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A B S T R A C T   

Numerous wells worldwide encounter significant, costly, and time-consuming lost circulation issues during 
drilling or while deploying tubulars across naturally fractured or induced fractured formations. This can 
potentially lead to formation damage, wellbore instability, and even blowouts. Effectively addressing this 
problem and restoring fluid circulation becomes crucial to curbing non-productive time and overall operational 
expenses. Although numerous methods have been introduced, a universally accepted industry solution for pre-
dicting lost circulation remains absent due to the complex interplay of various factors influencing its severity. 
Anticipating the onset of circulation loss is imperative to mitigate its impacts, minimise costs, and reduce risks to 
personnel and the environment. 

In this study, an innovative machine learning approach employing multigene genetic algorithms is utilised to 
analyse a dataset of 16,970 drilling datasets from 61 wells within the Marun oil field, located in Iran, where 
severe loss of circulation occurred. Geological characteristics, operational drilling parameters, and the properties 
of the drilling fluid were all considered. The dataset encompasses 19 parameters, of which seven are chosen as 
inputs for predicting lost circulation incidents. These inputs are then employed to construct a predictive model, 
employing an 85:15 training-to-test data ratio. To assess the model’s performance, unseen datasets are utilised. 

The novelty of this study lies in the proposed model’s consideration of a concise set of relevant input pa-
rameters, particularly real-time surface drilling parameters that are easily accessible for every well. The model 
attains a remarkable level of prediction accuracy for fluid loss, as indicated by various performance indices. The 
results indicate a mean absolute error of 1.33, a root mean square error of 2.58, and a coefficient of determi-
nation of 0.968. The suggested prediction model is optimised not only for data reduction but also for universal 
prediction and compatibility with other existing platforms. Moreover, it aids drilling engineers in implementing 
suitable mitigation strategies and designing optimal values for key operational surface parameters, both prior to 
and during drilling operations.   

1. Introduction 

Drilling a well is a complex process fraught with numerous chal-
lenges, and among them is the issue of losing control over the flow of 
drilling fluid into the formation. The occurrence of lost circulation im-
pacts around 20–25% of all drilled wells worldwide and even reaches up 
to 40% in North America [1,2]. The mitigation and prevention of lost 
circulation incur substantial costs, with estimates suggesting that the 
industry expends over 2 billion USD annually to tackle this concern [3]. 
Lost circulation is defined as the uncontrolled migration of wellbore 
drilling fluids into the formation, resulting in either partial or complete 
loss of drilling fluid [4]. A significant contributor to challenges faced 
during drilling operations is wellbore instability caused by lost circula-
tion [5]. Dealing with this issue and reinstating fluid circulation 

demands considerable effort and time, thereby escalating 
non-productive time (NPT) and overall drilling costs [2]. Research by 
Ref. [6] uncovered that lost circulation accounted for 12% of NPT in the 
Gulf of Mexico region over a decade, with wellbore instabilities and 
kicks contributing to 18% of NPT. Furthermore, the intrusion of drilling 
fluid into the reservoir formation can inflict damage and curtail pro-
ductivity [7]. In such scenarios, drilling costs can surge from USD 70 to 
USD 100 per foot, underscoring the imperative nature of effectively 
addressing lost circulation [6]. Fluid loss during drilling can be cat-
egorised by its severity, encompassing seepage loss, partial loss, and 
severe or total loss (Table 1), as well as the base fluid utilised in the 
drilling process, as outlined by Ref. [8]. These losses are most prone to 
occur in carbonate formations such as dolomite or limestone with 
characteristics like caverns, vugs, and fractures, as well as in formations 
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with induced fractures and high permeability. Particular concern arises 
in zones marked by a high incidence of severe, interconnected vugs, 
cavernous fractures, or total losses [9]. 

Numerous methods have been introduced, but the absence of an 
industry-wide solution is attributed to the intricate nature of drilling and 
the vast array of fluid losses that vary based on the formation being 
drilled. Despite significant emphasis on the development of loss circu-
lation materials (LCM) to counter fluid losses, the efficacy of these 
materials is not always assured due to the uncertainties and unknown 
factors in subsurface conditions. The act of predicting and detecting 
fluid losses proves more efficacious than attempting to rectify the issue 
after its occurrence [10]. The prevalent practice within the industry to 
manage instances of lost circulation involves employing conventional 
methods, notably the addition of LCM (including fibrous, granular, and 
flaky materials) or deploying high-viscosity pills combined with LCM to 
handle seepage and partial losses. For higher-severity situations like 
severe or complete losses, alternative remedies are formulated and 
implemented. These can encompass the use of cement [11,12] and 
nanocomposite gels [13], primarily designed to seal existing fractures 
and thwart the occurrence of new fractures [14]. The urgency to mini-
mise risks to rig personnel, the environment, and the financial burdens 
stemming from fluid loss is paramount. 

1.1. Lost circulation prediction using artificial intelligence and machine 
learning 

Artificial Intelligence (AI) and Machine Learning (ML) applications 
within drilling operations are now extensively employed in the oil and 
gas sector due to their adaptability in classification, selection, predic-
tion, and optimisation tasks. These technologies have been harnessed to 
forecast lost circulation across various fields, modeling complex re-
lationships and yielding time and cost savings [15]. Notably, the key 
distinctions between existing models pertain to the model type utilised, 
the chosen input parameters, and the precision of lost circulation pre-
diction. The datasets used in prior studies can be categorised into three 
groups: those tied to drilling operations, formation characteristics, and 
drilling fluid properties. Instances of drilling operation data encompass 
variables like depth, drilling time, hole size, weight on the bit, pump 
rate, and circulation pressure. Formation properties include lithology, 
pore pressure, and fracture pressure, while drilling fluid is primarily 
represented by features such as viscosity, shear stress at shear rates of 
600 and 300 rpm, gel strength, and solids content. 

Although various studies have leveraged AI and ML to anticipate lost 
circulation, further research supported by technology is deemed essen-
tial to enhance these predictions, according to Ref. [1]. They proposed 
employing the Multi-Gene Genetic Programming (MGGP) approach, 
which stands as a data-driven methodology capable of eliminating errors 
and capturing non-linear interconnections between variables. While this 
technique has been applied across diverse disciplines and applications 
[16], it remains untapped in the domain of lost circulation prediction. 
MGGP holds the capacity to discern variables that exert significant in-
fluence on the dependent variable, along with their manner of impact. It 
proves to be a versatile tool for predictions and forecasts. However, 
before utilising these parameters for predictions, it is imperative to 
evaluate the strengths and directions of their effects on lost circulation 
[17–19]. The anticipation of lost circulation incidents is progressively 

gaining importance within drilling management. This capability em-
powers engineers to curtail fluid loss and implement fitting measures, 
thereby yielding improved economics and diminished Non-Productive 
Time (NPT) [20]. 

