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Lay Summary

New statistical estimation procedures have been developed for analyzing two

types of data commonly collected on animal populations to yield estimates of

animal abundances and/or population demographic rate parameters, e.g., survival

probabilities. Data collection to obtain information on such demographic/population

aspects often involves repeatedly sampling the population over a series of sampling

occasions. Observations at each sampling occasion often take the form of physical

captures and/or visual sightings; and more recently motion-sensor camera images

of animals. The associated data collected by such means are often referred to as

capture-recapture data. In many studies individuals may be uniquely identifi-

able (either through natural markings or via applying some physical mark such

as a tag/ring). However, this is not always the case, particularly with camera

images, so that only counts relating to the number of encounters/sightings may

be available when individuals are not uniquely identifiable.

Within such studies, due to imperfect detection, it is useful to separate out

the different processes relating to (i) the true state of the ecosystem from (ii) the

associated (imperfect) detection or observation of that process. The system pro-

cess is of primary interest, as this describes the ecological processes of interest and

hence informs ecological understanding. However, to infer the ecological system

process, it is important to correctly account for the observation process(es) as

this will impact the estimation of the components of the system of interest such

as survival probabilities or level of abundance. In particular, incorporating indi-

vidual heterogeneity to account for individual variability can be important within

both the system and observation processes. Individual heterogeneity may reflect

individual-level information, for example, weight, state of health and generic in-
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formation.

Two specific challenges often arise within the estimation of the ecological

quantities of interest, in relation to (i) missing information and (ii) the volume

of available data volume. For example, in relation to the volume of data, the

open-source eBird platform accumulated over 1 billion bird sightings in less than

two decades (eBird, 2021). Algorithms that work well in lower dimensions (i.e.,

relatively small numbers of parameters or data size) may not necessarily work

in such high dimensions (or volumes). This phenomenon is known as the curse

of dimensionality. Therefore, current research areas of focus include improving

the efficiency of standard model fitting approaches. On the other hand, miss-

ing information may arise in different forms e.g., individual-specific information

such as weight and health status are typically unavailable when an individual

is not observed. This missing information may create more complicated model

structures thus leading to challenging computational algorithms.

In this thesis, we contribute to help in addressing these two challenges, with

particular focus on the estimation of abundance and demographic parameters.

We develop and present: (i) alternative model fitting algorithms that can han-

dle such missing information in capture-recapture and camera trapping studies;

and (ii) new efficient algorithms that are scalable to larger population and/or

studies. The performance of these new approaches is compared to existing pro-

cedures using both simulated and real world data sets relating to a wide range

of species including meadow voles, northern parula and barking deer for a range

of capture-recapture type data. The new proposed algorithms resulted in con-

siderable computational savings. For example, for the camera trap data relating

to the barking deer data, the new algorithm took approximately 20 hours to run

compared to 86 hours for the traditional, standard, algorithm implemented us-

ing bespoke code, while using black-box software led to substantially slower, and

infeasible, implementation times.
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Abstract

Capture-recapture studies and the use of motion-sensor camera traps are common

and becoming increasing popular for collecting data on wildlife populations. In

this thesis, we focus on data collected from capture-recapture and camera trap-

ping studies, and develop model fitting algorithms that are efficient for estimating

the animal abundance for each study.

In our first work, we restrict our study relating to individual heterogeneity

in capture-recapture studies. We consider (i) continuous time-varying individual

covariates and (ii) individual random effects. In general, the associated likelihood

is not available in closed form but only expressible as an analytically intractable

integral. The integration is specified over (i) the unknown individual covariate

values (if an individual is not observed, its associated covariate value is also un-

known) and (ii) the unobserved random effect terms. Previous approaches to

dealing with these issues include numerical integration and Bayesian data aug-

mentation techniques. However, as the number of individuals observed and/or

capture occasions increases, these methods can become computationally expen-

sive. Thus, we propose a new and efficient approach that approximates the an-

alytically intractable integral in the likelihood via a Laplace approximation. We

find that for the situations considered, the Laplace approximation performs as

well as, or better, than alternative approaches, yet is substantially more efficient.

In the second work, we focus on spatially-related individual heterogeneity in

camera trapping studies. However, animal identification is not always feasible

in practice due to poor quality images and/or individuals not having uniquely

identifiable physical characteristics. Spatially explicit models for unmarked in-

dividuals permit the estimation of animal density when individuals cannot be
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uniquely identified. Due to the structure of these models, a Bayesian super-

population (data augmentation) approach (SPA) is often used to fit the models

to data, which involves specifying some reasonably “large” upper limit for the

population. However, this approach presents computational challenges, particu-

larly when dealing with larger populations, as demonstrated by the motivating

dataset relating to barking deer (Muntiacus muntjak) collected in Ujung Kulon

National Park (UKNP), Indonesia. In this second work, we develop new efficient

algorithms in the Bayesian framework that do not require a priori specifying

the upper population limit. We compare the performance of the different ap-

proaches using small datasets: relating to northern Parula and simulated data,

and demonstrate that even with a relatively small dataset the new algorithms are

consistently more efficient than the previous super-population approach. Finally,

we apply the new algorithm to the large barking deer dataset, where the standard

super-population approach is computationally very expensive. Our finding shows

that the spatial density estimates of barking deer in the study area are between

12 and 13 animals per km2 with 95% of credible interval ranging from 6 to 20

animals per km2; the difference in the computational aspect between the two

algorithms is particularly marked for the deer case study with the SPA algorithm

taking substantially longer to implement compared to the new algorithm (by a

factor of 4).
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Chapter 1

Introduction
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Estimating wildlife abundance is essential in ecological studies related to an-

imals. In animal ecology, abundance estimation is one of the key mechanisms

for population monitoring. Long-term monitoring of the wildlife population can

be useful for studying how the population fluctuates over time, which becomes

important in creating effective monitoring strategies. The simplest and most

primitive method for estimating abundance is a direct count over a fixed defined

area. For example, Jachmann (2002) used a block count to estimate wildlife abun-

dance of African herbivores by counting the observed individuals within a fixed

area; Pettorelli et al. (2007) and Tracey et al. (2008) conducted an aerial survey

where an observer counted the wildlife from the aeroplane or took a snapshot of

individuals within a certain area. However, such methods may produce data with

high variations e.g., due to availability, or visibility of target individuals. On the

other hand, conducting a complete census i.e., counting all individuals within the

population at relatively large location or maintaining long-term monitoring activ-

ities are practically infeasible due to limited resources e.g., time and finance, and

the characteristics of the population (and their habitat). As a result, in practice

only a subset of the population is typically obtained via some survey method.

Traditionally, collecting data on wildlife population often required a substan-

tial amount of resources. However, recent advances in technology have permitted

a much greater amount of ecological data to be collected. Farley et al. (2018)

reported that petabytes of ecological data coming from remote sensors has been

successfully collected and been regarded as the largest generation of data in ecol-

ogy, advancing at unimaginable speed. Another example where massive amounts

of data are becoming increasingly available is in relation to citizen-science data,

such as the eBird platform. The initiative was successful in gathering more than

684,300 (users) who reported over 1 billion bird sightings from more than 202

countries in 2021 (eBird, 2021). However, the modelling process is made more

complex and difficult by these additional sorts of data. Since existing model fit-

ting procedures may not scale up with enormous volumes of data, new analytical

and computational features are therefore crucial. Thus, many current areas of re-

search focuses in improving computational efficiency in model fitting algorithms.
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In this thesis, we also focus on providing solutions in fitting moderate-high volume

of ecological data for better efficiency while maintaining accuracy.

1.1 Underlying data structures

We focus on data collected from repeated surveys over time producing a series

of sampling occasions; in particular, we focus on data collected from (i) capture-

recapture studies; and (ii) camera-trapping studies. If the corresponding observed

population can be uniquely identified, then we may construct individual histories

of the associated species thus we refer them to as “marked population”; and

otherwise we refer such population to “unmarked population”. In this thesis, we

consider marked capture-recapture; and unmarked camera-trapping data, and

consider discrete-time models where individuals may be observed at regular time

intervals e.g., daily, monthly or yearly.

1.1.1 Capture-recapture studies

The two-sample method is the simplest method used in capture-recapture ex-

periments and used for estimating the population size. The two-sample method

consists of two sampling occasions where the first occasion allows individual for

marking or tagging before being released back to the population; and the second

sample gives the recapture histories (Goudie and Goudie, 2007). This two-sample

method was later developed into the T -sample occasions method allowing mul-

tiple recaptures. An early use of this theory was introduced by Schnabel (1938)

for studying fish in a lake where observations were conducted at multiple points

on the lake and taken at periodic intervals.

In capture-recapture studies, researchers go to the designed study area sub-

sequently at different sampling times, also referred to as capture occasions, to

identify and record all observed individuals. Observers “capture” individuals and

mark them at the first encounter for future identification so that each individual

is uniquely marked or tagged after first encounter. At the second sampling times,

observed individuals are recorded and often labelled as “0” if the corresponding
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individual is not observed during the sampling and “1” if it is observed. The

survey is repeated until the final capture occasion, T . Individuals that have not

been observed at any capture occasion are also denoted “0” and the number of

such individuals is unknown therefore they are not reported. Thus, the data col-

lected from capture-recapture studies are the set of capture histories i.e., from

the first encounter to the final occasion for each individual observed, and these

series are reported in 1 and 0 entries indicating their presences or absences as

shown in Table 1.1.

In capture-recapture study, all observed individuals need to be identified

uniquely. Some animals may have natural-physical markings that can be used for

individual identification such as the spot patterns of cheetah or leopards (Balme

et al., 2010); belly patterns of great crested newts (McCrea and Morgan, 2015)

or unique stripe patterns of tigers (Karanth and Nichols, 1998). However, most

animals do not have unique-natural markings. Therefore, marks such as a ring

(e.g., for birds) or a tag (e.g., for sheep) are often applied to an individual at the

first capture for identifying marks.

To illustrate a capture-recapture study, assume the known total population in

the designed area is 6; and there are 4 distinct sampling times. The hypothetical

structure of capture-recapture data can be seen in Table 1.1. From the table, we

can see that the first observed individual (Unique id 1) was encountered at the first

capture occasion but then unobserved at the second occasion before being seen

on occasion 3 and unobserved again at the final occasion (1, 0, 1, 0). Individual

2 (Unique id 2) was captured and marked at the second occasion and only seen

again at occasion 4 and so on. In this example, only 4 out of 6 individuals are

observed during the study, the remaining 2 individuals are unobserved and in

practice such numbers are unknown. We also note that additional information

may be collected during the study. Such information can be at individual level

(producing individual covariates) such as body mass or be global variables such

as environmental covariates.
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Table 1.1: Hypothetical capture-recapture data set showing 4 individuals cap-
tured within 4 capture occasions at given location.

Unique id Occasion 1 Occasion 2 Occasion 3 Occasion 4
1 1 0 1 0
2 0 1 0 1
3 1 1 1 0
4 0 0 1 1

1.1.2 Camera-trapping studies

Obtaining capture histories of uniquely identified species is not always practi-

cally easy. The nature of the population, environmental conditions and limited

resources makes it more challenging. A recent advancement in technology al-

lows more possibilities in collecting wildlife population. One of these kinds that

is quickly gaining popularity is motion-sensor cameras due to their non-invasive

nature and cost-effectiveness. Additionally, the use of motion-sensor cameras for

surveying allows for long-term wildlife monitoring which may be often of inter-

ests e.g., observing effects of environmental changes over time on the population.

Cameras may record a wide range of information at the same time such as ani-

mals’ presence and activities.

Early application of wildlife photography were introduced in the 1870s: (i) to

photograph an endangered species, a captive quagga, at the London Zoo; (ii) to

photograph rock-hopper penguins and breeding albatrosses. The latter are one

of the earliest uses of wildlife photography for scientific purposes (Kucera and

Barrett, 1993). George Shiras pioneered “camera trapping” as an early use in

the 1890s where he developed a self-photographed camera using a trip wire and

a flash system (Guggisberg, 1977). Camera systems have rapidly improved since

then resulting in more modern camera trapping. Consequently, the use of cam-

era trapping has been significantly increasing in animal ecology for population

monitoring. For examples, camera trapping has been widely used for surveying

different wild animals such as cat species e.g., tigers (Karanth and Nichols, 1998;

Karanth et al., 2006; Jennelle et al., 2002), jaguars (Silver et al., 2004; Wal-

lace et al., 2003), ocelots (Trolle and Kéry, 2003, 2005), mountain lions (Long

et al., 2003), big cats and canids (Brassine and Parker, 2015; Pereira et al., 2022;
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Di Bitetti et al., 2009); deer (Rahman, 2016; Rahman et al., 2017), pigs (Sweitzer

et al., 2000) and grizzly bear (Mace et al., 1994).

In camera trapping, a collection of cameras is frequently placed along trails

(at multiple locations) or at baited stations. Cameras capture individual animals

on film and are set to record date and time of all photos (videos). Depending on

the length of the study, battery-based cameras should be examined at least once a

month, with the memory card and battery replaced (Karanth and Nichols, 1998).

If natural-physical marks are available for individual identification, for example

tigers (Karanth and Nichols, 1998; Karanth et al., 2006), ocelots (Trolle and Kéry,

2003, 2005) and leopards (Chapman and Balme, 2010), then individuals may be

uniquely identified. Captured images of animals may be identified either manually

by a human or more frequently recently, using specialised identification software

e.g., HotsSpotter (Li and Stephens, 2003). The recorded data are then similar

to capture-recapture data with individual capture histories for each individual

observed within the study, but with the unique time recorded for each observation

rather than sampling time, i.e. observations are recorded in continuous time.

See Van dam Bates (2023) for further discussion of continuous time camera-

trapping data and associated modelling approaches. Continuous-time hidden

Markov models have also been developed and applied to capture-recapture studies

with irregular sampling occasions (Mews et al., 2020). For further discussion

of the use of hidden Markov models within such applications, see for example,

Glennie et al. (2023).

However, the use of unique marks to uniquely identify individuals are often

not available in practice and poor-quality images make it more challenging for

absolute individual identification. In this case, the data of the camera-trapping

studies corresponds to the time detections of the target species identified from

the snapshots of each camera. Thus, the data are no longer capture histories of

individual animals, but simply the times that individuals are observed by each

camera trap. For illustration, four motion-sensor cameras are placed at a sample

site and set to continuously record a (known) total of 10 animals in the area

for three days. We discretise the sampling time into daily thus resulting in 3
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Table 1.2: Hypothetical data structure for a camera-trapping study collected
from four motion-sensor cameras during three sampling times.

Cameras Day 1 Day 2 Day 3
1 4 5 6
2 3 2 4
3 4 6 3
4 1 3 5

sampling occasions (days). Photographed animals are collected and counted for

each sampling time and each camera. Note that we assume multiple visits at each

sampling time are permitted i.e., the same individual may appear more than once

during a single capture occurrence. Table 1.2 shows a hypothetical data structure

for a camera-trapping study after being reduced to the recorded data. Camera 1

captured 4 detections at the first sampling (Day 1) and 6 detections at the end

of sampling (Day 3) while Camera 4 only detected 1 individual at Day 1 and so

on. Similarly, trap-specific covariate information can also be collected during the

study.

1.2 Basic Models

We consider two types of populations in this study: (i) closed populations, and

(ii) open populations. We consider and describe the underlying models for each

of these populations in turn below.

1.2.1 Closed populations

In closed populations, we assume that the population is constant throughout

the study so that birth/death and immigration/emigration are not permitted

within the study period. We note that if the sampling times are too far apart

between successive samples, then the closure assumption is frequently violated in

an ecological study. Typically, the main objective of designed models for closed

populations is estimation of the fixed population size, N . In this section, we

introduce the basic closed-population model for individually marked populations,

denoted M0. Let x = {xit; i = 1, . . . , N ; t = 1, . . . , T} denote a set of individual

21



capture histories for the study period with T capture occasions; and let p denote

the capture probability. Assuming the capture probability is time-invariant and

individuals are encountered independently, the likelihood of M0 (Otis et al., 1978)

is given by:

L(N, p;x) ∝ N !

(N − n)!

N∏
i=1

T∏
t=1

pxit(1− p)1−xit , (1.1)

where n is the total number of observed individuals. Note that in addition to

the closure assumption, Otis et al. (1978) made two other assumptions related to

identifying marks: (i) marks are not lost during the experiment; (ii) marks can

be identified correctly at each sampling occasion. In addition to the estimation of

the population size, it is important to consider the recapture probability in closed-

population models as the misspecification in p may lead to biased estimates of

N (McCrea and Morgan, 2015). Otis et al. (1978) described three other classes

of models in addition to M0 to account for different sources of variation in p: (i)

Mt to account for temporal heterogeneity pt; (ii) Mb to account for behavioural

heterogeneity pb (trap happy/shy); and (iii) Mh to account for individual hetero-

geneity ph. The subscripts t, b and h correspond to the variation (heterogeneity)

in p that we will discuss later in the next section. Combinations of different types

of heterogeneity in p provide various alternative classes of model, and we discuss

some of these in Chapter 2.

In addition to temporal, behavioural and individual heterogeneity, variation in

space (i.e. spatial heterogeneity) can be incorporated into the capture probability,

p, establishing spatial capture-recapture (SCR) models. The model structure of

SCR resembles that of the closed population model, Mh, with individual spatial

heterogeneity. Thus, the recapture probability, p, is now specified as an individual

heterogeneity model. The idea of SCR model is to incorporate the spatial infor-

mation into the capture probability i.e., individuals that are closer to traps are

more likely to be detected (Borchers and Efford, 2008). Thus, the capture prob-

ability in SCR model is conditional on where individuals are during the sampling

occasion. A quantity that describes the centre of an animal’s movement activ-

ity (i.e., locations where animals traverse) is typically known as their “activity
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centre”, which is usually unknown. SCR models specify the capture probability

as a function of the distance between an individual’s activity centre and the as-

sociated traps. SCR not only provides an estimate of the total population size,

but additionally is able to estimate the spatial density over the given sampling

region.

The idea of incorporating spatial heterogeneity has been developed for un-

marked populations, where individuals cannot be uniquely identified, allowing

the spatial density estimation without the need of individual identification (Chan-

dler and Royle, 2013). Such models are typically referred to as unmarked spatial

capture-recapture or spatially explicit count model. We will discuss the unmarked

case in more detail and the associated model, in Chapter 4.

1.2.2 Open populations

In open populations the closure restrictions are relaxed by allowing births, deaths

and/or migration to occur during the study. For example, we may permit births

or deaths within the study but assume that there is no temporary immigration

or emigration. Estimation of the survival probabilities of individuals often be-

comes the parameter of interest in open populations, in contrast to the primary

focus on abundance in closed populations. However, depending on the research

question, the objective of open population models can also be the estimation

to the population size. In this section, we introduce an open population model

proposed by Cormack (1964), Jolly (1965), and Seber (1965) i.e., the Cormack-

Jolly-Seber model (CJS) which focuses on the estimation of the survival prob-

abilities. We recall that x = {xit; i = 1, . . . , N ; t = 1, . . . , T} denote a set of

individual capture histories for the study period with T capture occasions. Now,

let φ = {φt; t = 1, . . . , T − 1}, where φt denotes the survival parameter i.e., the

probability an individual is alive at time t + 1 given that they are alive at time

t. Similarly let p = {pt; t = 1, . . . , T}, where pt denotes the probability an indi-

vidual is recaptured alive at time t, given that they are alive. Thus, the model

assumes that all individuals present in the population has the same survival prob-

ability until the next capture occasion (given they are alive). Further, we denote
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fi and `i the first and the last time individual i is observed. Assuming a fully

time-dependent model, the likelihood of the standard CJS model is given by:

L(N,φ,p;x) =
N∏
i=1

[
`i−1∏
t=fi

φt

`i∏
t=fi+1

pxitt (1− pt)1−xit
]
χi`i , (1.2)

where χi`i is the probability that individual i is not observed again after final

occasion `i and is given by:

χi`i = 1− φ`i + φ`i(1− p`i+1)χi`i+1,

with χiT = 1 for all i = 1, . . . , N . Note that the CJS models can be easily ex-

tended by incorporating extra information e.g., recovery parameters such that

capture histories xit have an additional category indicating whether the corre-

sponding individual i is dead at time t (Langrock and King, 2013); or recruitment

parameters indicating the proportion of animals entering the population and are

available for captures (Pledger et al., 2010; Worthington et al., 2019).

Similar to the closed population model, additional sources of heterogeneity

(beyond temporal) can also be incorporated into p and φ e.g., individual hetero-

geneity or combinations of both temporal and individual heterogeneity. A more

detailed description of these models is discussed in Chapter 2 where we consider

the CJS model with individual time-varying heterogeneous survival probabilities,

i.e. where the survival probability is expressed as a function of an individual

time-varying covariate.

1.3 Heterogeneity

In the previous section, we have briefly introduced the term heterogeneity. In this

section, we describe and discuss different forms of heterogeneity in more detail.

Heterogeneity may arise in three different forms as described in King and

McCrea (2019) and in Otis et al. (1978): temporal (pt), behavioural (pb) and

individual (ph). Temporal heterogeneity assumes that capture probabilities are

time-variant over capture occasions which may be due to, for example, different
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weather conditions that affects animals’ behaviour, different search strategies or

efforts related to capture occasions. Behavioural heterogeneity reflects changes in

capture probabilities due to trap experiences such that independence assumption

between capture occasions is no longer valid. For example, some animals may

be more likely to be observed again in the future if they encounter trap-happy

experience; or become less likely to be re-encountered at future occasions if ani-

mals experience trap-shy situation, unpleasant experience such as being trapped

or having physical contacts. Note that in camera trapping studies we may not

have such a trap shy response from animals since they are recorded without being

physically contacted but a trap happy response is possible since sometimes baits

are used to attract individuals.

