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Modelling and controlling heat transfer in rotating electrical machines is very important as it enables the design of assemblies

(e.g., motors) that are eicient and durable under multiple operational scenarios. To address the challenge of deriving accurate

data-driven estimators of key motor temperatures, we propose a multi-objective strategy for creating Linear Regression (LR)

models that integrate optimised synthetic features. The main strength of our approach is that it provides decision makers

with a clear overview of the optimal trade-ofs between data collection costs, the expected modelling errors and the overall

explainability of the generated thermal models. Moreover, as parsimonious models are required for both microcontroller

deployment and domain expert interpretation, our modelling strategy contains a simple but efective step-wise regularisation

technique that can be applied to outline domain-relevant mappings between LR variables and thermal proiling capabilities.

Results indicate that our approach can generate accurate LR-based dynamic thermal models when training on data associated

with a limited set of load points within the safe operating area of the electrical machine under study.

CCS Concepts: · Computing methodologies→ Optimization algorithms; · Theory of computation→ Evolutionary

algorithms;

Additional Key Words and Phrases: data-driven thermal models, electrical machines, linear regression, explainability, problem

formalisation, cost vs accuracy, NSGA-II.

1 INTRODUCTION

As the use of data-driven decision-making systems is becoming commonplace today, users are increasingly
demanding some form of understanding on how these systems make decisions. This can be particularly important
when the goal is to obtain novel scientiic insights from observational or simulated data [Roscher et al. 2020].
The authors of [Roscher et al. 2020] also propose three highly relevant core characteristics that facilitate human
understanding and trust of machine learning (ML) models: transparency, interpretability, and explainability. While
primarily derived from applications that employ fairly complex ML and deep learning techniques to gain scientiic
knowledge in the natural sciences, these three core characteristics ofer a valuable framework for studying
explainable artiicial intelligence (XAI) systems in general as they provide both a welcomed distinction between
often intertwined concepts and a way of understanding interactions between these concepts. In the case of ML,
[Roscher et al. 2020] posits that:
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■ Transparency concerns the diferent ingredients of a model: structure, individual components, learning
algorithm, and how a speciic solution is obtained by the algorithm. This aligns closely with the views in
[Lipton 2018].

■ Interpretability refers to the ability to łmake sensež of a model (and its results) by presenting some of its
properties in a way that is understandable to humans. In contrast to transparency, data is always involved
when ascertaining interpretability.

■ Explainability is fairly subjective, often context-dependent, but could be reasoned about using the prior
deinition from [Montavon et al. 2018]: łAn explanation is a collection of features of the interpretable domain,
that have contributed for a given example to produce a decisionž.

Based on this taxonomy, it is very easy to understand why linear (regression) models are seen as deining the
upper (asymptotic) threshold of explainability for ML: their weight values can directly identify attributes that
are relevant for prediction making as well as their relative importance. For this reason, linear models have been
used to construct understandable proxies of more complex ML approaches like within the (Local Interpretable
Model-Agnostic Explanations) LIME approach [Ribeiro et al. 2016], where linearity is used to characterise the
local neighbourhood of a datum. Given that the good explainability of linear models is often contrasted by their
poor performance across numerous modelling scenarios, the main XAI research focus naturally falls on improving
the explainability of complex high-performance approaches (e.g, deep neural networks).

Motivated by the characteristics of our real-life application domain, in this study we propose a slightly counter-
intuitive approach to developing efective and explainable data-driven models. In essence, we irst use synthetic
features to augment the modelling power of linear regression models in order to increase their performance on a
well-known non-linear task (dynamic thermal modelling). Given that by adding a large set of synthetic features
to the interpretable domain, we are likely to impact the explainability of the resulting thermal models, the second
step of our approach is to apply an iterative model reduction (i.e., regularisation) strategy to reduce the size of
the best performing LR models (and thus mitigate the aforementioned explainability impact). More importantly,
the entire thermal modelling process is governed by a multi-objective optimisation approach that aims to provide
decision makers with an overview of the optimal trade-ofs between data collection costs, expected modelling
errors, and model explainability. The high-level overview of the key components of our approach alongside their
interactions is provided in Figure 1.

In order to maximise trust in the generated data-driven thermal models, we have also sought to maximise the
transparency and explainability of the proposed multi-objective approach itself by (i) working with electrical
engineers to integrate domain knowledge in the data-driven modelling problem formulation right from the
start and (ii) opting for a step-wise formalisation of the inal multi-objective modelling task that aims to build
conidence by incrementally validating key modelling assumptions.

