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ABSTRACT

In the search for new physics beyond the Standard Model (SM) of particle physics,

one promising set of probes are rare decays, due to the possibility of large

contributions from new physics relative to their SM prediction. Two examples of

such processes are the long distance dominated flavour-changing neutral current

decays K+ → π+`+`− and Σ+ → p`+`−, referred to as the rare kaon and rare

hyperon decays respectively. These processes contain the transition of a strange

quark into a down quark which can only occur at loop level within the SM, however

tree level contributions could exist from physics beyond the SM. Currently, the only

known method for making ab initio calculations of low energy hadronic quantities

such as these, is through the use of Lattice Quantum Chromodynamics (LQCD)

where correlation functions are computed numerically via Monte Carlo methods on

a discrete, finite and Euclidean space-time lattice.

Work from this PhD has contributed to a calculation of the rare kaon decay at

physical pion mass. We then investigate an alternative method utilising directly

integrated correlation functions in an attempt to reduce the large computational

cost of this and similar calculations.

In addition, we present work extending the existing theoretical framework for

computing the rare kaon decay using LQCD to the rare hyperon decay, including the

handling of exponentially growing intermediate states and the correction of power-

like finite volume effects. We also present the current status of the first exploratory

calculation of the form factors of this decay with unphysically heavy pions and 2+1

flavours of domain wall fermions.

In order to perform this work, multiple developments have been made to the Grid

and Hadrons C++ libraries, which are open-source tools for performing large scale

lattice field theory calculations on both CPU and GPU based machines.
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LAY SUMMARY

The Standard Model (SM) of Particle Physics is the theory that currently best

describes the universe at a subatomic level. It is known, however, to not be

a complete description of the universe as it fails to include the gravitational

interaction, as well as not being able to explain the domination of matter over

antimatter that is observed in the universe. In almost all direct measurements

of subatomic interactions, the results have been statistically consistent with the

theoretical predictions of the SM, and the few that are not in good agreement have

not yet reached a confidence level necessary to be classified as evidence for New

Physics (NP) beyond the SM. One of the key goals of the particle physics community

is to improve both the experimental observations and theoretical predictions in order

to achieve this threshold for a discovery of NP.

One such type of observation is how often certain particles decay into collections

of other particles. Amongst others, some promising processes to investigate

are the so-called rare kaon and rare hyperon decays, K+ → π+`+`− and

Σ+ → p`+`− respectively. These decays have been observed by several particle

physics experiments, and measurements are currently being improved by the NA64

and LHCb experiments located at the CERN particle accelerator facility.

In addition to improvements in the experimental measurements, the theoretical

predictions must also be improved if any NP is to be discovered in these decays.

Currently, these predictions are only calculable using pen-and-paper techniques

with certain approximations made. However, these approximations leads to large

uncertainties in the predictions, that limit our ability to identify any NP.

In the past several decades, huge advances in computing power have been

made which allow for an alternative method known as Lattice Quantum Field

Theory (LQFT) in which calculations are performed numerically on large-scale

supercomputers. In this thesis, we describe the how calculations of these rare

processes can be performed using LQFT, and present the latest developments

towards making improved SM predictions of these decays.
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INTRODUCTION

The rare kaon and rare hyperon decays, K+ → π+`+`− and Σ+ → p`+`− respectively

with ` = e, µ, are Flavor Changing Neutral Current (FCNC) processes in which a

strange quark transitions into a down quark. These processes are highly suppressed

within the Standard Model (SM) since it does not include any interactions that allow

FCNCs at tree-level, and therefore they can only occur at loop level. The rarity of

these decays makes them, amongst other processes, ideal probes in the search for

New Physics (NP) beyond the SM.

With recent improvements to the branching fraction measurements of these decays

by the NA64 and LHCb experiments, and further improvements expected to come

in the future, the large uncertainties from existing theoretical predictions are the

limiting factor in the search for NP in these decays. With Lattice Quantum

Chromodynamics (LQCD) being the only known systematically improvable ab initio

method for calculating low energy hadronic processes, it is the the ideal tool for

making predictions of these processes. In this thesis, we present direct computations

of both the rare kaon and rare hyperon decays using LQCD, and investigate potential

methodological improvements for these calculations.

The structure of this thesis is as follows. Chapters 1 and 2 provide a description of

the broader framework, and specific methods utilised throughout this work. A brief

overview of the SM is given in chapter 1, separated into Quantum Chromodynamics

(QCD) (section 1.1) and Electroweak sector (section 1.2). Chapter 2 then describes

the method of LQCD which allows for non-perturbative calculations of QCD

processes to be computed numerically.

Chapter 3, discusses the experimental and theoretical status of the rare kaon decay,

K+ → π+`+`−, and describes the existing framework for calculating this decay on

the lattice. The first calculation of this decay on the lattice directly at physical

pion mass is then presented, and the challenges involved in future improvements are
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identified.

In chapter 4, the use of directly integrated correlation functions is discussed, in which

the time coordinate of an operator is integrated/summed over all time via sequential

inversions of the Dirac operator. This can be used to reduce the measurement costs

of many calculations, and so far has only be used in the context of degenerate initial

and final states. We discuss the applicability of this method to systems where this

degeneracy is broken. In addition, we show how this method can be applied to the

rare kaon decay, although in a restrictive kinematic setup, and a numerical study is

performed to demonstrate the validity and cost reduction of this method.

The theoretical framework for extracting the rare kaon decay on the lattice is

then extended in chapter 5 to allow for calculations of the baryonic equivalent,

rare hyperon decay Σ+ → p`+`−. While there are many similarities between

these decays, the extra spin degrees of freedom of the baryons, as well as the

qualitatively different spectrum of baryonic states, introduce modifications to the

methods that are described in detail. These modifications include the handling

of residual intermediate state time dependence, extending the so-called “scalar-

shift” method to baryonic systems, and the removal of the power-like finite-volume

corrections from on-shell intermediate states.

Chapter 6 presents the first exploratory calculation of the rare hyperon decay on

the lattice using the framework from chapter 5. This calculation is performed at

unphysically heavy pion mass to act as a proof of concept calculation where the

practicality of the methods can be evaluated. In addition, we identify challenges

that must be addressed before this calculation can be performed at the physical

point.

Finally, chapter 7 concludes this thesis with a summary of the work presented, as

well as the outlook for further research on these topics.
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CHAPTER

ONE

THE STANDARD MODEL AND THE SEARCH FOR

NEW PHYSICS

The SM of particle physics is currently the best model for describing the subatomic

world. Using the framework of Quantum Field Theory (QFT), it combines the

strong and weak nuclear forces, and electromagnetism into a single theory. While

there is an overwhelming abundance of experimental verifications of the SM, it is not

a complete theory of everything, as it does not include (and is incompatible with)

the theory of General Relativity (GR) which describes the universe at astronomical

scales.

Aside from the inconsistency between the SM and GR, the SM also fails to

explain the observed matter-antimatter asymmetry of the universe, and provides

no candidates for dark matter which accounts for a large portion of the content of

the universe. In addition, there are several experimental observations that are in

tension with predictions of the SM. These are anomalies that are statistically unlikely

to be random chance, but nonetheless have not yet achieved the community decided

threshold to be classed as a discovery of NP beyond the SM.

For these reasons, a key goal of the particle physics community at the present time

is to find, and confirm, these anomalies as they provide the smoking gun that can

lead us to a new theory beyond the SM. In order to confirm the existence of an

anomaly, both an experimental observation and a SM prediction must be made, and

a discrepancy between the two must pass some statistically significant threshold.
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As a result of the amazing predictive power of the SM, any NP must necessarily

have very subtle effects on any observation. For this reason, there are two major

approaches to searches for Beyond the Standard Model (BSM) physics:

• Searches for small deviations in high frequency processes, using high precision

measurements.

• Searches for large relative deviations in rare/forbidden processes.

The former utilises ever improving statistical precision to find tiny deviations from

the SM predictions, for example in the muon magnetic moment (g − 2)µ, and

Cabibbo–Kobayashi–Maskawa (CKM) matrix unitarity tests. The latter looks for

signals that are rare or forbidden within the SM, where deviations resulting from

NP can have a large relative influence that can be observed with significantly less

precision. In this thesis, we focus on making SM predictions of rare decays for use

in this latter approach.

The SM is a quantum theory based on the gauge group

SU(3)c × SU(2)L × U(1)Y (1.1)

where the subscript c indicates the color group that describes the strong nuclear

force, L and Y indicate the left-handed and hypercharge sectors that describe the

electroweak interactions. We shall discuss these two separately in the following

sections.

1.1 Quantum Chromodynamics

QCD is the theory of the strong nuclear force which describes the spectrum and

interactions of the hadronic particles. These hadrons can be separated into the

mesons (π, K, φ, ρ, ...) and the baryons (p, Σ, Λ, Ω, ...), which are all described by

the SU(3)c part of the SM gauge group.

The fundamental quantum fields of this theory are the Nf flavours of quarks, qf ,

and gluons Ga,µ, with a Lagrangian given by

L = − 1

4g2
Ga,µνG

a,µν +

Nf∑
f=1

q̄f (iγµD
µ −mf ) qf , (1.2)
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where Dµ = ∂µ− iGa,µT
a, T a are the generators of the SU(3) group, g is the (bare)

QCD coupling, mf is the (bare) mass of the quark flavour f , and the gluonic field

strength tensor is given by

Gµν = i[Dµ, Dν ] = ∂µGν − ∂νGµ − i[Gµ, Gν ] = Ga,µνT
a . (1.3)

This Lagrangian is constructed such that it is invariant under local SU(3)c

transformations where the fields transform as

q(x)→ Ω(x)q(x) , (1.4)

q̄(x)→ q̄(x)Ω†(x) , (1.5)

Gµ → Gµ − iΩ(x)∂µΩ†(x) , (1.6)

where Ω(x) ∈ SU(3). The Feynman vertices that arise from this Lagrangian are

shown in fig. 1.1, where the first indicates the interaction of the quarks and gluons,

and the remaining two diagrams are 3 and 4 gluon interactions that arise as a result

of the non-abelian nature of the SU(3) group.

Figure 1.1 Quark and gluon interaction vertices for continuum QCD.

As with all quantum field theories, the parameters of the theory must undergo a

renormalisation procedure which results in the running of the QCD coupling g and

masses mf . Most importantly for this discussion, the coupling, g, becomes a function

of the renormalisation scale µ, and its behaviour is governed by the renormalisation

group equation

µ
dg(µ)

dµ
= β(g) , (1.7)

where β(g) is the beta-function. In perturbation theory, this beta-function at one
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loop is given by

β(g) = −
(

11− 2Nf

3

)
g3

(4π)2
, (1.8)

and defining a quantity analogous to the fine structure constant (αem = e2

4π
), the

solution to the renormalisation group equation gives

αs(µ) =
g2(µ)

4π
=

αs(µ0)

1 + αs(µ0)
4π

(
11− 2Nf

3

)
ln
(
µ
µ0

) , (1.9)

where µ0 is some reference scale at which αs can be measured. Figure 1.2 shows the

running of the QCD coupling extracted from various experimental measurements,

which shows a very good agreement with the theoretical scaling.
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Figure 9.3: Summary of measurements of αs as a function of
the energy scale Q. The respective degree of QCD perturba-
tion theory used in the extraction of αs is indicated in brack-
ets (NLO: next-to-leading order; NNLO: next-to-next-to-leading
order; NNLO+res.: NNLO matched to a resummed calculation;
N3LO: next-to-NNLO).

αs(M2
Z). This corresponds to αs(M2

τ ) = 0.312± 0.015.

9.4.2 Heavy quarkonia decays:
Recently, two determinations have been performed [556,557] that
are based on N3LO accurate predictions. Reference [556] per-
forms a simultaneous fit of the strong coupling and the bot-
tom mass mb, including states with principal quantum number
up to n ≤ 2 in order to break the degeneracy between αs and
mb, finding αs(M2

Z) = 0.1178 ± 0.0051. Reference [557] in-
stead uses as input of the fit the renormalon-free combination
of masses of the meson Bc, the bottomonium ηb and the char-
monium ηc, MBc −Mηb/2 −Mηc/2, which is weakly dependent
on the heavy quark masses, but shows a good dependence on αs.
Using this observable, they obtain αs(M2

Z) = 0.1195 ± 0.0053.
Two further values are derived at NNLO in Ref. [558, 559] from
mass splittings and sum rules giving αs(M2

Z) = 0.1183 ± 0.0019
and αs(M2

Z) = 0.1175 ± 0.0032 when evolved from the relevant
charmonium respectively bottomonium mass scales to M2

Z . Fi-
nally, by means of quarkonium sum rules, Refs. [560, 561] quote
αs(M2

Z) = 0.1168±0.0019 and αs(M2
Z) = 0.1186±0.0048 for char-

monium and bottomonium respectively. These six determinations
satisfy our criteria to be included in the heavy-quarkonia category
of the world average. Their unweighted combination leads to the
pre-average for this category of αs(M2

Z) = 0.1181± 0.0037.

9.4.3 PDF fits:
Another class of studies, analyzing structure functions at NNLO
QCD (and partly beyond), provide results that serve as relevant
inputs for the world average of αs. Most of these studies do not,
however, explicitly include estimates of theoretical uncertainties
when quoting fit results of αs. In such cases we add, in quadra-
ture, half of the difference between the results obtained in NNLO
and NLO to the quoted errors.
A combined analysis of non-singlet structure functions from

DIS [562], based on QCD predictions up to N3LO in some of
its parts, results in αs(M2

Z) = 0.1141 ± 0.0022 (BBG). Studies
of singlet and non-singlet structure functions, based on NNLO
predictions, result in αs(M2

Z) = 0.1162 ± 0.0017 [563] (JR14).
The AMBP group [564, 565] determined a set of parton distribu-
tion functions using data from HERA, NOMAD, CHORUS, from
the Tevatron and the LHC using the Drell-Yan process and the
hadro-production of single-top and top-quark pairs, and deter-
mined αs(M2

Z) = 0.1147± 0.0024 [564].

The MSHT group [566], also including hadron collider data,
determined a new set of parton density functions (MSHT20)
together with αs(M2

Z) = 0.1174 ± 0.0013. Similarly, the CT
group [567] determined the CT18 parton density set together
with αs(M2

Z) = 0.1164 ± 0.0026. The NNPDF group [568] pre-
sented NNPDF3.1 parton distribution functions together with
αs(M2

Z) = 0.1185± 0.0012.
We note that criticism has been expressed on some of the above

extractions. Among the issues raised, we mention the neglect of
singlet contributions at x ≥ 0.3 in pure non-singlet fits [569],
the impact and detailed treatment of particular classes of data
in the fits [569, 570], possible biases due to insufficiently flexible
parametrizations of the PDFs [571] and the use of a fixed-flavor
number scheme [572,573].
Summarizing the results from world data on structure functions,

taking the unweighted average of the central values and errors of
all selected results, leads to a pre-average value of αs(M2

Z) =
0.1162± 0.0020, see Fig. 9.2.

9.4.4 Hadronic final states of e+e− annihilations:
Re-analyses of jets and event shapes in e+e− annihilation (j&s),
measured around the Z peak and at LEP2 center-of-mass ener-
gies up to 209GeV, using NNLO predictions matched to NLL re-
summation and Monte Carlo models to correct for hadronization
effects, resulted in αs(M2

Z) = 0.1224 ± 0.0039 (ALEPH) [574],
and in αs(M2

Z) = 0.1189 ± 0.0043 (OPAL) [575]. Similarly, an
analysis of JADE data [576] at center-of-mass energies between
14 and 46GeV gives αs(M2

Z) = 0.1172 ± 0.0051, with contribu-
tions from the hadronization model and from perturbative QCD
uncertainties of 0.0035 and 0.0030, respectively. Precise deter-
minations of αs from 3-jet production alone (3j), at NNLO, re-
sulted in αs(M2

Z) = 0.1175 ± 0.0025 [577] from ALEPH data
and in αs(M2

Z) = 0.1199 ± 0.0059 [578] from JADE. A recent
determination is based on an NNLO+NNLL accurate calcula-
tion that allows to fit the region of lower 3-jet rate (2j) using
data collected at LEP and PETRA at different energies. This
fit gives αs(M2

Z) = 0.1188 ± 0.0013 [579], where the dominant
uncertainty is the hadronization uncertainty, which is estimated
from Monte Carlo simulations. A fit of energy-energy-correlation
(EEC) also based on an NNLO+NNLL calculation together with
a Monte Carlo based modeling of hadronization corrections gives
αs(M2

Z) = 0.1175 ± 0.0029 [580]. These results are summarized
in the upper seven rows of the e+e− sector of Fig. 9.2.
Another class of αs determinations is based on analytic model-

ing of non-perturbative and hadronization effects, rather than on
Monte Carlo models [581–584], using methods like power correc-
tions, factorization of soft-collinear effective field theory, disper-
sive models and low scale QCD effective couplings. In these stud-
ies, the world data on Thrust distributions (T), or - most recently
- C-parameter distributions (C), are analysed and fitted to per-
turbative QCD predictions at NNLO matched with resummation
of leading logs up to N3LL accuracy, see Sec. 9.2.3.3. The results
are αs(M2

Z) = 0.1135±0.0011 [582] and αs(M2
Z) = 0.1134+0.0031

−0.0025
[583] from Thrust, and αs(M2

Z) = 0.1123 ± 0.0015 [584] from
C-parameter. They are displayed in the lower three rows of the
e+e− sector of Fig. 9.2. A recent calculation has determined the
leading non-perturbative contribution to the C-parameter in the
three-jet limit, and has found that it differs by a factor of two from
the two-jet limit [585]. Taking this result into account in analyses
of the C-parameter would increase the value of the extracted αs
parameter, leaving it more in keeping with the world average.
The determination of Ref. [581], αs(M2

Z) = 0.1164+0.0028
−0.0024, is

no longer included in the average as it is superseded by other
determinations that use the same Thrust data but rely on more
accurate theoretical predictions. Not included in the computa-
tion of the world average but worth mentioning are a compu-
tation of the NLO corrections to 5-jet production and compari-
son to the measured 5-jet rates at LEP [586], giving αs(M2

Z) =
0.1156+0.0041

−0.0034, and a computation of non-perturbative and per-
turbative QCD contributions to the scale evolution of quark
and gluon jet multiplicities, including resummation, resulting in
αs(M2

Z) = 0.1199± 0.0026 [587].
We note that there is criticism on both classes of αs extractions
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Figure 1.2 Running of the QCD coupling. Figure reproduced from ref. [3].

Within the SM, there are at most 6 flavours of quarks active in QCD (u, d, s, c, b, t),

and therefore the factor 11 − 2Nf
3

will always be positive, causing αs → 0 as the

scale increases, known as asymptotic freedom where the quarks and gluons behave

as free particles. Conversely, αs increases as the scale decrease, resulting in the

breakdown of the perturbative expansion below a certain scale known as the QCD

scale ΛQCD ' 200 − 300 MeV in the MS renormalisation scheme at 2 GeV. This

makes non-perturbative methods such as LQCD crucial for calculations of hadronic

quantities at low energies.
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1.1.1 Chiral symmetry and its breaking

Chiral symmetry, and specifically its breaking, is hugely important for the phe-

nomenology of low energy hadronic physics, and will cause issues when attempting

to put fermions on the lattice in section 2.2.

In the continuum, the fermionic component of the Lagrangian for Nf massless

fermions has the form

LF =

Nf∑
f=1

ψ̄f iD ψf , (1.10)

where D = γµDµ. In the absence of a mass term, this Lagrangian separates into

two terms corresponding to two non-directly interacting Weyl fermions

LF =
∑
f

(
ψ̄Lf iD ψLf + ψ̄Rf iD ψRf

)
, (1.11)

where ψR,L = PR,Lψ, and PR,L = 1
2
(1 ± γ5) are the right- and left-handed chiral

projectors. It is clear that this Lagrangian is invariant under a global chiral

transformation defined by the group

U(Nf )L × U(Nf )R (1.12)

where the fields transform as ψL,R → UL,R ψL,R with UR,L ∈ U(Nf )R,L in the

fundamental representation acting on the flavour space.

Explicit Symmetry Breaking

The simplest mechanism for breaking this chiral symmetry is to add a term to the

Lagrangian that breaks it explicitly. Introducing a mass term in which all flavours

have the same mass m, the fermionic Lagrangian has the form

LF =
∑
f

ψ̄f (iD −m)ψf (1.13)

=
∑
f

(
ψ̄Lf iD ψLf + ψ̄Rf iD ψRf −mψ̄Lf ψ

R
f −mψ̄Rf ψ

L
f

)
, (1.14)

which couples the different chiralities and breaks the symmetry. The Lagrangian

is, however, still invariant to the vector subgroup U(1)V × SU(Nf )V where the

left and right chiral fields transform in the same way, ψL,R → V ψL,R for
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V ∈ U(1)V × SU(Nf )V . The symmetries that are broken by the mass term are

the axial symmetries, where the two chiralities transform opposite to one another,

ψL → AψL and ψR → A−1ψR for A ∈ U(1)A× SU(Nf )A. The elements of these two

groups can be written as

V = eiα
a
V Ta and A = eiα

a
ATaγ5 , (1.15)

where αaV and αaA parametrise the transformations with generators Ta and Taγ5

respectively.

With just the vector flavour symmetry remaining after the addition of the universal

mass term, this can be further broken by the introduction of a different mass for

each flavour, as is realised in nature, giving the Lagrangian

LF =
∑
f

ψ̄f (iD −mf )ψf , (1.16)

which now has only Nf independent U(1) symmetries corresponding to rephasing

each flavour independently. By Noether’s theorem, this gives a set of Nf conserved

charges that are the flavour quantum number of type f . As a result baryon number

is also conserved, which corresponds to the charge of the subgroup in which all the

fields are rephased in the same way.

In the SM, there are 6 flavours of quarks all with different masses. However, at

energies below ΛQCD, only the lightest 3 of these remain active. So we shall only

consider Nf = 3 in the discussion of chiral symmetry breaking in QCD.

Spontaneous Symmetry Breaking

Spontaneous symmetry breaking is a process where the equations of motion

governing a system posses a symmetry, however, the ground state of that system

is not symmetric. In the case of QFT, this corresponds to the Lagrangian having

a symmetry transformation that the vacuum is not invariant under. This non-

symmetric vacuum can be transformed into another equally valid, but distinct,

vacuum. The Nambu-Goldstone theorem [4], says that for every generator that

is broken spontaneously, there is an associated massless Goldstone boson.

It was shown in ref. [5] that, given some reasonable assumptions, a theory such as

QCD with no θ-term cannot spontaneously break the vector symmetry U(Nf )V ,

otherwise it would be possible to construct massless particles from arbitrarily
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massive quarks.

The axial symmetry, however, is not protected from breaking spontaneously. If

the U(Nf )A symmetry were respected by the vacuum, it can be shown that all

particles would have a degenerate opposite parity partner, known as parity doubling.

Table 1.1 shows the masses of the lowest positive and negative parity hadrons

observed. It can be clearly seen that no parity doubling is observed, suggesting

the axial symmetry must be broken.

JP Particle Mass [MeV] JP Particle Mass [MeV]

0+

f0(500) 500
0−

π 140
f0(980) 980 η 550
a0(980) 980 η′ 960

1
2

+ N 940 1
2

− N(1535) 1535
N(1440) 1440 N(1650) 1650

Table 1.1 List of the lightest experimentally measured particles in the positive
and negative parity sectors for the unflavoured (pseudo)scalars and the
baryons [6].

The quantity that parametrises the spontaneous breaking of the axial symmetry is

known as the chiral condensate, Σ,

〈ψ̄fψf ′〉 = Σ δff ′ (1.17)

which is only non-zero if the axial symmetry is spontaneously broken. While this

quantity is not experimentally measurable, it can be calculated from first principles

on the lattice, giving the value Σ = −(245(12) MeV)3 [7], which is significantly

different from zero. From the Nambu-Goldstone theorem, we should expect the

presence of N2
f massless bosons of negative parity from the total breaking of U(Nf )A,

however, no massless hadrons have been observed experimentally.

Since chiral symmetry is explicitly broken by a small mass term for these lightest

quarks, the axial symmetry is not exact at the level of the Lagrangian. This small

explicit breaking corresponds to the production of pseudo-Nambu-Goldstone bosons

that have a small, but non-zero mass, which should of course go to zero as mf → 0.

In QCD, we would then expect the existence of 9 pseudoscalar mesons that are

lighter than the rest of the hadronic spectrum. However, only 8 have been observed,

the three pions, four kaons and the η meson. The next lightest is the η′ which

has nearly twice the mass of the η. This is to be expected if the group that is

spontaneously broken is SU(Nf )A, withN2
f−1 generators, instead of the full U(Nf )A.
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The remaining U(1)A axial symmetry is in fact broken by some other mechanism,

known as anomalous symmetry breaking.

Anomalous symmetry breaking

In the following, we consider a theory with only a single massless quark (Nf = 1,

mf = 0) to describe the breaking of the residual U(1)A, without loss of generality.

The axial U(1)A transformation acts on the field as

ψ → eiαγ5 ψ and ψ̄ → ψ̄ eiαγ5 (1.18)

which is a symmetry of the massless Lagrangian due to the anti-commutation

relation {γµ, γ5} = 0, and is therefore a symmetry of the classical theory. However,

for this symmetry to survive to the quantum theory it must not break during the

quantisation procedure. If it does so, this is known as anomalous symmetry breaking.

By considering the path integral approach to quantising the theory, we can gain

insight by investigating the partition function of the quantum theory

Z =

∫
D[G, ψ̄, ψ] eiS[G,ψ̄,ψ] , (1.19)

where S is the full action, and G is the set of gluon fields. The action is invariant

under the axial transformation, however, the fermionic measure D[ψ̄, ψ] is not. Since

both the field and conjugate field transform in the same way, it can be seen that

Z →
∫
D[G, ψ̄, ψ] det

(
e−iαγ5

)2
eiS[G,ψ̄,ψ] , (1.20)

which can be evaluated using the identity det
(
eX
)

= eTr[X]. The determinant then

becomes

det
(
eiαγ5

)2
= e−i2αTr[γ5] , (1.21)

where Tr[γ5] is a trace over the fermionic spectrum. Defining the eigenvalues of the

Dirac operator λ corresponding to an eigenvector |λ〉, i.e. D |λ〉 = λ |λ〉, then the

trace is simply

Tr[γ5] =
∑
λ

〈λ| γ5 |λ〉 . (1.22)

Due to the anti-hermiticity of the Dirac operator, all of the eigenvalues λ are
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imaginary. In addition, the anti-commutation {D, γ5} = 0 results in the relation

(λ− λ∗) 〈λ| γ5 |λ〉 = 0, and therefore, only values of λ ∈ R can have a non-zero value

for 〈λ| γ5 |λ〉. Therefore, only the zero-modes of the Dirac operator can contribute

to the trace.

It can be shown that [D, γ5]|λ=0 = 0, that is the Dirac operator and γ5 commute

when restricted to just the zero-mode subspace, and therefore both operators can

be diagonalised simultaneously. The eigenvalues of γ5 are simply ±1 corresponding

to the modes with positive or negative chirality. The trace therefore becomes

Tr[γ5] = n+ − n− , (1.23)

where n± is the number of zero-modes of the Dirac operator with ± chirality. The

values of n± are in general a function of the background gauge field, so the partition

function then transforms as

Z =

∫
D[G, ψ̄, ψ]e−S[G,ψ̄,ψ] (1.24)

→
∫
D[G, ψ̄, ψ]e−2iα(n+−n−)[G] e−S[G,ψ̄,ψ] (1.25)

which is not invariant. Therefore the axial U(1)A symmetry must be anomalously

broken, preventing it from breaking spontaneously, and preventing the η′ from being

a pseudo-Goldstone boson.

It is clear to see from our discussion, that the low energy spectrum of QCD involving

the 3 lightest quarks has a rich connection with chiral symmetry and its breaking,

which must be present in order to to make accurate predictions of the physical world.

It shall be seen later that this is in fact problematic when discretising this theory

on the lattice.

1.2 Electroweak physics

The electroweak sector of the SM is described by the SU(2)L ×U(1)Y gauge group.

The subscript L indicates this gauge symmetry applies to the left-handed chiral

components described in the previous section, while the right handed particles don’t

participate in the transformation.

