variable count of a formula is the total number of distinct variable symbols
used in it.

For natural numbers n, k, let Ln,k(l) be the fragment of L(l) of consisting
of formulas with quantifier rank at most n, and variable count at most k.
Note that the free variables do come out of the total number of allowed variables,
and that rebinding variables, including ones that were used freely, with different
quantifiers is necessary for full expressivity when limiting the variable count.
For instance, the existence of a walk of length n in a directed graph can be
expressed by a sentence in Ln,2, only if one reuses the same variable multiple
times. We define Ln(l) := Ln,n+l(l). The following lemma justifies this defi-
nition, by asserting that a formula of quantifier rank n can fruitfully use at
most n + l variables, one for each quantifier rank plus the number that occur
free, so Ln(l) semantically captures all formulas of quantifier rank n, with any
number of variables.
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Example 1.3.2. A formula proposing the existence of a walk of length 3 in the
language of graphs (ie where σ contains only a single binary relation R) may be
written

∃x1∃x2∃x3(R(x1, x2) ∧R(x2, x3))

which has quantifier rank 3 and variable count 3. It could also equivalently
written

∃x1((∃x2R(x1, x2)) ∧ (∃x2R(x2, x1)))

which has quantifier rank 2 and variable count 2. In this case, we say both
sentences are members of the set L2,2.

Lemma 1.3.3. Suppose φ ∈ L(l) has quantifier rank n. Then there exists
ψ ∈ Ln(l) semantically equivalent to it.

Proof. We take for granted some basic properties of semantic equivalence (namely
it is preserved under connectives) in order to do an induction on the number
of connectives in φ. If φ is atomic, all of its variables occur free, thus it has at
most l of them. If φ = ψ ∧ χ or ψ ∨ χ, or ¬ψ we simply apply our induction
hypothesis to ψ and χ and we are done. If φ = ∃xχ, we can assume χ is uses at
most n+ l− 1 variables since it has quantifier rank at most n+ l− 1. Hence
φ uses at most n+ l variables.

We can also grade the existential positive and primitive positive fragments
by quantifier rank and variable count. The dual notions of quantifier rank
and variable count for first-order structures are known as tree depth and tree
width respectively, which we will define via (n, k)-covers, which require a some-
what lengthy definition. Similarly to quantifier rank and variable count,
tree depth and tree width are of interest in Finite Model Theory as classes of
structures of bounded tree-depth or bounded tree-depth are more tractable than
the class of all structures. For instance, see [24] on bounded tree depth, and the
discussion in the third chapter on Courcelle’s Theorem for bounded tree width.
Intuitively, an (n, k)-cover organizes a structure (A, ā) into a tree with ā in a
path at the top, with the extra condition that any elements that occur in some
tuple of a relation together are all “visible” to one another (where “visibility”
is determined by the structure of the tree).

We will say a rooted forest (F, r̄) is a pair (F, r̄), where F is a graph that
forms a forest (ie each connected component of F is a tree), and r̄ is a tuple
containing exactly one vertex from each component, which we shall refer to as
the roots. A branch of a rooted forest is a path from a vertex to its root and
the depth of the forest will be the maximum number of vertices occurring in a
single branch.

Definition 1.3.4. • The Gaifman graph of A ∈ Rσ, G(A), is an undi-
rected simple graph with vertex set A, and an edge between a1, a2 if they
occur together in some guarded tuple of A (that is to say, there is a relation
R ∈ σ and tuple ā ∈ RA containing a1, a2).
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• A forest cover of a graph G is a rooted forest (F, r̄) on the same vertex
set, such that whenever there is an edge a1, a2 in G, they occur together
in some branch of F .

• A k− labelled forest cover of a graph G is a forest cover (F, r̄) along
with a labelling of the vertices c : F → {1, ..., k} such that whenever there
is an edge a1, a2 in G, and a1 is an ancestor of a2 (that is to say, a1 lies
on the unique path from a2 to its root), then for any a3 on the unique path
from a1 to a2, we have c(a3) = c(a1) =⇒ a3 = a1, or in other words, the
label of a1 is not used again on the path to a2, including at a2, whenever
there is an edge a1, a2 in G.

Definition 1.3.5. • An (n,k)− cover of A is a k-labelled rooted forest
cover of G(A) of depth at most n.

• An (n,k)− cover of (A, ā), (F, r̄), is a k-labelled rooted forest cover of
G(A) of depth at most n+ l with the following two properties:

– F is a tree with unique root a1

– The unique child of ai in F is ai+1 for i = 1, ..., l − 1.

Intuitively, F is (n, k)-cover of G(A) − {a1, ..., al} that becomes a forest
cover of G(A) when a1, ..., al are connected to it as a path.

• The tree depth of (A, ā) is the least n such that there exists an (n, k)-
cover of (A, ā) for some k (if one exists); or, equivalently, that there exists
an (n, n)-cover, since one only needs at most n-labels to label a forest of
depth n.

• The tree width of (A, ā) is the minimal k such that there exists a k-
labelled forest cover, minus one (subtracting one is a convention so that a
tree always has tree width 1).

Example 1.3.6. A simple example to understand forest covers is the case of
graphs once again. If G is a tree, then (G, r) is a rooted forest cover for any
choice of r ∈ G. Labelling the vertices in an alternating fashion (ie the label of
r is 1, its children have label 2, their children have label 1 etc) will then provide
a 2-labelled forest cover for G, witnessing the fact that any tree does in fact have
treewidth 1.

Tree depth and tree width can be defined in other equivalent ways, using
other similar style graph decompositions, recursive definitions, or a coalgebraic
definition we give below. Above we said that tree depth and tree width were the
analogs of quantifier rank and variable count respectively. This is made explicit
with the following lemma:

Lemma 1.3.7. If (A, ā) ∈ Rσ(l) is finite and has an (n, k)-cover, then (A, ā)
has a canonical query in Ln,kprim(l). Conversely, if φ ∈ Ln,kprim(l), then φ has
a term structure with an (n, k)-cover.



1.3. GRADING BY VARIABLE COUNT AND QUANTIFIER RANK 13

Before we prove this lemma, we briefly discuss the direct scope relation on
quantifiers:

Definition 1.3.8. We will say a variable quantifier q is in the direct scope
of a quantifier q′ in a formula if and only if whenever some other quantifier q′′

has q in its scope, it also has q′ in its scope. We will say an atomic relation R
is in the direct scope of a quantifier q under a similar condition, that if R is in
the scope of any other quantifier q′ then q is also in the scope q′.

The point of this definition is the observation that the quantifiers of any
formula form a forest under the direct scope relation. We also remark that for a
primitive positive formula, it is characterised up to semantic equivalence by this
forest, along with a list of the atomic relations in it, and which quantifier each
relation is in the direct scope of. This relies on the fact that the ∧ connective
is both symmetric and associative. An intuitive way to picture this is an alter-
native syntax for primitive positive formulae, where rather than written inline,
formulae are written on a forest, with each node corresponding to a quantifier
and possibly some atomic relations. Now we can proceed with the proof of the
lemma:

Proof. (of Lemma 1.3.7). Recall from Lemma 1.2.2, for a given structure (A, ā)
with universe {a1, ..., am},

φ(A,ā)(x̄) := ∃xl+1, ...,∃xm
∧
{R(xi1 , ..., xij ) : R ∈ σ, (ai1 , ..., aij ) ∈ RA}

is a canonical query for it, where the conjunction ranges over all relations be-
tween elements of (A, ā). In the first instance, we consider a structure A with
no distinguished elements, and then move onto the general case. So suppose A
has an (n, k)-cover F , we aim to construct ψA ∈ Ln,kprim that is a canonical
query for A. First, we will specify a sentence ψ′ by the method described above,
giving its forest of quantifiers and the direct scope relation between its atomic
relations and quantifiers. Let ψ′ have one existential quantifier ∃xi for each
element ai ∈ A. We specify the direct scope relation between these quantifiers
using F , with the rule that xi is in the direct scope of xj if and only if ai is the
child of aj in the forest F . Were we to think of ψ′ to be written as a forest, it
would simply be the same forest as F . To finish specifying ψ′ we need to specify
what atomic relations it has and which quantifier it is in the direct scope of. ψ′

shall have the same set of atomic relations as φA, in other words an atomic rela-
tion R(xi1 , ..., xij ) whenever R(ai1 , ..., aij ) is in A. Each atomic relation shall be
in the direct scope of ∃x′ where a′ is the element among ai1 , ..., aij that occurs
furthest from its root in F (we will verify that there is a unique such choice
below). We claim that ψ′ is actually a sentence, a canonical query for A, and
has quantifier rank at most n. The latter claim is immediate, since the maxi-
mum nesting depth of quantifiers is the length of the longest chain of quantifiers
with each one in the direct scope of the previous, and this is equal to the depth
of F (which is n) since the direct scope relation in ψ′ is exactly parent child
relation in F . It is also clear why ψ′ should be a canonical query for A, since
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as in Lemma 1.2.2, it contains an existential quantifier for each element of A
and an atomic relation for each relation among tuples of A. Finally we need to
check ψ′ is a sentence, which amounts to checking whenever we have an atomic
relation R(xi1 , ..., xij ) , it is always in the scope of each of ∃xi1 , ...,∃xij . Recall
that if R(ai1 , ..., aij ) holds, then by the definition of F , ai1 , ..., aij all lie on the
same branch of F . Hence, there is a unique a′ among them furthest from their
common root, and all of them lie on the path from a′ to its root. Translating
this to the quantifiers, this shows that ∃x′ is in the scope of, or equal to one of
∃xi1 , ...,∃xij as required.
Next we use the labelling of F in order to construct ψA using at most k vari-
ables. Let ψA be the formula obtained by replacing each variable of xi of ψ′

by xc(ai) where c(ai) is the label of ai in F . Clearly, this is uses at most k
variables (since F uses at most k labels), so what remains to show is that this
is equivalent to ψ′. To check this, we need to check that the relabelling of vari-
ables, where we use the same variables names multiple times, has not affected
the scope relation between quantifiers and atomic relations. So given some re-
lation R(xi1 , ..., xij ) occurring in ψ′ we need to check R(xc(i1), ..., xc(ij)) is in
the scope of the appropriate quantifiers in ψA. This might not be the case if
one of the variables was reused between one of the original quantifiers and the
atomic relation. This amounts to checking that for each a among ai1 , ..., aij ,
c(a) is not reused on the path from a to a′, where a′ is the element furthest
from its root among ai1 , ..., aij . This then follows from the fact that F is an
(n, k)-cover, and there is an edge a, a′ in G(A) for each choice of a, as witnessed
by the relation R(ai1 , ..., aij ). This concludes the case where A is a structure
with no distinguished elements. In the case of a structure of form (A, ā) with
l distinguished elements, we follow the same construction as above to get a
sentence ψA. By the definition of an (n, k)-cover of (A, ā), ψA will be a sen-
tence using at most l-variables, quantifier rank at most l + n, and will lead
with a chain of quantifiers ∃xc(a1), ...,∃xc(al) each one being the unique quan-
tifier in the direct scope of the previous, since F necessarily begins with the
path a1, ..., al with root a1. By the same argument as above, ψA is equivalent
to ∃x1, ...,∃xm

∧
{R(xi1 , ..., xij ) : R ∈ σ, (ai1 , ..., aij ) ∈ RA}. However, this is

just φ(A,ā) with extra quantifiers ∃x1, ...,∃xl at the front. Hence, by removing
these l quantifiers from the front of each sentence, we see the formula φ(A,ā) is
equivalent to a formula with quantifier rank at most n, and variable count at
most l.
Now given a formula φ ∈ Ln,kprim(l) recall the construction Cφ from Lemma
1.2.5, that gives us a term structure for φ, which has an element cq for each free
variable and existential quantifier q in φ. Note that in Lemma 1.2.5 we used dif-
ferent variable names for each quantifier for convenience, but we cannot assume
that here; so we emphasise Cφ has one element for each quantifier occurring
in φ, not for each variable. We extend the notion of direct scope to the free
variables, which for convenience we shall assume are x1, ..., xl, by setting xi+1

to be uniquely in the direct scope of xi for i = 1, ..., l− 1, and have the leading
quantifiers in φ be in the direct scope of xl. In other words, this is the direct
scope relation we would obtain from ∃x1, ...,∃xlφ. Now we claim the forest F



1.3. GRADING BY VARIABLE COUNT AND QUANTIFIER RANK 15

given by the direct scope relation is a forest cover for Cφ, and the function f
that sends an element cq to the index of the variable q binds in φ, and a free
variable xi to i, is a labelling function. For the former claim, suppose there is
an cq, cq′ in G(Cφ). Then by the definition of Cφ there is some atomic relation
containing the variables bound by q and q′, that is in the scope of both q and
q′. Hence q must be in the scope of q′ or vice versa, and in either case, they
are on the same branch of F as required. Now for the labelling function, we
suppose without loss of generality that q is on the unique path from q′ to its
root, in addition to there being an edge q, q′ in G(Cφ). As we observed before,
q′ must be in the scope of q, which in particular means the variable bound by
q cannot have been reused between q and q′, and hence f(cq) is not reused in
the path from q to q′, as required.

Elementary equivalence is an extremely important and well-studied relation
in model theory. Two structures (A, ā), (B, b̄) ∈ Rσ(l) are elementarily equiva-
lent (written (A, ā) ≡ (B, b̄)) if for every φ ∈ L(l), (A, ā) |= φ ⇐⇒ (B, b̄) |= φ.
We are interested in various graded fragments of FO, and thus the following
relations play a central role much like elementary equivalence does in classical
model theory:

Definition 1.3.9. Let (A, ā), (B, b̄) ∈ Rσ(l)

• We write (A, ā) →n,k (B, b̄) if, for every φ ∈ L+
n,k(l), if (A, ā) |= φ then

(B, b̄) |= φ. We write (A, ā) �n,k (B, b̄) as a shorthand for (A, ā) →n,k

(B, b̄) and (B, b̄)→n,k (A, ā).

• We write (A, ā) ≡n,k (B, b̄) if, for every φ ∈ Ln,k(l), if (A, ā) |= φ then
(B, b̄) |= φ.

• If, in either of the preceding two definitions, k ≥ n+ l we omit the k and
obtain a definition of →n and ≡n purely about quantifier rank. These
are special cases of →n,k and ≡n,k which we will occasionally treat sepa-
rately and occasionally not.

Clearly, ≡n,k approximates the elementary equivalence relation, in the sense
that if (A, ā) ≡n,k (B, b̄) for every n, k, then (A, ā) ≡ (B, b̄). The notation→n,k

is justified as it approximates → in the same sense on all structures with posi-
tive existential canonical queries (this includes for example, all finite structures
which we show below). It is also the case that→ implies→n,k for every pair n, k,
since all positive existential formulae are preserved under morphisms. Hence as
one would expect, →n,k and →n are transitive and reflexive but not symmet-
ric, whereas ≡n,k and ≡n are equivalence relations. The symmetry comes from
being able to negate sentences.

Lemma 1.3.10. If (A, ā) ∈ Rσ(l) has a positive existential canonical query the
following holds: for any (B, b̄) ∈ Rσ(l), if (A, ā)→n,k (B, b̄) for every n, k then
(A, ā)→ (B, b̄).
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Proof. Let (A, ā), (B, b̄) be as above. By assumption, (A, ā) has some canonical
query φ ∈ L+

n,k(l) for some n, k. Hence (B, b̄) |= φ, so (A, ā) → (B, b̄) as
required.

Remark 1.3.11. The reader may have noticed that we have not defined a rela-
tion between structures using the primitive positive fragment. As stated above,
any positive existential formula can be expressed as a disjunction of primitive
positive ones; hence any such relation would be equivalent to the analogous one
defined using existential positive formulae.

One can give an equivalent characterisation of→n,k that refers only to struc-
tures (which we later refer as the combinatorial characterisation):

Lemma 1.3.12. For (A, ā), (B, b̄) ∈ Rσ(l), (A, ā) →n,k (B, b̄) if and only if,
for every (C, c̄) with an (n, k)-cover, if (C, c̄)→ (A, ā) then (C, c̄)→ (B, b̄).

Proof. As remarked it suffices to test only formulas φ ∈ Ln,kprim(l). For φ ∈
Ln,kprim(l) such that (A, ā) |= φ, we know it has a term structure (C, c̄) that has
a (n, k)-cover. We also know (C, c̄)→ (A, ā) since (A, ā) |= φ. But then (C, c̄)→
(B, b̄) by assumption, and hence (B, b̄) |= φ as desired. For the converse, suppose
(C, c̄) is some structure with an (n, k)-cover, and (C, c̄) → (A, ā). We know
(C, c̄) has a canonical query φ ∈ Ln,kprim(l), and that (A, ā) |= φ since (C, c̄)→
(A, ā). But then, by assumption we must have (B, b̄) |= φ, and hence (C, c̄) →
(B, b̄).

1.4 Games and Recursive Relations

The relations above can also be defined using a two player game, between players
Spoiler and Duplicator. This approach is well studied and well used, dating back
to [14] and [15] (see [30] for an overview). To describe these games however, we
need first define pseudo-partial homomorphisms and isomorphisms:

Definition 1.4.1. Let (A, ā), (B, b̄) ∈ Rσ(l). We write (A, ā) 7→ (B, b̄) to de-
note the assignment where ai 7→ bi for each i = 1, ..., l. Recall there is an
induced substructure on the set {ā} := {a1, ..., al}, by restricting all relations of
σ to this set. We say that (A, ā) 7→ (B, b̄) is a pseudo-partial homomorphism
(respectively isomorphism) if the assignment (A, ā)→ (B, b̄) satisfies the homo-
morphism (respectively isomorphism) condition when restricted to a assignment
between induced substructure {ā} → {b̄}.
If the assignment is actually a partial function, then we refer (A, ā) 7→ (B, b̄) as
a partial homomorphism (respectively isomorphism).

The homomorphism condition referred to above is the preservation of rela-
tions among the tuple ā to b̄, ie wheneverR(ai1 , ..., aij ) holds so doesR(bi1 , ..., bij )
for any R and tuple i1, ..., ij , which is defining property of a homomorphism.
The subtlety in the above definition is that the assignment ai 7→ bi is not nec-
essarily a function; it might be the case that a1 = a2 but b1 6= b2 for example,
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which would give us a pseudo-partial morphism, rather than an ordinary par-
tial morphism. For our purposes, in the homomorphism case, this will make
no difference to the end result for what we define, only serving to make book-
keeping easier. However in the isomorphism case, it corresponds to not allowing
the equality relation to be used in the language. The reason for this is that
equality can be systemically removed from existential positive sentences while
maintaining a semantically equivalent sentence, which will correspond to the
homomorphism case, but cannot be removed from general sentences, which cor-
respond to the isomorphism case.

We are now ready to define the n-round Ehrenfeucht-Fraisse and (n, k)-
pebble games. Each game has a corresponding homomorphism (or “forth”)
and isomorphism (or “back and forth”) game. Since the forth game will be
most often used throughout this thesis, after the following definitions we will
occasionally leave the word “forth” implicit, only specifying when the back and
forth game is being referred to. We shall define the games and then give some
remarks on their definitions.

Definition 1.4.2. • The n-round forth Ehrenfeucht-Fraisse game, on struc-
tures (A, ā) and (B, b̄), which we shall write EFn((A, ā), (B, b̄)), is defined
as follows: In round i Spoiler chooses an element αi of A, and Duplicator
responds by choosing an element βi of B. After n-rounds, Duplicator is
the winner if (A, ā, ᾱ) 7→ (B, b̄, β̄) is a pseudo-partial homomorphism, else
Spoiler is the winner.

• In the corresponding back and forth game, written EF≡n ((A, ā), (B, b̄)),
Spoiler can choose to pick an element of either structure each round, and
Duplicator must respond by choosing an element from the other structure.
This once again creates tuples ᾱ and β̄ of A and B respectively. After
n-rounds, Duplicator is the winner if (A, ā, ᾱ) 7→ (B, b̄, β̄) is a partial
isomorphism, else Spoiler is the winner.

Definition 1.4.3. • If k ≥ l, we can define the (n, k)-pebble game, on struc-
tures (A, ā) and (B, b̄), which we shall write Pn,k((A, ā), (B, b̄)), as follows:
To start with, Spoiler and Duplicator are given k pebbles each, which shall
be placed on elements of A and B throughout the game. Spoiler and Dupli-
cator set up by placing pebbles 1, ..., l on a1, ..., al and b1, ..., bl respectively.
In round i Spoiler chooses a pebble p, and an element αi of A and Dupli-
cator responds by choosing an element βi of B. Spoiler’s pebble p is placed
on αi (removing it from another element if it was already placed on some
element of A), and Duplicator’s pebble p is placed on βi. Let Ai be the
structure (A, ᾱ) where αj is the element pebble j is placed on in A, and
define Bi similarly. After the ith round, Spoiler has won if Ai 7→ Bi is
not a pseudo-partial homomorphism, else play continues. Duplicator wins
if Spoiler has not won after the nth round.

• In the corresponding back and forth game, written P≡n,k((A, ā), (B, b̄)),
Spoiler can choose to move a pebble on either structure each round, and
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Duplicator must respond by choosing an element from the other structure
to move that same pebble onto. This once again creates structures Ai and
Bi after each round. After the ith round, Spoiler is the winner if Ai 7→ Bi
is not a partial isomorphism, else play continues. Duplicator is the winner
if Spoiler has not won after n rounds.

The key point of these definitions is the following Theorem. In the literature
one often sees this Theorem stated in the contrapositive instead, as that is most
natural for proving inexpressability results (see e.g. [28]).

Theorem 1.4.4. Between two structures (A, ā), (B, b̄):

• Duplicator has a winning strategy in EFn((A, ā), (B, b̄)) if and only if
(A, ā)→n (B, b̄).

• Duplicator has a winning strategy in EF≡n ((A, ā), (B, b̄)) if and only if
(A, ā) ≡n (B, b̄).

• Duplicator has a winning strategy in Pn,k((A, ā), (B, b̄)) if and only if
(A, ā)→n,k (B, b̄).

• Duplicator has a winning strategy in P≡n,k((A, ā), (B, b̄)) if and only if

(A, ā) ≡n,k (B, b̄).

There are a number of other important remarks to be made about these
definitions:

• We used the phrase “Duplicator has a winning strategy” above to mean
that no matter the sequence of moves Spoiler uses, Duplicator can always
find a winning sequence of moves in reply. Like the outcome of an individ-
ual game, in which exactly one of Spoiler or Duplicator wins, it must be
the case that exactly one of Duplicator or Spoiler has a winning strategy
for pair of structures (A, ā), (B, b̄) and choice of game.

• For the purposes of all of the Ehrenfeucht-Fraisse style games in this thesis,
it suffices to consider only deterministic strategies for both Spoiler and
Duplicator, so we will implicitly assume all strategies are deterministic
going forward.

• There is here a subtle distinction that arises here between considering free
variables and constants. Consider some φ(x̄) ∈ Ln(l). For most purposes,
we could consider the formula φ to be a sentence over σ ∪ {c1, ..., cl},
where the ci are constant symbols, since (A, ā) |= φ(x̄) if and only if
(A, ā) |= φ(c̄) (where of course ci is interpreted by ai for each i). However,
viewing free variables as constants may decrease the variable count of a
formula, so one must be careful when considering formulae of fixed vari-
able count. From the perspective of games, EFn((A, ā), (B, b̄)) is identical
whether the tuples ā, b̄ are thought of as constants or free variables, how-
ever Pn,k((A, ā), (B, b̄)) would change. If one wished to construct a game
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to capture the case where ā, b̄ were interpreting constants, then the tuples
ā, b̄ would start with pebbles on them that could not be moved, and did
not come out of the original supply of Spoiler and Duplicator’s k pebbles.

• We might say a game G (played on two structures, between Spoiler and
Duplicator) is equivalent to a game G′ when, for any pair of structures
(A, ā), (B, b̄), Duplicator has a winning strategy in G((A, ā), (B, b̄)) if and
only if Duplicator has a winning strategy in G′((A, ā), (B, b̄)). As the use
of the games is derived from the above Theorem, and the Theorem above
only cares about the existence of a winning strategy for Duplicator, we
may also find it useful to occasionally consider equivalent games rather
than the ones described above. A common way to find equivalent games
is to apply a small change to the rules and check this does not change who
will have a winning strategy out of Spoiler and Duplicator.

• One such example of this, which regards the difference between pseudo and
ordinary partial homomorphisms is to define a game EF ′n((A, ā), (B, b̄))
as follows: The game is played as before, except Spoiler may not select an
element a ∈ A that already occurs in the tuple ā nor an element that has
already been selected in a previous round (Duplicator has no restrictions
or changes, and the winning conditions for both players are the same). It
is immediate that Duplicator has a winning strategy in EF ′n((A, ā), (B, b̄))
if Duplicator has a winning strategy in EFn((A, ā), (B, b̄)). If Duplicator
has a winning strategy in EF ′n((A, ā), (B, b̄)), then Duplicator can use that
strategy to find a winning strategy in the game EFn((A, ā), (B, b̄)) by fol-
lowing the same strategy, except where if Spoiler repeats an already chosen
element, Duplicator simply responds by choosing the same element that it
chose previously. Another example is a variant of Pn,k((A, ā), (B, b̄)) where
Spoiler must first place all pebbles before Spoiler is allowed to move any
pebbles, which as equivalent to the usual game Pn,k((A, ā), (B, b̄)).

• Observe that in the back and forth game, we insist Duplicator must main-
tain an ordinary partial isomorphism rather than a pseudo-partial isomor-
phism. Were we to swap the winning condition so that Duplicator must
only maintain a pseudo-partial morphism, a winning strategy for Duplica-
tor would entail equivalence in only equality free formulas. This contrasts
to the forth game, where swapping the winning condition would make no
difference.

• In the EF games, one needs only check the winning condition at the end of
the game, unlike in the pebble games, where one must check the winning
condition at the end of each round. This is because, in the EF games, the
induced substructures are “increasing” (ie the the induced substructures
under consideration in round i are subsets of those being considered in
round i+ 1), so checking the winning condition once at the end implies it
for all of the earlier rounds.
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• The games are all essentially recursive in nature. For example, one can see
that Duplicator has a winning strategy in EFn(A,B), if and only if, for
every a ∈ A there exists some b ∈ B such that Duplicator has a winning
strategy in EFn−1((A, a), (B, b)).

The last remark can be thought of as recursive characterisation for the re-
lations ≡n,k and →n,k. This is essentially a slightly more formal version of the
Ehrenfeucht-Fraisse games presented above. This definition is recursive thus
more natural for inductive proofs, however we rely on the game formulation for
intuitive purposes. The ith element in the distinguished tuples below correspond
to the position of the ith pebble in the corresponding game. In the following
we recurse on the quantifier rank n, and we use ā[α/ai] to denote the tuple ā
where the ith entry has been swapped with α. We shall briefly introduce this
as a pair of new relations →̃n,k, and ≡̃n,k, which we will claim give identical
relations to→n,k and ≡n,k respectively. This is a standard approach, and more
discussions (and a detailed proof of the relations being identical) can be found
in any Finite Model Theory textbook, such as [21] or [13].