The rest of the paper is structured as follows: Section 2 provides a background to thermal modelling for electrical
machines and describes the modelling scenario and the requirements that motivate the present work. In Section 3
we describe our multi-objective thermal modelling approach, including data preparation and experimental setup.
Section 4 demonstrates the results and provides their interpretation, and inally, Section 5 contains conclusions
and an outlook on future work.

2 BACKGROUND TO THERMAL MODELLING OF ELECTRICAL MACHINES

Our industrial case concerns the heat that is produced by electrical machines during their operation. When an
electrical machine, e.g. a motor, is running, heat is produced as a result of friction when electrical energy is
being converted to mechanical energy. Electrical engineers consider this heat as problematic because, irstly,
it represents losses in eiciency, which may reach up to 25% [Boglietti et al. 2009]; and secondly, it gradually
reduces the lifespan of the electrical machine, and in a worst-case scenario can damage it [Choudhary et al. 2018].
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Fig. 1. High-level overview of our data-driven strategy to construct explainable dynamic thermal models

Our case study considers a 3-phase brushless outer rotor permanent magnet synchronous motor, commonly
used in low-cost fans. The motor has six key component temperatures that are of interest when wishing to
monitor and manage heat (see Figure 2). Domain experts have categorised the components as, high (denoted
H), medium (M) and low (L) priority depending on the importance of monitoring their temperature within the
general thermal context of the assembly. The high priority temperatures are for the winding, Tw , and the static
ring of the inner ball bearing, Tbi . The temperatures of the mounting lange, Tf , and the rotor, Tr are considered
of medium priority, whereas the outer ring of the outer ball bearing, Tbo , and the steel stator yoke, Ts , are of low
priority.
Domain experts have also identiied ive input variables that are highly relevant for thermal modelling.

Depending on the ease and cost of collecting (real-time) sensor data during regular operation, these inputs can
be categorised into three groups as follows, A: data always available; R: data rarely available; and N: data never
available. The inputs are: rotor speed, v , (A); electric current, I , (A); torque, τ , (R); ambient temperature, Tamb (R);
and electric power input, P (N). A summary of the modelling requirements is provided in Figure 3.

ACM Trans. Evol. Learn.
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Fig. 2. Electric motor showing the diferent components (adapted from [Wöckinger et al. 2020])

Fig. 3. Summary of modelling requirements with input and output variables

Traditionally, engineers would turn to the lumped parameter thermal network (LPTN) analytical technique
to model heat in electrical machines, especially when it comes to accurately modelling the transient thermal
processes in the assembly [Boglietti et al. 2009]. However, using LPTN for this kind of motor is known to be
challenging [Wöckinger et al. 2020]. While studies like [Kirchgässner et al. 2019] and [Zăvoianu et al. 2020]
have demonstrated the potential of data-driven thermal modelling, researchers also caution that due to the
fact that most data-driven models are black-boxes in nature, it is not possible for electrical engineers to obtain
particular machine-speciic information and thus gain insights from them [Wöckinger et al. 2020]. Therefore,
explainability is a key requirement for this data-driven modelling scenario. Further compounding the complexity
of the modeling task, data availability restrictions are usually associated with the low-cost applications of these
types of motors.

To summarise, our aim is to construct explainable data-driven thermal models that can be used to accurately
characterise the real-time dynamic thermal behaviour of electrical machines under diferent operational scenarios.
Using a limited set of data regarding only speed (v) and current (I ), the developed thermal models must be able

ACM Trans. Evol. Learn.
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to predict the temperatures of the six above mentioned output motor components. Furthermore, the models
are required to have a simple architecture and be resource eicient in order to facilitate deployment on a
microcontroller. For the models to be efective, they should have an average temperature estimation error of less
than +/-2 °C when the motor is used within its safe operating area (SOA).