1.2. Study objectives 

The aim of this study is to develop a state-of-the-art genetic pro-
gramming model that exhibits high precision in forecasting early fluid 
loss occurrences. This model relies on a limited number of readily 
available input parameters from each well. Additionally, we have 
implemented several analysis and feature selection techniques to avert 
data overfitting, decrease computation time, and enhance prediction 
accuracy. The model’s utility lies in its potential to avert incidents 
jeopardising well integrity, which can result in loss of life, environ-
mental harm, and escalated operational expenses. In this context, we 
focus on the Marun oil field as a case study, renowned for its severe loss 
of circulation due to fractures. 

The structure of this paper encompasses five sections, outlined as 
follows: Section 1 introduces the concept of loss of circulation and 
outlines the prerequisites of a prediction model aimed at curbing its 
adverse effects. Section 2 provides an overview of the methodology 
employed. Moving forward, Section 3 delves into a comprehensive 
explanation of data description and preparation. Subsequently, Section 
4 will lay out the model analysis and ensuing discussions. Lastly, in 
Section 5, the study concludes with some recommended insights. 

2. Methodology overview 

The study aims to employ Multigene Genetic Programming (MGGP) 
as the chosen machine learning algorithm for predictive purposes. 
MGGP has frequently demonstrated superior performance compared to 
other machine learning techniques like ANN, SVM, and several others in 
terms of predictability and model applicability [21]. This selection is 
grounded in a comprehensive literature review of past studies, encom-
passing reports, conference proceedings, and journal articles. These 
sources underscore the potential of MGGP, as seen in recent works like 
[22]; in providing mathematical models for intricate and non-linear 
parameters linked to loss circulation scenarios. The MGGP algorithm, 
devised by Ref. [21]; leverages a gene population to construct regression 
analysis models. Transformation-learn offers a range of machine 
learning algorithms, including Genetic Programming (GP), which serves 
as a foundation for implementing MGGP. As described by Ref. [23]; the 
MGGP algorithm follows the ensuing steps:  

• Initiate by setting initial parameters such as function and terminal 
sets, generation count, population size, and maximum gene depth.  

• Randomly generate the initial gene population. 
• Utilise the least squares method to formulate models by amalgam-

ating a set of genes.  
• Assess model performance through the fitness function.  
• Employ genetic operations to generate a new gene population.  
• Evaluate model performance by comparing it with a benchmark and 

using a termination criterion. If unmet, return to step 5. If met, 
designate the evolved model with the best performance as the final 
solution [23]. 

Fig. 1 below illustrates a prototypical MGGP model. This model en-
compasses three input variables: x1, x2, and x3. The individual genes d0, 
d1, d2, …., dm collaborate to form the overall model, which predicts the 
output variable (y = d0 + d1(2x1tan(x2+x3) + d2(4x2 + x3

2) + … …+

dm(tree M)) [21,24]. This construction can encompass simple mathe-
matical functions like addition, multiplication, sine, or cosine, as well as 
more intricate mathematical expressions such as logarithmic or poly-
nomial functions. Every prediction of the output variable y within 
multigene symbolic regression-based GP is derived from the weighted 

Table 1 
Classification of fluid loss based on drilling fluid type (Adapted from [8]).  

Fluid loss class Water Based Muds (WBMs) Oil Based Muds (OBMs) 

1. Seepage losses <25 bbl/hr 4 m3/h <10 bbl/hr 1.6 m3/h 
2. Moderate 

losses 
25 - 100 bbl/ 
hr 

4–16 m3/ 
h 

10 - 30 bbl/ 
hr 

1.6–4.8 m3/ 
h 

3. Severe losses >100 bbl/hr >16 m3/h >30 bbl/hr >4.8 m3/h 
4. Total losses no mud returns to the surface  
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output of each gene in the multigene individual, supplemented by a bias 
term. Each tree within the individual constitutes a function of one or 
more of the N input variables x1, … xn, where d0 represents the bias 
(offset) term, d1, …., dm denotes gene weights, and M signifies the 
number of genes (i.e., trees) comprising the current individual. The 
weights (i.e., regression coefficients) for each multigene individual are 
determined automatically through a least squares procedure. A pseu-
dolinear multigene model of predictor output y, with inputs x1 to x6; and 
calculates weights d0, d1, and d2, automatically using least squares. In 
essence, a typical MGGP model is represented as a mathematical 
expression that incorporates multiple genes, merging into a complex 
function with the capability to accurately predict the target variable 
[23]. 

The GP algorithm entails considerable computational intensity, 
which makes it slow and resource intensive. However, the challenge was 
addressed by utilising Scikit-Learn. Scikit-learn stands as a Python li-
brary extensively employed in machine learning, offering a diverse array 
of supervised and unsupervised learning algorithms, along with tools for 
model evaluation, selection, and preprocessing. Its capabilities encom-
pass regression, classification, clustering, model selection, and pre-
processing [25]. Scikit-learn was harnessed to establish models and 
make predictions on pre-processed data, aiming to heighten accuracy 
and diminish computational burden. To utilise Scikit-learn’s algorithmic 
functionality for MGGP, the following steps can be undertaken: Begin by 
defining the problem at hand, be it classification or regression. Proceed 
to prepare the data by segmenting it into input and output variables, 
followed by scaling the input variables. Subsequently, opt for the Ge-
netic Programming algorithm and configure hyperparameters, including 
the mutation rate and population size. Afterward, train the model 
through the fit function and gauge its performance using metrics like 
accuracy or mean squared error with the predict function. If the model’s 

performance falls short of expectations, refinement can be achieved by 
adjusting hyperparameters or the fitness function. Finally, once satisfied 
with the model’s performance, deploy it to make predictions on fresh 
data. Scikit-learn furnishes potent algorithms and tools commonly uti-
lised in machine learning for MGGP. 