Individual heterogeneity, with parameter dependence pi with i denoting in-

dividual i, assumes the capture probability varies among individuals which may

be due to individual characteristics of animals. Such variation among individuals

may reflect, for example, relationship between the study locations and the home

range size of individuals (activity centres), or characteristics of individuals (co-

variates) such as sex, weight, state of health and generic information (King and

McCrea, 2019). King and McCrea (2019) further classified such covariates into:

(i) deterministic covariate values, and (ii) stochastic covariate values. Behavioural

heterogeneity is a special case of deterministic covariate where it permits the

change in individual capture probabilities following its first capture. Examples

of stochastic covariates includes, but not limited to, breeding and health sta-

tus, hunger levels and location where such covariates may change in a stochastic

manner e.g., hourly, daily, monthly, or even annually.

Having individual heterogeneity observed in capture-recapture studies and

camera trapping is not always possible due to different reasons, especially for

individual stochastic covariates. For example, in camera trapping collecting in-

dividual characteristics is nearly impossible since capture histories are collected

from snapshot images and poor quality images makes it more challenging. How-

ever, we note that characteristics such as sex and patterns may be still possible to

collect if natural marking between individuals is available for such identification.
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Similarly, in capture-recapture studies, unless individuals are physically captured

obtaining such individual-covariate information is also nearly impossible. How-

ever, again note that observing animal sex and/or breeding status may still be

possible dependent on the species. Therefore, models with missing individual

covariates would be often found in a wide range of examples. In this thesis, we

also consider models with missing individual covariate that we will talk in more

details how to fit such models in Chapters 2 and 4.

1.4 Model fitting approaches

In this section, we discuss two model fitting approaches in general. In particular,

we focus on two distinct types of inference: (i) classical inference, and (ii) Bayesian

inference.

1.4.1 Classical inference

Let M(θ) be any model with p-dimensional parameter vector θ and x be the

observed data. The model parameter estimates, θ̂, are obtained by fitting the

model M(θ) to data x by the method of maximum likelihood. The maximum

likelihood estimation is used to find the parameters which the observed data

have the highest joint probability, f(x;θ), by maximizing the likelihood function

L(θ;x) as a function of θ. In practice, the natural logarithm of the likelihood

function, `(θ;x), is often used since the maximum point of the log-likelihood

occurs at the same point as the maximum of the likelihood function.

In theory, the maximum or (minimum) value is attained when the first deriva-

tive of the log-likelihood function is equal to zero assuming the log-likelihood

function is differentiable such that:

∂`(θ;x)

∂θ
= 0. (1.3)

The parameter estimates obtained from the maximum likelihood method are

known as the maximum likelihood estimators (MLE) and often denoted as θ̂mle.
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However, in practice solving Equation (1.3) is often not possible to do analytically.

In particular, obtaining explicit maximum-likelihood estimates is often difficult

when estimating capture-recapture models due to their complexity. We often

require iterative methods for finding optimal parameters which maximizes the

likelihood e.g., quasi Newton, Fisher scoring (Broyden, 1970; Osborne, 1992).

An important assumption for obtaining unique roots of Equation (1.3) such

that the MLE is a (local) maximum is that the second derivative or the Hessian

matrix, H(θ̂mle), of the log-likelihood is negative semi-definite. Additionally, one

of the important properties of the MLE is that θ̂mle converges in distribution to

a normal distribution,

√
n(θ̂mle − θ)→ Np(0, I

−1(θ̂mle)),

where I−1(θ) is the Fisher information matrix and n and p denote the sample size

and the number of parameters respectively. Finally, we note that the observed

Fisher information is the negative of the Hessian matrix i.e., I(θ̂mle) = −H(θ̂mle).

In this thesis, we use the maximum likelihood method for estimating parameters

of capture-recapture models in Chapter 2.

1.4.2 Bayesian inference

Unlike the maximum likelihood method where the parameters are assumed to

have a fixed value which is estimated, the Bayesian approach assumes the param-

eter as a random variable and estimates its distribution. The idea is generally

derived from the application of Bayes Theorem stating,

π(θ|x) =
f(x|θ)π(θ)

π(x)
,

where π(θ) denotes the prior distribution for θ that we assign, π(θ|x) is the

posterior distribution of θ and f(x|θ) denotes the likelihood function and is the

same as L(θ;x) defined in Section (1.4.1). The denominator term, π(x), is the
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marginal probability written mathematically as:

π(x) =

∫
f(x|θ)π(θ)dθ,

for continuous data. For discrete data, the marginal probability is expressed as:

π(x) =
∑

f(x|θ)π(θ).

In practice, the denominator term can be dropped from the posterior distribution

since it serves as a normalizing constant to the product of the likelihood and the

prior. Thus, the posterior distribution is proportional to the joint distribution

after dropping the marginal probability i.e.,

π(θ|x) ∝ f(x|θ)π(θ). (1.4)

In the Bayesian framework, inference is made based on information from the

prior distribution and from the conditional probability of observed data (the like-

lihood); in classical inference, we solely rely on the likelihood of the observed

data to estimate model parameters. Thus, in the Bayesian approach we may

incorporate relevant knowledge about parameters, also refer to expert knowledge

or prior beliefs, through the prior π(θ) without reference to the dataset. In gen-

eral, obtaining the full posterior density is the main interest in Bayesian approach

but it is very complicated. The posterior densities often do not have closed-form

analytic forms except for a specific class of priors and models. However, ex-

ploring the full posteriors is possible numerically via Markov chain Monte Carlo

(MCMC) simulations. The main idea of the MCMC is to draw random sam-

ples from the target distribution (the posterior) that cannot be drawn easily by

constructing a Markov chain i.e., drawing dependent samples where the current

sample is dependent upon the last sample. For inference, rather than consider

the entire posterior, π(θ|x), we often consider simpler summary statistics such

as the marginal posterior distribution of individual parameters. We will use a

Bayesian inference for estimating model parameters of camera-trapping studies
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in Chapter 4.

1.5 Blackbox Software

In this thesis, some models are fitted using readily available packages from R

software. We briefly describe three main packages for model fitting purposes:

rjags, nimble and TMB.

1.5.1 rjags

The rjags package provides an interface from R to the JAGS (just another Gibbs

sampler) library which allows for users to specify their own functions and dis-

tributions in performing Bayesian data analysis (Plummer et al., 2022). JAGS

employs MCMC algorithm to draw a set of dependent samples from the tar-

get posterior distribution. Working with rjags means that we need to provide

the model specification and priors along with some input values regarding ob-

served data, number of iterations, number of chains and then it does the MCMC

blackbox “magic”. Then, generated samples can be extracted to summarise the

posterior distribution.

1.5.2 nimble

The software package “Numerical inference for statistical models for Bayesian and

likelihood estimation” (nimble) is an R package designed for carrying out both

Bayesian and classical inference (Valpine et al., 2022). nimble is an extension of

the BUGS language providing libraries for MCMC algorithms, particle filtering

(sequential Monte Carlo) and Monte Carlo Expectation Maximization (MCEM).

Similar to the software package rjags, nimble users provide the model specifi-

cation and priors but with more flexibility e.g., customizing samplers and even

writing algorithms when performing Bayesian data analysis. The Nimble compiler

allows the model and algorithm written in R to be generated in C++ template

during the compilation thus providing more efficient computation.
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1.5.3 Template Model Builder (TMB)

Template Model Builder (TMB) is an R package designed for fitting complex sta-

tistical models especially models with random effects using a classical inference.

It was built by Kristensen et al. (2016) where the principles are inspired by

Automatic Differentiation Model Builder (ADMB) package. It uses some high-

performance libraries including CppAD for automatic differentiation in C++,

Matrix for sparse matrix calculation in R and Eigen for sparse matrix calculation

in C++. Consequently, this package gives better performance in terms of speed

for fitting models of high dimensional parameters and is much simpler when cod-

ing complex models compared to e.g., JAGS, ADMB (Kristensen et al., 2016).

TMB users are required to have some basic understanding of the C++ program-

ming language as the joint likelihood of the model must be written in C++.

However, the other operations are performed in R e.g., reading data, compiling

the model and optimization.

1.6 Thesis layout

The structure of this thesis is as follows: Chapter 2 discusses capture-recapture

models for: (i) closed populations, and (ii) open populations considering different

forms of heterogeneity including temporal, behavioural and/or individual (time-

invariant and time-variant). Different approximations for integrating the unob-

served individual heterogeneity are described in detail in this chapter. Laplace

approximations are given in more details as a focus of the work.

Chapter 3 provides simulation studies fitted on closed-population and open-

population models of capture-recapture data for comparing different approxima-

tions under several scenarios. A computational comparison is also reported. We

give two real examples related to closed-population and open-population studies.

Chapter 4 describes spatial capture-recapture models for unmarked popula-

tions in camera trapping studies. Bayesian inferences such as Bayesian data aug-

mentation and reversible jump MCMC are introduced as model fitting methods.

The approach designed permits the direct specification of the prior information
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on total population size; and also we develop efficient computational algorithm

for model fitting.

Chapter 5 presents a simulation study to investigate the computational effi-

ciency of the algorithms. We also demonstrate the approach initially on a small

case study before applying to a case study of a large, unmarked data related

to barking deer (Muntiacus muntjac) in Ujung Kulon National Park, Indone-

sia. A detail discussion on spatial density estimates of barking deer is given and

reviewed.

The final chapter reviews possible and promising future works of the current

research areas. Our works in Chapter 2 and 3 has been reviewed and published

in The Journal of Agricultural, Biological and Environmental Statistics (JABES)

while the second contribution in Chapter 4 and 5 are currently in submission to

a statistics journal.
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Chapter 2

Capture-Recapture Studies:

Models and Methods
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Capture-recapture surveys are often used when studying wildlife populations

to understand the associated population dynamics necessary for management and

conservation. These surveys involve repeatedly sampling the population over a

series of capture occasions. Observations at each capture occasion may take the

form of physical captures and/or visual sightings of animals. Individuals are

uniquely identified, using, for example, a ring or tag applied at initial capture

or via natural markings e.g., birds often ringed (BTO, 2018); butterflies may be

marked using marking pens and ibex may be tagged on the ears or belly patterns

of a Great crested newt (McCrea and Morgan, 2015). From the surveys, we

obtain capture histories for each individual observed in the study. The observed

data correspond to the set of observed histories, detailing whether or not they

are observed at each capture occasion. We assume that there is no loss of marks;

and no mis-classification across individuals during the study. See Section 1.1.1

for example of associated data and general notation used in this Chapter.

Capture-recapture studies may be assumed to be closed or open, dependent

on whether the population is constant throughout the study; or may change due

to births, deaths and/or emigration, or immigration, respectively. The corre-

sponding parameters of interest typically differ between such studies with closed

population models primarily focusing on abundance estimation; while open pop-

ulation models often focus on the estimation of survival probabilities, although

these may also extend to abundance. For a review of these data and associated

models see for example McCrea and Morgan (2015); Seber and Schofield (2019).

Incorporating heterogeneity i.e., temporal, behavioural and/or individual het-

erogeneity in capture-recapture models can be important to model the underlying

system processes e.g., capture probabilities and/or survival probabilities. Omit-

ting such sources of heterogeneity can lead to biased and/or misleading results

(Rosenberg et al., 1995; Schwarz, 2001; Chao et al., 2001; White and Cooch,

2017). Otis et al. (1978) described three main sources of heterogeneity: tem-

poral, behavioural and individual. For additional discussion see Section 1.3. In

this work we focus on individual heterogeneity, which can often be incorporated

via the use of observable characteristics, such as gender, breeding status or con-
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dition. King and McCrea (2019) categorised observed individual covariates into

2× 2 cross-classifications corresponding to continuous/discrete-valued and time-

varying/invariant. We focus on the more challenging case of continuous-valued co-

variates. Missing data often arise for such continuous-valued and discrete-valued

covariate information due to, for example, imperfect data collection or simply the

structure of the experimental design. For example, for stochastic time-varying

covariates, if an individual is not observed, the corresponding covariate is also

unknown at that time. In general, for continuous-valued covariates, the observed

data likelihood is only expressible as an analytically intractable integral leading

to model-fitting challenges. Previous model-fitting approaches include using a

Bayesian data augmentation (Bonner and Schwarz, 2006; King and Brooks, 2008;

Bonner et al., 2010); an approximate discrete hidden Markov model (Langrock

and King, 2013); and a two-step multiple imputation approach (Worthington

et al., 2015). However, these approaches are computationally expensive and may

lead to computational challenges for large datasets.

As an alternative to modeling individual heterogeneity with covariates, which

may be missing or unobserved, the heterogeneity can be modelled via individual

random effects. For example, the capture probabilities may be specified as a

function of covariates or random effects as follows. For individual i, when there

are observed covariate values, we may specify the associated capture probability,

pi, to be of the form:

logit(pi) = β0 + β1zi,

where zi denotes the covariate value for individual i. Alternatively, for individual

random effects, we may specify:

logit(pi) = β0 + εi,

where εi denotes the random effect term of the corresponding animal i respec-

tively and εi has some associated distribution. The random effect terms may

either be specified as a finite mixture model (Pledger, 2000; Pledger et al., 2003);
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or an infinite mixture model (Coull and Agresti, 1999; Dorazio and Royle, 2003;

King and Brooks, 2008). However, we note that identifiability issues may arise in

terms of the distributional assumption of this heterogeneity, with different mod-

els leading to the same distribution for the observed data (Link, 2003, 2006),

indicating that some sensitivity analyses are advisable in practice. For the finite

case, a closed form expression for the likelihood is available, summing over the

mixture components; for the infinite case the necessary integration is generally

analytically intractable (though see Dorazio and Royle (2003) for a special case

for closed models assuming a Beta distribution). Again, within this thesis we

focus on the case of continuous-valued individual random effects. A variety of

approaches have been applied to fit random effect individual heterogeneity mod-

els to data including conditional likelihood (Huggins and Hwang, 2011); Bayesian

data augmentation (King and Brooks, 2008; Royle et al., 2007; Royle, 2008); nu-

merical integration (Coull and Agresti, 1999; Gimenez and Choquet, 2010; White

and Cooch, 2017) and combined numerical integration and data augmentation

(Bonner and Schofield, 2014; King et al., 2016); King et al. (2022) recently inte-

grated data augmentation and an importance sampling approach which itself uses

an approximation of the likelihood using Monte Carlo integration or quadrature.

Observed and unobserved heterogeneity can be jointly considered via a mixed

model specification, including both covariate information and additional random

effects with similar model-fitting tool applied e.g.,

logit(pi) = β0 + β1zi + εi

or

logit(pit) = β0 + β1zit + εi

if the capture probability is also time-varying. See for example King et al. (2006);

Gimenez and Choquet (2010); Stoklosa et al. (2011) for additional discussion and

examples.

Our contribution to the approaches taken to fit models with individual hetero-

geneity is the development of a computationally efficient Laplace approximation
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for the analytically intractable integral in the likelihood function in the presence

of individual heterogeneity for capture-recapture data, which we subsequently

numerically maximise to obtain the MLEs of the parameters. We apply the ap-

proach to fit (i) a closed population model with individual random effects (using a

higher order Laplace approximation for improved accuracy) and (ii) an open pop-

ulation model with time-varying continuous covariate information. For the open

population model, we use the numerical automatic differentiation tool in the R

package Template Model Builder (TMB; Kristensen et al., 2016) to approximate

the likelihood. TMB builds on the approach of the Automatic Differentiation

Model Builder (ADMB) package where the objective function is written in C++.

See Section (1.5). The approach is scalable to both large dimensions and sam-

ple size i.e., it is designed to be fast for handling many random effects (≈ 106)

and parameters (≈ 103) (Kristensen et al., 2016) since computing the most chal-

lenging computation (the second derivatives) is no longer expensive due to the

automatic differentiation function within TMB.

2.1 Capture-Recapture Models

In this section, we first describe capture-recapture models, both a closed and open

capture-recapture model, and consider a continuous-valued random effects model,

and time-varying continuous-valued individual covariate model, respectively.

First, we provide a brief description of the general notation for capture-

recapture studies, before describing the specific models for closed and open pop-

ulations that we consider in detail with their associated observed data likelihoods

in the following Section. We let t = 1, . . . , T denote the capture occasions within

the study; and i = 1, . . . , n the observed individuals over all the capture occa-

sions where n and T denote the total observed individual and capture occasions

respectively. Then, for each observed individual i = 1, . . . , n and capture occa-
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sion, t = 1, . . . , T we let,

xobsit =

1 if individual i is observed at time t;

0 if individual i is unobserved at time t.

The capture history associated with individual i = 1, . . . , n is denoted by xobsi =

{xobsit : t = 1, . . . , T}; and the set of capture histories xobs = {xobsit : i =

1, . . . , n; t = 1, . . . , T}. Finally, we let fi and `i denote the first and last time

individual i is observed, respectively, for i = 1, . . . , n.

In this thesis, we consider the individual heterogeneity model component de-

noted by y = {yobs,yunobs}, where yobs and yunobs denote the observed and un-

observed individual heterogeneity components, respectively. For example, yobs

may correspond to observed covariate values; while yunobs may correspond to

unobserved covariate values zi or random effect terms εi within individual het-

erogeneity models. We assume that yunobs is continuous-valued. We let ψ denote

the associated individual heterogeneity model parameters; and θ the model pa-

rameters to be estimated.

The corresponding data are given by {xobs,yobs}, with associated observed

data likelihood,

f(xobs,yobs|θ,ψ) =

∫
yunobs

f(xobs|θ,y)f(y|ψ)dyunobs, (2.1)

where f(xobs|θ,y) denotes the complete data likelihood; and f(y|ψ) the random

effect or covariate model component. This likelihood is, in general, analytically

intractable. If there are discrete-valued elements of yunobs the integral becomes a

summation).

The associated model parameters, θ, depend on the specific capture-recapture

or detection model being fitted. We describe the general set of parameters and

indicate whether they apply to the closed or population models considered within

this thesis:

- N = the total population size (closed);
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- pit = P(individual i is observed at time t | available for capture at time t)

(open and closed);

- φit = P(individual i is alive at time t+ 1 | alive at time t) (open).

We let p = {pit : i = 1, . . . , N ; t = 1, . . . , T}, and similarly for φ.

2.1.1 Closed Mh-type models

We consider the closed models where the population of study is assumed to be

fixed and closed to birth, death and/or migration during the study. In particular,

we extend the model M0 defined in Section 2.1 and restrict to the model Mtbh,

proposed by Otis et al. (1978), where again the subscripts correspond to temporal,

behavioural and individual heterogeneity, respectively. Additional heterogeneity

can be modelled via observed covariates (Stoklosa et al., 2011), but we do not

consider this case here. The total population size, N , is the parameter of primary

interest. The capture probabilities, pit, are expressed such that, h(pit) = αt +

λSit+εi, where Sit = 0 if t ≤ fi; and Sit = 1 if t > fi; and h denotes some function

constraining the recapture probabilities to the interval [0, 1]. Within this work

we assume a logistic relationship, so that h ≡ logit. The αt terms correspond

to the temporal component; λ the behavioural component where λ > 0 signals

the trap-happy response while λ < 0 signals the trap-shy response; and εi the

individual random effect term which we assume to be of the form εi ∼ N(0, σ).

The individual heterogeneity sub-models Mh, Mth, Mbh are obtained by setting

restrictions on the parameters. For example, in the absence of a behavioural

effect λ = 0; and when there are no temporal effects αt = α for all t = 1, . . . , T .

Let xunobs = {xunobsit ; i = n + 1, . . . , N ; t = 1, . . . , T} denote the unobserved

capture histories with all entries equal to zero (i.e. xunobsit = 0 for all t = 1, . . . , T

and all unobserved individuals n + 1, . . . , N) such that x = {xobs,xunobs} and

xit = {xobsit , xunobsit }. The conditional likelihood, given the capture probabilities,

p = {pit : i = 1, . . . , N, t = 1, . . . , T}, and the total population size N is of
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multinomial form (omitting the constant coefficient terms):

f(x|N,p) ∝ N !

(N − n)!

N∏
i=1

T∏
t=1

pxitit (1− pit)(1−xit).

However, the capture probabilities are specified as random effect components.

The model parameters are θ = {N,α, λ} with individual heterogeneity model

parameters ψ = {σ}. Thus, assuming there is no additional observed individual

covariate information within the study, we have yobs = ∅, and yunobs = {εi : i =

1, . . . , N} . Further, the associated random effect of an unobserved individual

i.e., for i = n+ 1, . . . , N is denoted by ε0, with associated capture probability at

time t given by h(p0t) = αt + ε0. The observed data likelihood of Equation (2.1)

and unobserved data likelihood can be expressed as,

f(x|θ, σ) ∝ N !

(N − n)!

n∏
i=1

[∫
f(xobsi |θ, εi)f(εi|σ) dεi

]

×
N∏

i=n+1

[∫
f(xunobsi |θ, ε0)f(ε0|σ) dε0

]
, (2.2)

where f(εi|σ) denotes the density function for the unobserved heterogeneity pro-

cess; and f(xi|θ, εi) the probability of the associated capture history, such that

f(xi|θ, εi) =
T∏
t=1

pxitit (1− pit)(1−xit).