3 PROPOSED APPROACH TO EXPLAINABLE THERMAL MODELLING

3.1 Data Preprocessing

To enable the creation of models that are applicable under diferent operational scenarios, domain experts have
provided 20 datasets, each containing time series data of temperature proiles that correspond to common usage
patterns (load points) of the motor under study. Each dataset contains the two inputs/features (v , I ) and six
outputs/targets (Tw , Tbi , Tf , Tr , Tbo , Ts ) measured simultaneously at an interval of 2 seconds. Sample sizes for the
20 datasets (marked DS01 . . .DS20) range from 571 to 16,201. In total, the 20 datasets contain 240,200 samples (i.e.,
≈ 133.5 hours worth of testing data). Details of the setup of the test bench, the sensors and the cameras used to
collect data are described in [Wöckinger et al. 2020] and [Wöckinger et al. 2021]. The data itself can be accessed
at: https://github.com/czavoianu/TELO_2023.

We used the two provided inputs, speed (v) and current (I ), to create two sets of synthetic features as follows:

■ Based on expert knowledge of electrical machines, torque (τ ) is directly proportional to current (I ) [Nash
1997] and the total power losses are directly proportional to speed (v) and I [Chalmers and Spooner 1999].
Thus, from a physical point of view, input variables based on several multiplicative combinations of v and
I are considered suitable for thermal modelling. We thus created 4 expert-suggested additional features: v2,
v3, I 2, and v · I . The inclusion of these features is the main channel of incorporating expert knowledge
in our modelling approach and arguably improves overall explainability by expanding the interpretable
domain of our thermal models in a way that is directly aligned with user knowledge and expectations.

■ We applied the Exponentially Weighted Moving Averages (EMAs) [Holt 2004] to all the 6 features (2 original
+ 4 expert-suggested) based on v and I in an efort to smooth random luctuations in the time series data
and complement data samples with information regarding trends. All EMA features were calculated using
the formula in Equation 1:

EMAα,t (r ) = α × rt + (1 − α ) × EMAα,t−1(r ) (1)

where, α is the weight, t is the current period, and rt is the value of the time series r in the current period. A
key aspect when using EMA is to decide how much weight to give to older observations. We initially used
weights of 0.001, 0.005, and 0.04 to capture long-, medium-, and short-term trends in the data. A further 18
synthetic inputs were thus created using EMAs, and in total, each of the 20 datasets contained 24 features.

It is important to note that the usage of synthetic EMA features is both a necessity for capturing temporal
aspects and a common practice for time series modelling in other ields (e.g., inancial and economic modelling).
However, the particular number and choice of EMA weights was subjective and largely informed by the authors’
modelling experience. As such, this can be seen as negatively impacting the (design) transparency of our thermal
models.

3.2 Preliminary Modelling Insights

To determine the efectiveness of the provided datasets in modelling the target temperatures, we carried out
preliminary modelling of the high priority temperatures (Tw and Tbi ). We combined all the 20 datasets into a
single dataset, shuled it and, using a simple train-test split, randomly partitioned it into a training set containing
90% of the samples and a test set with the remaining 10% samples. Then we trained four learning algorithms,
Linear Regression (LR) [Kutner et al. 2005], Random Forest (RF) [Breiman 2001], K-Nearest Neighbour (KNN)
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[Cover and Hart 1967] and a shallow Artiicial Neural Network (ANN) [Haykin 1999]. We identiied the best
parameters for RF (i.e. number of features and maximum depth) and KNN (leaf size and the number of neighbours)
using GridSearchCV with 10-fold cross validation available in Scikit-learn [Pedregosa et al. 2011]. For ANN, we
used the RandomizedSearchVC with 3-fold cross validation (also available in Scikit-learn) to identify the best
coniguration for hidden layer sizes, activation, alpha and learning rate.
Results from the preliminary modelling are presented in Table 1 and are largely consistent with previous

indings in the sense that non-linear techniques are more accurate in predicting the target temperatures when
compared to LR [Zăvoianu et al. 2020]. However, Linear Regression is able to produce competitive models with a
Mean Squared Error (MSE) and aMean Absolute Error (MAE) on test data well below the +/-2 °C threshold imposed
by domain experts for the considered application scenarios. Furthermore, linear models are strongly preferred by
domain experts because they are explainable and can be directly deployed on low-cost microcontrollers with
ease.

Table 1. Performance comparison on test data for diferent regression modelling techniques. The best result for each
(component temperature, quality indicator) pair is highlighted in bold font.