The matter particle content of the electroweak sector is described by the up-type

quarks u, c, t, the down-type quarks d, s, b, the charged leptons e, µ, τ and the
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neutral-leptons νe, νµ, ντ . These are arranged into the SU(2)L doublets

Q1,L =

(
uL

dL

)
, Q2,L =

(
cL

sL

)
, Q3,L =

(
tL

bL

)
, (1.26)

L1,L =

(
νe,L

eL

)
, L2,L =

(
νµ,L

µL

)
, L3,L =

(
ντ,L

τL

)
, (1.27)

which transform as Qi,L → UQi,L and Li,L → ULi,L for U ∈ SU(2)L. The singlets

are

ui,R =(uR, cR, tR)i (1.28)

di,R =(dR, sR, bR)i (1.29)

li,R =(eR, µR, τR)i (1.30)

νi,R =(νe,R, νµ,R, ντ,R)i . (1.31)

In addition, each of these fields has a hypercharge

Y (QL) =
1

6
, Y (LL) = −1

2
(1.32)

Y (uR) =
2

3
, Y (dR) = −1

3
(1.33)

Y (lR) = −1 , Y (νR) = 0 . (1.34)

These are then accompanied by the SU(2)L gauge fields Wµ = W 1
µσ1 +W 2

µσ2 +W 3
µσ3

and the U(1)Y gauge field Bµ. The Lagrangian for this theory is

L =− 1

4
W i
µνW

µν
i −

1

4
BµνB

µν (1.35)

+
∑
F

F̄L (iγµD
µ
F )FL +

∑
f

f̄R
(
iγµD

µ
f

)
fR (1.36)

where F = Q,L and f = u, d, l, ν. The covariant derivatives are given by

DF,µ =∂µ − igwWµ − igyY (F )Bµ (1.37)

Df,µ =∂µ − igyY (f)Bµ . (1.38)

The chiral nature of the SU(2)L interaction prevents this Lagrangian from containing

a naive mass term for the fermions or vector bosons. Since these term are not gauge

invariant, all particles are naively predicted to be exactly massless. In practice

however, the fermions and the weak vector bosons are observed to have non-zero

masses. These can both be added to the theory in a gauge invariant way via the Higgs
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mechanism [8, 9]. This mechanism includes an additional scalar SU(2)L doublet field

Φ =

(
φ1

φ2

)
(1.39)

that has a hypercharge Y (Φ) = 1
2
, that has the Lagrangian

LΦ = (DµΦ)† (DµΦ)− V (Φ) , (1.40)

with a quartic potential V (Φ) = −µ2 Φ†Φ + λ
(
Φ†Φ

)2
. The final part of the

Lagrangian couples this scalar field to the left and right handed fermions via a

Yukawa interaction

LY =− Q̄LY
uΦdR − Q̄LY

uΦ̃uR − L̄LY lΦlR − Q̄LY
νΦ̃νR + h.c. (1.41)

where Y f are 3 × 3 matrices of couplings, and Φ̃ = iσ2Φ∗ transforms in the same

way as Φ under SU(2)L, but has the opposite hypercharge. In order for this scalar

field to generate mass terms from these interactions, it needs to acquire a non-

zero vacuum-expectation-value, which is done through the process of spontaneous

symmetry breaking. In the event the scalar potential parameters satisfy

µ2 > 0 and λ > 0 , (1.42)

the potential is minimised when Φ†Φ = v2

2
, v =

√
µ2

λ
. The value of this vacuum

expectation that corresponds to our physically observed reality is

Φ =
1√
2

(
0

v

)
. (1.43)

Note that this vacuum is not invariant under SU(2) × U(1)Y , but only under the

U(1)em subgroup corresponding to electromagnetism. Therefore the SU(2)L×U(1)Y

gauge group gets spontaneously broken down to U(1)em. Expanding the scalar field

around this vacuum gives

Φ =
1√
2

(
0

v +H

)
(1.44)

where H is the Higgs field that has a zero vacuum expectation value. Writing the

Lagrangian in terms of this new field H, it can be see that the vacuum expectation

value gives rise to terms bilinear in the Wµ, Bµ and fermion fields. These mass
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eigenstates correspond to the charged weak vector bosons

W±
µ = W 1 ± iW 2 , (1.45)

and the neutral vector bosons(
Zµ

Aµ

)
=

(
cos θw sin θw

− sin θw cos θw

)(
W 3
µ

Bµ

)
(1.46)

where θw is the Weinberg angle sin θw = gy√
g2
y+g2

w

.

In addition, the flavour eigenstate quark fields get mixed into mass eigenstates by

the CKM matrix V by  d′

s′

b′

 = V

 d

s

b

 . (1.47)

It is this CKM matrix that is responsible for the mixing between the different

generations of quarks when undergoing a charge current weak decay. Note that

the neutral Zµ and Aµ fields do not change quark flavour and therefore there are

no FCNC iterations at tree-level within the SM. Instead this can only occur at loop

level with charged W boson interactions.

4-quark Fermi Interaction

The experimentally measured masses of the weak vector bosons are

mW ' 80 GeV and mZ ' 91 GeV , (1.48)

which are much heavier than the low energy scales involved in the hadronic processes

of interest here. The flavour changing processes of particular relevance to the rare

kaon and hyperon decays are shown in fig. 1.3.

The momentum space W -boson propagator has the form

SWµν(q) = −i
ηµν − qµqν

m2
W

q2 −m2
W

' i
ηµν
m2
W

(1.49)

where the low momentum transfer limit qµ � mW is taken. In this limit, the

propagator looks like a point-like 4-quark interaction in position space.
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q
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w

q

s

d

q

w

Figure 1.3 Feynman diagrams for the s → d 4-quark interactions relevant for the
rare kaon and hyperon decays within the SM.

This is described in a systematic way as an effective field theory know as the Fermi-

theory of weak interactions, and the corresponding vertices for fig. 1.3 are shown

in fig. 1.4. Ref. [10] gives a detailed analysis of the relevant operators and Wilson

coefficients for flavour changing decays in this effective field theory.

q

s

d

q

q

s

d

q

Figure 1.4 Feynman diagrams for the s → d 4-quark interactions relevant for the
rare kaon and hyperon decays within the Fermi effective theory.
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CHAPTER

TWO

LATTICE QCD

Due to the non-perturbative nature of QCD at low energies, it is important to

have alternative methods of calculating quantities in this theory. One of these

non-perturbative methods is the use of effective field theories. An effective field

theory of QCD is Chiral Perturbation Theory (ChPT), in which the hadrons are

the degrees of freedom rather than the quarks and gluons. This method has the

benefit that many calculations can be performed perturbatively in some small scale,

e.g. particle momenta and/or flavour symmetry breaking parameters, giving access

to analytic forms of the results. However, these effective theories are generally non-

renormalisable and therefore require additional inputs as higher orders are included.

Currently, the only known method of computing non-perturbative quantities in QCD

directly, is through the use of Lattice Quantum Field Theory (LQFT). This allows

one to perform non-perturbative calculations numerically, which requires discretising

the theory to put it onto a computer.

The partition function of a theory, with field(s) φ, in real valued time is the path

integral weighted by a phase factor dependent on the value of the action, S,

Z =

∫
D[φ]eiS[φ] , (2.1)

which gives rise to a sign problem when performing the integrals numerically. It

is therefore advantageous to perform a Wick rotation of the time variable taking

t → −it which gives rise to a Euclidean space-time. The partition function this
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then given by the path integral with a Euclidean action SE as

Z =

∫
D[φ]e−SE [φ] , (2.2)

which can be interpreted as a statistical field theory that can be sampled via Monte

Carlo methods where fields are drawn from a probability distribution

P [φ] =
1

Z
e−SE [φ] . (2.3)

The physical information is extracted through correlation functions which are simply

the expectation of certain operators

ΓO = 〈O[φ]〉 =
1

Z

∫
D[φ]O[φ]e−SE [φ] . (2.4)

If a series of N fields φi are draw following the probability distribution of eq. (2.3),

the correlation function can then be estimated as

ΓO '
1

N

N∑
i=1

O[φi] , (2.5)

and taking N →∞ recovers the exact correlator.

The relevant fields for the study of QCD on the lattice are the gauge link field,

Uµ(x), and the quark fields q(x), q̄(x). Since the quark fields are fermionic, they are

Grassmann valued fields and therefore cannot be sampled directly (without massive

computational overhead). However, since the QCD action is quadratic in these

fields, they can be integrated out exactly, leaving only the integral over the gauge

links to be performed via Monte-Carlo methods, which we shall refer to as the gauge

average.

2.1 Discretisation of QCD

In order to discretise a theory, we must define a discrete version of the field

content of that theory, as well as the Lagrangian and all the operations therein.

The discretisation of Euclidean space-time is done by simply considering all points

separated by a distance a in each dimension which is referred to as the lattice spacing,
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giving the (infinite) lattice

Λ = aZ4 . (2.6)

When defining a discrete version of fields and operations, they should recover the

continuum value when the continuum limit is taken, a → 0. There are infinitely

many discretisations that all give the correct continuum limit, however, often a

simple choice arises. We shall describe this first with the simple case of a real scalar

field φ with continuum action

S =
1

2

∫
d4xφ(x)

(
−∂µ∂µ +m2

)
φ(x) . (2.7)

The discretised scalar field can simply be taken to be the field evaluated at only

sites on the lattice Λ, and the integral can be discretised by replacing it with the

Riemann sum ∫
d4x→ a4

∑
x∈Λ

. (2.8)

The discretisation of the derivative is somewhat less obvious. The two simplest

choices are the forward and backward single step finite difference

δf
µφ(x) =

φ(x+ aµ̂)− φ(x)

a
= ∂µφ(x) +

a

2
∂2
µφ(x) +O(a2) (2.9)

δb
µφ(x) =

φ(x)− φ(x+ aµ̂)

a
= ∂µφ(x)− a

2
∂2
µφ(x) +O(a2) (2.10)

where µ̂ is a unit vector in the direction µ. We can see that these derivatives give

the continuum one up to O(a) discretisation effects, however, they can be combined

into the symmetric finite difference

δµφ(x) =
1

2
(δf
µ + δb

µ)φ(x) , (2.11)

which has discretisation effects of O(a2). One common choice to construct the second

order derivative is from one forward and one backward finite difference

δbµδ
f
µφ(x) =

φ(x+ µ̂)− 2φ(x) + φ(x− µ̂)

a2
, (2.12)

which gives a symmetric, nearest neighbour second derivative with discretisation

effects at O(a2). This gives us all the ingredients for the simple scalar field theory

on the lattice. Fermions come with additional complications that will be discussed
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in the next section.

The final type of field we will be interested in discretising are gauge fields. As we

have seen in the previous chapter, the gauge fields are often described with non-

compact vector fields Aµ(x) that are valued in the group algebra. In lattice field

theory we instead generally use a compact, group valued parallel transporter field

Uµ(x) known as a gauge link. Since it is the parallel transporter of the theory, this

field can be considered as not living on the lattice site x, but instead living on the

grid line joining two neighbouring sites x and x + µ̂. Importantly, under a gauge

transformation, the matter fields transform as φ(x)→ Ω(x)φ(x), while for the gauge

links

Uµ(x)→ Ω(x)Uµ(x)Ω−1(x+ µ̂) , (2.13)

which makes the combination φ†(x)Uµ(x)φ(x+ µ̂) a gauge invariant quantity. This

allows us to define a gauge covariant symmetric derivative as

Dµφ(x) = Uµ(x)φ(x+ µ̂)− U−µ(x)φ(x− µ̂) . (2.14)

With this new gauge field defined, it must also have a kinetic term in the action in

order to be dynamical field. One such action that has the appropriate continuum

limit is the Wilson gauge action [11] that is constructed from the plaquette

Pµν(x) =Uµ(x)Uν(x+ µ̂)U−µ(x+ µ̂+ ν̂)U−ν(x+ ν̂) (2.15)

=Uµ(x)Uν(x+ µ̂)Uµ(x+ ν̂)†Uν(x)† , (2.16)

where we have used the fact that U−µ(x + µ̂) = Uµ(x)†. The gauge action is then

given by

SG =
β

N

∑
x∈Λ

∑
µ>ν

Re Tr[1− Pµν ] , (2.17)

where N is the degree of the gauge group SU(N).

These important lattice objects and their relationship to the lattice are summarised

in the schematic diagram fig. 2.1.
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Uµ

ψ

L

Pµν

a

Figure 2.1 Schematic of a lattice of size L with lattice spacing a. The matter field
ψ lives on the sites, the gauge link Uµ connects neighbouring sites, and
the plaquette Pµν connects 4 nearest sites in the µ− ν plane.

2.2 Fermion doubling and chiral fermions

The continuum action for a Dirac fermion with bare mass m in Euclidean space-time

is given by

SC =

∫
d4x ψ̄(x) [D +m]ψ(x) , (2.18)

where D is the massless Dirac operator D = γµDµ and Dµ is the gauge-covariant

derivative, which in the free theory is simply given by Dµ = ∂µ. The naive free

fermion action on the lattice is then obtained by replacing the derivative with the

symmetric finite difference (2.11),

SN =a4
∑
x∈Λ

ψ̄(x) [δ +m]ψ(x) . (2.19)

The massive Dirac operator for this action DN = δ + m is easily diagonalised by

plane wave solutions eip·x with corresponding eigenvalues

λ = m± i

a

√∑
µ

sin2 apµ . (2.20)

The poles in the propagator corresponding to physical particles occur when these

the eigenvalues vanish, and therefore for a fixed spatial momentum p, p0 is given by

p0 =± iE(p),
π

a
± iE(p) , (2.21)
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Figure 2.2 Fermion dispersion relation for momentum p = (p, 0, 0) within the 1st

BZ (p ∈ (−π/a, π/a]) for continuum fermions, naive lattice fermions
and Wilson fermions.

where the real part of p0 is restricted to the 1st Brillouin zone (BZ) (−π
a
, π
a
], and the

dispersion relation is given by

E(p) =
1

a

√
(am)2 +

∑
i

sin2 api . (2.22)

Taking the continuum limit a → 0, the solutions p0 = ±iE(p) recover the positive

and negative energy particles. There are however two additional poles with Re(p0) =
π
a
. These extra poles become infinitely far away from the origin in p0 space as a→∞,

however, they remain as light degrees of freedom and therefore do not decouple from

the theory when the continuum limit is taken. Since the number of particles in the

continuum theory has doubled, these extra particles are called the doublers.

In addition, looking at the lattice dispersion relation in eq. (2.22) that is depicted

in fig. 2.2, it can be seen that the global minima corresponding to the rest energy of

the particle is actually a set of 8 degenerate points p = (0, 0, 0), (π
a
, 0, 0), ...(π

a
, π
a
, π
a
),

which corresponds to a doubling of the particles in each spatial dimension. There are

therefore 16 fermions in total generated by the naive fermion discretisation, while

the target continuum theory contains only a single fermion.

While the doubling problem may seem somewhat innocuous, there are greater (and

related) issues with this naive fermion discretisation. Unlike the continuum QCD

discussed previously, this naive fermion discretisation does not suffer from the same

anomalous breaking of the U(1)A axial symmetry. This is because, in the massless
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limit, each doubler has an opposite chirality, and therefore n+−n− = 0 in eq. (1.23)

for all background gauge configurations. The lack of axial anomaly is a major issue

since it cannot be recovered by taking the continuum limit, and therefore will not

accurately reproduce the structure of the QCD spectrum.

An important result of the work in ref. [12] is the Nielsen–Ninomiya no-go theorem

that states there are four desirable properties of a lattice fermion discretisation that

cannot all be realised simultaneously.

These properties are:

1. The fermion action S is local.

2. The Dirac operator D has the correct continuum limit.

3. The theory is free from fermion doublers.

4. The massless Dirac operator possesses chiral symmetry {D, γ5} = 0.

When constructing the naive fermion discretisation, we implicitly satisfied the no-go

theorem by accepting the doublers into the theory. There are many alternatives to

the naive discretisation to choose from, and the exact one used should be guided by

the specific needs of the calculation being performed.

Generally, it is undesirable to give up either of the first two properties. The locality

of the action is very beneficial for practical simulations at finite lattice spacing,

and must be recovered in the continuum limit. Alternatively, it would be very

problematic to give up the requirement that the Dirac operator obtained in the

continuum is the correct one. Some commonly used discretisation give up the third

property and accept the doublers (although usually not all 16 of them from the

naive case). Finally, many of the most used actions instead give up chiral symmetry

{D, γ5} 6= 0.

Wilson Fermions

The original solution to the fermion doublers was proposed by Wilson in ref. [11],

where the doublers can be given a mass that diverges as a → 0, and therefore

decouple from the theory in the continuum limit. In momentum space, this can be

thought of as having a 4-momentum dependant mass

m̃(p) =m+
1

a

∑
µ

(1− cos apµ) (2.23)
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which can be achieved by the inclusion of the Wilson term to the naive Dirac operator

DW =DN −
a

2

∑
µ

δf
µδ

b
µ . (2.24)

It should be noted that since this Wilson term is effectively generating a mass-like

term, it explicitly breaks chiral symmetry ({DW, γ5} 6= 0}) in order to satisfy the

Nielsen–Ninomiya no-go theorem.

One very important consequence of this is that the quark mass is no longer protected

from additive renormalisation. Therefore, in the interacting theory the chiral point

(mπ = 0) no longer corresponds to zero bare mass mq = 0. Instead, the bare quark

mass must go through a tuning process to obtain the chiral point in the continuum.

Chiral symmetry of the Dirac operator can greatly simplify operator mixing during

renormalisation of higher-point vertices, as will be seen later in the case of the

4-quark effective Weak Hamiltonian. Because of this, the Wilson fermion action

usually suffers from a more complicated renormalisation procedure than for chiral

actions.

There exist improvements to Wilson fermions, such as the O(a) improved Wilson-

Clover fermions [13] and more recently stabilised Wilson-Clover fermions [14], but

we shall not go into details of these actions here.

Other actions

A wide range of other fermion actions have been proposed since the inception of

lattice field theory that attempt to circumnavigate the no-go theorem and incur the

minimal side effects while satisfying the constraints. There are the “perfect fermion

actions” which are constructed as a fixed point in the renormalisation group via

a blocking procedure from the continuum theory [15]. In this way they preserve

the chiral properties of the continuum theory, however the price they pay is that

the lattice action is generally non-local and in practice is very difficult to perform

computations.

Another approach is to accept the presence of the doublers, but reduce their number.

This is done in the staggered formulation [16] where, in 4 dimensions, the number

of fermions can be reduced from 16 down to 4 by a spin-diagonalisation procedure.

Defining new fields ψ′ and ψ̄′ by

ψ(n) = γn1
1 γn2

2 γn3
3 γn4

4 ψ′(n) and ψ̄(n) = ψ̄′(n)γn1
1 γn2

2 γn3
3 γn4

4 , (2.25)
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it can be seen that the naive Dirac operator becomes diagonal in spinor space, giving

4 degenerate 1-component fields. The staggered action takes only one of these

components, discarding the other 3. This also discards their associated doublers

which takes the number of fermions down to just 4. One advantage is that the

fermion fields no longer have spinor structure, and are therefore are a factor 4 smaller

objects. The disadvantage is that the remaining doublers must be accounted for,

which can be non-trivial.

Finally, one can give up the exact continuum chiral symmetry, and instead have a

lattice analogue of chiral symmetry given by the Ginsparg-Wilson relation [17]

{D, γ5} = aDγ5D , (2.26)

which corresponds to a Dirac operator that is invariant under the modified axial

transformation [18]

ψ → eiαγ5(1−a
2
D)ψ and ψ̄ → ψ̄eiα(1−a

2
D)γ5ψ , (2.27)

that tend to the original chiral transformation as a → 0. It can be shown that

any action satisfying eq. (2.26) has complex eigenvalues λ = |λ|eiφ that satisfies

cosφ = a
2
|λ|, which is the equation of a circle centred on the real axis at 1

a
with

radius 1
a
. It is therefore clear that as a → 0, this simply gives a set of eigenvalues

on the imaginary axis, as is the case for the massless continuum Dirac operator.

The overlap formulation is one such solution to the Ginsparg-Wilson relation with

a Dirac operator of the form

Dov =
1

a

(
(1 +m) + (1−m)γ5 sgn[H]

)
(2.28)

where H = γ5D is a hermitian kernel related to a γ5-hermitian lattice Dirac operator

D. The sign function acting on an operator is given by the spectral representation,

where the function is applied to each of the eigenvalues of that operator. This is

of course prohibitively expensive to compute exactly in a practical simulation, and

therefore polynomial or rational approximations to this exact sign function are often

used.

The simplest choice of kernel operator H = γ5DW(−M0) is the Wilson Dirac

operator with a negative mass −M0. This is required since a strictly positive mass

does not recreate the entire circle of eigenvalues, and in the free theory, M0 = 0 has

a zero mode of H for which the sign function is ill-defined.
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The overlap action is very closely related to the domain wall fermion action which

is heavily utilised in this work, and therefore we shall discuss this action in more

detail.

2.2.1 Domain wall fermions

Kaplan’s Formulation

The central concept of domain wall fermions is instead of considering a theory of

chiral fermions in 2n (n ∈ N+) dimensions, we consider a non-chiral theory in 2n+1

dimensions with some feature in this extra dimension that 2n dimensional chiral

modes adhere to. In Kaplan’s original formulation [19], the mass parameter of the

fermion is promoted to a function of the position in this new dimension labelled s.

In the continuum the Dirac operator has the form (for a 5D theory)

D5D = D4D + γ5∂s +m(s) , (2.29)

where D4D is the regular (massless) Dirac operator, and the 5D fields are Ψ(x, s)

and Ψ̄(x, s). The name domain wall comes from considering the mass function

m(s) =

{
m for s > 0

−m for s < 0
, (2.30)

that separates the space into two domains with mass of a different sign. The 4-

dimensional chiral modes PR,Lψ(x) are then bound to the wall as their wavefunction

has the form

Ψ(x, s) =[α(s)PR + β(s)PL]ψ(x) (2.31)

α(s) =Ne−m|s| (2.32)

β(s) =N ′e+m|s| . (2.33)

Clearly, for m > 0 with an infinite s extent, β(s) in non-normalisable and therefore

N ′ must be zero. For a finite s extent, however, this other chirality is normalisable,

but will be exponentially suppressed at s = 0. This opposite chirality mode is

instead predominantly bound to an anti-domain-wall that must be induced by the

periodicity in the finite 5th dimension.
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Shamir Formulation

Inspired by Kaplan’s formulation of domain wall fermions, Furman and Shamir

developed a similar formulation that is advantageous for numerical simulations [20,

21]. The 5-dimensional Shamir domain wall Dirac operator takes the form

DDW(x, s|y, r) = D‖(x|y)δs,r +D⊥(s|r)δx,y (2.34)

where there is a parallel component, D‖, that only depends on the 4D position and is

diagonal in the 5th dimension, and a perpendicular component, D⊥, that is diagonal

in 4D space and is only dependent on the position in the 5th dimension. These

operators are given by

D‖ =DW(−M5) + 1 (2.35)

D⊥ =− [PLδs+1,r(1− δs,Ls−1) + PRδs−1,r(1− δs,0)] (2.36)

+m(PLδs,Lsδ1,r + PRδs,1δLs,r)

=− [PLδs+1,r + PRδs−1,r] (2.37)

+ (m+ 1) (PLδs,Lsδ1,r + PRδs,1δLs,r) .

Note that D⊥, as written in its second form, looks like a hopping term with periodic

boundary conditions (Ψ(x, Ls+1) = Ψ(x, 1)) plus a boundary term. Consequently, it

can be seen that for m = −1, the full operator DDW becomes simply a 5-dimensional

Wilson fermion with mass −M5.

It has been shown in ref. [22] (and in [23] for the more general forms discussed

later) that with an appropriate change of field variables Ψ(x, s) → χ(x, s), the

Schur complement with respect to the s = r = 1 component of DDW gives the

reduced operator for that component

Dχ =− (1 + T−Ls)γ5

[
1 +m

2
+

1−m
2

γ5εLs(HT )

]
, (2.38)

where εLs(HT ) = T−Ls−1
T−Ls+1

, T is the transition matrix defined by T−1 = 1+HT
1−HT , and

HT = γ5
DW

2 +DW

(2.39)

is the Shamir kernel. The Wilson Dirac operator DW = DW(−M5) is always

evaluated at the negative mass parameter so we leave the argument implicit. It
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can be seen that

εLs(x) = tanh
(
Ls tanh−1 x

)
(2.40)

is the tanh approximation of the sign function. Note that this new operator Dχ is a

purely 4D operator acting on a 4D field χ1(x). Performing the path integral of the

χ1(x) field gives the fermionic determinant

det
(
−(1 + T−Ls)γ5

)
det

(
1 +m

2
+

1−m
2

γ5εLs(HT )

)
, (2.41)

where the first factor is independent of the mass m, and the second is an

approximation to the overlap action with the kernel HT and the sign function εLs .

Therefore, up to the extra non-trivial factor coming from the 5D theory, this is an

approximation to the overlap Dirac operator, D̃ov. Notice that at m = 1 the overlap

determinant goes to 1, giving only the determinant of the 5D artefacts. Therefore,

these artefacts can be removed by introducing a 5D pseudofermion field, Φ, that

obeys the domain wall operator with mass m = 1, known as the Pauli-Villars (PV)

field. The partition function then has the form

Z =

∫
D[UΨ, Ψ̄,Φ, Φ̄] exp

{
−Sg − Ψ̄DDW(m)Ψ− Φ̄DDW(1)Φ

}
(2.42)

=

∫
D[U ]

det[DDW(m)]

det[DDW(1)]
exp{−Sg} (2.43)

=

∫
D[U ]

det[Dχ(m)]

det[Dχ(1)]
exp{−Sg} (2.44)

=

∫
D[U ] det

[
D̃ov(m)

]
exp{−Sg} . (2.45)

It can be seen that the tanh approximation to the sign function becomes exact in the

limit Ls →∞, corresponding to an infinite extent in the 5th dimension, although any

practical simulation is limited to a finite value of Ls. When evaluating the quality

of this approximation, we must take into account the difference between the target

and approximate function, but only over the range of eigenvalues of the kernel.

For the Shamir kernel with M5 = 1 in the free theory, it can be seen that

the maximum eigenvalues have a magnitude of 1. Figure 2.3 shows the tanh

approximation to the sign function on the range −1 ≤ x ≤ 1 for several values

of Ls, along with the relative error of that approximation. Of course the quality of

the approximation used must be weighed against the computation cost of simulating

a larger 5th dimension.
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Figure 2.3 Tanh approximation to the sign function for different Ls on the range
x ∈ [−1, 1] (left), and the relative error of these approximations (right).

General Möbius Formulation

A generalised version of the Shamir setup is the Möbius domain wall formulation

from Brower, Neff and Orginos [23–25]. It is designed in such a way as to construct a

kernel operator that is a Möbius transformation of the Wilson-Dirac operator. The

most general form available also allows this transformation to be dependent on the

position in the 5th dimension. The parallel part of the 5D domain wall operator D‖

becomes

D
(s)
‖ =

bsDW + 1

1− csDW

, (2.46)

where two new sets of parameters have been introduced which are dependent on the

position in the 5th dimension s. It can be seen that the Shamir result is recovered

when bs = 1 and cs = 0 for all s.

The effective overlap operator obtained here is given by

D̃ov =
1 +m

2
+

1−m
2

γ5
Πs(1 +H

(s)
T )− Πs(1−H(s)

T )

Πs(1 +H
(s)
T ) + Πs(1−H(s)

T )
, (2.47)

where the generalised Möbius kernel is

H
(s)
T = γ5

(bs + cs)DW

2 + (bs − cs)DW

, (2.48)

which is a Möbius transformation, defined by the parameters bs, cs and M5.

A few important limits of this general form should be discussed. As already observed,

the Shamir kernel with a tanh approximation is given by bs = 1 and cs = 0. A similar

limit is the scaled Shamir fermion with bs + cs = α and bs − cs = 1. The scaling
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Figure 2.4 Relative error of the scaled Shamir sign function compared to the
Shamir sign function at Ls = 24.

parameter α gives the same sign function approximation, but scales the argument

by α. Note that since sgn(x) = sgn(αx) for all α > 0, the Shamir and scaled Shamir

actions are two approximations of the same overlap action. This scaling allows the

optimal region of the tanh approximation to be applied over different parts of the

spectrum of HT . A reasonable approximation of this scaled sign function is

εLs(αx) ' εαLs(x) , (2.49)

where the relative error is shown in fig. 2.4 for the case of Ls = 24. Since this

approximation is relatively good, the scaled Shamir action can be thought of as

allowing for the reduction of Ls by a factor of α compared to the standard Shamir

action, significantly reducing the computational cost.

The final case relevant for this work is when bs − cs = 1 and bs + cs = α
ωs

. The

approximation to the sign function then becomes

sgn(αx) ' Πs(ωs + αx)− Πs(ωs − αx)

Πs(ωs + αx) + Πs(ωs − αx)
, (2.50)

which is the Zolotarev rational approximation to the sign function with scaled

argument. The values of ωs and can be tuned to give a more evenly spread error

than the tanh approximation, or to reduce the error in regions where the eigenvalue

density of HT is large.

Note that for this to be a real valued function, the ωs must be real or come in

complex conjugate pairs. This approximation is referred to as the zMöbius action.

An example of this approximation with Ls = 10 for a target of an Ls = 24 scaled

Shamir kernel (α = 2), is shown in fig. 2.5, and other examples of this approximation

are given in ref. [26].
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2.2.2 MADWF Algorithm

The Möbius Accelerated Domain Wall Fermion (MADWF) algorithm, as originally

demonstrated in ref. [27], is a method of inverting the 5D domain wall Dirac operator

approximately, using a different domain wall action that is cheaper to invert. We

shall refer to the target of the approximation as the outer action, and the inner

action as that used for the approximation. For example one might use this method

to accelerate a Shamir (outer) action with Ls = 24, by solving a scaled Shamir

(inner) action with Ls = 12 and scaling factor α = 2. Neglecting any overhead from

the MADWF algorithm, this would lead to a factor ∼ 2 improvement in solve times.

The algorithm is entirely based around the domain wall - overlap correspondence,

as discussed previously, where the inversion of both the outer and inner actions

correspond to the same approximate 4D overlap linear system. Therefore the outer

solve can be transformed into an inner solve and the solution can be transformed

back. This is then iterated in a restarting defect correction process.

