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Short communication 

Discovery of a human monoclonal antibody that cross-neutralizes venom 
phospholipase A2s from three different snake genera 
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A R T I C L E  I N F O   

Handling Editor: Ray Norton  

A B S T R A C T   

Despite the considerable global impact of snakebite envenoming, available treatments remain suboptimal. Here, 
we report the discovery of a broadly-neutralizing human monoclonal antibody, using a phage display-based 
cross-panning strategy, capable of reducing the cytotoxic effects of venom phospholipase A2s from three 
different snake genera from different continents. This highlights the potential of utilizing monoclonal antibodies 
to develop more effective, safer, and globally accessible polyvalent antivenoms that can be widely used to treat 
snakebite envenoming.   

Snakebite envenomings remain a critical global health issue. Ac
cording to the World Health Organization (WHO), an estimated 1.8 to 
2.7 million people globally suffer from snakebite envenomings each 
year. Tragically, between 81,000 and 138,000 of these cases result in 
fatalities, and many survivors experience permanent sequelae, including 
loss of limbs and disfigurements (Gutiérrez et al., 2017; Kasturiratne 
et al., 2008; Roberts et al., 2022). Although the burden is global, the 
impact of snakebite envenomings is felt most acutely in Africa, South 
Asia, and Central and South America (Harrison et al., 2009). 

Snake venoms are intricate mixtures of proteins and peptides, unique 
to each species, although they often exhibit intra-species variation due 
to factors like geographical location and age of the snakes (Calvete et al., 
2010, 2011; Casewell et al., 2020; Madrigal et al., 2012). Despite this 
complexity, venom toxins can be classified into several major families, 
with the phospholipase A2s (PLA2s), three-finger toxins (3FTxs), snake 
venom metalloproteases (SVMPs), and snake venom serine proteases 
(SVSPs) being the medically most important ones across most snake 
species (Bermúdez-Méndez et al., 2018). Notably, PLA2s, known to 
inflict diverse toxic effects such as myotoxicity, cytotoxicity, neurotox
icity, and hemotoxicity, are universally present in the venoms of all 
known venomous snake species (Borges et al., 2017). Traditional 

antivenoms are currently the only specific treatment option for snake
bite envenoming. However, these are often limited by their high cost of 
goods sold (COGS) and the potential adverse immune reactions they 
may cause (Gutiérrez et al., 2017; Kasturiratne et al., 2008; Roberts 
et al., 2022), which emphasizes the urgent need for improved and more 
accessible snakebite therapies. 

Efforts are currently underway to improve existing antivenom ther
apies and to develop alternatives. Among these, monoclonal antibodies 
(mAbs) and small molecule inhibitors have been demonstrated to hold 
promise (Albulescu et al., 2020; Glanville et al., 2022; Jones et al., 2022; 
Laustsen et al., 2018; Ledsgaard et al., 2022a, 2023; Xie et al., 2020). In 
this relation, recombinant antivenoms, composed of such monoclonal 
antibodies have therefore been hypothesized as a promising therapy for 
snakebite envenoming therapy (Laustsen, 2016; Laustsen, 2016, 2017, 
2018). For such recombinant antivenoms, the discovery of 
broadly-neutralizing monoclonal antibodies (bnAbs) against multiple 
toxins could simplify the antivenom composition by limiting the number 
of unique antibodies needed for broad neutralization, thereby making 
their manufacturing more feasible (Ledsgaard et al., 2023; Zhang et al., 
2003). 