We note that the likelihood can be written more efficiently by further considering

only unique observed capture histories, but for notational simplicity we retain

the product over all observed individuals within Equation (2.2).

Previous approaches for dealing with the intractable likelihood include the

use of Gauss-Hermite quadrature to estimate the integral (Coull and Agresti,

1999). White and Cooch (2017) evaluated this approach further via simulation

for different parameter values, and concluded that the results were generally un-

biased except for relatively low recapture probabilities and/or few capture events.

Further, they demonstrated that for larger individual heterogeneity variances a

greater number of quadrature points are required to retain accuracy. Alterna-

tively, a Bayesian data augmentation approach has been applied, treating the
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individual heterogeneity terms as additional parameters (or auxiliary variables)

and calculating the joint posterior distribution over both parameters and aux-

iliary variables. However, in this approach the number of auxiliary variables

is also an unknown (it is equal to the unknown parameter, N), leading to the

use of a reversible jump algorithm (King and Brooks, 2008) or super-population

approach (Durban and Elston, 2005; Royle et al., 2007). To address these is-

sues King et al. (2016) proposed a computationally efficient semi-complete data

likelihood model fitting approach, combining a data augmentation approach for

the individual heterogeneity terms of observed individuals, with a numerical in-

tegration scheme for the likelihood component corresponding to the unobserved

individuals. A similar approach was proposed by Bonner and Schofield (2014),

for the case of individual continuous covariates for closed populations (assumed

constant within the study period), using a Monte Carlo approach to perform the

numerical integration necessary for the likelihood component associated with the

unobserved individuals.

2.1.2 Open capture-recapture models

We consider Cormack-Jolly-Seber-type (CJS) models (Cormack, 1964; Jolly, 1965;

Seber, 1965) for open populations, which permit entries and exits from the pop-

ulation over the study period. We extend the model described in Section 2.1

and focus on the case where the survival probabilities are modelled as a function

of individual time-varying continuous covariates, to explain the individual and

temporal variability.

Recall that yit denote the covariate value associated with individual i =

1, . . . , n at time t = fi, . . . , T ; and set yi = {yit : t = fi, . . . , T}. The sur-

vival probability is specified as a function of the covariate values such that

h(φ(yit)) = β0 + β1yit, for all t = fi, . . . , T − 1 and i = 1, . . . , n, where h de-

notes some function that maps to the interval [0, 1]; and β0 and β1 denote the

corresponding regression parameters. Similarly we may also specify the recapture

probabilities to be a function of the covariate such that h(p(yit)) = γ0 + γ1yit,

for t = fi + 1, . . . , T and i = 1, . . . , n, assuming the same functional form for h
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for simplicity; and where γ0 and γ1 are the associated regression parameters. For

notational convenience, we let β = {β0, β1} and γ = {γ0, γ1}. Further we define

the stochastic model for the covariate values, assuming a first-order Markovian

process, such that, for t = fi, . . . , T − 1 and i = 1, . . . , n,

yit+1|yit ∼ N(yit + µt, σy). (2.3)

Clearly, suitable covariate models will be dependent on the given covariate(s)

and biological knowledge e.g., a Markov chain with transition Kernel (Bonner

and Schwarz, 2006); an additive model (King et al., 2008); a random walk model

(Bonner et al., 2010; Langrock and King, 2013). We note that in the case where

the covariate value may not be observed at initial capture we also need to specify

an initial state distribution for the initial covariate values. However, for simplicity,

we assume the covariate values at initial capture are known for each individual,

as is the case in our case study, but the approach is easily generalisable.

For capture-recapture studies we do not observe all the individual covariate

values. Assuming that the covariate model is stochastic, if an individual is un-

observed the associated covariate value is, by definition, also unknown; further

if an individual is observed, the covariate value may still not be recorded unless

individuals are physically captured so that physical-related information can be

retained. Finally, we let ζobsi denote the set of occasions for which the covariate

values are observed for individual i and ζunobsi the set of times following initial

capture for which the covariate value is unknown for individual i.

To express the likelihood, we let yobsi = {yit : t ∈ ζobsi } and yunobsi = {yit :

t ∈ ζunobsi } denote the observed and unobserved covariate values associated with

individual i = 1, . . . , n. The full set of observed and unobserved covariate values

are yobs = {yobsi : i = 1, . . . , n} and yunobs = {yunobsi : i = 1, . . . , n}. The model

parameters are θ = {β,γ}, with covariate parameters ψ = {µ1, . . . , µT−1, σy}.

The observed data likelihood in Equation (2.1) is given by,

42



f(xobs,yobs|θ,ψ) =
n∏
i=1

[∫
f(xobsi |yi,θ)f(yi|ψ) dyunobsi

]
,

and is again analytically intractable. The term f(xobsi |yi,θ) denotes the com-

plete data likelihood component corresponding to the probability of the capture

history xobsi ; and f(yi|ψ) the joint probability density function of the covariate

values associated with individual i. The probability of a given capture history,

conditional on initial capture and all covariate values yi, is given by,

f(xobsi |yi,θ) =

[
`i−1∏
t=fi

φ(yit)

][
`i∏

t=fi+1

p(yit)
xobsit (1− p(yit))1−x

obs
it

]
χi`i ,

where χi`i denotes the probability that individual i is not recaptured again after

time `i. We can express χit via the recursive function,

χit = 1− φ(yit) + φ(yit)(1− p(yit+1))χit+1,

such that χiT = 1, for all i = 1, . . . , n. The covariate model component of the

observed data likelihood, conditioning on the initial covariate value (which we

assume to be known, but can easily be relaxed by the inclusion of an initial state

distribution) is given by,

f(yi|ψ) =
T−1∏
t=fi

f(yit+1|yit,ψ),

where f(yit+1|yit,ψ) denotes the associated density for the given covariate model.

Previous attempts for dealing with missing covariate values include both clas-

sical and Bayesian model-fitting approaches. In particular, Catchpole et al. (2004)

derived a conditional likelihood approach, conditioning on only the known ob-

served covariate values. This approach is computationally fast but leads to a

(potentially substantial) reduction in the precision of the parameter estimates
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due to the amount of discarded information (Bonner et al., 2010); and cannot

be applied when the observation process parameters (i.e. capture probabilities)

are covariate dependent. To use all the available information, Worthington et al.

(2015) consider a two-step multiple imputation approach, which involves initially

fitting a model to only the observed covariate values and imputing the unobserved

covariates before conditioning on these imputed values and using a complete-case

likelihood approach for the associated capture histories. Alternatively Langrock

and King (2013) numerically approximate the likelihood by finely discretising the

integrals and estimate the integral via a hidden Markov model, providing im-

proved parameter estimates. The integral can be made arbitrarily accurate by

increasing the level of discretisation. However there is a trade-off between the ac-

curacy of the estimate and the computational expense. Finally, within a Bayesian

framework, a data augmentation approach has been applied, treating the missing

covariate values as auxiliary variables and sampling from the joint posterior dis-

tribution of the parameters and auxiliary variables (Bonner and Schwarz, 2006;

King et al., 2008).

2.2 Standard Approaches

In this thesis, we consider one standard model fitting algorithm for each model.

In closed population model, Gaussian-Hermite quadrature (GHQ) is considered

as a golden approach for a comparison with a proposed method while the Hidden

Markov model (HMM) is chosen as a standard approach for a comparison in open

population model.

2.2.1 Gaussian-Hermite quadrature

First, we begin to describe the standard approach to the marginal likelihood ex-

pressed in Equation (2.2) i.e., integrating out unobserved heterogeneity terms nu-

merically using Gaussian-Hermite quadrature (Steen et al., 1969). The Gaussian-

Hermite quadrature has been repeatedly used in the context of closed capture-

recapture models in the presence of unobserved heterogeneity (Coull and Agresti,
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1999; White and Cooch, 2017; McClintock et al., 2009). The implementation

of Gauss-Hermite quadrature is rather straightforward, sampling the likelihood

function at points in appropriate regions from certain distributions e.g. a Gaus-

sian density. Let g(y) be the objective (likelihood) function with y being the

variable of interest such that the integral has a form of

I =

∫
g(y) exp(−y2) dy.

The above integral can be approximated by

∫
g(y) exp{−y2} dy =

q∑
j=1

wjg(vj), (2.4)

where vj are the nodes that are symmetric around zero, and the roots of the

Hermite polynomials with the associated weight wj; and q denotes the number

of quadrature points.

We may now use Equation (2.4) to approximate the integral of the Mh model

defined in Equation (2.2). In this model, we assume the random effect terms to

follow a normal distribution such that εi ∼ N(0, σ) for i = 1, 2, . . . , n and similarly

ε0 ∼ N(0, σ) for all unobserved individuals i = n + 1, . . . , N . In our case, the

integral of a single individual has a form of

I =

∫
f(x|θ, ε) 1√

2πσ2
exp

{
− ε2

2σ2

}
dε.

Let u = ε√
2σ2

such that

I =

∫
f(x|θ,

√
2σ2u)

1√
π

exp
{
−u2

}
du,

which has the same functional form shown in Equation (2.4). Thus, the approx-

imation of Gaussian-Hermite quadrature to the integral of a single individual is

given by:

∫
f(x|θ,

√
2σ2u)

1√
π

exp
{
−u2

}
du ≈ 1√

π

q∑
j=1

wjf(x|θ, vj
√

2σ2). (2.5)
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Applying Equation (2.5) for each individual i = 1, . . . , N , we have the closed

approximation to Equation (2.2) given below:

L(θ, σ|x) =
N !

(N − n)!

n∏
i=1

[
q∑
j=1

wj√
π
f(xobsi |θ, vj

√
2σ2)

]
×

N∏
i=n+1

[
q∑
j=1

wj√
π
f(xunobsi |θ, vj

√
2σ2)

]
,

where

f(xi|θ, vj
√

2σ) =
T∏
t=1

(
1

1 + exp(−αt − vj
√

2σ2)

)xit (
1

1 + exp(αt + vj
√

2σ2)

)1−xit

.

Note that we use the R package statmod to compute the roots of the Hermite

polynomial vj and the associated weight wj. Gauss-Hermite quadrature is the

only approach considered for comparison with the proposed method in the closed

Mh model. This method is very straightforward to implement with less compu-

tational burden when there is only one random effect included in the model.

2.2.2 The Hidden Markov Model

Now, we describe the second method, Hidden Markov model, for fitting the CJS

model in open population. In CJS models with continuous covariates, the number

of dimensions of integrals might vary from one individual to another, depending

upon the availability of covariate information and increases with the increasing

capture occasions, leading to computational complexity. For example, one in-

dividual may have more missing covariate than other individuals due to e.g.,

individuals may be observed more than others resulting in unique capture his-

tories thus unique covariate information. Consequently, the number of integrals

may also differ. Langrock and King (2013) approximates such models by dis-

critizing covariates into fine range of intervals and re-expressing the likelihood

into the Hidden Markov Model-matrix form. We first describe the definition and

the general idea of the hidden Markov Model.

A hidden Markov model is defined by Zucchini et al. (2016) as one kind of
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dependent mixture, also known as “Markov-dependent mixture” where a Markov

process is used for modeling the underlying system. This hidden Markov model

is structured based on two distinct processes: (i) state-dependent process which

is observable, and (ii) unobserved (hidden) parameter process. Let Xt denote

the observable state-dependent process and Ct denote the unobserved parameter

process for t = 1, 2, . . . . To learn about the hidden process Ct, we may only

observe Xt. The current state Ct is dependent on the previous state Ct−1 and

Figure 2.1: The directed graph of the standard Hidden Markov model (HMM)

the only component affecting the distribution Xt as illustrated in Figure (2.1)

(Zucchini et al., 2016). Thus, the probability function Xt at time t assuming

discrete-valued observations is given by:

Pr(Xt = x) =
m∑
i=1

Pr(Ct = i)Pr(Xt = x|Ct = i), (2.6)

where Pr(Ct = i) is the probability of the hidden Markov process being in state

i, Pr(Xt = x|Ct = i) denotes the probability function given the current hidden

process at state i and time t and m denotes the number of states. Zucchini et al.

(2016) re-write this expression in a matrix notation for convenience such that:

f(Xt = x) = δΓt−1Q(x)1′, (2.7)

where δ is a vector with elements f(Ct = 1), denoting the probability of the

hidden process at initial state, 1 is a unit vector, and Γt−1 denote the transition
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probabilities between states at time t− 1 i.e.,

Γt−1 =


γ11 . . . γ1m

. . . . . . . . .

γm1 . . . γmm


with

γij = Pr(Cs+1 = i|Cs = i).

Finally, let Q(x) denote a diagonal matrix with ith element equal to Pr(Xt =

x|Ct = i). This expression can be easily generalised for continuous-valued obser-

vations by simply changing the summation in the Equation (2.6) into the integral.

Now, we follow the idea and modify the HMM form in general for mark-

capture-recapture models used in Langrock and King (2013), omitting the recov-

ery parameter. Suppose we define the state process for the survival process such

that

St =

1 if the individual is alive at time t;

0 if the individual is not available for capture at time t,

and let Γt denote the transition of probability matrix between two survival states

of a single individual such that

Γt =

φt 1− φt
0 1

 .

Furthermore, we define the observation process xt for a single individual i.e.,

xt =

1 if the individual is observed alive at time t;

0 if the individual is unobserved or observed dead at time t,

and we let Q(xt) denote the corresponding transition probability matrix of the
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recapture process at time t of a single individual such that

Q(xt) =



1− pt 0

0 1

 if xt = 0;

pt 0

0 0

 if xt = 1.

Therefore, the likelihood of the classical CJS model for observed individuals i =

1, 2, . . . , n can be written in the HMM-matrix form as expressed in Equation (2.7)

as follows:

L(Ψ|xit, yit) =
n∏
i=1

δ

(
T∏

t=fi+1

Γt−1i Q(xit)

)
1′,

where δ represents the row vector with its elements 1 and 0 and 1′ is a col-

umn vector of 1 of length 2. Now, we extend the HMM expression for standard

capture-recapture model by incorporating individual continuous time-varying co-

variates. Note that we only consider a single continuous covariate in this work for

simplicity. Let B0 and Bm denote the lower and the upper limit respectively con-

taining all possible values of covariates with m being the number of discretization.

Suppose Br = [Br−1, Br) denote associated intervals with b∗r being the midpoint

of intervals. Let Γ
(m)
it be the system process matrix of size (m + 1)× (m + 1) of

the ith individual specified by

Γ
(m)
it =


φit(1)ωit(1, 1) . . . φit(1)ωit(1,m) 1− φit(1)

...
. . .

...
...

φit(m)ωit(m, 1) . . . φit(m)ωit(m,m) 1− φit(1)

0 . . . 0 1

 ,
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where

ωit(r, c) =



f(yi,t+1|yit) if yi,t+1, yit 6= ∅, yit ∈ Br, yi,t+1 ∈ Bc;

f(yi,t+1|b∗r) if yi,t+1 6= ∅, yit = ∅, yi,t+1 ∈ Bc;

f(yi,t+1 ∈ Bc|yit) if yi,t+1 = ∅, yit 6= ∅, yit ∈ Br;

f(yi,t+1 ∈ Bc|b∗r) if yi,t+1, yit = ∅;

0 otherwise.

The function f(yi,t+1|.) denote the probability density function of the covariate

process specified by some first-order Markov processes. If the covariate value

of individuals at time t + 1 is observed then the associated individual density

function is simply a normal probability function. However, when such a covariate

is not available at time t+1, the individual covariate process can be approximated

by

f(yi,t+1 ∈ Bc|b∗r) = Φ

(
bc − (b∗r + µt)

σ

)
− Φ

(
bc−1 − (b∗r + µt)

σ

)
,

where Φ(.) denotes the cumulative distribution function of the standard normal

distribution. Further, we denote the survival process and recapture process re-

spectively as follows:

φit(r) =


h(φ(yit)) = β0 + β1yit if yit 6= ∅, yit ∈ Br;

h(φ(yit)) = β0 + β1b
∗
r if yit = ∅;

0 otherwise,

and,

pit(r) =


h(p(yit)) = γ0 + γ1yit if yit 6= ∅, yit ∈ Br;

h(p(yit)) = γ0 + γ1b
∗
r if yit = ∅;

0 otherwise.

Now, we define the system matrix process for the recapture probability. Suppose
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Q(m)(xit) be the diagonal matrix of size (m+ 1)× (m+ 1) defined below

Q(m)(xobsit ) =

diag(1− pit(1), . . . , 1− pit(m− 1), 1) if xit = 0;

diag(pit(1), . . . , pit(m− 1), 0) if xit = 1.

The model can be easily extended by regressing the covariate on the recapture

probability and such modification would not affect the HMM structure. We also

assume that the covariate is always observed at initial states, therefore the row

vector δ
(m)
i of length m + 1 for individuals i = 1, 2, . . . , n can be written in the

following form

δ
(m)
i =

1 if yi,fi ∈ Br;

0 otherwise.

Finally, putting all these together the likelihood of the continuous-covariate CJS

model can be expressed again in the HMM-matrix type notation defined in Equa-

tion (2.7)

L(Ψ|xobs,y) =
n∏
i=1

δ
(m)
i

(
T∏
t=fi

Γ
(m)
i,t−1Q

(m)(xobsit )

)
1′m+1, (2.8)

where 1′m+1 denote the column vector of 1 of size m+ 1. Similar to the GHQ, the

HMM can be made arbitrarily accurate with large limits and large m. The smaller

m means the faster the computation but at the risk of a poorer approximation,

whereas the larger m means the more intensive the computational expense. The

trade-off between the accuracy and the computational expense becomes the com-

mon challenge in discretization-based methods. Additionally, the HMM may not

scale up well with high-dimensional spaces i.e., integrating two or more covariates

may exponentially increase computational expense. This curse of dimensionality

becomes another rising-potential issue when dealing with larger data.

2.3 Laplace Approximation

Now, we present a more efficient likelihood-based method for approximating the

marginal likelihood for two capture-recapture models using Laplace approxima-
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tions. The Laplace approximation is a numerical closed-form approximation of an

integral and can be regarded as an alternative form of Gauss-Hermite quadrature

(Liu, 1994). The underlying idea of the Laplace integration is to approximate the

negative log-likelihood by a second (or higher) order Taylor expansion. When the

negative-log likelihood is well approximated by a Gaussian curve the Laplace ap-

proximation can be shown to have high precision. In particular, in a study from

Liu (1994) the standard error of the estimate was shown to be of order O(m−1),

where m denotes the number of observations. Adding in further leading terms

can further improve the accuracy to the order of O(m−2) (Wong and Li, 1992;

Breslow and Lin, 1995; Raudenbush et al., 2000). Using an analytical expres-

sion for the Laplace approximation is generally only feasible when the dimension

of the integral is small (for example, of dimension 2 or 3) due to the computa-

tional complexity in computing the higher order derivatives. However, numerical

approximations of the required derivatives can be obtained using automatic dif-

ferentiation. In particular we use the Template Model Builder (TMB) automatic

differentiation tool developed by Kristensen et al. (2016) that enables the use of

the Laplace approximation using a computationally efficient implementation. We

apply the Laplace approximation to individual heterogeneity capture-recapture

models applying the TMB tool for numerically calculating the derivatives, when

these are analytically intractable. We note that Laplace approximations have

been used previously for capture-recapture models but within a Bayesian context

for approximating the marginal posterior densities of the parameter of interest

(Smith, 1991; Chavez-Demoulin, 1999).

Now, we describe technical details of Laplace approximations. Suppose we

have a smooth function g(y) which can be expressed in the integration form as

follows:

L =

∫
exp (−λg(y)) dy, (2.9)

where g(y) has a local minimum function at y∗. To approximate the function
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g(y), the Taylor expansion is used on the function of g around y∗ such that

g(y) = g(y∗) + g′(y∗)(y − y∗) +
g′′(y∗)(y − y∗)2

2
+ . . . ,

where y∗ is a local minimum thus it follows that g′(y∗) = 0 and g′′(y∗) > 0. The

function of L can be rewritten as:

L ∝
∫

exp (−λg(y)) dy =

∫
exp

(
−λ
[
g(y∗) +

g′′(y∗)(y − y∗)2

2!
+ . . .

])
dy

= exp (−λg(y∗))

∫
exp

(
−λ
[
g′′(y∗)(y − y∗)2

2!
+
g(3)(y∗)(y − y∗)3

3!
. . .

])
dy.

Thus, if we only use the second order of the expansion, then we simply have the

following expression

L = exp (−λg(y∗))

∫
exp

(
−λ
[
g′′(y∗)(y − y∗)2

2

])
dy,

which is simply an unnormalized Gaussian density with σ2 = [λg′′(y∗)]−1. There-

fore, the Laplace approximation of the second order on the integration can be

expressed as

L = exp (−λg(y∗))

√
2π

λg′′(y∗)

{
1 +O

(
1

λ

)}
. (2.10)

Suppose now we want to use more leading orders of Taylor series for improved

precision thus more accurate approximation such that

L = exp (−λg(y∗))

√
2π

λg′′(y∗)

×E
{

exp

(
−λ
[
g(3)(y∗)(y − y∗)3

3!
+
g(4)(y∗)(y − y∗)4

4!
+ . . .

])}
,(2.11)

where E represents the expectation with respect to the normal density with mean

zero and variance σ2 = [λg′′(y∗)]−1. The latter term on the right hand side can

be expanded in a power series such that exp(X) = 1 + x
1!