Consider a linear system with the outer domain wall 5D action of mass m, DDW(m),

and a source b

DDW(m)x = b . (2.51)

By applying the transformation to the χ field alluded to earlier, this system is

equivalent to

EDW(m)y = c , (2.52)

where the new source, solution and operators are defined as

c =P−1D−1
DW(1)b (2.53)

y =P−1x (2.54)

EDW(m) =P−1D−1
DW(1)DDW(m)P , (2.55)

where DDW(1) is the PV operator, and Psr = PLδs,r + PRδs+1(mod Ls),r is the chiral

permutation operator in the 5th dimension. The operator EDW(m) has the form in
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the 5th dimension

EDW =



Dov 0 0 · · · 0

A2 1 0 · · · 0

A3 0 1 · · · 0
...

. . .

ALs 0 0 · · · 1


, (2.56)

where Dov is the approximate overlap operator corresponding to DDW, and the As

are additional operators related to Dov, the form of which is not important for this

discussion. The first element of the linear equation is simply given by

Dovy1 = c1 , (2.57)

which is a 4D system, and the field c1 can be simply extracted from c.

Considering a second domain wall operator D′DW that, following the exact same

procedure, has a corresponding overlap operator D′ov that is tuned such that D′ov '
Dov. If we require that the effective overlap systems are approximately equivalent,

i.e. c1 ' c′1, the source of the second system can be replaced by that from the

original system

D′ovy
′
1 = c1 . (2.58)

The domain wall - overlap correspondence can then be inverted by constructing the

5D boundary source

b′ = D′DM(1)P (c1, 0, 0, · · · )T . (2.59)

With the new source constructed, the inner 5D system

D′DW(m)x′ = b′ (2.60)

can then be inverted using a standard Conjugate Gradient (CG) solver to acquire

x′. Once this solution is found, it must be translated back to the outer domain wall

system. This is done by constructing y′1 = (P−1x′)1, and making the approximation

y1 ' y′1. The full 5D y is obtained from the relation ys>1 = cs − Asy1. It can be
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x′ = D′−1
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OV-DW
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OV-DW

Figure 2.6 Workflow of the MADWF solver (black) and the standard solver (blue).
The outer operator is designated DDW and the inner operator D′DW.
Steps are labelled with the domain wall - overlap correspondence (DW-
OV) and its inverse (OV-DW). ∗ indicates step requiring a PV solve.

seen from the form of EDW(m) in eq. (2.56), that

ỹ =EDW(m)(−y′1, c2, c3, · · · )T (2.61)

=(−Dovy
′
1, c2 − A2y

′
1, · · · )T (2.62)

'(−Dovy1, y2, y3, · · · · · · )T , (2.63)

which gives us approximately the remaining elements of y. If Ps is a projector that

selects only a single 5th dimensional slice, then we can construct

y 'P1y
′ +
∑
s>1

Psỹ , (2.64)

which is trivially related to the final solution via x = Py.

A schematic of the workflow of the MADWF solver is given in fig. 2.6. While this

process may seem computationally quite simple, there are two steps that require the

inversion of the PV operatorDDW(1), which is generally much cheaper than inverting

DDM(m) for lighter quarks, but can still add a significant overhead. The inner and

outer actions, and solver tolerances must then be tuned in order to evaluate any

improvements in time-to-solution.

For use in work performed during this PhD, the MADWF algorithm was imple-

mented in the Hadrons codebase [28] as an additional solver module using a restarted

defect correction. It grants users full access to the CG solver parameters of the inner,

outer and PV steps to allow for maximum flexibility when performing tuning. In

addition, there is the option to accelerate the inner solve with a guesser function

such as a low-mode deflation step (see 2.4.2). Finally, the implementation accepts a
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precision change between the outer and inner fields allowing for further acceleration.

The MADWF algorithm was used in the published works [1, 29], to accelerate a

scaled Shamir outer solve with Ls = 24 and α = 2, with a zMöbius inner solve with

Ls = 10 and low-mode deflation with 2000 exact eigenvectors. The MADWF tuning

was performed on the Tesseract supercomputer which is a CPU based machine

located in the Edinburgh EPCC facility. Figure 2.7 shows the time-to-solution as

a function of the inner solver residual for different choices of the PV residual, and

for one choice where the PV and inner residual remain equal. It can be seen that

the minimum is when the inner and PV residual both equal 10−4, and is 8.8 times

faster than without the MADWF algorithm.
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Figure 2.7 MADWF solver solution time for light quarks on the C0 ensemble (see
table 2.2) with an outer scaled Shamir action (α = 2 and Ls = 24)
and zMöbius inner action (Ls = 10 and 2000 eigenvector exact low-
mode deflation). Shown is a scan over inner and PV solver stopping
residual. The time taken for a standard scaled Shamir solve is shown
for reference.

It is unfortunate however, that the situation is different on GPU based machines.

After a retuning for this new architecture, the MADWF solver only gives roughly a

factor 2 speed-up over the standard Möbius solve. This is due to the fact that the

inner low-mode deflation is significantly slower than on a CPU machine, and the

optimisations that can be applied are not simple to propagate into the MADWF

solver.
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Particle Flavour JP I I3 Interpolator
p uud

1
2

+

1
2

1
2

εabc(uTaΓdb)uc
n ddu 1

2
−1

2
εabc(dTaΓub)dc

Σ+ uus 1 1 εabc(uTaΓsb)uc
Σ0 uds 1 0 εabc

(
(uTaΓsb)dc + (dTaΓsb)uc

)
Σ− dds 1 −1 εabc(dTaΓsb)dc
Λ uds 0 0 εabc

(
(uTaΓdb)sc + (uTaΓsb)dc − (dTaΓsb)uc

)
Ξ0 ssu 1

2
1
2

εabc(sTaΓub)sc
Ξ− ssd 1

2
−1

2
εabc(sTaΓdb)sc

Ω− sss 3
2

+
0 0 εabc(sTaΓµsb)sc

Table 2.1 Baryon label, flavour structure, spin-parity(JP ), Isospin (I) and its third
component (I3), and lattice interpolator for the QCD stable octet and
duplet baryons. q ∈ {u, d, s} are quark fields with spinor structure and
qT are transposed fields. a, b, c are color indices and µ is a Lorentz index.
For the spin-1

2 baryons the gamma structure is Γ = Cγ5, while for the
spin-3

2 Ω baryon Γµ = Cγµ, where C = −γyγt is the charge conjugation
operator

2.3 Baryons on the Lattice

While the methodology of extracting baryonic quantities from the lattice is

conceptually very similar to extracting mesonic observables, there are practical

differences that are introduced by the additional spin degree of freedom.

The fundamental objects of interest on the lattice are correlation functions. The

simplest is the 2-point correlation function

Γ2(t,p) =
∑
x

eip·x〈ψ(t,x)ψ̄(0)〉 , (2.65)

where ψ(x) is an interpolation operator that has the quantum numbers of the baryon

of interest. One set of interpolators for the ground state baryons is given in table 2.1.

The expectation value in eq. (2.65) corresponds to the spectral trace

〈ψ(t,x)ψ̄(0)〉 = Tr
[
e−HTψ(t,x)ψ̄(0)

]
/Tr

[
e−HT

]
, (2.66)

where H is the Hamiltonian operator, T is the temporal extent of the lattice, and

the trace is given by

Tr[O] =
∑
n

∑
p

Nn,p 〈n,p| O |n,p〉 , (2.67)

with the sum running over the states n, spatial momentum p, and Nn,p =
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1/ 〈n,p|n,p〉 being the state normalisation. Similarly, the identity can we written

1 =
∑
n

∑
p

Nn,p |n,p〉 〈n,p| . (2.68)

For this work we consider the normalisation 〈n,p|n,p〉 = 2En(p) where En(p) is the

energy of the state |n,p〉. By inserting the identity in-between the two interpolators,

and using the space-time translation property

O(x) = eHteip·xO(0)e−ip·xe−Ht , (2.69)

the spectral representation for the 2-point function is given by

Γ2(t,p) =
∑
n,m

∑
k

Nn,p+kNm,k 〈m,k|ψ(0) |n,p + k〉 〈n,p + k| ψ̄(0) |m,k〉 (2.70)

× e−Em(k)(T−t)e−En(p+k)t .

Note that if using Domain-Wall Fermions, the quark propagator contains additional

unphysical poles that can contribute negative eigenvalues of the transfer matrix

e−H for certain values of M5 [30, 31]. This has the effect of introducing oscillatory

contributions of the form (−1)te−Et to eq. (2.70) which can in principle be included

in fits. Since these unphysical poles are at the level of the cuttoff, these oscillatory

states generally have large masses and can therefore be considered as excited states

that are relevant only at small times.

If the time, t, is very far from the end of the lattice t � T , this will suppress all

states m apart from the lowest energy state, corresponding to the vacuum with

E0 = 0. Therefore the 2-point function can be taken to be

Γ2(t� T,p) =
∑
n

〈0|ψ(0) |n,p〉 〈n,p| ψ̄(0) |0〉
2En(p)

e−En(p)t , (2.71)

and similarly if the time is far from the origin

Γ2(t� 0,p) =
∑
n

〈n,−p|ψ(0) |0〉 〈0| ψ̄(0) |n,−p〉
2En(p)

e−En(p)(T−t) . (2.72)

So far this process is no different from mesonic systems, however, baryonic
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interpolators are spinor objects, and therefore the overlap factors are given by

〈0|ψ(0)
∣∣n+, s,p

〉
=Z+

n us(p) (2.73)〈
n+, s,p

∣∣ ψ̄(0) |0〉 =(Z+
n )∗ūs(p) (2.74)

〈0| ψ̄(0)
∣∣n+, s,p

〉
=Z+

n v̄s(p) (2.75)〈
n+, s,p

∣∣ψ(0) |0〉 =(Z+
n )∗vs(p) , (2.76)

where the states have been given 2 additional labels to indicate they have positive

parity, and spin projection s. us(p) and vs(p) are the positive and negative energy

spinors respectively. Similarly for the negative parity states

〈0|ψ(0)
∣∣n−, s,p〉 =Z−n γ5us(p) (2.77)〈

n−, s,p
∣∣ ψ̄(0) |0〉 =(Z−n )∗ūs(p)γ5 (2.78)

〈0| ψ̄(0)
∣∣n−, s,p〉 =Z−n v̄s(p)γ5 (2.79)〈

n−, s,p
∣∣ψ(0) |0〉 =(Z−n )∗γ5vs(p) . (2.80)

Since the sum over states includes the different spin projections and parities, and the

spinor completeness relations are
∑

s us(p)ūs(p) = i/p+m and
∑

s vs(p)v̄s(p) = −i/p+m,

the spectral representation becomes

Γ2(t,p) =
∑
n+

|Z+
n |2mn

E+
n (p)

(
P+
n (p)e−E

+
n (p)t + P−n (p)e−E

+
n (p)(T−t)

)
(2.81)

+
∑
n−

|Z−n |2mn

E−n (p)

(
P−n (p)e−E

−
n (p)t + P+

n (p)e−E
−
n (p)(T−t)

)

where the projectors P±(p) =
∓i/p+m

2m
, which at zero momentum are simply P±(0) =

P± = 1
2
(1± γt). Taking the trace with P+ gives

1

2
Tr
[
Γ2(t,0)P+

]
=
∑
n+

|Z+
n |2e−E

+
n (0)t +

∑
n−

|Z−n |2e−E
−
n (0)(T−t) , (2.82)

which isolates the positive parity baryon in the first half of the lattice, and the

negative parity baryon in the second half.

Finally, in the limit of large time separations, the exponentials isolate only the

ground states of these sums which correspond to the baryon of interest, and its

negative parity partner propagating backwards from the boundary at T . If the time

separation is not large enough, the ground state will not be properly isolated and

the low lying excited states provide a non-negligible contribution. This is known as
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excited state contamination, and is a large problem in the measurement of baryonic

observables, where a usable signal is only observed for a early time windows. This

is the signal-to-noise problem which is described in the next section.

2.3.1 Signal-to-noise Problem

It is observed in lattice simulations that baryonic correlation functions have a

degradation of signal as the source-sink separation increases. This is contrary to

what is observed in zero momentum pseudoscalar meson correlation functions, which

maintain a constant relative signal throughout. A description of this degradation

was originally given by Parisi [32] and Lepage [33], where the variance of the 2-point

function is related to higher point correlation functions, and the contributing spectra

are examined. We shall follow the same reasoning, but extend the argument to gain

additional insight into the statistical behaviour of the correlators.

Consider an arbitrary interpolatorO for a particle P , then the corresponding 2-point

function is given by

Γ(t) =〈O(t)O†(0)〉 (2.83)

'〈0| O |P 〉 〈P | O† |0〉 e−EP t , (2.84)

where we have taken the ground state dominance for large t. The statistical noise

associated with taking N measurements of the gauge average can be approximated

(for large N) by

σ(t) '
√

Var(t)

N
(2.85)

where the variance is given by

Var(t) =
〈(
O(t)O†(0)− Γ(t)

)† (O(t)O†(0)− Γ(t)
)〉

(2.86)

=〈O(0)O†(t)O(t)O†(0)〉 − Γ†(t)Γ(t) , (2.87)

and is therefore described by the combination of a 4-point function and the original

2-point function. Interestingly this is a physical observable rather than an artefact of

the Monte-Carlo sampling procedure, and therefore the properties of the uncertainty

of our measurement can be reasoned about purely on physical grounds. Before doing
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so, we shall extend the argument slightly by considering the covariance

Cov(t, t′) =
〈(
O(t)O†(0)− Γ(t)

)† (O(t′)O†(0)− Γ(t′)
)〉

(2.88)

=〈O(0)O†(t)O(t′)O†(0)〉 − Γ†(t)Γ(t′) , (2.89)

of which the variance is simply the diagonal Var(t) = Cov(t, t). The off-diagonal part

gives rise to the statistical correlation between the different times of the correlator

Corr(t, t′) =
Cov(t, t′)√

Var(t)Var(t′)
(2.90)

such that Corr(t, t) = 1. The spectral decomposition of the covariance for the time

ordering t′ � t� 0 has the form

Cov(t, t′) =〈O(t′)O†(t)O†(0)O(0)〉 − Γ†(t)Γ(t′) (2.91)

'〈0| O |P 〉 〈P | O† |`〉 〈`| O†O |0〉 e−m`t e−EP (t′−t)

−
∣∣〈0| O |P 〉 〈P | O† |0〉∣∣2 e−2EP t e−EP (t′−t) . (2.92)

where the state ` is the lightest state that couples to the O†O operator. Note that

we can construct an unflavoured state PP̄ from a P and it’s antiparticle with zero

back-to-back momentum. Therefore, ignoring any finite-volume energy shift, the

lightest state should satisfy m` ≤ 2mP , giving the dominant contribution to the

covariance at large time separations

Cov(t, t′) ∼ e−m` t e−EP (t′−t) , (2.93)

and by the same reasoning, the variance goes like

Var(t) ∼ e−m`t . (2.94)

The signal-to-noise ratio therefore behaves as

RP (t) =
Γ(t)

σ(t)
∼ e−(EP−m`2 )t , (2.95)

where we see that it decays exponentially in time with a scale defined by (EP−m`
2

)−1.

The correlation has the form

Corr(t, t′) ∼e
−m` t e−EP (t′−t)

e−m`/2 (t+t′)
= e−(EP−m`2 )(t′−t) . (2.96)

As should be expected, for large enough t, t′, the correlation is only a function
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of the separation of the two points being compared. It is however less expected

that this function has the same exponential decay rate as the signal-to-noise ratio

Corr(t, t′) ∼ RP (t− t′).

We shall now examine some examples in iso-symmetric QCD at the physical point.

If P is the pion, then the lightest unflavoured state that couples to 4 quarks is

the ππ state, and therefore m` = 2mπ. In this case the energy difference in the

signal-to-noise ratio is Eπ −mπ, which for a stationary pion gives a constant Rπ(t).

Therefore the relative signal does not degrade in time. Alternatively, for a moving

pion, Eπ > mπ, and therefore Rπ(t) decays exponentially in time with the pion’s

kinetic energy, which is only a small exponential signal-to-noise problem unless the

momentum is sufficiently large.

If we instead consider P to be a nucleon, the lightest unflavoured state for which

〈`|ψN ψ̄N |0〉 6= 0 is not the NN̄ state, but instead can be a 3π state since there

are 3 light quark-antiquark pairs. Therefore RN decays with the energy difference

mN − 3
2
mπ, which is very large (∼ 730MeV) at the physical point. With exactly the

same reasoning for the other baryons, it is clear that baryonic correlation functions

generally have a severe exponential signal-to-noise problem.

While baryonic observables suffer greatly from this signal-to-noise problem, there is

one advantage we observe over the light pseudoscalar mesons. This is due to the

fact that the correlation matrix behaves in the same way as the signal-to-noise ratio,

and therefore is asymptotically constant for the light pseudoscalar mesons, while it

decays exponentially for baryonic correlation functions.

A simplified model of the correlation matrix that only incorporates this asymptotic

behaviour is given by

Corr(t, t′) =δtt′ + c e−m|t−t
′|(1− δtt′) (2.97)

which has only two parameters, the coefficient c and the “mass” of the exponential

decay m = EP −m`/2. Figure 2.8 shows the scaling of the condition number of this

correlation matrix with its size, for a fixed coefficient c = 0.5 and a range of masses.

In practice this is a measure of the difficulty of inverting this matrix during the

fitting procedure. Of course, with only finitely many data samples, the estimation

of this correlation matrix is noisy, and at some point the matrix inversion will become

numerically unstable. We can see that the m parameter acts as a regulator on the

condition number preventing the matrix from becoming arbitrarily ill-conditioned.

40



m=0 m=0.05 m=0.10 m=0.20

10 20 30 40 50 60
Matrix Size

10

20

30

40

Cond[Corr]

Figure 2.8 Scaling of the condition number of the correlation matrix with the
matrix size, using the model in eq. (2.97). The coefficient used is c = 0.5
and several mass parameters m are shown.
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Name a−1 [MeV] L [fm] N3
L ×NT Ns Action mπ [MeV] mK [MeV] Ref.

C0 1730(4) 5.5 483 × 96 24 Möbius 139 499 [37]
C1 1785(5) 2.6 243 × 64 16 Shamir 340 620 [37, 38]
C2 1785(5) 2.6 243 × 64 16 Shamir 432 626 [37, 38]
M0 2359(7) 5.4 643 × 128 12 Möbius 139 507 [37]

Table 2.2 Details of the RBC-UKQCD domain wall fermion ensembles used in this
work. The action lists the type of fermion action used, and all ensembles
use the Iwaskai gauge action. The specific Möbius action used in the C0
and M0 ensembles are the scaled Shamir fermions with α = 2.

2.4 Simulating Lattice QCD

The software used throughout the work presented in this thesis are the open-

source C++ libraries Grid [34, 35] and Hadrons [28]. Grid is a massively parallel

software package that provides cross-platform functionality for performing large scale

LQFT simulations. It provides many heavily optimised operations with support for

CPU multithreading, multi-node MPI decomposition, SIMD vectorisation, SIMT

and GPU acceleration. Hadrons is a workflow management library that packages

commonly used Grid functionality into modules, manages object lifetimes, and

provides module scheduling to minimise the peak memory requirements. It also

provides support for resource monitoring and output file organisation via sqlite

databases.

Several improvements and new functionalities required for the work presented in this

thesis have been implemented in both of these libraries. This includes improvements

to the baryon 2-point and 4-quark contractions, as well as the implementation

of general baryonic quark bilinear 3-point function contractions, which have been

critical to the measurements presented in chapter 6. In addition, the MADWF

solver has been implemented in Hadrons to accelerate solves of domain wall fermion

propagators with large Ls (see section 2.2.2). Finally, much work has been done

to optimise low-mode deflation (see section 2.4.2) for use with GPU architectures,

including the implementation of batch-deflation, local-coherence deflation and a

batched multi-right-hand-side mixed precision solver.

All of the numerical results presented in this thesis are measured on the RBC-

UKQCD ensembles with an Iwasaki gauge action [36] and various domain wall

fermion actions. Table 2.2 shows some key details for these ensembles and gives

the names by which they will be referred in this thesis.
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2.4.1 Setting the Scale

In lattice simulations, all quantities are calculated in lattice units as dimensionless

numbers, where the corresponding dimensionful quantity comes with an appropriate

power of the lattice spacing a. Since a is not an input to the theory, it must be

obtained by matching a lattice observable, X, to its desired physical value in the

target theory. In the case where X has mass dimension 1

a =
(aX)lat

Xphys

. (2.98)

One commonly used observable is the mass of the Ω− baryon since it has a clear

experimental value with which to match. It does however suffer from an exponential

signal-to-noise problem (see section 2.3.1) which makes fitting the effective mass

problematic. In addition, it is relatively expensive to compute compared to purely

gluonic observables, since it requires the computation of fermion propagators.

Lattice simulations of many quantities are now reaching sub-percent precision, and

therefore need to include the effects of Quantum Electrodynamics (QED) and the

mass difference of the up and down quarks. These effects are referred to as isospin

breaking effects. In this section, we present the calculation of the Ω− baryon mass

with the full theory of QCD+QED. Since the Ω− baryon consists of 3 strange quarks,

the non-zero mu-md mass difference only enters through disconnected diagrams

which are not considered here. On the ensembles used, the strange quark is slightly

mistuned away from its physical value by some amount δms, and therefore this

mistuning must be corrected for in the calculation of the Ω− mass.

Since the electric charge e and δms are small quantities, both effects can be

included perturbatively. The next-to-leading order expansion of the Ω− mass in

these parameters is given by

mQED
Ω = mΩ|0 +

1

2
q2
se

2∂
2mΩ

∂e2

∣∣∣∣
0

+ δms
∂mΩ

∂ms

∣∣∣∣
0

+O(e4, δm2
s) , (2.99)

where the subscript 0 indicates the quantity is evaluated at e = 0 and δms = 0,

called the simulation point, and the first order derivative ∂mΩ

∂e

∣∣
0

= 0 has been used

which is a result of the fact that the mass shift must be independent of the sign of

the electric charge.
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The zero momentum two-point function used to extract the Ω− mass is given by

ΓΩ(t) =
1

4

∑
i

∑
x

Tr
[
〈ψiΩ(t,x)ψ̄iΩ(0)〉P+

]
, (2.100)

where the operator ψ̄µΩ(x) = ψµΩ
†(x)γ0 denotes the spin-3/2 interpolating operator

for the Ω− baryon, and the spatial direction i is summed over. The point source

interpolator is given in table 2.1, and an alternative interpolator replaces the quark

fields with Gaussian smeared fields

s̃(t,x) =
∑
y

exp
[
−(x− y)2/(2σ2)

]
s(t,y) , (2.101)

with some width σ. Since this smearing is not gauge covariant, it requires gauge

fixing of the QCD gauge configurations.

One feature of lattice baryon interpolating operators is that, on a torus, they couple

to negative parity states propagating backward in time. As a consequence, assuming

ground state dominance, the correlator has the form

ΓΩ(t) = |ZΩ|2 e−mΩt + |Z̄Ω|2 e−ω̄Ω(T−t) (2.102)

where ω̄Ω is the energy of the state with negative parity ground state. The operator-

state overlaps for a state with spin projection s ∈ {±3
2
,±1

2
} are defined by ZΩ u

µ
s =

〈0|ψµΩ(0) |Ω, s〉 and Z̄Ω γ5u
µ
s = 〈0|ψµΩ(0)

∣∣Ω̄, s〉, where uµs is the positive energy

solution to the spin-3/2 Rarita-Schwinger equation (see e.g. [39] for a recent review),

and |Ω, s〉 and
∣∣Ω̄, s〉 are states with positive and negative parity respectively. More

details regarding spin-3
2

particle solutions are given in appendix D.

Since baryon correlators are significantly affected by an exponential signal-to-noise-

ratio problem, we are restricted to early times t � T/2 where the backward

propagating contributions are negligible, giving just

ΓΩ(t) = |ZΩ|2 e−mΩt , (2.103)

which can be computed at the simulation point and fit to extract mΩ|0.

Taking the derivatives of this correlator with respect to the e.m. coupling and the
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strange quark mass, and taking the ratio with the original correlator, gives

Rem
Ω (t) =

1

ΓΩ(t)

∂2ΓΩ(t)

∂e2

∣∣∣∣
0

=
1

|ZΩ|2
∂2|ZΩ|2

∂e2

∣∣∣∣
0

− ∂2mΩ

∂e2

∣∣∣∣
0

t , (2.104)

Rs
Ω(t) =

1

ΓΩ(t)

∂ΓΩ(t)

∂ms

∣∣∣∣
0

=
1

|ZΩ|2
∂|ZΩ|2

∂ms

∣∣∣∣
0

− ∂mΩ

∂ms

∣∣∣∣
0

t , (2.105)

which are both linear in time, and can therefore be fit to a linear ansatz to extract

the quantities of interest.

We begin by considering the Wick contractions for the iso-QCD correlator given

in eq. (2.100), of which there are 6 contributions. These are shown diagrammatically

in fig. 2.9. The color structure of these contractions is not represented in these

diagrams.

For the QED corrections to this correlator, we require two insertions of the quark-

photon interaction iZV
∑

x s̄ /As, where Aµ is a stochastically evaluated photon field

in the QEDL prescription and ZV is the vector current renormalisation factor. This

term corresponds to a photon propagator connecting the quark legs, as well as a

quark-disconnected contribution that is omitted in this work. Taking for example

diagram (a) in fig. 2.9, the corresponding QED corrections are shown in fig. 2.10

where (a), (b) and (c) are the exchange diagrams and (d), (e) and (f) are the self

energy diagrams contributing to ∂2ΓΩ(t)
∂e2

. Similarly, quark-mass corrections are given

by the insertion of the scalar density
∑

x s̄s. Again taking diagram (a) in fig. 2.9 as

an example, the mass corrections are given by the diagrams in fig. 2.11, as well as a

disconnected contribution that is also omitted.

(a) (b) (c) (d) (e) (f)

Figure 2.9 All Feynman diagrams corresponding to the tree-level correlation
function ΓΩ(t). Points connecting two propagators are contractions of
a diquark pair, and dashed magenta portions of a propagator indicate
contraction with a transposed quark field.

(a) (b) (c) (d) (e) (f)

Figure 2.10 All (connected) Feynman diagrams contributing to Rem
Ω (t) originating

from the tree-level contribution shown in fig. 2.9 (a). Similar diagrams
exist for the other contributions.
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(a) (b) (c)

Figure 2.11 All (connected) Feynman diagrams contributing to RsΩ(t) originating
from the tree-level contribution shown in fig. 2.9 (a). Similar diagrams
exist for the other contributions.

Numerical Results

We now present numerical results for these quantities on the close to physical point

C0 and M0 ensembles from table 2.2. The data used on the C0 ensemble is the

same as is used for QED scale setting in [29], however the analysis is independently

performed by the author of this thesis. The results of these different analyses agree

within statistical errors as expected.

Figures 2.12 and 2.13 show fits to the log effective mass

meff(t) = ln

(
ΓΩ(t)

ΓΩ(t+ 1)

)
, (2.106)

the ratios Rem
Ω (t) and Rs

Ω(t), and its (second) derivative with respect to ms and e

δmsmeff =
∂meff(t)

∂ms

=Rs
Ω(t)−Rs

Ω(t+ 1) (2.107)

δemmeff =
∂2meff(t)

∂e2
=Rem

Ω (t)−Rem
Ω (t+ 1) (2.108)

for the C0 and M0 ensembles respectively. The fit values are given in tables 2.3

and 2.4, along with the two-tailed p-value which is the probability that the χ2 test

statistic would be more extreme than the observed value under the assumption that

the fit describes the data. A 2-state fit ansatz is used for the simulation point Ω−

mass, while only a single state ansatz is used for the derivatives, due to a large

number of additional undesired parameters destabilising the fits. The Ω− mass in

the absence of QED or strange quark retuning is consistent with those measured on

these two ensembles in ref. [37].

On the C0 ensemble, these quantities are combined to give the full Ω− mass in

the presence of QED and with physical strange quark mass. It can be seen that the

statistical error on this quantity is heavily dominated by that of the simulation point

mass. A similar combined value is not given on the M0 ensemble since the strange

quark mass retuning in the presence of isospin-breaking effects is not currently known

on this ensemble.
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Figure 2.12 Fits to the Ω− baryon effective mass (top), the ratios of the corrections
in the e.m. coupling (middle left) and bare strange quark mass
(middle right) and their derivatives (bottom) on the C0 ensemble (see
table 2.2).
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Figure 2.13 Fits to the Ω− baryon effective mass (top), the ratios of the corrections
in the e.m. coupling (middle left) and bare strange quark mass
(middle right) and their derivatives (bottom) on the M0 ensemble (see
table 2.2).
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Observable Value p-value
amΩ 0.9682(35) 0.351
∂2amΩ

∂e2
1.17(11)× 10−2 0.972

∂amΩ

∂ams
5.59(24) 0.707

amQED
Ω 0.9637(35) -

Table 2.3 Fits results for the mass of the Ω− baryon and its derivatives in the e.m.
coupling and bare strange quark mass on the C0 ensemble. These are
combined to give the lattice result for the QED value using e2 = 4π

137 , and
δms = −0.0010(4) from [29].