A comprehensive statistical depiction of the utilised datasets is 
formulated to capture the data’s diversity. The statistical description 
includes parameters such as minimum, maximum, mean, range, mode, 
variation, kurtosis, skewness, and standard deviation. Data analysis 
aims to infuse significance into raw data, thereby eliciting meaningful 
insights. While this process can be demanding, its importance cannot be 
overstated. The statistical particulars of these parameters are presented 
in Table 2, which offers insight into their minimum and maximum 
values alongside corresponding units of measurement. Moreover, sta-
tistical measures like mean, standard deviation, kurtosis, variance, etc. 
are employed to delineate both input and output variables. This table 
furnishes a comprehensive overview of key data characteristics, 
rendering the previously intricate field report data in a lucid and intel-
ligible format. The variance column gauges the tendency of a variable to 
deviate from its mean value (indicative of the average difference from 
the mean). The standard deviation, being the square root of the variance, 
provides a precise measurement of dispersion. The mean column rep-
resents the data’s average, while the median column depicts its 
midpoint. Skewness values elucidate the distribution’s imbalance; 
negative or positive skewness suggests an uneven distribution, leaning 
either left or right. The kurtosis values in the table denote the data 
distribution’s flatness, indicating whether it possesses heavy or light 
tails. High kurtosis implies heavy tails or outliers, whereas low kurtosis 
points to lighter tails or their absence. With both positive and negative 
kurtosis values exhibited in the table, the data showcases a non-uniform 
distribution. Given machine learning algorithms’ affinity for normally 
distributed input data [14], transformations might be necessary to 
rectify imbalances. In this study, a non-linear algorithm was leveraged 
to address uneven data distribution. 

To heighten system accuracy, the data was normalized. This was 
undertaken to prevent biases stemming from variable magnitudes. Each 
variable was linearly scaled to the same range, which accelerated 
training speeds and slashed overall computational durations for each 
model. We applied the formula by Ref. [26] to normalise data within the 
range of − 1 to 1. This was done by dividing the difference between the 
maximum and minimum values of each variable (xi) by their sum. 

This formula is expressed mathematically in equation (1). 
Formulas for normalisation of input and output data, RMSE, MAE, R2 

Data normalisation [26], expressed in equation (1) 

xn
i = 2 ×

xi − xmin

xmax − xmin
− 1 1 

Fig. 1. MGGP model.  

Table 2 
Statistical summary of the data description used in predicting lost circulation.  

PARAMETER UNIT MINIMUM MAXIMUM MEDIAN MEAN STD. DEV. VARIANCE KURTOSIS SKEWNESS 

Depth ft 17 5662 2927 2818.8 927.42 860,111.66 0.223 -0.506 
Pore pressure psi 7.361 3398.4 1356.34 1643.5 814.10 662,759.24 -0.957 0.375 
Fracture pressure psi 11.56 4472.98 2607.39 2406.5 920.43 847,182.18 -0.583 -0.382 
Mud pressure psi 7.74 4922.54 1588.92 1854.6 892.34 796,262.17 -0.268 0.538 
Hole size inches 4.125 26 12.25 12.3 4.93 24.35 -0.392 0.316 
ROP ft/hr 10.5 88.86 6.91 9.69 18.43 330.32 20.638 2.541 
WOB kg 1000 70,000 20,000 20874 9418.59 88,709,809 1.915 1.045 
Pump flow rate m3/hr 80 1000 530 548.41 277.44 76,974.91 -1.367 0.197 
Pump pressure psi 50 2950 2225 1969.6 838.63 703,306.51 -0.925 -0.666 
Viscosity (MFVIS) cp 27 100 44 47 12.12 146.89 -0.120 0.656 
Solid % (RETSOLID) % 0 61 18 22.85 16.82 282.94 -1.349 0.379 
FAN600 (θ600) lb/(100 ft2 3 293 49 78.46 62.43 3897.07 -0.206 0.969 
FAN300 (θ300) lb/(100 ft2 2 163 30 46.17 33.69 1134.94 -0.238 0.940 
Gel Strength lb/(100 ft2 1 49 5 5.61 3.59 12.88 22.781 3.133 
RPM rpm 20 394 155 138.05 46.66 2177.67 -0.660 -0.420 
MUDLOSSES bbl/hr 0 999 25 97.74 160.99 25,919.34 7.779 2.615 

*999 - corresponds to total loss (out of range of device measurement). 
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where xn
i is the variable to be normalized. 

xi is the actual value of a particular variable. 
xmin is the minimum value for each variable. 
xmax is the maximum value for each variable. 
Mean square Error (MSE) expressed in equation (2) 

MAE= 1

/

n
∑n

i=1
|yᵢ − ŷᵢ| 2  

where: n is the total number of samples in the dataset. 
yᵢ is the i-th true value in the dataset. 
ŷᵢ is the i-th predicted value in the dataset. 
Σ is the summation operator. 
The lower the value of the MSE, the better the model’s prediction 

[24]. 
Root mean square error (RMSE) expressed in equation (3) 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷᵢ)2

√

3 

Coefficient of determination (R2) expressed in equation (4) 

R2 = 1 −

∑n
i=1(f (xi) − yi)

2

∑n

i=1
f (xi)

2
−

∑n

i=1
(yi)

2

n

4  

where: n = number of observations in the dataset. 
f(xᵢ) = predicted value for the ith observation in the dataset 
ŷᵢ = actual value for the ith observation in the dataset. 
Σ = summation denotes the sum from i = 1. 
The drilling data employed in this study was sourced from Ref. [20]. 

A substantial dataset was amassed from 61 drilled wells, extracted from 
daily drilling reports, with a focus on the most impactful parameters 
governing the severity of lost circulation. Geological characteristics, 
operational drilling parameters, and drilling fluid properties were all 
considered. Following data collection, a preprocessing stage was un-
dertaken, involving the normalisation and scaling of variables to a 
consistent range. The aim was to discern any correlations between 
distinct input features within the dataset. Subsequently, the data was 
partitioned into training, testing, and evaluation sets. 

A predictive model was constructed, adhering to an 85:15 training- 
to-test data ratio. An unseen dataset was then employed to assess the 
performance of the developed models, employing an array of 

performance metrics. Fig. 2 furnishes a visual representation of the 
methodology flowchart adopted for this study. 