Definition 1.4.5. • (A, ā)→̃0,k(B, b̄) is defined: The assignment ai 7→ bi
defines a pseudo-partial morphism from A to B.

• If n > 0, then (A, ā)→̃n,k(B, b̄) is defined:

– The assignment ai 7→ bi defines a pseudo-partial morphism from A
to B

– If l < k, for every α ∈ A, there exists β ∈ B such that (A, ā, α)→̃n−1,k(B, b̄, β)

– For any value of l, for every α ∈ A, i ∈ {1, ..., l}, there exists β ∈ B
such that (A, ā[α/ai])→̃n−1,k(B, b̄[β/bi]).

Definition 1.4.6. • (A, ā)≡̃0,k(B, b̄) is defined: The assignment ai 7→ bi
defines a partial isomorphism from A to B.

• If n > 0, then (A, ā)≡̃n,k(B, b̄) is defined:

– The assignment ai 7→ bi defines a partial isomorphism from A to B

– If l < k, for every α ∈ A, there exists β ∈ B such that (A, ā, α)≡̃n−1,k(B, b̄, β),
and for every β ∈ B, there exists α ∈ A such that (A, ā, α)≡̃n−1,k(B, b̄, β)

– For any value of l, i ∈ {1, ..., l}, we have both: for every α ∈ A, there
exists β ∈ B such that (A, ā[α/ai])≡̃n−1,k(B, b̄[β/bi]), and for every
β ∈ B, there exists α ∈ A such that (A, ā[α/ai])≡̃n−1,k(B, b̄[β/bi]).

In each of the above definitions, the base case (when n = 0) just checks
the victory condition. After checking for a partial morphism, the recursive step
has two further clauses, one for placing a new pebble (adding a new element
to the tuple), and one for moving a pebble (replacing an element of the tuple).
The recursive definition of →̃n and ≡̃n are simply defined by deleting the final
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clause (where l can take any value) of the recursive step above for →̃n,k and
≡̃n,k respectively. The following is a generalisation of Theorem 1.4.4 that also
includes the recursive versions of each relation:

Theorem 1.4.7. For any pair of structures (A, ā), (B, b̄) ∈ Rσ(l), the following
are equivalent:

1. Duplicator has a winning strategy in EFn((A, ā), (B, b̄))

2. (A, ā)→n (B, b̄)

3. (A, ā)→̃n(B, b̄)

The statement above also holds when replacing the triple (EFn,→n, →̃n) with
any of the triples (EF≡n ,≡n, ≡̃n),(Pn,k,→n,k, →̃n,k), or (P≡n,k,≡n,k, ≡̃n,k).

The equivalence of the first and second items done by a straightforward
induction for each of the triples. We include a standard proof of the equivalence
of the second and third items, and once again refer to [21] or [13] for more detail.

Proof. We shall do induction on n. Fix some (A, ā), (B, b̄) ∈ Rσ(l).

• If n = 0, then it is immediate since the statement becomes “the assignment
ai 7→ bi defines a pseudo-partial homomorphism” if and only if “for every
φ ∈ L+

0 (l), (A, ā) |= φ =⇒ (B, b̄) |= φ”, and the only formulas in L+
0 (l)

are positive boolean combinations of atomic relations between x1, ..., xl.

• Now suppose n > 0 and we can use the inductive hypothesis. We shall also
make use of the fact we need only test →n on primitive positive formulae.
Suppose we have (A, ā)→n (B, b̄) and some α ∈ A, we need to find some
β ∈ B such that (A, ā, α) →n−1 (B, b̄, β), and then we are done in one
direction by the inductive hypothesis. Define

φ :=
∧
{ψ ∈ L+

n−1(l + 1) : (A, ā, α) |= ψ}.

We can make this well formed since Ln(l) is finite up to equivalence for
any n, l, which is a fact we prove later on. Observe that if we can find
some β ∈ B such that (B, b̄, β) |= φ then we are done since we will have
(A, ā, α)→n−1 (B, b̄, β). But we know (A, ā) |= ∃xl+1φ (since (A, ā, α) |=
φ), and hence (B, b̄) |= ∃xl+1φ since ∃xl+1φ ∈ Ln(l) and (A, ā)→n (B, b̄).
Taking β as a witness for xl+1 in ∃xl+1φ therefore works. Now for the
reverse, assume we have (A, ā)→̃n(B, b̄) and let φ ∈ Ln(l) be primitive
positive such that (A, ā) |= φ: we must show (B, b̄) |= φ. We shall also
assume the principle connective of φ is ∃xl since we can relabel variables
without loss of generality, and if the principle connective was a ∧ we
can treat both conjuncts separately. So we write φ = ∃xlψ where ψ ∈
L+
n−1(l + 1). Let α be A’s witness for xl in φ so that (A, ā, α) |= ψ. By
→̃n, find β ∈ B such that (A, ā, α) →n−1 (B, b̄, β). By the inductive
hypothesis, we have (A, ā, α)→n−1 (B, b̄, β) and hence (B, b̄, β) |= ψ, and
hence (B, b̄) |= φ as required.
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1.5 Comonads

We now present the comonads En and Pn,k. For each definition, we shall start
with En, the comonad corresponding to quantifier rank and the game EFn as
it is simpler, and then move on to Pn,k. Initially we shall work in the category
Rσ (ie when l = 0), and then move onto arbitrary l.

Intuitively, a strategy for Duplicator in EFn(A,B) might be thought of as
set containing a move for in any situation in the game, so a choice of b ∈ B for
any pair ā ∈ Al, b̄ ∈ Bl, (representing the previous moves from the previous l
rounds, where l < n) and a ∈ A representing Spoiler’s move in the most recent
round. We could represent a such a strategy as a function

S : ((
⋃
l<n

(A×B)l)×A)→ B.

Here we consider (A × B)0 to be some arbitrary 1-element set {?}, which rep-
resents the position when Spoiler is about to make it’s first move. However one
can see such strategies contain some unnecessary information. Suppose for some
strategy S, we have S(?, a1) = b1. In other words, according to the strategy S,
if Spoilers first move is a1 then Duplicator will reply with b1. Let b′ 6= b1 ∈ B,
and a2 ∈ A. Then S must have a value for S((a1, b

′), a1). However, if Duplicator
is following the strategy S, then the position a1, b

′ will never occur! Hence we
define a refined strategy, that does not include unnecessary data such as this.

Definition 1.5.1. A refined strategy for Duplicator in some game EFn(A,B)
is a partial function S : ((

⋃
l<n(A × B)l) × A) ⇀ B that has values defined

exactly on positions that can occur according to S. More precisely, S(?, a) is
defined for every a ∈ A, and S((a1, b1, ..., al, bl), a) is defined for any a ∈ A, if
and only if S((a1, b1, ..., al−1, bl−1), al) is defined and equal to bl.

It will turn out that refined strategies can be captured exactly by functions
when using our comonad. One can see [5] for a more detailed discussion on this
than what is presented below.

Definition 1.5.2. For a structure A, let EnA be the set of (non-empty) se-
quences of elements of A length at most n, and let εA : EnA → A be the
function that gives the last element of a sequence.

Lemma 1.5.3. For any A,B ∈ Rσ, there is a bijective correspondence between:

• Refined strategies S : ((
⋃
l<n(A×B)l)×A) ⇀ B

• Functions f : EnA→ B.

Proof. The key observation here is how Duplicator can use a function f to
generate a refined strategy. If Spoiler plays a1 in the first round, Duplicator
simply plays f([a1]). In the lth round, if Spoiler has played a1, ..., al1 and plays
al this round, Duplicator will play f([a1, ..., al]). This gives the following way
of converting a function f to a refined strategy Sf :
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• Sf (?, a) := f [a]

• Sf ((a1, b1, ..., al−1, bl−1), al) is defined only if Sf ((a1, b1, ..., al−2, bl−2), al−1)
is defined and equal to bl−1, and is set equal to f([a1, ..., al]) in this case

Sf is clearly a refined strategy by how it is defined. By recursively applying
the second clause in the definition, it must be the case that b1 = f([a1]), b2 =
f([a1, a2]) and so on. Given a refined strategy S, we can define a function fS
recursively, by setting:

• fS [a] := S(?, a)

• fS [a1, ..., al] := S(a1, f([a1]), ..., al−1, f([a1, ..., al−1]), al).

Inductively one can see that this will indeed be properly defined. The base case
is given by the definition, and for inductive step, recall that
S(a1, fS([a1]), ..., al−1, fS([a1, ..., al−1]), al) is defined if and only if
S(a1, fS([a1]), ..., al−1, fS([a1, ..., al−2]), al−1) is defined and equal to fS([a1, ..., al−1].
But these follows exactly from the inductive hypothesis and the definition of fS
respectively. It follows quickly from the constructions that for any refined strat-
egy SfS = S, and for any function f , fSf

= f , completing the proof of a
bijection.

Strategies for the pebbling game Pn,k are almost identical to those in the
game EFn, once we explicitly include the history of the game in the strategies.
To exemplify this, consider a game Pn,k(A,B) in which Spoiler first places
pebble 1 on a1 ∈ A in the first round and pebble 2 on a2 ∈ A in the second
round, and Duplicator responds by placing pebble 1 on bi ∈ B and pebble 2
on b2 ∈ B in rounds 1 and 2 respectively. Intuitively, one might assume this
position may be the same as the position created where the move order was
swapped (ie Spoiler plays pebble 2 on a2 in the first round and so on), however
we shall consider these to be different positions to allow a neater representation
of strategies as functions. In the game EFn, the history is implicitly recorded by
the order of the tuples ā, b̄. If desired, one could consider a “historyless” strategy
by considering positions described by sets of elements rather than tuples, though
we shall not pursue this here. Once we explicitly take the history of the game
to be accounted for in our strategies, the definitions we make parallel the EF
game almost exactly, but for keeping track of the pebble that Spoiler has chosen
to move with each time. We do not need to keep track of the pebble Duplicator
moves as it is required to be the same one. In the following definition we use
the shorthand k := {1, ..., k}.

Definition 1.5.4. A strategy for Duplicator in the game Pn,k(A,B) is a func-
tion

S : ((
⋃
l<n

(A×B × k)l))× (A× k))→ B

A refined strategy is a partial function S : ((
⋃
l<n(A×B×k)l))×(A×k)) ⇀ B

satisfying:
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• S(?, a, i) is defined for every a ∈ (A, ā) and i ∈ k.

• S((a1, b1, i1, ..., al−1, bl−1, il−1), (al, il)) is defined only if and only if
S((a1, b1, i1, ..., al−1, bl−2, il−2), (al−1, il−1)) is defined and equal to bl−1

Similarly to before, we define the underlying set form our comonad will take,
and see that functions out of it correspond to refined strategies in Pn,k(A,B).
We omit the proof as it is identical to the case for En(A,B) but for carrying
along Spoilers choice of pebble.

Definition 1.5.5. For a structure A, let Pn,kA be the set of non-empty se-
quences of elements of A × {1, ..., k}, of length at most n. Once again, in a
slight abuse of notation, let εA : Pn,kA→ A denote the first co-ordinate (ie the
entry from A) of the last element of a sequence.

Lemma 1.5.6. For any structures A,B, in Rσ, there is a bijective correspon-
dence between:

• Refined strategies S : ((
⋃
l<n(A×B × k)l))× (A× k)) ⇀ B

• Functions f : Pn,kA→ B.

Our next step is to endow our sets with relational structures, and give some
intuition as to why we have done so. We will let, for s1, s2 sequences, s1 @ s2

denote that s1 is a prefix of s2, and s1 ∼ s2 denote s1 @ s2 ∨ s2 @ s1. For
s ∈ Pn,kA, we will refer to the second-coordinate of its last entry as its pebble
index.

Definition 1.5.7. For A ∈ Rσ, R ∈ σ:

• For EnA: (s1, ..., sj) ∈ REnA if and only if:

1. (εA(s1), ..., εA(sj)) ∈ RA.

2. For each i1, i2 ∈ {1, ..., j}, we have si1 ∼ si2 .

• For Pn,kA: (s1, ..., sj) ∈ RPn,kA if and only if:

1. (εA(s1), ..., εA(sj)) ∈ RA.

2. For each i1, i2 ∈ {1, ..., j}, we have si1 ∼ si2 .

3. For each i1, i2 ∈ {1, ..., j}, if si1 @ si2 , then the pebble index of si1
does not occur as a second coordinate in s′, where si2 = si1s

′.

One can understand these definitions of the relations on EnA (or Pn,kA),
simply as a way of imposing conditions on morphisms f : EnA → B. The first
condition helps us to ensure that a morphism f : EnA → B entails pseudo-
partial morphisms from {a1, ..., aj} to {f([a1]), ..., f([a1, ..., aj ])}, as would be
required in the n-round Ehrenfeucht-Fraisse game. The second condition ensures
we are not asking too much of a morphism f : EnA→ B; if s1 � s2, then they
cannot represent situations that occur in same game, thus there should be no
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relations between them. For Pn,kA recall that for a sequence s1, f(s1) tells us
how Duplicator should respond when Spoiler has just moved the pebble index
of s1, pebble i say, to ε(s1). If s1 @ s2, and the pebble index of s1 occurs
again in s2 (after s1), that is telling us pebble i has moved, thus there need be
no relation between f([s1]) and f([s2]). This is a sketch proof of the following
Theorem (a more detailed proof is available in [5]):

Theorem 1.5.8. For A,B ∈ Rσ, there is a bijection between:

• Winning strategies for Duplicator in the n-round Ehrenfeucht-Fraisse game
from A to B.

• Morphisms f : EnA→ B.

Or in the more general case, there is a bijection between:

• Winning strategies for Duplicator in the (n, k)-pebble game from A to B.

• Morphisms f : Pn,kA→ B.

The following states this result in terms of →n and →n,k. Stated in this
slightly weaker way, the result also follows from the ensuing discussion about
how the comonads capture tree width and tree depth respectively.

Theorem 1.5.9. For A,B in Rσ:

• A→n B if and only if EnA→ B.

• A→n,k B if and only if Pn,kA→ B

We now display the categorical properties of the assignment A 7→ Pn,kA.
Note that En is similar in shape to the non-empty list comonad on the category
of sets, prompting us to make the following definition:

Definition 1.5.10. We turn En into a functor, by pointwise application of
functions. In other words for A,B ∈ Rσ and f : A → B, Enf([a1, ..., aj ]) :=
[f(a1), ..., f(aj)].
We similarly turn Pn,k into a functor, by pointwise applications and not touching
the pebble indices, so f([(a1, i1), ..., (aj , ij)]) := [(f(a1), i1), ..., (f(aj), ij)].

As before, we abuse notation by using the same δ for the functors En and
Pn,k.

Definition 1.5.11. For A ∈ Rσ, define δ : EnA → EnEnA recursively on the
length of a sequence by:

• δA([a]) := [[a]]

• δA(s[a]) := δ(s)[s[a]]

In other words, δA([a1, ..., aj ]) = [[a1], [a1, a2], ..., [a1, ..., aj ]], the sequence of
prefixes of [a1, ..., aj ]. Similar to before, we give an analogous definition for
Pn,k keeping the pebble indices fixed:
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• δA([(a, i)]) := [([(a, i)], i)]

• δA(s[(a, i)]) := δA(s)[(s[(a, i)], i)]

The above definition is made with the following Theorem in mind:

Theorem 1.5.12. (En, ε, δ) and (Pn,k, ε, δ) are comonads.

Proof. Since it is a routine check, in the case of En we refer the reader to
[5]. In [5], it also shown Pk is a comonad where PkA is the set containing
sequences of any length, rather than being bounded by some n. In other words
PkA =

⋃
n∈N Pn,kA. The counit εω and comultiplication δω for Pk are defined

identically as in the case of Pn,k, and hence we may observe that ε and δ coincide
exactly with the restrictions of εω and δω to Pn,k. This in turn allows us to verify
the comonad diagrams for Pn,k by simply using those for Pk. The only thing
needed to verify is that everything we have defined is indeed a morphism in Rσ,
which follows easily from our definitions.

We now generalise this to the categories Rσ(l). As commented above, the
(n, k)-game between structures (A, ā) and (B, b̄) is just the (n, k + l) game
where we have fixed Spoiler’s and Duplicator’s first l moves. Thus we make the
following definition:

Definition 1.5.13. For (A, ā) ∈ Rσ(l):

• En(A, ā) is the induced substructure of En+lA by the subset {s ∈ En+lA :
s ∼ [a1, ..., al]}. We consider it a structure in Rσ(l) by distinguishing the
tuple ([a1], [a1, a2], ..., [a1, ..., al]).

• Pn,k(A, ā) is the induced substructure of Pn+l,kA on the subset {s ∈ Pn+l,kA :
s ∼ [(a1, 1), ..., (al, l)]}. We consider it a structure in Rσ(l) by distinguish-
ing the tuple ([(a1, 1)], [(a1, 1), (a2, 2)], ..., [(a1, 1), ..., (al, l)]).

We re-use ε and δ to denote the obvious natural transformation given by restric-
tion of our previous ε and δ maps, and similarly define the action of En and
Pn,k on maps by restriction.

This is a slight abuse of notation, though it should always be clear from the
context what ε and δ refer to. This definition works as one would hope:

Lemma 1.5.14. (En, ε, δ) and (Pn,k, ε, δ) are comonads on Rσ(l)

Proof. Since we have defined these more general comonads simply by restriction,
we know that all necessary diagrams commute. We need only observe that all
restricted functions land in the appropriate ranges, which follows quickly from
the definitions.

Similarly to above, we will also see:

Lemma 1.5.15. For (A, ā), (B, b̄) in Rσ(l):
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• En(A, ā)→ (B, b̄) if and only if (A, ā)→n (B, b̄).

• Pn,k(A, ā)→ (B, b̄) if and only if (A, ā)→n,k (B, b̄).

We can now see how these comonads give us new characterisations of tree
depth and tree-width (via (n, k)-covers), as proved in [1] and [2].

Theorem 1.5.16. There is a one to one correspondence between:

• Coalgebras for a structure (A, ā) for the comonad En.

• Forest covers of depth at most n of (A, ā).

There is a one to one correspondence between:

• Coalgebras for a structure (A, ā) for the comonad Pn,k.

• (n, k)-covers of (A, ā).

Proof. Once one carefully unpicks the definitions of an (n, k)-cover we will see
the following correspondences:

1. Forests on vertex set A with that begin with the path a1, ..., al of depth
at most n+ l ↔ Set maps (A, ā)→ En(A, ā), respecting the distinguished
elements, that make the coalgebra diagrams commute.

2. Forest covers of (A, ā) of depth at most n↔ coalgebras (A, ā)→ En(A, ā).

3. (n, k)-covers of (A, ā) ↔ coalgebras (A, ā)→ Pn,kA.

Now for the details:

1. Note that the data of a forest can be given by specifying, for each vertex,
the unique path to its root. This data can be expressed as a function F :
A → En+lA by sending the path r, a1, ..., am, a (from an element a to its
root r) to the sequence s = [r, a1, ..., am, a]. Certainly not all functions of
this type describe forests beginning with the path a1, ..., al. The conditions
required for the function to be a forest beginning with the path a1, ..., al
are precisely that, F restricts to a function (A, ā)→ En(A, ā) (ie the forest
begins with the path a1, ..., al), ε(F (a)) = a for each a ∈ A (ie the unique
path to a ends with a), and δ(F (a)) = F (F (a)) for each a ∈ A (if some
b lies on the path on the unique path a, then F (b) is the unique prefix of
F (a) ending in b). We have just written inline the commutative diagrams
defining a coalgebra, thus we have correspondence 1.

2. Now suppose F satisfies the properties in 1. F is a morphism if and only
if, for every tuple b1, ..., bj of A, and R ∈ σ,

(b1, ..., bj) ∈ R(A,ā) =⇒ (F (b1), ..., F (bj)) ∈ REn(A,ā).

Now the consequent is true precisely when (ε(F (b1)), ..., ε(F (bj))) ∈ R(A,ā)

and, for each pair b, b′ among b1, ..., bj , F (b) ∼ F (b′). Now the first con-
dition is met by assumptions on F in (1), since εF (bi) = bi for each i,
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so we need only check the second condition. We restate it as the follow-
ing: whenever there is an edge b, b′ in G(A) (recall G(A) is the Gaifman
graph of A and there is an edge between two vertices if and only there
is some tuple (b1, ..., bj) containing b, b′ and relation R ∈ σ such that
(b1, ..., bj) ∈ RA) we have F (b) ∼ F (b′). Since F (b) describes the unique
path from b to its root, we have that F (b) ∼ F (b′), if and only if b and
b′ lie on the same branch. Summing up, we have that F is a morphism if
and only if whenever there is an edge b, b′ in G(A), then b and b′ lie on
the same branch as the forest described by F , ie if and only if F describes
a forest cover of (A, ā). This completes correspondence (2).

3. Given a coalgebra F for (A, ā) over the comonad En, we see the corre-
spondence between the data required to turn F into a map to Pn,kA, and
k-labelling functions of the forest cover described by F is simply send-
ing the label for each element in the forest cover to its pebble index (the
unique i that appears in a pair with it in a sequence s ∈ Pn,kA). It is a
simple check that we will get a morphism if and only if the labelling turns
the forest cover described by F into an (n, k)-cover.

We state the following immediate corollary to above:

Corollary 1.5.17. Any structure of form Pn,k(A, ā) always has a coalgebra
provided by δA, thus always has an (n, k)-cover.

This theorem also hints the category of (n, k)-covers is precisely the Eilenberg-
Moore category of the comonad Pn,k (more detail is included in the third chap-
ter). It also provides another proof of Theorem 1.5.9:

Theorem 1.5.18. (restatement of Theorem 1.5.9) For (A, ā), (B, b̄) in Rσ(l):

• (A, ā)→n (B, b̄) if and only if En(A, ā)→ (B, b̄).

• (A, ā)→n,k (B, b̄) if and only if Pn,k(A, ā)→ (B, b̄).

Proof. We just prove the second statement using the combinatorial characteri-
sation of →n,k.
Suppose (A, ā)→n,k (B, b̄). Since Pn,k(A, ā) has an (n, k)-cover, and Pn,k(A, ā)→
A, we then have Pn,k(A, ā)→ (B, b̄).
Now suppose Pn,k(A, ā) → (B, b̄). Let C have an (n, k)-cover, and (C, c̄) →
(A, ā). Since (C, c̄) has an (n, k)-cover, it has a coalgebra, and thus (C, c̄) →
Pn,k(C, c̄). By functoriality, Pn,k(C, c̄) → Pn,k(A, ā) and putting both of these
together with the assumption, we get (C, c̄)→ (B, b̄).

As another immediate corollary to the above Theorem, we have the before-
mentioned categorical description of tree width and tree depth:

Theorem 1.5.19. • The tree depth of a structure (A, ā) ∈ Rσ(l) (if it ex-
ists) is the least n such that (A, ā) has an En-coalgebra.
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• The tree width of a structure (A, ā) ∈ Rσ(l) (if it exists) is the least k
such that (A, ā) has an Pn,k-coalgebra (for some n).

Proof. Recall the tree depth of a structure is the least n such that it has an
(n, n)-cover, which we have just shown exists if and only if it has an En coalgebra.
The tree width case is identical.
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Chapter 2

Towards the
Equirank-variable
Homomorphism
Preservation Conjecture

2.1 Overview

In this chapter we recount the work in [26], in which we proved a special case of
Abramsky’s Equirank-Variable Homomorphism Preservation Conjecture, and
worked towards the general case. In model theory in general, a preservation
Theorem is one that relates a syntactic condition of a first-order sentence (eg
restricted quantifier rank or being positive existential) to a semantic property (eg
satisfaction being preserved under certain types of relations between structures).
Before stating some preservation Theorems, we require the following definition:

Definition 2.1.1. We say a formula φ ∈ L(l) is preserved under some relation
∼ if it satisfies the following property: for any (A, ā), (B, b̄) ∈ Rσ(l) if (A, ā) |=
φ and (A, ā) ∼ (B, b̄), then (B, b̄) |= φ

The basic homomorphism preservation Theorem of classical model theory
(due to Los, Lyndon and Tarski) is as follows:

Theorem 2.1.2. For any φ ∈ L(l), φ is preserved under homomorphisms, if
and only if there is some ψ ∈ L+(l) such that φ ≡ ψ.

One can observe in this Theorem that the syntactic property (being positive
existential) implying the semantic property (being preserved under homomor-
phism) is almost immediate to prove (it is well known all positive existential
formulae are preserved under homomorphisms), but the reverse direction is not

31



32 CHAPTER 2. EQUIRANK-VARIABLE HPT

obvious. This will be the case for all of the homomorphism preservation theo-
rems we look at.

The above was improved by Rossman in [27], who showed that one can
preserve the quantifier rank of the formula in the Theorem:

Theorem 2.1.3. (Rossman’s Equirank Homomorphism Preservation Theorem)
Suppose φ ∈ Ln(l). Then it is preserved under homomorphisms between first-
order structures, if and only if there ψ ∈ L+

n (l) such that φ ≡ ψ.

Rossman’s proof involved substantial use of structures of bounded tree depth.
Owing to this, Abramsky conjectured one could recast the proof in a more cate-
gorical style, making use of the comonad En, as it naturally creates structures of
bounded tree depth. This leads to the idea of generalising to using Pn,k rather
than En to obtain the following conjecture where both tree depth and tree width
are preserved:

Conjecture 2.1.4. (Abramsky’s Equirank-Variable Preservation Conjecture)
Suppose φ ∈ Ln,k(l). Then it is preserved under homomorphisms between first-
order structures, if and only if there ψ ∈ L+

n,k(l) such that φ ≡ ψ.

The first step towards this conjecture is proving what we refer to as the
Mini-HPT, which is the statement that any sentence preserved under →n,k is
equivalent to an existential positive formula in L+

n,k, directly generalising what
Rossman proved solely about quantifier rank. The proof of this is fairly short
once we collect some model theoretic facts about →n,k; namely that L+

n,k(l)
contains only finitely many formulae for any choice of n, k, l, and that �n,k is
therefore a finite index relation on Rσ(l). We also show that we are able to
choose a representative set for this finite index relation that consists only of
finite structures, each with an (n, k)-cover.

The next section is far more technical. Given the Mini-HPT, it is sufficient to
show any first order formula in L+

n,k that is preserved under homomorphisms is
also preserved under →n,k in order to prove the Equirank-Variable Conjecture.
The idea for proving the former claim is to construct for any A ∈ Rσ, a diagram
of form A→ B ≡n,k C → Pn,kA, and building these structures B and C is what
the section is devoted to. The structures are built by iteratively gluing copies
of the finite representative structures mentioned above to A and Pn,kA respec-
tively, in order that they might achieve a saturation-like property, which we call
(n, k)-extendability, directly generalising Rossman’s notion of n-extendability.
(n, k)-extendability is a purpose-defined property that allows one to infer ≡n,k
from the �n,k relation, by extending partial isomorphisms between structures.