+ x2

2!
+ . . . . Suppose we

53



define τ3 and τ4 respectively as follows:

τ3 =
g(3)(y∗)(y − y∗)3

3!
, τ4 =

g(4)(y∗)(y − y∗)3

4!
, . . . ,

such that Equation (2.11) can be rewritten as follows:

L = exp (−λg(y∗))

√
2π

λg′′(y∗)
× E {exp (−λ [τ3 + τ4 + τ5 + . . .])} .

Raudenbush et al. (2000) presented the general solution for the expectation which

can be easily used up to the m− th order given below:

E(τm) =0 for oddm;

E(τm) =
(m− 1)(m− 3)

m!
(σ2)m/2g(m)(y∗)

for evenm;

E(τm1, τm2) =0 for odd (m1 +m2);

E(τm1, τm2) =
(m1 +m2 − 1)(m1 +m2 − 3)

m1!m2!
(σ2)(m1+m2)/2g(m1)(y∗)g(m2)(y∗)

for even (m1 +m2).

Let the order of expansion used in this case is up to the fourth order. Note

that Raudenbush et al. (2000) suggested that E
[
1− λτ4 + 1

2
λ2τ 23

]
to be highly

accurate to approximate the integral; the expectation of odd orders disappear.

Thus, we consider to use this approximation such that we have

E(τ4) =
(3)(1)

4!
(σ2)2g(4)(y∗) =

3

24

g(4)(y∗)

λ2(g(2)(y∗))2
;

E(τ3τ3) =
(5)(3)

3!3!
(σ2)3g(3)(y∗)g(3)(y∗) =

5

12

(g(3)(y∗))2

λ3(g(2)(y∗))3
.

In sum, the complete expression of the approximation to the integral up to the

fourth order is

L = exp (−λg(y∗))

√
2π

λg′′(y∗)
×
[
1− 3

24

g(4)(y∗)

λ(g(2)(y∗))2
+

5

24

(g(3)(y∗))2

λ(g(2)(y∗))3

]
. (2.12)
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Note that we make a numerical comparison between the second and fourth order

expansion for a particular application in Section 3.1.2.

This approximation can be straightforwardly extended for multivariate cases

of a vector of random variable y = {y1, y2, . . . , yp}. First, we rewrite the function

of L given above in the form of a vector

L =

∫
exp (−λg(y))h(y) dy

=

∫
exp

(
−λ
[
g(y∗) +

g′′(y∗)(y − y∗)T (y − y∗)
2

+ . . .

])
dy

= exp (−λg(y∗))

∫
exp

(
−λ
[
g′′(y∗)(y − y∗)T (y − y∗)

2
+ . . .

])
dy.

The second order of the expansion for the multivariate case is given below

L = exp (−λg(y∗))

∫
exp

(
−λ
[
g′′(y∗)(y − y∗)T (y − y∗)

2

])
dy,

which is also an unnormalized multivariate Gaussian density with Σ = [ g′′(y∗)]−1

and g′′(y∗) is the hessian matrix of g(y) evaluated at y∗. Thus, the Laplace

approximation of the second order on the vector y can be expressed as

L = exp (−λg(y∗))

(
2π

λ

) p
2

|Σ|
1
2

∫
1

(
√

2π)
p
2 |Σ| 12

exp

(
−(y − y∗)TΣ−1(y − y∗)

2

)
dy

= exp (−λg(y∗))

(
2π

λ

) p
2

|g′′(y∗)|−
1
2

{
1 +O

(
1

λ

)}
. (2.13)

We also note that Laplace approximations can be thought as a special case of the

saddlepoint approximation where the variable y expressed in Equation (2.9) is

complex valued e.g., y = a+ ib (Strawderman, 2000; Barndorff-Nielsen and Cox,

1979). Similar to Laplace approximation, the saddlepoint method aims to solve

the integral at g′(y) = 0 which are saddlepoints, maximizing the contribution to

the integral L around these points.
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2.3.1 Closed Mh-type models

We consider the general Mtbh model with corresponding likelihood specified in

Equation (2.2). The integrand of the likelihood can be rewritten in exponential

form, such that,

f(x|θ, σ) ∝ N !

(N − n)!

n∏
i=1

[∫
exp{−g(xobsi , εi|θ, σ)} dεi

]

×
N∏

i=n+1

[∫
exp{−g(xunobsi , ε0|θ, σ)} dε0

]
, (2.14)

where,

g(xi, εi|θ, σ) = − log f(xi|θ, εi)− log f(εi|σ),

for i ∈ {1, . . . , N}. Dropping the subscript notation on i for notational brevity,

let ε̂ denote the value of ε that minimises g(x, ε|θ, σ) given model parameters θ

and heterogeneity parameter σ, so that g′(x, ε|θ, σ) = 0 and g′′(x, ε|θ) > 0. A

second-order Taylor series expansion is given by,

g(x, ε|θ, σ) ≈ g(x, ε̂|θ, σ) +
g′′(x, ε̂|θ, σ)(ε− ε̂)2

2
.

Laplace’s method approximates the integrands in Equation (2.14) using the prop-

erties of normal density functions as derived in Equation (2.10) such that the

contribution to the observed data likelihood takes the form,

∫
exp{−g(x, ε|θ, σ)} dε ≈ exp{−g(x, ε̂|θ, σ)}

∫
exp

{
(ε−ε̂)2

2g′′(x,ε̂|θ,σ)−1

}
dε

= exp{−g(x, ε̂|θ, σ)}
√

2π
g′′(x,ε̂|θ,σ) . (2.15)

To improve the accuracy of the approximation, we can also consider a higher-order

Laplace approximation involving higher-order derivatives. We use the fourth-

order Taylor expansion in Equation (2.12) to obtain the fourth-order Laplace

approximation. Applying the one-dimensional Laplace approximation on the in-
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tegral yields,

∫
exp{−g(x, ε|θ, σ)} dε ≈ exp{−g(x, ε̂|θ, σ)}

√
2π

g′′(x, ε̂|θ, σ)
(2.16)

×
[
1 +

5(g(3)(x, ε̂|θ, σ))2

24(g′′(x, ε̂|θ, σ))3
− 3g(4)(x, ε̂|θ, σ)

24(g′′(x, ε̂|θ, σ))2

]
,

where g(3)(.) and g(4)(.) denote the third and fourth derivatives with respect to

the random effect term ε. A closed form expression for the fourth-order Laplace

approximation is presented below where we assume the recapture probabilities

are specified using the logistic function, so that logit(pit) = αt + λSit + εi.

We calculate the derivatives of the joint density of the complete data like-

lihood and associated random effects for Mh-type models with respect to the

individual random effects to obtain the Laplace approximation of the (marginal)

observed data likelihood. Recall that for i = 1, . . . , n, we let g(xobsi , εi|θ, σ)

denote the objective function corresponding to the negative of the log of the

joint density of the observed capture history for individual i, denoted xobsi , and

associated individual random effect density, εi, given the model model parame-

ters, θ, and individual heterogeneity standard deviation, σ, i.e. g(xobsi , εi|θ, σ) =

− log f(xobsi , εi|θ, σ). Similarly we let g(xunobsi , ε0|θ, σ) denote the analogous ob-

jective function for the null history, xunobsi and the associated ε0 for all unobserved

individuals i = n+ 1, . . . , N . For i = 1, . . . , N , the corresponding objective func-

tion is of the form:

g(xi, εi|θ, σ) = − log f(xi|θ, εi)− log f(εi|σ)

= −
T∑
t=1

[xit log(pit) + (1− xit) log(1− pit)] +
1

2
log(2πσ2) +

ε2i
2σ2

,

where again, xi = {xobsi ,xunobsi } and εi = ε0 for all unobserved individuals i =

n + 1, . . . , N . For notational simplicity, we let ηit = αt + λSit + εi. The capture
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probabilities are assumed to be logistically regressed on the covariate, so that

pit =
exp(ηit)

1 + exp(ηit)
=

1

1 + exp(−ηit)
; and 1− pit =

1

1 + exp(ηit)
.

The first derivative of g(xi, εi|θ, σ) with respect to εi is given by,

dg(xi, εi|θ, σ)

dεi
=

T∑
t=1

[
−xit exp(−ηit)
1 + exp(−ηit)

+
(1− xit) exp(ηit)

1 + exp(ηit)

]
+
εi
σ2

=
T∑
t=1

[
−xit

1 + exp(ηit)
+

(1− xit)
1 + exp(−ηit)

]
+
εi
σ2

=
T∑
t=1

(pit − xit) +
εi
σ2
.

Similarly, the second derivative is given by:

g′′(xi, εi|θ, σ) =
d2g(xi, εi|θ, σ)

dε2i
=

T∑
t=1

[
exp(−ηit)

{1 + exp(−ηit)}2

]
+

1

σ2

=
T∑
t=1

[pit (1− pit)] +
1

σ2
.

Thus the negative log likelihood of the Mh-type model as given in Equation (2.2)

can be estimated using the second order Laplace approximation,

− log f(x|θ, σ) = − log(N !) + log(N − n)!

+
n∑
i=1

[
g(xobsi , ε̂i|θ, σ) +

1

2
log g′′(xobsi , ε̂i|θ, σ)− 1

2
log(2π)

]

+
N∑

i=n+1

[
g(xunobsi , ε̂0|θ, σ) +

1

2
log g′′(xunobsi , ε̂0|θ, σ)− 1

2
log(2π)

]
.

To obtain the closed form of the fourth order Laplace approximation, we require

higher order derivatives, in terms of the third and the fourth derivatives, with
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respect to εi. For i = 1, . . . , N , the third derivative of g(xi, εi|θ, σ) is given by:

g(3)(xi, εi|θ, σ) =
d3g(xi, εi|θ, σ)

dε3i

=
T∑
t=1

[
exp(ηit)

{1 + exp(ηit)}3
− exp(−ηit)
{1 + exp(−ηit)}3

]

=
T∑
t=1

[
pit (1− pit)2 − p2it (1− pit)

]
.

Similarly, the fourth derivative of g(xi, εi|θ, σ) is given by:

g(4)(xi, εi|θ, σ) =
d4g(xi, εi|θ, σ)

dε4i

=
T∑
t=1

[
exp(ηit)

{1 + exp(ηit)}4
− 4 exp(2ηit)

{1 + exp(ηit)}4
+

exp(−ηit)
{1 + exp(−ηit)}4

]

=
T∑
t=1

[
pit(1− pit)3 − 4p2it(1− pit)2 + p3it(1− pit)

]
.

These analytic expressions can be substituted into the higher order Laplace ap-

proximation given in Equation (2.17). The negative likelihood function including

the inner optimisation is coded in C++ utilizing the TMB library. The estima-

tion of the model parameters is obtained by subsequently minimizing the negative

log likelihood which is evaluated in TMB at given parameter values (for θ and

σ) using standard optimisation routines in R.

2.3.2 Open CJS model

Now, we apply the Laplace approximation for the open population CJS model

with individual time-varying continuous covariates. Note that due to the com-

plexity in approximating integrals in higher dimensions, we simply consider the

second order approximation for this case. Recall that yi = {yobsi ,yunobsi }. The

observed data likelihood in Equation (2.1) can be expressed in the form,

f(xobs,yobsi |θ,ψ) =
n∏
i=1

[∫
exp{−g(xobsi ,yi|θ,ψ)} dyunobsi

]
,
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such that for i = 1, . . . , n,

g(xobsi ,yi|θ,ψ) = −
`i−1∑
t=fi

log φ(yit)−
`i∑

t=fi+1

{xobsit log p(yit) + (1− xobsit ) log(1− p(yit))}

− logχi`i −
T−1∑
t=fi

log f(yit+1|yit,ψ).

Applying the multivariate k-dimension second-order Laplace approximation given

in Equation (2.13), we obtain,

∫
exp{−g(xobsi ,yi|θ,ψ)} dyunobsi ≈ exp{−g(xobsi ,yobsi , ŷunobsi |θ,ψ)}(2π)k/2

×|g′′(xobs,yobsi , ŷunobsi |θ,ψ)|−1/2,

where ŷunobsi denotes the value of yunobsi that minimises g(xobsi ,yi|θ,ψ). There

is no closed form for the derivatives (due to the χ term) and so we use numeri-

cal automatic differentiation function provided in TMB, to evaluate the Laplace

approximation for this model. Furthermore, obtaining higher order of Laplace ap-

proximations for multivariate cases in TMB is not feasible in the current version

therefore we only consider the second order approximation.
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Chapter 3

Capture-Recapture Studies:

Simulation Study and

Applications
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In this Chapter, we present simulation studies for both closed and open

population models under different scenarios e.g., different parameter settings.

Then, we demonstrate the model fitting on real examples: (i) St. Andrews

golf tees dataset from Borchers et al. (2002) for closed Mh model; and (ii)

meadow voles from Nichols et al. (1992) for CJS model with a continuous co-

variate. We make some comparisons in terms of accuracy and computational

expense among different model fitting algorithms and discuss the results. All

methods use the R package TMB from Kristensen et al. (2016) for computa-

tional comparability for calculating the MLEs of the parameters and are coded

in C++ and the bespoke R. All codes used in Chapter 3 can be found at

https://github.com/riki-herliansyah/capture-recapture.git.

3.1 Simulation Study

First, we describe simulation studies considered for each model using 1000 datasets

for each simulation. For the first simulation study, we consider closed population

Mh-type models. In this setting, we apply both the second and fourth order

Laplace approximations (LA2 and LA4, respectively) and compare with a Gauss-

Hermite quadrature (GHQ) approximation. The second simulation is conducted

on the open population CJS model with covariates where we compare the sec-

ond order of Laplace approximation with an HMM approximation (Langrock and

King, 2013). We discuss each of these cases in turn below.

3.1.1 Closed Mh-type models

We consider two simulation studies. The first investigates the performance of

the Laplace approximation for the four individual heterogeneity models i.e., Mh,

Mth, Mbh and Mtbh, given a set of parameter values; while the second focuses

on the individual heterogeneity standard deviation, σ, given model Mh. For

each dataset simulated we fit the generating model using both the second-order

(LA2) and fourth-order (LA4) Laplace approximations and compare with a GHQ

approach using 50 quadrature points as a “gold standard”.
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For each method we calculate the MLE and 95% confidence intervals using a

non-parametric bootstrap approach. The main reasons for using a non-paramteric

bootstrap simulation are to relax the asymptotic normality assumption on param-

eters of estimate and to avoid potentially unreliable confidence intervals derived

directly from obtained standard errors as the estimate N may be often close to

the boundary (King and McCrea, 2019). In particular, to compute the associated

95% confidence intervals, we simulate B bootstrap replicates of the data, such

that each simulated dataset is of the same size as the original data (i.e. same num-

ber of observed individuals). Each bootstrap dataset is simulated by randomly

drawing with replacement each observed capture history with equal probability.

We fit the model to each bootstrap dataset and obtain the associated MLEs of

the model parameters. We add the original MLEs of the parameters to this set

of values, so that we have B + 1 parameter values corresponding to the MLEs

of the parameters from the original and bootstrap datasets. The 95% confidence

interval for each parameter is calculated as the associated lower and upper 2.5%

quantile values of the B + 1 values. In practice we used B = 999. We also

compute the associated coverage probabilities (CP) for the given parameters i.e.,

the proportion of the associated 95% confidence interval that contain the true

value of the parameter, and the average relative bias (RB) for each parameter of

interest given by:

RB =
1

1000

1000∑
sim=1

(θ̂sim − θ)
θ

,

where θ̂sim denotes the estimated parameter for the bootstrap dataset sim =

1, . . . , 999 and original dataset (when sim = 1000).

For the first simulation study we set the total population size to be N = 100

individuals with T = 6 capture occasions and consider the four different individual

heterogeneity models: Mh, Mth, Mbh and Mtbh. The parameters specified for

the parameters were motivated by the snowshoe hare dataset (see for example,

Cormack (1989); Baillargeon and Rivest (2007)), after fitting the given models

to the data. For the time-invariant models (Mh and Mbh) we set αt = α =

−1 for t = 1, . . . , T . For the time-varying models, for Mth we set α = {αt :
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t = 1, . . . , T} = {−1.75,−0.91,−1.44,−1.03,−1.22,−0.67}; and for Mtbh, α =

{−1.49,−0.29,−0.44, 0.15, 0.10, 0.81)}, based on the parameter estimates from

fitting the models to the data. For the models with a behavioural effect (Mbh

and Mtbh), we specify a “trap happy” response, with λ = 0.75. Finally, for the

individual heterogeneity component we set σ =
√

0.75. For models Mh and Mbh

the probability of an individual not being observed within the study is 0.8; for

models Mth this probability is 0.77; and for model Mtbh, 0.95. 1000 datasets were

simulated for each model.

Table 3.1 provides the average relative bias (RB), 95% coverage probabili-

ties (CP) and the average width of the 95% confidence intervals (width) for the

1000 simulated datasets for the two parameters of interest, population size, N ,

and individual heterogeneity standard deviation, σ, for each model and model-

fitting approach. In general, across all approaches and models, the MLEs of the

parameters, N and σ, appear to be consistently slightly negatively biased for all

models. This bias is, however, consistently less for the LA4 and GHQ approaches,

relative to LA2. The differences in RB become more distinct as shown in Fig-

ure 3.1. Given this larger bias, it is perhaps unsurprising that the associated

coverage probabilities for LA2 are also consistently lower. This suggests that

the second-order Taylor series expansion in the standard Laplace approximation

is not sufficient to approximate the integral in the observed data likelihood of

the Mh-type models. However adding in the higher-order Laplace approximation

terms does improve the performance of the algorithm, with very similar perfor-

mance between LA4 and GHQ in terms of both relative bias (though the bias

appears to be very slightly less using the Laplace approximation) and coverage

probabilities.

64



Table 3.1: Simulation results in terms of averaged relative bias (RB) and 95%
coverage probabilities (CP) for 1000 simulated datasets for the different individual
heterogeneity models fitted via Laplace approximations, second-order (LA2) and
fourth-order (LA4), and Gauss-Hermite quadrature (GHQ).

Models Methods
N σ

RB CP Width RB CP Width

Mh

LA2 -0.023 0.838 53.569 -0.205 0.833 1.093

LA4 -0.004 0.884 36.689 -0.098 0.914 1.108

GHQ -0.004 0.882 47.833 -0.103 0.905 1.146

Mth

LA2 -0.003 0.854 75.585 -0.177 0.861 1.184

LA4 0.002 0.893 45.736 -0.081 0.916 1.146

GHQ 0.005 0.894 63.262 -0.084 0.910 1.221

Mbh

LA2 0.033 0.898 124.626 -0.142 0.875 1.349

LA4 0.001 0.921 53.521 -0.075 0.930 1.086

GHQ 0.005 0.920 66.280 -0.078 0.930 1.119

Mtbh

LA2 -0.010 0.859 35.314 -0.144 0.911 0.949

LA4 -0.007 0.875 47.026 -0.039 0.957 0.994

GHQ -0.007 0.873 41.516 -0.044 0.950 0.986

For the second simulation study, we consider model Mh and investigate the

performance of the Laplace approximations and GHQ for differing values of the

individual heterogeneity standard deviation, σ. Increasing the individual het-

erogeneity increases the variability of the survival probabilities of individuals in

the study and thus is likely to be increasingly challenging, see White and Cooch

(2017) for further discussion. Motivated by the golf tees data (see Section (3.2.1)),

we set N = 250, T = 8 and α = −1.5 for the simulation study. We then consider

a range of values for the individual heterogeneity standard deviation, such that

σ = 1, 1.5, 2. For each σ value we simulate 1000 datasets.

Table 3.2 provides the average relative bias, the 95% coverage probabilities

and mean 95% confidence intervals width for N and σ for the different model-

fitting approaches. As for the previous simulation study, the LA2 approach has

the poorest performance; while LA4 and GHQ perform better and have similar
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Figure 3.1: Distributions of relative bias (RB) of N fitted to 1000 simulated
datasets for four different models: (top left) Mh, (top right) Mth, (bottom left)
Mbh, and (bottom right) Mtbh.

relative biases and coverage probabilities. However, interestingly despite these

similar coverage probabilities, for GHQ the width of the confidence interval in-

creases as σ increases, due to the long tails for the upper bound; while this

relationship is not present for LA4 with similar width confidence intervals across

the different values of σ. These findings are consistent with the real data golf

tees example in Section 3.2.1, where the 95% non-parametric confidence intervals

of the quadrature approach are substantially wider for each of the four individ-

ual heterogeneity models. Finally we note that both the standard error of σ and

relative bias of N both increase as σ increases for all the model-fitting approaches.
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Table 3.2: Simulation results in terms of averaged relative bias (RB) and 95%
coverage probabilities (CP) for 1000 simulated datasets from model Mh for values
of σ = 1, 1.5, 2 and fitted via Laplace approximations, second-order (LA2) and
fourth-order (LA4), and Gauss-Hermite quadrature (GHQ).