Observable Value p-value
amΩ 0.7224(44) 0.141
∂2amΩ

∂e2
8.78(66)× 10−3 0.408

∂amΩ

∂ams
6.18(19) 0.902

Table 2.4 Fits results for the mass of the Ω− baryon and its derivatives in the e.m.
coupling and bare strange quark mass on the M0 ensemble. These are
not combined to give a final result since the strange quark mass shift is
not yet known on this ensemble.
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M x b
γ5D S γ5η
Dγ5 γ5S η
D†D S D†η
DD† (D†)−1S η

Table 2.5 Example choices for creating a hermitian linear system that is equivalent
to eq. (2.109).

2.4.2 Deflation

Generally, the most computationally expensive part of making measurements of

fermionic quantities on the lattice is the (repeated) inversion of the Dirac operator

on various sources, i.e. solving the equation

DS = η , (2.109)

where S is the quark propagator sourced by η, and D is the Dirac operator. This

is a very large, but sparse, linear system which is often well suited to CG type

algorithms. However, since D is not a Hermitian operator, the linear system must

be modified to contain a Hermitian operator

Mx = b (2.110)

where M = M †. Some examples of M , x and b are listed in table 2.5, the first two

of which require the Dirac operator to be γ5-hermitian, γ5Dγ5 = D†.

A measure of the difficulty of solving this linear system is the condition number of

the matrix M . If M has dimension N , then the eigenvalues can be labelled λi for

i = 1, 2, ..., N , where they are ordered by their magnitude |λ1| ≤ |λ2| ≤ ...|λN |. The

condition number is then given by

κ =

∣∣∣∣λNλ1

∣∣∣∣ . (2.111)

For a CG algorithm, once the initial transient behaviour has ended, each subsequent

iteration improves the norm-squared error of the solution on average by a factor [40]

Σ =

√
κ− 1√
κ+ 1

. (2.112)

For κ� 1, Σ ' 1− 2√
κ

showing that a larger condition number increases the number

of iterations needed to achieve a given precision on the solution. While the matrix
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to be inverted gives the general characteristics of the problem, the difficulty of the

inversion process is also dependant on the source b. If b has no support from certain

eigen-modes of M , then the corresponding eigen-directions will be trivially solved

for by a zero starting guess, and therefore the effective condition number can be

considered

κeff =

∣∣∣∣λmax ∈b
λmin ∈b

∣∣∣∣ . (2.113)

This effective condition number, and therefore the iteration count, can be reduced

by constructing linear systems in which the source has no support in the high and/or

low eigenspace of the matrix M .

Iterative algorithms like CG require an initial starting guess for the solution, x0, that

is commonly chosen to be a zero vector. If instead there exists a good approximation

to the solution, this can be used as the initial guess. Writing the full solution as

x = x0 + x′ allows the linear equation to be rewritten as

Mx′ = b′ = b−Mx0 . (2.114)

This gives us freedom to modify the linear system to improve the effective condition

number.

Low-mode deflation is a technique that utilises a precomputed set of the lowest

n eigenvectors vi and eigenvalues λi of the operator M . A guess for the CG is

constructed specifically to remove support of the source on the lowest eigen-modes

of M .

Since the inverse of the matrix M can be written

M−1 =
N∑
i=1

1

λi
viv
†
i , (2.115)

this matrix can be inverted exactly on the low-mode subspace (using the n < N

lowest eigenvectors), giving the guess

x0 =
n∑
i=1

1

λi
(vi, b) vi , (2.116)

where (a, b) is the inner product of the complex vectors a and b. The effective linear
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Figure 2.14 Residual (left) and effective condition number (right) histories for
deflation of the light quark on the C1 ensemble, with several numbers
of exact eigenvectors, and 600 local-coherence compressed eigen-
vectors.

system to solve is then given by

Mx′ = b−Mx0 =
N∑

i=n+1

bivi , (2.117)

which has an effective condition number

κeff =

∣∣∣∣ λNλn+1

∣∣∣∣ ≤ ∣∣∣∣λNλ1

∣∣∣∣ . (2.118)

This can significantly reduce the number of iterations to solution, depending on the

number of eigenvectors used and the eigenvalue density of the low modes. Figure 2.14

shows the residual history and measured condition number for several numbers of

low modes used to deflate a light quark on the C1 ensemble listed in table 2.2. It

can be seen how the total number of iterations to solution, and the height of the κeff

plateau, decrease with an increasing number of low-modes used in deflation.

Eigenvector Compression

Due to the fact that these eigenvectors are lattice sized objects, storing many of

them on disk or in memory can become problematic as lattices get larger and/or

finer. For this reason, it is hugely beneficial to compress these eigenvectors in some

way.

The simplest approach is to reduce the numerical precision with which they are
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stored, which can easily reduce the disk/memory footprint by a factor 2 when going

from double to single precision floating point numbers. This is a form of lossy

compression that has the advantage of only requiring the casting of fields to different

precisions, which is a relatively fast operation on modern hardware. It does, however,

throw away information about the physics indiscriminately, loosing information of

both high and low value to the system being solved.

A more physically motivated approach introduced by Lüscher in ref. [41] utilises

the local coherence of the low-mode eigenvectors to remove redundant information.

This local-coherence deflation has previously been investigated on physical point

lattice ensembles in ref. [42], where it has been seen to yield a compression of up

to 90% for the eigenvectors of the red-black preconditioned 5D domain wall fermion

Dirac operator.

Local coherence is the observation that two fields ψ(x) and φ(x) can be orthogonal

globally (φ, ψ) =
∑

x∈Λ φ
†(x)ψ(x) = 0, but not orthogonal when restricted to only a

local subvolume of the lattice Λa,
∑

x∈Λa
φ†(x)ψ(x) 6= 0. Splitting the full lattice Λ

into several local sublattices Λ = Λ1∪Λ2...∪ΛA, fields can be restricted to a specific

sublattice Λa as

ψa(x) =

{
ψ(x) for x ∈ Λa

0 else
, (2.119)

and an inner product on the sublattice Λa can be defined as

(φ, ψ)a =
∑
x∈Λa

φ†(x)ψ(x) = (φa, ψa) (2.120)

where it can be seen that (φa, ψb) ∝ δab since the sublattices Λa and Λb share no

sites if a 6= b. Taking the lowest n normalised eigenvectors of the operator M , the

hermiticity of M guarantees these are globally orthogonal (vi, vj) = δij, however

locally they may be coherent (vi, vj)a 6= 0 for i 6= j. Defining a set of orthonormal

basis vectors on the sublattice as uak, such that (uk, uk′)a = δkk′ , the Dirac operator

eigenvectors can be decomposed as

vai =
∑
k

(uk, vi)au
a
k . (2.121)

By writing all fields in this local basis form, it can be seen that the exact deflation
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of source b is equivalent to

x0 =
∑
i

1

λi
(vi, b)vi =

∑
a,k

∑
i

1

λi

(∑
a′,k′

(uk′ , vi)
∗
a′(uk′ , b)a′

)
(uk, vi)au

a
k . (2.122)

We can now associate the sublattice inner product of a field with a basis vector

(uak, ψ
a)a = ψ̃k(a) as a field in a new space where a behaves like a spatial position

coordinate and k like some internal degrees of freedom. We refer to fields on the

original lattice Λ as fine fields, while those on this new space as coarse fields, since

each sublattice Λa corresponds to a single site of a coarsened lattice Λ̃. The inner

product on this new space is denoted as

〈φ̃, ψ̃〉 =
∑
a

∑
k

(φ̃k(a))∗ψ̃k(a) . (2.123)

In this new notation, the exact low mode deflation from eq. (2.122) has the form

x0 =
∑
a,k

x̃0k(a)uak , x̃0k(a) =

[∑
i

1

λi
〈ṽi, b̃〉ṽik(a)

]
. (2.124)

This is exactly equivalent to using the basis vectors uak to project the eigenvectors

vi and the source b into the coarse space, then doing an exact low-mode deflation

with these fields to get x̃0k(a), and finally promoting back to the fine space.

The only issue now is constructing the basis vectors uak. Note that in practice the

number of basis vectors in the complete set is larger than the number of low modes

eigenvectors used, and therefore only span a subspace of the basis. The source b is

arbitrary and therefore may span the whole basis, however, since the deflation only

takes the projection on the low-mode subspace, this extra span is irrelevant. This

allows for the basis to be truncated, while still being exact, to just the basis vectors

that span the space of eigenvectors on the sublattice.

In order to guarantee the truncated basis captures the subspace spanned by the

eigenvectors, it can be constructed from them via an orthonormalisation procedure

on the local sublattice Λa, giving n basis vectors. Note however that with all n

basis vectors, this procedure is equivalent to exact low-mode deflation. Since no

information has been lost it is clear that no compression has taken place, and

therefore the total memory/storage required has not improved.

The local coherence of the eigenvectors (vi, vj)a 6= 0 for i 6= j shows that the

eigenvectors on each sublattice overlap with some common set of local basis vectors,
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and have only small overlap with the rest. Therefore, we can truncate the basis

vectors further to only include these major axes, rendering the deflation inexact,

but also reducing the size of the basis that needs to be stored. This is done

by constructing the basis vectors by block orthonormalising the ñ < n lowest

eigenvectors.

Figure 2.14 shows the deflation of a light quark on the C1 ensemble with 600 local

coherence compressed eigenvectors, using a basis size of ñ = 150 and a local lattice

size of 24 × 16 on a 5D lattice of global size 243 × 64 × 16. This corresponds to

a compression of 65%. It can be seen that the effective condition number initially

plateaus to the same value as 600 exact eigenvalues, but later increases as the residual

error reaches the level of the inexactness from the compression. This inexactness

can be overcome using a restarting defect correction that redeflates at each step.

In the course of this project the local coherence deflation, as well as compression and

decompression of the eigenvectors, has been implemented in the Grid and Hadrons

libraries. This allows us to begin computing light quark observables on the M0

ensemble in table 2.2 with the Tursa supercomputer.
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2.4.3 All-Mode-Averaging

When performing measurements on the lattice, the Dirac operator must be inverted

many times, which is often of great computational cost. The number of iterations

of a CG algorithm, and therefore the time to solution, is dependent on the stopping

residual chosen. This must be chosen appropriately to minimise the cost on each

inversion, but also achieve an accurate solve.

If a particular residual is deemed good enough to recover all the important properties

of the observable in question, i.e. improving the residual has no noticeable effect on

the observables, we call inversions to this residual “exact” solves.

Of course, solving to a worse residual will decrease the time-to-solution for an

inversion, but will also have some effect on the observable in question, which is an

artefact of the measurement and not the physics we wish to capture. We call this an

“inexact” solve. In performing an inexact solve, a bias has been introduced into the

measurement that must be corrected to get reliable results. This bias correction step

to guarantee our results are free from statistically significant measurement artefacts,

is known as the All Mode Averaging (AMA) procedure and was first described in

[43].

Consider a general exact observable to measure on the lattice OEx, and an inexact

observable OInex, that is some approximation of OEx. The unbiased gauge average

of this observable with N measurements is given by

〈OEx〉N =
1

N

N∑
i=1

[OEx]i , (2.125)

where [O]i indicates the measurement of the operator O on a single configuration i.

This is equivalent to

〈OEx〉N =〈OInex〉N + 〈OEx −OInex〉N (2.126)

'〈OInex〉N + 〈OEx −OInex〉Ñ , (2.127)

where we have approximated the second gauge average with one over fewer

measurements Ñ < N . i.e. we are computing the biased estimator on the

full statistics relatively cheaply, and computing the bias correction on smaller

statistics. If the inexact operator is a sufficiently good approximation, then the

bias correction will be small and will have little effect on the result. Alternatively, if

the approximation is poor, the bias correction will be large and the statistical error
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will be dominated by the lower statistics of Ñ measurements. The final estimator

will be unbiased to within statistical errors so long as N and Ñ are large enough to

get reliable error estimates for the gauge averages.

In practice, the correlation between the inexact measurement and the bias correction

on a configuration-by-configuration level can be significant, and therefore it is

beneficial to have the inexact and bias correction measurements on the exact same

configurations. This can be achieved by computing the lower statistics of Ñ as a

smaller number of measurements per configuration.

For example, for a 2-point correlation function, the time translation symmetry can

be used to make Nt measurements per configuration. If nb of these are used for the

bias correction, and the remaining Nt − nb are used for the inexact calculation, a

bias corrected observable can be constructed as

Õ(t) =
1

nb

nb−1∑
k=0

(OEx(t+ tk)−OInex(t+ tk)) +
1

Nt − nb

Nt−1∑
k=nb

OInex(t+ tk) , (2.128)

that is an unbiased estimator, i.e.

lim
N→∞

(
〈Õ(t)〉N − 〈OEx(t)〉N

)
= 0 . (2.129)

The work presented in chapter 3 utilises the AMA procedure to correct for the bias

in solving propagators to an inexact residual, as well as in approximating the 5D

Möbius action with a zMöbius action with smaller Ls.
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CHAPTER

THREE

THE RARE KAON DECAY K+ → π+`+`−

There exists a variety of rare decays of the charged and neutral kaons that can be

used as probes for new physics beyond the SM. Of particular interest are the s→ d

quark FCNC decays: K → π`+`− with the kinematically allowed charged leptons

` = e, µ; and K → πνν̄ where all generations of SM neutrinos contribute. This

work shall focus on the decay with charged leptons in the final state, however, the

neutrino modes are of great importance in their own right, and have been extensively

studied from the theoretical perspective, with recent developments given in refs.

[44, 45], and progress from the lattice community in refs. [46–48]. However, due to

the experimental difficulties caused by the neutrinos, these decays are not as well

measured experimentally as the charged lepton modes at the present time [6].

The charged lepton rare kaon decays have several channels corresponding to the

charged hadrons K± → π±`+`−, and the neutral hadrons K0
S,L → π0`+`−. The

charged kaon decays are related to one another by Charge Parity (CP) symmetry,

however the two neutral decays have a very different structure to one another. The

K0
S decay is dominated by the long distance virtual photon contribution since it has

a large overlap with the CP even state K1, while the K0
L decay has this contribution

suppressed due to its large overlap with the CP odd state K2.

Tables 3.1 and 3.2 show the experimental measurements of the branching ratio for

the charged kaon decay in the electronic and muonic decay modes respectively,

where uncertainties at the level of a few percent are observed. Alternatively, the

neutral kaon decays are much more difficult to measure experimentally. The current
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Experiment Value [×10−7]

PDG Average [6] 3.00(9)
NA48/2 [53] 3.11(4)(12)
E865 [54] 2.94(5)(14)
Alliegro et al. [55] 2.75(23)(13)
Bloch et al. [56] 2.7(5)

Table 3.1 Experimental measurements of the branching fraction of the rare kaon
decay in the electronic decay mode B(K+ → π+e+e−). The first error
is statistical and the second is systematic unless only one is given, in
which case it combines the statistical and systematic error.

Experiment Value [×10−8]

NA62* [57] 9.15(8)
PDG Average [6] 9.4(6)
NA48/2 [58] 9.62(21)(13)
Hyper CP [59] 9.8 (1.0)(5)
E865 [60] 9.22(60)(49)
E787 [61] 5.0(4)(9)

Table 3.2 Experimental measurements of the branching fraction of the rare kaon
decay in the muonic decay mode B(K+ → π+µ+µ−). The first error is
statistical and the second is systematic unless only one is given, in which
case it combines the statistical and systematic error.
∗ Result more recent than the PDG average.

most precise values for the K0
S are B(K0

S → π0e+e−) = 3.0+1.5
−1.2 × 10−9 [49] and

B(K0
S → π0µ+µ−) = 5.8+2.9

−2.4 × 10−9 [50] from the NA48/1 experiment, while the

K0
L decay only has limits set at B(K0

L → π0e+e−) < 2.8× 10−10 [51] and B(K0
L →

π0µ+µ−) < 3.8 × 10−10 [52]. The significantly lower precision of the neutral kaon

channels limits their sensitivity to new physics compared to the charged kaon decays,

and therefore we focus on the K+ → π+`+`− decay in this work.

3.1 Theoretical Background

It was shown in ref. [62], that the K+ → π+`+`− decay is dominated by the

long distance contribution K+ → π+γ∗, γ∗ → `+`− where the di-lepton pair

originate from a virtual intermediate photon. For this contribution first order

in electromagnetism, the amplitude factorises into a leptonic and hadronic part.

Due to the non-perturbative nature of QCD, the hadronic component gives rise to

the theoretical difficulty of this decay process. Once the heavy degrees of freedom

have been integrated out to give a Fermi effective theory, the hadronic amplitude is
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obtained as the matrix element of a point-like effective flavour-changing operator,

and a vector current that couples to the virtual photon, all between the initial and

final state hadron states. This is given by

Aµ(q2) =

∫
d4x

〈
π+(p)

∣∣T{HW (x)Jµ(0)}
∣∣K+(k)

〉
, (3.1)

where k and p are the 3-momentum of the kaon and pion respectively, and q = k−p
is the 4-momentum transferred by the virtual photon. Jµ = 2

3
V u
µ − 1

3
V d
µ + 2

3
V c
µ − 1

3
V s
µ

is the electromagnetic current, where V q
µ is the conserved flavour-diagonal vector

current for the quark q, and HW is the ∆S = 1 effective weak Hamiltonian given by

[10, 63]

HW =
GF√

2
V ∗usVud

[∑
i=1,2

Ci(Q
u
i −Qc

i) +
∑

i=3,..,10

CiQi

]
+ h.c. (3.2)

where Vqq′ are the CKM matrix elements, and the Qi are a set of known operators

with corresponding Wilson coefficients Ci. This weak Hamiltonian accounts for the

effects of the heavy degrees of freedom of the electroweak theory that are integrated

out to get a low energy effective model. The dominant contributions for the long

distance s→ d`+`− transitions are the so-called “current-current” operators

Qq
1 =(s̄iγ

L
µ qj)(q̄jγ

L µdi) (3.3)

Qq
2 =(s̄iγ

L
µ qi)(q̄jγ

L µdj) , (3.4)

where i, j are summed colour indices and γLµ = γµ(1−γ5). For a renormalisation scale

above the charm quark mass, the Glashow–Iliopoulos–Maiani (GIM) mechanism is

manifest as the difference of the up and charm quark contributions Qu
i − Qc

i . The

operators Q3...6 are the QCD penguin operators

Q3 = (s̄iγ
L
µdi)

∑
q

(q̄jγ
L µqj) , Q4 = (s̄iγ

L
µdj)

∑
q

(q̄jγ
L µqi) , (3.5)

Q5 = (s̄iγ
L
µdi)

∑
q

(q̄jγ
R µqj) , Q6 = (s̄iγ

L
µdj)

∑
q

(q̄jγ
R µqi) , (3.6)

where the quarks q with electric charge eq are from the set of active flavours at a

chosen renormalisation scale, and γRµ = γµ(1 + γ5). Finally the electroweak penguin
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operators Q7...10 are given by

Q7 =
3

2
(s̄iγ

L
µdi)

∑
q

eq(q̄jγ
R µqj) , Q8 =

3

2
(s̄iγ

L
µdj)

∑
q

eq(q̄jγ
R µqi) , (3.7)

Q9 =
3

2
(s̄iγ

L
µdi)

∑
q

eq(q̄jγ
L µqj) , Q10 =

3

2
(s̄iγ

L
µdj)

∑
q

eq(q̄jγ
L µqi) . (3.8)

The Wilson coefficients C3...10 are suppressed by a factor
V ∗tsVtd
V ∗usVud

∼ 10−3 relative to

C1,2, and therefore we are safe to ignore these penguin type operators at the current

level of precision. A detailed description of the ∆S = 1 effective weak Hamiltonian

is given in ref. [64] in the context of the K → π`+`− and K → πνν̄ decays.

It is most convenient for us to use operators where the spinor and color indices are

contracted within the same pairs of quarks. While the Qq
2 operator is already in

this form, the Qq
1 operator must undergo a Fierz transformation, under which the

γLµ ⊗ γLµ structure is invariant, resulting in the operator

Qq
1 =(s̄iγ

L
µdi)(q̄jγ

L µqj) . (3.9)

The amplitude (3.1) can be decomposed into a basis of all independent Lorentz

structures in the decay, which when combined with the requirement that it

must satisfy the Ward-Takahashi identity qµAµ = 0 from electromagnetic gauge

invariance, can be expressed in terms of a single form factor V (z = q2

m2
K

)

Aµ =− i GF

(4π)2
V (z)

(
q2(k + p)µ − (m2

K −m2
π)qµ

)
. (3.10)

All of the hadronic information of this decay is contained in V (z) and therefore this

is the goal of any theoretical calculation of this decay. The form factor has previously

been analysed using the methods of ChPT in ref. [65], and can be separated into

the contributions

V (z) =a+ bz +W ππ(z) (3.11)

where the W ππ comes from the ππ → γ∗ intermediate contribution, and the part

linear in z absorbs all other contributions from higher mass intermediate states. It

is known up to O(p4) in the chiral expansion that W ππ(0) = 0.

While we have focused on the charged kaon decay here, the K0
S decay amplitude

has exactly the same form, and therefore results quoted in the literature are given

a subscript + or 0 to indicate the form factor contributions to the K+ or K0
S decay.

61



Origin ` a b

NA48/2 [53] e -0.578(16) -0.779(66)
NA48/2 [58] µ -0.575(39) -0.813(145)
NA62 [57] µ -0.575(13) -0.722(43)

D’Ambrosio et al. [66] - -1.59(8) -0.82 (6)

Table 3.3 Experimental and theory results for the form factor coefficients of the
K+ → π+`+`− decay.

Table 3.3 gives the experimental measurements of the a and b coefficients in the

form factor, as well as the existing theory result which utilises a two-loop low-energy

expansion of V (z) in three-flavor QCD, with phenomenological inputs for unknown

quantities. It can be seen that the a and b coefficients are consistent between all

the experiments, and while b is also consistent with the theory prediction, the a

coefficient has a clear discrepancy between theory and experiment. Due to this

discrepancy, it is important to produce an alternative SM prediction of this form

factor in an ab initio manner, which currently can only be done using the methods

of lattice QCD.

3.1.1 Lattice Theory

Ref [67] gives a detailed description of the methodology for extracting theK → π`+`−

form factor from the lattice, which we summarise in this section.

The amplitude in eq. (3.1) can be written in spectral form as

Aµ =i

∫ ∞
0

dω

(
ρ(ω)

EK(k)− ω − iε
− σ(ω)

ω − Eπ(p) + iε

)
(3.12)

=− i
∫ ∞

0

dω

(
ρ(ω)

ω − EK(k) + iε
+

σ(ω)

ω − Eπ(p) + iε

)
,

the second line of which will be most convenient for comparison with lattice objects.

The two spectral functions in eq. (3.12) are given by

ρ(ω) =
∑∫
α

δ(ω − Eα(k))

2Eα(k)

〈
π+(p)

∣∣ Jµ |α(k)〉 〈α(k)|HW

∣∣K+(k)
〉

(3.13)

σ(ω) =
∑∫
β

δ(ω − Eβ(p))

2Eβ(p)

〈
π+(p)

∣∣HW |β(p)〉 〈β(p)| Jµ
∣∣K+(k)

〉
, (3.14)

where the states that contribute to the |α(k)〉 spectrum have strangeness S = 0 and

momentum k as the weak Hamiltonian operator does not impart any momentum.
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Figure 3.1 Quark contraction topologies for the weak Hamiltonian 3-point function
with kaon and pion external states. Topologies are given the names:
Connected (top left); Wing (top right); Eye (bottom left); and Saucer
(bottom left). The paired black dots represent the two V − A quark
currents that are located at the same space-time point.

At the physical point, the lowest elements of this spectrum are the π, ππ and πππ

states. The states |β(p)〉 have S = 1, the lowest of which are the K, Kπ, Kππ

states.

In order to compute this amplitude on the lattice, it must be obtained from discrete,

finite-volume, Euclidean correlation functions. In the following discussion, we shall

assume all objects are evaluated in the continuum.

The Euclidean analogue of the amplitude in 3.1 is the 4-point correlation function

Γ(4)
µ (tH , tJ ;k,p) =

∫
d3x 〈φπ(tπ,p) Jµ(0)HW (tH ,x)φ†K(tK ,k)〉 (3.15)

where φP (t,p) is an interpolating operator for the pseudoscalar meson P in the time-

momentum representation, and the operators Jµ and HW are the electromagnetic

current and weak Hamiltonian in position space representation. The quark

contractions that are required for the computation of this weak Hamiltonian can

be separated into 4 different topologies shown in fig. 3.1, corresponding to the

contractions of the 3-point function 〈φπHWφ
†
K〉. The connected and eye diagrams

stem from the Q1 operator, while the wing and saucer diagrams stem from Q2. For

brevity, when referring to both the Eye and Saucer diagrams together, we shall

use the term “eye-type” diagrams, and “non-eye” diagrams for the Connected and

Wing diagrams. The full set of quark contractions for the 4-point function can be

obtained from those of fig. 3.1 by the insertions of a vector current vertex on each

of the quark legs, which are given in appendix A.
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Assuming ground state dominance and the time ordering tK � 0, tH � tπ, this

correlation function has the spectral representation

Γ(4)
µ (tK , tH , tπ;k,p) =

ZKπ(tK , tπ;k,p)

∫ ∞
0

dω

{
ρL(ω) e−(EK(k)−ω)tH for tH < 0

σL(ω) e−(ω−Eπ(p))tH for 0 < tH
, (3.16)

where we have collected the creation, annihilation and propagation of the external

states into the factor

ZKπ(tK , tπ;k,p) =
〈0|φπ(0,p) |π+(p)〉 〈K+(k)|φ†K(0,k) |0〉

4EK(k)Eπ(p)
eEK(k)tKe−Eπ(p)tπ ,

(3.17)

and the two spectral functions ρL and σL are the finite volume equivalent of the

spectral functions in eq. (3.13). Specifically, they run over the finite volume

spectrum which is fully discrete, and the multi-particle energy levels that appear

are heavily influenced by the size of the lattice.

We define the amputated 4-point function by removing this external state factor

Γ̂(4)
µ (tH ;k,p) =

Γ
(4)
µ (tK , tH , tπ;k,p)

ZKπ(tK , tπ;k,p)
. (3.18)

Then integrating the weak Hamiltonian in the window tH ∈ (−Ta, Tb) around the

vector current (with Ta, Tb > 0), we get the integrated 4-point function

Iµ(Ta, Tb;k,p) =

∫ Tb

−Ta
dtH Γ̂(4)(tH ;k,p) (3.19)

=

∫ ∞
0

dω

(
ρL(ω)

1− e−(ω−Ek(k))Ta

ω − EK(k)
+ σL(ω)

1− e−(ω−Eπ(p))Tb

ω − Eπ(p)

)
.

(3.20)

It can be seen that the contribution to the integrated 4-point function that is

independent of Ta and Tb is exactly (up to a trivial factor or −i) the amplitude

of interest eq. (3.12), with the infinite volume spectral functions replaced with their

finite volume counterparts.

For the regions of the ω integral where ω > EK(k) and Eπ(p), the additional

contributions decay exponentially as Ta, Tb → ∞. However, for regions of the

spectrum where ω < EK(k) the Ta →∞ limit blows up, and similarly for Tb when

ω < Eπ(p). At the physical point, there are no such states in which ω < Eπ(p),
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since the ground state of the S = 1 spectrum is heavier than the pion, and therefore

the Tb →∞ limit can be taken without issue. However, for this same reason, there

do exist states in the S = 0 spectrum for which ω < EK(k). These exponentially

growing intermediate states are the single pion state, the finite-volume ππ and πππ-

like states below the threshold EK(k). These states must be accounted for prior to

taking Ta →∞.

3.1.2 Growing exponential removal

As is proposed in [67], there are two methods for removing these exponentially

growing intermediate state terms. The first is most general and can be applied to

all problematic contributions, as well as for contributions above the threshold that

only decay slowly as Ta, Tb → ∞. The second method can only remove a single

growing exponential, however it is generally simpler to implement and can be used

in conjunction with method 1 for the rest of the states.

Explicit Construction

The first method, referred to as “Method 1” in [67–70], is where the exponentially

growing contributions are constructed explicitly from measured energies and matrix

elements, and removed from the integrated 4-point function. If we consider the

contribution from an intermediate state |α〉, the exponential term is

∆Iαµ (Ta;k,p) =
〈π(p)| Jµ |α(k)〉 〈α(k)|HW |K(k)〉

2Eα(k)(Eα(k)− EK(k))
e−(Eα(k)−EK(k))Ta , (3.21)

and therefore a full reconstruction requires measurements of the matrix elements of

the electromagnetic current and the weak Hamiltonian, as well as the energies of

the initial, final and intermediate state. These can all be extracted from various 2-

and 3-point functions.

Scalar Shift

The scalar shift method, referred to as “Method 2” in [67–70], modifies the weak

Hamiltonian in such a way as to remove the contribution from a state of our choosing,

while also leaving the total amplitude unchanged. There exists two operators with

which we can shift the weak Hamiltonian in such a way, the scalar and pseudoscalar
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s→ d quark bilinears

H ′W = HW − cS s̄d− cP s̄γ5d . (3.22)

It is shown in [67] (and later in the context of the rare hyperon decay in chapter 5)

that as a result of the chiral ward identities, the amplitude of the rare kaon and

rare hyperon decays, as well as their finite-volume estimators, are unaffected by this

shift for arbitrary values of cS and cP . We wish to choose these coefficients such

that they cancel the matrix element of a problematic state, and therefore cancel the

growing exponential associated with it.