Unfortunately, along the way we observe that the →n,k relation is not pre-
served under taking coproducts the same way that →n is, which is why we are
not able to find structures with the (n, k)-extendability property we require. We
do however give a proof modulo a Conjecture that says we can find a finite set
of representative structures for which the →n,k relation behaves as we would



2.2. MINI-HPT AND CONSEQUENCES 33

wish with respect to taking coproducts with those structures. We also highlight
the case where n ≤ k + 2, for which we prove the Conjecture, giving a slight
improvement to Rossman’s result, since this includes the case n = k, which is
simply the Equirank case. Finally, we give some analysis of the construction
we have made, with some further suggestions as to how it might be possible to
prove the general case.

2.2 Mini-HPT and consequences

In this section, we will prove a weaker preservation Theorem that is a stepping
stone to the Equirank-variable preservation conjecture. We generalise the notion
of preservation to classes (of structures) also, as it can sometimes be an easier
place to work:

Definition 2.2.1. We say a class of structures M ⊂ Rσ(l) is closed under a
relation ∼ if for any (A, ā), (B, b̄) ∈ Rσ(l), whenever (A, ā) ∈ M and (A, ā) ∼
(B, b̄), then (B, b̄) ∈M .

This directly extends the notion of a formula being preserved under a rela-
tion, by substituting the class of structures which satisfy the formula for M in
the above definition (which we shall write Mod(φ) where φ is the formula in
question).

We now state what we refer to as the mini-HPT:

Theorem 2.2.2. For any class M ⊂ Rσ(l), if M is closed under →n,k, then
there exists φ ∈ L+

n,k(l) such that M = Mod(φ).

Proving this Theorem relies on the properties of the comonad Pn,k and the
fact that equivalence classes of Rσ(l) under �n,k are finite. We shall prove the
latter and then give a proof of the mini-HPT. This in turn relies on the fact
that Ln,k(l) is finite under ≡. This is a well known fact and can be found in
textbooks such as [13].

Lemma 2.2.3. For any n, l, there are finitely many equivalence classes of Ln(l)
under ≡. In other words, there exists some finite set φ1, ..., φj ∈ Ln(l) such that
for any ψ ∈ Ln(l), ψ ≡ φi for some i.

Proof. This is proved by induction on n. If n = 0, then Ln(l) is the set of
boolean combinations of atomic relations built using at most l variables, which
is finite under ≡, since the relational signature σ is also finite. For the inductive
step, note that a formula φ of quantifier rank n + 1 can always be written as
a boolean combination of formulae φ1, ..., φm ∈ Ln(l) and ∃xi1ψ1, ...,∃xim′ψm′ ,
where each ψ ∈ Ln(l + 1). By the inductive hypothesis, there are only finitely
many formulae of quantifier rank at most n (up to ≡), and since ≡ is preserved
under boolean combinations, we can only construct finitely many different for-
mulae of quantifier rank n+ 1 (up to ≡).
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Given this, we now state the corollaries of it that we need for the proof of
the mini-HPT.

Corollary 2.2.4. L+
n (l), Ln,k(l), and L+

n,k(l) are finite up to ≡ for every n, k, l.

This holds because each of these fragments are subsets of some fragment
Ln(l) for some n, l.

Corollary 2.2.5. Rσ(l) has finitely many equivalence classes under ≡n,k and
�n,k for every n, k, l.

Proof. A structure’s equivalence class under ≡n,k is determined by which formu-
las it satisfies from Ln,k(l). Since there finitely many of these up to equivalence
(say m many), there are finitely many equivalence classes (at most 2m). The
same argument holds for �n,k.

Another useful fact about the equivalence classes of �n,k is that each one
contains a finite structure with an (n, k)-cover, which we will prove in two
lemmas:

Lemma 2.2.6. For any n, k, l, and structure (A, ā) ∈ Rσ(l), there exists a
finite (B, b̄) ∈ Rσ(l) such that (A, ā)�n,k (B, b̄).

Proof. Fix n, k, l and let (A, ā) ∈ Rσ(l). Recall that the equivalence class
of (A, ā) is determined completely by the formulas of L+

n,k(l) that it satisfies,
and there are finitely many formulas up to equivalence. Suppose the formulas
φ1, ..., φm is a list containing all the formulas of L+

n,k(l) that (A, ā) satisfies up
to equivalence. Now since each of these formulas are positive existential, they
are satisfied if and only if they are witnessed by some tuples āi of A (where
āi is the tuple witnessing φi). Now the induced substructure (A′, ā) that has
universe consisting of the entries of all of these tuples (and the distinguished
tuple ā of A) is certainly finite, and by construction will satisfy each φi, since
it has witnesses for all of them. Hence we will have (A, ā) →n,k (A′, ā) by
the definition of →n,k. Since A′ is an induced substructure of (A, ā), we have
(A′, ā)→ (A, ā), and hence (A′, ā)→n,k (A, ā) as required.

Lemma 2.2.7. For any n, k, l, and (A, ā) ∈ Rσ(l), (A, ā)�n,k Pn,k(A, ā).

Proof. The co-unit ε : Pn,k(A, ā) → (A, ā) witnesses Pn,k(A, ā) → (A, ā) and
hence Pn,k(A, ā) →n,k (A, ā). For the other way around, recall that it suffices
to check only primitive positive formulas rather than all positive existential
formulas. Suppose some arbitrary φ ∈ L+

n,k(l) is primitive positive and (A, ā) |=
φ. We proved in the introduction that φ has a term structure (C, c̄) with an
(n, k)-cover, and hence a Pn,k-coalgebra. Since (A, ā) |= φ, we get (C, c̄) →
(A, ā) and hence Pn,k(C, c̄) → Pn,k(A, ā) by functoriality. Since (C, c̄) has a
Pn,k-coalgebra, we have (C, c̄) → Pn,k(C, c̄) and can infer (C, c̄) → Pn,k(A, ā)
and hence Pn,k(A, ā) |= φ as required.
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Putting these two lemmas together along with the fact that Pn,k(A, ā) always
has a (n, k)-cover (since it has a Pn,k-coalgebra) and is finite whenever (A, ā)
is, we can conclude that every equivalence class under �n,k contains a finite
structure with an (n, k)-cover. Henceforth, for each n, k, l, we shall fix a set
Fn,k,l of representative structures for Rσ(l) under �n,k each being finite with
an (n, k)-cover.

We are now in shape to prove the mini-HPT (re-stated here from above):

Theorem 2.2.8. For any class M ⊂ Rσ(l), M is closed under →n,k, if and
only there exists φ ∈ L+

n,k(l) such that M = Mod(φ).

Proof. As noted in above discussions, the reverse direction is immediate, so we
will just prove the forwards direction. Given M , define F ′ := Fn,k,l ∩M , and
set

φ =
∨
{φ(C,c̄) : (C, c̄) ∈ F ′}.

This is a well-formed formula since F ′ is finite because Fn,k,l is. We also know
φ ∈ L+

n,k(l) since each (C, c̄) has an (n, k)-cover, so has a canonical query in

Ln,kprim(l). We now check that φ satisfies the required properties. First suppose
(B, b̄) ∈Mod(φ), we check (B, b̄) ∈M . Since (B, b̄) |= φ, we have (B, b̄) |= φ(C,c̄)

for some (C, c̄) ∈ F ′, and hence (C, c̄) → (B, b̄). Since (C, c̄) ∈ M , we have
(B, b̄) ∈M by the closure property of M . We now check some (B, b̄) ∈M is in
Mod(φ). We know there exists some (C, c̄) ∈ Fn,k,l such that (B, b̄)�n,k (C, c̄).
Since (B, b̄) ∈ M , we must have (C, c̄) ∈ M by the closure property of M and
hence (C, c̄) ∈ F ′, so φ(C,c̄) is in the disjunction that comprises φ. We also

know (B, b̄) |= φ(C,c̄) because (C, c̄) →n,k (B, b̄) and φ(C,c̄) ∈ L+
n,k(l), and can

conclude (B, b̄) |= φ as required.

Given the mini-HPT, the equirank variable HPT is now implied by the fol-
lowing conjecture (this would be equivalent to it if we insisted M was of form
Mod(φ) for some formula φ):

Conjecture 2.2.9. Any class M ⊂ Rσ(l) closed under ≡n,k and → is closed
under the map (A, ā)→n,k Pn,k(A, ā), for every (A, ā) ∈M .

This conjecture implies the equirank variable HPT because being closed
under maps of form (A, ā) →n,k Pn,k(A, ā) and →, implies being closed under
→n,k because any map of form (A, ā)→n,k (B, b̄) can be factored into the maps
(A, ā) →n,k Pn,k(A, ā) → (B, b̄). We can then use the mini-HPT to find a
positive existential formula as desired.

2.3 Proof Strategy: Companion Structures and
Extendability

Now we seek to move towards a proof of the previous conjecture. We claim that
if for any A, we can find a pair C,D with the following properties, then the
conjecture would follow:
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1. A→ D

2. C ≡n,k D

3. D → Pn,kA

The proof would then follow by, given A ∈ M and B ∈ Rσ such that
A→n,k B, chasing the following diagram (using the closure properties of M we
could then obtain B ∈M):

C ≡n,k D

A Pn,kA B

We will in fact find structures with more properties than this, but we present
this as the strategy to clarify the argument. Our aim will be to build the
≡n,k relation along the �n,k relation, directly generalising what is called n-
extendability in [27]. Consider a pair A �n,k B. By the recursive definition
of →n,k for any b ∈ B there is some a ∈ A such that (B, b) →n−1,k (A, a). If
we aim to build a back and forth correspondence, we might hope to find a ∈ A
with the property that (A, a)�n−1,k (B, b) also, since this will ensure a partial
isomorphism between {a} and {b}. If we could do this for any b ∈ B (and of
course relative to some tuple b̄ of B), and vice versa, and repeat the process for
n steps, then we would have that A ≡n,k B. We state this more formally below:

Definition 2.3.1. A ∈ Rσ is (n, k)-extendable if for every:

• 0 < n′ ≤ n

• Tuple ā of length l ≤ k

• Structure (B, b̄) such that (A, ā)�(n′,k) (B, b̄)

• β ∈ B.

When l < k there exists α ∈ A such that

(A, ā, α)�(n′−1,k) (B, b̄, β).

When l = k or l < k, for each i ∈ {1, ..., l} there exists α ∈ A such that

(A, ā[α/ai])�(n′−1,k) (B, b̄[β/bi]).

This property of A is telling us we can extend partial isomorphisms between
A and any structure B by choosing any element in B (subject to the presence
of, and whilst maintaining a �n,k relation). It follows that:
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Lemma 2.3.2. If A,B ∈ Rσ are (n, k)-extendable, and A�n,k B, then A ≡n,k
B.

With this definition, we have that if we can construct, for any given A, an
(n, k)-extendable Ã such that Ã � A, then we can use the above lemma, by

setting C = Ã and D = ˜(Pn,kA) in our diagram above, to obtain the required
result. This is of course stronger than strictly necessary, though achievable in
some cases.

2.4 Building Extendable Structures

We will build the structure Ã with extensive use of coproducts, so first we
need to investigate how the coproduct interacts with →n,k. We will sometimes
appeal to the intuitive characterisation of→n,k to avoid tedious book-keeping of
indices. We use ⊕ to denote the coproduct of two structures in their respective
category. We state without proof the following intuitive characterisation in the
most common cases:

Lemma 2.4.1. For structures A,B ∈ Rσ, A ⊕ B has universe A t B (the
disjoint union of their universes), and relations, for R ∈ σ, RA⊕B := RA ∪RB.
For structures (A, ā), (B, b̄) ∈ Rσ(l), in the case that the tuples ā and b̄ have
repeated elements in the same places, we can directly construct (A, ā) ⊕ (B, b̄),
by taking the quotient of A⊕B under the relation ai ∼ bi for i = 1, ..., l.

Lemma 2.4.2. For A,B,C ∈ Rσ, if A→n,k C and B →n,k C then A⊕B →n,k

C.

Proof. Intuitively, in the (n, k)-game, Duplicator can just play both strategies
for A →n,k C and B →n,k C simultaneously. If Spoiler plays in A, Duplicator
follows the strategy for A →n,k C, and similarly for B. This corresponds to a
map Pn,k(A⊕B)→ Pn,kA⊕Pn,kB . For some s ∈ Pn,k(A⊕B), if εA⊕B(s) ∈ B,
we delete all entries of elements of A in the sequence, and if εA⊕B(s) ∈ A we
delete all entries of elements of B.

It is, unfortunately, not the same story in Rσ(l). We provide a counterex-
ample:

Example 2.4.3. Let σ consist of a single binary relation R, and a unary rela-
tion U . Let A be the three cycle on elements {a1, a2, a3}, pictured below:

a1

a2 a3

R
R

R

Let B be the path on {b1, ..., b7} with a single unary relation on b4.
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b1 b2 b3 b4 b5 b6 b7
R R R

U

R R R

We see from a simple check that (A, a1)→3,2 (B, b4) (and of course (B, b4)→3,2

(B, b4)), but it is not the case that (A, a1)⊕(B, b4)→3,2 (B, b4). In the previous
case where we worked in Rσ, there was no interaction between A and B, and
thus Duplicator could run the two strategies simultaneously and independently.
However, now we have identified a1 and b4 this no longer works.

In the example above we see that if we have at least two more moves than
pebbles left to place, then passing →n,k through a ⊕ fails. The example above
was the worst possible in this sense.

Lemma 2.4.4. Suppose (A, ā), (B, b̄), (C, c̄) ∈ Rσ(l), (A, ā)→n,k (C, c̄), (B, b̄)→n,k

(C, c̄), and n ≤ k − l + 1, then (A, ā)⊕ (B, b̄)→n,k (C, c̄).

Proof. First we consider the case n = k − l, so we are in fact playing the n-
round Ehrenfeucht-Fraisse game, and can make use of the simpler comonad En.
In terms of strategies, Duplicator can once again run the strategies for (A, ā)
and (B, b̄) independently. As mentioned in the introduction, it is an equivalent
game to not allow Spoiler to place an element where one is already placed, hence
we may assume Spoiler will never place one on the identified elements ai(=
bi), thus Duplicator never has to deal with any conflict between its strategies.
Formally, we describe a map En((A, ā)⊕ (B, b̄))→ (En(A, ā)⊕En(B, b̄)) by, for
s ∈ En((A, ā)⊕ (B, b̄)), deleting all entries not in A (respectively B) occurring
in s if ε((A,ā)⊕(B,b̄))(s) ∈ A − {a1, ..., al} (respectively B − {b1, ..bl}), and if

ε((A,ā)⊕(B,b̄))(s) occurs among the tuple ā(= b̄), so ε(s) = ai for some i, then
send s to [a1, ..., ai].
The case n = k− l+1 is similar to above. Recall again from the introduction we
may assume Spoiler cannot move a pebble until all the pebbles have been placed
(as this defines an equivalent game). Hence there is only one pebble move after
all the pebbles have been placed, so Duplicator can run the strategies for A and
B independently with no conflict.

If (A, ā), (B, b̄) ∈ Rσ(l) and b ∈ B, we let ((A, ā) ⊕ (B, b̄), b) denote the
structure obtained by taking the coproduct (A, ā) ⊕ (B, b̄) in Rσ(l), and then
distinguishing b in addition to view it as an object of Rσ(l + 1). An important
point for later will be when we can conclude ((A, ā)⊕ (B, b̄), b)→n,k (B, b̄, b).

Lemma 2.4.5. If n ≤ k − l + 2, and (A, ā) →n,k (B, b̄), then ((A, ā) ⊕
(B, b̄), b)→n,k (B, b̄, b).

Proof. We observe the key difference to the lemma above is that we have re-
placed (C, c̄) with an extra copy of (B, b̄), and added an extra distinguished
element in B into the conclusion. This allows us to deal with an extra round
of pebble movement, hence we may assume n ≤ k − l + 2 rather than just
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n ≤ k − l + 1. We shall use the identity strategy to witness (B, b̄) →n,k

(B, b̄), in other words, Duplicator’s strategy in this game is simply to copy
Spoiler’s moves. We now describe how Duplicator can use this strategy along
with a strategy f : Pn,k(A, ā) → (B, b̄) to find a winning strategy to witness
((A, ā) ⊕ (B, b̄), b) →n,k (B, b̄, b). As before, for the first k − l rounds, we may
assume Spoiler places pebbles each round, so as in the lemma above, Dupli-
cator can run both of its strategies independently. In other words, if Spoiler
places pebble ij on an element aj of A, Duplicator responds by placing pebble
ij , f [(a1, i1), ..., (aj , ij)] where these are (a1, i1), ..., (aj−1, ij−1) are the pebbles
placements on A. If Spoiler places pebble on b′ of B, Duplicator simply responds
by placing a pebble on b′. As remarked in the introduction, we may assume
Spoiler does not place a pebble on the identified elements a1(= b1), ..., al(= bl)
common to both A and B as there are already pebbles placed there in the set
up. We also observe this maintains a partial morphism even when the extra
distinguished element b is included as Duplicator is following the identity strat-
egy on B, and there are clearly no additional relations created containing any
pebbles placed on A and b. After these first k − l pebble placements, there are
at most 2 rounds of pebble moves to consider.
Firstly, suppose Spoiler does not move a pebble from identified elements a1(=
b1), ..., al(= bl) for its next move. Identically to how we assume Spoiler will
not place a pebble onto an element where a pebble is already placed, we may
assume Spoiler will not move a pebble where one is already placed. Hence,
Spoiler will not be able to move a pebble onto any of the identified elements
on the first or second move, as they all already have pebbles on them. So now
as before, Duplicator may follow both its strategies in parallel, following the
strategy f and the identity strategy, for example if Spoiler moves pebble ij onto
aj ∈ A, Duplicator responds as before f [(a1, i1), ..., (aj , ij)] as before, where
(a1, i1), ..., (aj , ij) is the history of moves placed onto A. It does not matter if
the pebble was moved from B across to A, since from the perspective of the
strategy f it would simply be if Spoiler were placing a new pebble on A.
Thus, the only case left to consider is where Spoiler first moves a pebble off of one
the identified elements (without loss of generality we shall assume it is pebble
1 on a1). Suppose first that Spoiler first moves pebble 1 onto an element of B.
In this case, Duplicator simply follows the identity strategy for the first move,
placing the pebble onto the same element of B. If Spoiler places the a pebble
back onto a1, or anywhere else in B, Duplicator places the same pebble on that
same element, which clearly maintains a partial morphism on both A and B. If
Spoiler moves a pebble onto A, Duplicator plays as before using f , which again
maintains partial morphisms. The trickiest case to consider is where Spoiler
first moves pebble 1 onto a′ ∈ A and then a pebble i onto a1 (i may or may not
be equal to 1), which is the case from the Example 2.4.3. In the example, this
caused an issue for Duplicator, since it needed to play f [(a1, 1), ..., (a′, 1), (a1, i)]
to maintain a winning strategy on A, but play a1(= b1) to maintain a winning
strategy on B, and these were not equal. The crucial difference is that in this
case there is an extra distinguished element b, so there is it least 1 pebble
i′ already placed b, which is not an element of A. Thus, when Spoiler plays
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(a′, 1), Duplicator may respond by playing f [(a1, 1), ..., (a′, i′)], since i′ is not
a pebble that was already placed on a. In other words, Duplicator can find
a move that maintains a partial morphism that includes a1, a′, and all other
elements with pebbles placed on them in A, rather than before where Dupli-
cator could only find a partial morphism that did not necessarily include a1.
Now, if Spoiler plays their last move by moving a pebble onto a1, Duplicator
responds by moving that same pebble onto a1, which maintains a partial mor-
phism both on A and B. If Spoiler instead played somewhere other than a1 with
its last move, Duplicator can win as before either by following f or the identity
strategy, depending on if Spoiler plays on A or B. The only caveat to this is
that if Spoiler moves exactly pebble i onto a′′ ∈ A, Duplicator responds with
f [(a1, 1), ..., (a′, 1), (a1, i), (a

′′, 1)] since from the perspective of the strategy f ,
pebble i was already in use, however Duplicator can make use of pebble 1 now
as a1 no longer has a pebble on it. This has now covered all cases for up to two
pebble moves, so we are done.

We remark here that the strategy in the above proof cannot be extended
for n > k − l + 2, as there may not be more than 1 pebble placed on B in the
first k − l moves, so we cannot use the same trick again. What is needed in
the general case is the following (recall that Fn,k,l is a set of representatives for
equivalences classes of �n,k each finite and having an (n, k)-cover):

Conjecture 2.4.6. There exists a choice of sets Fn,k,l for every n, k, l such
that for each (A, ā) ∈ Rσ(l), and each (C, c̄, c) ∈ Fn,k,l such that (A, ā) →n,k

(C, c̄),and (C, c̄)→ (A, ā), we have ((A, ā)⊕ (C, c̄), c))→n,k (C, c̄, c).

We have this in the case of n ≤ k − l + 2, indeed, it follows immediately
from the more general lemma above that any choice will do, but have been
unable to prove it for the general case. We shall see how this would imply the
(n, k)-preservation Conjecture, and thus give a proof of the (n, k)-preservation
Theorem in the case n ≤ k− l+ 2. We emphasise that the following rely on this
conjecture and are thus yet unproven except in this case.

In order to build (n, k)-extendable structures, it is convenient to test (n, k)-
extendability on representative structures from Fn,k,l. Further, as we wish to
find structures which are, in a sense, extensions of given structures, we find a
test for (n, k)-extendability on structures of form ((A, ā)⊕ (C, c̄), c), where A is
fixed and (C, c̄) ∈ Fn,k,l as we will see below:

Lemma 2.4.7. Assuming Conjecture 2.4.6, a structure A is (n, k)-extendable
if for every:

• l < k,

• 0 < n′ ≤ n− l,

• l-tuple ā of A,

• (C, c̄, c) ∈ Fn′,k,l+1 such that (C, c̄)→ (A, ā)→n′−1,k (C, c̄),
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there exists α ∈ A such that

(A, ā, α)�n′−1,k ((A, ā)⊕ (C, c̄), c).

Proof. Let ā, n′, and l be as above, and let (B, b̄) ∈ Rσ(l) be such that
(A, ā) �n,k (B, b̄). As in the definition of (n, k)-extendability, we break into
cases l = k and l < k.

• First let l < k and take some β ∈ B. Take (C, c̄, c) ∈ Fn′−1,k,l+1 such that
(B, b̄, β) �n′−1,k (C, c̄, c). By the recursive characterisation of →n′,k, we
note that there is a ∈ A such that (B, b̄, β) →n′−1,k (A, ā, a). Hence, by
transitivity of→n′−1,k, we have (C, c̄, c)→n′−1,k (A, ā, a). Since (C, c̄, c) ∈
Fn′−1,k,l+1 it has an (n′−1, k)-cover, so we get a morphism (C, c̄)→ (A, ā).
We also have (A, ā) →n′−1,k (B, b̄) → (C, c̄) (the first arrow from the
fact (A, ā) →n′,k (B, b̄) and the second from (B, b̄, β) →n′−1,k (C, c̄, c))
and can apply the hypothesis of the lemma. So let α ∈ A be such that
(A, ā, α)�n′−1,k ((A, ā)⊕(C, c̄), c). It is immediate that (B, b̄, β)→n′−1,k

((A, ā) ⊕ (C, c̄), c) since ((A, ā) ⊕ (C, c̄), c) is a superstructure of (C, c̄, c).
By Conjecture 2.4.6 we have ((A, ā) ⊕ (C, c̄), c) →n′−1,k (C, c̄, c) →n′−1,k

(B, b̄, b). Combining these we get (A, ā, α)�n′−1,k (B, b̄, β) as required.

• The structure of the second case is very similar. Suppose l = k and
let β ∈ B, i ∈ {1, ..., l}. Without loss of generality we may reorder the
tuples ā, b̄ so that i = l(= k). Again let (C, c̄) ∈ Fn′,k,l be such that
(B, b̄[β/bi])�n′−1,k (C, c̄, c). By identical reasoning to the previous case,
we see that (C, c̄)→ (A, ā−al) (where ā−al denotes the tuple ā with the
lth entry deleted). The argument now proceeds exactly as in the previous
case.

We now have the means to build up (n, k)-extendable structures. In the fol-
lowing definition we let U denote the forgetful functor that sends some (A, ā) ∈
Rσ(l) to its underlying structure A ∈ Rσ.

Definition 2.4.8. For A ∈ Rσ, and a fixed choice of (n, k), let Σ(A) be the
colimit over all the canonical inclusion maps of form:

A→ U((A, ā)⊕ (C, c̄))

for (C, c̄, c) ∈ Fn′,k,l such that (C, c̄) → (A, ā), where 0 < n′ ≤ k − l.
Constructively, one may think of this A and “gluing” all possible structures
(C, c̄) to it along appropriate tuples.

Lemma 2.4.9. For A ∈ Rσ, 0 < n′ ≤ k − l, (C, c̄, c) ∈ Fn′−1,k,l such that
(C, c̄)→ (A, ā), we have

(Σ(A), ā, c)� ((A, ā)⊕ (C, c̄), c)
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Proof. ((A, ā)⊕ (C, c̄), c)→ (Σ(A), ā, c) is just an inclusion map. For the other
way around, we note that Σ(A) is a colimit so it suffices to give a coherent set
of maps out of the objects (A, ā′)⊕ (C ′, c̄′) for appropriate (C ′, c̄′). If (C ′, c̄′) =
(C, c̄) and ā′ = ā we just take the identity map on ((A, ā)⊕(C, c̄), otherwise; take
the identity on A along with any map (C, c̄′) → (A, ā′). It is straightforward
to see that such maps all commute where necessary and respect the required
distinguished elements of Σ(A).

We also have the following:

Lemma 2.4.10. Σ(A) is a co-retract of A, meaning there are maps A� Σ(A)
that compose to give the identity on A. In addition, if ā is any tuple of A, then
(A, ā)� (Σ(A), ā).

Proof. For the map A → Σ(A), just take the inclusion map. The other way
around, for each (A, ā)⊕ (C, c̄), use the map given by the identity on A and any
choice of map (C, c̄)→ (A, ā).

We have, in a sense, that Σ(A) satisfies the (n, k)-extendability criteria, but
for A rather than for itself. Thus we take the colimit, or countable union, of
the structures Σi(A) (for i ∈ N) to obtain something akin to a fixed point of Σ,
which will be (n, k)-extendable.

Definition 2.4.11. Let Σω(A) be the colimit over all inclusion maps of form:

Σi(A)→ Σi+1(A)

for i ∈ N. Or, more constructively, Σω(A)is the union
⋃
i∈N Σi(A).

Σω(A) enjoys similar properties to Σ(A).