3. Data description and preparation 

3.1. Marun field 

The primary objective of this study is to enhance the prediction of 
fluid loss during drilling operations through the utilisation of data 
sourced from the Marun oilfield. Situated in the western south of Iran, 
the Marun oil field is of significant importance, ranking as the second 
largest within Iran and among the six largest onshore oilfields globally. 
It was initially discovered in 1963 and spans approximately 67 km in 
length and 7 km in width [27]. The Marun anticline aligns parallel to the 
Ahvaz and Aghajari structures, contributing to its complex geological 
characteristics. To manage its size, the oilfield has been segmented into 
eight sections, as illustrated in Fig. 3. 

Within this field, there are two oil reservoirs (Asmari and Bangestan) 
and a gas reservoir (Khami). The Asmari reservoir incorporates a 
mixture of carbonate, shale, and sandstone lithology, while the Bange-
stan and Khami reservoirs primarily consist of carbonate and shale li-
thology. The Asmari formation, dating back to the Oligocene-early 
Miocene epoch, serves as the primary source of hydrocarbons within the 
Marun oilfield [29]. Due to tectonic activity, high-fracture zones are 
prevalent in this field [30], leading to considerable costs associated with 
mud loss control. It is within these zones that a substantial volume of 
data has been collected to facilitate the prediction of lost circulation. 
The Asmari formation, underlying the Gachsaran formation, is stratified 
into several sublayers (G1 to G7, cap rock), followed by the Mishan 
formation, as illustrated in Fig. 4. 

A time breakdown analysis of over 200 development wells drilled 
within the Marun oil field is depicted in Fig. 5 [31]. This visual repre-
sentation illustrates that approximately 10% of the rig’s time was allo-
cated to hole conditioning following instances of wellbore instability 
and lost circulation issues. Furthermore, about 3% of the rig’s time was 
dedicated to fishing operations, a situation commonly arising from a 
stuck pipe. Another significant contributor to the drilling rig’s schedule, 
accounting for 4% of drilling time, was equipment failure and the sub-
sequent need for repairs. As a result, even a 1% reduction in nonpro-
ductive time carries substantial implications, particularly when millions 
of dollars are invested in well drilling operations. Consequently, the 
proposed MGPP model emerges as a potent tool capable of enhancing 
well integrity and curtailing nonproductive time associated with fluid 
loss and its related challenges. 

Fig. 2. Methodology flowchart.  
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3.2. Data gathering 

The proposed algorithm will be utilised for a classification task 
where the output data falls into categories. In this context, the model’s 
objective is to learn and predict target classes based on the provided 

input data. Prior to data utilisation, the data must undergo preprocess-
ing, a necessary step to prepare it for analysis. The pertinent and precise 
data for predicting fluid loss in the Marun field is drawn from several 
sources, including daily drilling reports (DDRs), end-of-well reports 
(EWRs), daily mud reports (DMRs), and mud logs. This amalgamated 
dataset, consisting of variables crucial for fluid loss prediction, is pre-
sented in Table 3. It offers a statistical summary of select essential fea-
tures. The dataset comprises 20 variables, encompassing 19 inputs (11 
related to drilling operations, 5 tied to drilling fluid, and 3 associated 
with formation parameters) as well as 1 output. The breakdown of these 
variables is as follows:  

• Drilling Operation Parameters: Geographic coordinates (Northings 
and Eastings), drilling depth where fluid loss occurred (ft), pump 
flow rate (m3/hr), mud circulating pressure (psi), hole size (inches), 
pump pressure (psi), drilling meterage (ft), drilling time (hr), weight 
on bit (WOB, 1000lb), and drill string rotation per minute (RPM).  

• Drilling Fluid Properties: Marsh funnel viscosity (MFVIS, cp), solids 
content (Retort solids, %), Fan shear stress at rates of 300 rpm and 
600 rpm (lb/100 ft2), and gel strength (lb/100 ft2).  

• Formation Characteristics: Formation type, pore pressure (PP, psi), 
and fracture pressures (FP, psi). 

Fig. 3. Different sections of Marun oil field (Adapted from [28].  

Fig. 4. Sequence of Gachsaran lithology (Adapted from [28]).  

Fig. 5. Time break down diagram of drilled development wells in Marun 
oil field. 
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The output data pertains to the quantity of fluid loss (bbl/hr). The 
dataset employed for this research was derived from the study con-
ducted by Ref. [32]. The data hails from daily drilling operation reports 
from 61 wells drilled in the Marun field, as depicted in Fig. 6. 

To facilitate the application of machine learning methodologies to 
textual or symbolic data, such as the “type of formation” variable, a 
conversion into a numeric form is imperative. Several techniques exist to 
achieve this, including class numbering, unary encoding, and binary 
encoding [33]. For this study, the approach of class numbering has been 
adopted to translate the “type of formation” into a numeric represen-
tation, as illustrated in Table 4. Maintaining data quality sourced from 
the field remains a significant challenge, largely due to the inherent 
uncertainty in data measurements collected during drilling operations, 
often arising from human error or equipment malfunctions [33]. 
Consequently, data from these sources underwent thorough analysis and 
validation to identify and eliminate incorrect entries, commonly 
referred to as “outliers”. Such outliers can exert a considerable impact on 
the efficacy of machine learning, both during the training and prediction 
stages. To counter this concern, a comprehensive review of the data was 
undertaken, leading to the exclusion of data points with unusual values, 
including well trajectory, leak-off Test (LOT), and wellbore temperature. 
Following the data cleansing process, out of the initial 19,578 data 
points, a total of 16,970 data points from the 61 wells were identified as 
possessing valid data and were thus utilised for the development of the 
model. Conversely, 2608 data points were discarded. 

Normalisation of both input and output data constitutes a pivotal 
stride in augmenting the precision of models [26]. introduced a formula 
for normalising data between − 1 and 1, accomplished by dividing the 
disparity between the maximum and minimum values of each variable 
(xi) by their cumulative sum. This formula is mathematically repre-
sented as equation (1). Within the Python programming environment, 
the MGGP algorithm was designated from the Scikit-Learn library, and a 
spectrum of hyperparameters was established as detailed in Table 5. 
Various combinations of values were experimented with to identify the 
optimal configuration for constructing the model. Subsequent to data 
normalisation for heightened accuracy, within the pool of 16,970 data 

points, 85% (14,426 data points) were randomly selected to establish 
the model and functioned as the training dataset. This subset facilitated 
the training of the algorithm. Concurrently, 15% (2546 data points) 
were earmarked for testing the model, enabling an assessment of its 
performance. Additionally, a novel dataset of 1794 data points was 
introduced to validate the MGGP model, as illustrated in Fig. 7. A 
comprehensive breakdown of the data distribution and outcomes is 
presented in Table 6. 