For this application, the convenient choice of problematic intermediate state is the

single pion state, and therefore we require

〈π(k)|H ′W |K(k)〉 = 0 . (3.23)

Since the weak Hamiltonian matrix element has only a single form factor that

conserves the parity of the state, the pseudoscalar matrix element will identically

vanish, and therefore the shifted matrix element can be cancelled with only the

scalar operator. This fixes the coefficient of the shift to be

cS =
〈π(k)|HW |K(k)〉
〈π(k)| s̄d |K(k)〉

, (3.24)

which can be measured simply from a ratio of 3-point functions. Once cS has been

obtained, the shifted 4-point function can be constructed from the original 4-point

function with HW , and a second 4-point function with HW replaced with this scalar

bilinear. The integrated 4-point function obtained from this shifted 4-point function

then has the same form as eq. (3.19), however, the single pion intermediate state

does not contribute to the ρ spectrum, and therefore there is no growing exponential

associated with this state.

3.1.3 Renormalisation

The renormalisation of the quantities relevant to the rare kaon decay come in two

forms. The first is the renormalisation of the individual operators Jµ and HW . The

second is the renormalisation of divergences that can occur when the two operators

make contact (i.e. limx→0 Jµ(0)HW (x)). These will be taken in turn.

When using the lattice conserved vector current for the electromagnetic current Jµ,
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the associated ward identity ensures no renormalisation is required for this operator

in isolation. This would not be true if the local vector current were used for example.

The operators entering the weak Hamiltonian are known and the corresponding

Wilson coefficients have been computed at next-to-leading order in the MS

renormalisation scheme in ref. [10]. Due to the perturbative nature of the MS

scheme, it is not accessible via purely non-perturbative renormalisation. Instead,

theQq
i operators can be renormalised non-perturbatively on the lattice with a scheme

such as RI-MOM [71] or RI-SMOM [72]. The operators can then be matched between

the two schemes using perturbation theory, so long as this is done at a high enough

scale. If a chiral formulation of fermions is used, the left-handed operators Qi are

prevented from mixing with their right-handed counterparts. Finally, taking the

linear combination

Q̃± = Q1 ±Q2 , (3.25)

it can be seen that these transform in the (84, 1) and (20, 1) representation of the

SU(4) × SU(4) group respectively, and therefore they cannot mix with each other

(or other operators from any other representations). A detailed description of this is

given in ref. [73]. The mixing structure in the original operator basis is then given

by

HW =
∑
i

CMS
i QMS

i =
∑
i

C lat
i Qlat

i (3.26)

=
∑
i,j,k

CMS
i

(
1 + ∆rRI→MS

)
ij
ZRI
jkQ

lat
k , (3.27)

where the operators Qlat
i are the bare operators computed on the lattice. The lack of

mixing of Q̃± results in ∆rRI→MS
11 = ∆rRI→MS

22 and ∆rRI→MS
12 = ∆rRI→MS

21 , as well as

ZRI
11 = ZRI

22 and ZRI
12 = ZRI

21 . The coefficients (at a renormalisation scale of 2.15 GeV)

required to perform this calculation on the relevant C0, C1 and C2 ensembles are

given in table 3.4.

The final type of divergence that must be accounted for comes from the contact of

the two operators, which is discussed in detail in [63]. By power counting it can be

seen that matrix elements of the operator

a4
∑
x

Qi(x)Jµ(0) (3.28)

can diverge at most quadratically (∼ 1/a2). However, since the electromagnetic field
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Coeff Value Ref.

CMS
1 −0.2967

[10]
CMS

2 1.1385

∆rRI→MS
11=22 −6.562× 10−2

[74]
∆rRI→MS

12=21 7.521× 10−3

ZRI
11=22 0.5916

[75]
ZRI

12=21 −0.05901
C lat

1 −0.2216
-

C lat
2 0.6439

Table 3.4 Renormalisation factors and Wilson coefficients required for the four-
quark operators Q1 and Q2 that contribute to the effective weak
Hamiltonian eq. (3.2).

couples to the lattice conserved vector current, the U(1) gauge invariance implies the

presence of a transversality factor qµqν−q2ηµν which reduces the degree of divergence

by two down to a logarithmic one, which would not be the case if the local vector

current were to be used. The remaining logarithmic divergence is independent of the

quark mass, and cancels when performing the GIM subtraction Qu
i −Qc

i . Therefore,

in this case there are no divergences coming from the contact of the two operators.

3.1.4 Finite Volume Corrections

In a finite volume, on-shell intermediate multi-particle states introduce power-like

volume corrections that should be corrected for when obtaining the amplitude in

question. As has been discussed earlier, the multi-particle states that can go on

shell in this case are the ππ and πππ states.

The finite volume corrections to this process from the ππ state can in principle be

calculated using the Lellouch-Lüscher finite volume formalism for matrix element

calculations [76], and is described in the context of the KL − KS mass splitting

calculation [77], which has a very similar structure to the rare kaon decay calculation.

At the time of ref. [67], it was not yet known how to utilise the 3-particle formalism

[78] to compute the πππ finite volume effects to this decay. However, in the

intervening years, theoretical progress has been made towards 3-particle transitions

amplitudes [79] and the application to K0 − K̄0 mixing [80].
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3.2 Physical Point Calculation

The first proof-of-concept exploratory calculation of the rare kaon decay using the

theoretical framework discussed in the previous section is given in ref. [70]. This was

performed on the C2 ensemble in table 2.2, which importantly has an unphysically

heavy pion of mass mπ = 430 MeV, and it was demonstrated that the rare kaon

decay amplitude can be extracted from lattice data in practice. The calculation

benefited from the heavy pion in several ways: the heavier light quark reduces the

cost of inverting the Dirac operator compared to a physical point simulation; with a

close to physical kaon mass, the ππ and πππ states lie above the EK threshold and

therefore do not contribute growing exponentials or power-like finite-volume effects;

and finally, a smaller mass difference between the light and charm quarks provides

better cancellation of the noise from the eye-type diagrams.

The natural continuation of this proof-of-concept study is to perform this calculation

directly at the physical point in order to allow for a direct comparison with

experimental measurements and phenomenological predictions. Work from this PhD

has contributed to this physical point result presented below, and published in ref.

[1]. This includes the implementation and tuning of the MADWF solver (see section

2.2.2) which reduces the inversion times for this calculation; assisting with running

measurements for these Möbius solves; contributing to discussions during the data

analysis; and contributing to the writing of the manuscript.

3.2.1 Computational Setup

This calculation was performed on the C0 ensemble listed in table 2.2, with near

physical pion and kaon masses of mπ = 139.2(2) MeV and mK = 499.2(2) MeV

respectively. 87 statistically independent gauge configurations were used.

This ensemble utilises the scaled Shamir limit of the Möbius action, with α = 2

and Ls = 24 for the sea quarks. Due to the large cost of inverting the light quark

Dirac operator, the valence light quark is simulated with the zMöbius action with

Ls = 10, and tuned to approximate the sea action. An AMA-style bias correction

is then performed to correct for this mismatched action setup, as is described in

section 2.4.3. In order to cancel the logarithmic UV divergence from the eye-type

diagrams, the charm quark is also computed with the zMöbius action. Finally,

the light quark inversions are further accelerated by the use of low-mode deflation

described in section 2.4.2, with 2000 exact low modes used.

69



Since the domain wall formalism breaks down for physical mass charm quarks at

this lattice spacing [81], the rare kaon decay amplitude is computed at 3 values of

unphysically light charm quarks and extrapolated to the physical charm mass, set

by an extrapolation of the ηc meson mass to its physical value. The simulated bare

charm masses are amc = 0.25, 0.30, 0.35 and the physical charm mass is found to be

amphys
c = 0.51.

The chosen kinematics are a stationary kaon, k = 0, and a pion with 1 unit of

lattice momentum corresponding to |p| = 2π
48a

= 226 MeV. With this kinematic

setup, and the pseudoscalar masses on this ensemble, the momentum transfer is

q2 = 0.0029 GeV2 or z = q2

m2
K

= 0.012. This is sufficiently close to the z = 0 limit

that this measurement of the form factor can be taken as a good approximation of

the a coefficient of the form factor in eq. (3.11)

Since this process is only governed by a single hadronic form factor, only one Lorentz

component of the amplitude is required, which we choose as the temporal component

µ = 0.

The source and sink operator times have been chosen to be tK = 0 and tπ = 32, and

the electromagnetic current is inserted halfway between them at tJ = 16. This is

to allow enough separation for ground state dominance of the external sates, while

also remaining in the t < T/2 region to suppress around-the-world effects on our

lattice with temporal extent T = 96.

3.2.2 Loop Propagators

The eye-type diagrams contain a quark loop, requiring a propagator from a position

x to itself for all values of x on the lattice, i.e. S(x|x)∀x. However, due to the fact

that the Dirac operator gets inverted onto a fixed source, if performed exactly this

would require a new inversion for each lattice site which is completely infeasible on

modern lattices with O(107) sites or more.

An alternative is to evaluate this loop propagator stochastically [82] by inverting

the Dirac operator on a set of N noise “hits” ηi(x) that come from a distribution
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that satisfy

lim
N→∞

N∑
i=1

ηi(x) = 0 (3.29)

lim
N→∞

1

N

N∑
i=1

ηi(x)η†i (y) = δxy . (3.30)

It can then be seen that a stochastic estimation of the loop propagator is obtained

as

S(x|x) ' 1

N

N∑
i=1

S(x|ηi)η†i (x) , (3.31)

where we have used the shorthand notation S(x|η) =
∑

y S(x|y) η(y).

One very common choice of noise source is the full volume Z2 noise source [83],

where the value at each lattice site is chosen independently from the set Z2 × Z2 =

{ 1√
2
(1 + i), 1√

2
(1− i), 1√

2
(−1− i), 1√

2
(−1 + i)} with a uniform distribution.

Sparse Sources

In order to improve upon the full volume noise source, they can be “sparsened” in

a way similar to that used in [84] where a type of spatial dilution is applied. Here

the noise source is taken to only have support on sites that are separated by some

integer ns in all directions

η
(1)
i (x) =

{
ηi(x) for xµ = 0 (mod ns)

0 else
. (3.32)

To cover the full lattice with D dimensions, nDs sparse sources are required, which

are obtained by translating η
(1)
i into the missing positions. The loop propagator is

then estimated as

S(x|x) ' 1

N

N∑
i=1

nDs∑
a=1

S
(
x|η(a)

i

)(
η

(a)
i (x)

)†
. (3.33)

The cost benefit analysis of this sparsening in the context of the rare kaon decay

with ns = 2, and therefore 24 = 16 sources per noise hit, is given in the appendix

of ref. [1]. It is observed that when normalised to equal cost, this sparsening

gives approximately 2-3 times smaller statistical error than using full volume noise
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Figure 3.2 4-point correlation function of the Q1 (left) and Q2 (right) operators
broken down by diagram topology, and demonstrating the GIM
subtraction of the eye-type diagrams for the lightest charm mass amc =
0.25. Figure reproduced from [1].

sources, and therefore this method of sparsening is chosen for the measurement of

the eye-type diagrams in this analysis.

In order to increase the loop propagator statistics for a given cost, we again use the

AMA procedure with 10 inexact hits inverted with a solver residual of 10−4, the

first of these is also solved with a tighter solver residual of 10−8 for light quarks, and

10−10, 10−12, 10−14 for the three charm quark masses simulated, which are used for

the AMA bias correction.

3.2.3 Results

Figure 3.2 shows a breakdown of the contributions to the 4-point functions, separated

into the Q1 and Q2 parts of the weak Hamiltonian operator (without Wilson

coefficients applied). For the eye-type diagrams, the contributions are further

broken down into the light and charm loop contributions, as well as the GIM

subtracted contribution. It is clear that the eye-type diagrams dominate the

statistical uncertainties, and that there is a large cancellation between the light and

charm contributions in the GIM subtraction. In addition, there is a clear hierarchy

in the size of the Q1 and Q2 contributions which was also observed in the previous

unphysical calculation [70].

The removal of the single pion growing intermediate state is done via the scalar

shift method for the final analysis, while the method of explicit construction and

subtraction is also performed as a cross-check of the validity of the scalar shift.
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Figure 3.3 Integrated 4-point correlation function with and without the scalar shift
applied. Shown is the Tb = 8 slice as a function of Ta. The blue band
indicates the fit to the scalar shifted correlator. Figure reproduced from
[1].

Both methods give consistent results to within statistical errors. Figure 3.3 shows

the integrated 4-point correlator from eq. (3.19) for a fixed upper integration limit

Tb = 8, before and after the application of the scalar shift method. It can clearly be

seen that a significant part of the growing exponential is removed.

In addition to the single pion intermediate state, the finite volume ππ and πππ

states are also below the EK(k) threshold and therefore can in principle contribute

additional growing exponentials that should be removed. As is discussed in ref. [67],

the O(4) symmetry of Euclidean space-time requires that the ππ contributions to the

amplitude vanish, and therefore no exponential growing term can stem from them.

However, at finite lattice spacing this O(4) symmetry is broken down to a hypercubic

symmetry, allowing for a non-zero contribution from these states. These lattice

artefacts must vanish in the continuum, however, due to the exponential growth

multiplying their contribution, these effects can in principle become arbitrarily large

in the integrated 4-point function. While these ππ states have yet to be included

in this physical point analysis, studies from the similar calculation of the KL −KS

mass difference have been performed at the same lattice spacing [75, 85], and it is

found that the lattice artefacts from these states have such a small contribution that

these effects are estimated to be sub-percent contributions for all currently accessible

values of Ta, and therefore these effects are neglected in this analysis.

The πππ states have been estimated in ref. [67] to contribute with a factor O(1/500)

suppression relative to the ππ states due to having a smaller phase space. Since the
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Figure 3.4 Measured correlation matrix of the data-points used in the fit to the
2-, 3- and 4-point correlation functions. The pion and kaon 2-point
functions are labelled with a subscript indicating 0 or 1 units of lattice
momentum, and superscripts P or W indicating point or wall sinks
(both with a wall source). The label 3ptπ,K indicates the vector current
3-point function of the pion and kaon respectively. Figure from [1].

ππ states are already very likely subdominant in this analysis, the πππ states can

be safely neglected as well.

Due to the suppression of these multi-particle states, the corresponding finite volume

corrections are also suppressed in this calculation. Once sufficient precision is

obtained for the rare kaon decay amplitude, these corrections should be taken into

account. However, such a precision has not yet been achieved, so no finite volume

correction is applied in this calculation.

With the growing intermediate states accounted for, a simultaneous fit is made to

all relevant 2- and 3-point functions as well as the 2-dimensional integrated 4-point

function. The correlation matrix of data points included in the fit is given in figure

3.4. Due to the high degree of correlation of the data points of the integrated 4-point

function, and the large total number of data points within the combined fit, it is

only possible to perform a semi-correlated fit in which the 2- and 3-point sectors are

fully correlated, while the 4-point sector is uncorrelated.

Table 3.5 shows the results of the measurement of the temporal component of

the amplitude (3.12) for the three values of the charm mass, as well as the

value linearly extrapolated to the physical charm mass. The final results of the

amplitude is found to be A0 = 0.00035(180) which corresponds to a form factor
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amc 0.25 0.30 0.35 0.51phys

A0 0.00022(172) 0.00024(173) 0.00027(174) 0.00035(180)

Table 3.5 Measured amplitude A0 for the 3 simulated bare charm quark masses,
and the linearly extrapolated value to physical charm mass.

of V (0.013(2)) = −0.87(4.44). If we consider the decomposition of the form factor

from eq. (3.11), taking b to be O(1), and estimate Wππ(0.013) = −0.00076(73)

following from the results of ref. [65], this allows us to neglect these contributions

within our level uncertainty, and therefore our measurement of the parameter a is

a = −0.87(4.44).

Due to the very large uncertainty on this result, the lattice cannot currently

discriminate between the experimental and phenomenological results. While the

error on this result is approximately 8 times larger than the experimental values in

table 3.3, it is only 3 times that of the current SM prediction, and therefore may be

able to provide a competitive theoretical bound in the coming years with sufficient

methodological improvements.

The large statistical uncertainty of this result is heavily dominated the eye-type

diagrams. From fig. 3.2, we can see that while some of the individual flavor

contributions are quite well estimated using the sparse noise approach, the GIM

subtraction contains a large cancellation which leaves the uncertainty of the

subtracted contribution heavily dependent on the correlation between the light and

charm loops. Due to the two quarks having the same discretisation, the short

distance behaviour of these loops is likely very similar, however, the long distance

behaviour will be dominated by the quark mass which will decorrelate the loops

as the two quarks approach their respective physical mass. This can be seen in

figure 3.5 which shows the cross-correlation matrix between the light and charm

loop eye diagrams for the previous unphysical calculation [70], and this physical

point calculation. They key observation of this plot is that the diagonal for the

unphysical calculation has a correlation very close to 1, but only ∼ 0.25−0.5 in this

calculation. Therefore calculations with heavier than physical light quarks and a

lighter than physical charm quark have significantly higher correlation between the

two diagrams, allowing for smaller uncertainties after the GIM subtraction.

There are several approaches to be explored that may allow for improvements in the

calculation of the rare kaon decay amplitude on the lattice. The first is a method

that integrates over the current time tJ at the time of measurement, allowing for

significantly fewer inversions and reducing the cost for a given statistical precision.
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Figure 3.5 Measured cross-correlation matrix between the eye diagram with light
and charm quark loops, on the unphysical C2 ensemble (left), and the
physical point C0 ensemble (right). Figure reproduced from [1].

This is investigated in section 4.

Other directions worth investigation are in improvements in the estimation of loop

propagators, for example with the use of the frequency-splitting technique presented

in [86] which has promisingly seen the cost of disconnected loop traces reduce by up

to 2 orders of magnitude. It has recently been shown that this technique also applies

for domain wall fermions in ref. [87], however it still has to be assessed whether this

methodology can be applied to the eye-type diagrams in the rare kaon decay.

Finally, one could perform this calculation with the weak Hamiltonian renormalised

at a different renormalisation scale, in such a way that there is a trade off between

our existing statistical uncertainty and a systematic uncertainty from perturbation

theory. Specifically, if one chooses a scale low enough for the charm quark to no

longer be active, the rare kaon decay can be evaluated in a 3 flavour theory, that

would remove the GIM subtraction that is the source of our uncertainty. This would

also introduce additional issues that must be resolved, such as the introduction of

the logarithmic divergence as the electromagnetic current and weak Hamiltonian

approach one another. Also, with the charm quark integrated out and no longer

dynamical, an additional systematic error is introduced, however, this is likely

significantly smaller than the current statistical uncertainty and could therefore

potentially allow for a great improvement on the precision of our result, although

at the cost of not being systematically improvable.
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CHAPTER

FOUR

THE SUMMED METHOD IN LATTICE SIMULATIONS

One method that may be able to reduce the cost of the rare kaon decay proposed in

chapter 3 is the use of correlation functions in which the vector current is integrated

over time (or summed in discrete time) directly during the measurement step. The

use of such correlators in LQCD calculations is known as the “summed method” or

“summation method” originally proposed in [88]. The summed method has been

used in many calculations of matrix elements using 3-point functions with degenerate

external states, and is very closely linked with the Feynman-Hellmann theorem

which is discussed in detail in the context of lattice calculations in [89–94].

In this chapter, we investigate the use of this method for applications with non-

degenerate external states, and 4-point functions in the specific context of the rare

kaon decay. For simplicity, we make several assumptions that can be lifted at the

cost of additional tedious bookkeeping, however, none of the conclusions made will

be affected. These simplifications are the use of mesonic external states, as well as

the use of an infinite continuous time variable.

4.1 3-point functions

Suppose we wish to compute the matrix element of an operator J between two

arbitrary states |i〉 and |f〉. This matrix element is contained in the ground state
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contribution to the 3-point correlation function

Γ3(t, tf ) =〈φf (tf ) J(t)φ†i (0)〉 (4.1)

where φi and φf are interpolators for which the |i〉 and |f〉 states are the ground

states. This 3-point function has the spectral representation, for a fixed source-sink

separation tf > 0, given by

Γ3(t, tf ) =


∑

nm[φf ]0m[J ]mn[φ†i ]n0 e
−Emtf e−(En−Em)t for 0 < t < tf∑

nl[J ]0l[φf ]ln[φ†i ]n0 e−(En−El)tf e−Elt for 0 < tf < t∑
km[φf ]0m[φ†i ]mk[J ]k0 e−Emtf eEkt for t < 0 < tf

, (4.2)

where we have defined the compact notation [A]mn = 〈m|A(0) |n〉, En is the energy

of a state |n〉, and the sums run over the spectrum of states with appropriate

quantum numbers. Specifically in this case, states |n〉 have the quantum numbers of

φi, |m〉 those of φf , |l〉 those of J or equivalently φ†fφi, and |k〉 those of J† or φfφ
†
i .

The most general method for extracting the matrix element [J ]fi utilises the time

ordering 0 < t < tf in the limit t � 1
∆Ei

and tf − t � 1
∆Ef

, where the ∆E are the

energy gaps between the ground and first excited states. In this regime, the 3-point

function is approximately given by

Γ3(t, tf ) '[φf ]0f [J ]fi[φ
†
i ]i0 e

−Ef (tf−t)e−Eit , (4.3)

which can be fit to give the ground-to-ground state matrix element, up to the overlap

factors [φi]0i and [φf ]0f . In practice however, this large time separation can be very

difficult to achieve when performing calculations with a signal-to-noise problem, such

as with baryonic correlation functions. It is therefore often necessary to include the

effects of excited state contamination where a number of states above the ground

state are also included in the fit

Γ3(t, tf ) '
N∑
n

M∑
m

[φf ]0m[J ]mn[φ†i ]n0 e
−Emtf e−(En−Em)t . (4.4)

Some simplifying assumptions may be made, for example certain excited-to-excited

matrix elements may be set to zero, or certain energies may be constrained by 2-

point correlation functions. It is clear, however, that the number of fit parameters

grows quickly with the number of states included, causing fit stability to decrease

and/or requiring additional data at multiple values of tf to constrain the parameters.

A rather extreme example of this is given in [93] where a 5-state fit is performed in

the extraction of the nucleon axial charge. It can be seen that using this method,
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the excited states become exponentially suppressed in the temporal distance from

both of the interpolators e∆Ef (tf−t) and e−∆Eit.

In the special case where the initial and final state spectra are degenerate, the

summed method can be applied where the operator insertion is summed (or

integrated in continuous time). This summation can be applied over just the

source-sink window 0 < t < tf , or over the full temporal extent. Generally, the

former is most desirable as it contains only contributions from the time ordering of

interest, however, it can usually only be applied during the post-processing stage

of a calculation. In contrast, the latter includes contributions from the other two

time orderings, but can often be applied directly in the measurement step which

may allow for a reduction in cost, for example via sequential inversions of the Dirac

operator. For the purposes of this section, we shall consider the integral over all

time.

Ref. [92] gives a detailed derivation of the summation of this 3-point function

including the handling of a discrete and finite time, and special consideration for

the contact terms where the operators coincide. In the continuum, it can be seen

that the integrated 3-point function has the spectral representation

I3(tf ) =

∫ ∞
−∞

dtΓ3(t, tf ) (4.5)

=
∑
nm

[φf ]0m[J ]mn[φ†i ]n0
e−Emtf − e−Entf

En − Em
(4.6)

+
∑
nl

[J ]0l[φf ]ln[φ†i ]n0
e−Entf

El
+
∑
km

[φf ]0m[φ†i ]mk[J ]k0
e−Emtf

Ek
,

where the last two terms come from the other time orderings t < 0 and t > tf which

shall be referred to as the “Out-Of-Order” (O3) terms. In the special case where

the two spectra are degenerate, the equal energy “diagonal” terms (n = m) can be

separated out to give

I3(tf ) =
∑
n

[φf ]0n[J ]nn[φ†i ]n0 tf e
−Entf (4.7)

+
∑
n6=m

[φf ]0m[J ]mn[φ†i ]n0
e−Emtf − e−Entf

En − Em

+
∑
nl

(
[J ]0l[φf ]ln[φ†i ]n0 + [φf ]0n[φ†i ]nl[J ]l0

) e−Entf

El
.

We can see that these diagonal terms have a time dependence that is exponential

times linear, while the off-diagonal terms come as the difference of two decaying
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Figure 4.1 Plot of χ(ω, t) in eq. (4.8) for multiple values of ω. Dashed lines indicate
the asymptotic value as t→∞.

exponentials of different energy. Note that the O3 terms also have a simple

exponential time dependence decaying with energies of states that overlap with

the interpolators, and not states that overlap with J or the pairs of interpolators.

One key advantage of this summed method is that, from eq. (4.7), it can be seen that

the excited states are suppressed by e−∆Etf and therefore ground state dominance is

achieved when tf � 1
∆E

. This is in contrast to the non-summed method in eq. (4.2)

where both tf − t and t � 1
∆E

. Taking the point at t = tf/2, this means that the

non-summed method requires a source-sink separation about twice as large as with

the summed method to achieve the same level of excited state suppression.

Examining the time dependence of the off-diagonal terms, we define the envelope

function

χ(ω, t) =
1− e−ωt

ω
, (4.8)

and therefore (assuming En > Em) this time dependence is given by

e−Emtf − e−Entf
En − Em

= χ(En − Em, tf ) e−Emtf . (4.9)

If instead Em > En, this gives χ(Em − En, tf ) e−Entf , so the off-diagonal terms

can always be expressed as the envelope with a positive energy argument and an

exponential factor that goes with the smaller of the two energies. Figure 4.1 shows

time the dependence of the envelope function χ.

It can be seen from the functional form that χ(ω → 0, t) → t and therefore it
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recovers the linear time dependence seen in the diagonal terms. In addition, the

small time limit gives χ(ω, t� 1/ω) ' t, and the large time limit at strictly positive

ω is χ(ω, t→∞)→ 1
ω

. Therefore the envelope has linear early time behaviour and

constant large time behaviour, where the timescale of the transition between the

two is t ∼ 1
ω

.

In the case of degenerate spectra in eq. (4.7) it can be seen that for large times

t� 1
∆E

, the exponentials suppress the excited states leaving

I3(tf ) '
(

[φf ]01[J ]11[φ†i ]10 tf (4.10)

+
∑
m>1

(
[φf ]0m[J ]m1[φ†i ]10 + [φf ]01[J ]1m[φ†i ]m0

)
χ(Em − E1, tf )

+
∑
l

[J ]0l[φf ]l1[φ†i ]10 + [φf ]01[φ†i ]1l[J ]l0
El

)
e−E1tf .

Up to the overall external exponential that separates out the ground state, there

are 3 types of time dependence: the linear component that has the ground-to-

ground state matrix element as a prefactor; the χ terms that behave linearly at

small times and constant at large times; and the constant O3 terms. Therefore at

large enough times, all unwanted components contribute to a constant term, and

the matrix element is simply the gradient of the linear term. This degenerate case

of the summed method has been successfully used in many calculations, for example

various stationary charges of the baryon octet, including (but by no means limited

to) the works [93, 95–97].

Non-Degenerate Case

We now investigate the behaviour of eq. (4.6) in the case of non-degenerate spectra.

Writing the integrated 3-point function in terms of the envelope function and

separating the sum over the two spectra into two energy ordered sums gives

I3(tf ) =
∑
m

 ∑
n

En≥Em

[φf ]0m[J ]mn[φ†i ]n0 χ(En − Em, tf ) +
∑
k

[φf ]0m[φ†i ]mk[J ]k0

Ek

 e−Emtf

+
∑
n

 ∑
m

Em>En

[φf ]0m[J ]mn[φ†i ]n0 χ(Em − En, tf ) +
∑
l

[J ]0l[φf ]ln[φ†i ]n0

El

 e−Entf .

(4.11)
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It can be seen that, inside the brackets, the O3 terms behave as a constant, while

the correct time ordering terms contain matrix elements between states modulated

by the envelope function. Terms with large energy separations plateau much earlier

in time, while those that are minimally separated plateau much later. However, as

t → ∞, all contributions eventually tend to a constant. Therefore, at asymptotic

times, the matrix element is no longer separable from the excited state and O3

contamination. This is an important observation because it shows that for any

arbitrarily small non-zero degeneracy breaking, the summed method must eventually

break down for sufficiently large times.

In practice, however, with a finite temporal extent, T , we can never examine

correlators at asymptotic time on the lattice. Therefore the the minimum scale

of energy splitting for which the non-linearity can be reasonably resolved is

Ei − Ef ∼ 1/T . For energy splitting Ei − Ef . 1/T , the states will be practically

degenerate. In the quasi-degenerate limit where the energy splitting is smaller than

the energy gap to the excited states but still large enough to resolve the non-

linearity, 1/T . Ei − Ef � ∆E, the matrix element can only be extracted at

these intermediate times before the linear behaviour of the states of interest ends,

but after the plateau of the excited states.

In the fully non-degenerate limit where this energy splitting hierarchy is inverted,

i.e. Ei − Ef & ∆E, then the ground-to-excited (or excited-to-ground) state matrix

element will be the latest contribution to plateau. In this scenario, it is practically

impossible to extract the ground state matrix element using the summed method as

given by eq. (4.5).