Lemma 2.4.12. Σω(A) is a co-retract of Σi(A) for any i ∈ N. In particular,
if ā is any tuple of Σi(A), then (Σi(A), ā)� (Σω(A), ā).

Proof. For Σi(A) → Σω(A) we take the inclusion map. For the other way
around, we need to specify coherent maps Σj(A) → Σi(A) for each j ∈ N. If
i ≤ j then just take the inclusion map. If j > i then take compositions of the
maps Σj(A)→ Σj−1(A) as described in Lemma 2.4.10. It is straightforward to
see that these maps all commute with the inclusion maps (thus giving us a map
out of the colimit), and that the composition of these maps give the identity on
Σi(A).

We can now show Σω(A) is (n, k)-extendable (modulo Conjecture 2.4.6):

Theorem 2.4.13. Assuming Conjecture 2.4.6, for any A ∈ Rσ, Σω(A) is
(n, k)-extendable,

Proof. We use Lemma 2.4.7 which gives us the simplest test for (n, k)-extendability.
Suppose 0 < n′ < k−l, l < k, ā is an l-tuple of Σω(A), and (C, c̄, c) ∈ Fn′−1,k,l+1

is such that (C, c̄) → (Σω(A), ā). Recall that all structures in Fn′−1,k,l+1 are
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finite, so the map (C, c̄) → (Σω(A), ā) is in fact a map (C, c̄) → (Σi(A), ā) for
some i ∈ N. Thus, we have a map (Σi+1(A), ā, c) � (((Σi(A), ā) ⊕ (C, c̄)), c).
Combining this with the retraction maps from Σω(A), we get

(Σω(A), ā, c)� (Σi+1(A), ā, c)� (((Σi(A), ā)⊕(C, c̄)), c)� (((Σω(A), ā)⊕(C, c̄)), c)

(where the last� is the retraction maps Σi(A)� Σω(A) paired with identity
map on C) as required by the conditions of the lemma.

Thus we may take Σω(A) as Ã and Σω(Pn,kA) as ˜Pn,kA in the argument pre-
sented at the beginning of the section to obtain a proof of the (n, k)-preservation
Conjecture (again, we emphasise this is only in the cases where Conjecture 2.4.6
holds).

2.5 Possible Solutions

We have proved so far that the (n, k)-preservation Conjecture for the case n ≤
k + 2 holds (and it is also trivially true in the case k = 1 for arbitrary n). We
also claim it is very easy to extend the work above to formulas with constants.
The problem remains open for the general pair. We outline some possible lines
to solve the general case:

• Prove Conjecture 2.4.6 for arbitrary (n, k). For the cases n ≤ k − l + 1
we actually have a more general result which implies it (Lemma 2.4.4),
which is not true for arbitrary (n, k). There is some freedom in the choices
of sets Fn,k,l and it may be that choosing them to have structures of a
certain property helps.

• A proof of Conjecture 2.4.6 would in fact give us, for any (n, k), a way
of producing an (n, k)-extendable co-retract of any given structure A. As
commented at the beginning of the section, this is much stronger than
necessary, we only need some pair of co-retracts Ã, ˜Pn,kA (of A,Pn,kA
respectively) such that Ã ≡n,k ˜Pn,kA. It might be possible to tweak
the construction shown above to this end. For instance, one can de-
fine a structure A to be (n, k)-homomorphically extendable, by replac-
ing (A, ā) →n′,k (B, b̄) with (A, ā) → (B, b̄, b) →n′,k (A, ā) everywhere
in the hypotheses and conclusion of (n, k)-extendability. One can define
(n, k)-cohomomorphically analogously. It will then be the case that if
A → B →n,k A, A is (n, k)-homomorphically extendable and B is (n, k)-
cohomomorphically extendable, then A ≡n,k B. We can see in our picture
above that Σω(Pn,kA) → Σω(A) →n,k Σω(Pn,kA), and the above mate-
rial shows Σω(Pn,kA) is (n, k)-homomorphically extendable (we avoid the
problem of Conjecture 2.4.6, since we work with proper morphisms rather
than →n,k). This gives a slightly different challenge of trying to find an
(n, k)-cohomomorphically extendable co-retract of A instead.
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Chapter 3

A Modal Adjunction

3.1 Overview

A question to ask about the En and Pn,k comonads is how is it they deal so
naturally with their respective one-way homomorphism games but not so nat-
urally with the two way isomorphism games. The answer to this question lies
in negated atomic relations. It is a simple observation that, given a structure
A ∈ Rσ, you describe A completely by giving the interpretations of R in A for
each R ∈ σ, or dually, by giving the interpretations of ¬R in A for each R ∈ σ
(one could in fact formalise this using an opposite category toRσ). However, the
structures En and Pn,k do not respect this duality. To see this clearly, suppose
R,S ∈ σ are binary relations, and A interprets R,S as negations of one another.
Now for any distinct a1, a2, a3 ∈ A, consider sequences s = [a1, a2] and s′ = [a3]
from EnA. By the construction of En, we know that for any binary relation
R ∈ σ, EnA |= ¬R(s, s′), but also EnA |= ¬S(s, s′), hence it is not possible
for EnA to respect a negated relation. From another perspective, recall that
EnA is constructed to model positions in the Ehrenfeucht-Fraisse game. From
the perspective of the Ehrenfeucht-Fraisse game, the query R(s, s′) is simply
an invalid query, as this situation cannot occur in a game since s and s′ are
not prefixes of one another. However since EnA is also a relational structure, it
must answer the query with a “no” rather than saying the query is invalid. The
problem being is that this “no” is not the negation of some “yes”. This works
well for the homomorphism game, where Spoiler is not allowed to pose query’s
involving negated relations, but requires extra considerations in the back and
forth game, where negated relations play the same role as non-negated relations.

Whilst back and forth games have been given a treatment in [6] using spans
of open morphisms, another natural way to solve this is to consider a different
type of structure, where access between elements can be carefully restricted, to
prevent the posing of “invalid” queries. We can use a modal, or Kripke, struc-
ture for this, making use of the fact that En and Pn,k come ready equipped with
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a tree-order.

The first section of this chapter builds all of the constituents of an adjunction.
First we describe, for any structure A and numbers n, k, modal structures we
refer to as MnA and Mn,kA. The transition relations are built using the natural
tree structure of EnA and Pn,kA, with the latter having i transition relations to
account for each of the possible pebble moves. The structures are endowed with
propositions that allow each element of them, which each correspond to some
s = [a1, ..., ai] ∈ EnA or s ∈ Pn,kA, to encode all relations between a1, ..., ai ∈ A.
We then show that given this definition, if we translate formulas appropriately
into modal ones, we can preserve the satisfaction relation between formulas
and structures, which allows us to convert the ≡n,k relation between first-order
structures into modal bisimulation.

The next step is to find the adjoint functors to Mn,k and Mn. In order to
do this, we first identify an appropriate modally definable subcategory of modal
structures to be the domain, which also contains the image of Mn and Mn,k.
Once we have the right domain, the needed functor out of it can simply be a
forgetful style functor, as modal structures in our subcategory can be viewed as
a first-order structure with a forest cover or (n, k)-cover, so we need only forget
the cover to find a first-order structure. Finally, we see that these modally
definable subcategories are in fact equivalent to the Eilenberg-Moore categories
for En and Pn,k, by making use of a result from [6], which shows that En and
Pn,k arise as adjunctions between the category of first-order structures and a
subcategory of the category of modal structures.

In the next section we apply our findings to understand a key part of the
proof of Courcelle’s Theorem. The problem is to take a first order structure
with a (n, k)-cover and output a tree which can interpret MSO formulas on
that structure. Now given a structure with an (n, k)-cover, we have some modal
structure T in our modally definable subcategory such that the forgetful functor
applied to T gives back our original structure, so T is a reasonable candidate.
However, we observe that unlike the functor Mn,k, our forgetful functor does
not preserve the satisfaction relation between formulae and structures for first-
order logic, let alone MSO. Instead, we prove that viewing T as a directed,
labelled graph, allows us to preserve this satisfaction relation for MSO formulae,
if we translate them correctly to be interpreted by the graph. Thus, we find a
functorial solution to the problem, which is a step towards potentially giving a
full categorical proof of Courcelle’s Theorem in the future.

3.2 Building the Adjunction

Throughout this chapter, we shall give definitions and explanations for how both
the adjunctions related to En and Pn,k are developed, using the case of En as
a simpler example to discuss before working through Pn,k, though give proofs
only for the Pn,k case.

Definition 3.2.1. For A ∈ Rσ, we define an associated rooted modal structure
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MnA. Each such structure will be over the same signature, with a single modality
M , and atomic propositions pR,t for every R ∈ σ, with t ranging across tuples
of length equal to the arity of R, with entries from 1, ..., n.

• MnA shall have universe EnA∪ {[ ]}, where [ ] is thought of as the empty
sequence, and will be the root of MnA.

• The transition relation is given by sMs′ if and only if s′ = s[a] for some
a ∈ A. This includes the case s = [ ], and s′ is a sequence of length 1.

• We interpret atomic propositions as follows. Firstly, if s ∈ MnA write
si for the ith entry of s, and write ti for the ith entry of some tuple t.
Now given some s ∈ MnA, and proposition pR,t, where R is m-ary we
have MnA, s |= pR,t if and only if A |= R(st1 , ..., stm). If some ti is
greater than the length of s, then sti will not exist, and in this case we
take MnA, s |= ¬pR,t.

The notation in the definition above is somewhat fiddly, though the under-
lying idea is simple: the atomic propositions on s = [a1, ..., al] record all the
relations occurring between the elements a1, ..., al. To give a concrete example,
if s = [a1, a2], R is some binary relation, and t = (2, 2), then MnA, s |= pR,t if
and only if A |= R(a2, a2).

We can actually translate formulae as well as structures. Throughout this
section, all formulas will be equality free.

Definition 3.2.2. Given φ in Ln, we define Mnφ via mapping each part of it
as follows:

• R(xt1 , ..., xtm) 7→ pR,t

• Connectives ∧,∨,¬ 7→ ∧,∨,¬

• Quantifiers ∃x, ∀x 7→ ♦,�.

We remark here that the translation Mn for formulas does not depend on
the choice of n, we simply use this notation as it reads similarly to previous
notations, and to distinguish it from the translations of formulas in the pebbling
case.

One slight irritation at this point which is apparent in the definition above
is that when an FO formula uses a quantifier one cannot currently distinguish
from the translated formula which variable was bound, however this can be
solved by insisting the variables are bound in a specific order (so which variable
is bound can be recovered by the shape of the formula)

Definition 3.2.3. Recall a variable quantifier q is in the direct scope of a quan-
tifier q′ in a sentence if and only if whenever some other quantifier q′′ has q in
its scope, it also has q′ in its scope.
We will say a sentence φ is “well-written” if and only if the only variable bound
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in the scope of no other quantifiers is x1, and any variable bound in the direct
scope of a quantifier binding xi is xi+1.
A well-written formula φ(x̄) is one that has free variables among x1, ..., xl for
some l, has xl+1 as the only variable bound in the scope of no other quantifiers,
and satisfies any variable bound in the direct scope of a quantifier binding xi is
xi+1.

Example 3.2.4. The formula ∃x1((∃x2R(x1, x2))∧(∃x3R(x3, x1))) is not “well-
written”, since x3 is in the direct scope of x1. However it is equivalent to
∃x1((∃x2R(x1, x2))∧(∃x2R(x2, x1))) and ∃x1((∃x2R(x1, x2))∧(∃x2∃x3R(x3, x1)))
which both are well-written. We would like to point out that, despite the name,
“well-written” is certainly not a remark on the aesthetics or readability of a
formula!

When a formula is well-written, one could in fact dispense of writing the
variable bound in a quantifier, as they are implicit in where the quantifier ap-
pears in the formula. It is immediate that every FO formula is equivalent to
a well-written formula, simply by relabelling variables, and further that this
relabelling preserves quantifier rank, though this is not the case if you restrict
the number of variables, as shown in an example in the introduction where a
single variable can be bound multiple times in the same formula.

Theorem 3.2.5. If φ ∈ Ln is a well-written, then A |= φ ⇐⇒ MnA, [ ] |=
Mnφ.
If φ(x̄) ∈ Ln(l) is well written, A, (a1, ..., al) |= φ ⇐⇒ Mn+lA, [a1, ..., al] |=
Mnφ.

This Theorem can be seen simply by unpacking the relevant definitions, but
we will give a proof in the more general case involving Pn,k. Insisting on φ being
well written ensures the atomic relations in φ are correctly interpreted by the
corresponding atomic propositions in Mnφ.

We now give the same treatment to Pn,k, to define a structure and a trans-
lation Mn,k. The fundamental ideas are the same, though we require the use
of extra modalities to keep track of the pebble indices present in Pn,k. Recall
that elements s ∈ Pn,kA are of form s = [(a1, e1), ..., (am, em)] where the ai
are entries from A and the ei are integers from 1, ..., k. We call the ei’s pebble
indices.

Definition 3.2.6. For A ∈ Rσ, we define an associated rooted modal structure
Mn,kA. They shall all be modal structures in the same signature, with modal-
ities M1, ...,Mk, and atomic propositions pR,t for every R ∈ σ, with t ranging
across tuples of length equal to the arity of R, with entries from 1, ..., k.

• Mn,kA shall have universe Pn,kA ∪ {[ ]}, where [ ] is thought of as the
empty sequence, and will be the root of Mn,kA.
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• The transition relation is given by sMis
′ if and only if s′ = s[(a, i)] for

some a ∈ A. This includes the case s = [ ], and s′ is a sequence of form
[(a, i)].

• We interpret atomic propositions as follows: Firstly, if s ∈ Mn,kA write
si for last A-entry of s with pebble index i (where it exists), and write
ti for the ith entry of some tuple t. Now given some s ∈ MnA, and
proposition pR,t, where R is m-ary we have MnA, s |= pR,t if and only if
A |= R(st1 , ..., stm). If for some ti, sti does not exist, we take Mn,kA, s |=
¬pR,t.

Once again, the notation is fiddly, but the underlying concept is straight
foward. Recall for some s = [(a1, e1), ..., (am, em)], it represent the positions of
pebbles in a pebble game; si is the element of A on which pebble i is placed. The
atomic propositions record the relations between the elements of A on which
the pebbles are currently placed. For example, if R is a binary relation, and
t = (1, 2), pR,t asks in words, does the relation R hold between the element on
which pebble 1 is currently placed (written s1) and the element on which pebble
2 is currently placed (written s2)?

Remark 3.2.7. In order to see Mn as a simpler case of Mn,k, we can iden-
tify structures of form MnA as a substructures of Mn,nA, by considering only
those s ∈Mn,n with their pebble indices in ascending order and starting with 1,
ie elements of form [(a1, 1), (a2, 2)...]. This makes sense of the “well-written”
notion for formulae in the case of Mn, where we force the variables quantified
to appear in ascending order, and start with 1.

As promised, there is an analogous Theorem for translation in the pebbling
case. This time, a formula will be “well-written” if it only uses variables (both
free and bound) from x1, ..., xk. We do not require them to be bound in a
certain order, as the atomic propositions in Mn,kφ have more flexibility than
in the previous case. However, it does make stating the following slightly more
complicated due to possible permutations of 1, ..., k.

Definition 3.2.8. For a well-written φ ∈ Ln,k, we define Mn,kφ identically to
Mnφ, except for the case of translating quantifiers. Here we send ∃xi,∀xi 7→
♦i,�i

Theorem 3.2.9. If φ ∈ Ln,k is a well-written, then A |= φ ⇐⇒ Mn,kA, [ ] |=
Mn,kφ.
For some φ(x̄) ∈ Ln,k(l), with free variables occurring among x1, ..., xk (and
with l free variables), let its free variables be denoted xt1 , ..., xtl , and recall for
some sequence s we write si for the last A entry of s with pebble index i. Then
A, (st1 , ..., stl) |= φ ⇐⇒ Mm,kA, s |= Mn,kφ, so long as n+ length(s) ≤ m (the
length of s being the number of entries from A it has).

Proof. An initial observation to make is that Mn,k preserves boolean combina-
tions of formulae by definition, for instance we have Mn,k(φ ∧ ψ) := Mn,kφ ∧
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Mn,kψ. Thus, when faced with a formula that is a boolean combination of sim-
pler formulae we need only consider the simpler parts. We will proceed with
a proof by induction on the quantifier rank of a formula. First, consider a
formula with quantifier rank 0, ie a formula with no quantifiers, so it is a
boolean combination of atomic relations between free variables. By the initial
observation above, we need only consider a single such atomic relation. This
case now follows directly from the construction of the atomic propositions pR,t
(indeed, they were defined exactly by this property!). Now consider a formula φ
of quantifier rank n+1. Recall that a formula of of quantifier rank n+1 can
always be written as a boolean combination of formulae of type ∃xiψ, where the
ψ’s have quantifier rank at most n. Again, since Mn,k preserves boolean com-
binations, we need only consider the case φ is of form ∃xiψ for some i and some
ψ of quantifier rank at most n (in fact we can assume ψ has quantifier rank
exactly n, else φ would have quantifier rank at most n and we could simply
use the inductive hypothesis). Without loss of generality, for ease of writing the
proof, we shall assume the free variables of ψ are x1, ..., xl and the new variable
bound in φ is xl (we assume here φ binds a variable that occurs free in ψ, the
other case is trivial). Let s ∈ Mm,kA satisfy n + 1 + length(s) ≤ m, and have
entries with pebble indices 1, ..., l − 1, then we must show A, (s1, ..., sl−1) |=
φ ⇐⇒ Mm,kA, s |= Mn,kφ. We prove the forward direction as the converse
is symmetric. Suppose A, (s1, ..., sl−1) |= φ. Then there is some a ∈ A such
that A, (s1, ..., sl−1, a) |= ψ. Now consider s′ = s[(a, l)]. We have s′i = si for
i = 1, ..., l − 1, and s′l = a, so we might write this A, (s′1, ..., s

′
l) |= ψ. Since the

quantifier rank of ψ is n, and n + length(s′) = n + 1 + length(s) ≤ m we
may apply our inductive hypothesis, to obtain Mm,kA, s

′ |= Mn,kψ. Now since
sMls

′, we have Mm,kA, s |= ♦lMn,kψ(= Mn,kφ) as required.

Now that we have translated formulae we can consider (n-ary) bisimulations.
For modal structures T, T ′ we shall write T, s ∼n T ′, s′ if for all modal sentences
φ of quantifier rank (where quantifier rank for modal sentences is defined
as for FO sentences but using �,♦ in place of ∀,∃) at most n, T, s |= φ ⇐⇒
T ′, s′ |= φ. This is actually equivalent to full bisimulation in the cases we are
considering since our modal structures are trees of depth at most n. Similarly
to the case of ≡n and ≡n,k this can be equivalently described using a recursive
definition, or with back and forth games. For an exploration of such games
and the general properties of bisimulation, within finite model theory see [25]
or [29]. One could prove the following simply using games, but we prefer to use
formulae in order to make use of the above properties of the translations we just
proved.

Theorem 3.2.10. For A,B ∈ Rσ:

• A ≡n B ⇐⇒ MnA, [ ] ∼n MnB, [ ]. A ≡n,k B ⇐⇒ Mn,kA, [ ] ∼n
Mn,kB, [ ].

• If (a1, ..., al),(b1, ..., bl) are distinct tuples from A,B respectively, then
A, (a1, ..., al) ≡n B, (b1, ..., bl) ⇐⇒ Mn+lA, [a1, ..., al] ∼n Mn+lB, [b1, ..., bl].
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If s, s′ are fromMn,kA,Mn,kB respectively, and there is some l-tuple t such
that sti = ai and sti = bi for each i = 1, ..., l, and s, s′ have no entries
with pebble indices except those occurring in t, we have A, (a1, ..., al) ≡n′,k
B, (b1, ..., bl) ⇐⇒ Mn,kA, s ∼n′,k Mn,kB, s

′ where n′ is the minimum
among n− length(s) and n− length(s′).

Proof. The backwards direction of each of these follow immediately from the
Theorem above, using the translations Mn and Mn,k respectively (making use
of the fact that every FO formula is equivalent to one that is “well-written”,
so can be fruitfully translated). In the forth direction, we first need guarantee
that all modal sentences are in the image of Mn or Mn,k. Whilst this is true,
there is small subtlety to be addressed; some interpretations of modal sentences
correspond to first order formulae with free variables in them without an inter-
pretation. Consider for instance a unary relation P , and the modal sentence
pP,1. In the Mn case this asks of a sequence s whether its first entry satisfies
P , and is the translation of P (x1). However, the fact MnA, [ ] |= ¬pP,1 would
correspond to the statement A |= ¬P (x1) which is nonsense, as there is no ele-
ment to interpret x1. A simple resolution to this is as to allow ourselves to use
such “uninterpreted” free variables within our formulas, but just interpret any
atomic relations containing them as false. This is clearly equivalent to FO (it
just adds a ⊥ symbol), and the translations, and Theorems proving their cor-
rectness, go through as before (as any atomic proposition that would reference
an uninterpreted free variable was defined to be false). Now the translations
Mn and Mn,k are surjective onto modal sentences as required.

Now we have fully completed the translations. Incidentally, one can trans-
port all of FO faithfully into modal sentences, since any FO formula has some
finite quantifier rank and variable count. Elementary equivalence can also
be written as a sequence of bisimulations, using Mi for each i ∈ N.

We now return to categorical considerations. We claim that Mn and Mn,k

are functors with left adjoints, and the composition of them with their adjoints
give rise to the comonads En and Pn,k respectively. Firstly we should state the
codomain of each mapping and prove they are functors. In the following, we
shall say the height of an element s is the number of transitions needed to reach
s from [ ].

Definition 3.2.11. The target codomain Mn of the mapping Mn shall have
objects that are rooted modal trees T, [ ], with a single modality M , of depth at
most n, with atomic propositions of form pR,t as described for structures of form
MnA, satisfying the following two properties, for any tuple t with entries from
1, ..., n and R with arity equal to the length of t:

1. If s ∈ T has height m and t contains some m′ > m, then T, s |= ¬pR,t

2. If sMs′ in T , and no entry of t is greater than the height of s, then
T, s |= pR,t ⇐⇒ T, s′ |= pR,t.
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Morphisms in Mn are rooted morphisms of modal trees, in other words,
functions f : T → T ′ satisfying the following:

• f sends the root of T to the root of T ′

• If T, s |= p for some proposition p and s ∈ T then T ′, f(s) |= p

• If sMs′ in T then f(s)Mf(s′) in T ′.

We remark here that all modal structures of formMnA satisfy conditions (1)
and (2) and are thus objects in Mn as required. The category Mn,k is defined
very similarly:

Definition 3.2.12. The target codomain Mn,k of the mapping Mn,k shall have
objects that are rooted multi-modal trees T, [ ], with modalities Mi for i = 1, ..., n,
of depth at most n, with atomic propositions of form pR,t as described for struc-
tures of form Mn,kA, satisfying the following two properties for any tuple t with
entries from 1, ..., n and R with arity equal to the length of t:

1. If there is no i transition on the unique path from the root to some s ∈ T ,
and t is a tuple with i as an entry, then T, s |= ¬pR,t

2. If sMis
′ in T , and i is not an entry of t, then T, s |= pR,t ⇐⇒ T, s′ |= pR,t

Morphisms in Mn are rooted morphisms of (multi-)modal trees, in other
words, functions f : T → T ′ satisfying the following:

• f sends the root of T to the root of T ′

• If T, s |= p for some proposition p and s ∈ T then T ′, f(s) |= p

• For each i, if sMis
′ in T then f(s)Mif(s′) in T ′

Once again, structures of form Mn,k satisfy conditions (1) and (2), by how
the atomic relations are defined on them. In light of an above remark (where we
note that we can view structures of form MnA as substructures of form Mn,nA
where the pebble indices are in ascending order) one can view the conditions (1)
and (2) for the objects of Mn as special cases of the conditions (1) and (2) for
the objects of Mn,k. At this point, these are simply some arbitrary conditions
that are met by objects in the image of Mn and Mn,k. We will see why these
conditions are necessary when we consider the adjoints of Mn and Mn,k.

Remark 3.2.13. Conditions (1) and (2) are also modally definable. We will
write out the sentences in the Mn,k case. Let T, [ ] be a modal structure.

• Condition (1) can be written as a disjunction T, [ ] |=
∧
φ, where φ

ranges over formulae of type �i1 ...�im¬pR,t, where t contains some entry
that does not occur among i1, ..., im (and of course m ranges from 0, ..., n
and the i’s range from 1, ..., k, and over all appropriate pairs R, t)
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• Condition (2) can be written as the disjunction T, [ ] |=
∧
φ, where φ

ranges over formulae of type �i1 ...�im−1(pR,t ⇐⇒ �impR,t), where im
does not occur in t. As before, m ranges from 0, ..., n, the i’s (except for
im) range from 1, ..., k, and we range of all possible pairs R, t.

Pointwise, the action of Mn and Mn,k on morphisms are identical to those
of En, and Pn,k (except for mapping the empty sequence also!):

Definition 3.2.14. Suppose f : A → B is a morphism in Rσ. In both cases,
we give a recursive definition. Mnf is defined by:

• Mnf([ ]) := [ ]

• For s ∈ MnA that is not the root, then s = s′[a] for some s′ ∈ MnA of
lower height. We set Mnf(s) = Mnf(s′)[f(a)].

Similarly for Mn,kf , we define:

• Mn,kf([ ]) := [ ]

• For s ∈Mn,kA that is not the root, then s = s′[(a, i)] for some s′ ∈Mn,kA
of lower height. We set Mn,kf(s) = Mn,kf(s′)[(f(a), i)].

Since these action are pointwise the same as the cases of En and Pn,k, we
know they will satisfy the functoriality requirements of identity and composi-
tionality. We need only check Mn and Mn,k are actually morphisms inMn and
Mn,k. We will do the latter case.

Lemma 3.2.15. If f : A → B is a morphism in Rσ then Mn,kf : Mn,kA →
Mn,kB is a morphism in Mn,k.

Proof. We verify the three conditions of a modal morphism laid out in the
definition above. Firstly, Mn,kf sends roots to roots by definition. Secondly,
suppose Mn,kA, s |= pR,t, we need to show Mn,kB,Mn,kf(s) |= pR,t We will
first prove by induction (on the height of s) the following subclaim: for each
i = 1, ...k, if si exists, then f(si) = f(s)i (recall si is the last A-entry in the
sequence s with pebble index i). If s = [ ], then si does not exist for any i, so
the statement is vacuously true. Now suppose s = s′[(a, j)]. By the inductive
hypothesis, we have that f(s′i) = f(s′)i for every i. Now for i 6= j, if si exists,
then si = s′i, so f(si) = f(s′i) = f(s′)i = (f(s′)[(f(a), j])i = f(s)i. If i = j
then clearly f(si) = f(s)i = f(a), so the subclaim is proved. Now let us write
t = (t1, ..., tm). Recall Mn,kA, s |= pR,t if and only if A |= R(st1 , ..., stm).
Now since f is a homomorphism, we have B |= R(f(st1), ..., f(stm)). By the
subclaim, we now have B |= R(f(s)t1 , ..., f(s)tm), which is true if and only if
Mn,kB, f(s) |= pR,t, as required. Thirdly and finally, we know that sMis

′ in
Mn,kA, if and only if s′ = s[(a, i)], for some a ∈ A. By definition, f(s′) =
f(s)[(f(a), i)], hence f(s)Mif(s′) as required.

