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A COMPUTATIONAL FRAMEWORK FOR EDGE-PRESERVING REGULARIZATION IN DYNAMIC1

INVERSE PROBLEMS∗2

MIRJETA PASHA†, ARVIND K. SAIBABA‡, SILVIA GAZZOLA§, MALENA I. ESPAÑOL¶, AND ERIC DE STURLER‖3

Abstract. We devise efficient methods for dynamic inverse problems, where both the quantities of interest and the forward operator4

(measurement process) may change in time. Our goal is to solve for all the quantities of interest simultaneously. We consider large-scale ill-posed5

problems made more challenging by their dynamic nature and, possibly, by the limited amount of available data per measurement step. To6

alleviate these difficulties, we apply a unified class of regularization methods that enforce simultaneous regularization in space and time (such as7

edge enhancement at each time instant and proximity at consecutive time instants) and achieve this with low computational cost and enhanced8

accuracy. More precisely, we develop iterative methods based on a majorization-minimization (MM) strategy with quadratic tangent majorant,9

which allows the resulting least squares problem with a total variation regularization term to be solved with a generalized Krylov subspace10

(GKS) method; the regularization parameter can be determined automatically and efficiently at each iteration. Numerical examples from a wide11

range of applications, such as limited-angle computerized tomography (CT), space-time image deblurring, and photoacoustic tomography (PAT),12

illustrate the effectiveness of the described approaches.13

Key words. dynamic inversion, time-dependence, edge-preservation, majorization-minimization, regularization, generalized Krylov14

subspaces, image deblurring, photoacoustic tomography, computerized tomography.15

AMS subject classifications. 65F10, 65F22, 65F5016

1. Introduction. In the classical setting, inverse problems are commonly formulated as static, where the17

underlying parameters that define the problem do not change during the measurement process. There exists a very18

rich literature and many numerical methods for this setting; see [27, 37, 43, 55, 64] and the references therein.19

Dynamic inverse problems, where time-dependent information needs to be recovered from time-dependent data,20

have recently gained considerable attention because of new developments in science and engineering applications.21

Important examples include dynamical impedance tomography [61, 62], process tomography [68], undersampled22

dynamic x-ray tomography [15], and passive seismic tomography [67, 73], to mention a few. A common objective is23

to improve the reconstruction of non-stationary objects using time-dependent projection measurements. For instance,24

the movement of objects during a CT scan leads to artifacts in the stationary reconstruction, even if the change in25

time is small. More specifically, in the imaging of organs like the heart and lungs, small changes in shape due to the26

heartbeat or breathing, can significantly affect the quality of the reconstructed solution. In [1, 8, 50], approaches to27

reconstructing a static image from dynamic data are discussed. In [15], the authors discuss the reconstruction of28

dynamic data in space and time. Computationally feasible methods in the Bayesian framework for dynamic inverse29

problems are presented in [23], and the quantification of the uncertainties is discussed in [60]. In this work, we are30

interested in similar scenarios where the target of interest changes in space and time; our approach is not limited to31

any specific motion of the objects during the measurement process. Furthermore, we seek to preserve the edges32

of the desired solution. Edge preserving reconstruction is a technique to smooth images while preserving edges,33

which has been employed in many fundamental applications in image processing, such as artifact removal [71],34

denoising [36, 59, 65], image segmentation [24, 39], and feature selection [72]. The proposed methods rely on total35

variation (TV)-type regularization. While there has been considerable work on edge-preserving methods, only a few36

contributions address edge preserving methods for dynamic inverse problems. These have been developed mostly37

in recent years, highlighting the need for better methods to handle advances in science and technology. See the38

Related work paragraph of Section 1.2 for comparisons with other work.39

1.1. Background on dynamic inverse problems. First, we define some notation. Let U(t) ∈ Rnv×nh be the40

2D (matrix) representation of an image with nv rows and nh columns obtained at time instance t = 1, 2, . . . , nt.41

Let u(t) be the column vector obtained by a lexicographical ordering of the two-dimensional U(t), that is, u(t) =42

vec(U(t)) ∈ Rns , with vec being the operation that vectorizes a matrix by stacking its columns and ns = nvnh.43
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Then, let U =
[
u(1), . . . ,u(nt)

]
∈ Rns×nt be such that u = vec(U) ∈ Rn and n = nsnt. A pictorial44

representation of these quantities is displayed in Figure 1.1.

.
.
.

.

Figure 1.1: Images U(t) to be reconstructed with pixels i, j in red (left), and their corresponding vectorization u(t),
which are the columns of the matrix U where the pixels i, j are now in the same row (right).

45

We are interested in solving inverse problems in space and time with an unknown target of interest. The goal46

is to recover from the available measurements d(t) ∈ Rmt , for t = 1, 2, . . . , nt, the images u(t) ∈ Rns , whose47

entries represent pixels in the image. Since we focus on imaging applications, we use the term ‘pixels’ (rather than48

‘parameters’) throughout the paper. Given the number of time points nt, m =
∑nt

t=1mt is the total number of49

available measurements. We consider the number of pixels, ns, to be fixed for all time points. Dynamic problems50

may also involve reconstructing a sequence of images with varying numbers of pixels (e.g., in image registration),51

but we do not consider that setting in this paper. For completeness, we define static and dynamic inverse problems52

in the context of this paper.53

Dynamic inverse problems. In a dynamic inverse problem, both the images of interest and the measurement54

process are known to change in time. Therefore, combining prior information at different time instances enhances55

the reconstruction and recovery of dynamic information about the objects of interest. More specifically, we have the56

measurement equation57

(1.1) d = Fu + e,

where we consider two cases for the forward operator F ∈ Rm×n:58

(a) Time-dependent: Here F is a block diagonal matrix of the form59

(1.2) F =

A(1)

. . .
A(nt)

 ,
where the blocks A(t) may change in time t = 1, . . . , nt.60

(b) Time-independent: Here A(t) = A for t = 1, . . . , nt (that is the blocks A(t) are the same in time) so that F61

simplifies to F = Int
⊗A, with ⊗ being the Kronecker product.62

The vector d = vec([d(1), . . . ,d(nt)]) ∈ Rm represents measured data that are contaminated by an unknown error63

(or noise) e ∈ Rm that may stem from measurement errors. We assume that the noise vector follows a multivariate64

normal (or Gaussian) distribution with mean zero and covariance Γ, i.e., e ∼ N (0,Γ). The inverse problem65

involves recovering the pixels u from the data d. That is, we seek to solve the general regularized problem66

(1.3) udynamic = arg min
u∈Rn

J (u) := F(u) + λR(u),

where the functional F(u) is a data-misfit term that takes the form 1
2‖Fu − d‖2

Γ−1 and the term R(u) is a67

regularization term that can take different forms; several forms forR(u) will be discussed in Section 3. Throughout68

this paper, λ > 0 is an appropriate regularization parameter that determines a balance between the data-misfit and69

the regularization termR(u).70
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Static inverse problems. By contrast, in a static inverse problem, the information from each time step t is used71

to reconstruct the unknown images u(t), t = 1, 2, . . . , nt. We assume that the measurement noise at each time step72

is independent of other time steps so that the overall noise covariance matrix Γ = BlockDiag(Γ1, . . . ,Γnt
) is a73

block-diagonal matrix, where Γt is the noise covariance matrix at step t. We then solve the sequence of optimization74

problems75

(1.4) u
(t)
static = arg min

u∈Rns

1

2
‖A(t)u− d(t)‖2

Γ−1
t

+ λR(u), t = 1, 2, . . . , nt

independently to obtain the solution to the static inverse problem.76

Challenges. The considered inverse problems are typically ill-conditioned. Moreover, when solving dynamic77

inverse problems, the unknown has n = nsnt pixels, which can be orders of magnitude higher than those for78

large-scale static inverse problems. Therefore, a clear challenge is the large scale of the considered problems.79

Furthermore, another challenge in dynamic inverse problems may stem from the limited information available per80

time instance during the measurement process.81

This paper focuses on developing efficient regularization approaches for dynamic inverse problems that promote82

edge-preservation in the reconstructed images by incorporating specific representations of the prior information.83

Namely, we propose a combination of spatial and temporal prior information representations that allow for recovering84

piecewise constant solutions. We adopt efficient numerical methods that can enforce these representations.85

1.2. Overview of the main contributions. This paper presents a unified computational framework for edge-86

preserving regularization in dynamic inverse problems. For each regularization term, we write down the corre-87

sponding optimization problem for reconstructing the desired solution, whose objective functions are convex but88

non-differentiable. To remedy the non-differentiability, we consider a smoothed functional instead, and we derive89

an iterative reweighted least squares (IRLS) approach [7] for each optimization problem using the majorization-90

minimization (MM) technique [41]. To efficiently solve the sequence of least squares problems and define the91

regularization parameter, we use a generalized Krylov subspace (GKS) method [48], resulting in a so-called92

MM-GKS method. This unified approach has the following noteworthy features:93

1. flexibility: the ability to choose between many different edge-preserving regularization techniques, each94

with its different strengths and weaknesses, but using the same MM-GKS solver;95

2. efficiency: in contrast to inner-outer iteration schemes typical of IRLS methods applied to large-scale96

problems, the approach in this paper solves the optimization problem using a single generalized Krylov97

subspace, thus making judicious use of the forward/adjoint operator which can be expensive in many98

applications;99

3. automated: the approach uses heuristics to automatically select regularization parameters in the projected100

space associated with the generalized Krylov subspace while solving the inverse problem;101