Qual. indicator
RF KNN ANN LR

Tw Tbi Tw Tbi Tw Tbi Tw Tbi
MSE 0.023 0.016 0.076 0.055 0.102 0.080 1.023 0.876

MAE 0.040 0.034 0.107 0.091 0.202 0.178 0.778 0.724

R2 0.999 0.999 0.999 0.998 0.999 0.997 0.991 0.974

3.3 Modelling Task as Multi-Objective Optimisation Problems

It is important to highlight that while the results above show that LR is a suitable technique for our data-
driven dynamic thermal modelling scenario, collecting the 20 datasets (i.e., temperature proiles based on likely
operational scenarios) was a very time-consuming exercise that also required specialised expertise. As such, there
is a primary modelling imperative to discover if (and under which conditions) a more limited data collection stage
can yield equally good LR models as this would signiicantly reduce modelling costs (especially when aiming
to analyze more motor designs). Given an expected positive correlation between data availability and model
accuracy, we opted to explore the aforementioned data collection inquiry through a set of three multi-objective
optimisation problems (MOOPs), each designed to provide a holistic answer to a modelling question grounded on
the eicient usage of the 20 datasets (DS01 . . .DS20) in a manner that is likely to generate explainable thermal
models:

Q1: Which combination of datasets should be used to train an LR thermal model that is able to accurately estimate
a given target temperature across all operational scenarios? ś Given the cost and complexity of collecting
data, it would be important to know which load points are likely to help characterise the thermal behaviour
of a particular motor component and the accuracy trade-ofs related to their usage during modelling.

Q2: What EMA weights used for creating synthetic (input) features can improve the accuracy of LR thermal models
for each of the six target temperatures in the context of reduced training sample availability? ś Instead of
limiting synthetic feature generation to the three weights that capture short-, medium- and long-term trends
as described in Section 3.1, the idea is to attempt to improve LR accuracy by extending the Q1 modelling
problem to include the identiication of the best weights or combination of weights from a predeined range.
Therefore, we generated 10 additional EMA weights by using the formula αi = 0.001 · 2i , i ∈ {0, 1, 2, . . . , 9}
to capture a wider range of trends in the data. We then used the 10 weights to create 60 synthetic EMA
features, one for each of the 6 features based on speed (v) and current (I ). After replacing the 18 original
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EMA synthetic features with the 60 new ones, each of the 20 datasets we used for answering this question
had a total of 66 input features. In terms of XAI characteristics, the optimisation of EMA weights can be
seen as an attempt to mitigate the loss of LR (design) transparency induced by the initial arbitrary ixing of
EMA settings.

Q3: Which combination of datasets and EMA weights should be used when wishing to train accurate LR thermal
models for all six target temperatures? ś Besides discovering the modelling trade-ofs for a particular target
temperature (i.e., answering Q2), it would also be very useful to investigate how optimal combination of
datasets and EMA weights can be used to best model all six target temperatures via LR.

Formally, all three data modelling MOOPs that we aim to solve can be deined as:

Minimise F (x ) = (f1(x ), f2(x )) (2)

where x is a n-dimensional vector of real-valued variables ś i.e., xi ∈ D
n ⊂ Rn ,∀1 ≤ i ≤ n; and f1 ∈ R and f2 ∈ R

represent individual objectives:

■ f1(x ) = the total number of data samples in the training set encoded by x that are used for creating the LR
model;

■ f2(x ) = the MAE or the MSE obtained by the trained LR model on the test set encoded by x .

As illustrated in Figure 4, in order to enable x to easily encode the training-test data split across our 20 datasets,
we have formulated the three MOOPs as a typical 0,1 Knapsack problem, codiied with real values [Russell and
Norvig 2010].

In the case of MOOP1 ś the problem designed to answer Q1, a candidate solution is a vector of 20 real-values
between 0 and 1 (i.e., x ∈ [0, 1)20) with the interpretation that each variable xi represents its associated dataset
DSi . If xi ≥ 0.5, then DSi is selected and added to the training set of the modelling experiment. On the other hand,
if xi < 0.5, DSi is added to the test set of the modelling experiment. In order to evaluate F (x ), a counting of the
total number of samples in the training set is performed (i.e., f1) and an LR model is irst trained on the training
set and then tested on the test set to inform f2. It is noteworthy that since we are interested in the independent
modelling of 6 diferent component temperatures, we are considering six instances of this problem: MOOP1−Tw ,
MOOP1−Tbi , MOOP1−Tf , etc.