We will now consider maps in the opposite direction. Given a modal tree
T , we can simply “forget” its modal structure to create a first order structure.
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Although in the case of structures of type Mn,kA, each element of a correspond-
ing first order structure is duplicated many times in the modal structure, in
the general case we cannot assume this is so, so each element of a modal tree
will create a new point in the first order structure. For a formal definition, we
first require some notation, which generalises our earlier notation si to pick out
elements of a sequence s:

Definition 3.2.16. For T, [ ] ∈ Mn, and s ∈ T , and i less than or equal to
the height of s, write si for the ith element along the unique path from [ ] to s
(counting [ ] as s0). For T, [ ] ∈ Mn,k and s ∈ T , write si for the last element
on the unique path from [ ] to s that is reached via an Mi transition.

Definition 3.2.17. Given a modal tree T, [ ] ∈Mn, we create a corresponding
structure UnT ∈ Rσ. UnT shall have universe T − {[ ]}, and relations given by
the following rule: UnT |= R(s1, ..., sm) if and only:

• There is some j such that s1, ..., sm all lie along the unique path from [ ]
to sj.

• T, sj |= pR,t, where t is the unique tuple of length m such that sjti = si for
each i.

For T, [ ] ∈ Mn,k, we define Un,kT identically (with the same universe,
and the same rule for the relations, though note the notation means something
slightly different in this case). In the previous case, the existence of a tuple t
with the required properties is guaranteed if each s1, ..., sj lie on the same branch,
however it is not the case here (it is also required that, say, if s1 is reached via
an Mi transition, there are no further Mi transitions used in between s1 and
sj).

For an intuitive picture of some tree T, [ ], we shall imagine the root to be
at the bottom of the tree. Hence, if s′ is on the unique path from s to the root,
we will refer s′ as “below” s, and s as “above” s′. Here we begin to make sense
of the conditions (1) and (2) of structures in Mn and Mn,k (from Definitions
3.2.11 and 3.2.12 respectively). In the case of Un for example, we can query
some s ∈ UnA for atomic relations between all elements “below” it (ie on the
unique path from the root to s). Now, one could equally query any element s′

“above” s for the same information (since any elements “below” s would also
be below s′). Condition (2) ensures we get the same answer in each case, which
will be needed for functoriality.

Definition 3.2.18. For f : T → T ′, define Unf by simple restriction. Recall
that, as a set, UnT := T − [ ]. So for f : T → T ′ a modal morphism, we set
Unf(s) := f(s). Note, by the conditions of a modal morphism (and the fact that
all our modal structures are assumed to be trees), if s 6= [ ] then f(s) 6= [ ], so
this always makes sense as a pointwise map. Un,k acts on morphisms in exactly
the same way.
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In order to show Un and Un,k are functors, we need to check compositionality,
identity, and that Unf and Un,kf are always morphisms in Rσ. Since Un and
Un,k simply act on maps by restricting them, compositionality and identity are
straightforward, so we shall only check that morphisms are sent to morphisms.
We shall do the Un,k case.

Lemma 3.2.19. If f : T → T ′ is a modal morphism in Mn,k, then Un,kf :
Un,kT → Un,kT ′ is a first order morphism in Rσ.

Proof. Similarly to functoriality of Mn,k, we first prove a subclaim, that for
s ∈ T , that if si exists, then f(si) = f(s)i. We show this via induction, on the
height of some s ∈ T . Firstly, if s has height 0, then si does not exist for any i, so
the claim is vacuously true. If s has height m+1, then there exists some unique
s′, j, where s′ ∈ T has height m and j is from 1, ..., k, such that s′Mjs. Thus,
the unique path from the root to s is the unique path from the root to s′, and a
further j transition. So if i = j, si = s, and if i 6= j, si = s′i (and si only exists
if s′i does). Since f is a morphism, and s′Mjs, we get f(s′)Mjf(s). Identically
to before, we have that if i = j, f(si) = f(s), and if i 6= j, f(si) = f(s′i) (and
f(si) only exists if f(s′i) does). Combining this with the inductive hypothesis,
that f(s′i) = f(s′)i for each i from 1, ..., k, we obtain that f(si) = f(s)i in either
case (that i = j or i 6= j). Now in order to show that Un,kf is a morphism, we
must show that if Un,kT |= R(s1, ..., sm), then Un,kT ′ |= R(f(s1), ..., sm). By
the definition of Un,kT |= R(s1, ..., sm), we have that there is some j and tuple

t such that sjti = si for each i, and T, sj |= pR,t. Now, by the above claim, we

get that f(sj)ti = f(sjti) = f(si) for each i. Also, since f is a morphism, we get
that T ′, f(sj) |= pR,t. Hence, Un,kT ′ |= R(f(s1), ..., f(sm)) as required.

Our final claims for this section are that Un and Un,k are left-adjoints to
Mn and Mn,k respectively (with composites En and Pn,k), and further thatMn

andMn,k are in fact the Eilenberg-Moore categories (categories of co-algebras)
of En and Pn,k. Since the second of these two claims is the stronger, we shall
simply prove that and state the other as a corollary. The proof of this will use
a result from [6] which we discuss first before proving the Theorem later on.

Theorem 3.2.20. Mn is equivalent to the Eilenberg-Moore category of En, and
Mn,k is equivalent to the Eilenberg-Moore category of Pn,k.

Recall that the Eilenberg-Moore category for a comonad (taking En as an
example) is the “category of co-algebras”. This is a category where the objects
are co-algebras c : A→ EnA (satisfying the co-algebra conditions, discussed in
the introduction), and morphisms are Rσ morphisms that also commute with
the co-algebra maps. Concretely, if c, c′ are co-algebras for A,B respectively,
then a coalgebra morphism is an ordinary Rσ morphism f : A → B that also
satisfies c′ ◦ f = Enf ◦ c. From general categorical considerations, it is known
there is an adjunction between this category and Rσ, and further that the com-
position of the adjunction (in the right direction) is En.
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In the introduction, we saw that we can characterise co-algebras of En and
Pn,k as forest covers or labelled forest covers. We borrow a result from [6] which
goes further to characterise the categories of coalgebras. We shall phrase the
result in terms of modal morphisms to make it easier for our use. We shall
therefore make use of the fact we can view a rooted forest as a modal structure
(with no atomic propositions, only a single modality), and a k-labelled forest
cover as a modal structure (with no atomic propositions, and k modalities,
where an object has unique transition to it Mi rather than the label i).

Lemma 3.2.21. (from [6]). Let Cn be the category with objects A,F , where A
is a σ structure, and F is a forest cover of A, and morphisms f : A,F → B,G,
where f is a Rσ morphism that is also a modal morphism (A and F have the
same underlying sets, as do B and G, so it makes sense to ask both if f : A→ B
is a Rσ morphism and f : F → G is a modal morphism). Let Cn,k be defined
similarly, but with objects A, T where T is a k-labelled forest cover. Then Cn and
Cn,k are equivalent to the categories of coalgebras for En and Pn,k respectively.

Now we are given this lemma, it remains to show there is an equivalence
between categories Cn and Mn, and Cn,k and Mn,k. We shall just prove the
latter.

Proof. (of Theorem 3.2.20). We shall find an essentially surjective, full, and
faithful functor F :Mn,k → Cn,k. Given some T, [ ] ∈ Mn,k, define T̂ to be the
modal structure on the set T − {[ ]}, with the same modal relations as T , but
without any atomic propositions. Now set FT := Un,kT, T̂ . Immediately, we

must show that T̂ is a k-labelled forest cover for Un,kT . This is true almost by

definition. Firstly, observe T̂ is a rooted forest on the elements of Un,kT (the
roots being the elements of height 1). Secondly, we must check the conditions
on relations between elements of Un,kT , ie that if R(s1, ..., sm) in Un,kT , then

s1, ..., sm all lie on the same branch of T̂ , and that for the unique element
sj of greatest height among them, the pebble index of si is not repeated on
the unique path from si to sj . This condition however is explicitly required
whenever Un,kT |= R(s1, ..., sj) in the definition of Un,kT , so there is nothing
more to show. F shall send a modal morphism f : T → T ′ to Un,kf . Recall
Un,kf as a set map was simply the restriction of f to T − {[ ]}. Un,kf is a Rσ
morphism (we saw this when proving Un,k was a functor), and certainly Un,kf
is a modal morphism from T̂ to T̂ ′ as these structures are simply T and T ′ with
the atomic relations forgotten, and f was assumed to be a morphism between
the original modal structures T and T ′. Trivially, F will also respect identity
and composition of morphisms (in exactly the same way Un,k did). Now we
have a functor, we must show it is an equivalence.

• Essential surjectivity: Given some A,F from Cn,k we must construct some

T such that A,F is isomorphic to Un,kT, T̂ . Let T be theMn,k structure,
with universe A ∪ {[ ]}, and transition relations given by F (except for
putting the root at the bottom). Atomic relations are given identically as
they were defined for Mn,kA, namely T, s |= pR,t if and only if si exists for
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each i occurring in t and A |= R(st1 , ..., stl) (where t = (t1, ..., tl)). One

can see this will satisfy Un,kT, T̂ = A,F immediately by construction.
As a side note, one could also pick out T by using the coalgebra associ-
ated to F to generate a substructure of Pn,kA and hence a corresponding
substructure of Mn,kT .

• Full and faithful: Since F changes morphisms only by restricting them
down by a single point (the root), and the image of the root is always
determined, it is clear F is faithful. We need only check now F is full.
Suppose f ′ : Un,kT, T̂ → Un,kT ′, T̂ ′ is a morphism. We need to check
there is some morphism f : T → T ′ in Mn,k such that Ff = f ′. Now
by the definition of F such an f can only be f ′ (as a set map), that
also sends the root of T to the root of T ′, so we simply need to check
such an f is a modal morphism. It is clear such an f will respect the
transition structure of T (since it is a modal morphism from T̂ → T̂ ′), so
we need to check f preserves atomic relations. So suppose T, s |= pR,t,
where t = (t1, ..., tj). Now since T ∈ Mn,k, we know sti exists for each
i, and Un,kT |= R(st1 , ..., stj ). Now since f ′ is a morphism, we know
Un,kT ′ |= R(f ′(st1), ..., f ′(stj ). But we know f ′(sti) = f ′(s)ti = f(s)ti for
each i, since f ′ respects transition relations, and f ′ is the same function
as f . Hence Un,kT ′ |= R(f(s)t1 , ..., f(s)tj ), so T ′, f(s) |= pR,t as required.

3.3 Courcelle’s Theorem Style Application

Courcelle’s Theorem [11] is a much celebrated algorithmic meta-theorem. In-
formally, it states that for any Monadic Second Order sentence φ, the model
checking problem is linear time over structures of a fixed bounded tree width.
Monadic Second Order (MSO) sentences are sentences which allow quantifica-
tion over unary relations (in addition to all other constructors and connectives
present in first order logic). We state it more formally below:

Theorem 3.3.1. Fix some φ an MSO sentence over σ, and some k ∈ N. Then
the decision problem: “Given some A ∈ Rσ with tree-width at most k, does
A |= φ?” can be checked in linear time with respect to the size of the universe
of A.

For an arbitrary MSO formula, its model checking problem over the collec-
tion of all structures lives in the Polynomial Hierarchy of complexity. In fact,
for any given level of the Polynomial Hierarchy, there exists an MSO formula
whose model checking problem is complete for that level (see eg [22] for more de-
tail) . Courcelle’s Theorem then starkly contrasts the collection of all structures
against collections of structures of bounded tree-width, since it says the model
checking problem for any MSO formula is instead linear time over collections of
structures with bounded tree-width.
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Whilst Courcelle’s Theorem is much studied and there a many different
proofs (see [7]), the steps of a “standard” proof are as follows:

1. Find some φ′ (that is an MSO sentence over labelled graphs) such that for
any tree decomposition (of width at most k) T of a structure A, T |= φ′

if and only if A |= φ.

2. Given some A ∈ Rσ with tree-depth at most k it is possible to find a tree
decomposition T of width at most k of φ in O(A) steps. In addition the
universe of T is of size O(A).

3. Using a tree automata (or otherwise), evaluate φ′ on T in time o(T ).

We use here the term “tree decomposition” as opposed to k-labelled forest
cover, which is a different construction that also witnesses bounding the tree-
width of a particular structure. Tree decompositions are frequently used when
discussing tree-width, as in the proof of Courcelle’s Theorem (see e.g. [8] for
an overview). A tree decomposition (for a structure A) is a tree T whose ver-
tices consists of subsets of A and satisfies certain properties (unlike a k-labelled
forest cover whose vertices are exactly A), hence why one must specify the size
of the tree decomposition in the overview above. Given a tree decomposition,
one can efficiently construct a k-labelled forest cover and vice-versa. We prefer
the use of k-labelled forest covers throughout this thesis as they coincide with
coalgebras for the Pn,k comonad. In addition, tree decompositions are much
more “flexible”, in the sense given a tree decomposition one can construct many
slightly different versions of it conveying the same information. This flexibility
is useful for algorithmic purposes, but not for categorical ones, where uniqueness
is important.

The work in the previous section is naturally geared towards step (1) above,
as we have methods of translating formulas to be interpreted by modal trees.
For our purposes, we will work with a structure and Pn,k coalgebra given, rather
than look more deeply into step (2).

Although we know that already we can neatly translate FO formulas well
using Mn,k, this will not pass over well to MSO formulas. The problem is the
lack of correspondence between subsets (which correspond to unary relations)
of a structure A and subsets of Mn,kA. One would need to write a qualifier to
a subset of Mn,kA to insist it is of form

⋃
Sa where Sa are sets of all sequences

whose last A entry are a, which is clearly not possible (for instance if a and b
satisfied all the same formulae in A, or in other words, had the same type, the
structure Mn,k would have no way of telling them apart). In any case, the size
of Mn,kA is clearly not o(A), in fact |Mn,kA| = (k|A|)n.

Now given a structure A ∈ Rσ, we know that a k-labelled forest cover for A
corresponds to a Pn,k coalgebra (for some n), which we saw in the last section
corresponds to a structure T ∈ Mn,k such that A = Un,kFT . What is the
relationship between formulae modelled by such an A and T respectively?
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Theorem 3.3.2. If T ∈Mn,k is such that Un,kT = A then for φ ∈ L+
n,k:

• If T |= Mn,kφ then A |= φ

• If A |= φ then there is some ψ such that ψ ≡ φ and T |= Mn,kψ.

Proof. We give a sketch for both implications as it gives a very clear idea what
is going on; a formal proof would require inductions similar to previous proofs.
Recall from the introduction that φ ∈ L+

n,k will be equivalent to a disjunction
of primitive positive formulae (formulae that use only existential quantifiers,
conjunctions, and atomic relations) of quantifier rank less than or equal to φ,
so it suffices to prove the above claims for the case that φ is primitive positive.
Suppose T |= Mn,kφ. This is true if and only if there are witnesses for each ♦
occurring in the formula, satisfying all the respective subformulae. It is clear
from the definition of Un,kT that those same witnesses will satisfy φ in A.
Now the same argument does not follow exactly for the converse, as we do
not know these witnesses will be accessible to one another in T . For instance,
suppose φ = ∃x1∃x2R(x1, x2) for some binary R ∈ σ, and that φ is witnessed
by a1, a2 ∈ A. In order for these same elements to witness ♦1♦2pR,(1,2) it would
have to be the case that [ ]M1a1M2a2, but we have no reason to expect this
to be the case. We must re-write φ in order that the quantifiers appear in
the correct order for T to read. In fact if A is finite, we shall use a lemma
(proved below) that does this for all formulas in one go: there exists some φ′

such that cA ≡ φ′ (where cA is the canonical query of A), and T |= Mn,kφ
′.

Since A |= φ and φ is positive existential, it must be the case that cA =⇒ φ
is a tautology, or in other words cA ∨ φ ≡ φ, and hence φ′ ∨ φ ≡ φ. Since
Mn,k(φ′ ∨φ) ≡ (Mn,kφ

′ ∨Mn,kφ), we get T |= Mn,k(φ′ ∨φ) (since T |= Mn,kφ
′),

so setting ψ = φ′ ∨ φ is sufficient to prove the Theorem. If A is not finite, one
should consider the (finite) substructure of the elements of A that witness φ,
and all those elements that occur on the paths from the root to those elements
in T , and apply the same line of reasoning to that structure.

Lemma 3.3.3. Let A be a finite structure with an (n, k)-cover, witnessed by
some T ∈ Mn,k such that Mn,kT = A. Then there is a formula ψ such that
ψ ≡ cA (in FO) and T, [ ] |= Mn,kψ.

Proof. Recall the canonical query is the existential formula defined by two prop-
erties:

1. A |= cA

2. If A→ B then B |= cA.

In the introduction, we realised it by listing all elements ofA (using an existential
quantifier for each element) and all relations between those elements. This can
be done identically to form a canonical query cT for T satisfying the same two
properties, but in Mn,k. We shall set ψ := Un,kcT . By the first implication
of the above Theorem (with does not depend on this lemma!), we get that
A |= ψ (since T |= cT ). Now suppose A → B. Recall A = Un,kT , so since
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Un,k and Mn,k are adjoint, we get T → Mn,kB. Hence Mn,kB |= cT and hence
B |= Un,kcT as required (we proved this result in an earlier section).

A quick consideration shows that there will be no such relationship between
satisfaction of formulae when we allow negations. Consider, for instance, the
formula φ := ∃x1∃x2¬R(x1, x2). Suppose in some structure A = Un,kT , this
is witnessed by a1, a2. Without the negation, it is guaranteed by the structure
of T that either a1 occurs on the path from the root to a2 or vice versa, and
it is possible to re-write φ to make use of this so it can be read by T , as in
the Theorem above. However, since instead it is the case that a1, a2 are not
necessarily related in A, they could be in different branches of T , and there is
no way to re-write φ to capture this.

When we introduce universal quantifiers, the relationship between satisfac-
tion of formulae between some T and Un,kT also fails. Suppose there is no
a ∈ T such that [ ]M1a. Then T, [ ] |= φ for any formula of form �1ψ (even
if ψ is universally false!). Clearly, this is not the case for Un,kT , hence we no
longer have that if T |= φ then Un,kT |= Un,kφ. Notice this example shows how
formulae being equivalent over FO is not the same as being equivalent modal
formulae. In addition, we cannot hope to find some FO equivalent formula as a
proxy for Unφ, as Unφ could be universally false in FO.

In order to deal with negations and universal quantifiers, we must extend the
power of our quantifiers to be able to search the entire structure. This essentially
amounts to viewing our modal structures as if they are labelled directed graphs
(ie a directed graph with unary predicates), on which we use ordinary first order
(and monadic second order) logic. Now that we are switching away from Modal
logic, we can reintroduce equality into our formulae.

Definition 3.3.4. Given some T ∈ Mn,k we associate to it a labelled directed
tree T∗ with the universe that of T − [ ]. T∗ shall carry over the exact same
atomic propositions as unary predicates, and replace the transitions of T with
a single edge relation E and k more unary predicates c1, ..., ck. We shall have
E(s1, s2) if and only if s1Mis2 for some i, and cl(s) if and only if there is some
s′ ∈ T such that s′Mls.

T∗ carries the exact same data as T , however, we need to replace the tran-
sitions with a single edge relation and k unary predicates in order to keep track
of the labels of those elements of height 1, as the root, and hence the transitions
to those elements, have been removed. Structures of form T∗ interpret MSO
formulae of the vocabulary {E, pR,t, ci} for each appropriate R, t, i. We can now
show the following:

Theorem 3.3.5. Given any MSO formula φ over σ, and fixed pair n, k there
exists an MSO formula ψ (over {E, pR,t, ci}) such that, for any T ∈ Mn,k, we
have Un,kT |= φ if and only if T∗ |= ψ.

Proof. Since Un,kT and T∗ have the exact same universes, we keep the first
and second order quantifiers (and unary predicates coming from second order
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quantifiers), and connectives present in φ the same, we need only change the
atomic relations. Suppose R(s1, ..., sl) holds in Un,kT , recall this is true if and
only if:

1. There is some s (from among s1, ..., sl) above each s1, ..., sl in the tree T∗.

2. There is some t such that sti = si for each i = 1, ..., l.

3. T, s |= pR,t.

Recall that sj is the element of greatest height below s accessed by a Mj tran-
sition in T (or equivalently, satisfies cj in T∗), so the first condition does imply
the second. Hence the task is to convert the second and third conditions above
into a first order formula. Given a variable x, we can write “xj = y′′ as follows
(this is an unfortunate notation, here we are using “xj = y′′ as a proxy for
sj = s′ for a sequence s, which clashes with using xj as a variable name):

cj(y) ∧ ∃P (P (x) ∧ P (y)∧
∀z(P (z)→

((z = y ∨ (¬cj(z) ∧ ∃!z′(P (z′) ∧ E(z′, z))))

∧ (z = x ∨ ∃!z′(P (z′) ∧ E(z, z′))))

Here the predicate P is defining a path starting at y and finishing at x, such
that no element on the path except y satisfies the predicate cj (we have made
use of the FO definable shorthand ∃! for “there exists a unique”). Intuitively,
the formula says P contains x and y, and if z is in P , then it is either y or
there is a parent of it in P and it does not have colour cj , and it is either x or
there is a child of it in P . This captures the notion of P being a path from y
to x containing no elements except y with colour cj . Now we can translate an
atomic relation R(x1, ..., xl) as follows:

θ(R, (x1, ..., xl)) :=
∨
t,i

(pR,t(x
i) ∧

∧
j

xtj = xj).

Here t is ranging over all possible tuples of length l with entries among
1, ..., l and i is ranging from 1, ..., l. This formula now asserts that there is some
t satisfying conditions (2) and (3) above, so we have that Un,kT, (a1, ..., al) |=
R(x1, ..., xl) ⇐⇒ T∗, (a1, ..., al) |= θ(R, (x1, ..., xl)) as desired. As suggested
above, we now obtain ψ from φ by replacing all atomic relations R(x̄) with
θ(R, x̄) to complete the proof.

Interestingly, since we are using MSO in the Theorem above we were able to
construct ψ without any dependence on n. Unlike in MSO, It is not possible to
write “there exists a path from x to y” in ordinary FO, unless the length of the
path is bounded. If we restricted ourselves to ordinary FO, we would need to
use n as an upper bound for the length of the path. Given ψ did not depend on
n, we can rephrase the Theorem in a style more similar to Courcelle’s Theorem:
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Corollary 3.3.6. Let φ be an MSO formula over σ, and k a natural number.
Then there exists an MSO ψ in the language of labelled graphs, such that for
any structure A of tree-width at most k, witnessed by and T ∈ Mn,k for some
n, A |= φ if and only if T∗ |= ψ.

3.4 Comments and Further Directions

In the first section, we saw how the comonads naturally possessed a modal or
transitional structure, and this structure allows us to faithfully translate first
order formulae into modal ones. We then proved that this translation was actu-
ally an adjunction, via subcategories of modal trees that was equivalent to the
Eilenberg-Moore Categories (of En and Pn,k respectively). A natural further
direction for this may be to consider other game comonads, such as those in
used for the guarded fragment ([3]), or the pebble-relation game ([23]). Is it
possible to represent these as modal or transition structures also? In the case of
Mn,k, we have that the Spoiler’s choices are encoded by the transitional part of
a modal structure, and the restrictions this places on Duplicator are encoded by
the atomic propositions, might this be a general recipe? Perhaps more specula-
tively using the similar ideas to [2], where a more general categorical treatment
is given to graph parameters using discrete density comonads, would it be pos-
sible to reconstruct this modal translation in a more systematic style?

Also in the first section, we remarked how we can express elementary equiv-
alence as a sequence of increasing bisimulations; A is elementarily equivalent to
B if and only if A ≡n B for every n if and only if MnA ∼ MnB for every n.
Given that elementary equivalence is so fundamental to first order logic, would
it be possible to make use of this modal translation as a method for proving
things about first-order logic, by proving an analogous result in the categories
Mn? One hurdle to such endeavours is the category Mn also contains struc-
tures not in the image on Mn, which therefore do not correspond to first-order
structures. Is there some way to, internally to the category Mn, identify if a
modal structure is in the essential image of Mn?

In the second section we focus on Un,k, which is the adjoint of Mn,k. We in-
vestigated the relationship between satisfaction of formulae in a structure T and
satisfaction of corresponding formulae in Un,kT . We saw how this relationship
could become an “if and only if” when viewing T as a labelled graph T∗, and
applied this to proving one of the key steps in Courcelle’s Theorem. Another
key step in Courcelle’s Theorem is to use tree automata to decide formulae on
trees, and there is a categorical account of tree automata being represented as
monads in [19]. Combining with our categorical account of translating an MSO
formula into one to a corresponding one in the language of trees, would it be
possible to give a fully categorical account of Courcelle’s Theorem?



Chapter 4

Locality and Reachability

4.1 Overview

In this section we explore how the notion of locality in first-order logic interacts
with the comonad En. The notion of locality is studied in Finite Model Theory
as, similarly to previous fragments of FO we have discussed, locality constraints
on formulas or queries can help make problems more tractable (for an overview,
see [20]). In this chapter, we will essentially build a localised version of the
three way interaction presented in the introduction between logic, Ehrenfeucht-
Fraisse games, and the comonad En. We will also be able to express a weakened
version of Gaifman’s Locality Theorem using localised versions of En.

These localised versions are defined simply by considering subfunctors Edn of
En that consist only of sequences of elements where each new element is local
to the ones already played before, defined by some non-negative parameter d.
Unlike in the case of En where we have the co-Kleisli extension, there is no
1-1 correspondence between maps of shape EdnA → EdnB, and maps of shape
EdnA→ B, which entails that Edn is not a comonad. This is because the former
maps represent games in which Spoiler can only play locally and Duplicator can
also only play locally, but the latter maps represent games where Spoiler can only
play locally but Duplicator is unrestricted, and these games are not equivalent.
To complete the picture, we consider localised formulae, which allows us to
give a Theorem showing the threefold equivalence of: a winning strategy for
Duplicator in a specific Spoiler-Duplicator game, a map out of Edn, and a logical
relation between two structures. We do this for both shapes of map mentioned
above.