4. practicality: our approach is capable of reconstructing over 1.9 million pixels in fewer than 100 MM-102

GKS iterations, and is demonstrated to be effective on a variety of test problems with simulated and103

real data arising from space-time image deblurring, photoacoustic tomography (PAT), and limited angle104

computerized tomography (CT).105

In this paper, we illustrate our framework with six different regularization terms, based on TV, for combining106

spatiotemporal information. For each regularization technique, we provide a motivation and an interpretation using107

tensor notation, which is useful for further generalization and extensions. Our framework is applicable beyond108

dynamic inverse problems and extends to other problem settings requiring solution techniques that combine limited109

information from different sources to improve the quality of the resulting reconstruction and recover dynamic110

information from different channels, such as multichannel imaging [44] and electroencephalographic current density111

reconstruction [34].112

Related work. A review of dynamic inverse problems with temporal information is given in [38]. We limit113

our discussion to a few related references. First, we discuss the use of TV regularization for solving dynamic114

inverse problems. An approach similar to our anisotropic space-time TV (Section 3.1) was discussed in [20] for115

image restoration. The reference [63], while it did not consider dynamic problems, used a TV technique similar116

to 3D joint anisotropic space-time TV (Section 3.3). An important point here is that, while in related works117

specific regularization methods are used for dynamic inverse problems, our approach treats these regularization118

techniques in a unified framework, using the same solver and the same technique to estimate the regularization119
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parameter, which can be applied to ill-posed inverse problems in general. Beyond TV, some works consider120

edge-preserving reconstructions in dynamic inverse problems. The approach in [15, 52] is to use optical flow for121

jointly reconstructing the image and estimating object motion. In [10], a 3D shearlet-based approach is used for122

dynamic inverse problems in two spatial dimensions with time as the third dimension.123

Overview of the paper. This paper is organized as follows. In Section 2, we present some background material,124

including additional notation, a survey of well-established regularization terms, and an iterative method used to125

solve the inverse problem with an MM strategy. In Section 3, we discuss six different methods for edge-preserving126

regularization in dynamic inverse problems, write a unifying framework, and derive, by using an MM approach, an127

IRLS method for solving the resulting optimization problem. Some alternative approaches and extensions that fit128

within our framework are presented in Section 4. In Section 5, we describe iterative methods based on generalized129

Krylov subspaces to efficiently solve the resulting optimization problem and define the regularization parameter130

at each iteration. In Section 6, we present numerical examples that demonstrate the performance of the proposed131

regularization terms and the MM solvers. Finally, some conclusions, remarks, and future directions are presented in132

Section 7.133

2. Background. In this section, we review known facts about tensors, regularization terms such as (discrete)134

isotropic and anisotropic TV, and the MM approach for solving optimization problems.135

2.1. Tensor notation. The use of tensor notation is very convenient for describing dynamic images. A tensor136

X is a multi-dimensional array (also called n-way or n-mode array) whose entries are scalars. A tensor’s order137

refers to the number of ways or modes. For instance, vectors are tensors of order one, and matrices are tensors of138

order two. More details on tensors can be found in [47].139

In this work, we primarily focus on 3rd-order tensors X ∈ Rn1×n2×n3 with entries xi,j,k. Fibers are higher-140

order analogs of matrix rows and columns. A (tubal) fiber of a third-order tensor is a vector that is obtained by141

fixing two of the indices of the tensor X . We define X :,j,k, X i,:,k, and X i,j,: to be mode-1, mode-2, and mode-3142

fibers, respectively. We implicitly assume that once a mode fiber has been extracted, it is reshaped as a column143

vector. Slices are two-dimensional sections of a tensor that are obtained by fixing one of the indices. We define144

X i,:,:,X :,j,:, and X :,:,k to be horizontal, lateral, and frontal slices, respectively. As before, when a slice is extracted,145

we implicitly assume it is a matrix. The mode-j unfolding or matricization of a tensor X is obtained by arranging the146

mode-j fibers to be the columns of a resulting matrix. We denote these by X(1) ∈ Rn1×(n2n3),X(2) ∈ Rn2×(n1n3),147

and X(3) ∈ Rn3×(n1n2).148

Another important concept here is the mode-j product that defines the operation of multiplying a tensor149

X ∈ Rn1×n2×n3 by a matrix Lj ∈ Rr×nj for j = 1, 2, 3 given in the following definition. We write Y = X ×j Lj150

in terms of the mode unfoldings as Y(j) = LjX(j). For distinct modes in a series of multiplications, the order of151

the multiplication is irrelevant.152

We will also need to use norms for tensors, which we define entrywise. That is, for q ∈ [1,∞), we define153

(2.1) ‖X‖q =

 n1∑
i=1

n2∑
j=1

n3∑
k=1

|xi,j,k|q
1/q

.

A tensor representation of the dynamic inverse problem solution described in Section 1.1 is obtained by defining154

the multidimensional array U ∈ Rnv×nh×nt , with its frontal slices taken to be 2D representations of the image u(t).155

That is, we let156

(2.2) U :,:,t = mat(u(t)) ∈ Rnv×nh t = 1, . . . , nt .

Furthermore, u(t) are the mode-3 fibers and U = UT
(3) is the transposed mode-3 unfolding.157

2.2. Regularization terms based on the first derivative operator. When the desired solution is known to be158

piecewise constant, TV regularization is a popular choice. It allows the solution to have discontinuities by preserving159

edges and discouraging oscillations [18, 19, 35, 51, 59]. TV regularization enforces sparse gradient representations160

for the solution.161
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Let162

(2.3) Ld = αd


1 −1

1 −1
. . . . . .

1 −1

 ∈ R(nd−1)×nd and Ind
∈ Rnd×nd

be a rescaled finite difference discretization of the first derivative operator with αd > 0 and the identity matrix of163

order nd, respectively. Operators of this kind are known to damp fast oscillatory components of a vector u(t); see,164

for instance, a discussion in [26]. In defining some of the operators below, we will augment the matrix Ld with165

one zero row (at the bottom) and denote it by L̄d. The matrices Ld and L̄d are used to obtain discretizations of the166

first derivatives in the d-direction, with d = v (vertical direction), d = h (horizontal direction), and d = t (time167

direction). For simplicity, in the following, we let αd = 1, but different values can be used in practice: an αd 6= 1168

can be treated as a regularization parameter that must be estimated as part of the inversion process.169

Considering only the spatial derivatives for now, these have the form170

(2.4)
vec(LvU

(t)) = (Inh
⊗ Lv)u

(t) ∈ R(nv−1)nh

vec(U(t)LTh ) = (Lh ⊗ Inv
)u(t) ∈ R(nh−1)nv

, t = 1, . . . , nt .

When time is considered, we have171

vec(ULTt ) = (Lt ⊗ Ins
)u ∈ R(nt−1)ns .

By letting nt = 1 (i.e., n = ns) for now, so that u = u(1) = vec(U(1)), we define the anisotropic TV (TVaniso) as

TVaniso(u) =

(nv−1)∑
k=1

nh∑
`=1

∣∣∣∣(LvU(1)
)
k,`

∣∣∣∣+

(nh−1)∑
k=1

nv∑
`=1

∣∣∣∣(U(1)LTh

)
k,`

∣∣∣∣
= ‖(Inh

⊗ Lv)u‖1 + ‖(Lh ⊗ Inv )u‖1 = ‖Lsu‖1 , where Ls =

[
Inh
⊗ Lv

Lh ⊗ Inv

]
.(2.5)

Assuming, for simplicity, that nh = nv , we define the isotropic TV (TViso) as

TViso(u) =

nv∑
k=1

nh∑
`=1

√
(L̄vU(1))2k,` + (U(1)(L̄h)T )2k,`

=

nvnh∑
`=1

√
((Inh

⊗ L̄v)u)2` + ((L̄h ⊗ Inv )u)2`

=
∥∥[(Inh

⊗ L̄v)u, (L̄h ⊗ Inv
)u
]∥∥

2,1
,(2.6)

where ‖ · ‖2,1 denotes the functional defined, for a matrix Y ∈ Rmy×ny , as ‖Y‖2,1 =
∑my

i=1 ‖Yi,:‖2.172

2.3. A majorization-minimization method. In this section, we provide an overview of the majorization-173

minimization technique for approximating the solution of (1.3) by solving a sequence of optimization problems; see174

[42, 49] for more details on the MM methods used. Suppose we want to minimize an objective function J (u). We175

shall need the following definition of a quadratic tangent majorant.176

DEFINITION 2.1 ([41]). Let y ∈ Rn be fixed. The functional Q(·; y) : Rn → R is said to be a quadratic177

tangent majorant for J (x) at x = y ∈ Rn if it satisfies the following conditions:178

1. Q(x; y) is quadratic in x,179

2. Q(y; y) = J (y),180

3. 5xQ(y; y) = 5xJ (y),181

4. Q(x; y) ≥ J (x) ∀x ∈ Rn.182
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The MM methods considered in this paper establish an iterative scheme whereby, starting from a given183

approximation of utrue, a quadratic tangent majorant functional for J (u) at the approximation of utrue computed184

at the previous iteration is defined and approximately minimized to get the next approximation of utrue. In other185

words, after the approximation u(k) has been computed at the kth iteration of the MM scheme, the (k + 1)th186

approximate solution is computed as187

(2.7) u(k+1) = arg min
u∈Rn

Q(u; u(k)) k = 0, 1, . . . .