σ Methods
N σ

RB CP Width RB CP Width

2.0
LA2 -0.053 0.883 84.145 -0.100 0.853 0.922
LA4 0.010 0.929 75.001 0.008 0.952 1.007
GHQ 0.017 0.929 158.29 -0.001 0.944 1.315

1.5
LA2 -0.034 0.879 93.322 -0.087 0.873 0.794
LA4 -0.003 0.928 79.066 -0.013 0.935 0.768
GHQ -0.003 0.928 127.852 -0.019 0.933 0.942

1.0
LA2 -0.021 0.868 95.648 -0.084 0.869 0.682
LA4 -0.002 0.903 76.665 -0.016 0.932 0.642
GHQ -0.002 0.903 85.726 -0.020 0.929 0.668

3.1.2 Comparison second and fourth order expansion on

Mh model

To compare the likelihood between the second and fourth order expansions of

the Laplace approximation, we fit the Mh model to snowshoe hare data setting α

and σ to be fixed and obtain the corresponding likelihoods. In particular, we set

α = −1 and σ = {2, 4}, and evaluate the likelihood function for different values

of N i.e., for N ∈ [70, 150] as shown in Figure 3.2. From Figure 3.2 we note

that when σ is “small” (σ = 2), the difference between two expansions is very

small. However, for larger values of σ (e.g. σ = 4) the discrepancy between the

second and fourth order expansion increases. Further, the mode of the likelihood

function, as a function of N , shifts to the left, which would thus lead to a lower

MLE estimate for the total population size (at least given fixed α and σ). This is

the case for both the second and fourth order approximations but is substantially

more marked for the larger value of σ. This finding is consistent with the results

from Table 3.1 where the second order Laplace approximation underestimates N

for model Mh. Thus, Breslow and Lin (1995) also suggested that the higher order

expansion of Laplace approximation is required for bias-correction. Note that in

this example we assume σ and α to be fixed to compare the difference between the

second and fourth approximations. However, in these parameters will generally
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be correlated with N in the hyperparameter space in practice, potentially leading

to more complicated relationship.

Figure 3.2: The likelihood comparison of second and fourth order expansions
of Laplace approximation for Mh model fitted to snowshoe hare data, setting
α = −1; (A) σ = 1 and (B) σ = 2.

3.1.3 CJS model with missing continuous covariates

We consider the CJS model where we specify the survival probability as a function

of a single individual covariate i.e., logit(φit(yit)) = β0 + β1yit for 2 different

covariate models:

- Model 1: yi,t+1|yit ∼ N(yit, σy) (a simple random walk);

- Model 2: yi,t+1|yit ∼ N(yit+µt, σy) (a random walk with additional temporal

effects).

We consider a range of scenarios motivated by the real meadow vole data con-

sidered in Section 3.2.2: (i) we initially set n = 200 and consider a constant

capture probability for two different regimes (p = 0.5, 0.75) for studies of length

T = 4, 6; (ii) to investigate the sample size, we then set T = 4 and repeat the

simulation study but increase n to 400 (with same constant capture probabili-

ties as before). For all studies we set σy = 1.2. The initial covariate value for

each individual at the time of initial capture is simulated from a Normal distri-

bution with mean of 15 and standard deviation of 2, i.e. yifi ∼ N(15, 2) with

fi randomly sampled from {1, . . . , T − 1}. For covariate model 2 we simulate

µt ∼ N(0, 1) for t = 1, . . . , T − 1, independently for each simulated dataset. The

survival probability was specified as a logistic regression on the individual covari-

ate with regression parameters β0 = −3.0 and β1 = 0.2. For each model and
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parameter combination we simulated 1000 datasets. For the HMM, we discretise

the individual covariate value into m = 20 intervals, re-expressing the integral as

a summation. The maximum likelihood estimates (MLE) can be easily obtained

via standard optimisation algorithm. In this simulation, we consider several opti-

misation algorithms in R such as optim and nlminb. To compute the associated

confidence interval (CI) of the MLE, we assume that the MLE is asymptotically

normal such that
(β̂ − β)

SE(β̂)
∼ N(0, 1).

Thus, the Wald-type confidence interval of the MLE for 95% can be computed

using the following equation:

β̂ ± 1.96SE(β̂).

For each dataset, we fit the Laplace approximation and compared with an

HMM-approximation (Langrock and King, 2013). Tables 3.3 and 3.4 provides

the corresponding averaged relative biases (RB), 95% coverage probabilities (CP)

and the mean 95% confidence interval widths of the regression coefficients, β0 and

β1 across the generated datasets. Overall, both the Laplace and HMM approx-

imations perform well with all coverage probabilities > 94% and small relative

biases. Relative biases seem to be very identical across simulation studies consid-

ered between the second order Laplace approximation and the HMM as shown

in Figure 3.3. Unsurprisingly, the relative biases are lower for smaller sampling

occasions in scenario (i) with n = 200. The same finding is also expected in

the scenario (ii) where the relative biases decrease as the sample sizes increase.

The relative biases are consistently smaller for the Laplace approach, across the

different scenarios considered, with the difference decreasing as p increases (as

the amount of missing information decreases).

3.1.4 Computational comparisons

We compare the computational time of the Laplace approximations with other

competing methods (GHQ for closed populations; and HMM approximations for
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Table 3.3: Simulation results for CJS model with n = 200 considering varying
values of T = 4, 6, p = 0.5, 0.75 for the two different covariate models. Presented
are the relative bias (RB), 95% coverage probabilities (CP) and the mean 95%
confidence interval widths (Width) of the regression parameters for the survival
probabilities averaged over 1000 simulated datasets using the Laplace approxi-
mation and a hidden Markov model (HMM) approximation respectively. Model
1 corresponds to a simple random walk on the continuous covariate; model 2 to
a random walk with additional temporal effects.

(a) Model 1

T = 4

p Methods
β0 β1

RB CP Width RB CP Width

0.50
Laplace 0.060 0.955 5.585 0.064 0.956 0.378
HMM 0.062 0.955 5.530 0.064 0.956 0.373

0.75
Laplace 0.009 0.961 4.269 0.008 0.956 0.282
HMM 0.010 0.961 4.266 0.009 0.956 0.282

T = 6
0.50

Laplace 0.036 0.962 4.485 0.031 0.962 0.293
HMM 0.041 0.962 4.479 0.035 0.960 0.293

0.75
Laplace 0.016 0.961 3.733 0.016 0.960 0.243
HMM 0.017 0.961 3.731 0.016 0.960 0.244

(b) Model 2

T = 4

p Methods
β0 β1

RB CP Width RB CP Width

0.50
Laplace 0.051 0.968 5.455 0.049 0.967 0.375
HMM 0.084 0.966 5.545 0.098 0.969 0.384

0.75
Laplace 0.020 0.959 4.237 0.018 0.959 0.284
HMM 0.027 0.961 4.245 0.026 0.958 0.282

T = 6
0.50

Laplace 0.054 0.957 4.503 0.048 0.956 0.296
HMM 0.078 0.959 4.513 0.074 0.956 0.298

0.75
Laplace 0.036 0.943 3.732 0.036 0.945 0.245
HMM 0.042 0.943 3.734 0.042 0.946 0.245
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Table 3.4: Simulation results for CJS model with T = 4 considering varying val-
ues of n = 200, 400, p = 0.5, 0.75 for the two different covariate models. Presented
are the relative bias (RB), 95% coverage probabilities (CP) and the mean 95%
confidence interval widths (Width) of the regression parameters for the survival
probabilities averaged over 1000 simulated datasets for the Laplace approxima-
tion and a hidden Markov model (HMM) approximation respectively. Model 1
corresponds to a simple random walk on the continuous covariate; model 2 to a
random walk with additional temporal effects.

(a) Model 1

n = 200

p Methods
β0 β1

RB CP Width RB CP Width

0.50
Laplace 0.060 0.955 5.585 0.064 0.956 0.378
HMM 0.062 0.955 5.530 0.064 0.956 0.373

0.75
Laplace 0.009 0.961 4.269 0.008 0.956 0.282
HMM 0.010 0.961 4.266 0.009 0.956 0.282

n = 400
0.50

Laplace 0.028 0.958 3.737 0.030 0.957 0.250
HMM 0.030 0.958 3.730 0.033 0.956 0.250

0.75
Laplace 0.003 0.943 2.981 0.003 0.941 0.197
HMM 0.004 0.943 2.980 0.004 0.941 0.197

(b) Model 2

n = 200

p Methods
β0 β1

RB CP Width RB CP Width

0.50
Laplace 0.051 0.968 5.455 0.049 0.967 0.375
HMM 0.084 0.966 5.545 0.098 0.969 0.384

0.75
Laplace 0.020 0.959 4.237 0.018 0.959 0.284
HMM 0.027 0.961 4.245 0.026 0.958 0.282

n = 400
0.50

Laplace 0.024 0.958 3.713 0.023 0.956 0.254
HMM 0.050 0.960 3.746 0.053 0.956 0.258

0.75
Laplace 0.016 0.949 2.971 0.016 0.949 0.199
HMM 0.022 0.948 2.966 0.023 0.950 0.200
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Figure 3.3: Distributions of relative bias (RB) of β0 and β1 for model 1 (top left
and right) and of β0 and β1 for model 2 (bottom left and right) fitted to simulated
dataset for T = 4 and n = 200.

open populations) for the simulation studies. Each algorithm was run on a 1.70

GHz Intel Core CPU i5-8350U computer with Windows 10. All methods were

implemented in the TMB package for comparability.

For the closed population simulation study, we consider model Mh. The

Laplace approximations (LA2 and LA4) are nearly twice as fast as the GHQ

approach (using 50 quadrature points) in evaluating the log-likelihood function.

For more complex models, the difference in computational speed is even greater.

For example, for model Mth, the differential in computation speed increases to

8-10 times faster for the Laplace approximations compared to GHQ. Finally, we

note that both approximations are “fast” in terms of absolute computational time

for these models, with the maximisation of the likelihood to obtain the MLEs of

the parameters in the order of seconds.

For the more computationally challenging CJS model with individual contin-

uous covariates, we focus on the computational times associated with model 2.

For example, to fit this model for a moderate sized dataset where n = 500 and
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T = 10, the Laplace approximation took an average of 1.55 seconds to evaluate

the observed data likelihood function; while the HMM approximation using 20

intervals took an average of 70.13 seconds (this is approximately 45 times slower

than the Laplace approximation). The computational time of the HMM approach

is dependent on the number of intervals used, and this relationship is non-linear.

For example, if we increase the number of intervals from 20 to 30 the computa-

tional time of the HMM more than doubles, such that it is over 100 times slower

than the Laplace approximation.

The Laplace approximation is consistently faster than the considered “gold-

standard” approaches (GHQ for Mh-type models; and HMM approximation for

the CJS model with individual time-varying continuous covariates). Further, the

Laplace approximation requires no tuning parameters, while these alternatives do

require some specification (e.g. number of quadrature points or intervals), with

an associated trade-off between the computational time and accuracy.

3.2 Examples

We consider two case studies corresponding to the closed Mh-type models (St.

Andrews golf tees data) and open CJS model with individual time-varying con-

tinuous covariates (meadow voles). We again compare the Laplace approximation

with alternative approaches.

3.2.1 St. Andrews golf tees

We consider the St. Andrews golf tees data from Borchers et al. (2002). The

dataset consists of N = 250 tees differing in size, colour and visibility resulting

in individual capture heterogeneity. A total of T = 8 independent observers (i.e.

capture occasions) were assigned to predefined transects and recorded all golf

tees observed. A total of 546 observations were recorded and n = 162 unique tees

observed in the study (additional size/colour data were not recorded).

Borchers et al. (2002) showed that omitting the presence of individual het-

erogeneity vastly underestimates the true population size, thus we consider the
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set of closed population models with individual heterogeneity present. Table 3.5

provides the estimated population size and 95% non-parametric bootstrap confi-

dence interval fitted to the four individual heterogeneity Mh-type models for the

Laplace approximations and GHQ approach. In general, the higher order Laplace

approximation (LA4) and the GHQ give relatively similar maximum likelihood

estimates for N , varying from approximately 242 to 262; while the lower order

Laplace approximation (LA2) gives somewhat varying estimates, as previously

observed within the simulation study in Section 3.1.1. The higher order Laplace

approximation tends to consistently produce slightly larger estimates of N than

the GHQ approach for all individual heterogeneity models. For example, the

estimates of N under Mh model are 251.3 and 242.4 for the LA4 and GHQ ap-

proaches, respectively.

The bootstrap confidence intervals for the GHQ approach are noticeably wider

than the LA4 approximation, with a consistently substantially larger upper limit

(we note that the lower limit is bounded by the number of observed individuals).

In particular, the highest upper bound of the LA4 approximation is approximately

310, with the width ranging from 90 to 100; while the lowest upper bound in

the GHQ approach is 358 and the widths generally double. King et al. (2008)

report a similar uncertainty interval as the LA4 approximation, using a Bayesian

approach with a model-averaged 95% credible interval of [194, 288], over the same

set of models. Further, the estimate of σ for each of these models is relatively

large (approximately 2 for all fitted models). We note that as observed in the

second simulation study (see Section 3.1.1), as σ increases, the width of the 95%

confidence intervals for N using the GHQ approach are increasingly larger than

for the Laplace approximations, yet providing comparable coverage probabilities.

Finally, we compared the computational times. In general, the computational

speed is fast in terms of absolute time, and on the order of milliseconds for each

of the methods. However, comparing the Laplace approximations to GHQ, the

Laplace approaches are approximately twice as fast for model Mh, increasing to

fives times as fast for model Mtbh.
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Table 3.5: The estimates of the total population of St. Andrews golf tees (the true
population, N = 250) and associated non-parametric bootstrap 95% confidence
interval (in brackets) for the four individual heterogeneity models using second-
order (LA2) and fourth-order (LA4) Laplace approximations and Gauss-Hermite
quadrature (GHQ) with 50 quadrature points.

Model LA2 LA4 GHQ
Mh 224 251 242

(192, 285) (199, 284) (198, 360)
Mth 224 254.1 242.6

(191, 284) (198, 282) (197, 358)
Mbh 272 262 261

(196, 353) (203, 308) (202, 406)
Mtbh 350 260 255

(189, 439) (198, 299) (195, 450)

3.2.2 Meadow voles

We consider capture-recapture data collected on meadow voles (Microtus penn-

sylvanicus) at Patuxent Wildlife Research Center, Laurel, Maryland over T = 4

capture occasions from 1981-1982 (Nichols et al., 1992). A total of 512 voles

were observed over the study period. When an individual was observed, its cor-

responding body mass was also recorded. We follow Bonner and Schwarz (2006)

by classifying individuals as immature (body mass ≤ 22 g) and mature (body

mass > 22 g) and consider data only for the mature voles observed for the first

time prior to the final capture occasion. This provides a total of n = 199 unique

capture histories corresponding to a total of 450 observed sightings and associated

body mass recordings. We note that approximately 40% of body mass recordings

were unknown, following initial capture.

We follow Bonner and Schwarz (2006) and consider the model where the

survival and recapture probabilities are dependent on body mass. In particular,

we let yit denote the body mass of individual i = 1, . . . , n at time t = fi, . . . , T −1

and set,

logit(φit) = β0 + β1yit; and logit(pit+1) = γ0 + γ1yit+1.
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Similarly, we specify the model for body mass to be of the form,

yit+1|yit ∼ N(yit + µt, σ
2),

for i = 1, . . . , n and t = fi, . . . , T − 1. The set of model parameters is θ =

{β0, β1, γ0, γ1}, and the heterogeneity parameters ψ = {µ1, µ2, µ3, σ
2}. All co-

variate values were recorded when an individual was observed, so we do not need

to specify an initial distribution for body mass.

We compared the Laplace approximation, HMM-approximation using 20 in-

tervals (Langrock and King, 2013), two-step multiple imputation approach (Wor-

thington et al., 2015) and Bayesian data augmentation approach (as fitted by

Bonner and Schwarz (2006)). Figure 3.4 provides the parameter estimates of the

fitted CJS model for the different approaches, in terms of MLE/posterior mean

and associated 95% confidence/credible interval. All approaches provide gener-

ally similar results, and in particular we note that the results for the Laplace

approximation and HMM-approximation are very similar. There are however

some differences in the results obtained via the two-step multiple imputation

approach for the parameters associated with recapture probability in terms of

the MLEs and with noticeably larger confidence intervals (the latter is also true

for the estimation of σ). Some differences are not unexpected since the regres-

sion model parameters are estimated independently by fitting the given covariate

model to the observed covariate values only, ignoring the capture observations.

Finally, we compared the associated computational times for each of the differ-

ent approaches. To obtain the MLE of the parameters, the Laplace approximation

takes < 1 second; the multiple imputation approach approximately 3 seconds; and

the HMM-approximation approximately 9 seconds for these data. Thus, using

999 bootstrap replicates to obtain the 95% confidence intervals, the computation

times are of the order of approximately 15 minutes; 45 minutes and 2.5 hours

for the Laplace approximation, imputation approach and HMM-approximation,

respectively. We note that the Bayesian data augmentation approach using a

Markov chain Monte Carlo algorithm will depend on the updating algorithm

used, number of iterations required for the Markov chain to converge to the sta-
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tionary distribution and to obtain reliable posterior summary statistics with small

Monte Carlo error following convergence and thus will be comparatively slower,

particularly in relation to the fast Laplace approximation.

3.3 Discussion

In this first work, we describe a Laplace approximation to estimate the analyt-

ically intractable observed data likelihood for capture-recapture models in the

presence of individual heterogeneity. The complexity of the likelihood function

influences the order of the Laplace approximation (Taylor expansion) that can be

analytically calculated. For closed population Mh-type models a fourth-order ex-

pression can be analytically derived; whereas for the CJS model with continuous

time-varying covariates we use automatic differentiation (via TMB) to obtain

the necessary numerical derivatives, as they are analytically intractable. The

Laplace approximation for these models provide a reliable and efficient mecha-

nism for evaluating the likelihood function, and hence obtaining the maximum

likelihood estimates, and associated confidence intervals.

In particular, comparing this approach to the current “gold-standards”, namely

GHQ for Mh-type models, and an HMM-approximation for the CJS model with

continuous covariates, the Laplace approximation consistently performs at least

as well but at substantially lower computational cost. However, we note that

for the Mh-type models, the fourth-order Laplace approximation is required for

this performance. Further, for the scenarios considered, the coverage probabil-

ities were essentially identical between the fourth-order Laplace approximation

and the GHQ approach, yet the width of the associated 95% confidence intervals

were significantly larger for the quadrature approach with increasing individual

heterogeneity variability (i.e. σ). Wider confidence intervals for increasing vari-

ability is also discussed by White and Cooch (2017) when using the quadrature

approach. Understanding this apparent difference is the focus of current research.

It is possible that this phenomenon could be due to the sampled quadrature points

within the GHQ approach remaining the same for different values of σ, i.e. the
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approximation algorithm being used is independent of the value of σ. However

this is not the case for the Laplace method, where the integral is approximated

by evaluating the given function at the maximum point, which may depend on σ

and other parameters in the model thus the precision of the approximation also

changes as parameters change e.g., σ. In addition the Laplace approximation is

scalable to higher dimensions and thus this approach is potentially a very at-

tractive avenue to pursue for more complex models (for example, in the presence

of multiple continuous individual covariates), particularly as the GHQ and the

HMM approximation generally suffer from the curse of dimensionality (Langrock

and King, 2013). Huber et al. (2004) explain that summation-based approaches

such as GHQ and HMM may have larger bias when the dimension of integrals

increases. The reason of this behaviour is due to GHQ and HMM-approximation

being based on pre-specified and fixed quadrature points. These fixed points can

easily become too coarse, particular in higher dimensions, such that the peak of

the log-likelihood is missed.

Employing TMB for fitting closed and open population models improves the

computational aspect and enables automatic Laplace approximations (second or-

der expansion). TMB is designed for fitting complex statistical models, with or

without random effects, using the classical likelihood method. Although the user

needs to have some minimal knowledge of C++, since the objective functions

i.e., negative log-likelihood functions are defined in C++, they do not need to

derive the Hessian matrix as this is calculated numerically. Thus, in general, only

minimal effort is required to translate use TMB templates. Further, Kristensen

et al. (2016) provide various examples of how to use TMB for fitting different

models, which are a useful source of learning guides for those new to TMB. The

difficulties in writing C++ will depend on the complexity of the objective func-

tion of interest. However, post processing and plotting can still be implemented

using R.
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(a) Regression intercepts and covariate model parameter estimates

(b) Regression slope parameters for the survival and recapture probabilities

Figure 3.4: Comparison of the parameter estimates (MLE or posterior mean) and
associated 95% uncertainty interval (non-parameteric confidence interval or sym-
metric credible interval) for the Laplace approximation, HMM-approximation,
multiple imputation and Bayesian data augmentation approaches fitted to the
meadow voles dataset.
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Chapter 4

Camera-Trapping Studies:

Models and Methods
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Estimating the density of wildlife populations is essential in ecology for man-

agement and conservation. Camera trapping is increasingly becoming a preferred

monitoring tool for sampling animal populations due to their non-invasive na-

ture and efficiency (Srbek-Araujo and Chiarello, 2005; O’Connell et al., 2011).

When individual animals are able to be uniquely identified, capture-recapture

(CR) methods are commonly applied to obtain estimates of population size as we

have shown in Chapters 2 and 3. CR models often incorporate different sources

of heterogeneity such as individual, behavioural and/or temporal heterogeneity

(Otis et al., 1978). The logical extension of abundance is density, where we enu-

merate the number of animals counted or surveyed per some areal unit. Let S be

the state-space or observation window i.e., a region which contains possible values

of locations of animals. The spatial density of animals, D, is then defined to be

the total population size N divided by the total area of the state-space |S| i.e.,

D = N/|S|. Reliable estimates of density, however, require information about the

size of the area used by the target animal and the effective size of the area sur-

veyed. For example, spatial capture-recapture (SCR) models, using an array of

traps permits spatial density to be estimated (Efford, 2004; Borchers and Efford,

2008; Royle and Young, 2008; Borchers et al., 2014; Efford et al., 2016; Stevenson

et al., 2021). However, standard CR-type approaches that require individuals to

be uniquely identified are often infeasible in practice e.g., many species may be

difficult to identify from camera trap images due to similar markings and/or poor

quality images.