Building upon our prior work using a phage display-based cross- 
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panning strategy for the discovery of cross-reactive single-chain variable 
fragments (scFv) (Ahmadi et al., 2020; Laustsen et al., 2021; Ledsgaard 
et al., 2022b; Sørensen et al., 2023b), in this study, we aimed to assess 
the degree of cross-reactivity in a selected subset of scFvs and whether 
their cross-reactive binding properties translate into broad toxin 
neutralization. Using a combination of immunoassays and in vitro 
cytotoxicity assays using muscle stem cells (myoblasts), we identified a 
PLA2-specific antibody that reduces the cytotoxic effects of viperid snake 
venoms from Central America, Africa, and Asia. More specifically, two 
types of experiments were carried out: Dissociation-Enhanced Lantha
nide Fluorescent Immunoassays (DELFIAs) and myoblast-based 
neutralization assays. DELFIAs were performed by coating black Max
iSorp plates (Nunc) with whole snake venoms (20 μg/mL of Bothrops 
asper, Echis carinatus sochureki, E. ocellatus, E. leucogaster, Daboia russelii, 
Naja naja, Cerastes cerastes, Bitis arietans, Crotalus adamanteus, or 
Agkistrodon piscivorus, all obtained from Latoxan ) overnight at 4 ◦C. 
After blocking using 3% (w/v) skimmed milk in phosphate-buffered 
saline (MPBS), individual bacterial expression supernatants containing 
monoclonal scFvs in 3% MPBS were added (25 μL supernatant in 25 μL 
6% MPBS). Bound scFvs were detected by the addition of a 
europium-conjugated anti-FLAG IgG (Sigma, F3165) and DELFIA 
Enhancement solution (PerkinElmer, 4001–0010), followed by 
measuring the time-resolved fluorescence (TRF) signal with excitation at 
320 nm and emission at 615 nm in a Victor Nivo Multimode Microplate 
reader. The intensity of the signal was directly correlated with the 
amount of scFv bound to the coated venom. 

Myoblast-based neutralization assays were carried out using a mu
rine (C2C12) myoblast cell line, which were cultured in Dulbecco’s 
Modified Eagle Medium (DMEM) [with 1% (v/v) penicillin- 
streptomycin and 10% (v/v) foetal bovine serum (FBS)] at 37 ◦C with 
5% CO₂. Cells were seeded at 10,000 cells per well in 100 μL of growth 
medium and allowed to adhere overnight. Next, cells were incubated 
with 100 μL of the PLA2-like toxin myotoxin II (50 μg/mL and 100 μg/ 
mL for optimization assays and 100 μg/mL for neutralization assays) 
purified from whole B. asper venom as described previously (Lomonte 
and Gutiérrez, 1989; Mora-Obando et al., 2014; Sørensen et al., 2023b) 
or venoms (15.6–1000 μg/mL of B. asper, E. c. sochureki, E. ocellatus, 
E. leucogaster, or D. russelii venom for optimization assays and 125 
μg/mL for neutralization assays, except for D. russelii venom, where 250 
μg/mL venom was used as this venom was less cytotoxic to C2C12 cells) 
in growth medium for 24 h. The viability of the cells was thereafter 
measured by employing an MTS tetrazolium-based assay (CellTiter 96® 
AQueous One Solution Cell Proliferation Assay, Promega), where the 
MTS reagent was incubated for 3 h followed by measuring the absor
bance at 490 nm in a microplate reader. For neutralization assays, the 

antibody was preincubated for 30 min at 37 ◦C with myotoxin II (1:1, 
1:2, and 1:2.7 toxin:antibody molar ratio) or whole venoms (3 mg/mL 
antibody for all venoms, except D. russelii venom, for which 6 mg/mL 
antibody was used) before addition to the cells. The signal of control 
cells cultivated with only medium was considered as 100% viability to 
calculate the effect of venom/toxin with and without antibody addition. 

The discovery and initial screening of scFvs and antibodies tested in 
this study is described in our previous study (Sørensen et al., 2023b). In 
short, a naïve scFv antibody phage display library was used for phage 
display selection campaigns on venom fractions containing the PLA2-
like snake toxins ecarpholin S (P48650) from E. c. sochureki and myo
toxin II from B. asper (P24605) (Sørensen et al., 2023b). Based on the 
initial scFv characterization published in Sørensen et al. 2023, four scFvs 
were selected for further cross-reactivity testing – two scFvs 
(126_01_B08 (B08) and 127_02_H06 (H06)) which showed 
cross-reactive binding against ecarpholin S and myotoxin II and two 
scFvs (125_01_D09 (D09) and 127_02_A02 (A02)) that showed 
mono-specificity against either ecarpholin S or myotoxin II, respectively 
(Fig. 1A). 