At the first iteration, one may take u(0) = 0. The convergence of the MM approach with quadratic tangent majorants188

was established in [41], which we also use in this paper.189

3. Dynamic edge-preserving regularization. We propose a unified framework with six main methods for190

edge-preserving reconstruction applied to dynamic inverse problems with a spatial and time component. For each191

technique, we motivate the kind of regularization, and using an MM approach, we derive an IRLS method for192

solving the resulting optimization problem. To save on space, we provide a detailed derivation for one of the terms193

(AnisoTV) and leave the other derivations in Appendix A. We also provide an interpretation for the regularization194

term using tensor notation.195

3.1. Anisotropic space-time total variation (AnisoTV). In this first technique, we use the summation of the196

anisotropic TV of the images at each time step as a regularizer as well as regularization for temporal information.197

Let Ls be as in (2.5). The anisotropic TV terms ‖Lsu(t)‖1, t = 1, . . . , nt, ensure that the discrete spatial gradients198

of the images are sparse at each time instant. In addition, to incorporate temporal information, assuming that the199

images do not change considerably from one time instant to the next, we also want to penalize the difference between200

any two consecutive images; we do so by considering the 1-norm differences ‖u(t+1)−u(t)‖1 for t = 1, . . . , nt−1.201

These two requirements can be imposed using the following regularization term202

(3.1)

R1(u) =

nt∑
t=1

‖Lsu(t)‖1 +

nt−1∑
t=1

‖u(t+1) − u(t)‖1

= ‖(Int
⊗ Ls)u‖1 + ‖(Lt ⊗ Ins

)u‖1

= ‖D1u‖1, where D1 =

[
Int
⊗ Ls

Lt ⊗ Ins

]
=

Int
⊗ Inh

⊗ Lv
Int
⊗ Lh ⊗ Inv

Lt ⊗ Inh
⊗ Inv

 .
Alternatively, recalling the tensor representation U of u in (2.2), we can write203

R1(u) = ‖U ×1 Lv‖1 + ‖U ×2 Lh‖1 + ‖U ×3 Lt‖1.

The optimization problem and the MM approach. With the regularization term defined as in (3.1), the optimiza-204

tion problem that we seek to solve takes the form205

(3.2) min
u∈Rn

J1(u) := F(u) + λR1(u), where λ > 0 .

We now derive an MM approach for solving this optimization problem by solving a sequence of simpler206

optimization problems whose closed-form solutions exist. We do this in detail here since the other regularization207

terms we propose have similar derivations. At the kth iteration of the MM method, let u(k) be the current iterate.208

Since the regularization term is nondifferentiable, we first majorize it as209

(3.3) R1(u) ≤
∑
`

√
(D1u)2` + ε2 =: R1ε(u),

where R1ε is the smoothed regularization term. Similarly, we define the smoothed objective function J1ε, by210

replacingR1(u) withR1ε(u) in (3.2).211

To obtain a quadratic tangent majorant, we use the elementary inequality [49, Equation (1.5)]212

(3.4)
√
u ≤
√
v +

1

2
√
v

(u− v),
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for u, v > 0 and is an equality if u = v. By applying (3.4) to each term in the sum (3.3), with u = (D1u)2` + ε2213

and v = (D1u(k))
2
` + ε2, we obtain that214

R1(u) ≤
∑
`

1

2
√

(D1u(k))
2
` + ε2

(D1u)2` + c̃1 =
1

2
‖M(k)

1 u‖22 + c̃1,

where c̃1 is a constant independent of u (but dependent on u(k),D1, and ε) and M
(k)
1 is the weighting matrix215

(3.5) M
(k)
1 := W

(k)
1 D1, with W

(k)
1 = diag((D1u(k))

2 + ε2)−1/4).

Note that all operations in the expressions on the right-hand sides, including squaring, are performed entry-wise.216

We can now define the quadratic tangent majorant Q1(u; u(k)) for the objective function J1ε(u) as217

(3.6) Q1(u; u(k)) := F(u) +
λ

2
‖M(k)

1 u‖22 + c1,

where c1 = λc̃1.218

Thus, as described in Section 2.3, we state the IRLS approach for solving the optimization problem (3.2): given219

an initial guess u(0), we solve the sequence of optimization problems220

(3.7) u(k+1) = arg min
u∈Rn

Q1(u; u(k)), k = 0, 1, 2, . . . ,

to obtain the next iterate u(k+1). Namely, this can be interpreted as an IRLS approach for the smooth approximation221

J1ε since, at each iteration, it replaces the regularization termR1ε(u) by an iteratively reweighted `2 regularization222

term.223

3.2. Total variation in space and Tikhonov in time (TVplusTikhonov). In this technique, we consider224

anisotropic TV in space and assume that the target of interest has small changes in time. Then, we define a new225

regularization term as226

(3.8)
R2(u) :=

nt∑
t=1

‖Lsu(t)‖1 +

nt−1∑
t=1

‖u(t+1) − u(t)‖22

= ‖(Int
⊗ Ls)u‖1 + ‖(Lt ⊗ Ins

)u‖22.

In tensor notation, similar toR1(u), we can succinctly write227

R2(u) = ‖U ×1 Lv‖1 + ‖U ×2 Lh‖1 + ‖U ×3 Lt‖22.

Note that, when compared withR1(u),R2(u) requires the difference between the images at consecutive time steps228

to be small. In contrast,R1(u) additionally promotes the sparsity of the difference.229

Details about how to apply the MM method to minimize the functional J2(u) := F(u) +λR2(u) are provided230

in Appendix A.1.231

3.3. 3D joint anisotropic space-time total variation (Aniso3DTV). To explain this approach, it is easier232

to consider the tensor notation directly. We define the tensor Y in which the finite difference tensor is applied233

simultaneously across all three modes234

(3.9) Y = U ×1 Lv ×2 Lh ×3 Lt.

We can write the 3D anisotropic TV norm as the vectorized 1-norm of this tensor. That is235

R3(u) = ‖Y‖1 =

nv∑
v=1

nh∑
h=1

nt∑
t=1

|yv,h,t|.

This is in contrast toR1(u) in (3.1), which computes the sum of the tensor 1-norms in which only one derivative is236

applied per summand.237
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To derive an equivalent representation using matrix notation, consider the mode-1 unfolding of the tensor238

Y , Y(1) = LvU(1)(L
T
t ⊗ LTh ). Let y = vec(Y(1)) and u = vec(U(1)) denote the vectorizations of the mode-1239

unfoldings of Y and U respectively, which are related through the formula240

(3.10) y = D3u, with D3 = (Lt ⊗ Lh ⊗ Lv), so that R3(u) := ‖D3u‖1.

Details about how to apply the MM method to minimize the functional J3(u) := F(u) +λR3(u) are provided241

in Appendix A.2.242

3.4. 3D joint isotropic space-time total variation (Iso3DTV). In this next approach, we apply isotropic TV243

in all three directions, i.e., two spatial and one temporal direction. We first introduce the variables244

(3.11)
z̄v(u) := (Int

⊗ Inh
⊗ L̄v)u ,

z̄h(u) := (Int
⊗ L̄h ⊗ Inv

)u ,
z̄t(u) := (L̄t ⊗ Inh

⊗ Inv
)u .

Recall that L̄d, d = v, h, t is obtained by augmenting Ld with a row of zeros. Then, we can compactly write245

the following regularization term246

(3.12)
R4(u) :=

nvnhnt∑
`=1

√
(z̄v(u))2` + (z̄h(u))2` + (z̄t(u))2`

= ‖ [z̄v(u), z̄h(u), z̄t(u)] ‖2,1.

To devise a tensor formulation forR4(u), first consider the following tensors247

Zv = U ×1 L̄v, Zh = U ×2 L̄h, Zt = U ×3 L̄t,

and their mode-3 unfoldings (Zv)(3), (Zh)(3), (Zt)(3), respectively. Define a new tensor Y ∈ Rns×nt×3 such that248

Y :,:,1 = (Zv)
T
(3), Y :,:,2 = (Zh)T(3), Y :,:,3 = (Zt)

T
(3).

Then,R4(u) is the sum of the 2-norms of the mode-3 fibers of Y , that is249

R4(u) =

ns∑
i=1

nt∑
j=1

‖Yi,j,:‖2 .

To interpret this representation, the frontal slices of the tensor Y are the collection of gradient images at all time250

instances, and the derivatives are taken one direction at a time. The regularization operatorR4(u) is the sum of two251

norms of its tubal fibers.252

Details about how to apply the MM method to minimize the functional J4(u) := F(u) +λR4(u) are provided253

in Appendix A.3.254

3.5. Isotropic in space, anisotropic in time total variation (IsoTV). This method can be considered a255

variation of the AnisoTV method presented in Section 3.1, where only the spatial anisotropic TV is replaced by256

spatial isotropic TV. Namely, using the notation in (3.11), we consider the regularization term257

(3.13)
R5(u) =

nvnhnt∑
`=1

√
(z̄v(u))2` + (z̄h(u))2` +

nt−1∑
t=1

‖u(t+1) − u(t)‖1

= ‖ [z̄v(u), z̄h(u)] ‖2,1 + ‖(Lt ⊗ Ins)u‖1.