Various analytical approaches have been developed for population density esti-

mation of unmarked individuals, including, for example, random encounter mod-

els (Rowcliffe et al., 2008), camera trap distance sampling (Howe et al., 2017), and

random encounter and staying time (Nakashima et al., 2018). Such approaches of-

ten require the observations to be independent, which is often violated in practice

(Palencia et al., 2021), and do not take into account spatial variability (Anderson,

2001; Pollock et al., 2002; Royle et al., 2014).

Spatially explicit models, also referred to as unmarked SCR, directly consider

two underlying sources of heterogeneity: detectability and spatial heterogeneity
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(Chandler and Royle, 2013). Conditional on the number of individuals in the

study area, and their associated activity centres, the number of animals observed

at each camera trap in a given time interval is assumed to be Poisson, with some

specified mean. Fitting this model faces two challenges due to (i) the unobserved

activity centers; and (ii) the total unknown number of individuals. A Bayesian

data augmentation approach is often used in the presence of such challenges,

which involves imputing the unknown activity centres and applying a super-

population approach to deal with the unknown number of individuals (Ramsey

et al., 2015; Evans and Rittenhouse, 2018; Connor et al., 2022). However, this

approach does not scale to large populations, and can exhibit (very) slow and

poor mixing within the Markov chain Monte Carlo (MCMC) algorithm.

We consider a large unmarked SCR dataset relating to barking deer (Munti-

acus muntjak) from Ujung Kulon National Park (UKNP), Indonesia. A total

of 1095 camera trap sightings over 77 cameras are recorded over a period of 4

months. The size of the population (in the thousands) is such that a super-

population approach is computationally very demanding. Thus, motivated by

these data, we develop a new efficient Bayesian model fitting approach, which

removes the necessity of a priori setting an upper bound on the population size,

and also permits the direct specification of a prior on the total population size.

Different approaches have been developed to fit the model involving an unknown

total population size. In particular, in the context of unmarked SCR dataset,

Bayesian data augmentation has been primarily applied to obtain estimates of

the posterior distribution of the model parameters (Chandler and Royle, 2013).

More generally, for marked capture-recapture models, a trans-dimensional algo-

rithm Reversible Jump MCMC, RJMCMC has been considered to update the

total population size, which is an explicit parameters in the model (Fienberg

et al., 1999; ?; King and Brooks, 2008; McLaughlin, 2019). See, for example,

Schofield and Barker (2014) for further discussion and a review of these, and

additional, approaches.

The remainder of the Chapter is organised as follows. In Section 4.1 we de-

scribe the unmarked SCR model and associated assumptions, before describing
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the different model fitting approaches in Section 4.2. In Section 4.2, we introduce

two new reversible jump (RJ)MCMC algorithms and describe the algorithm im-

plementation in R. Finally, we discuss prior distributions for each parameter in

the model.

4.1 Spatially Explicit Models

First, we begin to describe the model and the associated assumptions, in par-

ticular we extend the model described in Section 2.1. Suppose that there are

T sampling periods, and within each sampling period there are J camera de-

tectors (sites), and we assume that their locations are the same over time, but

this can be relaxed. The location of the camera traps is denoted by coordi-

nates, X = {Xj} ∈ R2 for j = 1, . . . , J . Individuals observed by the cam-

eras are not uniquely identifiable, so that the data corresponds to the num-

ber of sightings observed by camera j at sampling period t, denoted by njt,

for j = 1, . . . , J and t = 1, . . . , T . Thus the full set of observed data are

denoted by nobs = {nobsjt : j = 1 . . . , J ; t = 1, . . . , T}. Camera traps were

placed sufficiently close to each other such that individuals may be detected

at multiple camera locations at each sampling period t = 1, . . . , T . We de-

fine the (unobserved) encounter history for individual i = 1, . . . , N , denoted

by xunobsi = {xunobsijt : j = 1, . . . , J ; t = 1, . . . , T}, such that, xunobsijt denotes the

number of times individual i is observed by detector j = 1, . . . , J for sampling

occasion t = 1, . . . , T .

Further, we define the latent variables Si ∈ R2, corresponding to the activity

centre for individual i = 1, . . . , N , representing the individual spatial heterogene-

ity. Royle et al. (2014) defined the activity centres of animals as the centroid

of individuals’ home ranges or the centroid of individuals’ activities during the

study period. Thus, the activity centre is also known as home range centres and is

represented as point locations. Therefore, activity centres are generally unknown

for any individual as they are not being tracked over time. However, this concept

is not viewed the same as animals’ territories as in the classical definition. Royle
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et al. (2014) simply regard this as a conceptual device and a transient quantity

i.e., locations where animals stay during the sampling time.

Following Chandler and Royle (2013), we also assume that for each individual

i = 1, . . . , N , given their activity centre Si, the number of times the individual is

observed by trap j = 1, . . . , J at time t = 1, . . . , T is independent over detectors

and individuals (and homogeneous over time) and has a Poisson distribution,

such that,

xunobsijt |Si,Xj ∼ Poisson(λij(Si)).

The mean (or encounter rate), λij(Si) is specified to account for the correlation

in counts from neighbouring detectors and spatial heterogeneity over individuals.

In particular, we specify the encounter rate for individual i at trap j to be a

function of the distance from the associated activity centre of the individual Si

and the trap location, Xj. Specifying the encounter rate to be of half-normal

form (Efford, 2004) we have that,

λij(Si,Xj) = λ0 exp

(
−||Xj − Si||2

2σ2

)
,

where λ0 denotes an underlying baseline detection parameter and σ the scale

parameter controlling the rate of decay in the detection rate.

In practice, we do not observe the individual encounter histories, xmisi due to

the nature of unmarked populations (i.e., animals are not uniquely identifiable),

but only the total trap-count data, nobs. The trap-count data can be regarded as

(reduced) information summaries of the individual-level data via the relationship,

nobsjt =
N∑
i=1

xmisijt ,

for j = 1, . . . , J and t = 1, . . . , T . Using standard properties for independent

Poisson random variables, the aggregate count-trap data can be modelled as:

nobsjt |N,S,X ∼ Poisson(Λj(S)),
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where Λj(S) =
∑N

i=1 λij(Si). Note that Λj does not depend on the sampling

periods t since we assume a time-invariant spatial explicit model. Thus we can

simplify the model specification by considering the total trap counts over all

sampling times, denoted by nobsj. =
∑T

t=1 n
obs
jt , for each trap j = 1, . . . , J . Then,

nobsj. |N,S,X ∼ Poisson (TΛj(S)) ,

independently for each j = 1, . . . , J .

Note that we can also incorporate covariate information in the model parame-

ters. For example, including trap or activity centre level covariates in the baseline

detection rate, to account for changes in detection rate due to different environ-

mental factors, at either the trap level (affecting detectability of individuals given

the trap location) or activity centre level (to represent differences in detectability

of individuals due to varying environment summarised by trap location) (Chan-

dler and Royle, 2013; Evans and Rittenhouse, 2018; Connor et al., 2022). To

complete the model specification, we assume the unobserved activity centres, Si

for i = 1, . . . , N are independent and uniformly distributed over the region, S,

(and do not change over the sampling period) so that

Si ∼ Uniform(S).

The corresponding complete data likelihood function of the data and (unobserved)

activity centres is given by,

f(nobs|N, λ0, σ,X) = f(nobs|N, λ0, σ,S)f(S)

=

[
J∏
j=1

(
exp(−TΛj(S))(TΛj(S))n

obs
j.

nobsj. !

)]
|S|−N , (4.1)

where |S| denotes the area over the region S. The corresponding observed data

likelihood is obtained by integrating out over the S. Therefore, the observed

data likelihood is obtained by integrating out activity centres in the Equation
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(4.1) given as:

f(nobs|N, λ0, σ,X) =

∫
S

[
J∏
j=1

(
exp(−TΛj(S))(TΛj(S))n

obs
j.

nobsj.!

)]
|S|−NdS. (4.2)

However, this integration can be very high dimensional, increasing as the number

of traps increases (J) and number of animals increases (N). In the following sec-

tion, we discuss Bayesian-based approaches for estimating the parameters when

the likelihood is analytically intractable (via data augmentation).

4.2 Model fitting

The observed data likelihood expressed in Equation (4.2) is analytically intractable,

so that we consider a Bayesian data augmentation (or complete data likelihood)

approach (Tanner and Wong, 1987). Under this framework, we treat the latent

variables, S, corresponding to the activity centres over all individuals, N , as

additional auxiliary variables, and form the joint posterior distribution over the

model parameters and unknown activity centres,

π(N,S, λ0, σ|nobs) ∝ f(nobs,S|N, λ0, σ)p(λ0)p(σ)p(N), (4.3)

where the joint likelihood of the observed data and activity centres is given in

Equation (4.1) and p(.) denotes the prior distribution of the corresponding pa-

rameters. We note that the posterior distribution is not of a fixed dimension,

as it is now a function of the parameter N hence the number of activity centres

S changes according to N for each iteration, so that traditional Markov chain

Monte Carlo (MCMC) algorithms cannot be applied. Thus, this has led to the

use of the super-population approach, which uses a further data augmentation

step and defines an upper limit for the population size, once more returning to

the fixed dimension case (Chandler and Royle, 2013). An alternative approach is

to use a reversible jump (RJ)MCMC approach, which permits trans-dimensional

moves. We initially describe the previous super-population approach and asso-

ciated challenges, particularly for large datasets, before proposing an alternative
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(and more computationally efficient) RJMCMC algorithm. We comment briefly

on the conceptual differences of the approaches in terms of the prior specification

on N , before comparing the performance of the different algorithms via a small

data set relating to the Northern Parula.

4.2.1 Super-population approach

The super-population approach (SPA) has been applied to the unmarked SCR

model fitted on various camera trapping data (Royle et al., 2009; Chandler and

Royle, 2013; Ramsey et al., 2015; Evans and Rittenhouse, 2018; Connor et al.,

2022). The idea is to use a fixed-dimensional parameter-expanded data augmen-

tation approach by initially defining some upper limit for the population, M ,

typically referred to as the super-population. Then, each individual in the super-

population has an associated activity centre and additional auxiliary variable to

indicate whether or not it is a member of the population of interest.

Let S = {Si : i = 1, . . . ,M} denote associated activity centres of the aug-

mented individuals and z = {zi : i = 1, . . . ,M} denote the latent indicator

variable such that zi = 1 for i = 1, . . . ,M if it is a member of the popula-

tion N and zi = 0 otherwise. Thus, the auxiliary variables zi are specified to

follow the Bernoulli distribution such that zi ∼ Bern(ψ) for all augmented indi-

viduals i = 1, . . . ,M with some probability ψ, and associate prior p(ψ). Under

parameter-expanded data augmentation, the realized total individuals becomes

N =
∑M

i=1 zi. Following this specification, the model can be rewritten as:

nobs|S, λ0, σ, z ∼ Poisson

(
M∑
i=1

λij(Si)zi

)
.

Thus, the conditional posterior density under super-population approach is:

π(S, λ0, σ, z|nobs) ∝ f(nobs,S|λ0, σ, z)p(z|ψ)p(λ0)p(σ)p(ψ).

Although this approach leads to a fixed parameter dimension and so imple-

mentable using standard MCMC and software, there are also additional draw-
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backs, relating to scalability and the prior specification on N . In particular, the

super-population limit M needs to be specified a priori potentially leading to a

large parameter space (see, for example, King et al. (2016) for further discussion);

and the prior specification on N now an induced prior (via the prior specified on

φ). In the following section, we describe an alternative RJMCMC model fitting

approach that addresses both the scalability and prior specification issues.

4.2.2 Reversible Jump MCMC

We propose a RJMCMC algorithm (Green, 1995) for exploring the posterior dis-

tribution given in Equation (4.3). RJMCMC is a generalisation of the Metropolis-

Hastings (MH) algorithm that permits model moves between different dimensions,

which is required when updating the total population sizeN , due to the associated

activity centre latent variables, S. A similar updating algorithm was considered

by King and Brooks (2008) in the presence of individual random effects and by

McLaughlin (2019) for fitting marked SCR models. We describe the implemen-

tation of the RJMCMC algorithm, separated into two distinct move types: (i)

single-update MH for model parameters {σ, λ0,S}; (ii) RJMCMC update for N .

We briefly describe each of these moves in turn.

Single-update MH for model parameters {σ, λ0,S}

The Metropolis-Hasting algorithm is one of the most commonly used MCMC sam-

plers for sampling from a posterior distribution. The objective of the algorithm

is to generate random samples from some distribution when direct sampling is

difficult. Generated samples can be used to approximate the (marginal) posterior

distributions of the target parameters i.e., estimation via kernel density and/or

via summary statistics of interest. The MH algorithm iterates from the initial

state (initial parameters) to the final step by moving around the parameter space.

However, different initial values may potentially bias results since the initial state

of the MCMC algorithm is often far from its limiting stationary, invariant, distri-

bution. Therefore, we implement a burn-in period to compensate for this. The

idea is that the stationary distribution of the chains equal the distribution of
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interest, so we run the chain until convergence then treat future realisations as

a (dependent) sample from the distribution and use Monte Carlo integration to

estimate the parameters of interest. We may also consider multiple chains for

exploring the convergence of the MCMC. The algorithm involves two distinct

moves within each iterative move: (i) propose new values for θ, and (ii) accept

or reject the new values by following the given acceptance criteria. The first step

requires the specification of a proposal distribution for the candidate value. One

common choice is to consider a symmetric proposal distribution such that

θ′ = θ + ε,

where ε has the distribution q(.) e.g., Uniform or Normal distribution. The cor-

responding acceptance probability is given by:

α(θ′, θ) = min

{
π(θ′|x)q(θ|θ′)
π(θ|x)q(θ′|θ)

, 1

}
,

and recall that in Section 1.4.2 π(θ|x) denotes the posterior distribution of the

parameter θ given the observed data x.

The above approach is used for updating parameters in the model {σ, λ0,S}

and given the proposal distributions. In particular, we use a single-update MH

step for the parameters σ and λ0 and consider a joint update for Si, for each

i = 1, . . . , N (where N denotes the current value in the MCMC algorithm). For

σ and λ0 we use a random walk Normal proposal distribution, centred at the

current location of the parameters where the associated variances are obtained

via pilot-tuning i.e., q(σ′) ∼ N(σ, δ1) and q(λ′0) ∼ N(λ0, δ2). For Si, we use a

bivariate Normal random walk, centred on the current activity centre location,

with independent covariance matrix = κI, with κ determined via pilot-tuning.

Note that we use inside.owin() function from spatstat R package (Baddeley

et al., 2022) to check whether new activity centers are inside the region S when

the state space is irregular (when updating Si and adding in new activity centers

in updating N). If the proposed activity centres S′i lie outside the observation

window S, the move is immediately rejected.
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RJMCMC update for N : fixed removal of activity centres

The next step is to update the total population size N . Updating the total

population size N involves a change in dimension (recall that S = {Si : i =

1, . . . , N}). Thus, we consider a RJ step for updating N . We initially propose a

new value for N , that we denote, N ′. If N ′ > N , we further propose adding new

activity centres S′, using an independent proposal distribution (uniform over S);

else if N ′ < N we remove (some) activity centres. We note that we consider two

proposal distributions for updating the activity centres (in terms of those that are

removed): a “fixed” proposal; and a “stochastic” proposal. We describe the fixed

RJMCMC algorithm, and associated proposal distributions in further details as

follows.

(a) Propose N ′ = N + ε, where ε is an integer chosen from the interval [−δ3, δ3]

with an equal probability p(ε) = 1
2δ3

and note that this interval contains 0

which is excluded from the set of possible values, such that

{N ′ ∈ [N − δ3, N + δ3] : N ′ 6= N}.

The integer δ3 controls the jump step and is chosen via pilot tuning.

(b) If ε > 0, we update the elements of S′ by setting S′i = Si for i = 1, . . . , N

and generating new values of S′ for i = N+1, . . . , N+ε i.e., using the prior

distribution

S′ ∼ Uniform(S).

Then, we set N = N ′ with probability A = min (1, α(N ′, N)) where:

α(N ′, N) =
π
(
σ, λ0, N

′,S′|nobs
)
q(N |N ′)

π (σ, λ0, N,S|nobs) q(N ′|N)q(S′|S)
,

otherwise we reject the move. If the proposal distribution of S is uniform

over the region, the quantity q(S′|S) in the denominator will cancel with

the prior in the numerator when the posterior distribution is expanded. The

proposal distribution q(N ′|N) is simply equal to p(ε) and q(N |N ′) is the
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probability of reversing the move thus equal to p(−ε) therefore also cancel

in the acceptance probability due to symmetric distribution on ε.

(c) Similarly, if ε < 0, we set S′ = S for i = 1, . . . , N + ε and set N ′ = N with

the probability value A = min (1, α(N ′, N)) where:

α(N ′, N) =
π
(
σ, λ0, N

′,S′|nobs
)
q(S|S′)q(N |N ′)

π (σ, λ0, N,S|nobs) q(N ′|N)
,

otherwise we reject the move. For example, let the current value of N = 30

(thus S = {S1, . . . ,S30}) and ε = −5 such that the propose value N ′ = 25,

and the reduced set of activity centres is S1, . . .S25.

We note that using multiple updating steps of N at each iteration was also

considered (Gilks et al., 1995) to improve mixing. For convenience, we call this

algorithm as a fixed RJMCMC. Next section, we introduce a modification on

fixed RJMCMC algorithm.

RJMCMC update for N : Stochastic removal of activity centres

Here we consider the same reversible jump algorithm as described above but where

the activity centres are stochastically removed when ε < 0. For reversibility we

describe the addition and removal of the activity centres as follows.

Step (b) is amended such that if ε > 0 then we place the new activity centres

randomly within the list of activity centres. The current state has N activity

centres. Thus the first activity centre can be placed in (N + 1) locations (i.e.

before the first activity centre; between each successive activity centre; or after

the final activity centre). The next activity centre (if ε ≥ 2) can be placed in

(N + 2) locations (as we include the previously added activity centre). And so

on. Thus for general ε we have (N + 1) × ... × (N + ε) possible locations (each

equally likely). However, the order that the activity centres can be added in is

equal to ε! which will all give the same outcome which have to be accounted for.

Thus, letting Tot denote the total number of possible ways (where the order is
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unimportant as the final list is still the same) we can write,

Tot =
(N + 1)× ...× (N + ε)

ε!
=

 N + ε

ε

 .

Now as each outcome (in terms of location of the activity centres) are equally

likely and there are a total number of Tot outcomes, the probability of any such

outcome is simply 1/Tot. Alternatively we can use the following rationale. In

the proposed move we will have N + ε activity centres - and we need to work out

the probability of the ε new centres have the given set of labels. This is again

simply 1/Tot as there are Tot possibilities.

In the reverse move where we remove activity centres, suppose that we have

N + ε possible activity centres and we wish to remove ε centres. Then, as each

activity centre is chosen with equal probability, the probability of any given set

of activity centre be removed is again simply 1/Tot. Thus, in the acceptance

probability the probabilities of moving between the different models (in terms of

the set of activity centres) in the numerator and denominator simply cancel. We

note that this is only true when activity centres are chosen with equal probability

- so that we can use a counting arguments of equally likely events.

Finally, we comment that for this stochastic algorithm, an alternative way of

thinking about the above is that the order of the activity centres are exchangeable

- with the likelihood remaining constant to the ordering of the activity centres.

Thus we could simply think about reordering the set of activity centres such that

those added (when ε > 0) are labelled N + 1,. . . ,N + ε; and conversely in the

reverse move (when ε < 0) we reorder the set of activity centres so that those

that are removed are those listed at the end of the list. For convenience, we call

this a stochastic RJMCMC to describe a stochastic removal on activity centres.

4.2.3 Bespoke R codes

For the implementation of super-population approach (SPA), there are several

available MCMC black-box packages which can be used to fit the model such as

nimble (Valpine et al., 2022) and rjags (Plummer et al., 2022) that we have
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described in Section 1.5. However, in addition to the computational cost of spec-

ifying the upper super-population limit and additional indicator variables, z,

there is another hidden and highly considerable computational cost when fitting

the unmarked SCR model, without having finer control over the MCMC algo-

rithm. This is due to the structure of the likelihood in terms of a summation over

all activity centre contributions for the Poisson means for each camera trap in the

likelihood function. This summation is calculated when updating each individual

activity centre, Si, and latent variable, zi, for i = 1, . . . ,M . However, an efficient

and new implementational trick can be applied within bespoke computational

code for both the SPA and RJMCMC algorithms when updating the activity

centres (and latent variables for SPA). In particular, the Poisson mean value can

be stored and then only the change in the likelihood needs to be calculated when

updating Si (and zi), simply considering only the contributions of the particular

Si (and zi) values, as opposed to recalculating the mean by summing over all in-

dividuals. A similar computational tool can be applied when updating N within

the RJMCMC step, considering only the difference to the Poisson mean contri-

bution for the added/removed activity centres, when evaluating the likelihood

function. These new implementational steps can be immediately incorporated

within bespoke code (but typically not within more general black-box MCMC

packages), providing significant improvements in computational efficiency. For

example, running the SPA algorithm using bespoke R code, as opposed to nimble,

decreased the computational time by a factor of 2 for the smaller northern Parula

dataset (M = 300) and a factor of 20 (M = 10000) for the barking deer data.