While examining the breadth of the binding of the anti-PLA2 scFvs to 
ten different snake venoms, it was discovered that the two scFvs, which 
had already shown cross-reactive potential (Fig. 1A), could bind to the 
venoms from B. asper, E. c. sochureki, E. ocellatus, E. leucogaster, and D. 
russelii (Fig. 1B). Further, the anti-ecarpholin S scFv, 125_01_D09, was 
observed to bind to the venoms from E. c. sochureki, E. ocellatus, and 
E. leucogaster, which is likely because of intra-genus venom/toxin sim
ilarities. Surprisingly, the myotoxin II binding scFv (127_02_A02) 
showed binding to venoms from B. asper, E. ocellatus, and E. leucogaster, 
but showed no binding to the venom from E. c. sochureki, hereby high
lighting intra-genus venom/toxin similarities and inter-genus venom/ 
toxin differences. None of the four selected scFvs showed any binding to 
the venoms of N. naja, C. cerastes, B. arietans, C. adamanteus, and A. 
piscivorus. The two scFvs that showed broad cross-binding properties, 
with binding to at least five different snake venoms, originate from the 
use of cross-panning strategies with venom fractions containing mainly 
ecarpholin S (P48650) from E. c. sochureki venom and myotoxin II 
(P24605) from B. asper, respectively (Sørensen et al., 2023b). While the 
observed binding of anti-PLA2 scFvs to snake venoms within the Echis or 
Bothrops genera could be expected due to intra-genus venom/toxin 
similarities to the toxins used during discovery, the ability of these scFvs 
to also bind to D. russelii venom components was less expected, as no 
Daboia toxins were involved in the discovery process. Additionally, the 
significantly higher binding signals exhibited by the scFvs towards 
E. ocellatus venom compared to E. c. sochureki are noteworthy as E. c. 
sochureki has been reported to have a higher amount of PLA2s than the 

Fig. 1. Assessment of scFv cross-reactivity. A) DELFIA-based assessment of the four selected scFvs plotted with their binding to ecarpholin S and myotoxin II on the x 
and y axis, respectively, as published in (Sørensen et al., 2023b). B and C) The four selected scFvs were tested for their binding to 10 different snake venoms plus milk 
proteins as a negative control antigen. Binding was measured as the TRF signal using a wavelength of 320 nm for excitation and 615 nm for emission on a Victor Nivo 
Multimode Microplate Reader. 
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venom from E. ocellatus (Casewell et al., 2009; Dam et al., 2018; Wag
staff et al., 2009). Thus, the higher binding signals could either be 
caused by a higher affinity to E. ocellatus PLA2s, or they could be caused 
by E. ocellatus venom containing more PLA2s that resemble ecarpholin S 
or myotoxin II, which were used in the discovery process. 

To reformat the antibody to a therapeutically relevant format, the 
B08 scFv was converted to a human immunoglobulin G (IgG) by 
extracting the DNA sequences for the variable chains from the 
pSANG10-3 F vector and cloning these into a single expression vector 
containing the constant domain sequences of the respective human IgG 
heavy chain and human kappa light chain, as described previously 
(Sørensen et al., 2023a). The B08 IgG was then assessed for its capacity 
to neutralize venom-induced toxicities in myoblast-based cytotoxicity 
assays. First, two different toxin concentrations (50 μg/mL and 100 

μg/mL) were evaluated to establish the optimal toxin quantity for 
neutralization assessment, which was found to be 100 μg/mL myotoxin 
II (Fig. 2A). Thereafter, different molar ratios of IgG were preincubated 
with 100 μg/mL of myotoxin II and applied to myoblasts for 24 h. The 
outcomes demonstrated significant reduction of cytotoxicity at toxin: 
IgG molar ratios of 1:2 and 1:2.7 (Fig. 2B). Finally, a preliminary venom 
dose optimization assay was carried out (Fig. 2C), followed by an 
evaluation of the neutralization of cytotoxicity by the B08 IgG against 
the venoms of B. asper, E. c. sochureki, E. ocellatus, and D. russelii 
(Fig. 2D). This experiment demonstrated that the IgG significantly 
reduced the cytotoxicity of all four tested venoms on mouse myoblasts. 
While the B08 IgG reduced the cytotoxicity of the venoms, some degree 
of cytotoxicity still occurred in the experiments, which could be due to 
the presence of PLA2s not neutralized by the IgG or that other types of 