The associated tensor formulation reads similar to the ones presented in Subsections 3.1 and 3.4, namely,258

R5(u) =

ns∑
i=1

nt∑
j=1

‖Yi,j,:‖2 + ‖U ×3 Lt‖1,

where Y ∈ Rns×nt×2 is such that Y :,:,1 = (Zv)
T
(3), and Y :,:,2 = (Zh)T(3).259

Details about how to apply the MM method to minimize the functional J5(u) := F(u) +λR5(u) are provided260

in Appendix A.4.261
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3.6. Group sparsity (GS). Group sparsity allows to promote sparsity when reconstructing a vector of unknown262

pixels that are naturally partitioned in subsets; see [4]. In our applications, there are several possible ways to263

define groups. For example, we can naturally group the variables corresponding to pixels at each time instant,264

i.e., {u(t)}nt
t=1. To enforce piecewise constant structure in space and time, we adopt the following approach. Let265

n′s = (nv − 1)nh + (nh − 1)nv be the total number of pixels in the gradient images. Consider the groups defined266

by the vectors267

z` =
[
(Lsu

(1))`, . . . , (Lsu
(nt))`

]
=
(
Int
⊗ eT` Ls

)
u ∈ Rnt , ` = 1, . . . , n′s.

Figure 3.1: The vector of spatial derivatives Lsu
(t) contains the partial derivatives with respect to the vertical (u(t)

v )
and horizontal (u(t)

h ) directions for each image. These vectors are the columns of the matrix Z depicted here. We
compute the 2-norm of each row z` of Z and add them.

268 Alternatively, define the matrix Z whose columns represent the vectorized gradient images at different time t as269

(3.14)
Z = [Lsu

(1), . . . ,Lsu
(nt)] = LsU ∈ Rn

′
s×vt ,

z = vec(Z) = (Int
⊗ Ls)u .

Note that z` are the rows of Z. These are also illustrated in Figure 3.1. The regularization term corresponding to270

group sparsity can then be expressed as a mixture of norms271

R6(u) :=

n′s∑
`=1

‖z`‖2 =

n′s∑
`=1

(
nt∑
t=1

(Lsu
(t))2`

)1/2

= ‖LsU‖2,1.

In other words, the regularization term behaves like a 1-norm on the vector
[
‖z1‖2 . . . ‖zn′s‖2

]
. This272

regularization term induces sparsity on the vector of 2-norms of z`, ` = 1, . . . , n′s, encouraging ‖z`‖2 (and, in turn,273

each vector z`) to be zero. On the one hand, by using this regularization, we are ensuring that the sparsity in the274

gradient images is being shared across time instances. On the other hand, this regularization formulation does not275

enforce sparsity across the groups, i.e., across vectors z`.276

To devise a tensor formulation, let U be the tensor of images, and let X = U ×1 Lv and Y = U ×2 Lh be the277

tensors obtained by taking the gradient in the vertical and horizontal directions. Then,R6(u) is the sum of 2-norms278

of the mode-3 fibers of X and Y . That is,279

R6(u) =

(nv−1)∑
i=1

nh∑
j=1

‖X i,j,:‖2 +

(nh−1)∑
i=1

nv∑
j=1

‖Yi,j,:‖2.
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Note also that, following (3.14), Z =
[
X(3), Y(3)

]T
.280

Details about how to apply the MM method to minimize the functional J6(u) := F(u) +λR6(u) are provided281

in Appendix A.5.282

3.7. Summary of the proposed approaches. In this section, we have presented six different regularization283

terms for promoting edge-preserving reconstructions in dynamic inverse problems. Here we show that they can be284

treated in a unified fashion, providing a succinct summary of all the proposed methods. For each regularization285

term, we solve an optimization problem of the form286

(3.15) min
u∈Rn

Jjε(u) := F(u) + λRjε(u), λ > 0, j = 1, . . . , 6,

whereRjε(u) is a smoothed regularization term depending on the method used, and F(u) is a term that measures287

the data-misfit. For each optimization problem, we have derived an MM approach that (partially) solves a sequence288

of IRLS problems. That is, given an initial guess u(0), at step k we (partially) solve the optimization problem289

(3.16) u(k+1) = arg min
u∈Rn

1

2
‖Fu− d‖2Γ−1 +

λ

2
‖M(k)

j u‖22 k = 0, 1 . . . .

The matrix M
(k)
j takes different forms depending on the regularization technique used.290

Table 3.1 summarizes some details about the proposed regularization terms and points to the formulas defining291

the reweighting matrices appearing within M
(k)
j in the MM step. In Section 5, we discuss iterative methods to292

efficiently solve the sequence of least squares problems (3.16) and select the regularization parameter λ.

Table 3.1: The six different methods introduced in Section 3, associated regularization terms, and weighting matrices
for the MM step. The index j runs from 1 to 6. The vectors z̄d(u), d = v, h, t, are defined in (3.11).

Method j Rj(u) MM weights
AnisoTV 1 ‖(Int

⊗ Ls)u‖1 + ‖(Lt ⊗ Ins
)u‖1 (3.5)

TVplusTikhonov 2 ‖(Int ⊗ Ls)u‖1 + ‖(Lt ⊗ Ins)u‖22 (A.3)
Aniso3DTV 3 ‖(Lt ⊗ Lh ⊗ Lv)u‖1 (A.4)

Iso3DTV 4 ‖ [z̄v(u), z̄h(u), z̄t(u)] ‖2,1 (A.6)
IsoTV 5 ‖ [z̄v(u), z̄h(u)] ‖2,1 + ‖(Lt ⊗ Ins)u‖1 (A.8)

GS 6 ‖LsU‖2,1 (A.10)

293

4. Extensions and alternative approaches. In Section 3, we presented a variety of regularization methods294

that use different forms of TV and sparsity-enforcing regularization to obtain solutions methods that enhance edge295

representation. In this section, we summarize some alternative approaches that can be used, still within the MM296

framework, to enforce edge-preserving reconstructions.297

Beyond the `1 and `2 norms. One way to interpret the anisotropic TV is that it enforces sparsity in the gradient298

images. A natural measure of the sparsity of a vector is the `0-“norm”, which counts the number of nonzero299

entries. However, solving minimization problems that involve the `0 term is known to be NP-hard; hence to300

remedy this difficulty, one approximates the `0-“norm” by `1 convex relaxation. Several nonconvex penalties with301

0 < q < 1 have been used alternatively to `1; see [21, 70]. The methods we discuss in Section 3 can be generalized302

using `q regularization. For example, the regularization term (3.1) in Section 3.1 can be generalized by choosing303

Rq1(u) = 1
q‖D1u‖qq , for 0 < q ≤ 2. Similarly, the GS method (Section 3.6) can be expressed using general mixed304

`p-`q “norms” instead of `2-`1.305

Beyond the gradient operator. One can build appropriate sparsity transforms using and combining operators306

other than the first order finite difference operator Ld defined in (2.3), where d = v, h, t. A first simple extension307

replaces Ld by a discretization of the second order derivative operator, which can still assist in preserving edges308

[2, 57]. Moreover, one can replace the operator Ld implicitly appearing in any of the regularizers defined in309

Section 3 by a wavelet transform; see [25, 54] and references therein for more details and properties of different310

classes of wavelets. Similar to wavelets, framelet representations of images are orthogonal basis transformations311
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that form a dictionary of minimum size that initially decomposes the images into transformed coefficients; see [16].312

Finally, several variations are also possible when specifically considering the GS regularizer proposed in Section313

3.6. For instance, one can consider ‘overlapping groups’ and also replace Ls with other operators, such as the ones314

mentioned above. It is well-known that, beyond dynamic inverse problems, sparse representations can improve315

pattern recognition, feature extraction, compression, multi-task regression, and noise reduction; see, for example,316

[3, 46].317

Beyond one single regularization parameter. Specifically for dynamic inverse problems, it may be meaningful318

to adapt the regularization parameters based on the dynamics. For instance, one can define dedicated regularization319

parameters for different domains (spatial or temporal). Within the framework presented in Section 3, this can be320

achieved by setting, in addition, or as an alternative to λ, appropriate values for the parameters αd in (2.3). For321

instance, [40] considers a scenario where the regularization parameters are different for the spatial and temporal322

domains. Although there is a rich literature on methods to estimate a single regularization parameter, finding323

multiple regularization parameters is challenging and an active area of research; see, e.g., [6, 30, 31].324

5. Iterative methods for IRLS problems and parameter choice. In this section, we describe a numerical325

method to solve the optimization problems arising from the approaches described in Section 3.326

Towards the end of this section, we describe how a suitable value for the regularization parameter λ(k) can be327

determined. To compute the iterate u(k+1) as in (3.16) we set the gradient of Qj(u; u(k)) to zero, which leads to328

the regularized normal equations (or general Tikhonov problem)329

(5.1)
(
FTΓ−1F + λ(k)(M

(k)
j )TM

(k)
j

)
u(k+1) = FTΓ−1d.