In the next section, we find a lower bound on which there is a morphism
EnA → EdnA, which unfortunately is not a natural transformation. This pro-
vides an elegant proof of the fact that for a large enough local bound, Duplicator
has a winning strategy in the ordinary Ehrenfeucht-Fraisse game, if and only
if, Duplicator has a winning strategy when Spoiler is restricted to only playing
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locally. The morphism EnA → EdnA effectively tells us that any move too far
away from previous moves is a bad move for Spoiler in the Ehrenfeucht-Fraisse
game. Next, we define the property of reachability, which exactly characterises
those moves which are not bad in this way. Interestingly, it turns out that if
Spoiler plays only reachable moves, Duplicator must also only play reachable
moves in a winning strategy. Thus, the subfunctor Rn of En, defined as the
subset of En consisting of sequences of reachable moves, is actually a comonad,
since the aforementioned property allows us to build a co-Kleisli extension for
it. This contrasts to the Edn case which had no such property. The final result
of this section, and what much of the technical work in this section is devoted
to, is proving the existence of a morphism EnA→ RnA for any A, thus showing
that the game where Spoiler is restricted to playing only reachable moves is
equivalent to the ordinary Ehrenfeucht-Fraisse game.

Finally, we consider Gaifman’s Theorem in the context of our work. In
order to do this, we make use of ideas in Chapter 3, giving us an account of
local version of ≡n using modal structures. We then reformulate a weakened
version of Gaifman’s Theorem allowing us to state it in our own framework, as
the equivalence between bisimulations of two pairs of modal structures, one pair
of structures corresponding to En, and the other corresponding to Edm, for some
sufficiently large m, d for a given n. This suggests a conjectured sharpening of
it, where we replace Edm with Rm′ , for some m′.

4.2 Localised Subfunctors of En
In an earlier chapter, we proved the following simple lemma (we stated a more
general case, for →n,k before):

Lemma 4.2.1. For A,B,C ∈ Rσ, if A→n C and B →n C then A⊕B →n C.

This lemma can be stated at the level of Ehrenfeucht-Fraisse games: “if
Duplicator has a winning strategy for EFn(A,C) and a winning strategy for
EFn(B,C), then it can construct a winning strategy for EFn(A ⊕ B,C)”. Of
course, we can also state it more generally, since, for any structure A ∈ Rσ we
can write it as the coproduct of its connected components A =

⊕
Ai, (connected

components of a structure are simply the connected components of its Gaifman
graph) so the lemma can be generalised to “Duplicator needs to only know
strategies for connected structures, and can combine them together to create
strategies for general, possibly disconnected, structures”. We can also phrase
this discussion at the level of our comonads:

Definition 4.2.2. For A ∈ Rσ, let E∞n A be the induced substructure of EnA, in-
duced by the subset {[a1, ..., aj ] ∈ EnA : a1, ..., aj all lie in the same component of A}.

One can see that E∞n A is isomorphic to
⊕
EnAi (where the Ai are the

connected components of A) since they are clearly bijective as sets and there are
certainly no relations between sequences constructed using elements of different
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components as they are never prefixes of one another. The lemma could then
be expressed as a morphism EnA→ E∞n A which we will show exists later.

We use the notation E∞n as elements in the same connected component of
a structure can be thought of as having finite distance to one another. In a
sense, the above lemma highlights that Duplicator can treat elements in separate
components (ie of infinite distance apart) as irrelevant to one another in the
context of an Ehrenfeucht-Fraisse game. Since the Ehrenfeucht-Fraisse games
we are considering are of finite rounds, we can naturally consider whether there
is some finite distance d for which this is also true. We shall now build up to
defining functors Edn and exploring their properties.

Firstly, we must first define the notion of distance in a general first-order
structure. This is essentially the graph distance metric applied to the Gaifman
graph. The following definitions also apply naturally to structures in Rσ(l) for
any l, however the distinguished tuples are irrelevant to the definition so we
omit them.

Definition 4.2.3. For A ∈ Rσ and a, b ∈ A, we define the distance D(a, b) to
be the length of the shortest path from a to b in the Gaifman graph G(A) of A,
in the case there is at least one such path (counting the number of edges in the
path so eg S(a, a) = 0). Else, we write D(a, b) = ∞. We define D(ā, b) to be
the minimum among D(ai, b) where the ai range among entries of the tuple ā.

Here we abuse notation by using the same distance function for any structure
A ∈ Rσ, though this should not cause any confusion. It is straightforward to
see this distance function we have just defined is indeed a metric. As with any
metric, we also get a notion of neighbourhood:

Definition 4.2.4. For d a natural number or d = ∞, A ∈ Rσ, and ā a tuple
of A, then the d-neighbourhood of ā is the substructure of A induced by the set
{b ∈ A : D(ā, b) < d}, and will be written Nd(ā).

Under this metric, we get the useful fact that ordinary first-order homomor-
phisms are contractions:

Lemma 4.2.5. If f : A→ B is a morphism in Rσ, then f is a contraction. In
other words, for any a, b ∈ A, D(a, b) ≥ D(f(a), f(b)).

Proof. This follows quickly from the following claim: if a, b are adjacent in G(A),
then f(a), f(b) are adjacent in G(B), or f(a) = f(b). It follows because then
we would have that any path in the Gaifman graph of A is translated to a path
of shorter or equal length in the Gaifman graph of B. To prove the claim, recall
a, b are adjacent in G(A) if and only if there exists a tuple ā of A, and R ∈ σ,
such that a, b occur as entries in ā and A |= R(ā). But then, by the definition
of a homomorphism, we get B |= R(f(ā)), and of course f(a), f(b) occur among
f(ā). Hence f(a), f(b) are adjacent unless f(a) = f(b).

Clearly, the above also follows for the distance from an element to a tuple,
as well as just between two elements. We can now define the functor Edn for
arbitrary d. We shall also write the definition for a general l this time.
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Definition 4.2.6. For (A, ā) ∈ Rσ(l), natural numbers n, l, d (or d = ∞), if
l > 0 we define Edn(A, ā) := En(Nd(ā), ā). We will view this is an induced sub-
structure of En(A, ā) in the natural way. If l = 0, we define EdnA = {[a1, ..., ai] ∈
EnA : a2, ..., ai ∈ Nd(a1)}. In other words, EdnA is the union of sets Edn−1(A, a)
over all a ∈ A (not to be confused with the coproduct

⊕
a∈A Edn(A, a) in the

category Rσ(1) where we would identify all sequences of length 1). In either
case Edn acts on morphisms by restricting from En.

We must check Edn is always a functor, specifically we must check its action
on morphisms. It will certainly respect composition and identity morphisms
as En does, though it is not immediate that if f : (A, ā) → (B, b̄) is a mor-
phism in Rσ(l) then Ednf as defined above actually maps into Edn(B, b̄), since
a priori it is only a map into En(B, b̄). This amounts to checking that for for
any a ∈ A, if a ∈ Nd(ā), then f(a) ∈ Nd(f(ā)). But we already proved that
D(f ¯(a), f(a)) ≤ D(ā, a), from which this follows.

We remark that we could also have defined Edn to have some number m of
“freely chosen” elements, (ie elements chosen from anywhere in the structure,
rather than just ones local to what was already chosen) rather than just 1, or
defined a family of functors for each natural number m ≤ n. We chose to do
just one as it keeps the bookkeeping and notation simpler, however all of the
following results would follow for any chosen m ≤ n.

Our next goal is to classify morphisms out of Edn, similarly to how we classi-
fied morphisms out of En. Since En is a comonad, one can move freely between
maps of form f : EnA → B and maps of form g : EnA → EnB. Given a map
g : EnA→ EnB, we simply right compose with the counit εB : EnB → B. Con-
versely, given a map EnA → B, we use the co-Kleisli extension f 7→ Enf ◦ δA
to get a map from EnA→ EnB. Now clearly Edn comes equipped with a similar
natural transformation εA : EdnA → A, simply the restriction of the co-unit
of En, so we can do transformations of the first kind. However, Edn is not a
comonad, and does not have a co-Kleisli extension. Consequently, the two dif-
ferent kinds of map will correspond to different logical and game relations.

Firstly, we shall consider the case where l > 0 (ie, there is a distinguished
tuple from each structure we consider), and discuss what types of Ehrenfeucht-
Fraisse games these morphisms relate to:

Lemma 4.2.7. If l > 0, for every n, and (A, ā), (B, b̄) ∈ Rσ(l):

1. There is a bijective correspondence between:

• Morphisms Edn(A, ā)→ (B, b̄)

• Winning strategies for Duplicator in the game EFn((Nd(ā), ā), (B, b̄)).

2. There is a (non-bijective) correspondence between:

• Morphisms Edn(A, ā)→ Edn(B, b̄)
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• Winning strategies for Duplicator in the game EFn((Nd(ā), ā), (Nd(b̄), b̄)).

Proof. By definition, Edn(A, ā) := En(Nd(ā), ā). Item (1) then follows from
the lemma in the introduction about the correspondence between morphisms
and strategies for Duplicator. For item (2), suppose we have a morphism f :
Edn(A, ā)→ Edn(B, b̄). By composition with εB , we then have a morphism from
Edn(A, ā) to (Nd(b̄), b̄) and can use (1) to get a winning strategy for Duplicator
EFn((Nd(ā), ā), (Nd(b̄), b̄)). Note that composition with εB is not necessarily
injective, which breaks the bijectivity of this correspondence. Given a winning
strategy for Duplicator in the game EFn((Nd(ā), ā), (Nd(b̄), b̄)), we can obtain
a map En(Nd(ā), ā)→ (Nd(b̄), b̄). We can use the co-Kleisli extension of En to
produce a map En(Nd(ā), ā) → En(Nd(b̄), b̄), which by definition is a map to
Edn(A, ā)→ Edn(B, b̄).

In the first correspondence, we used the game EFn((Nd(ā), ā), (B, b̄)) as it is
an instance of what we have already defined. We could equally have described
this as a variant of an Ehrenfeucht-Fraisse game between (A, ā), and (B, b̄),
where Spoiler is restricted to playing locally to its starting position, but Du-
plicator is has access to all of B. In the second correspondence, both Spoiler
and Duplicator are restricted to playing locally. Clearly, if Duplicator has a
winning strategy when it is restricted to playing only locally, then Duplicator
has a winning strategy when it is allowed to use all of B, (semantically this is
just composition with the εB). It is worth a counterexample to see why the re-
verse fails (and hence that Edn cannot be a comonad, else its co-Kleisli extension
would imply the reverse!):

Example 4.2.8. Suppose d =∞, A = {a1, a2, a3} is a path of length 3 (from a1

to a3) under some binary relation R ∈ σ, and there exist two unary predicates
P, P ′ such that A |= P (a1) and A |= P ′(a2) (and A satisfies no other relations).
Suppose B = {b1, b2} is such that B |= R(b1, b1), B |= R(b2, b2), B |= P (b1),
and B |= P (b2) (and nothing else). Then we will have (Nd(a1), a1) →1 (B, b1)
but not (Nd(a1), a1)→1 (Nd(b1), b1). This is because Duplicator would need use
of b2 in a winning strategy for the first game (in case Spoiler plays a3, which is
d-local to a1), but does not have access to it in the second game.

The idea of the example is that if d is large, Spoiler is still allowed to play
“slack” moves (intuitively for now these are just moves that have no chance
of interacting with the previous moves, in this case a3 has no relation to a1

and there are no other moves remaining so it is “slack” but we will carefully
define “slack” later). In a game with no restrictions on Duplicator, if Spoiler
plays “slack” move, Duplicator can, and in some cases must, simply treat it as
if Spoiler has started a fresh game and play accordingly. However, in the above
example, Duplicator is still bound to playing locally to the starting position,
so cannot simply play a fresh game. Later on, we shall consider games where
Spoiler cannot play “slack” moves.

We also discuss why item (2) in the above lemma is only a correspondence,
not a bijective correspondence, as it is relevant to the characterisation of Edn



68 CHAPTER 4. LOCALITY AND REACHABILITY

on Rσ. The discussion, applies to all the game (endo)functors and comonads
discussed so far (ie all functors except for the modal translations in the third),
including En and Pn,k, and we shall use En as an example. There is a “nice” form
of map EnA→ EnB which are those maps constructed by co-Kleisli extending
a map from EnA → B. These maps have the property of sending a sequence
in EnA to a sequence of the same length, in addition to preserving the prefix
relation among sequences. However, there are maps not of this form! Consider
the following simple example:

Example 4.2.9. If A is a structure that satisfies no relations, then so is EnA.
Hence, any map out of EnA is a morphism.

Formally, we will say a map of form Edn(A, ā)→ Edn(B, b̄) is “nice” if it sends
sequences to sequences of equal length, and preserves prefixes. Notice we could
also have defined these maps via a modal translation as in Chapter 2, as these
are precisely the maps that preserve the modal (tree) structure of En. We now
get a bijection between “nice” maps and strategies for Edn, which will be stated
as a corollary to the analogous claim for En, after the following lemma:

Lemma 4.2.10. Fix n, l (where possibly l = 0) and let f : En(A, ā) → (B, b̄)

in Rσ(l). The co-Kleisli extension of f is defined as the map f̂ = Enf ◦ δA. We

claim that f̂ satisfies the following recursive properties:

1. If s is of length 1, so s = [a] for some a ∈ A, then f̂ [a] = [f [a]] (if l > 0
then the only choice for a is a1, the first entry in the tuple ā).

2. If s = s′[a] (for some s′ ∈ EnA,a ∈ A), then f̂(s) = f̂(s′)[f(s)].

It follows that f̂ is “nice”.

Proof. Recall δA sends a sequence s to its “sequence of prefixes”. In other words
δA(s) = [s] if s is one element sequence and δAs = (δAs

′)[s] if s = s′[a] for some
a ∈ A, s′ ∈ En(A, ā). Recall also that Enf acts pointwise as f , for example
Enf [s, s′] = [f(s), f(s′)]. We can now show the properties in the lemma. Firstly,

f̂ [a] = Enf(δA[a]) = Enf [[a]] = [f [a]]. Next, recall δA satisfies the recursive

property that if s = s′[a], then δA(s) = δA(s′)[s]. Hence, f̂(s) = Enf(δA(s)) =

Enf(δA(s′[a])) = Enf((δA(s′)[s]) = [Enf(δA(s′))][f(s)] = f̂(s′)[f(s)]. The fact

that f̂ is nice follows immediately by an induction using the recursive property
just proved.

Lemma 4.2.11. For fixed n, d, l and (A, ā), (B, b̄) ∈ Rσ(l) (including the case
l = 0). Then there is a bijective correspondence between:

• “Nice” maps EnA→ EnB

• Winning strategies for Duplicator in the game EFn((A, ā), (B, b̄)).
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Proof. We know already there is a bijective between winning strategies for Du-
plicator in the game EFn((A, ā), (B, b̄)), and maps En(A, ā)→ (B, b̄). We now
need to show there is a bijective correspondence between the latter and “nice”
maps EnA→ EnB, which we claim is just given by composition with εB .

• Suppose f, g : En(A, ā)→ En(B, b̄) are two “nice” maps such that εB ◦f =
εB ◦ g. We will show f = g. Let s be a sequence of shortest length such
that f(s) 6= g(s). If s has length 1, then write s = [a]. Since f, g are
“nice” both f(s) and g(s) are sequences of length 1, say [b], [b′], but then
b = εBf(s) = εBg(s) = b′, so f(s) = f(s′), a contradiction. If s has length
at most 2, we can write s = s′[a] for some a ∈ A. Since f preserves prefixes,
we must have f(s) = f(s′)t for some sequence t of B. However, since f
also preserves lengths of sequences we get t must be a sequence of length 1,
so we can write f(s) = f(s′)[a]. By the same argument, g(s) = g(s′)[a′].
But by assumption, f(s′) = g(s′), and a = εBf(s) = εBg(s) = a′, so
f(s) = g(s) another contradiction, and we can conclude f = g.

• Now we check composition with εB is surjective. Let f : En(A, ā)→ (B, b̄).

We know the co-Kleisli extension f̂ is “nice”, so it suffices to show εB ◦ f̂ =
f . We shall do this by induction on the length of a sequence s ∈ En(A, ā).

If s has length 1, write s = [a], then we get εB f̂ [a] = εB [f(a)] = f(a). If
s has length greater than 1, we can write s = s′[a]. By the above lemma,

f̂ [s] = f̂(s′[f(s)]). Hence εB f̂ [s] = f(s) as desired.

Corollary 4.2.12. For fixed n, d, l and (A, ā), (B, b̄) ∈ Rσ(l) (now where l > 0).
Then there is a bijective correspondence between:

• “Nice” maps Edn(A, ā)→ Edn(B, b̄)

• Winning strategies for Duplicator in the game EFn((Nd(ā), ā), (Nd(b̄), b̄)).

Proof. We know there is a bijective correspondence between winning strategies
for Duplicator in the game EFn((Nd(ā), ā), (Nd(b̄), b̄)) and maps En(Nd(ā), ā)→
(Nd(b̄), b̄), so the result follows by the above lemma.

Now we consider the case where l = 0. In this case, we get the same bijective
correspondences as before when we restrict only to “nice” maps, but lose any
correspondence when we do not restrict. Consider the following example:

Example 4.2.13. Suppose we can find a pair A,B and a map f : EdnA→ EdnB
such that f [a] = [b] and f [a, a′] = [b′] for some distinct a, a′ ∈ A, b, b′ ∈ B. This
could not correspond to any strategy in a local game for Duplicator, since there
is no guarantee that by the structure of Edn that b is local to b′.

We now give the characterisation similar to the case when l = 0.

Lemma 4.2.14. For any natural numbers n, d (or d =∞), and for any A,B ∈
Rσ:
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1. There is a bijective correspondence between:

• Maps EdnA→ B

• Winning strategies for Spoiler in the following game: Spoiler chooses
some a ∈ A, Duplicator chooses some b ∈ B, then the players play
EFn−1((Nd(a), a), (B, b)).

2. There is a bijective correspondence between:

• “Nice” maps EdnA→ EdnB
• Winning strategies for Spoiler in the following game: Spoiler chooses

some a ∈ A, Duplicator chooses some b ∈ B, then the players play
EFn−1((Nd(a), a), (Nd(b), b)).

Proof. Observe that EdnA is a disjoint union of structures of form Edn−1(A, a)
over a ∈ A. Thus a map EdnA→ B is a collection of maps of form Edn−1(A, a) for
each a ∈ A. Each such map is a winning strategy in EFn−1((Nd(a), a), (B, b))
for some b ∈ B, hence we get correspondence 1. Correspondence 2 follows in a
similar way, after we observe that a map EdnA→ EdnB is “nice” if and only if it is
the disjoint union of “nice” maps Edn−1(A, a)→ Edn−1(B, b) for each a ∈ A.

We reiterate the point made in the definition of Edn (when l = 0), that we
have only “freely” chosen one element of a structure A, but we could have just
as well freely chosen a tuple. Much like in the case when l > 0 we can describe
the corresponding games as variants of EFn(A,B). The game corresponding
to maps of form EdnA → B is the variant of EFn(A,B) where all of Spoiler’s
choices after the first must be local to the first choice. The game corresponding
to maps of form EdnA→ EdnB is the game EFn(A,B) but where both Spoiler’s
and Duplicator’s choices after the first must be local to the first choice.

Maps out of Edn can also be characterised using a logical relation, analogously
to how maps out of En can be. To do this we use bounded first-order logic.

Definition 4.2.15. • The (x̄, d)-localised existential quantifier is written
∃y ∈ Nd(x̄), where ∃y ∈ Nd(x̄)φ(x̄, y) is interpreted by structures

∃y (D(x̄, y) < d ∧ φ(x̄, y))

In other words for some (A, ā) in Rσ(l), (A, ā) |= ∃y ∈ Nd(x̄)φ(x̄, y) if and
only if there is some a′ ∈ Nd(ā) such that (A, ā, a′) |= φ(x̄, y). Note that
sometimes we instead may localise around a subset of the free variables
present in a formula rather than all of them.

• We define an (x̄, d)-localised universal quantifier ∀y ∈ Nd(x̄) := ¬(∃y ∈
Nd(x̄))¬.

• The d-bounded fragment (Nd(x̄),L(l)) (when l > 0) are formulae con-
structed using atomic relations, boolean connectives, and (x̄, d)-localised
quantifiers where the only variables occurring free are among x̄ (ie the
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same as L(l), except using local quantifiers around x̄). When l = 0, the
d-bounded fragment (Nd(x1),L) consists of formulae that are boolean com-
binations of formulae of type ∃x1φ where the φ ∈ (Nd(x1),L(1)). We will
sometimes leave the x1 implicit, simply writing (Nd,L), if it is clear from
context what is meant.

• We use the same superscript + and subscript n to denote existential pos-
itive formula and bounded quantifier rank as before.

We shall treat the localized quantifiers as connectives in their own right, but
if d 6= ∞ then they are expressible in first order logic. This is because being
adjacent in the Gaifman graph is expressible (since σ is finite, one can list all
the possible ways two elements could occur in a relation together), and hence
one can express there being a path of length d in the Gaifman graph. When
d = ∞, these quantifiers are certainly not expressible in first order logic, as it
is well known there is no query in first-order order logic which expresses “there
is some path between two elements”, but using the localised quantifiers, given
some free variables x, y, one could write ∃z ∈ N∞(x)(y = z) to express exactly
that.

Given a formula φ(x̄, ȳ) ∈ L(l), we can make a localised formula φ(d,x̄) re-
placing any instance of a quantifier with a corresponding d-localized quantifier
around x̄. If we are localizing our quantifiers around all of the free variables in
a formula we shall just refer to the localized version as φd. We are primarily
interested in this narrower case, but need the general version to prove the fol-
lowing fact, which is indeed the focus of defining the localized quantifiers in the
first place!

Theorem 4.2.16. Let (A, ā, ᾱ) ∈ Rσ(l), and φ(x̄, ȳ) ∈ L(l), where the tu-
ple ā, ᾱ interpret the variables x̄, ȳ respectively. Then (A, ā, ᾱ) |= φ(d,x̄) ⇐⇒
(Nd(ā) ∪ {ᾱ}, ā, ᾱ) |= φ.

Proof. Intuitively, the idea is that localized quantifiers can only search a given
neighbourhood, so from the perspective of a d-bounded fragment, a d-local
neighbourhood is the same as an entire structure. Formally we need an induct
on n for every value of l:

• If n = 0, there are no quantifiers, so φ = φ(d,x̄) is a sentence only containing
free variables, so the result follows immediately from the fact that Nd(ā)∪
{α} is an induced substructure of A.

• Suppose n = m + 1 and we have the inductive hypothesis. Since the
translation φ 7→ φd keeps boolean connectives the same, it suffices to
consider only the case φ(x̄, ȳ) = ∃zψ(x̄, ȳ, z), where ψ has quantifier
rank at most m. By definition we know that φ(d,x̄) = ∃z (D(x̄, z) <
d ∧ ψ(d,x̄)(x̄, ȳ, z)). Hence, (A, ā, ᾱ) |= φ(d,x̄) if and only if (A, ā, ᾱ) |=
∃z (D(x̄, z) < d ∧ ψd(x̄, ȳ, z)), which is true if and only if there exists
β ∈ Nd(ā) such that (A, ā, ᾱ, β) |= ψ(d,x̄). Applying the inductive hy-
pothesis, this is true if and only if there exists a β ∈ Nd(ā) such that
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(Nd(ā) ∪ {ᾱ, β}, ā, ᾱ, β) |= ψ. Since by assumption β ∈ Nd(ā), and hence
(Nd(ā) ∪ {ᾱ, β}) = Nd(ā) ∪ {ᾱ}, we know the previous statement is true
if and only if (Nd(ā) ∪ {ᾱ}, ā, ᾱ) |= φ, and we are done.

In terms of Ehrenfeucht-Fraisse games, we now have:

Corollary 4.2.17. For any given n, d, and l > 0. Given two structures (A, ā), (B, b̄) ∈
Rσ(l), the following are equivalent:

1. Duplicator has a winning strategy in d-local version of EFn((A, ā), (B, b̄))
(where Spoiler and Duplicator can only play locally to ā, b̄ respectively).

2. Duplicator has a winning strategy for the game EFn((Nd(ā), ā), (Nd(b̄), b̄).

3. (Nd(ā), ā)→n (Nd(b̄), b̄).

4. For any φ ∈ (Nd(x̄),L+
n (l)), if (A, ā) |= φ then (B, b̄) |= φ.

Proof. (1) and (2) are just two ways of phrasing the same game, one viewed as
a game played on the universes of A and B with a restriction, and one viewed
as a game played on substructures of A and B. (2) is equivalent to (3) by
the standard Ehrenfeucht-Fraisse Theorem discussed in the introduction. (3)
is equivalent to (4) in light of the above Theorem, once we observe that every
φ 7→ φd is a bijection from L+

n (l) to (Nd(x̄),L+
n (l)). It is a bijection since the sets

are constructed in exactly the same way, but L+
n (l) uses ∃ where (Nd(x̄),L+

n (l))
uses ∃x ∈ Nd(x̄), so replacing a normal quantifier with a local one clearly yields
a bijection.

The analogous Theorem also holds in the case l = 0. Recall that when l = 0,
the first element is chosen freely and the rest of the game is played locally to
that element.

Corollary 4.2.18. For any given n, d and two structures A,B ∈ Rσ, the fol-
lowing are equivalent:

1. Duplicator has a winning strategy in d-local version of EFn(A,B) (where
Spoiler and Duplicator can only play locally to their first chosen element).

2. For every a ∈ A, there is b ∈ B such that Duplicator has a winning strategy
for the game EFn−1((Nd(a), a), (Nd(b), b)).

3. For every a ∈ A there is b ∈ B such that (Nd(a), a)→n−1 (Nd(b), b).

4. For any φ ∈ (Nd,L+
n ), if A |= φ then B |= φ.

Proof. As in the l > 0 case, items (1) and (2) are just two ways of stating the
same thing. (2) and (3) are equivalent due to the l = 1 case above.
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As promised at the the beginning of the section, we can now fully translate
the picture in the introduction into a localized version, though it has many more
variations than in the global story. As an example, we state a simple corollary
of the above in a style analogous to the introduction:

Theorem 4.2.19. For any (A, ā), (B, b̄) ∈ Rσ(l), the following are equivalent:

1. Edn(A, ā)→ (B, b̄)

2. For φ ∈ L+
n (l), if A |= φd then (B, b̄) |= φ.

3. Duplicator has a winning strategy in the game EFn((Nd(ā), ā), (B, b̄)).

4.3 Reachability

Next we turn our attention back to one of the motivational questions for this
chapter: for what values of d is there a morphism EnA → EdnA? We shall
consider this question, and use it to motivate the definition of reachability, and
an associated comonad.

Firstly we define a function, not necessarily a morphism, fd:

Definition 4.3.1. For any A ∈ Rσ, n a natural number, d a natural number
or ∞, recursively define fd : EnA→ EdnA as follows:

• If s = [a] for some a ∈ A, then fd([a]) = [a].