3.3. Data analysis and visualisation 

Data analysis and visualisation play a pivotal role in comprehending 
the interplay between input features, such as pump pressure, RPM, and 
WOB and the resulting output, namely mud loss. Fig. 8 illustrates the 
pressure distribution (formation pore pressure and mud pressure) in 
relation to depth for the various formations existing within the field. A 
shared pattern among these formations is the elevation of pressure with 
increasing depth. However, at specific depths, certain abnormal pres-
sure values have been observed, manifesting as deviations from the 
typical trend line associated with each formation. These atypical pres-
sure values can be attributed to a range of factors, including tectonic 

Table 3 
Statistical summary of the dataset for the proposed model validation.   

Hole size (in) ROP (ft/hr) WOB (1000lb) Pump flow rate (gpm) Pump pressure (psi) Gel 10 min/Gel 10 s (100lb/ft2) RPM MUD LOSS (bbl/hr) 

count 1794 1794 1794 1794 1794 1794 1794 1794 
mean 12.312 3.126 21.551 567.870 2084.030 5.405 144.011 145.303 
std 4.747 2.013 9.461 276.685 791.677 3.136 44.999 177.833 
min 4.125 0.125 1 80 50 1 20 1 
25% 8.375 1.714 15 300 1425 3 105 24 
50% 12.250 2.771 20 543 2375 5 170 80 
75% 17.5 4.031 28 860 2775 7 180 180 
max 26.0 26.667 58 1000 2950 49 200 999  

Fig. 6. The distribution of the 61 Wells in Marun field.  

Table 4 
Codes generated for the lithology in the Marun’s field 
subsurface.  

Formation type Code 

Aghajary 1 
Mishan 2 
Gachsaran 7 3 
Gachsaran 6 4 
Gachsaran 5 5 
Gachsaran 4 6 
Gachsaran 3 7 
Gachsaran 2 8 
Gachsaran 1 (Cap rock) 9 
Asmari 10 
Pabdeh 11 
Gurpi 12 
Ilam 13 
Sarvak 14 
Fars 15  

Table 5 
Hyperparameter settings for the MGGP algorithm.  

Parameter Range Settings 

Function set -, +, x,/, √, In, sin, square, cos, exp, tanh 
Population size 100–150 150 
Generation count 50–100 100 
Parent count 50–100 100 
Mutation rate/percent 0.01 0 
Cross over rate/percent 0.05 0.05 
Reproduction rate/percent 0.03 0.03 
Selection mode Random Random 
Gene count 120–170 170 
Gene length 5 5  
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activity in the field, fluid migration, or geological anomalies. 
The drilling progress (rate of penetration. ROP), represented by the 

depth gained during drilling, along with the corresponding WOB 
required to penetrate each formation, has been graphically depicted in 
Fig. 9 for this study. Through a comprehensive analysis of this plot, 
drilling engineers are empowered to optimise drilling performance. This 
optimisation can be achieved by refining bit design, bit hydraulics, 
WOB, and other pertinent drilling parameters such as pump flow rate 
and pump circulation pressure. The adjustments can be tailored to the 
distinct attributes of each formation. This strategic approach holds the 
potential to enhance drilling meterage and elevate the average rate of 
penetration across the drilling process. Consequently, it becomes 
feasible to accomplish drilling the entire hole section within a single bit 
run, thereby yielding substantial reductions in well drilling duration. 
Furthermore, it mitigates the need for frequent tripping operations, 
averting the advent of surge pressures that might precipitate induced 
fractures and mud losses. 

Fig. 10 illustrates the historical progression of circulation and pump 
pressure derived from the daily drilling reports (DDRs), delineated 
separately for each formation. Within the plot, the pump flow rate sig-
nifies the volume of drilling fluid introduced into the wellbore, while the 
pump pressure reflects the pressure exerted by the drilling fluid within 
the wellbore. Notably, elevated solids content, escalated pump flow 
rates (associated with heightened annular pressure loss), or excessively 
swift tripping operations (resulting in surge pressures) can all contribute 
to elevated wellbore pressures exerted against the formation. These 
factors possess the capacity to elevate the mud’s equivalent circulating 
density and instigate fractures, culminating in the occurrence of lost 
circulation events. This depiction holds valuable insights for drilling 
engineers, who can leverage this information to diligently monitor the 
performance of the drilling fluid system. Subsequently, they can fine- 
tune a spectrum of parameters, encompassing both drilling fluid prop-
erties and drilling parameters, to orchestrate efficient drilling opera-
tions. The meticulous optimisation strives to prevent the emergence of 
induced fractured formations, which in turn forestalls fluid loss 
occurrences. 

3.4. Input parameters selection from available data 

Building a comprehensive database for AI models is a time- 
consuming and demanding process. One of the primary challenges is 
determining the impact of various input parameters, as drilling opera-
tions often yield a plethora of them. However, employing all these pa-
rameters as input data can result in an unwieldy network that diminishes 
learning efficiency and speed. It is imperative to identify the optimal set 
of relevant and valid variables to address the issue of lost circulation. 
The success of the predictive model hinges on the synergy between al-
gorithm performance and computational prowess [15]. Scikit-learn, a 
Python library for machine learning, presents an array of supervised and 
unsupervised learning algorithms, along with tools for model selection, 
evaluation, and preprocessing. Designed to be user-friendly and effi-
cient, Scikit-learn offers a unified interface that simplifies the transition 
between diverse algorithms and models, thereby enhancing accuracy 
while curbing computational time [25]. Though Scikit-learn accom-
modates various data formats, it particularly excels at handling numpy 
arrays or Pandas’ data frames. In predicting solutions for lost circula-
tion, Pandas—a Python data manipulation and analysis library—will be 
enlisted. Pandas encompasses a rich suite of functions and methods for 
data cleaning, manipulation, and visualisation, rendering it an encom-
passing tool for every phase of the data analysis workflow. It caters to an 
array of data manipulation operations, such as filtering, selecting, 

Fig. 7. Train – Test performance on sample data.  

Table 6 
Percentage of data splitting of 16970 data points and results.  