MOOP2 was formulated by adding 10 more variables to the decision vector used in MOOP1. Each new variable
represents a predeined EMA weight. If a given weight is to be used (i.e., xi ≥ 0.5, 21 ≤ i ≤ 30), all the associated
synthetic features (i.e., all 6 EMA features created with αi−21) are used for training and testing the LR model that
informs the accuracy of f2. In other words, the usage of each EMA weight will add 6 independent variables to the
resulting LR model.
MOOP3 is a variant of MOOP2 that features a minimax optimisation approach. For each candidate solution

x we trained and tested independent LR models for all six target temperatures, recording model test errors
individually. We then deined f2(x ) as the maximum test error observed across the six LR models, meaning that
the accuracy objective of this MOOP aims to minimise the largest error across all component temperatures of
interest.

3.4 Experimental Setup

Given the characteristics of our MOOPs (i.e., two objectives, unknown PFt , medium number of decision variables),
we opted to use the NSGA-II [Deb et al. 2002] solver, the second version of the Nondominated Sorting Genetic
Algorithm. NSGA-II is one of most widely used multi-objective evolutionary algorithms (MOEAs) and is known
to be robust across diferent types of real-life and benchmark MOOPs. This means that NSGA-II is generally able
to discover Pareto-optimal (PN ) sets that very accurately approximate the true Pareto Front (PFt ) of the problem
ś i.e, the objective-space projection of all the optimal trade-of solutions of the MOOP.

ACM Trans. Evol. Learn.
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Fig. 4. Schematic of the proposed thermal modelling approach

We applied NSGA-II with its standard genetic operators ś i.e., Simulated Binary Crossover (SBX) [Deb et al.
1995] and polynomial mutation [Deb et al. 1996] ś and we used the literature recommended settings for these
operators: crossover probability rate of 0.8, crossover distribution index of 20, mutation probability of 1/n and a
mutation distribution index of 20. Across all optimisation runs, we set both the population and ofspring size
to 200 and used a computational budget of 50,000 itness evaluations, thereby evolving 250 generations. Given
the stochastic nature of MOEAs, we initially carried out ive independent repeats of each optimisation run. The
limited number of runs is motivated by the fact that, even after parallelising the itness evaluations, a typical
optimisation would take 10-15 hours on a high-end PC. In the case of MOOP2, each modelling experiment was
repeated 30 times in order to enable statistical signiicance testing of the importance of optimising the EMA
weights.

Our numerical experiments integrated algorithm implementations from jMetalPy ś a Python-based framework
for multi-objective optimization with metaheuristics [Benítez-Hidalgo et al. 2019] ś and Scikit-learn ś a library
for machine learning in Python [Pedregosa et al. 2011].

ACM Trans. Evol. Learn.
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4 RESULTS AND INTERPRETATION

4.1 MOOP1: Optimising Data Requirements for Thermal Modelling

Figure 5 shows typical optimisation results for MOOP1. The top subplots show the training set size vs accuracy
trade-of for LR models of Tw when using the MAE (left) and the MSE (right) on the test set as model quality
indicators. Similarly, the bottom subplots from Figure 5 indicate the sought modelling trade-ofs for Tbi ś the
other high priority component temperature. Across all subplots, we marked with black squares the Pareto-optimal
solutions identiied by NSGA-II (i.e., the objective space projection of the PN obtained at the end of the run). The
x-axis is trimmed at 2 in light of the +/-2°C modelling accuracy constraint imposed by our thermal modelling
scenario. Across both high-priority temperatures, test errors decrease with increasing training set size. However
this decrease is very gradual and somewhat limited as models trained with fewer than 50,000 samples have MAE
values smaller than 1°C and MSE values smaller than 1.5°C, while models trained with more than 200,000 samples
have MAE and MSE values smaller than 0.5°C. On the one hand, this behavior is expected because when there is
a very limited set of samples to learn from, the LR model lacks the ability to properly model all the underlying
patterns when presented with unseen temperature proiles. On the other hand, the fact that even models trained
on less than 10% of available data satisfy the accuracy constraint (i.e., generalise well) validates that LR is efective
for modelling the dynamic thermal behaviour of the studied electrical machine. Thus, while not directly linked to
explainability, the holistic view provided by the MOOP1 formulation and its associated results from Figure 5
reinforce user trust in the choice of regression model. We mention that these experiments were conducted for
the 4 medium and low priority target temperatures as well and the results follow a very similar pattern.
Generally, MOOP1 modelling results show that an LR model trained on a subset of the original 20 datasets

can be used to accurately predict target temperatures across diferent operational scenarios. For example, the
Pareto optimal solution pointed with an arrow on the bottom left subplot from Figure 5 represents an LR model
trained only using datasets DS03 and DS14 (i.e., ≈ 9.5% of all available data) that yielded a test MAE of 0.8610 on
the other 18 datasets. This particular LR model is given in Equation 3 and, in light of its simplicity and accuracy,
is a very interesting contender for installation on a microcontroller to estimate Tbi (the temperature of the inner
ball bearing) when only provided with data regarding v (the rotor speed) and I (the electric current).