• If s = s′[a], for some s′ ∈ EnA and a ∈ A, then let b ∈ A be the last
entry of s′ such that D(a, b) < d

2length(s) , and let s′′ be the longest prefix of

s′ whose last entry is b (if d =∞ we take d
2length(s)−1 =∞). We then define

fd(s) := fd(s′′)[a]. If no such b exists, then fd(s) := [a].

Intuitively, this can be viewed as a method for Duplicator to extend from
games on d-neighbourhoods of A to games on all of A. If in round i Spoiler
plays “close” (this is the first case in recursive step of the above definition, so
within distance d

2i in the ith round) to an element that has already been chosen,
Duplicator can treat it as if it is a game being played on that neighbourhood, and
play according to its known strategy. If Spoiler plays “far”, then Duplicator can
treat it as starting a new game. Halving the distance that is considered “close”
each time has two purposes; firstly, it caps the distance between the first and last
elements of a sequence of “close” elements to at most d(1/2+1/4+...+1/2n) ≤ d,
which ensures the range of fd is indeed within EdnA, and secondly, it ensures
there is no tension between Duplicators strategies on local games (as newly
chosen elements cannot be “close” to two previously chosen elements that were
not close before). The latter will become clearer when we consider for which
values of d the maps fd are morphisms. However, this division by 2 at each
step does make fd rather degenerate for small values of d, since at some point
the only element close to an element a will be a itself.
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We remark here also that in the case l > 0 the analogously defined function
would be from En(A, ā)→ (Edn(A, ā)⊕ EdnA). Everything we prove in the case
l = 0 extends naturally to the case l > 0, but we work in the case l = 0 for
notational convenience.

Theorem 4.3.2. If d ≥ 2n, then fd : EnA → EdnA is a morphism for any
A ∈ Rσ.

We will give a proof of this shortly. Unfortunately, this will not produce
a natural transformation for any d, since first order morphisms may decrease
distance. We provide an explicit example:

Example 4.3.3. Let A ∈ Rσ be non-empty, and consider the morphism p :
A ⊕ A → A. For the sake of the example, we shall encode the coproduct as
A×{0} ∪A×{1}, so p(a, i) := a for any a ∈ A and i = 0, 1. Now by construc-
tion D((a, 0), (a, 1)) = ∞ for any a ∈ A. Hence Edn(p) ◦ fd([(a, 0), (a, 1)]) =
Edn(p)[(a, 1)] = [a]. However, fd ◦ En(p)[(a, 0), (a, 1)] = fd[a, a] = [a, a] 6= [a].

We will need the following subclaim before proving Theorem 4.3.2:

Lemma 4.3.4. Suppose s, s′ ∈ EnA, and s @ s′ (recall this means s is a prefix
of s′), and D(ε(s), ε(s′)) < d

2length(s′)−1 . Then fd(s) @ fd(s′).

Proof. We prove this inductively on m = length(s′). If m = 1 there is noth-
ing to show, so assume the inductive hypothesis and m > 1. First suppose
ε(s) is the last entry of s within distance d

2m−1 of ε(s′). Then by definition,
fd(s′) = fd(s)[ε(s′)] and we are done. Otherwise, there is some s′′ such that
s @ s′′ @ s′ and D(ε(s′′), ε(s′)) < d

2m−1 . Now by the properties of distance, we

know D(ε(s), ε(s′′)) ≤ D(ε(s), ε(s′)) +D(ε(s′), ε(s′′)) < d
2m−1 + d

2m−1 = d
2m−2 ≤

d
2length(s′′)−1 . Hence by the inductive hypothesis we can conclude fd(s) @ fd(s′′),

and since we know by definition of fd, fd(s′′) @ fd(s′) we are done.

Now we can proceed with the proof of Theorem 4.3.2:

Proof. (of Theorem 4.3.2). We need to show fd is a morphism, so for some
arbitrary s1, ..., sm ∈ EnA and R ∈ σ such that EnA |= R(s1, ..., sm), we must
show EdnA |= R(fd(s1), ..., fd(sm)). Recall that EnA |= R(s1, ..., sm) if and
only if we have both A |= R(ε(s1), ..., ε(sm)) and for each i, j among 1, ...,m,
si @ sj , si = sj ,or sj @ si. Since EdnA is an induced substructure of EnA, we
have EdnA |= R(fd(s1), ..., fd(sm)) if and only if the same conditions hold for
fd(s1), ..., fd(sm). We know ε(fd(si)) = ε(si) for each i, so the first condition
holds. Now we must check the second condition for each i, j. Clearly, there is
nothing to show if si = sj , so without loss of generality assume si @ sj . Since
ε(si) and ε(sj) occur in a relation together, we know D(ε(si), ε(sj)) ≤ 1. We
also know 1 ≤ d

2n < d

2length(sj)−1 , where the first inequality holds by assumption

that d ≥ 2n, and the second holds since length(sj)− 1 ≤ n− 1 < n. Hence we
can apply the lemma above to obtain fd(si) @ fd(sj) as desired.
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Theorem 4.3.2 essentially tells us that any move further than a distance of 2n

from the moves already in play is too far to be a useful move. We can generalise
this as follows:

Definition 4.3.5. We will say a move α is n-slack from ā, if there exists
H ⊂ En(A, ā) with the following properties:

• H is prefix closed.

• [a1, ..., al] ∈ H, hence so is all its prefixes, but [a1, ..., al, α] is not in H.

• The map fB : En(A, ā) → H ⊕ EnA is a morphism, where fH defined
below is a generalisation of fd:

– If s v [a1, ..., al] then fH(s) = s ∈ H
– If s = [a1, ..., al, a], and s ∈ H then fH(s) := s ∈ H, otherwise
fH(s) = [a] ∈ EnA.

– If s = s′[a], if there is prefix s′′ of s′ such that fH(s′′)[a] ∈ H, then
fH(s) := fH(ŝ)[a] ∈ H where ŝ is the longest such prefix. Else,
fH(s) := fH(ŝ)[a] ∈ EnA, where ŝ is the longest prefix of s′ such
that fH(ŝ) ∈ EnA.

Like before fH is simply a function that takes a sequence and sorts it into
disjoint subsequences, one that is in H and one that is not in H. It is slightly
simpler than fd as we only sort into two subsequences, unlike fd which sorts a
sequence s into many possible subsequences. The definition intuitively captures
the notion of Spoiler playing a move α that is too far away to interact with
any of the previous moves. In the definition H represents a local game around
a1, ..., an, so fH being a morphism exactly represents Duplicator being able to
find a winning strategy in the overall game if it can find a winning strategy in
a local game represented by H, in which Spoiler cannot start with the move
α, and a winning strategy in a “fresh” game, with no elements already chosen,
represented by the disjoint copy of EnA. We can observe that Edn(A, ā) wit-
nesses the fact that any move of distance at most 2n from the previously played
elements is n-slack, since we have just shown fd is a morphism. However, this
is only a sufficient condition, not a necessary one. For example, if A were a
structure with 100 elements and satisfying only a single 100 place relation be-
tween all its elements, then all elements would be 1-slack from one another,
despite being adjacent in the Gaifman graph. We will now constructively define
the term “reachable”, and an associated comonad, which in fact characterise
exactly the moves that are not slack for Spoiler. For the purposes of reachabil-
ity, we will not distinguish between reachability from tuples and sequences (ie
we will say α is n-reachable from [a1, ..., al] and α is n-reachable from a1, ..., al
interchangeably).

Definition 4.3.6. For some given (A, ā) ∈ Rσ(l), for n ≥ 1 we recursively de-
fine “α is n-reachable from ā”, which we will sometimes write “α is n-reachable
from (A, ā)” if A is not clear from context:
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1. There is a relation R ∈ σ and a tuple t (of A) containing α, at least
1 element from among ā, and at most n − 1 other elements, such that
A |= R(t) (a tuple t such that there is an R ∈ σ such that A |= R(t) we
will henceforth refer to as a guarded tuple). Or, α occurs among ā.

2. There is some β such that α is (n− 1)-reachable from ā, β, and β is n− 1
reachable from ā.

As a special case, when n = 0, a is n-reachable from ā only if it occurs among
ā.
We will say say s = [a1, ..., al, b1, ..., bm] ∈ En(A, ā) is an n-reachable sequence
from ā, if for each i from 1, ...,m, bi is (n− i)-reachable from [ā, b1, ..., bi−1].

When considering reachability, we will often use inductive proofs, and refer
to clause (1) and (2) from above. Observe from the above definition is that that
1-reachability (and hence recursively n-reachability) must always be witnessed
by (1) (at some point). Hence, when doing an inductive proof, we may first
check case (1) (as this covers the case n = 1), and then check case (2) assuming
an inductive hypothesis. We will often omit the n = 0 case as it is trivial. In
terms of sequences, we can say α is n-reachable from ā if and only there is an
n-reachable sequence from ā, such that α is (n− length(s))-reachable from s via
(1).

Lemma 4.3.7. If a is n-reachable from ā in some structure A, then a is not
n-slack from ā.

Proof. We do an induction on n, and start with clause (1) as remarked above,
noting it covers the case n = 1. If we are in clause (1), let b1, ..., bi be at most
n − 1 elements of a such that there is a tuple t containing a, b1, ..., bi, and at
least one element from a1, ..., al, a1 say. Suppose for a contradiction that a is
n-slack from ā, and let this be witnessed by some H. Consider the sequence
s = [a1, ..., al, a] ∈ En(A, ā), so by assumption we know fH(S) ∈ EnA. Now
fH([a1]) ∈ H, hence there can be no relations containing fH([a1]) and fH(s),
as they occur in different halves of a coproduct. However by assumption, there
is a relation containing [a1], s, [a1, ..., al, a, b1], ..., [a1, ..., al, a, b1, ..., bi], contra-
dicting the fact that fH is a morphism.
If we are in clause (2) we can now make use of the inductive hypothesis. So we
can find a sequence β1, ..., βi such that βi is (n−i)-reachable from ā, β1, ..., βi−1,
and a is (n − i)-reachable from ā, β1, ..., βi via clause (1) of reachability. This
comes from iteratively applying clause (2) of the definition until we reach clause
(1). Suppose for a contradiction that a is n-slack from ā, witnessed by some
H. Consider the subset H ′ ⊂ H being those sequences in H where there are
at most n − 1 elements after al. Now observe, fH

′
acts on En−1(A, ā) by re-

stricting fH , so is a morphism. H ′ also satisfies the other conditions in the
definition of slackness, so we must conclude that [a1, ..., al, β1] ∈ H ′ ⊂ H by
the inductive hypothesis, else H ′ would witness β is (n− 1)-slack from ā when
it is (n − 1)-reachable from ā. Next consider the subset of H ′ consisting of all
sequences s such that s v [a1, ..., al, β1] or s w [a1, ..., al, β1] . By an identical
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argument as for β1, we can conclude once again using the inductive hypothesis
that [a1, ..., al, β1, β2] is in this subset, and hence in H. Repeating this, we can
see that [a1, ..., al, β1, ..., βi] and all of its prefixes are in H. Now we know a
is (n − i)-reachable from a1, ..., al, β1, ..., βi via clause (1), so let this be wit-
nessed by b1, ..., bn−i−1. Similarly to before, we know there is a relation among
prefixes of [a1, ..., al, a, β1, ..., βi, b1, ..., bn−i−1] containing [a1, ..., al, a], and at
least one other element s among [a1], ..., [a1, ..., al, a, β1, ..., βi]. However, ob-
serve fH([a1, ..., al, a, β1, ..., βj ]) = [a1, ..., al, β1, ..., βj ] ∈ H for any j, and by
assumption fH([a1, ..., al, a]) = [a] ∈ EnA. Hence, fH(s) and fH([a1, ..., al, a])
are in separate halves of a coproduct, so there cannot be a relation including
them, contradicting the fact that fH is morphism.

Further on we prove an analogue of Theorem 4.3.2 but for reachability rather
than distance, which shows the converse of the lemma above, that an element
being n-slack implies it is not n-reachable. Putting these together we do in fact
conclude that reachability is simply a constructive definition for being not slack,
which gives a reasonable intuition behind its definition.

Example 4.3.8. An interesting special case of reachability is that if σ contains
only relations of arity 2 or lower, then for any (A, ā) ∈ Rσ(l) and α ∈ A, α
is n-reachable from ā if and only if D(ā, α) < 2n. We can see this inductively.
Recall α is 1-reachable if it occurs among ā or if it creates a new relation when
added to ā. The key point is that if σ contains relations of arity 2 or lower,
then this is exactly the same as the statement D(α, ā) = 0, 1, ie D(α, ā) < 21.
For the inductive step, note that if D(ā, α) < 2n then there exists α′ such that
D(ā, α′) < 2n−1 and D(α, α′) < 2n−1. The former statement implies α′ is
(n − 1)-reachable from ā (by the inductive hypothesis). The latter statement
implies α is (n− 1)-reachable from α′, hence (n− 1)-reachable from ā, α′.

Next we can create a subfunctor of En similar to how we created the sub-
functors Edn:

Definition 4.3.9. We define the functor Rn as follows for (A, ā) ∈ Rσ(l):

• If l > 0, Rn(A, ā) is the induced substructure
{s ∈ En(A, ā) : s is an n-reachable sequence from ā}.

• If l = 0, RnA :=
⋃
a∈A Rn−1(A, a), ie the set of all sequences s such that

form an (n − 1)-reachable sequence from (A, a),where a is the first entry
of s.

In both cases Rn acts on morphisms by restricting from En.

We claim Rn is in fact a comonad, and that its counit and comultiplications
are simply the restrictions of the counit and comultiplication for En. Given the
maps are simply restrictions, we know they are morphisms and all the necessary
diagrams commute, provided all the morphisms land in the desired ranges. In
other words, we need to check if f : (A, ā)→ (B, b̄), that the range of Enf when
restricted to Rn(A, ā) is within Rn(B, b̄), and we need to check the range of δ
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when restricted to Rn(A, ā) is within RnRn(A, ā). We will prove these claims
via some lemmas:

Lemma 4.3.10. Let s = [a1, ..., al, α, β] ∈ En(A, ā) for some (A, ā) ∈ Rσ(l).
Then the map that sends [a1, ..., al, α] 7→ s, sends s 7→ [a1, ..., α] and sends s′ to
s′′ where s′′ is the sequence s but the α at entry l + 1 and the β at entry l + 2
are swapped is a in isomorphism En(A, ā, α, β)→ En(A, ā, β, α).

Proof. The fact that the map is a homomorphism follows because it preserves
the last element of a sequence and the prefix relation between sequences. It is
an isomorphism because the inverse map is also a homomorphism for the same
reason.

Lemma 4.3.11. Let (A, ā), (B, b̄) ∈ Rσ(l), and let α be n-reachable from ā:

1. If f : (A, ā)→ (B, b̄) is a morphism in Rσ(l), then if f(α) is n-reachable
from b̄.

2. [a1, ..al, α] is n-reachable from δ([a1, ..., al]) = [[a1], [a1, a2], ..., [a1, ..., al]].

Proof. Both of these we prove inductively.

• In either case, if condition (1) of reachability holds because α occurs among
ā, then there is nothing to show. If (1) holds otherwise, let it be witnessed
by c1, ..., cm ∈ A (where m ≤ n), ie there is some guarded tuple containing
α, c1, ..., cm, and at least one element of ā. Then f(c1), ..., f(cm) witness n-
reachability for f(α) from b̄, and [a1, ..., al, α, c1], [a1, ..., al, α, c1, c2], ..., [a1, ..., al, α, c1, ..., cm]
witness n-reachability for α from δ([a1, ..., al]).

• If condition (2) of reachability holds we can use an inductive hypothesis
and assume n > 1 (noting (1) covers the case n = 1). We know there
is some β such that α is (n − 1)-reachable from ā, β, and β is (n − 1)-
reachable from ā. By the inductive hypothesis, f(α) is (n − 1)-reachable
from b̄, f(β), and f(β) is (n − 1)-reachable from b̄, so we can conclude
f(α) is n-reachable from b̄. We also claim [a1, ..., al, α, β] is (n − 1)-
reachable from δ([a1, ..., al]) and [a1, ..., al, α] is (n − 1)-reachable from
δ([a1, ..., al])[a1, ..., al, α, β] (both of which follow from applying the in-
ductive hypothesis, the previous lemma, and the first item of this lemma).
From this we can conclude [a1, ..., al, α] is n-reachable from δ([a1, ..., al])
as desired.

We now have that Rn is a comonad by restricting ε and δ.

Corollary 4.3.12. (Rn, ε, δ) is a comonad.

Proof. We know from the above lemma that morphisms preserve reachable se-
quences, and that the sequence of prefixes of a reachable sequence is also a
reachable sequence. Hence if f : (A, ā) → (B, b̄) is a morphism then so is
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Rnf := Enf |RnA : Rn(A, ā) → Rn(B, b̄). We also know δ|Rn(A,ā)Rn(A, ā) →
RnRn(A, ā) is a morphism, as is ε|Rn(A,ā)RnA → (A, ā). All the necessary
diagrams will commute since they commute for En.

We remark here that the above proof would fail for Edn when trying to re-
strict the comultiplication. Inherent to the definition of n-reachability is that
it is witnessed by a sequence of n elements, hence the property can carry over
nicely to structures of form RnA. However, this does not hold for being within
a d-neighbourhood. For instance, if D(a, b) ≥ 2n for some a, b in a structure A
then D([a], [a, b]) = ∞ in EnA. Even small distances will still create issues, if
they are witnessed by a relation of large arity. For a rather degenerate example,
if σ contains a relation of arity n+1, then it may be possible to have D(a, b) = 1
in some structure A, but D([a], [a, b]) =∞ in EnA.

We can interpret Ehrenfeucht-Fraisse games using Rn also:

Definition 4.3.13. We use an R within EFn to indicate only n-reachable se-
quences can be played on a given structure. For example, given (A, ā), (B, b̄) ∈
Rσ(l) the game EFn(R(A, ā), (B, b̄)) is the game where Spoiler only is limited
to playing an n-reachable sequence, but Duplicator has no restrictions.

By analogy to the lemma in the introduction that winning strategies for
Duplicator in EFn(A,B) are the same as maps EnA→ B, and the same in the
case of Edn, we claim the following:

Lemma 4.3.14. For (A, ā), (B, b̄) ∈ Rσ(l), there is a bijective correspondence
between:

• Maps Rn(A, ā)→ (B, b̄)

• Winning strategies for Duplicator in the game EFn(R(A, ā), (B, b̄)).

There is also a bijective correspondence between:

• Nice maps Rn(A, ā)→ Rn(B, b̄)

• Winning strategies for Duplicator in the game EFn(R(A, ā), R(B, b̄)).

Recall that nice maps Rn(A, ā) → Rn(B, b̄) are those that are prefix pre-
serving, and length preserving, and correspond exactly to those maps which are
co-Kleisli extensions of maps of form Rn(A, ā) → (B, b̄). In fact, since Rn is
a comonad and has a co-Kleisli extension, the correspondence is actually four
way:

Corollary 4.3.15. For (A, ā), (B, b̄) ∈ Rσ(l), there is a bijective correspon-
dence between:

• Maps Rn(A, ā)→ (B, b̄)

• Winning strategies for Duplicator in the game EFn(R(A, ā), (B, b̄))
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• Nice maps Rn(A, ā)→ Rn(B, b̄)

• Winning strategies for Duplicator in the game EFn(R(A, ā), R(B, b̄))

Proof. It is sufficient to observe that there is a bijective correspondence between
nice maps Rn(A, ā) → Rn(B, b̄) and maps Rn(A, ā) → B. Given a map f :

Rn(A, ā) → (B, b̄), let f̂ denote its co-Kleisli extension. By construction of f̂

it is clear that εB f̂ = f . Any nice map g is a co-Kleisli extended map, so

suppose g = f̂ for some map f : Rn(A, ā)→ (B, b̄). Now ˆ(εBg) =
ˆ

εB f̂ = f̂ = g.

Hence the assignments f 7→ f̂ and g 7→ εBg give the bijective correspondence
we need.

In terms of strategies for Duplicator, the above says “if Spoiler plays a reach-
able sequence of moves, then a winning strategy for Duplicator must also be a
reachable sequence of moves.”

Example 4.3.16. For an intuitive picture of this, consider the example above
where it was assumed σ had no relations of arity greater than 2, and hence
reachability was distance < 2n, and suppose Spoiler starts a game by choosing
some a ∈ A and Duplicator chooses some b ∈ B. Suppose further that Spoiler
chooses some a′ such that D(a, a′) < 2n−1 (since there are n−1 rounds remain-
ing), but Duplicator chooses some b′ such that D(b, b′) ≥ 2n−1. For the next
round, Spoiler can choose some a′′ with distance < 2n−2 from both a, a′, but
Duplicator cannot find such a b′′, so suppose Duplicator picks a b′′ of distance
≥ 2n−2 from b. Spoiler then repeats the same method with a and a′′ by choosing
an element that bisects their distance. Again, Duplicator will not be able to find
such an element. Repeating this process, Spoiler will win after the nth round.

Next we aim to show the following (when l = 0): that Duplicator has a
winning strategy in EFn(A,B) if and only if Duplicator has a winning strat-
egy in EFn(R(A), B). This will take the form of a morphism En(A) → Rn(A)
for each A ∈ Rσ (and the obvious fact there is a morphism in the opposite
direction). Once again in the case l > 0 we get a morphism En(A, ā) →
Rn(A, ā)⊕RnA, and the corresponding result “Duplicator has a winning strat-
egy in EFn((A, ā), (B, b̄)) if and only if Duplicator has a winning strategy in
EFn(R(A), B) and EFn(R(A, ā), (B, b̄))” in terms of games. The latter result
follows easily from the former, so we will focus on the case l = 0.

We also once again remark that we will get a set of morphisms rather than
a natural transformation. This is for the same reason as before, that being
a reachable sequence is not reflected by morphisms, ie there might be some
sequence s that is not an n-reachable sequence, but becomes an n-reachable
sequence under a morphism. Similarly to before, we will define a set map
fr : EnA→ RnA for each A ∈ Rσ, and show it is a morphism.

Definition 4.3.17. For A ∈ Rσ, we define the map fr : EnA → RnA recur-
sively on some s ∈ EnA as follows:
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• If s = [a] for some a ∈ A, then fr(s) = [a].

• If s = s′[a], let s′′ be the longest prefix of s′ such that f(s′′)[a] is an n-
reachable sequence. Then define f(s) = f(s′′)[a]. If no such s′′ exists,
then set f(s) = [a].

It is worth understanding intuitively what fr does to a sequence and what
it is describing in terms of strategies for Duplicator. Given some sequence s,
fr effectively organises it into disjoint reachable subsequences (though fr only
outputs the reachable subsequence that has the same last element of s). We
can see this recursively. Initially, fr returns a singleton sequence to a singleton
sequence. At some step i + 1, fr checks the subsequences it has already made
for one which ε(s) is reachable from, and adds s to one of those sequences (it
chooses the sequence that was added to last if there is more than one to add to).
This corresponds directly to a method for Duplicator converting a strategy in
EFn(R(A), B) into a strategy in EF (A,B), by organising it into several separate
reachable subgames. At stage i, if Spoiler plays a move that is reachable from
one of the previous subgames, then Duplicator moves according to the strategy
in that subgame (and picks the last subgame that was played in if there was
more than one to choose from). If Spoiler plays a move not reachable from any of
the previously started subgames, then Duplicator starts a new subgame. Hence
crucial to proving that fr is a morphism is proving is checking that none of these
subgames can possibly overlap, else this would cause a conflict in Duplicators
strategy (as the strategies on both subgames may disagree). Before proving
this, we will need to collect some facts about reachability:

Lemma 4.3.18. Let (A, ā) ∈ Rσ(l) and let α be n-reachable from ā:

1. For any m ≥ n, and tuple t containing all the entries of ā, α is m-reachable
from t.

2. Either clause (1) holds from the definition of reachability, or there exists
some β such that α is (n− 1)-reachable from β and β is (n− 1)-reachable
from ā.

3. For any a, b ∈ A, a is n-reachable from b if and only if b is n-reachable
from a.

4. Suppose in addition, there is some β such that β is m-reachable from ā, α,
where m < n. Then either β is n-reachable from ā or there exists some
α′ such that α′ is n-reachable from ā, and β is m-reachable from α′.

Proof. The first item above is immediate from an induction and the definition of
reachability, we just include it for reference. Notice for instance it implies that
the second statement in the second item is a sufficient condition for α being
n-reachable from ā (as well as just a necessary one, which is what the item
claims). We will prove the second, third and fourth claims by induction:
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• We start with the second claim. So we are given some α that is n-reachable
from ā. This means either clause (1) holds or clause (2) holds from the
definition of reachability. Certainly if (1) holds we are done, so we can
assume there exists some β such that α is (n−1)-reachable from ā, β, and
β is (n − 1)-reachable from ā. This gives us two statements to analyse,
of which we focus on the first. Since α is (n − 1)-reachable from ā, β,
then either (1) or (2) holds. If (1) holds, let t be a guarded tuple that
contains α, at least one element of ā.β and at most n− 1 other elements.
If t contains at least one element from ā then t in fact witnesses that α is
n-reachable from ā via (1) (since it contains at most n− 1 other elements
from A that are not β, so it contains at most n other elements from A
possibly including β), so we would be done. If t contains no elements of ā
(hence only β), then t witnesses directly that α is (n− 1)-reachable from
β, and we would also be done (since β would have exactly the property
required for the second item of the lemma). Hence, we can assume clause
(1) does not hold for the statement that α is (n− 1)-reachable from ā, β,
hence by the inductive hypothesis, we may find some γ1 such that α is
(n − 2)-reachable from γ1, and γ1 is (n − 2)-reachable from ā, β. Once
again we analyse the former of the two statements. If the fact that γ1

is (n − 2)-reachable is witnessed by some guarded tuple t (ie clause (1)),
we will either conclude that γ1 is (n − 1)-reachable from ā (in the case t
contains at least 1 element of ā) in which case we can use γ1 to satisfy
the conclusion of the lemma (since α is (n− 2)-reachable, hence (n− 1)-
reachable from γ1), or we will conclude that γ1 was n− 2 reachable from
β alone (in the case t contains no elements of ā so only contains β), and
hence α was (n − 1)-reachable from β alone, and are therefore done. So,
once again we may by the inductive hypothesis find some γ2 such that such
that γ2 is (n − 3)-reachable from ā, β, and γ1 is (n − 3)-reachable from
γ2. Observe that since γ1 is (n − 3)-reachable from γ2, and α is (n − 2)-
reachable from γ1, we know α is (n−1)-reachable from γ2. We then apply
the same reasoning as before to the fact that γ2 is (n− 3)-reachable from
ā, β. If it is witnessed by some guarded tuple t via clause (1), then we
will either be able to use β or γ2 to meet the property required by the
lemma. If it is witnessed by clause (2), we use the inductive hypothesis
again to find some γ3 that is (n− 4)-reachable to ā, β, and such that γ2 is
(n− 4)-reachable from γ3. Similarly to γ2, we also know that α is (n− 1)-
reachable from γ3 (since γ2 is (n−4)-reachable from γ3 is (n−3)-reachable
from γ1 is (n− 2)-reachable from α). We then repeat the same reasoning
for γ3, and so on. At some point, this process must terminate when clause
(1) holds for some γi, and we will be done.