Training (%) 16970 Testing (%) 16970 R2 

50 8485 50 8485 0.901 
60 10182 40 6788 0.908 
75 12728 25 4242 0.943 
85 14426 15 2546 0.968  

Fig. 8. Pressure distribution with depth drilled.  
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grouping, and aggregating. Additionally, Pandas offers capabilities for 
managing missing data, categorical data, as well as encoding and 
decoding data. Its prowess also extends to computing diverse statistical 
measures and establishing correlations among input features. Pandas 
will play a pivotal role in the preprocessing and preparation of data 
before feeding it into Scikit-Learn models. Scikit-learn will be leveraged 
for constructing models and generating predictions on the pre-processed 
data [25]. From the 19 input variables found in the field data, a selection 
process led to the exclusion of 12 variables. Using the correlation matrix 
approach, variables not directly related were filtered out, ultimately 
retaining the seven most pertinent variables. These variables—hole size, 
RPM, WOB, pump flow rate, pump pressure, mud gel strength, and drill 
string RPM—are considered the input parameters for predicting lost 
circulation. The correlation matrix technique, illustrated in Figs. 11 and 
12 for feature selection, provides insights into the relationship between 
different variables within a dataset. It aids in determining the optimal 
number of relevant variables for minimising the objective function. The 
correlation matrix provides valuable information about the impact of 
specific input variables on the severity of fluid loss. It demonstrates how 
one variable’s behavior changes with fluctuations in another, quantified 

by correlation coefficients spanning − 1 to +1. Values approaching ab-
solute 1 indicate a potent relationship, with positive values implying 
direct proportionality and negative values signifying inverse propor-
tionality. Fig. 11 presents the correlation of all parameters in the drilling 
report and field data, while Fig. 12 narrows down a subset of selected 
parameters for modeling. The process of variable subset selection is 
pivotal, as too few variables can lead to significant model biases, while 
an excessive number can compromise predictive capabilities and 
heighten variance in predictions. The correlation matrix critically in-
forms multivariate analysis by exposing relationships and potential 
multicollinearity among variables [34]. This facilitates the examination 
of interdependencies among various data parameters, underscoring the 
correlation matrix’s invaluable role in multivariate investigations. 

4. Results and discussions 

4.1. Features ranking 

“Feature selection” is the process of choosing a specific subset of 
available features (variables) that best contributes to satisfactory 

Fig. 9. Depth gained and their corresponding drilling time with the weight on bit.  

Fig. 10. Pump flow rate and pressure distribution with different formation depths.  
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prediction performance with respect to an objective function [35]. In 
various machine learning applications, the number of selected features 
has ranged from less than ten to over forty variables in certain cases. 
Eliminating insignificant and/or duplicated variables not only enhances 
prediction accuracy but also streamlines computational efficiency. The 
presence of these variables often hampers the efficiency of many 
machine-learning applications. The goals of feature selection encompass 
preventing data overfitting, streamlining analyses, decreasing compu-
tation time, bolstering accuracy and resolution, and crafting more 
streamlined models with heightened efficiency. The hierarchy of sig-
nificance for variables is determined by the chosen predictive model. As 
such, the selection of a reliable model for feature selection is of para-
mount importance. The methodology employed here for feature selec-
tion leverages data analysis, visualisation, field experience, and the 
correlation matrix approach, as depicted in Figs. 11 and 12. This 
approach underscores the relationship between different variables 
within a dataset, shedding light on the optimal number of pertinent 

variables needed to minimise the objective function. It delivers 
insightful information on how specific input variables impact the 
severity of fluid loss. Among these variables, seven exhibit the highest 
correlation coefficients, ranging from 0.32 to 0.67, with fluid loss 
severity. Based on the compiled dataset, these seven input variables 
exert a significant influence on the severity of lost circulation in the 
Marun field. Intriguingly, introducing more than seven features does not 
impact prediction accuracy but instead impairs model performance. 
Through feature selection, variables like Northing, Easting, depth, for-
mation type, formation pore pressure, formation fracture pressure, 
marsh funnel viscosity, retort solids content, and Fan300 and Fan600 
from the Marun field dataset were deemed irrelevant to lost circulation. 
Their inclusion would likely hinder the prediction accuracy achieved by 
the considered technique. In another context, these variables act as 
dependent variables, offering no supplemental insight into fluid loss. 
Consequently, they contribute noise to the predictor, particularly when 
juxtaposed with numerous other input variables. It’s worth noting that 

Fig. 11. Correlation matrix for the general field data (parameters).  

Fig. 12. Correlation matrix for the selected parameters for modeling.  
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these variables were previously considered alongside the selected vari-
ables, as discussed in the data visualisation section. As feature ranking 
results are specific to the Marun field, distinct feature selections (i.e., 
priority input variable combinations) could be identified for other oil 
fields and geological scenarios. Previous research by Ref. [20] examined 
how feature selection for Marun field data relates to the combination of 
inputs rather than individual input parameters in minimising the 
objective function. Their sensitivity analysis yielded contrasting results 
to those derived from the proposed feature ranking method. For 
instance, pore pressure, fracture pressure, and certain mud-related 
properties were identified as the most influential parameters for pre-
dicting lost circulation. The authors’ prior work in the Marun field uti-
lised various techniques to identify the most significant selected 
features, working with a dataset containing around 19 parameters for 
predicting lost circulation events, as detailed in Table 7. The outcomes 
indicated that prediction accuracy increased as the number of selected 
features grew, although the effect tapered off once the number exceeded 
ten [36]. Accordingly, this study selected the following seven features, 
in order, as input parameters: pump flow rate, hole size, ROP, gel 
strength, WOB, RPM, and pump pressure (Fig. 13). 

WOB, pump flow rate, pump circulation pressure, and drill string 
rotation per minute (RPM) were included due to their status as driller- 
controlled variables at the rig site. Along with gel strength, these vari-
ables exert a significant influence on other parameters (e.g., ROP) that 
impact lost circulation in naturally fractured and induced fractured 
formations. Mechanical surface drilling parameters play a crucial role in 
drilling and are readily available for each well. These parameters serve 
as sensitive indicators for detecting lost circulation and display notice-
able changes in their values following such occurrences. Increased 
durability leads to enhanced meterage drilled and an improved average 
ROP over the course of the bit run. An excessive pump flow rate 
significantly affects annular hydraulics by elevating the equivalent 
circulating density and subsequently increasing fluid loss rates. If fluid 
losses transpire, pump pressure (including drill string, annular, and drill 
bit pressure drops) and pump flow rate will promptly decrease. Elevated 
annular pressure drops contribute to a higher equivalent circulating 
density, which in turn can fracture formations. Moreover, WOB and 
RPM are pivotal features, potentially linked to detecting smaller frac-
tures or surrounding larger fractures or caves, resulting in abrupt WOB 
changes. Similarly, ROP might display sudden increases when encoun-
tering small fractures. 