Ultimately, this behaviour stems from the fact that the unintegrated 3-point function

(4.6) has non-constant t dependence coming from the initial-final state energy

difference. This represents the fact that the operator must take away that amount

of energy to conserve energy. In Minkowski time, this conservation requires that

the operator come with an additional phase ei(Ei−Ef )t. In Euclidean time, however,

energy is not conserved, and therefore the equivalent factor e(Ei−Ef )t is not required

for the integrated correlator to be non-zero. If this factor is manually included with

the operator

Γ3(t, tf ) = 〈φf (tf ) J(t)e(Ei−Ef )tφ†i (0) 〉 , (4.12)

the problematic time dependence is removed, and the summed method can be

applied just as in the energy degenerate case without issue. Of course, with a

finite time extent, care must be taken to account for the periodicity of the lattice.
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This energy correction is actually performed implicitly in many calculations where

various ratios of 2- and 3-point functions are made to cancel the time dependence and

the resulting correlator is summed, as was originally used in [98] and has been used

in many subsequent calculations. Some examples include [99, 100]. The simplest

such construction is

R(tf ) =

tf∑
t=0

Γ3(t, tf )

Γ2
i (t)Γ

2
f (tf − t)

, (4.13)

although more complicated ratios are used in practice. These ratios are performed

in the post-processing stage of a calculation, however, in the event the energies

of the relevant states are already known, the additional exponential factor could in

principal be included in the directly integrated correlation functions. The calculation

of the real photon emission P → `ν̄γ presented in [101] requires the use of such an

exponential factor to select the appropriate photon energy.

There has been recent work on the extension of the Feynman-Hellmann theorem

to include quasi-degenerate external states in [94], however, it is still not known

if this method can be extended to fully non-degenerate states. Since the summed

method is closely linked to Feynman-Hellman theorem, further research is required

into whether this breakdown of the summed method should also affect the non-

degenerate Feynman-Hellmann theorem, or if it is protected from this behaviour

and could therefore be used to navigate such issues with the summed method.

4.2 4-point functions and the rare kaon decay

While the summed method is most commonly used for extraction of matrix elements

from 3-point functions, it is also possible to do the same with 4-point functions.

This has been used in the case of degenerate initial and final state spectra and two

insertions of the same operator in the calculation of the KL − KS mass difference

[75, 85], and using the Feynman-Hellmann theorem for the calculation of the

Compton amplitude in [102]. In the KL − KS mass difference calculation, both

of the intermediate operators get integrated within a window t1, t2 ∈ (ta, tb) where

ta and tb are taken to be sufficiently far away from the initial and final state operators

in order to project out the ground states.

The existing methodology of the rare kaon decay used in [1, 70], and chapter 3,

uses a similar windowed integration for only the weak Hamiltonian, with the vector
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Method Light Strange Charm

Fixed tJ Nt(6 +Nη) +Nη 3Nt Nη(1 +Nt)
Nη = 14, Nt = 12 254 36 182
Nη = 14, Nt = 32 654 96 462

Summed tJ 6Nt + 2Nη 3Nt 2Nη

Nη = 14, Nt = 12 114 36 42
Nη = 14, Nt = 32 234 96 42

Table 4.1 Number of light, strange and charm propagators to compute per
configuration for the rare kaon decay calculation using the traditional
fixed tJ method, and the summed tJ method. Numbers are shown for
several numbers of time translations Nt and for Nη = 14 noise hits.

current fixed at a specific time. The vector current is implemented via a sequential

inversion of the quark propagator on which it is inserted. Since the current time tJ is

fixed, multiple sets of sequential inversions must be performed if a time translation

average is to be applied. This increases the cost of the calculation linearly with the

number of translations, and the majority of these sequential inversions occur on the

noise loops. Therefore one could get a substantial reduction in cost with a technique

that does not require these new inversions for every translation.

This is the case if the summed method can be used on the vector current to integrate

over tJ directly at the time of inversion. It should be noted that this reduction in

number of inversions can only be obtained if the integration is performed over the

entire temporal extent of the lattice and is independent of the other times in the

problem (i.e. tK , tπ and tH). In that case a single sequential inversion of the noise

loop propagator can be reused for all time translations.

Table 4.1 shows a comparison of the number of propagator inversions required per

configuration for the rare kaon decay calculation, following the counting of [70], for a

single pion momentum and charm mass, Nη noise sources and Nt time translations.

It can be clearly seen that for simulations dominated by light and charm inversions,

the summed method can be significantly faster for a fixed Nη and Nt.

As in the the previous section we assume an infinite continuum in the temporal

direction for simplicity, however, similar results can be obtained for finite and

discrete time. Extending the definition of the 4-point correlation function from
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chapter 3 to allow for all 4 operators to have variable times,

Γ4(ti, tH , tJ , tf ) = 〈φf (tf )HW (tH)J(tJ)φ†i (ti)〉 (4.14)

=
∑
nm

Znm(ti, tf )

∫ ∞
0

dω

{
ρnm(ω) e−(En−ω)tHe−(ω−Em)tJ for ti < tH < tJ < tf

σnm(ω) e−(En−ω)tJe−(ω−Em)tH for ti < tJ < tH < tf

(4.15)

where we have left all momenta and the current index µ implicit. Since tJ will be

integrated over, we no longer assume the ground state dominance of the external

states at this point. This gives rise to the generalisation of the spectral densities

ρnm(ω) =
∑∫
α

δ(ω − Eα)

2Eα
〈m| Jµ |α〉 〈α|HW |n〉 (4.16)

σnm(ω) =
∑∫
β

δ(ω − Eβ)

2Eβ
〈m|HW |β〉 〈β| Jµ |n〉 , (4.17)

and overlap factor

Znm(ti, tf ) =
[φi]0m[φ†K ]n0

4EnEm
eEntie−Emtf , (4.18)

with general external states n and m. Denoting the energy differences as ∆nm =

En − Em and ∆nω = En − ω, the 4-point function integrated over the current time

is given by

I(ti, tH , tf ) =

∫ tf

ti

dtJ Γ4(ti, tH , tJ , tf ) = (4.19)

∑
nm

Znm(ti − tH , tf − tH)

∫ ∞
0

dω

[
ρnm(ω)

1− e∆ωm(tf−tH)

∆ωm

+ σnm(ω)
1− e−∆ωn(tH−ti)

∆ωn

]
,

(4.20)

where we have neglected the O3 terms. The external ground states can be isolated

simply by taking the separations tH− ti and tf − tH to be large, as in the case of the

unintegrated 3-point function from the previous section. Amputating the external

state propagation leaves just the spectral integral

Î(tH) =
I(ti, tH , tf )

Zif (ti − tH , tf − tH)
(4.21)

=

∫ ∞
0

dω

[
ρif (ω)

1− e−∆ωf (tf−tH)

∆ωf

+ σif (ω)
1− e−∆ωi(tH−ti)

∆ωi

]
. (4.22)

This has a very similar structure to the amputated integrated 4-point function in
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eq. (3.19), however, the temporally constant component does not give the amplitude

of interest. Instead the energy differences in the denominator differ from (3.12), and

instead the amplitude that would be extracted is

Bµ =

∫
d4x 〈π(p)|T{HW (0)Jµ(x)} |K(k)〉 (4.23)

=− i
∫ ∞

0

dω

(
ρ(ω)

ω − Eπ(p) + iε
+

σ(ω)

ω − EK(k) + iε

)
, (4.24)

which when applying translational invariance to change the integral to the other

operator can be written

Bµ =

∫
d4x e−i(k−p)·x 〈π(p)|T{HW (x)Jµ(0)} |K(k)〉 . (4.25)

Comparing this form to eq. (3.1), it can be seen that this amplitude differs by

an additional phase factor within the integral. In exactly the same way as in the

case of the 3-point function, the temporal part of this phase imposes that the weak

Hamiltonian carry away the energy difference Ei−Ef instead of the electromagnetic

current. This of course corresponds to a completely different (and unphysical)

process.

One method to correct for the effect of this additional phase in the lattice calculation

is to include an exponential factor within the integral

I(ti, tH , tf ) =

∫ tf

ti

dtJ e
(Ei−Ef )tJΓ4(ti, tH , tJ , tf ) (4.26)

' Zif (ti − tH , tf − tH)

∫ ∞
0

dω

[
ρif (ω)

1− e∆ωi(tf−tH)

∆ωi

+ σif (ω)
1− e−∆ωf (tH−ti)

∆ωf

]
.

(4.27)

After amputation, the correct amplitude can then be extracted as the tH independent

component in a method similar to that used in chapter 3. This however does not

satisfy our conditions for reducing the cost of the rare kaon decay calculation as it

would require a new shifted exponential factor for each time translation measured

on the lattice.

A second method of extracting the amplitude is to integrate the 4-point function

over both the vector current and the weak Hamiltonian. In the event we have access

to the full range of tH values (as is the case in chapter 3), this can be done in post-

processing, allowing for the integration to be performed only within the window

tH ∈ (ti+ τ, tf − τ) where τ is a buffer to allow for saturation of the external ground
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states. The doubly integrated 4-point function is then given by

I(2)(ti, tf , τ) =

∫ tf−τ

ti+τ

dtH

∫ tf

ti

dtJ Γ4(ti, tH , tJ , tf ) (4.28)

= Zif (ti, tf )e
−∆if (ti+τ)

∫ ∞
0

dω

[(
ρif (ω)

∆ωi

+
σif (ω)

∆ωf

)
χ(∆if , tf − ti − 2τ) (4.29)

+
ρif (ω)

∆ωi

(
−1− e−∆ωf (tf−ti−2τ)e−∆if (ti+τ)

∆ωf

+
1− e−∆ωf τ

∆ωf

e−∆if (tf−ti−2τ)

)
+
σif (ω)

∆ωf

(
+

1− e∆iω(tf−ti−2τ)e∆iωτ

∆iω

e−∆if (tf−ti−2τ) +
1− e−∆iωτ

∆iω

)]
.

Importantly, this has a term corresponding to the amplitude of interest, up to the

overlap factor and the time dependence χ(∆if , tf − ti− 2τ). It should be noted that

for non-degenerate initial and final states, the asymptotic time behaviour no longer

isolates the amplitude but instead it gets mixed with additional intermediate state

contributions, analogous to the behavour observed in the 3-point functions. In the

event the initial and final states are degenerate, however, this becomes

I(2)(ti, tf , τ) = Zif (ti, tf )

∫ ∞
0

dω

[(
ρif (ω)

∆ωi

+
σif (ω)

∆ωf

)
(tf − ti − 2τ) (4.30)

+
ρif (ω)

∆ωi

(
−1− e−∆ωf (tf−ti−2τ)

∆ωf

+
1− e−∆ωf τ

∆ωf

)
+
σif (ω)

∆ωf

(
+

1− e∆iω(tf−ti−2τ)e∆iωτ

∆iω

+
1− e−∆iωτ

∆iω

)]
,

the last two lines of which contain terms that at large times behave as constants so

long as there are no intermediate states with energies sufficiently close to the initial

or final states. If this the case, the finite volume estimator can be fit simply as

the gradient of the linear time behaviour, as in the case of the 3-point summation

method.

4.2.1 Numerical Results

In order to test this methodology, we reproduce the exploratory study of the rare

kaon decay presented in [70]. This utilises the C2 ensemble listed in table 2.2

with a heavy pion mass mπ ' 430 MeV. This ensemble has the advantage that

for a single unit of lattice momentum, the initial-final state energy difference is

amK−aEπ(p) = 0.0047(21) and therefore the non-linear time behaviour only occurs

on a timescale t/a ∼ 200 which is much larger than the T/a = 64 temporal extend

of this lattice.
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If both the vector current and weak Hamiltonian are to be summed over the lattice,

multiple source-sink separations tf are required to extract the amplitude. Even

though the times ti and tf are fixed at the time of the solves, when performing a

time translation average over every N th timeslice, we have access to the propagators

necessary to obtain every N th source-sink separation. For this study we use every

2nd time translation which on this lattice corresponds to Nt = 32 in table 4.1.

In addition, in order to remove the problematic single pion intermediate state, we

utilise the scalar shift method which, as in the original methodology, leaves the

amplitude unaffected, while removing the problematic intermediate state from the

additional exponentials. The non-eye and eye contributions to the shift coefficient

are found to be cNE
s = 5.62(3)× 10−4 and cEye

s = −3.14(7)× 10−4 respectively.

Figure 4.2 shows the fit to the non-eye and eye components to the doubly integrated

amputated 4-point correlation functions given by

Î(2)(tf , τ) =

tf−τ∑
tH=τ

T∑
tJ=0

Γ4(0, tH , tJ , tf )

ZKπ(0, tf )
. (4.31)

In order to suppress excited state contributions, the value τ = 5 is used. Due to

the sufficiently small energy splitting, we take the fit ansatz to be the simple linear

component of eq. (4.30) with the gradient giving the amplitude. The remaining

terms are constants up to contributions suppressed by the buffer size τ . The non-
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Figure 4.2 Fits to the rare Kaon 4-point function summed over all tJ and tH ∈
[5, tf −5] as a function of tf (with ti fixed to 0). Shown are the non-eye
(left) and eye-type (right) contributions.
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eye and eye contributions are found to be

ANE
t = −1.68(5)× 10−3 and AEye

t = −1.18(19)× 10−3 , (4.32)

which are in agreement within statistical errors to the results obtained in [70]. In

addition, we have obtained approximately a factor 3 reduction in the statistical error

on both the non-eye and eye contributions. Table 4.1 shows the number of light,

strange and charm quark propagators required in each calculation (fixed tJ with

Nt = 12 for [70], and summed tJ with Nt = 32 for this study). It can be seen that the

number of light quark inversions is approximately equal, while more strange quark

inversions are required. However, the saving is obtained in the number of charm

quark inversions which are reduced by more than a factor 4 for a single charm mass.

This saving then grows in proportion with the number of charm masses simulated for

the extrapolation to physical charm quarks, and therefore could provide a massive

cost saving with reduced error compared to the original method.

This study has shown that the summed method can be applied to applications

involving 4-point functions such as the rare kaon and rare hyperon decays, and

provide a signal-per-cost improvement. However, the methodology only allows

for states that are sufficiently close to having degenerate initial and final states.

Unfortunately, this limits the momentum transfer to only a single value that is in

general away from the q2 = 0 point of most interest to these calculations. Since this

is a non-general methodology, in following chapters investigating the rare hyperon

decay, we do not utilise the summed method in this way, but rather extend the

existing methodology of [67].
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CHAPTER

FIVE

PROSPECTS FOR THE RARE HYPERON DECAY

Σ+ → p`+`−

This chapter is a reproduction of the open access published work [2], of which I am

a co-author. I have made significant contributions to the content and writing of this

work, except for section 5.3 to which I contributed by checking work performed by

other co-authors.

5.0.1 Introduction

The transition of an s- to a d-quark (s→ d) requires a FCNC, which is only allowed

through quantum corrections within the SM of particle physics. Consequently,

processes involving such transitions are rare in the SM and could be enhanced

by potential new physics that includes a flavour changing neutral current in its

Lagrangian. An example for such a process is the rare semi-leptonic hyperon decay

Σ+ → p`+`−, for which the muonic mode has been recently measured by the LHCb

experiment [103] with a branching ratio of

B(Σ+ → pµ+µ−) = (2.2+1.8
−1.3)× 10−8 . (5.1)

Evidence for this decay had previously been found by the HyperCP collaboration

[104] giving

B(Σ+ → pµ+µ−) = (8.6
+6.6
−5.4 ± 5.5)× 10−8 , (5.2)
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where the first uncertainties are statistical, and the second is systematic. This

determination follows from three events, all at nearly the same invariant mass of the

µ+µ− pair. However, such a resonant structure in the µ+µ− invariant mass could

not be confirmed by the more recent LHCb measurement [103].

The current state-of-the-art SM theory predictions for this process [105–107] use

a combination of dispersion relations, experimental input, various formulations of

Baryon ChPT and model estimates (e.g. vector meson dominance) and arrive at a

range of results [107]

1.6× 10−8 ≤ B
(
Σ+ → pµ+µ−

)
≤ 8.9× 10−8 . (5.3)

More details on the phenomenological background of this decay can be found in

section 5.1.

The rare hyperon decay Σ+ → p`+`− can be viewed as the baryonic analogue of

the rare kaon decay K → π`+`−, which has been previously calculated from first

principles using lattice simulations by the RBC-UKQCD collaboration, including

recent results at physical quark masses [1, 67, 70]. Taking inspiration from this

progress, in this paper we explore prospects for calculating the required form factors

for the Σ+ → p`+`− decay using LQCD. While other hyperon decays with much

higher yields, such as Σ− → n`−ν`, can be used to make measurements of the

CKM matrix element Vus in order to test for new physics that would break the

CKM unitarity relations, this decay can be sensitive to new physics due to its rarity

within the SM.

As already discussed in refs. [1, 67, 70, 77, 108], a key challenge in extracting decays

such as Σ+ → p`+`− and K → π`+`− from LQCD is that the physical observables

(most directly defined in terms of infinite-volume Minkowski-signature correlation

functions) contain on-shell intermediate states that can propagate between the

weak Hamiltonian, effecting the s → d transition, and the electromagnetic current

emitting the di-lepton pair. For the case of the rare hyperon decay in particular,

intermediate Nπ states contribute, where N represents the nucleon doublet and π

the pion triplet. As we discuss in more detail in the following sections, in practice

the states are projected to definite isospin as this is a good quantum number of

the numerical calculation, provided the light quarks are degenerate and dynamical

electromagnetism is not included, as we assume throughout. Fortunately, three-(or-

more)-particle intermediate states are kinematically guaranteed to be off-shell and

do not require special treatment.
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Complications arise because numerical LQCD calculations only allow one to directly

determine Euclidean correlation functions in a finite spacetime volume. Specifically,

the finite-volume Euclidean correlator that most closely matches the rare hyperon

decay is a four-point function, defined with operators to create the incoming Σ+

and the outgoing p as well as the weak Hamiltonian and electromagnetic current.

Careful examination of this correlator shows that the on-shellNπ intermediate states

manifest in a number of ways, all of which complicate the calculation.

First, after the baryonic operators are used to project out the Σ+ and p states, one

finds that the on-shell intermediate states lead to exponentials that grow with the

Euclidean-time separation between the weak Hamiltonian and the current [77]. In

practice, the number of such exponentials is finite, dictated by the discrete finite-

volume spectrum, and thus these states can be removed through various strategies

that we detail in the following sections.

However, a consequence of discarding these terms is that the resulting finite-volume

estimator has poles at the locations of all finite-volume energies with Nπ quantum

numbers. In addition, the resulting quantity is known to have power-like volume

effects away from the poles, and to miss the imaginary part appearing in the physical

amplitude due to the long-distance propagation of intermediate states. In short,

removing growing exponentials defines a finite-volume object that a priori has no

clear relation to the targeted amplitude. Fortunately, as we describe in section 5.3

following refs. [77, 108], the strategy to convert the finite-volume estimator to

the physical observable (and thereby cancel the poles and include the imaginary

contribution) is known and can be applied in this case.

The remainder of this paper is organized as follows: In section 5.1 we discuss

the currently available phenomenological strategy and predictions to compute the

Σ+ → p`+`− branching ratio. Section 5.2 then outlines our strategy on the lattice,

which aims to recover the Σ+ → p`+`− amplitude via carefully chosen, numerically

calculable Euclidean correlation functions. Here we discuss various strategies to

remove the exponentially growing terms that will appear in the direct lattice result.

In section 5.3 we discuss the removal of finite-volume singularities and make contact

with the physical observable. In addition to translating the general formalism of

refs. [77, 108] to our particular case, we also provide an explicit expression for an

expansion that arises when the volume is tuned so that the mass of the Σ+ coincides

with one of the finite-volume Nπ energies.
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5.1 Phenomenological background

In the following, we will briefly review the phenomenological determination [105–107]

of the branching ratio for Σ+ → p`+`− leading to the result quoted in eq. (5.3). Short

distance contributions to Σ+ → p`+`− originate from penguin and box diagrams

(cf. fig. 5.1) and are found to contribute only at the order of 10−12 [105] to the

branching ratio of the muonic mode Σ+ → pµ+µ−, which is much smaller than

the experimental measurements (eqs. (5.1) and (5.2)), indicating that this decay is

long-distance dominated.

s

d

u, c, t

W
γ,Z

µ+

µ−

s

d

Wu, c, t
γ, Z

µ+

µ−

µ+

µ−

s

d

u, c, t

W

W

1

Figure 5.1 Short-distance SM contributions to the s → d transition from penguin
and box diagrams.

The matrix element for the long-distance SM contribution to the Σ+ → p`+`− decay

can be written as [105, 109]

A(Σ+ → p`+`−) = −e2GF × u`(p`−) γν v`(p`+)

× up(p)

[
i

q2

(
a(q2) + b(q2)γ5

)
σµνq

µ + γν
(
c(q2) + d(q2)γ5

) ]
uΣ(k) ,

(5.4)

in terms of the four form factors a(q2), b(q2), c(q2) and d(q2). Here γν , γ5 and

σµν are (combinations of) Minkowski gamma matrices, with conventions defined in

appendix B of [2], and uΣ(k), up(p), u`(p`−), and v`(p`+) are the usual Dirac spinors

for the incoming Σ+ and the outgoing proton, `−, and `+, respectively. The four-

momentum transfer is q = k − p, where k and p are the on-shell four-momenta of

the Σ+ and proton, respectively.

Some information about the form factors a and b can be obtained from the decay
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Σ+ → pγ with a real photon. The respective decay rate1 can be written as

Γ(Σ+ → pγ) =
G2
F e

2

π
|q|3

(
|a(0)|2 + |b(0)|2

)
, (5.5)

dΓ(Σ+ → pγ)

d cos θ
∝ 1 + α cos θ with α =

2 Re(a(0)b(0)∗)

|a(0)|2 + |b(0)|2
, (5.6)

where |q| is the energy of the photon and θ is the angle between the spin of the Σ+

and the momentum of the proton.

The imaginary parts of the four form factors can be obtained from unitarity using

amplitudes for Σ → Nπ and Nπ → Nγ∗. While the amplitude for Σ → Nπ is

known from experimental measurements [110], the authors of ref. [105] calculate the

amplitude Nπ → Nγ∗ from ChPT using either the relativistic baryon ChPT [111]

or the heavy-baryon ChPT [112, 113] formulation. The momentum dependence

of the imaginary parts of the form factors is found to be very mild. Once the

imaginary parts of the form factors are known, information on the real parts of

a(q2) and b(q2) at q2 = 0 can be obtained from equations eq. (5.5) and eq. (5.6)

and experimental data for the decay Σ+ → pγ. Since this decay only determines

values for |a(0)|2 + |b(0)|2 and Re[a(0)b(0)∗], this leads to four possible solutions for(
Re
[
a(0)

]
, Re

[
b(0)

])
. Motivated by the mild q2-dependence of the imaginary parts

of the form factors, the authors of ref. [105] assume that Re
[
a(q2)

]
= Re

[
a(0)

]
and

Re
[
b(q2)

]
= Re

[
b(0)

]
for their prediction of B(Σ+ → p`+`−). The real parts of the

c(q2) and d(q2) form factors are calculated assuming vector meson dominance in [105]

and explicitly calculating vector meson pole contributions to the decay Σ+ → p`+`−.

The q2-dependence of Re
[
c(q2)

]
and Re

[
d(q2)

]
is found to be mild, just like in the

imaginary parts.

Depending on the formulation of baryon ChPT used and the four possible solutions

for Re
[
a(0)

]
and Re

[
b(0)

]
from Σ+ → pγ decays, the authors of ref. [105] find the

SM prediction for B(Σ+ → pµ+µ−) to be in the range

1.6× 10−8 ≤ B
(
Σ+ → pµ+µ−

)
≤ 9.0× 10−8 , (5.7)

and very similar ranges are found in refs. [106, 107].

1The Particle Data Group [110] quotes B (Σ+ → pγ) = 1.23±0.05×10−3 with τΣ+ = 0.8018±
0.0026× 10−10 s, giving Γ(Σ+ → pγ) = (10.1± 0.4)× 10−15 MeV and α = −0.76± 0.08.
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5.2 Extracting the amplitude from Euclidean

correlators

In this section and the next, we describe how to extract the Σ+ → p`+`− amplitude

from a numerical lattice calculation. The approach closely follows the methods

of refs. [1, 67, 70, 77, 108], adjusted here to treat issues specific to this system.

This section details the Euclidean two-, three-, and four-point correlation functions

needed to construct a finite-volume estimator, denoted by F̃µ(k,p)L. The following

section describes how to relate this quantity to the physical rare hyperon amplitude.

5.2.1 Spectral representation

The determination of the long-distance contribution to Σ+ → p`+`− requires a

calculation of the Σ+ → pγ∗ amplitude, defined as

Arsµ (k, p) =

∫
d4x

〈
p(p), r

∣∣T [HW (x) Jµ(0)]
∣∣Σ+(k), s

〉
, (5.8)

with r and s labelling the azimuthal spin component of the state. Here we are

assuming Minkowski-signature conventions and working in an infinite space-time

volume. This amplitude can be re-expressed as a Dirac matrix, Ãµ(k, p), using the

relation

Arsµ (k, p) = urp(p) Ãµ(k, p)usΣ(k) , (5.9)

with the spinors up and uΣ of the proton and Σ+, respectively.2

The effective weak Hamiltonian density of the qs→ qd transition is given by [10]

HW (x) =
GF√

2
VusV

∗
ud

[
C1

(
Qu

1(x)−Qc
1(x)

)
+ C2

(
Qu

2(x)−Qc
2(x)

)
+ · · ·

]
, (5.10)

where the Ci are Wilson coefficients, the Qq
i are four-quark operators, defined in

terms of Dirac spinors for up, down, strange and charm quarks (respectively u, d, s

and c) as

Qq
1 = (diγ

Lµsi)(qjγ
L
µ qj) , Qq

2 = (diγ
Lµqi)(qjγ

L
µ sj) . (5.11)

Here i, j denote colour indices and we define γLµ ≡ γµ(1− γ5). There are additional

2To avoid clutter in notation, we denote indices for the Σ+ by Σ only. We still use Σ+ where
the charge is relevant, e.g. for creation and annihilation operators.
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four-quark operators in eq. (5.10) with Wilson coefficients of order | VtsVtd
VusVud

| ' 0.00142

which will be neglected in this work.

The electromagnetic current in eq. (5.8) is given by

Jµ =
2

3
uγµu−

1

3
dγµd−

1

3
sγµs+

2

3
cγµc , (5.12)

and we make use of translational invariance by fixing the position of the electromag-

netic current to y = 0. Including an additional Fourier transform on the current

would lead to an overall momentum-conserving Dirac delta function, to be removed

at a later step, and we find it more convenient to follow the approach where this is

never introduced.

The Hamiltonian density decomposes into a parity-positive and a parity-negative

component

HW (x) = H+
W (x) +H−W (x) , (5.13)

defined via the parity operator P̂ according to

P̂H±W (x)P̂ = ±H±W (P · x) , (5.14)

where Pµν = diag
[
1,−1,−1,−1

]
and P̂ is the Hilbert-space representation of the

parity operator. Both parity sectors contribute to the amplitude we are evaluating.

Defining Ã±µ (k, p) as in eqs. (5.8) and (5.9), but with HW (x) replaced by H±W (x),

one can next decompose each definite-parity amplitude in terms of form factors as

follows [105, 109]:

Ã+
µ (k, p) = iσνµq

νa(q2) +
(
q2γµ − qµ/q

)
c(q2) , (5.15)

Ã−µ (k, p) = iσνµq
νγ5b(q

2) +
(
q2γµ − qµ/q

)
γ5d(q2) , (5.16)

where we recall that q = k− p is the four-momentum transfer of the virtual photon.

This form-factor decomposition is derived in appendix B. Note also that, while the

amplitude is a Dirac matrix and thus depends on individual components of the

four-momenta, the form factors are Lorentz scalars and can therefore only depend

on q2.

We will see in the following that the amplitude, and thus also the form factors,

are complex-valued due to on-shell intermediate Nπ states. Since the Euclidean

correlators are real-valued, this complexity already signals the fact that it is non-

trivial to extract the amplitudes. This turns out to be closely related to the interplay
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of the Euclidean signature and the finite volume. As we will show in the following,

the quantum numbers of the contributing Nπ states differ for Ã+
µ and Ã−µ , and thus

the finite-volume formalism must be applied independently to the two quantities.

To explain this in more detail we return to eq. (5.8) and insert a complete set of

states between the current and the weak Hamiltonian to write

Ã±µ (k, p) =

∫ ∞
0

dω

[ ∫ 0

−∞
dt ρ̃±µ (ω) e−i(EΣ(k)−ω+iε)t +

∫ ∞
0

dt σ̃±µ (ω) e−i(ω−Ep(p)−iε)t
]
,

(5.17)

where we have introduced the spectral functions, satisfying

urp(p) ρ̃±µ (ω)usΣ(k) =
∑
α

δ(ω − Eα(k))

2Eα(k)

〈
p(p), r

∣∣Jµ(0)
∣∣Eα,k〉〈Eα,k∣∣H±W (0)

∣∣Σ+(k), s
〉
,

(5.18)

urp(p) σ̃±µ (ω)usΣ(k) =
∑
β

δ(ω − Eβ(p))

2Eβ(p)

〈
p(p), r

∣∣H±W (0)
∣∣Eβ,p〉〈Eβ,p∣∣Jµ(0)

∣∣Σ+(k), s
〉
.