• For the third item, let a, b ∈ A, and b be n-reachable from a. Either clause
(1) holds, in which case it is immediate that a is n-reachable from b, or
by item 2 just proven, we may find some c such that b is (n− 1)-reachable
from c, and c is (n− 1)-reachable from a. Using the inductive hypothesis,
we know c is (n− 1)-reachable from b, and a is (n− 1)-reachable from c.
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Hence, a is n-reachable from b.

• The fourth item we prove by induction on m. Suppose firstly that clause
(1) holds for the fact that β is m-reachable from ā, α (so the covers the base
case m = 1) hence, it is witnessed by some guarded tuple t. Similarly to
above, either t contains at least one entry from ā, in which case the tuple
witnesses β is (m + 1)-reachable (and hence n-reachable, since m < n)
from ā, or t contains no entries from ā, and witnesses that β is in fact
m-reachable from α. If (1) does not hold, by the second item of lemma
we can find some γ such that γ is (m − 1)-reachable from ā, α, and β is
(m − 1)-reachable from γ. Now applying the inductive hypothesis to γ,
either γ is n-reachable from ā (in which case γ satisfies the requirements of
the lemma), or there is some β′ such that α′ is n-reachable from ā and γ is
(m−1)-reachable from α′. But then we would also know β is m-reachable
from γ so α′ would satisfy the requirements of the lemma.

We next prove what was set out in the discussion above, which is the final
precursor to proving fr is a morphism (which is analogous to what we used to
prove fd was a morphism for d > 2n in the previous section):

Lemma 4.3.19. Suppose that s @ s′ ∈ RnA for some A ∈ Rσ, and suppose a
is (n− length(s′[a]))-reachable from s. Then fr(s) @ fr(s′[a]).

Proof. In the language of the intuitive description of fr, this is akin to proving
that if two subgames overlap then they are the same subgame. We prove this
by induction on the length of a sequence s. If the length is 1, then the claim
is trivially true. Suppose now s is of length greater than one, and we can use
the inductive hypothesis. By the definition of fr, fr(s′[a]) := fr(s′′)[a], where
s′′ the longest prefix of s′ such that a is (n − length(s′[a]))-reachable from s′′,
assuming there is one such prefix. Since, by assumption, s′ is such a prefix, we
may assume it is not the longest such, else the claim is immediately true, so let
s′′ be the longest such prefix, so s @ s′′ v s′, and a is both (n− length(s′[a]))-
reachable from both s and s′′, and also assume fr(s) is not a prefix of fr(s′′) (else
fr(s) @ fr(s′′) @ fr(s′[a])). As remarked previously, fr arranges sequences into
disjoint, reachable subsequences, so in fact fr(s) and fr(s′′) can have no overlap
at all.
Suppose firstly that fr(s′′) = [ε(s′′)]. Then a is (n − length(s′[a]))-reachable
from ε(s′′), hence by the lemma above, ε(s′′) is (n − length(s′[a]))-reachable
from a. Since a is also (n− length(s′[a]))-reachable from s, we know ε(s′′) is in
fact (1 + n − length(s′[a]))-reachable from s. But by the inductive hypothesis,
we could then conclude fr(s) @ fr(s′′) (since (1 + n − length(s′[a])) ≤ (n −
length(s′′))), which would contradict fr(s) and fr(s′′) having no overlap. So
we may assume fr(s′′) = fr(t)[ε(s′′)] for some t @ s′′. Since ε(s′′) is (n −
length(s′′))-reachable from fr(t), and a is (n − length(s′[a]))-reachable from
fr(s′′) = fr(t)[ε(s′′)], either a is (n − length(s′[a]))-reachable from fr(t), or
there exists some α such that α is (n− length(s′′))-reachable from fr(t) and a is
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(n − length(s′[a]))-reachable from α. In the former case, observe we can apply
the inductive hypothesis to the sequence s, t @ ŝ where ŝ is the sequence s′′

but with the last entry swapped for a. This would imply fr(t), fr(s) @ fr(ŝ),
and hence overlap, but this contradicts the fact that fr(t) @ fr(s′′) which has
no overlap with fr(s). In the latter case, set ŝ to be the sequence s′′ that has
instead swapped its last entry for α. As in the case above where fr(s′′) was a
one element sequence, this implies that α is also (n− length(ŝ))-reachable from
fr(s). But once again, applying the inductive hypothesis to s, t @ ŝ yields fr(s)
and fr(t) overlap, and hence so do fr(s) and fr(s′′), contradicting our initial
observations.

Now we can finally prove fr is indeed a morphism:

Theorem 4.3.20. fr : EnA→ RnA is a morphism for any n, and A ∈ Rσ.

Proof. Suppose EnA |= R(s1, ..., si) for some s1, ..., sm ∈ EnA. This is true if
and only if A |= (ε(s1), ..., ε(sm)), and for each i, j, either si @ sj , sj @ si,
or si = sj . The second condition is true if and only if we can arrange the si
into a sequence si1 @ si2 .... @ sim . Now clearly fr commutes with ε, so it
suffices to show that fr(sij ) @ fr(sij+1

) for each j from 1, ...,m in order to
conclude RnA |= R(fr(s1), ..., fr(sm)). Now by the above lemma, it suffices to
show ε(sij+1) is (n− length(sij+1))-reachable from i. But we know the guarded
tuple (ε(s1), ..., ε(sm)) witnesses exactly this, since it contains at least 1 element
from sij (namely ε(sij )), and it contains ε(sij+1

), and it contains at most (n−
length(sij+1

)) other elements not present in sij (namely ε(sij+2
), ..., ε(sim)).

4.4 Locality and “Back and Forth” Games

As of yet we have focused on the “forth” local version of Ehrenfeucht-Fraisse
games. In this section we briefly discuss local versions of back and forth games
from the perspectives of the functors Edn and Rn. In this section, we shall take
all locality bounds d to be finite, rather than possibly infinite. Firstly we define
the following:

Definition 4.4.1. For a given pair n, d, and structure A we define

Md
nA := {s ∈MnA : s = [ ] ∨ s ∈ EdnA}.

Recall that, as a set, MnA was simply EnA ∪ {[ ]}, so this is just the subset
of MnA corresponding to d-local sequences. We similarly define MR

nA := {s ∈
MnA : s = [ ] ∨ s ∈ RnA}.

Md
n exhibits similar properties to Mn and Edn.

Lemma 4.4.2. • Md
n, and MR

n are functors from Rσ(l) to Mn.

• For φ ∈ (Nd,Ln) well written, A |= φ if and only if Md
nA, [ ] |= Mnφ. Here

we are extending the notion of well-written and the action of Mn to d-local
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sentences in the natural way; namely φ is well-written if x1 is bound by a
leading quantifier, and xi+1 is the unique variable bound in the scope of xi
(in this case xi will be bound by a local quantifier if i > 1), and Mn acts
on d-local sentences as it did on global sentences, in addition to sending
∃x ∈ Nd(x1),∀x ∈ Nd(x1) 7→ ♦,�.

• For structures A,B, A ≡dn B, if and only if Md
nA ∼n Md

nB if and only if
Md
nA ∼Md

nB.

Proof. • From the perspective of set functions, Md
n and MR

n act identically
to Edn and Rn, except for also mapping roots to roots. Since Edn and Rn
are functors, we will have Md

n and MR
n are as well.

• Recall Theorem 3.2.5 which was the analogous result for ordinary sen-
tences. Let φ ∈ (Nd,Ln). Noting once again that Mn preserves boolean
connectives, we may assume φ is of form ∃x1ψ where ψ ∈ (Nd(x1),L(1)).
Now A |= φ if and only if there is a ∈ A such that (A, a) |= ψ. By
Theorem 4.2.16, this is true if and only if (Nd(a), a) |= ψ′, where ψ′ is
simply ψ with the local quantifiers replaced with ordinary ones (in the
language of Theorem 4.2.16, we would have ψ = (ψ′)d). Now by Theorem
3.2.5, this is true if and only if MnNd(a), [a] |= Mnψ

′. Recalling that
EdnA =

⋃
a∈A Edn(A, a) =

⋃
a∈A En(Nd(a), a), we can observe MnNd(a), [a]

is bisimilar to Md
nA, [a], since those elements accessible via transitions

from [a] in Md
nA are precisely the ones from Edn(A, a) = EnNd(a). Hence,

MnNd(a), [a] |= Mnψ
′ if and only if Md

nA, [a] |= Mnψ
′. Now by definition

of how Mn acts on local formulae, we have Mnψ
′ = Mnψ. Putting all

this together, we have A |= φ if and only if there exists a ∈ A such that
Md
nA, [a] |= Mnψ. Now the modal transitions from [ ] ∈ Md

nA are exactly
to all sequences of form [a] for a ∈ A. Hence there exists a ∈ A such that
Md
nA, [a] |= Mnψ if and only if Md

nA, [ ] |= ♦Mnψ, but ♦Mnψ = Mnφ so
we are done.

• This is a direct consequence of the previous item.

Rather than proving directly any results about the relationships between
local and global back and forth games, instead we see how our functors can be
used to state a weakened version of Gaifman’s Theorem, and then use that to
make one further conjecture.

Gaifman’s Theorem (from [16]) might be paraphrased as “any first-order sen-
tence is equivalent to boolean combination of local ones”. We state it precisely
below:

Theorem 4.4.3. (Gaifman’s Theorem) For any φ ∈ L, there exists d such that
φ is equivalent to a boolean combination formulas of form:

∃x1, ...,∃xm(
∧
i6=j

D(xi, xj) > 2d ∧
∧
i

ψi(xi))
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where each ψi ∈ (Nd(xi),L(1)).

This is slightly stronger than what we can currently express in our language,
as it includes the statement that elements witnessing xi are a distance at 2d
apart, ensuring the neighbourhoods Nd(xi) are all disjoint. We work with a
slightly weaker version stated below:

Theorem 4.4.4. For any φ ∈ L, there exists d such that φ is equivalent to a
boolean combination of local sentences ψ, where each ψ ∈ (Nd,L).

This is intuitively weaker, because Gaifman’s Theorem says that for a given
formula φ, there exists a d such that for any structure A, it suffices to look
at sets of disjoint d-neighbourhoods of A in order to verify whether A |= φ.
However our slightly weaker statement, says there exists a d such that it suffices
to look at sets of all d-neighbourhoods to verify whether A |= φ, and clearly all
sets of neighbourhoods includes all sets of disjoint neighbourhoods. In any case,
we shall give a formal proof of Theorem 4.4.4 using Gaifman’s Theorem, after
proving some small subclaims about (Nd,L).

Lemma 4.4.5. 1. If d ≤ d′, then anything expressible in (Nd,L), is ex-
pressible in (N ′d,L). Or in other words, a d-local formula is also a d′-local
formula.

2. If d1 + d2 ≤ d, then ∃x2 ∈ Nd1(x1)ψ(x2) is expressible in (Nd(x1),L) if
ψ ∈ (Nd2(x2),L(1)).

Proof. Since of all the fragments above contain boolean connectives, it suffices
to show the localised quantifiers of one can be expressed in another, to show a
formula of one fragment can be expressed by a formula in another. Concretely,
for item (1), it suffices to show ∃y ∈ Nd(x) can be expressed using d′-local
quantifiers, and for item (2), it suffices to show ∃y ∈ Nd2(x2) can be expressed
using d-local quantifiers around x1, so long as x2 ∈ Nd1(x1), since it follows
from item (1) ∃x2 ∈ Nd1(x1) is also expressible using d-local quantifiers around
x1. As remarked earlier, y ∈ Nd(x) or equivalently, D(x, y) < d is expressible in
ordinary first-order logic for any d. This is because σ is finite, so the statement
“x is adjacent to y in the Gaifman graph” is expressible by a disjunction

χ(x, y) :=
∨
∃z̄R(t)

where this disjunction ranges over all possible R ∈ σ, and all tuples t con-
taining x,y, and entries from z̄. Now the statement D(x, y) < d can be built
inductively, where D(x, y) < 2 is simply χ(x, y), and D(x, y) < 3 is defined
χ(x, y) ∨ (∃zχ(x, z) ∧ χ(z, y)), and so on. Now D(x, y) < d is an existential
sentence, and all witnesses for quantifiers in it must be at most distance d
from x, and hence in Nd′(x) if d ≤ d′. Therefore if we localise the quantifiers in
D(x, y) ≤ d to Nd′(x) we get a semantically equivalent formula expressible using
d′-local quantifiers around x. Therefore we can conclude item (1) from above,
since the quantifier ∃y ∈ Nd(x) is equivalent to ∃y ∈ Nd′(x)∧D(x, y) ≤ d which
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is built using a d′-local quantifier and a formula expressible using d′-local quan-
tifiers x, as required. Now for the second item, we note since x2 ∈ Nd1(x1), the
statement D(x2, y) < d2, can be localised to Nd(x1) without changing the mean-
ing of the sentence, as necessarily any witnesses for quantifiers in D(x2, y) < d2

must be in Nd(x1), as d1 + d2 ≤ d. Hence we can express ∃y ∈ Nd2(x2) as
∃y ∈ Nd(x) ∧ D(x2, y) ≤ d2, which is expressible using d-local quantifiers
around x1, which concludes item 2.

Now we can prove Theorem 4.4.4 using Gaifman’s Theorem.

Proof. It suffices to show that a formula of form

∃x1, ...,∃xm(
∧
i6=j

D(xi, xj) > 2d ∧
∧
i

ψi(xi))

can be written as a boolean combination of formulae in (Nd′ ,L) for some d′.
Observe the formula above is equivalent to

∧
i ∃xiψ′i(xi), where

ψ′i := ψi(xi) ∧
∧
j 6=i

¬∃y ∈ N2d(xi) ψj(y)

The initial formula says there are witnesses for each ψi that are distance at
most 2d apart, and the latter formula says there are witnesses xi for each ψi,
and there are no witnesses for ψj within a 2d radius of xi for each i 6= j, which
is a slightly more complicated way of saying the same thing. By the lemma
we just proved, the latter formula is expressible as a boolean combination of
formulae from (N3d,L), since d+ 2d ≤ 3d.

Given we saw in the introduction that there are only finitely many (non-
equivalent) φ ∈ Ln, we can grade Theorem 4.4.4 by quantifier rank:

Lemma 4.4.6. For any n, there exists a pair m, d such that for every φ ∈ Ln,
there exists ψ ∈ (Nd,Lm) such that φ ≡ ψ.

This is equivalent to Theorem 4.4.4, since it clearly implies it, and there
are only finitely many sentences in Ln for each n, so we can find an upper
bound for the distance and quantifier rank needed to localise them for a given
n, which shows it is implied by Theorem 4.4.4. Finally, we are ready to show
this can be expressed in terms of n-ary and local n-ary equivalence, and hence in
terms of bisimulations using our functors. This will conclude the aim of stating
Gaifman’s Theorem in our language.

Theorem 4.4.7. The following are equivalent:

1. For any n, there exist m, d such that for every φ ∈ Ln, there exists ψ ∈
(Nd,Lm) such that φ ≡ ψ.

2. For any n, there exists a pair m, d such that the following holds: For any
A,B ∈ Rσ, if A ≡dm B, then A ≡n B.
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3. For any n, there exists a pair m, d such the following holds: For any
A,B ∈ Rσ, if Md

mA ∼Md
mB, then MnA ∼MnB.

Proof. Now (2) and (3) are immediately equivalent from Theorem 3.2.5 and the
third item of Theorem 4.4.2. We also claim that (1) implies (2) fairly trivially,
since if A ≡dm B and A |= φ ∈ Ln, then by simply picking ψ ∈ (Nd,Lm) such
that ψ ≡ φ, we can conclude A |= ψ, hence B |= ψ, and hence B |= φ. To prove
(2) implies (1) and complete the proof, we require a few subclaims. All of these
subclaims apply for both the pairs ≡n,Ln and ≡md , (Nd,Lm) as they both have
all the properties used to prove the claim (namely being finite up to equivalence,
closed under boolean combinations, and finite index equivalence relations), but
we will just write out the case of ≡n,Ln for convenience:

• Any equivalence class of ≡n is equal to Mod(φ) for some φ ∈ Ln

• Any union of equivalence classes of ≡n is equal to Mod(φ) for some φ ∈ Ln

• For any φ ∈ Ln, Mod(φ) is a union of ≡n equivalence classes.

For the first item, recall Ln is finite up to equivalence, so take φ1, ..., φZ as a
list of representative sentences. Now any equivalence class under ≡n is specified
exactly by whether for each i from 1, ..., Z, members of that equivalence class
either satisfy φi or not. Hence, the equivalence class is equal Mod(ψ), where
ψ :=

∧
qiφi, where qi is either a negation or nothing, depending on whether

members of that equivalence class model φ or not. For the second item, recall
that ≡n is finite index, owing to the fact that Ln is finite up to equivalence.
Hence a union of equivalence classes is a union of finitely many equivalence
classes, C1, ..., CY . Hence, the union of the classes is exactly Mod(

∨
ψi) where

Ci = Mod(ψi) for each i. For the third item, it is enough to show that if
A ∈ Mod(φ), and A ≡n B, then B ∈ Mod(φ) to show Mod(φ) is a union of
equivalence classes. But clearly, if A ∈ Mod(φ) then A |= φ, so B |= φ, so
B ∈Mod(φ).
Now we have proved all of our subclaims, we can show (2) implies (1). Let
n,m, d be as in the statement of the lemma, assume (2) and let φ ∈ Ln. We
seek to show there is ψ ∈ (Nd,Lm) equivalent to φ. Now (2) tells us that ≡dm
is a finer relation ≡n, so any union of equivalence classes under ≡n is a union
of equivalence classes under ≡dm. So given φ, we know Mod(φ) is a union of
≡n equivalence classes, and hence a union of ≡md equivalence classes. However,
we know a union of ≡dm equivalence classes is a equal to Mod(ψ) for some
ψ ∈ (Nd,Lm), and hence Mod(φ) = Mod(ψ), or in other words φ ≡ ψ.

4.5 Remarks and further directions

Clearly the final section in this chapter is brief, and is merely a restatement of a
weaker version of Gaifman’s Theorem in our own language. It would be interest-
ing to investigate whether one could prove the ordinary statement of Gaifman’s
Theorem directly using similar techniques to earlier parts of the chapter. In
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addition, since we saw that one might see Rn as a “sharpened” version of Edn
(for sufficiently large d), we speculate that a direct proof of Gaifman’s Theorem
in the above framework may yield a proof of the following conjecture:

Conjecture 4.5.1. For every n, there exists m such that for every A,B ∈ Rσ,
MR
mA ∼MR

mB implies A ≡n B

A further observation, is that one may view both reachability and locality as
extensions of guardedness (as defined above, a tuple t of a structure A is guarded
if there is some R ∈ σ such that A |= R(t)). In [3], Abramsky and Marsden
gave a comonadic picture of the guarded fragment of first-order logic. Another
natural path may be to investigate whether there is any technical connection
between the work presented there and and the work in this chapter.
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Chapter 5

Closing Remarks

5.1 Overview

Here we round up the main results of the thesis and potential directions for fur-
ther investigation. The initial chapter introduced the comonads En and Pn,k,
and the model theoretic background they draw together. With one exception,
being the treatment of free variables, this was simply the authors summary of
the other materials referenced in the chapter, mostly from [5].

Chapter 2 was based on the paper [26], and considered Rossman’s Equirank
Homomorphism Theorem from [27]. The paper had two aims: to give a comonadic
treatment of it using ideas from the introduction, and to extend it to also con-
sider the variable count of a formula. With regards to the first aim, a more
abstract treatment has since been given in [4], however for the second aim the
treatment given in the paper has not been improved upon. In it we modestly
extended the Equirank HPT to the following result: if φ is preserved under ho-
momorphisms and has variable count k and quantifier rank n, where k ≥ n− 2,
then there exists a positive existential ψ equivalent to φ with the same quantifier
rank and variable count. As remarked in the thesis, this extended the Equirank
HPT which only preserves quantifier rank, as any sentence with quantifier rank
n can always be written with n variables. Potential areas for further investiga-
tion would either be to provide a proof for an arbitrary pair n, k or to find a
counterexample. We provided potential strategies for extending the proof to the
general case at the end of the second chapter. If one believed the conjecture was
false for the general case, a reasonable method for looking for a counterexample
or contradiction would be to explore the difference between the behaviours of
→n and →n,k on the categories Rσ(l). Whilst these relations do behave sim-
ilarly in most cases, a key difference between them, and the reason we were
unable to prove the general case, is that they behave differently when taking
coproducts.
A further direction to consider might be to apply the ideas from this section to
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Rossman’s Finite Homomorphism Preservation Theorem, also from [27], where
he showed that a formula preserved under homomorphisms between finite struc-
tures is equivalent to a positive existential one over finite structures.

In the Chapter 3, we saw how the structures of form EnA and Pn,kA can
be viewed as modal structures, and we called the functors resulting from this
Mn and Mn,k. We proved that the codomain of these functors is equivalent to
the Eilenberg-Moore category for the comonads En and Pn,k, and hence Mn

and Mn,k are part of adjunctions that give rise to En and Pn,k respectively. We
also saw how, when formulas are written in a particular way, that Mn and Mn,k

preserve the satisfaction relation between formulas and structures. In other
words, given some appropriately written first-order formula φ, there is a modal
formula Mnφ such that for any first-order structure A, A |= φ if and only if
MnA |= Mnφ. This allowed us to translate n-ary elementary equivalence to a
modal bisimulation. This section poses some interesting questions for further
investigation. Firstly, we ask if this process can be generalised. The comonads
En and Pn,k are not the only comonads which interpret logics and Ehrenfeucht-
Fraisse style games, more are mentioned below, so is it possible to see if those
other comonads are modal in nature? If not, what properties of En and Pn,k
allow us to do this? A second area for investigation might be to better under-
stand the codomain of the functors Mn and Mn,k, and specifically, where the
images of Mn and Mn,k sit in those codomains. Given that we can translate
first-order sentences and n-ary equivalence to those images, is it possible to use
this translation to prove anything about first-order logic simply using modal
logic?

In the second section we applied the construction in the first to a part of
the proof of Courcelle’s Theorem. Our goal for the section was to find, given a
first-order structure A with an (n, k)-cover, a tree-like structure that can evalu-
ate MSO sentences on behalf of A. From the first section, we had two candidate
structures; Mn,kA, and a tree T given by the (n, k)-cover, which can be realised
as the pre-image of A under the adjoint functor to Mn,k. After some analysis,
we saw that neither T nor Mn,k worked when viewed as modal structures, how-
ever T could be used if viewed as a directed labelled graph rather than a modal
structure, where it inherits labels for the vertices from the atomic predicates
and the edges from the transition relations. We succeeded in proving one part
of Courcelle’s Theorem using our comonadic approach, though it remains open
whether the proof can be entirely completed in this way. A suitable next step
may be to see if the monadic interpretation of tree automata from [19] can be
incorporated into our approach.

In the final chapter we “localised” the correspondences between formulae,
Ehrenfeucht-Fraisse games and the comonad En. To that end, we defined a lo-
calised subfunctor of En, written Edn. Similarly to how maps out of En represent
strategies in the ordinary Ehrenfeucht-Fraisse game, maps out of Edn represent
strategies in localised versions of Ehrenfeucht-Fraisse games, which in turn cor-
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respond to localised versions of the →n relation between structures, which use
localised formulae. A key difference between En and Edn is the latter is not a
comonad, hence we do not have the same correspondence between maps of form
EdnA → B and EdnA → EdnB as we would in the En case. In terms of games,
the former maps correspond to games where Duplicator is allowed to play only
locally, and the latter is where Duplicator can play globally, so this lack of cor-
respondence between maps indicates these games are not equivalent.

Next, we showed that for a sufficiently large locality bound, at least 2n, the
local version of the n-round Ehrenfeucht-Fraisse game is in fact equivalent to
the ordinary one, which we witnessed with a morphism EnA → EdnA for any
A. Unfortunately, it turned out these maps do not form a natural transforma-
tion. Next we defined reachability, which was in a sense defined to give the
smallest subfunctor of En, written Rn, such that there is always a morphism
EnA → RnA. The majority of this section was devoted to building up this
morphism, and showing Rn does in fact form a comonad, unlike Edn.

Finally, we investigated how localising interacts with back and forth games.
To do this, we provided a modal translation inspired by ideas from Chapter 3,
in order to express local n-ary equivalence as a modal bisimulation. We then
showed this idea could be used to express a weakened version of Gaifman’s The-
orem. As a potential direction for further investigation we ask: would it be
possible to prove this weakened version, or the ordinary version of Gaifman’s
Theorem in this setting? Also, would it be possible to prove a sharper version
of Gaifman’s Theorem where we use Rn rather than Edn?

We would like to point out that this thesis is part of a much larger project
with the aim of using semantic techniques to better understand Finite Model
Theory. In addition to the work already referenced above, some further re-
sults include: capturing generalised quantifiers in [10], generalising Lovasz-type
Theorems in [12], and abstracting to arboreal categories in [4].
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[2] Samson Abramsky, Tomáš Jakl, and Thomas Paine. Discrete density
comonads and graph parameters. In International Workshop on Coalge-
braic Methods in Computer Science, pages 23–44. Springer, 2022.

[3] Samson Abramsky and Dan Marsden. Comonadic semantics for guarded
fragments. In 2021 36th Annual ACM/IEEE Symposium on Logic in Com-
puter Science (LICS), pages 1–13. IEEE, 2021.

[4] Samson Abramsky and Luca Reggio. Arboreal categories and resources. In
48th International Colloquium on Automata, Languages, and Programming
(ICALP 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[5] Samson Abramsky and Nihil Shah. Relating structure and power:
Comonadic semantics for computational resources. In 27th EACSL An-
nual Conference on Computer Science Logic, CSL 2018, September 4-7,
2018, Birmingham, UK, pages 2:1–2:17, 2018.

[6] Samson Abramsky and Nihil Shah. Relating structure and power:
Comonadic semantics for computational resources. Journal of Logic and
Computation, 31(6):1390–1428, 2021.

[7] Samuel Frederic Barr. Courcelle’s theorem: Overview and applications,
Batchelor’s Project, Oberlin College, 2020.

[8] Hans L Bodlaender. Treewidth: Algorithmic techniques and results. In In-
ternational Symposium on Mathematical Foundations of Computer Science,
pages 19–36. Springer, 1997.

[9] Yijia Chen, Jörg Flum, and Xuangui Huang. Slicewise definability in first-
order logic with bounded quantifier rank. arXiv preprint arXiv:1704.03167,
2017.
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