Fig. 2. Assessment of the neutralizing capacity of the B08 IgG in a murine C2C12 myoblast-based cytotoxicity assay. A) Establishment of the optimal myotoxin II 
quantity for neutralization assessment through dose optimization experiments. B) Different molar ratios of the B08 IgG were preincubated with 100 μg/mL of 
myotoxin II followed by cell viability measurements to test the ability of the IgG to neutralize myotoxin II. C) Establishment of the optimal venom quantity for 
neutralization assessment through dose optimization experiments. D) Neutralization of venom-induced toxicity using 125 μg/mL venom and 3 mg/mL IgG (PLA2 
IgG), except for D. russelii, where 250 μg/mL of venom and 6 mg/mL of the IgG was used instead due to the lower toxicity of the venom to the cells. A non-myotoxin- 
targeting IgG was included as an isotype control (IgG). Asterisks (**** = p-value <0.0001; *** = p-value <0.001; * = p-value <0.05) note significant statistical 
differences, and error bars represent the mean ± S.D. (n = 3). Statistics were carried out using a one-way ANOVA with Tukey’s multiple comparison test. 
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toxins could have caused the observed cytotoxicity. Alternatively, the 
remaining cytotoxicity could be due to the IgG only being able to 
partially neutralize the PLA2s. Nevertheless, as viperid snake venoms 
contain many cytotoxic proteins, especially from the PLA2 and SVMP 
families, full neutralization of cytotoxicity by a single monoclonal 
antibody targeting PLA2s would have been unexpected. 

The findings in this study build upon and extend prior investigations 
into the use of phage display-based cross-panning strategies for the 
discovery of cross-reactive antibodies (Ahmadi et al., 2020; Laustsen 
et al., 2021; Ledsgaard et al., 2022b; Sørensen et al., 2023b). Here, we 
identified an antibody capable of neutralizing the cytotoxic effects on 
mouse myoblasts (which may directly reflect venom-induced myotox
icity) of viperid snake venoms from three different genera, originating 
from three different continents. Further, our study reveals specific 
binding of our IgG and other scFvs to Echis, Bothrops, and Daboia 
venoms, while no binding is observed to other tested venoms. This 
selectivity raises intriguing questions about how the underlying 
biochemical or structural characteristics of the toxins in each venom 
contribute to this specificity, which warrants further investigation. 

In conclusion, our findings underscore the potential of using anti
body phage display-based cross-panning strategies to discover broadly- 
neutralizing antibodies. Continuous development and optimization of 
the broadly-neutralizing antibodies discovered in this study and else
where could have the potential to improve the design of next-generation 
antivenoms. We therefore propose that this approach is used to facilitate 
the development of recombinant antivenoms with exceptionally broad 
neutralization profiles for world-wide use to treat snakebite 
envenoming. 
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2012. Snake venomics across genus Lachesis. Ontogenetic changes in the venom 
composition of Lachesis stenophrys and comparative proteomics of the venoms of 
adult Lachesis melanocephala and Lachesis acrochorda. J. Proteomics 77, 280–297. 
https://doi.org/10.1016/j.jprot.2012.09.003. 

Mora-Obando, D., Díaz, C., Angulo, Y., Gutiérrez, J.M., Lomonte, B., 2014. Role of 
enzymatic activity in muscle damage and cytotoxicity induced by Bothrops asper 
Asp49 phospholipase A2 myotoxins: are there additional effector mechanisms 
involved? PeerJ 2, e569. 

Roberts, N.L.S., Johnson, E.K., Zeng, S.M., Hamilton, E.B., Abdoli, A., Alahdab, F., 
Alipour, V., Ancuceanu, R., Andrei, C.L., Anvari, D., Arabloo, J., Ausloos, M., 
Awedew, A.F., Badiye, A.D., Bakkannavar, S.M., Bhalla, A., Bhardwaj, N., 
Bhardwaj, P., Bhaumik, S., Bijani, A., Boloor, A., Cai, T., Carvalho, F., Chu, D.-T., 
Couto, R.A.S., Dai, X., Desta, A.A., Do, H.T., Earl, L., Eftekhari, A., Esmaeilzadeh, F., 
Farzadfar, F., Fernandes, E., Filip, I., Foroutan, M., Franklin, R.C., Gaidhane, A.M., 
Gebregiorgis, B.G., Gebremichael, B., Ghashghaee, A., Golechha, M., Hamidi, S., 
Haque, S.E., Hayat, K., Herteliu, C., Ilesanmi, O.S., Islam, M.M., Jagnoor, J., 
Kanchan, T., Kapoor, N., Khan, E.A., Khatib, M.N., Khundkar, R., Krishan, K., 
Kumar, G.A., Kumar, N., Landires, I., Lim, S.S., Madadin, M., Maled, V., Manafi, N., 
Marczak, L.B., Menezes, R.G., Meretoja, T.J., Miller, T.R., Mohammadian- 
Hafshejani, A., Mokdad, A.H., Monteiro, F.N.P., Moradi, M., Nayak, V.C., Nguyen, C. 
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