4.2. Prediction of onset lost circulation using the multigene genetic 
programming 

For precise prediction of the onset of loss of circulation, this study 
harnessed the identified significant parameters to construct a multigene 
genetic model. The resultant output of this network model is the pre-
diction of the onset of loss of circulation. The algorithm was developed 
using the Python programming language, employing modified versions 
of existing packages. This research emphasises the practical application 
of the multigene genetic algorithm, omitting the presentation of the 
mathematical formulas underpinning its operation [39]. To fine-tune its 
performance, the control variables were adjusted, and the optimal 
configuration was ascertained through a sequence of trial-and-error 
assessments. Fig. 14 displays the test results of the model’s pre-
dictions, with the horizontal and vertical axes representing actual and 
predicted values, respectively. 

y = 0.9279x + 11.764. 
“y" = dependent variable or the variable that is being predicted. 
“x" = independent variable or the variable that is used to make the 

prediction. 
Units of predicted and actual values = bbl/hr. 
The developed multigene genetic model underwent a comparison 

with actual measured data to determine its accuracy in representing the 
targeted physical phenomenon. The comparison between the model’s 

Table 7 
Reviewed Marun field publications using machine learning methods for pre-
diction of fluid loss.  

Authors Prediction method No. of 
input 
variables 

No. of 
data 
points 

Input parameters 

[37] ANN. 18 589 Depth, well trajectory, 
drilling time, length of 
the open hole section, 
formation top, bit size, 
Average pump flow 
rate, average pump 
discharge pressure, 
Mud weight, Solid 
percentage, FAN 300, 
FAN 600, mud filtrate, 
mud volume lost, 
porosity, rock type, 
permeability, 
minimum horizontal 
stress profile. 

[31] ANN 15 32 wells Depth from ground, 
depth from sea level, 
daily drilling time, 
formation top, well 
northing, easting, hole 
size, average pump 
flow rate, average 
pump pressure, mud 
weight, solid 
percentage, FAN 300, 
FAN 600, mud filtrate, 
mud volume lost. 

[32] DT; ANFIS; ANN; 
GA-MLP. 

19 1900 Drilling length, North, 
east, hole size, WOB, 
flow rate, pump 
pressure, viscosity, 
FAN 300, FAN 600, 
gel10 m, drilling time, 
depth, solid 
percentage, bit 
rotational speed RPM, 
drilling meterage, 
pore pressure, mud 
weight, fracture 
pressure. 

[38] Data Mining; 
ANFIS. 

18 42,948 Drilling meterage, 
drilling time, mud 
velocity, hole size, 
WOB, flow rate, pump 
pressure, viscosity, 
FAN 300, FAN 600, 
GS10 min, solids 
content, RPM, pore 
pressure, mud 
pressure, fracture 
pressure, formation 
type, loss severity. 

[20] MLP, MLP-GA, 
MLP-PSO, MLP- 
COA, LSSVM, 
LSSVM-GA, LSSVM- 
PSO, LSSVM-COA 

10 2820 North, east, formation 
type, hole size, pore 
pressure, fracture 
pressure, pump 
pressure, FAN600/ 
FAN300, gel10 m/ 
gel10s, RPM. 

[36] LSSVM; CNN; COA- 
MELM; PSO-MELM; 
GA-MELM; COA- 
LSSVM; PSO- 
LSSVM; GA-LSSVM. 

9 2783 Pump pressure, mud 
weight, fracture 
pressure, pore 
pressure, depth, gel10 
m/gel10s, FAN600/ 
FAN300, flow rate, 
and formation type.  
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output and the field data yielded an evaluation of the model’s perfor-
mance and robustness. The regression coefficient (R2) of the model was 
found to be highly acceptable (0.951), signifying that the model 
adequately predicts the onset of lost circulation. To further evaluate the 
model’s accuracy, statistical performance indices such as the root mean 
square error (RMSE) and mean absolute error (MAE) were employed. 
We utilised the combination of metrics recommended by Ref. [40]. The 
model demonstrated low values for MAE (7.57) and RMSE (8.46) due to 
data quality issue, indicating its satisfactory performance in predicting 
the onset of lost circulation. 

4.3. Out-of-sample validation of multigene genetic network prediction 

Ensuring the reliability of the generated model is of utmost impor-
tance, and validation plays a critical role in achieving this by quantifying 
the model’s performance on unseen data. Model validation holds sig-
nificant significance in the realm of machine learning, as it assesses 
whether the model can generalise its learning to new, previously unseen 
data [32]. Given that different models can yield varying degrees of ac-
curacy, model validation is typically conducted using a distinct dataset 
that the model has not been exposed to during training. The statistical 
metrics employed in validating the Multigene Genetic model showcased 
minimal values for MAE (1.33) and RMSE (2.58) due to data quality 
issue, alongside an excellent R2 value of 0.968. These findings demon-
strate a strong alignment between the model’s predictions and actual 
data, thus establishing the reliability and utility of the proposed model 
for predicting drilling fluid loss (Fig. 15). This model has the potential to 
significantly assist drilling engineers in accurately predicting loss cir-
culation onset at various depths, both prior to and during drilling 
operations. 

4.4. Model optimisation 

Preventing fluid loss during drilling operations through the antici-
pation of its onset and prudent planning represents an effective 
approach to pre-emptively addressing the issue. Table 8 provides a 
comparative analysis of the outcomes generated by the proposed Mul-
tigene Genetic model against existing literature on models predicting the 
onset of fluid loss. It is noteworthy that the authors of this study 
employed the same dataset from the Marun oilfield as the basis for their 
predictions, albeit using distinct techniques and models. It’s important 
to acknowledge that, while machine learning models hinge on the data 
at their disposal, there might be some variance in the data used for 
model training despite a substantial overlap. Thus, the primary focus of 
this comparison is on elucidating how input features are selected and 
employed to elucidate the target variable, rather than undermining the 
findings of fellow researchers. The Multigene Genetic model presented 
in this study displayed a notably higher coefficient of determination 
(R2), which signifies the extent of agreement between the predicted 
values and the field dataset. Moreover, it was evident that this model 
provides the advantage of interpretability while maintaining a high 
degree of accuracy. The fundamental principle underpinning the eval-
uation of accuracy revolves around employing specific metrics to 
juxtapose the original target with the predicted outcomes. Notably, the 
proposed model hinges on a selection of pertinent input parameters, 
namely the real-time surface drilling parameters that are readily 
accessible for every well. 