The system (5.1) has a unique solution if the null spaces of FTΓ−1F and (M
(k)
j )TM

(k)
j or, equivalently, the null330

spaces of FTF and DT
j Dj , only intersect at 0, j = 1, . . . , 6 (for convenience, we have defined D2 = D1).331

Therefore, for methods 1-3 (AnisoTV, TVplusTikhonov, and Aniso3DTV), this fits the assumptions of [41,332

Theorem 5], and as a consequence, the sequence {u(k)} converges to a global minimizer of Jjε(u) for each method333

(see [41, Corollary 6]). For methods 4-6 (Iso3DTV, IsoTV, and GS), it may be possible to extend the analysis from334

that paper; however, we do not pursue it here.335

Since solving (5.1) for large-scale matrices F and M(k) may be computationally demanding or even prohibitive,336

we search for a solution to (5.1) in a low dimensional subspace (namely, a generalized Krylov space) and solve a337

much smaller projected problem. If the approximate solution is unsatisfactory, we extend the search space with the338

(normalized) residual and consider the next problem in the sequence (3.16) so that, for each k, only one projected339

problem is solved, as detailed below. This leads to the Generalized Krylov subspace (GKS) process [41, 48]. A340

summary of the resulting algorithm adapted to the problems described in this paper is sketched in Algorithm 1341

below, together with a few explanations.342

At the kth iteration of Algorithm 1, given a c-dimensional (c � n) search space Vc = range(Vc), where343

Vc ∈ Rn×c has orthonormal columns, we compute an approximate solution to (5.1) by first computing the thin344

QR-decompositions Γ−1/2FVc = Q
(k)
F R

(k)
F and M

(k)
j Vc = Q

(k)
M R

(k)
M (line 7) and by then substituting u = Vcy345

in (5.1), leading to the small minimization problem in line 9: its solution can be computed at a low cost, giving the346

approximate solution u(k+1) = Vcy(k+1) (line 10). The residual associated with (5.1) can be computed as347

(5.2) r(k+1) = FTΓ−1(FVcy(k+1) − d) + λ(k)(M
(k)
j )TM

(k)
j Vcy(k+1).

If the stopping criteria (discussed in Section 6) are not satisfied, we use the normalized residual to expand the search348

space, i.e., range(Vc+1) = range([Vc, r(k+1)/‖r(k+1)‖2]), as prescribed in lines 11-12 (note that while in exact349

arithmetic r(k+1) ⊥ Vc, in practice, for numerical stability, we first explicitly orthogonalize the new residual against350

Vc). We then compute W
(k+1)
j and M

(k+1)
j and continue the iterations, solving for u(k+2). As Γ is fixed, the thin351

QR-decomposition Γ−1/2FVc = Q
(k)
F R

(k)
F can be updated efficiently when an additional column is appended352

to Vc (line 7). To compute a small initial search space and the initial approximation u(0), the GKS algorithm is353

generally started by running a few, say `, steps of Golub-Kahan bidiagonalization applied to Γ−1/2F and Γ−1/2d354

(line 2). We emphasize again that, at each iteration index k, an approximation of u(k+1) in (3.15) is obtained by355

solving a single projected problem of dimension k + `.356
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Algorithm 1 MM-GKS for dynamic inverse problems

1: Input:
Matrix F ∈ Rm×n, noise-corrupted data d ∈ Rm, Γ ∈ Rm×m, Ds ∈ Rr×n with s = 1, 2, . . . , 6.
Dimension ` of the initial approximation subspace, parameters ε > 0,
stopping criterion tolerance.

2: Generate the initial subspace basis: V` ∈ Rn×` such that VT
` V` = I.

3:
Compute Γ−1/2FV` and MsV`, and the QR factorization Γ−1/2FV` = QFRF;

compute u(0) = V` argminy∈R`

∥∥∥RFy − (QF)
TΓ−1/2d

∥∥∥2
2

4: for k = 0, 1, 2, . . . until a stopping criterion is satisfied
5: Let c = `+ k

6: Compute W
(k)
s as in Table 3.1, using u = u(k); compute the corresponding M

(k)
s .

7: Update Γ−1/2FVc = Q
(k)
F R

(k)
F and compute M

(k)
s Vc = Q

(k)
M R

(k)
M .

8: Determine the λ(k) by GCV; see [13, Section 3.2] for details.

9: Compute y(k+1) = argminy∈Rc

∥∥∥∥∥
[

R
(k)
F

(λ(k))1/2R
(k)
M

]
y −

[
(Q

(k)
F )TΓ−1/2d

0

]∥∥∥∥∥
2

2

.

10: Compute u(k+1) = Vcy(k+1).

11: Compute the residual r(k+1) = FTΓ−1(FVcy(k+1) − d) + λ(k)(M
(k)
s )TM

(k)
s Vcy(k+1).

12: Reorthogonalize: r(k+1) = r(k+1) −VcV
T
c r(k+1).

13: Enlarge the solution subspace with vnew =
r(k+1)

‖r(k+1)‖2
, Vc+1 = [Vc,vnew].

14: end for

To select the regularization parameter at the kth iteration (line 8), we work on the projected problem appearing357

in line 9 (solely involving small quantities). In particular, to efficiently apply generalized cross validation (GCV),358

we compute the generalized singular value decomposition of the c× c matrix pair (R
(k)
F ,R

(k)
M ).359

Alternative well-established approaches based on the L-curve or the discrepancy principle (DP) [17], or the360

unbiased predictive risk estimator (UPRE) [58], can be applied.361

Computational cost of Algorithm 1. Let TF and TFT denote the cost of evaluating a matrix-vector product362

with F and its transpose FT , respectively; this cost depends on the forward operator used in the application.363

Similarly, let TM and TMT denote the cost of computing matrix-vector products with M
(k)
s and its transpose364

(M
(k)
s )T , respectively; these costs depends on the specific regularization approach that is used, but they are generally365

small compared to TF and TFT , since M
(k)
s is typically very sparse. At the kth iteration of Algorithm 1, two QR366

factorizations need to be computed: one for Γ−1/2FVc and one for M
(k)
s Vc. The cost of this is O((m+ n)c2);367

however, this can be mitigated for the term Γ−1/2FVc by updating the QR factorization rather than recomputing368

it from scratch. We cannot do that for the second term M
(k)
s Vc since the entire matrix changes at each iteration.369

There is an additional cost of O(c3) at each iteration to estimate the regularization parameter and a cost of O(nc) to370

reorthogonalize and produce an estimate of the solution. The total cost per iteration is, therefore,371

Cost = TF + TFT + TM + TMT +O((m+ n)c2 + c3) flops.

This analysis assumes the initial basis V` is available; when ` is small, as is the case in our experiments, this cost372

is negligible compared to the cost of the GKS approach. Algorithm 1 is computationally efficient when TF and373

TFT are large compared to the cost of orthogonalization. The computational cost due to orthogonalization may374

be large when the number of iterations is high. Nevertheless, as we show in numerical experiments (Table 6.3375

for dynamic PAT in Section 6), our solver is much faster than other approaches we consider. Alternatively, for376

large-scale problems with high memory requirements, a recently proposed restarted MMGKS can be used [14].377

Developing even more efficient methods for large-scale dynamic inverse problems is an important topic for378

future study. Several possibilities can be explored, including using fixed quadratic majorant [41] and randomized379

sketching-based techniques [5].380

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

EDGE-PRESERVING REGULARIZATION FOR DYNAMIC INVERSE PROBLEMS 13

6. Numerical experiments. In this section, we provide numerical examples from three different dynamic381

inverse problems. Our goal is two-fold: to show that using dynamic information can be advantageous in reconstruc-382

tions and to compare the different spatiotemporal regularization methods proposed in this paper. In addition, we383

provide comparisons with several solvers, such as ADMM and variations of MM, demonstrating the computational384

efficiency of our approach.385

Discussion on the choice of numerical examples. Our first example considers a synthetic space-time image386

deblurring where images change in time, but the blurring operator is fixed for all the time instances. In this example,387

the true solution is available, which allows comparison between the proposed methods.388

The second example is a problem from dynamic photoacoustic tomography (PAT), in which there are few389

measurements per time step (since information is collected from limited angles) but many time steps yielding many390

measurements overall. This is the largest test problem we consider, with over 1.9 million unknowns, in which the391

forward operator A(t) changes at each time step. In this example, we compare a few of the regularization methods392

for dynamic inverse problems against the static inverse problem. Furthermore, we also compare the solvers adopted393

in this paper with other MM solvers and a state-of-the-art method, i.e., ADMM. The final example concerns real394

data arising from limited angle CT where the target of interest is a sequence of “emoji images”. For this example,395

the true solution is unavailable, and we only provide a qualitative assessment. Still, this example clearly illustrates396

the impact of incorporating temporal information in the reconstruction process.397

Quality measures and stopping criteria. To assess the quality of the reconstructed solution, we compute the398

Relative Reconstruction Errors (RREs) obtained using the `2 error norms. That is, for some recovered u(k) at the399

k-th iteration, the RRE is defined as follows400

(6.1) RRE := RRE(u(k),utrue) =
||u(k) − utrue||2
||utrue||2

.