Thus, for meaningful computational time comparisons between the SPA and RJ

approaches we consider their implementation using bespoke code, using the same

MH updating steps for parameters in common.

4.2.4 Prior specification

Finally, we explain possible prior choices for model parameters {σ, λ0, N}. First,

we discuss the prior specification N for both SPA and RJMCMC. The prior

specification on N in SPA is specified implicitly via the indicator variables zi ∼
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Bern(φ) for i = 1, . . . ,M , and associated prior specified on φ. For example,

Chandler and Royle (2013) consider a general prior of the form, φ ∼ Beta(a, b)

which induces a Beta-Binomial(M,a, b) prior on N . A common choice is to set

a = 0.001 and b = 1 which is a very close approximation to the scale (Jeffrey’s)

prior on N (Link, 2013).

However, within the RJMCMC algorithm, a prior is specified explicitly on

the total population size, N , leading to greater flexibility and interpretability

in the prior specification. For example, common choices may include Jeffrey’s

prior, Uniform prior or (hierarchical) Poisson prior for N . We consider the prior

N ∼ Poisson(µ), where µ ∼ Γ(α, β) (equivalent to a Negative-Binomial prior

distribution) (King and Brooks, 2001; Royle, 2004). In general, the values of α

and β can be specified to reflect prior knowledge; or be specified to induce a more

uninformative prior.

Now, we move on the prior specification on σ. There are two typical priors

specified on σ: (i) a Uniform (uninformative) prior i.e., Uniform(0,∞); and (ii)

a Gamma (informative) prior i.e., Gamma(a, b). When no information related

to σ available, we assign a Uniform prior. However, this may potentially lead to

a convergence issue when running MCMC if the spatial correlation is relatively

weak as noted in Ramsey et al. (2015). However, constructing informative prior

on σ requires information about the home range size of target species and is often

challenging in practice. The home range size can be defined as an area used by an

individual at certain duration of time. Assuming a bivariate half-normal model

on the encounter rate, we have that the term ||Xj − Si||2 follows a chi-square

distribution with 2 degrees of freedom (Royle et al., 2014)). Under a bivariate

normal model we can compute all realized distances (the movement outcomes).

In particular, (1−α)% of the realized distances is within σ
√
q(α, 2) where q(α, 2)

is the critical value of chi-square distribution with 2 degrees of freedom. Let r1−α

denote the quantity which contains (1 − α)% of the movement outcomes such

that

r1−α = σ
√
q(α, 2),
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Then we can compute the (1− α)% area used around S by

A1−α = πr21−α.

Therefore, if information related to the home range size (area used by animals)

is readily available, we can specify a and b on the Gamma prior to reflect the

knowledge we have on individuals’ space usages by the following equation:

σ =
r1−α√
q(α, 2)

, (4.4)

For example, we need 0.5% and 99.5% quantiles of chi-square distribution for α =

1% to estimate a and b appropriately. Alternatively, we can introduce a proper

Gamma(0.001, 0.001) prior on σ as used in Royle et al. (2014) if information

related to the space usage is unavailable.

For λ0, the common choice of (uniformative) prior is the improper Uniform

prior such that λ0 ∼ Uniform(0,∞) (Chandler and Royle, 2013). In this thesis, we

also consider a normal prior on log(λ0) i.e., log(λ0) ∼ Normal(0, τ) for sufficiently

large τ . Similarly, we can also introduce a proper Gamma(0.001, 0.001) prior on

λ0 (Royle et al., 2014).
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Chapter 5

Camera-Trapping Studies:

Simulation Study and

Applications
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In this Chapter, first we perform a simulation study on the spatially ex-

plicit model for comparing the SPA and the RJMCMC algorithm in estimating

the population size. Then, we demonstrate the model fitting on real datasets.

For illustrating the real cases, we consider two case studies: (i) a small case

study, Northern Parula, as used in Chandler and Royle (2013); and (ii) a large

case study, barking deer collected in Ujung Kulon National park (UNKP), In-

donesia. All codes used in Chapter 5 can be accessed in the author’s GitHub

https://github.com/riki-herliansyah/unmarked.

5.1 Simulation studies

We consider a simple simulation study to demonstrate the performance of RJM-

CMC algorithms and SPA fitted on spatially explicit models. The scenario set-

tings of the simulation are given as follows: we set the total population size to

be N = 50 individuals assuming T = 10 sampling occasions and λ0 = 0.6. We

generate J = 100 traps within the regular (square) state space with the size

of [60, 240] × [60, 240] and a grid spacing of 20. Therefore, we assume and set

the radius r95 = 30 to ensure sufficient spatial correlation between traps. The

estimated σ is then computed using Equation (4.4):

σ =
30√
5.99

= 12.26.

We generate activity centres assuming a uniform distribution and a buffer of

5 within the state space such that Si ∼ Uniform(S) for i = 1, . . . , N . Given

all parameter values, 100 simulated datasets were generated and fitted on the

unmarked SCR model.

As an illustration, we draw a spatial map given in Figure 5.1 displaying spa-

tially correlated counts of individuals on a 20 unit grid from a single simulated

dataset. A total of 100 traps (10 × 10) are placed in the area, and shown by

black dots in the figure, with the size of the dot srepresenting the total number

of detections at the given trap for the simulated dataset (ranging from 0 to 20

detections). The red crosses correspond to the (randomly generated) activity
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centres for the given simulated data. The blue line border indicates the original

spatial area while the red line border shows the additional buffer zone (5 units).

Figure 5.1: Spatially correlated counts of a single simulated data on a 20 unit grid
at area of [60, 240]× [60, 240] (blue border) with a buffer of 5 unit (red border).

We assume a uniform prior on σ and λ0 i.e., σ, λ0 ∼ Uniform(0, 100). We also

assume uniform prior on N for RJMCMC such that N ∼ Uniform(0, 150). We

further consider multiple updates on N i.e., 5 times at each iteration to improve

the mixing. For SPA, we used M = 150 as the upper limit and assume a Beta(1, 1)

prior for ψ such that ψ ∼ Beta(1, 1). We run the MCMC for 100,000 iterations

with 10,000 additional burn-in period for three separate and independent chains.

Table 5.1 provides the statistical summaries i.e., relative bias (RB) for sample

mean and mode, coverage probabilities (CP), effective sample size (ESS) and ESS

per second (ESS/s) of corresponding 100 simulated datasets. We consider to focus

on three main parameters of interest: σ, λ0 and N for inspection. Our simulation

results suggest that relative biases for posterior means are approximately the

same for all parameters among different approaches. Additionally, we found that

relative biases of N for posterior modes are much lower than the the relative biases
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for posterior means by around 15% while it shows opposite behaviours in σ and λ0.

The reasonable explanation to this is that the posterior distribution of the total

population N is often skewed thus the sample mode gives better estimation for the

central tendency of the distribution than the mean while the posterior distribution

of σ and λ0 is approximately symmetric. Coverage probabilities shows that the

Table 5.1: Simulation results in terms of averaged relative bias (RB), 95% cover-
age probabilities (CP), effective sample size (ESS) and ESS per second (ESS/s)
for 100 simulated datasets fitted via RJMCMC algorithms assuming stochastic
and fixed removal proposal distribution, and super population approach (SPA).

Algorithms Parameter RB Mean RB Mode CP ESS ESS/s

Stochastic RJMCMC
σ 0.005 -0.073 92.00 1111 1.758
N 0.176 0.015 90.00 416 0.616
λ0 -0.001 -0.289 94.00 1091 1.684

Fixed RJMCMC
σ 0.004 -0.086 93.00 984 1.607
N 0.178 0.004 90.00 196 0.291
λ0 -0.004 -0.275 93.00 948 1.497

SPA
σ 0.006 -0.081 92.00 1853 0.806
N 0.176 0.029 87.00 1487 0.647
λ0 0.003 -0.277 93.00 2144 0.933

accuracy is approximately 90% or higher indicating good fit. Our finding also

suggests that the stochastic RJMCMC provides better mixing than the fixed

RJMCMC; in particular we observe the effective sample size (ESS) and ESS per

second for investigating the mixing. The stochastic RJMCMC produces ESS of

approximately double for N while producing slightly better mixing for σ and λ0

compared to the fixed RJMCMC. Compared to the SPA, the ESS per second

produced by the RJMCMC algorithms is almost double for σ and λ0. However,

the ESS per second for N is almost the same as the stochastic RJMCMC which

may be due to the choice of moderate M . In practice we may need to assume a

reasonably large M to account for higher variability in the MCMC samples, and

the larger M we choose the more expensive the computation.
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5.2 Small case study: Northern Parula

To compare the performance of the different algorithms on a relatively small

sample population, we now consider the well studied real data example relating

to the Northern Parula (Parula americana). The Northern Parula is one of the

wood warbler species, found in eastern Canada and US South to Florida. It has

a unique feature of bright yellow colour with small body size as shown in Figure

5.2. This neotropical migratory wood warbler has weight between between 0.2

and 0.4 ounces and length between 4.3 and 4.7 inches, and can be found mainly

in mature forest with hanging canopy.

Figure 5.2: Northern Parula. Image credit: Wikipedia.

The data consists of 226 detections detected within 105 trap stations over 3

survey periods. The distributions of traps and individual detection are shown in

Figure 5.3. See Chandler and Royle (2013) for more details and associated SPA

approach applied to analyse the data. We used M = 300 for the upper limit for

the super population and δ = 10 for the proposal distribution for the reversible
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jump step on N . We considered two different priors on σ provided by Chandler

and Royle (2013): (i) Uniform prior, σ ∼ Uniform(0,∞) and (ii) the informative

prior, σ ∼ Gamma(13, 10). For the baseline detection rate, λ0, we specify the

Uniform prior i.e., λ0 ∼ Uniform(0,∞). Finally, for the total population size, we

specify N ∼ Uniform(0, 300) for the RJMCMC algorithms.

Figure 5.3: The distribution of counts of Northern Parula on a 1 m grid.

For fair comparisons, all algorithms were run under similar conditions and

written in the bespoke R by applying the efficient likelihood calculation as ex-

plained in Section 4.2.3. Tuning parameters are chosen after some pilot tuning to

obtain approximate mean acceptance rates between 0.2 and 0.4 for model param-

eters. In particular, we set tuning parameters equal to 0.1, 0.1 and 1 for σ, λ0 and

S, respectively, for both SPA and RJMCMC algorithms with additional updates

on N i.e., N was updated 4 times for each iteration to improve the mixing (Gilks

et al., 1995). We run the MCMC algorithms for 300,000 iterations following an

initial 10,000 iterations for burn-in for each algorithm using 3 separate and inde-

pendent chains. For SPA the simulations took approximately 4 hours; while the

RJMCMC algorithms took 0.6 hours each.
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No issues were identified in terms of convergence or mixing of the different

algorithms. Table 5.2 presents the corresponding posterior summary statistics of

the fitted model for the Parula data for the different algorithms including the

posterior mean (Mean), median (Med), standard deviation (SD) and the asso-

ciated 95% credible intervals (95% CI). The posterior estimates are similar for

each of the different algorithms, as would be expected. However, we note that

the posterior estimates for N and σ appear to be influenced by the different prior

specifications on σ (as previously noted by Chandler and Royle (2013)). In terms

of computational efficiency, there are some noticeable differences when compar-

ing the competing methods. In particular, we consider the effective sample size

(ESS) and effective sample size per second (ESS/s). The RJMCMC algorithms

consistently have a higher ESS/s compared to the SPA algorithm, typically of

the magnitude of > 10. Further, the stochastic RJMCMC algorithm appears to

have a marginally better performance than the fixed RJMCMC algorithm for all

the model parameters as we consistently observe in simulation studies.
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Table 5.2: Posterior summary statistics of model parameters fitted on the north-
ern Parula data using super population approach (SPA) and RJMCMC algo-
rithms (fixed proposal; stochastic proposal). Effective sample size (ESS) and
effective sample size per second (ESS/s) are included for both methods for each
prior.

Prior Methods Parameter Mean SD Med 95% CI ESS ESS/s

N 37.10 36.23 27.00 (2, 136) 1148 0.65

Fixed RJ σ 2.87 2.04 2.22 (0.96, 8.96) 328 0.18

λ0 0.27 0.14 0.24 (0.07, 0.59) 2798 1.58

N 38.22 36.65 28.00 (2, 138) 1523 0.84

Uniform

Stochastic RJ σ 2.73 1.89 2.14 (0.94, 8.61) 365 0.20

λ0 0.26 0.13 0.24 (0.07, 0.57) 3372 1.86

N 37.59 38.90 27.00 (1, 142) 2196 0.12

SPA σ 3.33 2.87 2.15 (0.93, 10.76) 444 0.02

λ0 0.31 0.27 0.26 (0.07, 1.14) 1349 0.08

N 64.57 39.36 54.00 (20, 170) 2048 0.74

Fixed RJ σ 1.33 0.27 1.30 (0.91, 1.95) 5011 1.82

λ0 0.29 0.13 0.27 (0.10, 0.59) 4215 1.53

N 64.17 37.60 54.00 (20, 164) 2974 1.09

Gamma

Stochastic RJ σ 1.33 0.26 1.29 (0.91, 1.94) 5773 2.12

λ0 0.29 0.13 0.27 (0.10, 0.59) 5031 1.85

N 65.41 40.03 55.00 (20, 174) 5228 0.28

SPA σ 1.32 0.27 1.29 (0.90, 1.97) 7403 0.40

λ0 0.29 0.13 0.27 (0.10, 0.60) 6198 0.33

5.3 Large case study: Barking Deer

Now, we consider the large case study relating to the barking deer (Muntiacus

muntjak). The barking deer, Muntiacus muntjak, is a primarily solitary animal

(with no group larger than four animals observed), found mainly in Asia e.g., in

India, Malaysia, Thailand, the Indonesian islands, Taiwan and Southern China.
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They are commonly known to be territorial among males but may overlap with

females, and during the mating season, the territory may overlap between males.

The reasons for territory holding (in males) might include restriction of access to

females for other males or (for both sexes) as a strategy to control access to food

or water resources. Adult males as shown in Figure (5.4) may stand 80 cm at the

shoulder while females smaller at 65 cm; with average adult deer between 98-120

cm (head and body) in size.

Figure 5.4: Adult male barking deer. Image credit: Shuttershock.

We begin by describing the study area and design including the characteristics

e.g., seasons and ecosystems. The model specified in Chapter 4 is extended

by incorporating the covariate information following a brief discussion of the

observed data. Finally, we fit the model on the data using the RJMCMC and the

SPA and discuss the findings.
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5.3.1 Study area

Ujung Kulon National Park (UKNP) is the largest lowland rainforest in Java

with the total area of approximately 120,551 ha of which about 44,337 ha is a

marine zone. The UKNP is a triangular peninsula located at the southwest end

of Java island, Indonesia, lying approximately at 6◦ 45′S by 105◦ 20′E. The study

area is approximately 32,900 ha. Habitat structures of the study area can be

divided into four vegetation types corresponding to primary forest, secondary

forest, mangrove-swamp forest and beach forest. The primary and secondary

forests account for 90% of the total area, with all of the camera traps located in

these two habitat types as shown in Figure 5.5 with mangrove-swamp and beach

forests being grouped as others.

Figure 5.5: The area of Ujung Kulon National Park, Java, Indonesia with different
habitat structures: (i) primary forest, (ii) secondary forest; and (iii) mangrove-
swamp and beach forests (others).

There are two seasons corresponding to (i) the wet season occurring between

October and April, with an average of approximately 400mm of rainfall per month

and (ii) the dry season between the May-September, with approximately 100 mm

rainfall per month (Rahman et al., 2017).

The study area was gridded into 1× 1 km sites, providing a total of 329 sites.

A total of 77 motion-sensor cameras (Bushnell Tropy Cam 119467 and 119405)
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were distributed across the study region: 35 cameras in the primary forest; 42

cameras in the secondary forest. The spatial grid and camera trap locations are

shown in Figure 5.6. The camera traps were placed 170 cm above ground and

Figure 5.6: The study area in Ujung Kulon National Park, Java with 1 × 1
km2 spacing grid. The points represent the camera trap locations distributed
within the state space ensuring the sufficient spatial correlation between traps
over different habitat. The black triangle represents Mt. Payung which is later
excluded from the modeling.

fixed to a tree with a 10-20◦ angle. The survey was conducted from March to

June, 2014 involving two season times: (i) wet season (March-April), and (ii) dry

season (May-June). Cameras were checked once a month (approximately every

21-30 days) and the battery and/or memory card replaced if necessary. Poor

quality photographs, where identification was uncertain were discarded. Further,

repeat photographs of individuals within 1 hour were considered to be a single

photographic event (Karanth and Nichols, 1998).
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5.3.2 Data and model

A total of 1095 barking deer detections were recorded during the four months of

sampling times; with 540 detections during the wet season and 555 detections

during the dry season. Further, we note that for the wet season 344 detections

were recorded in the primary forest and 196 in the secondary forest; corresponding

to 64%/36% for the primary/secondary forest detections. For the dry season

231 detections were recorded in the primary forest and 324 detections in the

secondary forest; corresponding to 42%/58% for the primary/secondary forest.

Distributions of spatially correlated counts of barking deer at the UNKP for the

two seasons can be seen in Figure 5.7.

Figure 5.7: Spatially correlated counts of barking deer on a 1 km grid in at UNKP
for two seasons: (A) wet and (B) dry. The black triangle represents Mt. Payung
which is later excluded from the modeling.

These data are collected across two different seasons: wet and dry. We con-

sider these separately due to the different weather conditions which may affect

animal behaviour and/or detectability (Marcus Rowcliffe et al., 2011; Kays et al.,

2020). In particular, we consider data relating to 2-month periods for each of

season: March-April for the wet season and May-June for the dry season. We

assume that the population is (approximately) closed for these periods (Silver

et al., 2004; Soria-Dı́az and Monroy-Vilchis, 2015; Rahman, 2016). Note that we

consider a 7 day period for each sampling occasion thus over the 2 months this

leads to 9 sampling occasions for the dry and wet season respectively.
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We extend the initial model presented in Section 4.1 to incorporate the envi-

ronmental covariate relating to habitat into the baseline detectability rate, such

that,

log(λ0j) = β0 + β1I(habitatj = primary),

where β1 corresponds to the parameter associated with the primary forest, relative

to the secondary forest. For simplicity, let β = {β0, β1}. The log specification on

λ0 implies that the original baseline rate for each forest can be obtained by taking

exponential such that λsec = exp (β0) and λpri = exp (β0 + β1) for corresponding

baseline rates of primary and secondary forest, respectively. We let M0 denote

the standard model, as described in Section 4.1 (i.e. where β1 = 0, so that

λpri = λsec); and Mh the model where the baseline detection rate is a function of

the habitat (at the given trap location).

5.3.3 Stochastic RJMCMC algorithm

Due to the large number of individuals, we only consider one of the RJMCMC

approaches, and given the performance for the previous Parula data, restrict

attention to the stochastic RJMCMC algorithm.

For model M0, we specify a Normal prior for log(λ0) i.e., log(λ0) ∼ N(0, 10);

and for model Mh, we specify βk ∼ N(0, 10) independently for k = 0, 1. We con-

sider the same priors on the remaining parameters for both models. In particular

we specify a Uniform prior on the scale parameter σ, so that σ ∼ U(0,∞). For

N we construct a weakly informative prior, using previous information relating

to the barking deer in another national park, the Baluran National Park, Indone-

sia (Tyson, 2007) combined with information provided by park staff in UKNP.

In particular the previous study for Baluran National Park suggested a density

of approximately 25 per km2, with 95% confidence interval (15, 47) (from fairly

limited data), with the density for the given barking deer in UKNP thought

to be (potentially substantially) lower. Thus, assuming a prior density of half

(=12.5) with a wide 95% uncertainty interval of (5, 17), led to the specification

of N ∼ Neg-Bin(10, 0.0032), with prior mean of 3115, and 95% interval of (1491,
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5325).

Each model was run for 500,000 iterations, following an initial burn-in of

10,000 iterations, using three independent chains each starting from different

starting values. N was updated 15 times for each iteration to improve mixing

(Gilks et al., 1995). The corresponding results are given in Table 5.3 relating to

the posterior summary statistics of the parameters for each model and for each

season: M0(dry),M0(wet),Mh(dry),Mh(wet). Convergence was checked using

the Brooks-Gelman-Rubin statistic for each monitored parameter provided in

the R coda package (Plummer et al., 2020). Figure 5.8 provides an example

of posterior distributions of monitored parameters fitted to M0(dry) and their

correlation plots. There seems no issue in convergence observed from the trace

plot as shown in Figure 5.8a. The R statistics of all parameters including covariate

models also give a good estimate at approximately 1.01. However, we note that

there seems to be a very strong negative correlation between σ and N as shown

in Figure 5.8b (posterior correlation = −0.81), leading to poor mixing of the

MCMC chains for σ and N and low effective sample size compared to λ0. Finally,

we record the computation times for fitting each model. Each simulation took

approximately 20 hours to run for the dry-season models (M0 andMh) and slightly

longer for the wet-season model i.e., 23 hours.
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(a)

(b)

Figure 5.8: Posterior distribution checks on the dry model parameters (M0) fitted
to the barking deer data for 500,000 iterations. Figure (a) shows trace plots for
convergence check, and (b) shows correlation plots.