(5.19)

Note that one must treat the two time orderings separately and this leads to two

types of intermediate states encoded in ρ̃ and σ̃, which have strangeness S = 0 and

S = −1 respectively. The sums over α and β represent both sums and phase-space

integrals over the multi-particle QCD Fock space for all states that contribute. For

example, the sum over α includes Nπ, Nππ, ∆π and ΛK states.

Evaluating the time integrals then gives a compact result

Ã±µ (k, p) = i

∫ ∞
0

dω
ρ̃±µ (ω)

EΣ(k)− ω + iε
− i
∫ ∞

0

dω
σ̃±µ (ω)

ω − Ep(p)− iε
. (5.20)

The aim of the following sections is to review how this amplitude can be extracted

from finite-volume Euclidean-signature correlation functions.

5.2.2 Euclidean correlation functions

We now discuss how to extract a finite-volume estimator for the desired Minkowski-

space amplitude eq. (5.20) from Euclidean correlation functions that can be

calculated on the lattice. All quantities in this section (e.g. Dirac γ-matrices, four-

vectors) are defined with Euclidean conventions detailed in Appendix B of [2].
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Two-point functions

The two-point function of a baryon B can be written as

Γ
(2)
B (t,p)αβ =

∫
d3x e−ip·x

〈
ψBα (t,x)ψ

B

β (0)
〉
, (5.21)

where ψ
B

β (t,x) and ψBα (t,x) create and annihilate, respectively, a baryon B and α

and β are Dirac spinor indices. Examples for operators that have overlap with the

proton p and Σ+ are

ψpδ (t,x) = εabc (P+ΓA)δγ uc,γ(x)
(
ua,α(x) ΓBαβ db,β(x)

)
, (5.22)

ψΣ+

δ (t,x) = εabc (P+ΓA)δγ uc,γ(x)
(
ua,α(x) ΓBαβ sb,β(x)

)
, (5.23)

with ΓA = 1, ΓB = Cγ5 for spin 1/2 particles and the charge conjugation operator

defined by C = γ0γ2. P+ = 1
2
(1 + γ0) projects to the positive parity state. Here,

and below, Roman and Greek indices refer to colour and Dirac indices, respectively.

For t > 0, the two-point function eq. (5.21) has the spectral representation

Γ
(2)
B (t,p) =

∑
s

|ZB|2usBusB
2EB(p)

e−tEB(p) = |ZB|2
MB

EB(p)
PB(p)e−tEB(p) , (5.24)

plus contributions from excited states, which are exponentially suppressed in t by

their higher energies. The moving-frame energy of the baryon is given by EB(p) =√
M2

B + p2 and the four-momentum vector is pB ≡ (iEB(p),p). We have introduced

the projector

PB(p) =
1

2MB

∑
r

urB(p)ūrB(p) =
(−i/pB +MB)

2MB

. (5.25)

The overlap factor ZB is defined by

〈
B(p), s

∣∣ψB(0)
∣∣0〉∞ = Z†B(p) usB(pB) ,

〈
0
∣∣ψB(0)

∣∣B(p), s
〉
∞ = ZB(p) usB(pB) .

(5.26)

Throughout this section and the next, we neglect the finite-volume effects on

single-hadron energies and matrix elements. These are known to be exponentially

suppressed, scaling as e−MπL. We also include the ∞ label on states that are

normalized according to

〈
B(p′), s′

∣∣B(p), s
〉
∞ = 2EB(p)δs′s(2π)3δ3(p′ − p) , (5.27)
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as this differs from the normalization of finite-volume states used below.

Three-point functions

We turn now to the three-point function of the effective weak Hamiltonian HW

between a Σ+ and a p operator

Γ
(3)
H (tH , tp, tΣ;p)αβ =

∫
d3xpd

3xΣ e
−ip·(xp−xΣ)

〈
ψpα(tp,xp) HW (tH ,0) ψ

Σ+

β (tΣ,xΣ)
〉
,

(5.28)

with the effective weak Hamiltonian density HW given in eq. (5.10). We leave the

parity labels implicit throughout this section unless stated explicitly.

Here the weak Hamiltonian is assumed to be appropriately renormalised. In the case

of chirally symmetric fermion discretisations, the 4-quark operators in eq. (5.11)

are protected from mixing with other dimension-6 operators, and as such the

renormalisation comes purely in the determination of the Wilson coefficients C1 and

C2. This process is described in detail for domain-wall-fermions in the calculation

of the KL −KS mass difference [75, 85].

The three-point function eq. (5.28) gives rise to four different topologies3 for the

Wick contractions, which are shown in Figure 5.2. The double point labelled with

HW shows the position of the weak Hamiltonian, and the points labelled Σ+ and p

are the positions of the Σ+ and proton operator, respectively. The quark lines are

labelled by their respective quark flavours. The two diagrams shown on the left-

hand side of Figure 5.2 arise from contractions using the Q1 operator in the weak

Hamiltonian, the two diagrams on the right-hand side arise from contractions using

the Q2 operator.

The spectral representation of the Euclidean three-point function Γ(3) is given by

Γ
(3)
H (tH , tp, tΣ;p) =

∑
r,s

Zp(p)Z†Σ(p) urp(p) ArsH usΣ(p)

4Ep(p)EΣ(p)
e−Ep(p) (tp−tH) e−EΣ(p) (tH−tΣ) ,

(5.29)

for large time-separations tΣ � tH and tH � tp, such that excited states are

suppressed, with

ArsH =
〈
p(p), r

∣∣HW (0)
∣∣Σ+(p), s

〉
∞ ≡ urp(p) ÃH usΣ(p) , (5.30)

where r and s are the spins of the proton and Σ+, respectively. In the following it

3Naming conventions for the diagrams shown in Figure 5.2 are inspired by ref. [67].
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Figure 5.2 The four different topologies for the Wick contractions of the three-point

function eq. (5.28). Two fully connected contractions Csd and Csu and
two topologies (E and S) containing quark loops. The two diagrams on
the left (Csd and E) arise from contractions using the Q1 operator, the
two diagrams on the right (Csu and S) from Q2.

will be convenient to define the overall normalization factor

ZBB′(tB, tB′ ;p,k) ≡ ZB(p)Z†B′(k)MBMB′

EB(p)EB′(k)
e−EB(p) tB eEB′ (k) tB′ , (5.31)

where B,B′ ∈ {p,Σ}. This factor can be constructed using information extracted

from Σ+ and proton two-point functions (cf. eq. (5.24)). Completing the spin sum,

the spectral representation eq. (5.29) can be written as

Γ
(3)
H (tH , tp, tΣ;p) = ZpΣ(tp, tΣ;p,p)Pp(p) ÃH PΣ(p) e−tH [(EΣ(p)−Ep(p)] , (5.32)

plus contributions from excited states. Similarly, one can define the three-point

function for a baryon B (here B ∈ {p,Σ}) with an electromagnetic current Jµ

Γ
(3)
µ,B(tJ , tf , ti;p,k)αβ =

∫
d3xfd

3xi e
−i(p·xf−k·xi)

〈
ψBα (tf ,xf ) Jµ(tJ ,0) ψ

B

β (ti,xi)
〉
.

(5.33)

The spectral representation of such a three-point function is given by

Γ
(3)
µ,B(tJ , tf , ti;p,k) = ZBB(tf , ti;p,k)PB(p) Ãµ,B(q)PB(k)e−tJ (EB(k)−EB(p)) , (5.34)
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with Ãµ,B defined by

Arsµ,B(q) =
〈
B(p), r

∣∣ Jµ(0)
∣∣B(k), s

〉
∞ ≡ urB(p) Ãµ,B(q) usB(k) . (5.35)

Just as with the weak Hamiltonian operator, the electromagnetic vector current is

also assumed to be renormalised. If the conserved Noether current is used, then

the vector Ward identity is exactly obeyed on the lattice and no renormalisation is

necessary.

Here we have only considered three-point functions with single-hadron states.

However, as discussed in the following subsection, to construct the target finite-

volume estimator, one may also require matrix elements involving the finite-volume

analogue of a multi-particle excited state. Many details of the construction of ArsH
and Arsµ,B(q) also apply for the excited-state analogues, but important differences

arise which are described in appendix D of [2].

Finally, we define amputated versions of three-point functions with certain factors

removed. For the vector current we take

Γ̂(3)
µ,p(tJ ;p,k) ≡ Γ

(3)
µ,p(tJ , tf , ti;p,k)

Zpp(ti, tf ;p,k)
= Pp(p)

[
Ãµ,p(q)e−tJ (Ep(k)−Ep(p))

]
Pp(k) , (5.36)

and for the weak Hamiltonian

Γ̂
(3)
H (tH ;k) ≡ Γ

(3)
H (tH , tp, tΣ;k)

ZpΣ(tp, tΣ;k,k)
= Pp(k)

[
ÃH e−tH(EΣ(k)−Ep(k))

]
PΣ(k) . (5.37)

In both cases we drop time dependence which cancels in the limit that the ground-

state dominates.

Four-point functions

We turn now to the four-point function of the time-ordered product of the weak-

Hamiltonian density, HW (x), and the electromagnetic current, Jµ(0), between a Σ+

and a p state

Γ
(4)
µ,αβ(tH , tp, tΣ;p,k)L,T =

∫
L

d3xd3xpd
3xΣ e

−i(xp·p−xΣ·k)

×
〈
ψpα(tp,xp) T [HW (tH ,x) Jµ(0)] ψ

Σ+

β (tΣ,xΣ)
〉
L,T

. (5.38)
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Here the subscripts L, T indicate that the quantity is evaluated in a finite space-

time volume. This is of particular importance for the four-point function, so we

emphasize the fact with our notation. Note also that the lattice path integral will

always give the time-ordered product of all four-fields. We restrict attention to the

case of tΣ < 0, tH < tp so that the fields can be written as shown.

The weak-Hamiltonian and electromagnetic current operators should be renor-

malised in the same way as the relevant three-point functions above to remove

divergences coming from the operators themselves. However, additional divergences

can come from the contact of the two operators x = (tH ,x)→ 0. The arguments for

the cancellation of these divergences is given in chapter 3 in the context of the rare

kaon decay. Since none of the arguments rely on the nature of the external states,

no additional modifications are required for use in the baryonic decay Σ+ → p`+`−.

As with the Minkowski amplitude and the three-point function considered above,

q = k − p denotes the momentum transfer at the electromagnetic vertex. From

the four-point function, one obtains six Wick contractions for each of the four

topologies (cf. Figure 5.2) of the three-point function with the weak Hamiltonian:

the electromagnetic current Jµ can be inserted on any of the five quark lines or on

a disconnected quark-loop. The diagrams corresponding to the in total 24 Wick

contractions are shown in appendix A.

We next remove the overlap factor ZpΣ(tp, tΣ;p,k), given in eq. (5.31), to define Γ̂
(4)
µ

as

Γ̂(4)
µ (tH ;p,k)L = ZpΣ(tp, tΣ;p,k)−1 Γ(4)

µ (tH , tp, tΣ;p,k)L,T . (5.39)

We drop the dependence on T , tp, and tΣ in this quantity since the ratio is

independent of these time coordinates as long as T � tp, T � |tΣ| � 1/∆EΣ

and |tp| � 1/∆Ep, where ∆EΣ, ∆Ep are the gaps between the ground and first-

excited states for the quantum numbers indicated by the subscript. We view it as

a task of the numerical analysis to remove or quantify residual dependence on T, tp,

and |tΣ| and omit these coordinates for the remainder of this work.

The amputated four-point function is then equal to the matrix element

Γ̂(4)
µ (tH ;p,k)L = Pp(k) Ãµ(tH ;p,k)L PΣ(k) , (5.40)

where Ãµ(tH ;p,k)L is defined implicitly through

Arsµ (tH ;p,k)L ≡ urp(p) Ãµ(tH ;p,k)L u
s
Σ(p) , (5.41)
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where we have introduced the finite-volume, Euclidean-time-dependent analogue of

eq. (5.8)

Arsµ (tH ;p,k)L ≡
∫
L

d3x
〈
p(p), r

∣∣T [HW (tH ,x)Jµ(0)]
∣∣Σ+(k), s

〉
L
. (5.42)

Inserting a complete set of finite-volume states between the current and weak-

Hamiltonian density, one can give a spectral representation of the four-point function

in Euclidean space-time as

Γ̂(4)
µ (tH ;p,k)L =

{ ∫∞
0
dω Pp(p) σ̃µ(ω)L PΣ(k) e−tH [ω−Ep(p)] , for tH > 0∫∞

0
dω Pp(p) ρ̃µ(ω)L PΣ(k) e−tH [EΣ(k)−ω] for tH < 0

, (5.43)

where ρ̃µ(ω)L and σ̃µ(ω)L are defined as in eqs. (5.18) and (5.19) above but here with

the Euclidean conventions in the gamma matrices and with the sum now running

over the discrete finite-volume spectrum. For example, ρ̃µ(ω)L can be written as

ρ̃µ(ω)L =
∑
n

C̃n,µ(k)

2En(k)
δ
(
En(k)− ω

)
, (5.44)

where

ūrp(p) C̃n,µ(k)usΣ(k) ≡
〈
p(p), r

∣∣Jµ(0)
∣∣En,k〉L 〈En,k∣∣HW (0)

∣∣Σ+(k), s
〉
L
, (5.45)

and
∣∣En,k〉L is the nth finite-volume state with the relevant quantum numbers to

contribute, normalized as
〈
En,k

∣∣En,k〉L = 2En(k).

5.2.3 Finite-volume estimator for the decay amplitude

Our aim now is to extract the infinite-volume, Minkowski-signature amplitude (with

spectral representation given in eq. (5.20)) from the finite-volume Euclidean four-

point function, decomposed above in eq. (5.43). To do so, one needs to separately

treat the issues of Euclidean time and finite volume, and we find it most instructive

to address the first point in this subsection and the second in the section following.

To this end we define a physical-energy finite-volume estimator of eq. (5.20) as

follows:

F̃µ(k,p)L ≡ i

∫ ∞
0

dω
ρ̃µ(ω)L

EΣ(k)− ω
− i
∫ ∞

0

dω
σ̃µ(ω)L

ω − Ep(p)
. (5.46)

This definition looks similar to eq. (5.20) but with the key difference that finite-
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volume spectral functions have been substituted. As a result, the iε pole prescription

has also been discarded, since this has no effect in the finite volume. To see this

more explicitly we write out the first term by substituting the definition of ρ̃µ(ω)L∫ ∞
0

dω
ρ̃µ(ω)L

EΣ(k)− ω
=
∑
n

C̃n,µ(k)

2En(k)
(
EΣ(k)− En(k)

) . (5.47)

The sum over n runs over the discrete set of finite-volume states including the proton-

like ground state and multi-hadron excited states that can be related to proton-pion

and other scattering amplitudes. A subtlety of this analysis is that, for non-zero

k, parity is no longer a good quantum number for the finite-volume multi-particle

states since |En,k〉 and |En,−k〉 are distinct states. We will avoid this issue by

restricting attention to k = 0 in the following section.

Various strategies are possible for extracting this finite-volume estimator from

the amputated four-point function. One technical issue affecting all methods is

that, because Γ̂
(4)
µ (tH ;p,k)L only depends on the projected spectral functions,

Pp(p) σ̃µ(ω)L PΣ(k) and Pp(p) ρ̃µ(ω)L PΣ(k), it is only possible to extract a similarly

projected version of F̃µ(k,p)L. Rather than carrying these projectors in all

subsequent equations, we find it most convenient to change to spin indices at this

stage, defining

F rs
µ (k,p)L = ūrp(p)F̃µ(k,p)Lu

s
Σ(k) , (5.48)

Γ̂(4)rs
µ (tH ;p,k)L = ūrp(p)Γ̂(4)

µ (tH ;p,k)Lu
s
Σ(k) , (5.49)

and similar for all other quantities defined as Dirac matrices above.

To extract F rs
µ (k,p)L from Γ̂

(4)rs
µ (tH ;p,k)L, a crucial issue that any method must

address is that certain intermediate states lead to exponentially growing Euclidean

time dependence. This arises because, in eq. (5.39), one is multiplying by growing

exponentials depending on the energies of the incoming Σ+ and outgoing proton.

If the intermediate energies in the sum over n are sufficiently large, then these

contribute decaying exponentials that outweigh the growth. However, due to low-

lying finite-volume states, Γ̂
(4)rs
µ (tH ;p,k)L can in principle diverge either for tH →∞

or tH → −∞.
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To understand the point in more detail, we consider the unphysical quantity

−
∫ ∞
−∞

dtH e
−ω′|tH | Γ̂(4)rs

µ (tH ;p,k)L =∫ ∞
0

dω
ρrsµ (ω)L

EΣ(k)− ω′ − ω
−
∫ ∞

0

dω
σrsµ (ω)L

ω + ω′ − Ep(p)
. (5.50)

Here ω′ is chosen such that the integral over tH is convergent, and one finds a

result that is very similar to the targeted finite-volume estimator, F rs
µ (k,p)L. In

fact, the right-hand side gives this desired quantity in the ω′ → 0 limit, but this is

not useful as the integral on the left-hand side is divergent if evaluated at ω′ = 0.

Physically, this expression corresponds to allowing the weak Hamiltonian to carry

away energy from the system such that no on-shell intermediate states occur. It

thus solves the problem of growing exponentials, but at the unacceptable cost of

giving an unphysical quantity.

Two closely related options are available to reach the desired expression at ω′ = 0.

The original proposal, introduced in refs. [67, 77], is to integrate tH over a finite

range of times, i.e. over the range tH ∈ [−Ta, Tb]. One can then remove growing

exponentials as a function of Ta and Tb in order to extract the desired finite-volume

quantity. A closely related alternative, described in ref. [108], is to explicitly remove

the exponentials as a function of tH before integrating and then to re-introduce the

missing poles in a second step.

Here we focus on the method of refs. [67, 77], defining

Irsµ (Ta, Tb;p,k) = (−i)
∫ Tb

−Ta
dtH Γ̂(4)rs

µ (tH ;p,k) , (5.51)

with −Ta < 0 < Tb. The summed correlator has a spectral representation given by

Irsµ (Ta, Tb;p,k) =

∫ ∞
0

dω

[
iρrsµ (ω)L

1− e−(ω−EΣ(k))Ta

EΣ(k)− ω
− iσrsµ (ω)L

1− e−(ω−Ep(p))Tb

ω − Ep(p)

]
,

(5.52)

in which the growing exponentials are displayed explicitly. From these expressions

one sees that contributions growing as Ta → ∞ will arise if ρrsµ (ω)L includes

finite-volume energies for which En(k) < EΣ(k) and similarly contributions

growing as Tb → ∞ will arise if σrsµ (ω)L includes finite-volume energies for which

En(p) < Ep(p).

By studying the contributions in this specific system, we deduce that the limit Tb →
∞ can be taken without any difficulties, since all possible baryonic intermediate
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states with strangeness S = −1 and momentum p have energies En(p) > Ep(p).

This will be true so long as the strange quark mass is greater than the down quark

mass. As a result, the term with e−Tb(ω−Ep(p)) is exponentially suppressed for large

Tb. However, any intermediate state with S = 0 that has an energy smaller than the

initial state energy EΣ(k) will lead to an exponentially growing term when Ta →∞.

For simulations at physical or close-to-physical quark masses, such intermediate

states can be either a single proton state with momentum k or a nucleon-pion

state with total momentum k and an energy smaller than EΣ(k). For sufficiently

large light-quark masses, the energy of the finite-volume nucleon-pion states will be

greater than the Σ+ energy and become decaying exponentials in Ta, leaving only

the single proton state to grow as Ta →∞.

To extract F rs
µ (k,p)L from Irsµ (Ta, Tb;p,k), all growing terms need to be removed.

It is additionally possible to remove decaying states such that the Ta →∞ limit is

saturated for smaller values of Ta. The removal of slowly decaying states was already

applied in ref. [70], in the context of rare kaon decays. To express this compactly,

it is convenient to introduce a modification of ρrsµ that is cut off to only include

low-lying states

ρ[N ]rs
µ (ω)L =

N−1∑
n=0

δ(ω − En(k))
Crs
n,µ(k)

2En(k)
, (5.53)

where Cn,µ(k) is defined in eq. (5.45) above, and N must satisfy the condition that

En(k) > EΣ(k) for n ≥ N . We stress here that n = 0 refers to the finite-volume

single-proton state. Then one can write

I
rs

µ (Ta, Tb;p,k) = Irsµ (Ta, Tb; p,k)−∆Irsµ (Ta;p,k) , (5.54)

∆Irsµ (Ta;p,k) ≡ (−i)
∫ ∞

0

dω ρ[N ]rs
µ (ω)L

e−(ω−EΣ(k))Ta

EΣ(k)− ω
. (5.55)

Note that I
rs

µ (Ta, Tb;p,k) then has the desired large Ta,b limits

F rs
µ (k,p)L = lim

Ta,b→∞
I
rs

µ (Ta, Tb;p,k) . (5.56)

In contrast to Irsµ , the separate quantities I
rs

µ and ∆Irsµ , as well as F rs
µ (k,p)L, have

poles as a function of L for any fixed kinematics. The distinction arises because, in

the original expression, 1− e−(En(k)−EΣ(k))Ta vanishes whenever En and EΣ coincide

so that the combination has a finite limit

lim
En→EΣ

1− e−(En(k)−EΣ(k))Ta

EΣ(k)− En(k)
= Ta . (5.57)
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This must be the case since the manifestly finite correlator Γ̂
(4)rs
µ , integrated over

a finite range of times, cannot diverge for any L. By contrast, ∆Irsµ , I
rs

µ and F rs
µ

are divergent if EΣ(k) coincides with a finite-volume energy. We stress that there

is no problem here, this is simply part of the correct definition of the finite-volume

estimator. These poles will be removed in the final relation between F rs
µ and the

infinite-volume Minkowski amplitude Arsµ .

A slight variation in extracting F rs
µ (k,p)L, discussed in ref. [108], is to remove the

growing exponentials before integrating. In the present context it leads one to define

I≥N,rsµ (Ta, Tb;p,k) ≡ (−i)
∫ Tb

−Ta
dtH

[
Γ̂(4)rs
µ (tH ;p,k)

−Θ(−tH)

∫ ∞
0

dω ρ[N ]rs
µ (ω)L e

−tH [EΣ(k)−ω]

]
. (5.58)

This object now has a well-defined Ta,b →∞ limit, but it is not the desired estimator

as the poles from the subtracted states are completely absent. These are then re-

introduced by the relation

F rs
µ (k,p)L = lim

Ta,b→∞
I≥N,rsµ (Ta, Tb;p,k) + F [N ]rs

µ (k,p)L , (5.59)

where we have introduced

F [N ]rs
µ (k,p)L ≡ i

∫ ∞
0

dω
ρ

[N ]rs
µ (ω)L

EΣ(k)− ω
= i

N−1∑
n=0

Crs
n,µ(k)

2En(k)
(
EΣ(k)− En(k)

) . (5.60)

This method is analogous to the approach of using low-lying states to estimate the

T →∞ integral for the hadronic-vacuum-polarization contribution to the magnetic

moment of the muon [114].

Whether the removal of growing (and slowly decaying) exponentials is performed

before or after tH integration, it requires determination of the overlaps Crs
n,µ(k)

and energies En(k) of all states to be removed. We discuss the detailed approach

for determining this information in the following subsections. Having completed

this, it is equally important to understand how to relate F rs
µ (k,p)L to the physical

amplitude Arsµ (k, p). This requires treating the multi-hadron finite-volume effects

and understanding how to include the Nπ branch cut that is part of the physical

amplitude’s definition. The method is discussed in detail in section 5.3. In addition,

the general method for extracting the form factors from the physical amplitude

Arsµ (k, p) is given in appendix C, as well as an example for a specific kinematic

setup.
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Removal of the single-proton state

In this subsection, we describe two methods for removing the growing exponential

arising from the single-proton state. Recalling the definitions

〈
p(p), r

∣∣Jµ(0)
∣∣p(k), r′

〉
∞ ≡ ūrp(p) Ãµ,p(q)ur

′

p (k) , (5.61)〈
p(k), r′

∣∣HW (0)
∣∣Σ+(k), s

〉
∞ ≡ ūr

′

p (k) ÃH usΣ(k) , (5.62)

denoting the single-proton state with a p subscript (i.e. Crs
p,µ(k) = Crs

n=0,µ(k)) one

can show

Crs
p,µ(k) ≡

∑
r′

〈
p(p), r

∣∣Jµ(0)
∣∣p(k), r′

〉 〈
p(k), r′

∣∣HW (0)
∣∣Σ+(k), s

〉
, (5.63)

= 2Mp ū
r
p(p) Ãµ,p(q)Pp(k) ÃH usΣ(k) , (5.64)

= 2Mp ū
r
p(p) · Γ̂(3)

µ,p(0;p,k) · Γ̂(3)
H (tH ;k) · usΣ(k)etH [EΣ(k)−Ep(k)] , (5.65)

where in the last line we have used the hatted three-point functions defined in

eqs. (5.36) and (5.37) and have also applied the identity Pp(p)2 = Pp(p). This

expression for Crs
p,µ(k) can then be used to remove the single-particle state. One can

define

∆I(p)rs
µ (Ta;p,k) ≡ (−i)

Crs
p,µ(k)

2Ep(k)

e−(Ep(k)−EΣ(k))Ta

EΣ(k)− Ep(k)
, (5.66)

as the single-proton contribution to ∆Irsµ (Ta;p,k), defined in eq. (5.55).

In fact, it is instructive here to consider the case where only the single proton

leads to a growing exponential, as would be the case for sufficiently large pion mass

calculations. Then the method for extracting F rs
µ (p,k)L, with the proton removed

after summation, can be summarized succinctly via

F rs
µ (p,k)L = i

Crs
p,µ(k)

2Ep(k)

eTa(EΣ(k)−Ep(k))

EΣ(k)− Ep(k)
− i
∫ ∞
−Ta

dtH Γ̂(4)rs
µ (tH ;p,k) . (5.67)

The estimator with the proton removed before summation instead gives

F rs
µ (p,k)L = i

Crs
p,µ(k)

2Ep(k)

1

EΣ(k)− Ep(k)

− i
∫ ∞
−∞

dtH

[
Γ̂(4)rs
µ (tH ;p,k)− Θ(−tH)

Crs
p,µ(k) e−tH [EΣ(k)−Ep(k)]

2Ep(k)

]
, (5.68)
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where one can directly make use of the time-dependence arising within eq. (5.37)

Crs
p,µ(k) e−tH [EΣ(k)−Ep(k)] = 2Mp ū

r
p(p) · Γ̂(3)

µ,p(0;p,k) · Γ̂(3)
H (tH ;k) · usΣ(k) . (5.69)

One can readily show that these two expressions are mathematically equivalent.

They may, however, lead to statistical differences depending on how exactly the

first term in eq. (5.67) and the first and last terms in eq. (5.68) are estimated.

Note also that it follows from eqs. (5.67) and (5.68) that, in the case where Crs
p,µ(k) =

0, there is no need to explicitly treat the single-proton state. As was shown in refs. [1,

67, 70] for the single pion intermediate state in K → π`+`−, it is in fact possible

to define a modified weak Hamiltonian, denoted H′W (0), such that F rs
µ (p,k)L is

invariant under HW → H′W , but

〈p(k), r|H′W (0)
∣∣Σ+(k), s

〉
= 0 =⇒ C ′ rsp,µ(k) = 0 , (5.70)

where the prime on Crs
p,µ indicates the HW → H′W replacement. The redefined

Hamiltonian density is given explicitly by

H′W (x) = HW (x)− cSS d̄s(x)− cPP d̄s(x) , (5.71)

where cS and cP are constants to be determined and

S q̄′q(x) = q̄′(x)q(x) , P q̄′q(x) = q̄′(x)γ5q(x) , (5.72)

are flavour non-singlet scalar and pseudo-scalar densities. In the following we first

prove that F rs
µ (p,k)L is invariant under HW → H′W and then explain how one fixes

cS and cP to set the single-proton contribution to vanish.

Begin by recalling that the conserved and partially conserved vector and axial

currents, V q̄′q
µ and Aq̄

′q
µ respectively, exactly satisfy the chiral Ward identities:

∂µV q̄′q
µ (x) = i(m′ −m)S q̄′q(x) , ∂µAq̄

′q
µ (x) = i(m′ +m)P q̄′q(x) . (5.73)

Thus, inserting the scalar and pseudo-scalar densities between generic final and

initial states with matching momenta, 〈Ef ,k|L and |Ei,k〉L respectively, one finds

〈Ef ,k| S q̄
′q(x) |Ei,k〉L = i

Ei − Ef
m′ −m

〈Ef ,k|V q̄′q
0 (x) |Ei,k〉L , (5.74)

〈Ef ,k| P q̄
′q(x) |Ei,k〉L = i

Ei − Ef
m′ +m

〈Ef ,k|Aq̄
′q

0 (x) |Ei,k〉L . (5.75)
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The crucial point is that S d̄s(x) and P d̄s(x) have no effect on F rs
µ (p,k)L. To

demonstrate this we define F ′ rsµ (p,k)L as the result of replacing HW → H′W in

F rs
µ , and then use the cS and cP dependence to unambiguously decompose as

F ′ rsµ (p,k)L = F rs
µ (p,k)L − cSSrsµ (p,k)L − cPP rs

µ (p,k)L , (5.76)

thereby defining Srsµ (p,k)L and P rs
µ (p,k)L. Taking the scalar for concreteness note

that this can then be written explicitly as

Srsµ (p,k)L = i
∑
n′

1

2En′(k)

〈p(p), r| Jµ |En′ ,k〉L 〈En′ ,k| S d̄s |Σ+(k), s〉L
EΣ(k)− En′(k)

− i
∑
n

1

2En(p)

〈p(p), r| S d̄s |En,p〉L 〈En,p| Jµ |Σ+(k), s〉L
En(p)− Ep(p)

, (5.77)

where the sum over n′ runs over finite-volume states with proton quantum numbers

and that over n runs over states with strangeness S = −1. Using eq. (5.74) then

gives

Srsµ (p,k)L =
1

ms −md

(∑
n′

1

2En′(k)
〈p(p), r| Jµ |En′ ,k〉L 〈En′ ,k|V

d̄s
0

∣∣Σ+(k), s
〉
L

−
∑
n

1

2En(p)
〈p(p), r|V d̄s

0 |En,p〉L 〈En,p| Jµ
∣∣Σ+(k), s

〉
L

)
,

(5.78)

where the energy differences in the chiral Ward identity have cancelled the poles.