In addition to the RRE, in some examples, we report the Peak Signal to Noise Ratio (PSNR) (from MATLAB) and401

the Structural SIMilarity index (SSIM) between u(k) and utrue to measure the quality of the computed approximate402

solutions. For the definition of the SSIM, we refer to [66] for details. Briefly, the SSIM measures how well the403

overall structure of the image is recovered; the higher the index, the better the reconstruction. The highest achievable404

value is 1.405

The iterations are terminated as soon as the maximum number of iterations is reached or one of the following406

criteria is satisfied407

(6.2) (i)
‖u(k) − u(k−1)‖2
‖u(k−1)‖2

≤ tol1 , (ii)
‖r(k+1)‖2
‖r(1)‖2

≤ tol2 ,

with tol1 = 9×10−4 and tol2 = 10−5. Criteria (i) and (ii) monitor the relative change of two consecutive iterations408

and the relative reduction in the residual (5.2), respectively. We also experimented with two other stopping criteria:409

the discrepancy principle and the relative change in the regularization parameter, which are not reported in our410

numerical results. For consistency, in all the numerical examples, we set ` = 5, that is, we run five iterations of411

the Golub-Kahan bidiagonalization algorithm to generate an initial subspace. We choose the smoothing parameter412

ε = 10−3. In the synthetic data examples (Examples 1 and 2), we perturb the measurements with white Gaussian413

noise, i.e., the noise vector e appearing in (1.1) has mean zero and a rescaled identity covariance matrix; we refer to414

the ratio σ = ‖e‖2/‖Fu‖2 as the noise level.415

All the timing results were run on a Mac Mini (M1, 2020) with 16 GB RAM running MacOS Big Sur and416

MATLAB 2021a.417

Example 1: Space-time image deblurring. The goal here is to reconstruct a sequence of approximations of418

desired images from a sequence of blurry and noisy images. A sample of the true images is shown in the first row of419

Figure 6.2. The simulated available data are obtained by blurring eight images of size 128× 128 with a Gaussian420

point spread function with a medium blur using [28]. We consider all the operators A = A(t) ∈ R16,384×16,384,421

t = 1, 2, . . . , 8 to be the same, so that F = I8 ⊗A ∈ R131,072×131,072.422

The blurred images are perturbed with white Gaussian noise of level σ = 0.01 and are shown in the second row423

of Figure 6.2. We solve (3.15), where the index j = 1, 2, . . . , 6 corresponds to (all the) methods listed in Table 3.1.424

Some quantitative results are displayed in Figure 6.1.425
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(a) (b)

Figure 6.1: Space-time image deblurring test problem: a) RRE computed for the dynamic problem at the iteration
when the stopping criteria are first satisfied for each time step. b) History of RRE (all time steps together) for 150
iterations. The methods considered here are AnisoTV, TVplusTikhonov, IsoTV, Aniso3DTV, Iso3DTV, and GS.
The solid diamond markers highlight the iteration satisfying the stopping criteria.

Figure 6.1 (a) shows the RRE at each of the eight time points for each method. The RRE is computed at426

the iteration k when the stopping criteria (6.2) are first satisfied; the number of iterations k and the regularization427

parameter λ(k) that was chosen are displayed in Table 6.1; note that we estimate the corresponding regularization428

parameter at each MM-GKS iteration. In Figure 6.1 (b), we show the RRE versus the number of iterations for429

all the methods when each method is allowed to run for 150 iterations without considering any other stopping430

criteria. Solid diamond markers over the lines in Figure 6.1 (a) show the iteration and the value of the RRE (for431

each time slice) when the stopping criteria are satisfied. In contrast, each line in Figure 6.1 (b) shows the RRE432

for each method for all images together, that is, the error in u(k). We observe that AnisoTV and GS outperform433

the other methods for this example in terms of RRE. Moreover, as illustrated in Figure 6.1, for methods IsoTV*,434

Iso3DTV, and TVplusTikhonov we observe an increase of the RRE in the early iterations, but if the method is let to435

run enough iterations, then the RRE values start to stabilize (for all methods except for IsoTV). Reconstructions436

with AnisoTV at time steps t = 1, 4, 5, 6, 7 are shown in the third row of Figure 6.2.437

Table 6.1: Space-time image deblurring example: The number of iterations when a stopping criterion is satisfied for
the first time and the corresponding regularization parameters for the considered methods.

Method AnisoTV TVplusTikhonov IsoTV Aniso3DTV Iso3DTV GS
Iterations k 89 138 150∗ 69 80 63
λ(k) 0.163 0.126 0.295 0.007 0.168 0.114

Example 2: Dynamic photoacoustic tomography (PAT). As a second example, we consider a dynamic438

instance of PAT, which is a hybrid imaging modality that combines the rich contrast of optical imaging with the high439

resolution of ultrasound imaging; dynamical PAT models were already considered in [22, 23, 52]. Specifically, the440

forward operator F is time-dependent and has the block-diagonal structure (1.2). The operators A(t) are computed441

by using the PRspherical function from [28], for the projection angles t, t+ 30, . . . , t+ 241, t = 1, 2, . . . , nt.442

We add white Gaussian noise of level σ = 0.01 to the available measurements.443

In a first instance, we consider images U(t), t = 1, 2, . . . , 30 of size 256× 256 where each image represents444

a superposition of six circular objects that are in motion. This implies that the total number of unknowns is445

*IsoTV stopped by the maximum number of iterations (150) for this example, but we highlight that when we slightly increase the tolerance
on the stopping criteria, we observed convergence within 150 iterations.
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Figure 6.2: Space-time image deblurring test problem: the first row represents a sample of true images at time steps
t = 1, 4, 5, 6, 7. The second row shows the respective blurred any noisy images with medium blur and Gaussian
noise of level σ = 0.01. The third row shows the reconstructed images u(t), t = 1, 4, 5, 6, 7 obtained by AnisoTV
when the stopping criteria are satisfied.

Figure 6.3: Dynamic PAT test problem: First row, from left to right: True images at time steps t = 1, 10, 20, 30.
Second row, from left to right: sample of sinograms at time steps t = 1, 10, 20, 30 and the full sinogram.

n = 256× 256× 30 = 1, 966, 080, leading to a severely underdetermined inverse problem. For each angle there446
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(a) (b)

Figure 6.4: Dynamic PAT test problem: a) RRE computed at the iteration (reported in Table 6.2) when the stopping
criteria are first satisfied, for each time step. b) SSIM computed at the iteration when the stopping criteria are first
satisfied, for each time step. The methods considered here are AnisoTV (right-pointing triangle line), Iso3DTV
(dotted line), and GS (left-pointing triangle line).

are 362 measurements, resulting in a total of m = 97, 740 observations. A sample of true images at time instances447

t = 1, 10, 20, 30 is shown in the first row of Figure 6.3, and the corresponding noisy sinograms d(t) ∈ R3,258 along448

with the full sinogram (obtained by concatenating all 30 available sinograms together) are shown in the second row449

of Figure 6.3. We carry out the following numerical experiments:450

(a) Solve the large-scale dynamic inverse problem (3.15) with j = 1, 4, 6. More specifically, we choose AnisoTV451

from anisotropic-type methods, Iso3DTV from isotropic-type methods, and GS.452

(b) Solve the static inverse problem (1.4) with the regularization term453

(6.3) R(u) = ‖Lsu(t)‖1 at t = 1, 2, . . . , 30,

accounting for spatial regularization only. Throughout this paper, we solve the static inverse problem (1.4) by454

the MM-GKS algorithm where the regularization parameter is adapted at each iteration and all the stopping455

criteria are set the same as for solving the dynamic inverse problem (3.15).456

We compute the RRE(u(k),utrue) as well as the SSIM for both experimental setups as described in (a) and457

(b) above and we report the results in Figure 6.4 when the stopping criteria (6.2) are satisfied for the first time.458

The number of the iterations k and the corresponding regularization parameter λ(k) are reported in Table 6.2. GS459

outperforms all the methods in this experimental setup, followed by AnisoTV, as illustrated in Figure 6.5 by both460

the RRE and SSIM quality measures. Notice here that Iso3DTV is the least accurate method among the ones we461

propose; however, it still outperforms the static approach.462

In Figure 6.5, we report the reconstructions at times steps t = 1, 10, 20, 30 from left to right respectively (exact463

images are reported in Figure 6.3). Different rows correspond to reconstructions with different methods. The first464

row shows the reconstructions obtained by solving the static inverse problem (1.4) where we observe that even465

though the method is able to provide the locations of the inclusions, the detailed information of the inclusions is466

missing. The second row shows the reconstructions with Iso3DTV, where certainly the artifacts around the circular467

inclusions are present and the background appears perturbed as well. Improved reconstructions are observed in the468

third and the fourth rows of Figure 6.5, obtained by AnisoTV and GS respectively.469

Comparing different solvers. We consider 30 images of size 128× 128 to compare the new solvers with other470

solvers based on IRLS (or, equivalently, MM) strategies (2.7) and primal-dual type methods such as ADMM. For471

simplicity, during the comparison, we only display results for the AnisoTV regularization term (3.1); the other472

regularizers listed in Table 3.1 provide very similar results in terms of accuracy and computational time.473

Specifically, we consider the so-called474

(c) MM-LSQR method: In this approach, we use LSQR [56] to solve the sequence of least squares prob-475

lems (3.7), written in the augmented form. We allow for 30 MM iterations and limit the number of inner476
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Table 6.2: Dynamic PAT test problem: The number of iterations k when the stopping criteria is satisfied for the first
time and the corresponding regularization parameter λ(k) at those iterations for AnisoTV, Iso3DTV, and GS.