First, we focus on model M0 fitted to the data from each season. Given the
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Table 5.3: Posterior summary statistics, corresponding to the mean, standard
deviation, 2.5% (Q2.5), 50% (Q50) and 97.5% (Q97.5) quantiles and effective
sample size (ESS) of the model parameters fitted on the barking deer data. The
dry and wet seasons indicate the model fitting on the data for the corresponding
season i.e., the data is separated into two seasons with and without habitat
respectively.

Parameter Mean SD Q2.5 Q50 Q97.5 ESS
M0 (Dry Season)

σ 0.90 0.14 0.68 0.89 1.22 2560
λ0 1.43 0.26 1.00 1.40 2.02 10288
N 4073 1065 2251 3984 6396 3267

M0 (Wet Season)
σ 0.58 0.09 0.43 0.57 0.78 1112
λ0 3.37 0.72 2.28 3.25 5.06 3114
N 4488 1161 2509 4391 7003 2619

Mh (Dry Season + Habitat)
σ 0.89 0.14 0.66 0.88 1.20 2405
λsec 1.58 0.37 1.03 1.53 2.47 6626
λpri 1.35 0.31 0.87 1.31 2.08 15656
N 4108 1072 2296 4011 6484 3153

Mh (Wet Season + Habitat)
σ 0.61 0.10 0.44 0.60 0.85 1118
λsec 1.67 0.41 1.07 1.61 2.67 3830
λpri 4.61 1.22 2.81 4.44 7.66 2703
N 4428 1197 2393 4319 7045 2445
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estimates for the total population size, the associated estimates of the popula-

tion density of barking deer i.e., D = N/|S| where |S| is the total area including

the buffer zone (here |S| = 349 km2), in the study area are approximately 11.7

animals per km2 in the dry season and 12.9 animals per km2 in the wet season.

The 95% credible intervals are highly overlapping between seasons with values

ranging from approximately (6.4, 18.3) and (7.2, 20.1) individuals per km2 for the

dry and wet season respectively. In general the density of barking dear varies sub-

stantially, from 25 per km2 in Baluran National Park, Indonesia (Tyson, 2007);

to between 2.1-3.4 animals per km2 in Nepal (Wegge and Storaas, 2009; Wegge

and Mosand, 2015); 2.9 animals per km2 in Sarawak (Dahaban et al., 1996); 3.1

animals per km2 in Thailand (Srikosamatara, 1993). Despite similar population

density estimates between the two seasons, the associated estimates for λ0 and

σ are noticeably different. In particular, for the wet season, the estimated scale

parameter σ is considerably smaller than the dry season; while the baseline de-

tection rate is substantially larger (a posterior mean > 2 times) than in the dry

season. The interpretation of the scale parameter is related to the movement of

barking deer i.e., the smaller σ in wet season may indicate a smaller movement

range due to closer water sources and/or food availability, while the larger value

of σ for the dry season may be a result of larger movement to search for wa-

ter and/or food availability (Tyson, 2007). Similarly, the larger value of λ0 for

the wet season indicates an increase in catchability, compared to the dry sea-

son (Marcus Rowcliffe et al., 2011). This may again be potentially explained

by animals having a smaller range due to plentiful resources during the wet sea-

son, resulting in smaller movements and higher frequency of cameras within their

search/activity patterns.

We now consider the results associated with model Mh. We note that the

inclusion of habitat type in the detection parameter in the model does not lead to

any meaningful change to the total population size (and hence density estimates)

and σ. However, there appears to be a substantial change in the estimates of the

detection functions for the different habitats (primary and secondary forest) for

the wet season; while similar estimates are obtained for the dry season for each

113



habitat, and which are comparable with the secondary forest in the wet season.

The posterior mean for β1 for the dry season (corresponding to the difference

in detection between the primary and secondary forests) is equal to -0.24 with

95% credible interval (−0.25, 0.48), suggesting no difference. However, for the wet

season, the posterior mean for β1 is 2.94 with 95% credible intervals of (1.12, 5.86),

indicating a much greater detection in traps in the primary forest habitat for

barking deer in the wet season. This difference in detection between habitats

in the wet season may again be related to the different usage of primary and

secondary forests. For example, habitat preference is known to change seasonally

which, again, may be related to food availability, resting or nesting sites and

predator avoidance (Yokoyama et al., 2020).

Figure 5.9: The estimated relative spatial densities of the barking deer for models
M0 (A and B) Mh, (C and D), corresponding to the wet (left) and the dry (right)
seasons, respectively. The dots represent camera trap locations for primary forest
(red) and secondary forest (blue). The black triangle represents Mt. Payung
which is later excluded from the modeling.

114



To consider a more formal model selection approach in relation to the habitat

covariate, a further RJMCMC step can be added to the algorithm, in order

to obtain posterior model probabilities for M0 and Mh. Implementing such an

approach provides the associated posterior probabilities for model Mh of 0.54 for

the dry season and 0.997 for the wet season. Figure 5.9 provides the corresponding

spatial distribution of relative population densities for two fitted models, M0 and

Mh for each of the dry and wet seasons, respectively. We note that there appears

to be a visible difference in density across the region between the two seasons

(e.g. a higher density area in the south east during wet season compared to this

being low density area during the dry season; and higher density patches in the

centre and further north west in the dry season compared to the wet season).

As expected, given the similarity in parameters for the dry season, there is little

discernible contrast in the estimated densities between two models for the dry

season. However, there are some minor differences observable for the wet season,

most notably a small increase in the densities near traps in the primary forest

areas.

5.3.4 Super population approach

For comparison purpose, we fit the model to the data using SPA but due to

the computational expense, we restrict the analysis to M0 for the dry season

case. We specify similar priors to the RJMCMC algorithm for λ0 and σ i.e.,

log(λ0) ∼ N(0, 10); σ ∼ Uniform(0,∞). For the upper limit M , we assume a

reasonably large upper limit with M = 10000. We introduce a similar weakly

informative prior for N to reflect the knowledge we have on the population. In

particular, we assume ψ ∼ Beta(6, 12) with a prior mean of 0.33, and 95% interval

of (0.14, 0.56); this induces a prior on N with a mean of 3270 and 95% interval

of (1421, 5596) to reflect the approximated spatial density of (5, 17). We note

that a beta prior is a conjugate prior for N ∼ Bin(M,ψ). Finally, all parameters

are tuned to produce approximately the same acceptance rate for updating the

model parameters as the RJMCMC approach i.e., between 0.2 and 0.4.

We ran the MCMC simulations code for 500,000 iterations with an initial
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Table 5.4: Posterior summary statistics, corresponding to the mean, standard
deviation, median (Q50), 2.5% (Q2.5) and 97.5% (Q97.5) quantiles and effective
sample size (ESS) of the model parameters fitted on M0 (dry) using the SPA
assuming M = 10000.

Parameter Mean SD Q2.5 Q50 Q97.5 ESS
σ 0.95 0.16 0.71 0.93 1.31 1852
λ0 1.49 0.29 1.04 1.45 2.16 9541
N 3746.90 1031.05 1910 3696 5871 1758
ψ 0.38 0.10 0.19 0.37 0.59 1777

10,000 iterations discarded for the burn-in period for three separate and indepen-

dent chains. Table 5.4 shows the posterior summary statistics of the parameters

for the fitted model. There seems no issue in convergence to the stationary distri-

bution via an inspection of the trace plot and BGR statistic. The computational

cost required for running a single chain in R using the more efficient bespoke like-

lihood calculation described in Section 4.2.3 was approximately 86 hours. Note

that a single simulation originally took more than 50 hours for simply running

10,000 iterations on nimble, which does not incorporate the efficient computa-

tional calculation of the likelihood function.

Table 5.4 shows that the parameter estimates of σ and λ0 are fairly similar to

the stochastic RJMCMC algorithm, as we would expect allowing for Monte Carlo

error and the minor difference in prior on N . In particular, the 95% credible

intervals of the density (D) are very similar for both approaches i.e., between

6 and 17 individuals per km2 obtained from the SPA and between 6 and 18

individuals per km2 from the RJMCMC. On closer inspection, we note that the

SPA, given a similar prior setting, produces slightly narrower credible intervals

and smaller standard deviations (SD) for the posterior. Thus the estimates appear

fairly similar but with some differences in the tails of the distribution. However,

we would expect larger Monte Carlo errors with smaller effective sample sizes,

with the ESS for SPA <2000 for and N ; compared to >3000 for the RJMCMC

approach (an increase of >1.5 times). Given the additional computational cost for

each algorithm, we further observe that the ESS/minute are substantially higher

for the RJMCMC compared to the SPA; >4 times higher for all parameters, and

>8 times higher for N .
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5.3.5 Sensitivity analysis

We consider a prior sensitivity analysis, varying the prior specified on the total

population size, to investigate the influence of the weakly informative prior. In

particular we consider two additional priors on N : (i) Neg-Bin(1, 0.001) with

µ = 999 and 95% interval (25, 3687); and (ii) Neg-Bin(5, 0.002) with µ = 2495

and 95% interval (808, 5113).

Each assigned prior was fitted on the barking deer data for all models: M0(dry),

M0(wet),Mh(dry),Mh(wet). We run 500,000 iterations plus 10,000 initial itera-

tions as a burn-in period for a single chain using a stochastic RJMCMC algorithm.

The posterior summary of statistics for all parameters on each assigned prior is

given in Table 5.5 and Table 5.6 for models M0 and Mh respectively.

In general, our study finds that the population density estimates i.e., posterior

means and medians for the barking deer remained relatively robust, with signif-

icantly overlapping credible intervals across the different prior specifications for

two given models. The posterior densities of the total population for model M0

shown in Figure 5.10 also suggests highly overlapping posterior densities across

the different priors. It is also noticed that there is an increased uncertainty in

the population estimates (and associated density estimates) with the increasing

vagueness of the priors.

Figure 5.10: Posterior densities of the total population N for different choices of
prior fitted on M0 for (A) wet season (March-April) and (b) dry season (May-
June).
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Table 5.5: Posterior summaries of model parameters fitting on barking deer
camera-trap data for the dry season and the wet season of the null model (M0)
for different choices of prior on N for assessing the sensitivity of the posterior
distribution on the prior.

Prior on N Parameter Mean SD Q2.5 Q50 Q97.5
M0 (Dry season)

NB(10, 0.0032)

σ 0.90 0.14 0.67 0.88 1.22
λ0 1.43 0.26 1.00 1.41 2.03
N 4129 1081 2269 4047 6440
D 11.83 3.10 6.50 11.60 18.45

NB(5, 0.002)

σ 0.91 0.18 0.64 0.89 1.31
λ0 1.44 0.27 1.01 1.41 2.07
N 4136 1404 1902 3967 7355
D 11.85 4.02 5.45 11.37 21.07

NB(1, 0.001)

σ 0.95 0.26 0.60 0.91 1.60
λ0 1.44 0.27 1.01 1.41 2.05
N 4099 1853 1245 3838 8528
D 11.74 3.31 3.57 11.00 24.44

M0 (Wet season)

NB(10, 0.0032)

σ 0.57 0.09 0.42 0.56 0.78
λ0 3.39 0.73 2.28 3.27 5.08
N 4605 1166 2556 4527 7112
D 13.20 3.34 7.32 12.97 20.38

NB(5, 0.002)

σ 0.57 0.10 0.41 0.56 0.80
λ0 3.39 0.72 2.29 3.28 5.07
N 4658 1370 2358 4551 7605
D 13.35 3.92 6.76 13.04 21.79

NB(1, 0.001)

σ 0.57 0.13 0.37 0.54 0.89
λ0 3.38 0.73 2.27 3.26 5.07
N 5164 2143 1846 4898 10120
D 14.80 6.14 5.29 14.03 28.99
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Table 5.6: Posterior summaries of model parameters fitting on barking deer
camera-trap data for the dry season and the wet season of the habitat model
(Mh) for different choices of prior on N for assessing the sensitivity of the poste-
rior distribution on the prior.

Prior on N Parameter Mean SD Q2.5 Q50 Q97.5
Mh (Dry season)

NB(10, 0.0032)

σ 0.88 0.13 0.66 0.87 1.17
λsec 1.53 0.33 1.03 1.48 2.31
λpri 1.37 0.32 0.87 1.32 2.12
N 4180 1076 2362 4089 6521
D 11.98 3.08 6.77 11.72 18.68

NB(5, 0.002)

σ 0.89 0.16 0.63 0.87 1.25
λsec 1.53 0.34 1.03 1.48 2.36
λpri 1.39 0.33 0.87 1.34 2.17
N 4254 1368 2027 4090 7405
D 12.19 3.92 5.81 11.72 21.22

NB(1, 0.001)

σ 0.88 0.16 0.56 0.85 1.36
λsec 1.52 0.33 1.02 1.46 2.32
λpri 1.38 0.33 0.87 1.33 2.14
N 4664 2041 1711 4314 9693
D 13.36 5.85 4.90 12.36 27.77

Mh (Wet season)

NB(10, 0.0032)

σ 0.61 0.10 0.44 0.60 0.85
λsec 1.70 0.44 1.07 1.63 2.79
λpri 4.74 1.29 2.85 4.56 8.08
N 4419 1182 2401 4318 7015
D 12.66 3.39 6.88 12.37 20.10

NB(5, 0.002)

σ 0.61 0.12 0.42 0.59 0.90
λsec 1.71 0.47 1.08 1.61 2.94
λpri 4.66 1.24 2.83 4.50 7.60
N 4596 1542 2098 4447 8087
D 13.17 4.42 6.01 12.74 23.17

NB(1, 0.001)

σ 0.59 0.17 0.35 0.56 1.01
λsec 1.70 0.42 1.08 1.62 2.76
λpri 4.87 1.52 2.87 4.56 8.96
N 5373 2490 1594 4996 11138
D 15.4 7.13 4.57 14.32 31.91
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5.4 Discussion

In this work, we provide a scalable Bayesian model-fitting algorithm for fitting

spatial count models for unmarked individuals when the size of population and/or

study presents computational challenges. The proposed trans-dimensional ap-

proach via an RJMCMC updating algorithm does not require an a priori upper

limit on the population size and an associated data-augmentation expanded pa-

rameter space as for the traditional SPA commonly applied, permitting a greater

scalability in applications. Further, the RJMCMC approach also permits a direct

prior specification on the total population size, for which there may often be prior

information, as for the barking deer case study. Bespoke code is required for im-

plementing the RJMCMC algorithm, but this also provides the ability to include

additional substantial computational savings within the updating of the activity

centre parameters due to the particular structure of the likelihood. In particular,

considering only differences in summations required (for the Poisson mean compo-

nent) within the required likelihood calculations as opposed to a full recalculation

of the likelihood term, provides a substantial computational saving, not generally

possible in standard black-box MCMC packages. Demonstrable computational

savings using these computational updates are also observed for the traditional

SPA, so that (comparable) bespoke code is used for both the RJMCMC and SPA

algorithms for consistency and informative comparability within this thesis. The

improved comparative performance (in terms of ESS/sec) of the proposed RJM-

CMC algorithm compared to the alternative SPA approach is noticeable even on

a relatively small dataset, as a result of the increase in computational time for

the RJMCMC algorithm compared to the SPA. The improvement depends on the

exact parameter and prior used by ranges from an improvement of approximately

3-20 for the cases we considered.

The differences between the traditional SPA and proposed RJMCMC algo-

rithm are particularly marked for the motivating case study relating to barking

deer. The SPA algorithm took substantially longer to implement compared to

the RJMCMC algorithm (by a factor of 4) while having substantially lower ef-

fective sample size (ESS). The density estimate of the barking deer in UNKP is
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substantially higher than many other regions, with ranges of approximately 2-3.5

animals per km2, but substantially less than for the study at Baluran National

Park, Indonesia with an estimated density of 25 per km2. There are several

possible factors which may influence the barking deer density (or equivalently

population size) in UNKP. A previous study found that there is a relatively bal-

anced sex ratio between adult males and females at 1.37:1 suggesting evidence of

regular recruitment into the population (Rahman, 2016). In addition, the specific

habitat within the national park may be a factor. In particular, the primary and

secondary forest occupies > 90% of the park, with primary forest known to be

dominated by emergent plants and tree species while palms and other fruit trees

are mainly dominant in the secondary forest (Rahman et al., 2017). Although

there is no record or data regarding food choices of barking deer at UKNP, a

study at Baluran park, Indonesia found that trees, shrubs, grasses, forbs and

climbers are frequently consumed by these species (Tyson, 2007), thus suggest-

ing an abundant food supply for barking deer within the park. However, not all

these foods can be found during the whole year, which may also be a factor in

the spatial density of the deer within the park for different seasons (see Figure

5.9).
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Chapter 6

Conclusions

123



This thesis introduced new efficient model fitting algorithms using classical

and Bayesian approaches for fitting large, capture-recapture and camera-trap data

where the observed data likelihood is analytically intractable. Computational

efficiency continues to be an important consideration, as models become more

complex and/or datasets/studies increase in size. Model fitting approaches that

may work well in low-dimensional spaces may not necessarily work well in high-

dimensional spaces. We answer such challenges by providing scalable likelihood

and Bayesian methods.

In our first works in Chapters 2 and 3, we proposed Laplace approximations

for fitting marked capture-recapture data with missing individual heterogene-

ity. In particular, we developed second-order and fourth-order Laplace methods

as an approximation to the intractable observed data likelihood of the Mh and

CJS models. Laplace approximations provide a reliable and efficient mechanism

for evaluating such likelihood functions and are scalable to higher dimensions.

With the help of readily-available R package such as TMB, the implementation of

Laplace approximations becomes more straightforward and thus this approach is

potentially a very attractive avenue to pursue for more complex models.

Our findings from the first works suggest that results are fairly consistent with

what have been found in Warton et al. (2015). They described and compared sev-

eral approaches in terms of speed and accuracy for fitting joint ecological mixed

models, including Laplace approximations, adaptive quadrature, data imputation

approaches and variational approximations. Within their applications considered,

the Laplace approximation was a very computationally efficient approach, but

less accurate for small samples; while adaptive quadrature appeared a reason-

able compromise between accuracy and speed. The Expectation-Maximisation

(EM) algorithm and Bayesian data augmentation were accurate but relatively

slow. Variational approximations, appeared to be as computationally efficient

as Laplace approximations whilst also providing moderately accurate estimates.

Further, Niku et al. (2019) showed that variational approximations coded in TMB

had smaller bias for negative binomial generalized linear latent variable mod-

els compared with the second order Laplace approximation. Exploring the use of
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variational approximations for capture-recapture models is also an area of current

research of this work, as well as investigating the robustness of Laplace approxi-

mation to models where the individual heterogeneity component is non-Gaussian.

Altenatively, implementing Laplace approximations to marked SCR model is also

an interesting direction for future research.

In Chapters 4 and 5, we developed more efficient Bayesian MCMC algorithms

for fitting a large unmarked SCR dataset in camera-trapping studies which re-

moves the necessity of priori setting an upper bound on the population size, and

also permits the direct specification of a prior on the total population size. Our

simulation studies and examples show that the new model fitting approaches, re-

versible jump MCMC, are consistently more efficient, yet attaining similarities in

terms of mixing compared to the existing approach, super population algorithm.

This alternate Bayesian method might provide a solution to the scalability chal-

lenge in the current Bayesian data augmentation. In addition, the new proposal

distribution i.e., stochastic removal of activity centres on the reversible jump step

for updatingN which successfully improve the mixing, approximately twice better

than the old proposal distribution, becomes more appealing. Providing a readily-

used platform in R such as nimble for the RJMCMC when trans-dimensional

algorithms are needed can be an interesting future research of this work.

However, a further and careful examination of model assumptions may be

needed as violations to such assumptions may lead to bias estimates of the spatial

density. As for traditional (marked) SCR, the spatial count model requires at

least three assumptions: population closure, independence (over locations and

individuals) and homogeneous activity centers (Chandler and Royle, 2013). It

has been shown in the standard marked SCR that population density estimates

are robust to low-moderate violations of these assumptions (Efford et al., 2016;

Efford, 2019; Bischof et al., 2020; Theng et al., 2022). The closure assumption can

be easily violated when longer periods of study, typically longer than 3 months for

mammals, is conducted (Silver et al., 2004; Soria-Dı́az and Monroy-Vilchis, 2015;

Rahman, 2016). Depending on ecological questions, the model may be extended

by allowing more relaxed assumptions on population where the population may
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change over time (Dail and Madsen, 2011; Chandler et al., 2011).

The assumption of independent movement of individuals may be easily vi-

olated when animals move in (small or large) groups/herds. Recent research

suggested that low to moderate levels of aggregation of individuals (group sizes

< 8) introduce small biases in density estimation and the scale parameter σ in

SCR (Bischof et al., 2020; Theng et al., 2022). These biases increase positively

as the aggregation levels increase in particular when the group size is larger than

64, the bias is estimated to be over 20%. Additionally, there is a substantial

decrease in coverage probabilities as the group size increases. Current research

focuses on investigating unmarked spatial models for deviations to such modelling

assumptions. Alternatively, the assumption of homogeneous activity centres im-

plies that activity centres of animals do not change over time which may not

be true in practice. This has lead to the proposal of a Markovian transient

model for the activity centres in the traditional marked SCR (Royle et al., 2016;

Theng et al., 2022). However, allowing activity centers to change over times (e.g.

seasons) substantially increase computational efforts, and developing associated

efficient computational tools, and/or alternative models, for unmarked SCR is

also an area of future research of this work.
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