5. Conclusions 

This study effectively demonstrated the utility of employing AI al-
gorithms, particularly the Multigene Genetic Model, to predict and 
identify instances of lost circulation in drilling operations. The study’s 
outcomes underscored the reliability and efficiency of the developed 
model as a dependable solution for forecasting fluid loss. This capability 
holds the promise of substantial cost reduction, prevention of mud loss 
incidents, and time savings in drilling operations. The research estab-
lishes a replicable and comprehensible workflow for predicting fluid 
loss, which could find application in diverse fields and drilling opera-
tions. Through optimisation efforts, the Multigene Genetic Model has 
been fine-tuned to achieve data reduction, universal prediction capa-
bility, and compatibility with pre-existing platforms. Consequently, it 
emerges as a versatile and scalable solution for forecasting lost circu-
lation occurrences. The study further highlights the significance of seven 
surface drilling parameters that are readily accessible in each well. 
These parameters exert a significant influence on the prediction accu-
racy of the model, thereby offering opportunities to enhance drilling 
practices and diminish the likelihood of lost circulation incidents. The 
achieved results demonstrated a mean absolute error of 1.33, a root 

Fig. 13. Feature importance of the input variables.  

Fig. 14. The Test Result prediction of the Multigene Genetic Programming.  

Fig. 15. Validation of the proposed Multigene Genetic Model for onset loss 
circulation prediction. 
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mean square error of 2.58, and a coefficient of determination of 0.968. 
Such outcomes positioned the developed model favourably when 
compared with other existing loss circulation prediction models, further 
validating its efficacy. 

In conclusion, this study provides a solid groundwork for future in-
vestigations pertaining to the application of MGGP for optimising dril-
ling operations. It underscores the potential of such technologies to 
ameliorate drilling challenges, including fluid loss, by curtailing costs, 
improving safety, and mitigating the environmental impact of drilling 
activities. 

5.1. Recommendations 

This study offers several recommendations, which can be summar-
ised as follows:  

• The results of feature ranking are specific to the Marun field, and 
different combinations of priority input variables may be more 
appropriate for other oil fields and geological contexts. Therefore, 
when applying similar predictive models to other fields, it’s essential 
to adapt the feature selection process to the unique characteristics of 
the specific site. 

• The study highlights the challenge of data quality in drilling opera-
tions due to uncertainties caused by factors like human error and 
equipment malfunction, especially in harsh environmental condi-
tions like temperature fluctuations and mechanical shocks. To 
address this, establishing a recalibration equipment cycle is crucial to 
ensuring the accuracy and reliability of the collected data. Accurate 
data is essential for meaningful interpretation and decision-making 
by the drilling team.  

• The datasets used in this research were collected from various rigs 
with different acquisition systems operating at different frequencies. 
To enhance future studies, it is recommended to implement a 
standardised digital data acquisition system across different wells. 
This system should be capable of collecting critical surface parame-
ters from drilling operations and mud system characteristics at 
consistent frequencies. This approach would enable more accurate 
solutions and predictions related to the occurrence of onset-loss 
circulation events. 
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List of symbols and Abbreviations 

AI Artificial Intelligence 
ANFIS Adaptive Neuro-Fuzzy Inference System 
ANN Artificial Neural Networks 
AZI Azimuth 
bbl/hr Barrels Per Hour 
CBR Case-Based Reasoning 
CNN Convolutional Neural Network 
COA Cuckoo Optimisation Algorithm 
cP Centipoise 
DDRs Daily Drilling Reports 
DLT Drilling Time 
DMRs Daily Mud Reports 
DT Decision Trees 
EC Evolutionary Computing 
EWRs End-Of-Well Reports 
FR Flow Rate 
ft Feet 
G1 G2 G3 Genes 
GA Genetic Algorithm 
CNN convolutional neural network 
GP Genetic Programming 
HPHT High-Pressure High Temperature 
NFRs Naturally Fractured Reservoirs 
LCM Loss Circulation Materials 
MGGP Multigene Genetic Programming 
mins Minutes 
ML Machine Learning 
MLP Multi-Layer Perceptron 
GA-MLP Genetic Algorithm – Multi-Layer Perceptron 
RMS Root mean square 
NPT Non-Productive Time 
OBMs Oil-Based Muds 
psi Pounds Per Square Inch 
PSO Particle Swarm Optimisation 
PSO-MNN Particle Swarm Optimisation – Modular Neural Network 
R2 Coefficient of Determination/Regression Coefficient 
LOT leak-off Test 
PSD particle size distribution 
RMSE Root Mean Square Error 
ROP Rate of Penetration 
RPM Rotations/Revolution Per Minute 
SQRT Square Root 
SVM Support Vector Machines 
USD United States Dollars 
WBMs Water-Based Muds 
WOB Weight on Bit 
m3/d Cubic Meter Per Day 
m3/hr Cubic Meter Per Hour 
MAE Mean Absolute Error 
MCP Mud Circulating Pressure 
MDN Mixture Density Network 
MELM Multilayer Extreme Learning Machine 

Table 8 
Model prediction performance indices.  

References Model Input 
parameters 

No. of 
data 
points 

RMSE R2 

This Study Multigene Genetic 
Programming 

7 16,970 2.58 0.968 

[32] Genetic Algorithm- 
multi-Layer 
Perception (GA-MLP) 

19 1900 0.137 0.826 

[20] MLP-GA 10 2820 0.930 0.930 
[31] Artificial neural 

network (ANN) 
18 32 wells – 0.82 

[37] Artificial neural 
network (ANN) 

15 589 – 0.76 

[38] Adaptive Neuro-Fuzzy 
Inference System 
(ANFIS) 

17 42,948 0.154 0.937 

Data Mining; ANFIS 
[36] LSSVM; CNN; COA- 

MELM; PSO-MELM; 
GA-MELM; COA- 
LSSVM; PSO-LSSVM; 
GA-LSSVM 

9 2783 1.634 0.95  
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MFVIS Marsh Funnel Viscosity 
MOS Magnesium Oxysulphate 
MVA Majority Voting Algorithm 
LSSVM Least-Squares Support Vector Machines 
MNN Modular Neural Network 
PP Pore pressure 
FR Fracture pressure 
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