Tbi = −(2.8913 ·v)− (0.2991 · I ) + (0.1384 · I ·v) + (4.3532 ·v
2)− (2.2648 ·v3)− (0.2466 · I 2)− (4.2058 ·EMA0.001(v))

− (7.1872 · EMA0.005(v)) + (5.6999 · EMA0.04(v)) + (1.7672 · EMA0.001(I )) + (4.1274 · EMA0.005(I ))

− (2.1350 · EMA0.04(I )) + (1.3143 · EMA0.001(I · v)) − (7.0290 · EMA0.005(I · v)) + (2.3738 · EMA0.04(I · v))

+ (9.5421 · EMA0.001(v
2)) + (24.8746 · EMA0.005(v

2)) − (12.6139 · EMA0.04(v
2)) − (5.0606 · EMA0.001(v

3))

− (14.2362 · EMA0.005(v
3)) + (7.7438 · EMA0.04(v

3)) + (0.6009 · EMA0.001(I
2)) + (3.0972 · EMA0.005I

2))

+ (1.3959 · EMA0.04(I
2)) + 42.3631

(3)

We proceeded to compare the performance of LR models forTw andTbi trained only using DS03 and DS14 with
the non-linear alternatives considered in Section 3.2. To make this comparison, we irst applied the previously
outlined strategies for identifying the best parameters for each non-linear modelling technique when considering
only the 22,862 samples from the two training datasets. We then trained the non-linear models using all the
22,862 samples and inally tested them on the the remaining 217,338 samples from the other 18 datasets. The
results are shown in Table 2 and indicate that, when compared with the preliminary results from Table 1, the
MAE and MSE performance degradation is an order of magnitude higher for the non-linear approaches. This can
be interpreted as further evidence towards the robustness and overall suitability of LR models for our considered
modelling tasks, especially when aiming to reduce data collection requirements.
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Fig. 5. Pareto fronts (black squares) of single NSGA-II optimisation runs on MOOP1 when aiming to modelTw (top subplots)
and Tbi (botom subplots)

Table 2. Comparative performance on test data when only training using DS03 and DS14. The best result for each (component
temperature, quality indicator) pair is highlighted in bold font.

Qual. indicator
RF KNN ANN LR

Tw Tbi Tw Tbi Tw Tbi Tw Tbi
MSE 4.186 4.520 15.53 6.650 5.661 1.751 1.508 1.312

MAE 1.362 1.315 2.392 1.689 1.492 0.972 0.915 0.861

R2 0.965 0.858 0.870 0.788 0.952 0.945 0.987 0.958

4.2 MOOP2: Optimising the EMA Weights used for Synthetic Feature Generation

In MOOP2 we included EMA weights into the optimisation and the obtained results follow a similar pattern
as those obtained for MOOP1. In the two subplots from Figure 6 we illustrate all the Pareto-optimal solutions
discovered by NSGA-II for MOOP1 and MOOP2 across the ive initial independent runs when modelling Tw .
Graphically, it is clear that test errors decrease when both training set composition and EMAweights are optimised
and as a result the Pareto fronts associated with MOOP2 are shifted to the left. In order to further investigate this
empirical observation, we carried out 25 more independent optimisation runs and proceeded to quantitatively
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measure the quality of the obtained Pareto fronts. Several specialised indicators are commonly used for this task:
the generational distance [Van Veldhuizen and Lamont 1998], the inverse generational distance [Coello et al.
2007], the epsilon indicator [Zitzler et al. 2003] and the hypervolume indicator [Zitzler and Thiele 1998].

Fig. 6. All end-of-the-run Pareto-optimal solutions for MOOP1 (datasets optimisation) and MOOP2 (datasets + EMA weights
optimisation) across 5 independent runs on each problem that aimed to model the winding temperature (Tw ).