Method AnisoTV Iso3DTV GS
Iterations k 84 81 91
λ(k) 0.0073 0.0073 0.0073

Figure 6.5: Dynamic PAT test problem: Panels in the first row show the reconstructions by solving the static inverse
problem, panels in the second, third, and fourth rows show reconstructions with AnisoTV, Iso3DTV, and GS at time
steps t = 1, 10, 20, 30 from left to right, respectively.

iterations to a maximum of 100 or stop if the tolerance of 10−5 is achieved for the solution obtained by477

LSQR. We select the best (i.e., one that produces the smallest RRE) regularization parameter out of 15478

candidate values.479

(d) Inner-outer reweighting scheme: We follow the inner-outer approach introduced in [29], where the authors480

present an IRLS approach that uses an adaptive diagonal weighting matrix that shares some common481

features with spatial anisotropic TV involving the discrete spatial gradient operator Ls (2.5), and a482

projection-based iterative method developed in [45] to solve the corresponding sequence of general-form483

Tikhonov problems. We extended this approach to spatiotemporal TV by considering the spatiotemporal484

first derivative operator D1 (3.1) rather than Ls. We set a maximum number of outer iterations to 30485
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and limit the number of inner iterations to 60, and consider two different methods for estimating the486

regularization parameter at each inner iteration: the discrepancy principle and the L-curve. We call this487

approach IRN-aTV.488

(e) ADMM: We consider here a primal-dual solver for (1.3) such as the Alternating Direction Method of489

Multipliers (ADMM) [9].490

When ADMM is employed to solve the minimization problem (1.3), with regularization term (for instance491

R1(u)), and a fixed regularization parameter, the main computational cost at its kth iteration is sourced492

from solving a linear system of equations of the form493

(6.4) (FTF + ωDT
1 D1)u = FTd + DT

1 µk + ωDT
1 ck ,

where µk is the current Lagrange multiplier, ck is a current auxiliary variable, and ω > 0 is a penalty494

parameter for the Lagrangian. This is followed by the application of a proximal operator. We follow the495

approach in [33] but it is adapted to our setup.496

We let the maximum number of iterations of ADMM be 150 (the same maximum number of iterations497

as in AnisoTV). We solve the linear system (6.4) using LSQR for which we stop the iterations when the498

tolerance 10−5 or the maximum number of iterations 100 is reached. The regularization parameter is499

selected after searching for a regularization parameter that minimizes the RRE over 15 candidate runs.500

We are somewhat limited in the solvers we can compare methods (a) against; this is because, while many501

methods are applicable to standard-form Tikhonov regularization, far fewer methods are applicable to general-form502

Tikhonov regularization (which is needed to solve (2.7)), which are further limited by the requirement that the503

regularization parameter λ should be ideally estimated during the reconstruction process.504

In Table 6.3 we list the RRE, PSNR, the number of iterations, and CPU time (in hours) for the anisotropic-TV-505

like methods described in (a), (c), (d), and (e).506

Table 6.3: Dynamic PAT test problem: Comparison of different solvers in terms of RRE, PSNR, Iterations (number
of outer iterations), either MM or ADMM) and CPU time. CPU time includes the effort to find the best regularization
parameter (over 15 candidate runs) for MM-LSQR and ADMM.

MM-GKS IRN-aTV (DP) IRN-aTV (L-curve) MM-LSQR ADMM
RRE 0.096 0.0712 0.082 0.1879 0.087

PSNR 36.1 38.7 37.5 30.3 37.1
Iterations 85 30 30 30 99

CPU time (hours) 0.17 4.42 1.99 2.49 3.71

We make the following observations:507

1. We clearly see that MM-LSQR is not competitive either in run time or the reconstruction error. Incrementing508

the number of inner and outer iterations will likely reduce the RRE, but it will increase the computational509

cost further.510

2. The IRN-aTV methods have slightly lower RRE but considerably higher run times than MM-GKS. We did511

not investigate how to effectively stop the inner and outer iterations and used the implementation in IR512

Tools.513

3. The ADMM yields a relatively low reconstruction error. For each regularization parameter value, the514

algorithm is fairly efficient and takes ∼ 0.25 hours, but computed over 15 candidate runs it takes 3.71515

hours. Note that the time to run ADMM for one (known) regularization parameter is still ∼ 50% more516

expensive than MM-GKS.517

To explain these observations, we note that the MM-GKS approach is more efficient for a comparable accuracy518

because, unlike the other three methods, 1) it is not an inner-outer method and 2) the regularization parameter519

is determined automatically at a negligible computational cost. More precisely, at each iteration, MM-GKS520

only increments the current basis for the solution by one vector to approximately solve each reweighted least521

squares problem in the sequence (2.7), rather than computing a new basis from scratch. In contrast, the IRN-aTV522

method technically involves three levels of iterations: the outermost iterations update the weights needed for523

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

EDGE-PRESERVING REGULARIZATION FOR DYNAMIC INVERSE PROBLEMS 19

edge-preserving regularization, while the inner iterations used to solve the resulting general-form Tikhonov problem524

involve themselves an inner set of LSQR iterations [45].525

Furthermore, MM-GKS is able to estimate the regularization parameter during the reconstruction (unlike526

MM-LSQR and ADMM), avoiding the need for a repeated inner-outer loop over all candidate regularization527

parameters. This numerical experiment highlights why the MM-GKS approach is efficient in this context despite528

the potentially large orthogonalization cost.529

We further remark that although MM-GKS is competitive with other methods we consider, the number of basis530

vectors that need to be stored in MM-GKS grows with the number of iterations. In large-scale problems (as in531

the current example), memory capacity can be easily reached and we may not be able to run MM-GKS enough532

iterations to converge. A remedy to memory limitations was restarting, introduced in [14]. Other efficient strategies533

include recycling the subspace, which is a subject of future research.534

Example 3: Dynamic X-Ray Tomography - 3D Emoji Data. In this example, we test our methods on real535

data of an “emoji” phantom measured at the University of Helsinki [53]. The forward operator and the data can536

be obtained from the file DataDynamic_128x30.mat. The available data represents nt = 33 time steps of a537

series of the X-ray sinogram of emojis made of small ceramic stones obtained by shining 217 projections from538

na = 30 angles. The inverse problem involves reconstructing a sequence of images U(t), t = 1, 2, . . . , 33, of539

size nh × nv, where nh = nv = 128, from low-dose observations measured from a limited number of angles na.540

These images represent the dynamic sequence of emojis varying from an expressionless face with closed eyes and a541

straight mouth to a face with smiling eyes and mouth, where the outermost circular shape does not change. As a542

result, the unknown images are collected in u =
[
(u(1))T , (u(2))T , . . . , (u(33))T

]T ∈ R540,672. See the first row543

of Figure 6.6 for a sample of 4 images at time steps t = 6, 14, 20, 26. The low-dose available observations can be544

modeled by the measurement matrix F which describes the forward model of the Radon transform that represents545

line integrals. In this case, we have a block matrix F as in (1.2) with 33 blocks. Although the ground truth is not546

available, we can qualitatively compare the visual results.547

We visualize the reconstructions from different numbers of angles na = 10 and na = 30, highlighting the effect548

of the number of the projection angles and also the visual differences in the reconstruction when static sub-problems549

(1.4) are solved independently and when the dynamic inverse problem (3.15) is solved. For each case, in Table 6.4,550

we report the number of iterations that the method took to converge and the regularization parameter at that iteration.551

Case 1: Consider na = 10 projection angles. First, we limit the number of angles na to 10 from the dataset552

DataDynamic_128x30.mat. In this way we generate underdetermined problems A(t)u(t) + e(t) = d(t),553

t = 1, 2, . . . , 33 where A(t) ∈ R2,170×16,384. Therefore F ∈ R71,610×540,672 and the measurement vector554

d ∈ R71,610 contains the measured sinograms d(t) ∈ R2,170 obtained from 217 projections around 10 equidistant555

angles.556

Figure 6.6 displays some reconstructions (see also the supplementary materials † for an animation). Looking557

at the second row of images, it is evident that a limited number of projection angles per time step results in poor558

reconstructions when solving the static inverse problem, where the important details (features of the face) are559

missing. Solving the dynamic inverse problem results in enhanced quality of the reconstruction. In particular,560

by considering the new regularization terms in AnisoTV (third row) and IsoTV3D (fourth row), we are able to561

reconstruct the edges clearly and have fewer artifacts overall.562

Case 2: Consider na = 30 projection angles. In this second case, we consider the full number of angles in563

the dataset DataDynamic_128x30.mat, i.e., na = 30 to highlight the importance of the number of projection564

angles. Here A(t) ∈ R6,510×16,384 and the measured sinograms are obtained from 217 projections with 30 angles565

each, that is, d(t) ∈ R6,510. Hence F ∈ R214,830×540,672 and d ∈ R214,830. The reconstructions of the static566

problems (1.4) are shown in the second row of Figure 6.7. The third and the fourth rows display the reconstruction567

by AnisoTV and Iso3DTV at time instances t = 6, 14, 20, 26 from left to right, respectively. The first remark is that568

similar to the case na = 10, the reconstructions obtained using the dynamic inverse problem are qualitatively better569

than that of the static inverse problem. In addition, we observe that increasing the number of projection angles from570

10 to 30 helps in removing the background artifacts and better preserving the edges.571

We remark that other methods such as TVplusTikhonov, IsoTV, and Aniso3DTV produce reconstructions of572

similar quality to AnisoTV and Iso3DTV and, therefore, we do not report them here. In contrast to the other test573

†https://drive.google.com/file/d/14mzD_odpc5_13t7axq-swJh9tdrdZaEA/view?usp=sharing
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Figure 6.6: Reconstruction results for the emoji test problem with na = 10. The rows represent (from top to
bottom): the original images, the reconstructions when images are considered independently, the reconstructions by
AnisoTV, the reconstructions by Iso3DTV, at time steps t = 2, 10, 18, 31 (from left to right).

problems that we presented above, where GS was one of the most accurate methods, it (qualitatively) appears to be574

the least accurate one in this example. This observation allows us to highlight one of the goals of this paper, which575

is to present a variety of regularization methods without advocating for one over the other, since the performance of576

the methods we describe is application dependent.577

Table 6.4: Dynamic X-Ray Tomography example: The number of iterations when the stopping criteria are satisfied
for the first time and the regularization parameters at those iterations for AnisoTV and Iso3DTV.