We chose to use the hypervolume indicator (Hv) as our unary PF quality measure because it is widely accepted
in the MOEA community, has a theoretical proof of a monotonic convergence behaviour and can be easily used
on problems with an unknown PFt . This is because, Hv(PFc ) measures the size of the objective space that PFc
dominates when considering an anti-optimal reference point [Zitzler and Thiele 1998]. Based on this, larger
Hv values are preferred, but in order to make the numerical values more meaningful, computing the relative

hypervolume as Hr (PF c ) =
Hv (PFc )
Hv (PFt )

is advisable. In our case, as PFt is unknown, we have decided to assume it

only contains the ideal point (0,0) that would denote an LR model that requires 0 training data and yields 0 errors.
Conversely, the anti-optimal reference point was set at (5, 240200), denoting a hypothetical LR model that is
trained using 100% of the data but falls well out of acceptable accuracy thresholds.

Across 30 independent runs aimed at modelling Tw , we obtained:

■ an average Hr of 78.00% and a median Hr of 77.96% in the case of MOOP1 (i.e., when only optimising the
temperature proiles used for training);

■ an average Hr of 81.59% and a median Hr of 81.62% in the case of MOOP2 (i.e., when optimising both
proiles and EMA-based synthetic features).

This general improvement of modelling outcomes suggested by the diference inHr central tendency indicators
between MOOP1 and MOOP2 was conirmed as statistically signiicant by a one-sided Mann-Whitney U test
[Mann and Whitney 1947] with a 0.01 signiicance level (p-value=1.5099 · 10−11). This means that we can say with
99% conidence that the inclusion of EMA weights in the optimisation improves the data requirement vs accuracy
trade-ofs of our LR thermal models for Tw . The impact of this decision on model explainability is discussed at
length in Section 4.4.

4.3 MOOP3: Simultaneously Optimising All 6 Target Temperatures

Figure 7 shows a typical optimisation result for MOOP3 where, given our minmax approach described at the
end of Section 3.3, for each evaluated solution, the color and shape (as per the legend) correspond to the target
temperature for which the solution’s maximum LR test error was obtained. The winding temperature (Tw ) error
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Fig. 7. Typical MOOP3 optimisation result.

is dominant across all evaluated solutions and among plotted Pareto optimal solutions, the max error value is
associated with (i) Tw in 49/62 of cases, Tr in 10/62 of cases, and Tf in 3/62 of cases (for MAE) and with (ii) Tw in
53/59 of cases, Tr in 5/59 of cases, and Tf in 1/59 of cases (for MSE).

Based on this, we can infer that a combination of datasets (i.e., sample temperature proiles) and EMA weights
that can lead to an accurate LRmodel for predicting the winding temperature will equally yield accurate LRmodels
for predicting all six component temperatures under a wide range of operational scenarios. This observation and
the high priority modelling status motivates the Tw signiicance testing focus in Section 4.2.

4.4 Balancing Model Accuracy and Explainability

We are aware that an excessive use of EMA synthetic features (in solution to MOOP2 and MOOP3) will increase
the complexity of the LR models thus compromising our stated objective of obtaining simple and explainable
models that can help electrical engineers gain insights related to the dynamic thermal behavior of the studied
electrical machine. For example, in Figure 8 we re-plot all theTw -based Pareto optimal solutions from the MOOP3
run depicted in Figure 7 with a marker size proportional to the size of each LR model ofTw . These results indicate
that the improved accuracy brought by including EMA-weights in the multi-objective optimisation tends to come
at the expense of generating larger (i.e., more complex) models when increasing the amount of training data.
This is especially obvious when using MSE as an optimisation goal and is likely due to the fact that the usage of
the same quadratic loss function within the MSE and LR formulae enables a larger set of EMA-weights to bring
marginal modelling improvements when training on larger sets of temperature proiles. When the loss functions
used in the optimisation and model training are well-aligned but not identical (i.e., when f2(x ) is based on MAE),
the increase of optimal model size is more subdued.
The fact that complexity increase afects MAE and MSE modelling diferently is also evidenced by the plots

in Figure 9 that display the comparative performance of the Pareto optimal LR models from Figure 8 after a
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Fig. 8. Size vs Pareto Front (PF) position of Tw -based solutions at the end of a MOOP3 run.

Fig. 9. Degraded Pareto fronts

step-wise regularisation procedure that removes 30%, 50%, and 70% of the original regression model coeicients
in decreasing order of their importance (i.e., absolute value).
Regularisation results indicate that a reduction of LR model size (complexity) by 50% to 70% afects MSE

optimal models more (i.e., they determine larger error increases). The fact that a 30% reduction of model sizes
appears to have a negligible efect on estimated accuracy for most optimal models can be explained by our MOOP
formulation described in Section 3: when an EMA weighting is selected, 6 new synthetic features (corresponding
to 2 original + 4 expert-suggested base features) are created and all 6 features will feature in the inal LR thermal
model even if just one feature has a meaningful contribution to improving model accuracy. This approach was a
design trade-of itself as:
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Fig. 10. Performance of a Tw model for MOOP3 at diferent levels of regularisation across several operational scenarios (the
grey area denotes part of the samples used during model training).

■ we wished to limit the size of our MOOPs. By allowing the multi-objective solver to select individual EMA
synthetic features, the sizes of MOOP2 and MOOP3 search space would increase to 70 instead of 20 ś likely
requiring a more complicated solver + parameterisation selection process alongside extended run-times;

■ we wanted to aim the modelling exercise towards identifying EMA weights that capture temporal trends
that are relevant for more multiple base features as these weights could provide more insights to electrical
engineers (thus improving overall explainability). Meaningful EMA weights can be identiied by domain
experts that analyse relative temperature proiling diferences on LRmodels where a reduction of complexity
is more strongly correlated to a corresponding reduction of global and/or local modelling accuracy ś e.g.
the Tw model from Figure 10.

Regarding the relative modelling performance shown in Figure 10, it is noteworthy that features that are
in the 50% to 70% range of importance (based on their associated absolute coeicient values in the original
Pareto optimal LR model) seem crucial for correctly modelling temperature peaks associated with constant
medium and high utilisation scenarios. Conversely, the least important 50% of original model features have an
incremental, but overall very limited, impact on general modelling performance. These observations indicate that
by further tailoring the regularisation procedure (e.g., making it more ine grained or dependent on the relative
loss of global/local accuracy across the 20 analysed scenarios), the explainability of the original model could be
enhanced by constructing a more detailed mapping of features or groups of features to particular thermal proiling
capabilities. This in turn would give decision makers a clear view of all the modelling trade-ofs associated with a
given Pareto optimal thermal model: training costs vs accuracy vs explainability.
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5 CONCLUSIONS AND FUTURE WORK

The present research demonstrates how three 0,1 Knapsack multi-objective formulations of data modelling tasks
coupled with the usage of an efective evolutionary solver (i.e., NSGA-II) can be used to outline optimal costs vs
accuracy trade-ofs when aiming to discover high-quality Linear Regression (LR) models that can estimate the
dynamic thermal behaviour of six electrical motor components under various operational scenarios. Case study
results indicate that the ability to generate highly explainable models coupled with the holistic data modelling
perspective provided by our multi-objective approach provides electrical engineers with useful data-driven
insights regarding the thermal proile of the studied electrical machine.

In particular, we have shown that by creating synthetic features using Exponential Moving Averages (EMAs)
with optimised weights, one can obtain highly accurate LR models, even when drastically reducing the required
amount of training data, but this does impact explainability by increasing the complexity (i.e., size) of high-
performing LR models. To alleviate this issue, we demonstrate how a very basic step-wise regularisation technique
can be applied to reduce complexity (with minimal impact on accuracy) and improve explainability by facilitating
a domain relevant mapping of features to modelling capabilities.

Further work will aim to build on present results by testing diferent methods of constraining and/or reducing
linear model complexity. We will primarily focus on well-known regularisation techniques (i.e., ridge, lasso,
elastic net) and on efective ways of directly integrating model complexity as an optimisation objective in its own
right. We envision that an extension of the proposed multi-objective data-driven modelling approach to other
ML paradigms known to display an accuracy vs explainability trade-of (e.g., symbolic regression, decision trees)
will deine a secondary future work stream. Finally, it would be of particular interest to compare our results with
those obtained by multi-objective Genetic Programming (GP) approaches [Burlacu et al. 2019; Kommenda et al.
2016] given the ability of the latter to also explore trade-ofs between evolving simpler (i.e.,more interpretable) or
more numerically accurate symbolic regression models.
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