Method AnisoTV Iso3DTV

na = 10
Iterations k 115 63

λ(k) 0.515 0.7935

na = 30
Iterations k 86 94

λ(k) 0.796 1.109
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Figure 6.7: Reconstruction results for the emoji test problem with na = 30. The rows represent (from top to
bottom): the original images, the reconstructions when images are considered independently, the reconstructions by
AnisoTV, and the reconstructions by Iso3DTV, at time steps t = 2, 10, 18, 31 (from left to right).

Nonnegativity constraints. In many applications, such as medical imaging and astronomical imaging, the pixels578

of the desired solution are nonnegative [11, 12, 32], that is, the exact solution of (1.3) is known to live in the closed579

and convex set Ω0 = {u ∈ Rn : (u)` ≥ 0, ` = 1, 2, . . . , n}.580

In general, imposing nonnegativity helps mitigate the artifacts from limited angles. Here we consider the581

optimization problems (3.15) subject to the constraint u ∈ Ω0. This is heuristically implemented by projecting the582

solution u(k) onto Ω0 at each iteration. We illustrate the effect of the nonnegativity constraint in Example 3 for583

Case 1, with the number of projection angles taken to be na = 10 and with observations d(t), t = 1, 2, . . . , 33. The584

reconstructed images at time steps t = 6, 14, 20, 26 are shown in Figure 6.8. From visual inspection, there are fewer585

artifacts around the edges when the nonnegativity constraint is applied.586

7. Conclusions and future directions. In this paper, we proposed a unified approach for solving large-scale587

dynamic inverse problems and providing solutions with edge-preserving and sparsity-promoting properties. The588

approaches we discussed here are grouped into isotropic TV methods (which include IsoTV and Iso3DTV),589

anisotropic TV (which include AnisoTV and an Aniso3DTV), and another set of methods based on the concept of590

group sparsity, GS. All the methods can be expressed in a unified framework using the MM technique, where the591

resulting least squares problem can be solved on a generalized Krylov subspace of a relatively small dimension, and592

the regularization parameter can be estimated efficiently. Several numerical examples, performed on both synthetic593
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Figure 6.8: Reconstruction results for the emoji test problem with na = 10. The first row shows the reconstructions
with Iso3DTV for the unconstrained problem, and the second row shows the reconstructions with nonnegativity
Iso3DTV at time steps nt = 6, 14, 20, 26 respectively from left to right.

and real data, illustrate the performances of the proposed methods in terms of the quality of the reconstructed594

solutions. Although we propose a unified and generic framework that can be used to solve a wide range of dynamic595

inverse problems, there are quite a few potential directions to investigate for future work (see also Section 4). One596

direction of interest worth emphasizing is to investigate further the use of multiple regularization parameters, for597

instance, regularization parameters for the temporal and spatial domain or adapted regularization parameters for598

different channels. Another direction includes alternative formulations along with their Bayesian interpretation and599

uncertainty quantification. Moreover, it is known that tensor formulations preserve the structure of the data. Hence600

we are interested in investigating efficient tensor-based regularization methods [63]. Some other applications of601

interest include video reconstruction, multi-channel X-ray spectral tomography, and moving object detection.602
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Appendix A. Optimization problems and MM approaches. In this appendix, we provide the details of the MM743

approaches for the optimization problems corresponding to the regularization terms: TVplusTikhonov, Aniso3DTV,744

Iso3DTV, IsoTV, GS.745

A.1. TVplusTikhonov. We solve the inverse problem (1.1) by solving the optimization problem:746

(A.1) min
u∈Rn

J2(u) := F(u) + λR2(u),

where λ > 0. To achieve this, we can apply the MM approach similar to Section 3.1. In particular, we consider the747

smoothed versionR2ε(u) ofR2(u), where the smoothing is applied only to the first term in (3.8); the corresponding748

smoothed objective function is denoted by J2ε(u). To derive a quadratic tangent majorant for J2ε(u), we only need749
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to majorize its first term, so that we obtain750

(A.2) Q2(u; u(k)) := F(u) +
λ

2
‖M(k)

2 u‖22 + c2,

where c2 is a constant independent of u, and the matrix M
(k)
2 is defined as751

(A.3) M
(k)
2 :=

[
W

(k)
2

I

]
D1,

with D1 as in (3.1). The weighting matrix W
(k)
2 is defined as752

W
(k)
2 = diag

(
(D1u(k))

2 + ε2
)−1/4

.

As in (3.7), to solve the optimization problem (A.1), we solve a sequence of reweighted least squares problems with753

the objective function Q2 defined in (A.2).754

A.2. Aniso3DTV. The problem that we want to solve can be formulated as755

min
u∈Rn

J3(u) := F(u) + λR3(u),

which can be tackled with the MM approach similar to the one described in Section 3.1. Again, we consider the756

smoothed version R3ε(u) of R3(u); the corresponding smoothed objective function is denoted by J3ε(u). We757

majorize J3ε(u) by the quadratic tangent majorant758

Q3(u; u(k)) := F(u) +
λ

2
‖M(k)

3 u‖22 + c3,

where c3 is a constant independent of u and759

(A.4) M
(k)
3 = W

(k)
3 D3, where W

(k)
3 = diag(((D3u(k))

2 + ε2)−1/4) .

A.3. Iso3DTV. We have the following problem760

(A.5) min
u∈Rn

J4(u) := F(u) + λR4(u).

We first consider, instead ofR4(u), the smoothed regularization term761

R4ε(u) :=

nvnhnt∑
`=1

√
(z̄v(u))2` + (z̄h(u))2` + (z̄t(y))2` + ε2

and the corresponding objective function J4ε(u). Following the derivation in [69], we devise weights to be used in762

an MM approach to Iso3DTV. We can define the quadratic tangent majorant Q4(u; u(k)) for the objective function763

J4ε(u) as764

Q4(u; u(k)) := F(u) +
λ

2
‖M(k)

4 u‖22 + c4,

where c4 is a constant independent of u, and M
(k)
4 is the weighted matrix765

(A.6) M
(k)
4 := W

(k)
4 D4, with D4 :=

Int
⊗ Inh

⊗ L̄v
Int ⊗ L̄h ⊗ Inv

L̄t ⊗ Inh
⊗ Inv

 ,
and766

W
(k)
4 = I3 ⊗ diag

((
(z̄v(u(k)))

2 + (z̄h(u(k)))
2 + (z̄t(u(k)))

2 + ε2
)−1/4)

,

where (z̄d(u(k))) are the vectors z̄d(u) in (3.11), d = v, h, t, evaluated at u = u(k), i.e., at the kth iteration. Finally,767

the matrix D4 is similar to D1 defined in (3.1), with the augmented derivative matrices L̄d instead of Ld.768
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A.4. IsoTV. We have the following problem769

(A.7) min
u∈Rn

J5(u) = min
u∈Rn

F(u) + λR5(u).

We define a smoothed version ofR5(u), denoted byR5ε(u) where the smoothing is applied separately to the first770

and second terms; the corresponding smoothed objective function is denoted by J5ε(u). We can then define the771

quadratic tangent majorant Q5(u; u(k)) for the objective function J5ε(u) as772

Q5(u; u(k)) := F(u) +
λ

2
‖M(k)

5 u‖22 + c5.

The constant c5 independent of u, and M
(k)
5 is the weighted matrix773

(A.8) M
(k)
5 := W

(k)
5 D5,

with774

(A.9) D5 :=

Int
⊗ Inh

⊗ L̄v
Int ⊗ L̄h ⊗ Inv

Lt ⊗ Inh
⊗ Inv

 and W
(k)
5 =

 I2 ⊗ diag
(
ws

(k)

)
diag

(
wt

(k)

)  ,
where775

ws
(k) =

(
(z̄v(u(k)))

2 + (z̄h(u(k)))
2 + ε2

)−1/4
and wt

(k) =
(
(zt(u(k)))

2 + ε2
)−1/4

.

Here z̄d(u(k)) are again the vectors z̄d(u) in (3.11), d = v, h, evaluated at u = u(k), i.e., at the kth iteration.776

A.5. GS. Corresponding to the regularization operatorR6, we can define the optimization problem:777

min
u∈Rn

J6(u) := F(u) + λR6(u),

where λ > 0. We can apply the MM approach similar to Section 3.1. We now seek a quadratic tangent majorant for778

a smoothed version ofR6(u). To this end, let u(k) be the current iterate (similarly, define z(k) = (Int
⊗ Ls)u(k)).779

Then, we have that780

R6(u) ≤
n′s∑
`=1

√
‖z`‖22 + ε2 =: R6ε(u) ≤

n′s∑
`=1

‖z`‖22
2
√
‖(Int ⊗ eT` Ls)u(k)‖22 + ε2

+ c̃6,

where c̃6 is a constant independent of z` and u. The corresponding smoothed optimization function is defined as781

J6ε(u). Let us define the weighting matrix W
(k)
6 of size n′s × n′s as782

W
(k)
6 := diag

 1√
‖(Int ⊗ eT1 Ls)u(k)‖22 + ε2

, . . . ,
1√

‖(Int
⊗ eTn′sLs)u(k)‖22 + ε2

1/2

.

We can use this weighting matrix to define the quadratic tangent majorant783

Q6(u; u(k)) := F(u) +
λ

2
‖M(k)

6 u‖22 + c6,

where c6 = λc̃6 and the matrix M
(k)
6 takes the form784

(A.10) M
(k)
6 := (Int

⊗W
(k)
6 )D6, with D6 := (Int

⊗ Ls).
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