As a result each term now contains an insertion of the identity that can be collapsed

to reach

Srsµ (p,k)L =
〈p(p), r| [Jµ, V d̄s

0 ] |Σ+(k), s〉
ms −md

. (5.79)

Similarly, for the pseudoscalar one finds

P rs
µ (p,k)L =

〈p(p), r| [Jµ, Ad̄s0 ] |Σ+(k), s〉
ms +md

. (5.80)

Since the electromagnetic current Jµ is a singlet in flavour space and the flavour

changing axial and vector currents are not, they will commute causing the shifts

to the estimator to vanish. We can therefore shift the weak Hamiltonian by any

amount of the scalar and pseudoscalar operators without affecting the value of the
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estimator:

Srsµ (p,k)L = 0 , P rs
µ (p,k)L = 0 =⇒ F ′ rsµ (p,k)L = F rs

µ (p,k)L . (5.81)

It remains only to fix the values of cS and cP . This can be achieved by demanding

〈p(k), r|H′±W
∣∣Σ+(k), s

〉
= 0 , (5.82)

where we have restored the ± superscript as it is relevant here that one can study

the definite parity sectors separately. As shown in appendix B, a generic Lorentz

(pseudo)scalar operator O can be decomposed into scalar and pseudoscalar form

factors aO and bO respectively, giving the decompositions

〈p(k), r|H′+W
∣∣Σ+(k), s

〉
= ūrp(k) (aH − cS aS)usΣ(k) , (5.83)

〈p(k), r|H′−W
∣∣Σ+(k), s

〉
= ūrp(k) (bH − cP bP ) γ5 u

s
Σ(k) , (5.84)

where we have used that only S d̄s contributes to H+
W (and only P d̄s to H−W ). We

deduce cS = aH
aS

and cP = bH
bP

are required for the single proton intermediate state

to vanish.

Comparing this to the scalar shift in the rare kaon decay [67], we note that due

to the additional spin degree of freedom, there is an additional pseudoscalar form

factor describing the weak Hamiltonian matrix element. In general, it is therefore not

sufficient to perform only a scalar shift to remove the single proton intermediate state

from both parity sectors. There is however a kinematic point where the pseudoscalar

shift is no longer required. This is when the spinor contraction ūrp(k)γ5u
s
Σ(k)

vanishes at k = 0, corresponding to the Σ+ at rest.

Removal of multi-hadron states

At close-to-physical quark masses, the other growing exponentials come from the

lowest-lying Nπ states, which have energy smaller than the mass of the Σ+. Because

these are excited states, their subtraction is more involved. In general, all lattice

interpolating operators with the correct quantum numbers will overlap the states

of interest, but in practice one can only reliably extract excited state energies and

matrix elements by solving a generalized eigenvalue problem (GEVP) with a diverse

set of multi-hadron operators. In the present case, the low-lying states are expected

to be Nπ-like states together with resonances. Therefore, operators built from a
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nucleon and pion that are individually momentum projected are required to reliably

determine the excited spectrum. Depending on the finite-volume box size, three-

particle states could also become important, requiring an even more complicated

operator basis.

It is also important to break up the intermediate excited states according to

irreducible representations (irreps) of the octahedral symmetry group (including

parity) or, in the case that the Σ+ baryon has non-zero spatial momentum k, to a

little group that leaves the latter invariant. The GEVP analysis is then performed

separately within each irrep and the final result is constructed from the separately

determined spectra. Details are given in appendix D of [2].

Once an optimized operator for a given excited state is determined, the removal

of that state proceeds as in eq. (5.45) for the single proton. The energy En(k) is

extracted from the two-point function and the product of matrix elements

Crs
n,µ(k) ≡

∑
r′

〈
p(p), r

∣∣Jµ(0)
∣∣En,k, r′〉L 〈En,k, r′∣∣HW (0)

∣∣Σ+(k), s
〉
L
, (5.85)

from the three-point functions. It should be noted that this procedure can be applied

to remove the exponentials associated with arbitrarily many intermediate states

(whether growing or decaying), and for states with higher numbers of hadrons, so

long as a sufficient operator basis can be obtained.

This completes our discussion of the construction of F rs
µ (k,p)L. We now turn to

the formalism required to relate this object to the physical amplitude for the weak

decay Σ+ → p`+`−.

5.3 Finite-volume effects

For calculations with sufficiently heavy pions, the energy of the lowest Nπ states

will lie above the EΣ(k) threshold, and therefore only exponentially suppressed

finite volume effects will be present. At the physical point however, the low-lying

Nπ states will be below this threshold, inducing additional power-like finite volume

effects.

In this section, we detail the correction of these power-like finite volume effects from

such Nπ states which can be accounted for via a simple additive term, denoted

by ∆F rs
µ (k,p)L. This allows one to determine the physical amplitude, up to
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exponentially suppressed L effects, using the relation

Arsµ (k, p) = F rs
µ (k,p)L + ∆F rs

µ (k,p)L . (5.86)

At this stage, we also switch from labelling states by definite individual quark flavour

content (e.g. p and Σ+) to isospin state labels (N for the neutron-proton doublet

and Nπ for two-particle states with possible isospin values I = 1/2, 3/2). This is

necessary to introduce the finite-volume formalism for multi-particle states below.

Since Arsµ (k, p) does not contain poles associated with the finite-volume Nπ

intermediate states, these must cancel between the two terms on the right-hand

side. As discussed in detail in ref. [108], this means that the numerical steps that

introduce poles in F rs
µ (k,p)L must match those in the construction of ∆F rs

µ (k,p)L,

such that the singularities exactly cancel. To keep track of this, it is useful to group

the cancelling poles via the definitions

Arsµ (k, p) = lim
Ta,b→∞

[
Irsµ (Ta, Tb; p,k) + δF

rs

µ (Ta;k,p)L

]
, (5.87)

δF
rs

µ (Ta;k,p)L = −∆Irsµ (Ta;p,k) + ∆F rs
µ (k,p)L . (5.88)

An important subtlety here is that Irsµ (Ta, Tb; p,k) and δF
rs

µ (Ta;k,p)L each diverge

as Ta →∞, in such a way that the combination in eq. (5.87) remains finite.

An alternative to eq. (5.87) can be written by directly using the quantity

I≥N,rsµ (Ta, Tb;p,k), defined in eq. (5.58). In particular, combining the various

definitions given above, one finds

Arsµ (k, p) = lim
Ta,b→∞

I≥N,rsµ (Ta, Tb;p,k) + δF rs
µ (k,p)L , (5.89)

where we have introduced a Ta-independent analogue of δF
rs

µ (Ta;k,p)L, defined as

δF rs
µ (k,p)L = δF

rs

µ (Ta;k,p)L − i
N−1∑
n=0

Crs
n,µ(k)[e−(En(k)−EΣ(k))Ta − 1]

2En(k)(EΣ(k)− En(k))
, (5.90)

This is the unique combination in this work that is (i) Ta-independent, (ii) free of

finite-volume singularities, and (iii) depends only on the states explicitly removed

and not on the full sum over all states in the spectral decomposition. For this reason

it will be useful in our detailed discussion of the single-channel case below.

We are now ready to give the full definition for ∆F rs
µ (k,p)L. The finite-volume
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correction can be written as [67, 108, 115]

∆F rs
µ (k,p)L = iArJµ(EΣ(k),k,p) · F

(
EΣ(k),k, L

)
· AsHW (EΣ(k),k) , (5.91)

where we have introduced

ArJµ(EΣ(k),k,p) =
〈
N(p), r

∣∣Jµ(0)
∣∣E, (Nπ)in(k)

〉
, (5.92)

AsHW (EΣ(k),k) =
〈
E, (Nπ)out(k)

∣∣HW (0)
∣∣Σ(k), s

〉
, (5.93)

F(E,P , L) =
1

F (E,P , L)−1 +M(Ecm)
. (5.94)

Here F (E,P , L) is a known geometric function, reviewed in this work in the following

paragraphs, and ArJµ(k,p), AsHW (k), andM(Ecm) are three types of infinite-volume

amplitudes, each involving Nπ states.

This construction and the following discussion is similar to that given in refs. [77,

116], in that case of ππ intermediate states in K−K̄ mixing and the decay K → πνν.

The formalism of that work was generalized to particles with any spin, including the

present case, in ref. [108]. The purpose of the following is to explain the relevant

formalism in the specific context of Nπ states, including the role of parity, spin and

non-degenerate masses. The formalism for long-range matrix elements also draws

on that used for scattering and transition amplitudes [76, 115, 117–121].

We begin by specifying the index space used in the definition of ∆F rs
µ (k,p)L. The

product on the right-hand side of eq. (5.91) is understood as a matrix (F) contracted

with two vectors (ArJµ and AsHW ) such that no hanging indices remain. The index

space of this contraction is also required for the exact definitions of F (E,P , L) and

the other quantities appearing above. The space is denoted by J, `, µ, referring to

the total angular momentum J , orbital angular momentum, `, total spin (in this

case fixed to 1/2), and azimuthal component of total angular momentum mJ . For

example,

ArJµ(E,k,p)J,`,mJ =
〈
N(p), r

∣∣Jµ(0)
∣∣E, (Nπ)in(k), J, `,mJ

〉
, (5.95)

AsHW (E,k)J,`,mJ =
〈
E, (Nπ)out(k), J, `,mJ

∣∣HW (0)
∣∣Σ(k), s

〉
, (5.96)

and the combined labels of total energy E, total momentum k, and J, `,mJ are both

necessary and sufficient to exactly specify the Nπ state.

We define the geometric matrix, F (E,P , L), for the Nπ system, by first considering

the quantity for two non-identical scalar particles with masses Mπ,MN [122].
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Focusing on the P = 0 case, the definition reads

F`′m′;`m(E,0, L) = lim
α→0+

[
1

L3

∑
k

−
∫

d3k

(2π)3

]
4πY ∗`′m′(k̂)Y`m(k̂)e−α(k2−p2)

2ωπ2ωN(E − ωπ − ωN + iε)

(
|k|
p

)`+`′
,

(5.97)

with k̂ = k/|k|, ωπ =
√
M2

π + k2, ωN =
√
M2

N + k2. We have also introduced p as

the magnitude of back-to-back momentum, satisfying

E = Ecm =
√
M2

π + p2 +
√
M2

N + p2 . (5.98)

As discussed in Refs. [115, 117], ultraviolet divergences in the sum-integral difference

cancel so that any smooth regulator can be used in the evaluation of each. The

explicit exponential included gives one option that is also convenient for numerical

evaluation. As discussed in ref. [120], a straightforward combination of Clebsch-

Gordon coefficients can then be used to promote this scalar version to the final F

function on the full space for particles with spin:

FJ ′`′µ′,J`mJ (E,P , L) =
∑
m,σ,m′

〈`m;
1

2
σ|JmJ〉〈`′m′;

1

2
σ|J ′m′J〉F`′m′;`m(E,P , L) .

(5.99)

This is the quantity entering the definition of F in eq. (5.94).

The second matrix entering the F matrix is the Nπ → Nπ scattering amplitude,

denoted M. This can be represented on the J`µ index space via

MJ ′`′m′J ;J`mJ (Ecm) = δJ ′Jδl′lδm′JmJ
8πEcm

p cot δJ,`(p)− ip
, (5.100)

where

E2
cm = E2 − P 2 , (5.101)

defines the centre-of-mass energy and δJ,`(p) is the scattering phase shift with

quantum numbers as indicated.

This concludes our explanation of all quantities entering ∆F rs
µ (k,p)L. The content

of eq. (5.91) can be summarized as follows: By combining a determination of the

Nπ → Nπ scattering amplitude with the Σ
HW−→ Nπ and Nπ

Jµ−→ N transition

amplitudes, one can calculate the correction that relates the finite-volume estimator

F rs
µ (k,p)L to the amplitude Arsµ (k, p).
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5.3.1 Determining M, AsHW
and ArJµ

So far we have made reference to poles cancelling between F rs
µ (k,p)L and ∆F rs

µ (k,p)L,

but without explicitly explaining why the poles are the same between the two terms.

This follows from the observation that the condition that F(E,P , L) diverges is

equivalent to the Lüscher quantization condition [115, 117]

det
[
M−1(Ecm

n ) + F (En,P , L)
]

= 0 , (5.102)

where

Ecm
n =

√
E2
n − P 2 . (5.103)

This relation allows one to constrain the amplitudeM(Ecm) from a numerical lattice

calculation by computing many finite-volume energies.

The energies, En, directly correspond to the poles in ∆F rs
µ (k,p)L, as can be readily

seen from its definition in eq. (5.91). In the limit of infinite statistics, the formalism

guarantees a perfect cancellation between the poles in F rs
µ (k,p)L and those in

∆F rs
µ (k,p)L. However, for realistic data, with statistical uncertainties, care must be

taken. In particular, given the best fit for the lattice energies En(L) from Euclidean

correlators, one can use a given parametrization in the quantization condition to

determine the best fit for M(Ecm). If the lattice energies are used to construct

F rs
µ (k,p)L rather than the best-fit quantization energies (those predicted by the

quantisation condition given a best-fit for the phase shift), the singularities will fail to

exactly cancel in the amplitude. As discussed in ref. [108], the most straightforward

solution here is to directly use the best-fit quantization energies everywhere.

The Lellouch-Lüscher formalism [76] and its extensions can be used to determine

the remaining amplitudes AsHW and ArJµ . This follows from the eigenvectors of the

quantization condition matrix which is known to be rank one near the finite-volume

energy

lim
E→En(L)

(
E − En(L)

) 1

M(Ecm
n ) + F−1(En,P , L)

= E (n),in ⊗ E (n),out , (5.104)

where the ⊗ indicates an outer-product in the same index space, so that E (n),in and

E (n),out each carry the J, `, µ indices. Then the amplitudes are related to finite-volume
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matrix elements via

〈
En,k

∣∣HW (0)
∣∣Σ(k), s

〉
L

= E (n),out · AsHW (E,k) , (5.105)〈
N(p), r

∣∣Jµ(0)
∣∣En,k〉L = ArJµ(E,k,p) · E (n),in , (5.106)

up to an inherent phase ambiguity that will cancel between E (n),out and E (n),in in the

full finite-volume correction.

An in depth example of the use of this finite-volume formalism has been given in

ref. [2] for the case of a single channel contributing to the process. The expansion

about the pole is also derived allowing for the correction of any mistuning that

would inevitably occur in real simulations with finite statistics, and allows errors to

be propagated effectively.
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CHAPTER

SIX

EXPLORATORY CALCULATION OF THE RARE

HYPERON DECAY

With the theoretical framework for extracting the rare hyperon decay from the

lattice known, it is in principle possible to produce all four form factors over the

entire momentum transfer range required (2m`)
2 ≤ q2 ≤ (mΣ −mp)

2. This would

remove all input from the Σ+ → pγ decay, and the use of ChPT, giving a fully lattice

SM prediction. While this should be the long term goal for this decay, improvements

to the existing prediction can be made incrementally by incorporating lattice results

into the existing work of [105, 106].

The main source of the large variation in the branching fraction in eq. (5.3) is the

lack of constraint on Re a and Re b from the Σ+ → pγ real photon emission decay.

Figure 6.1 (reproduced from the work [106]) shows the value of the branching ratio

sampled over the experimental uncertainty of the real photon emission measurement,

along with the 4-fold ambiguity in these ill-constrained form factors. It is clear

from this plot that even an unambiguous determination of the sign of Re a or Re b

at q2 = 0 could provide significant improvements to the theory prediction of the

branching ratio, with a precise numerical value improving it further.

A lattice determination of Re a and Re b is of particular importance due to the recent

measurement of the branching fraction B(Σ+ → pγ) from the BESIII collaboration

[123]. They report a 4.2σ discrepancy with the PDG average value [6]. Using the

BESIII results changes the value of the form factors by about 8− 30%, which does

not significantly alter the rare hyperon decay prediction, however, it is undesirable
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Figure 6.1 Rare hyperon decay branching fraction sampled from experimental
constraints on Re a and Re b form factors from the Σ+ → pγ decay.
Horizontal line marks the 2σ upper-limit of the LHCb measurement
[103]. Figure reproduced from open access publication [106].

to rely on these measurements while an unexplained discrepancy is observed.

We now go on to investigate the practicality of the framework of extracting the rare

hyperon decay form factors from LQCD by performing an exploratory calculation

at unphysical pion mass. For this we used the C1 ensemble listed in table 2.2.

Additional important quantities for this simulation are the Nucleon and Sigma

baryon masses on this ensemble, which have been measured to be mN ' 1200MeV

and mΣ ' 1370MeV. These are roughly 30% and 15% heavier than their physical

values respectively. This ensemble has been chosen for several reasons:

• Heavier light quarks and smaller lattice volumes significantly reduce the cost

of inverting the Dirac operator.

• Domain wall fermions posses an approximate chiral symmetry, preventing

additional mixing of the 4-quark operators.

• With heavier pions, the energies of the Nπ states are above the mΣ threshold.

While all points above are important for the details of the calculation, the final

point is most important for the physics in the Euclidean finite volume. With the Nπ

states above the mΣ threshold, it is clear from the previous chapter that there will

be no exponentially growing Nπ intermediate states (leaving only the single proton

intermediate state); and there will be no power-like finite-volume effects resulting

from these states. This drastically simplifies the calculation to be performed. One

additional consequence having mNπ > mΣ is that, by the optical theorem, there

must be no imaginary component to the amplitude.
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Of course, once it has been demonstrated that this calculation can be performed,

when moving to the physical point the effects of having on-shell intermediate states

must be taken into account. While the formalism to perform the finite-volume study

of the Nπ system and the decays Σ → Nπ, Nπ → pγ∗ is known [124, 125], there

will of course be difficulties in performing these calculations in practice that must

be overcome, resulting from the baryonic signal-to-noise problem.

6.1 Measurement Setup

Since this exploratory calculation is being performed away from the physical point,

we are not able to make a direct comparison to the form factors obtained in [105, 106].

It is therefore not required to tune the kinematics to the q2 = 0 point. It is however,

worthwhile to have a setup that is not significantly different from a future physical

point calculation. This means having the initial Σ+ baryon at rest (k = 0), as this

drastically simplifies the finite-volume formalism once that becomes relevant. On

this ensemble we use k = 0 for the Σ+, and one unit of lattice momentum in the

x-direction p = ( 2π
24a
, 0, 0) for the proton. This corresponds to |p| ' 470 MeV and a

momentum transfer of q2 ' −0.2 GeV2.

6.1.1 Source-Sink Sampling

In order to project a lattice operator to a definite spatial momentum, a sum over

all spatial lattice sites, Λ3, with a momentum phase is required

O(t,p) =
∑
x∈Λ3

O(t,x)eip·x . (6.1)

Due to our contraction method we are able to perform this full sum for both the

weak Hamiltonian, HW , and the vector current, Jµ. However, performing this sum

exactly for the interpolators would require new inversions at every spatial lattice

site. On this lattice that corresponds to O(104) inversions, which is completely

infeasible, and therefore a different approach is needed.

A method of sparsening was investigated in ref. [126] in which the full volume sum

is replaced by a sum over a subset of sites that are arranged in a grid corresponding
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to a coarser lattice with site separated by Na for some integer N ,

O(t,p) '
∑

x∈Λ̃modN
3

O(t,x)eip·x , (6.2)

Λ̃modN
3 = {(n1, n2, n3) | 0 ≤ ni < L; ni = 0 (mod N)} . (6.3)

This approximation reduces the number of points in the sum by a factor N3 which

can provide a huge reduction in cost. By a simple Fourier analysis in 1 dimension,

it can be seen that

1

|Λ̃modN
1 |

∑
x∈Λ̃modN

1

eipx =
N−1∑
n=0

δp, 2πn
N
, (6.4)

while the full sum would give simply δp,0. This shows that the sparse momentum

projection does not project just a single momentum mode, but additional modes leak

in. This is further investigated in ref. [127] where it is observed that the effective

mass of the pion and nucleon acquire a statistically significant higher momentum

contamination when using this fixed grid sparsening with an aggressive N ' 10.

In order to avoid this higher momentum contamination, they propose a stochastic

sparsening in which the sum is performed over a randomly selected set of lattice

sites. Compared to the fixed grid sparsening, the stochastic sparsening with an

equal number of sites reduces the contamination to a statistically insignificant level.

In addition, the stochastic sampling allows for a flexible number of sites to be selected

rather than a fixed amount.

It is also seen in ref. [127] that the amount of sampling necessary is dependent on

the type of source used. When using a point source, many samples must be used in

order to get a reliable estimation of the sum, when using smeared sources however,

the number of samples can be greatly reduced. This is due to the fact that with

a smearing radius σ � a, sources with neighbouring centre points contain almost

the same information. It therefore requires many fewer samples to effectively cover

the entire lattice. In the extreme case where σ →∞, the smearing results in a wall

source which is independent of position, and has an exact momentum projection

with only a single sample.

It is also observed that the increase in sampling improves the statistical precision of

the results. This is similar to making additional measurements per configuration,

where the optimal scaling of the error is 1/
√
N , when the results from each sample

are completely independent.
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In practice, an independent set of random sites is selected on every configuration, and

every timeslice. This allows the gauge average and average over time translations

to increase the effective number of samples measured.

It should be noted that momentum conservation (after the gauge average) implies

that any n-point function only requires n − 1 operators to be projected exactly

for all states to have a definite momentum. The projection of the final operator is

redundant and simply gives an additional factor of the volume. However, in the case

where at least one of these projections is inexact, this redundancy can be utilised

to improve the inexact projection. When applied to to both the source and the

sink interpolators, we refer to this stochastic sampling as the source-sink sampling

method.

As an example, consider a baryon 2-point function with position space interpolator

ψσ,p(t,x) that has a smearing radius σ, and a momentum phase p. The application

of source-sink sampling with N samples gives a 2-point function of the form

Γ(t,p) =
1

Nt

∑
ti

〈
Ψσ
k(t+ ti,p)Ψ̄σ

k(ti,p)
〉
k

(6.5)

Ψσ
k(t,p) =

1

N

∑
x∈Λ̃k3(t)

ψσ,p(t,x)eip·x , (6.6)

where 〈·〉k represents the average over gauge configurations with label k. The

randomly sampled lattice sites are then

Λ̃k
3(t) = {(n1, n2, n3) | 0 ≤ ni < L; ni are uniform random integers} , (6.7)

where the label k and argument t indicates that independent random samples are

to be selected on each configuration and for each timeslice.

We have performed an investigation into the benefits of source-sink sampling in the

specific context of the rare hyperon decay calculation. The non-eye contribution to

the weak Hamiltonian 3-point function at zero momentum was chosen for this study

since it is much more precise than the eye-type contribution, and the measurements

of the 3-point functions are significantly less costly than the full 4-point function.

This source-sink sampled 3-point function has the form

Γ(3)(t,∆t) =

〈
1

Nt

∑
ti

Ψσ
k(ti + ∆t,0)H

(NE)
W (ti + t) Ψ̄σ

k(ti,0)

〉
k

. (6.8)

We use 2 different smearing widths σ = 4, 9 in lattice units, and a number of samples
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up to N = 8. Figure 6.2 shows how the error on the correlation function scales with

the number of samples used for a fixed source-sink separation of ∆t = 8. The errors

are normalised to the error when using only a single sample (N = 1). Also shown

are the curves 1/N and 1/
√
N for reference. Note that 1/N is the optimal scaling

when sampling on both the source and the sink independently.
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Figure 6.2 Error of the weak Hamiltonian (non-eye) 3-point function for ∆t = 8,
scaling with number of source-sink samples. Gaussian smeared
sources/sinks are used with a smearing width of σ = 4 (left) and σ = 9
(right). Values shown are normalised to the N = 1 error.

It is clear that the smaller width source scales almost as 1/N and therefore initially

benefits heavily from additional sources. Alternatively, the larger width source scales

significantly less with increasing samples, making only small improvement for a

factor 8 additional cost. This is a clear manifestation of the additional samples

providing less independent information as the smearing increases.

Figure 6.3 shows the scaling of the value of the baryon masses and H
(NE)
W matrix

element measured from the 2- and 3-point functions. Only the smearing radius

σ = 4 is shown as σ = 9 doesn’t see significant benefits from additional sources. It

is clear that the Σ and nucleon masses and the weak Hamiltonian matrix element

do not observe any statistically significant contamination from higher momentum

modes as the number of samples decreases.

From the error scaling, it can be seen that the error no longer behaves cleanly like

1/N once it has gone through the fitting procedure. In this case it looks as though

it is more closely related to a 1/
√
N type scaling which is suboptimal, but still gives

good statistical improvement.

From this small study, we confirm the conclusions of [127] for the case of our

measurement setup, i.e. that there is little to no significant higher momentum
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Figure 6.3 Fit results (top) and error (bottom) for the mass of the Σ and nucleon

(left), and the matrix element 〈p|H(N.E.)
W |Σ〉 (right), scaling with

number of source-sink samples. Gaussian smeared sources/sinks of
width σ = 4 are used.

mode contamination when applying the random source-sink sampling, and that for

smaller smearing widths there is some statistical benefit to increasing the number

of samples. It is observed however, that most of the statistical improvements have

been made once N = 8 samples have been used, at a smearing of σ = 4.

6.1.2 2-point Functions

With the benefits of the source-sink sampling method evaluated for use in this

specific calculation, we go on to describe the correlation functions measured.

Measurements for all correlation functions are taken on a total of 70 decorrelated

gauge configurations, with multiple measurements made per configuration by

averaging over time translations.
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The 2-point correlation functions measured for the baryons B = p,Σ have the form

Γ2,B(tf ,p) =
1

Nt

∑
ti

∑
x

eip·x〈ψσ,pB (tf + ti,x) Ψ̄σ
B(ti,k)〉 , (6.9)

where the stochastic sampling withN = 8 samples is applied only at the source, since

the sink can be projected exactly with a sum over all spatial positions. The average

over initial time, ti, is performed with Nt = 32 time translations ti ∈ {0, 2, ..., 62}.

The initial/final baryon states are created/destroyed with the interpolators

ψσ,pB (x) = εabc
(
q̃σ,01 (x)

)a [(
q̃σ,02 (x)T

)b
Γ (q̃σ,p3 (x))

c
]
, (6.10)

where the quark fields are spatially smeared by a Gaussian kernel, and include a

momentum phase

q̃σ,p(t,x) =
1

(2πσ2)3/2

∑
y

e−
(x−y)2

2σ2 eip·x q(t,y) . (6.11)

The momentum phase is placed on the quark q3 since this is of a distinct flavour

in the Σ and p interpolators, which simplifies our contraction setup. However,

the momentum can in principle be placed on any one of the quarks or shared

amongst them. Since the Gaussian smearing applied here is not gauge covariant,

the measurements must be taken on gauge fixed configurations, for which we use

the Coulomb gauge.

All interpolators use a smearing radius σ = 6 in lattice units (corresponding to

roughly 0.66 fm) in order to reduce the overlap with excited states, as well as to not

diminish the improvement obtained by the source-sink sampling.

6.1.3 3-point Functions

The relevant 3-point correlation functions measured for this analysis are those of

the weak Hamiltonian and the s→ d flavour changing scalar current S = d̄s,

Γ3,HW (t, tf ,p) =
1

Nt

∑
ti

〈Ψσ
p(tf + ti,p)HW (ti + t) Ψ̄σ

Σ(ti,p)〉 (6.12)

Γ3,S(t, tf ,p) =
1

Nt

∑
ti

〈Ψσ
p(tf + ti,p)S(ti + t) Ψ̄σ

Σ(ti,p)〉 , (6.13)
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where HW (t) and S(t) are projected exactly to zero momentum transfer. The weak

Hamiltonian can also be separated into contractions with only the non-eye or eye

diagrams, HNE
W and HEye

W respectively.

The non-eye diagrams are measured with source-sink separation tf = 12, 16, Nt = 32

time translations are used, and the source sink-sampling is performed in 2 sets of

N = 4 samples (with no cross-terms between the sets). The eye diagrams are

measured with only tf = 16 and on Nt = 16 time translation, with a single batch

of N = 4 source-sink samples. In addition the quark loop in the eye diagrams are

computed with a single hit of sparse noise sources, with a sparsening of 2 in each

dimension (corresponding to 16 noise sources per hit).

As is described in chapter 5, the weak Hamiltonian operator can be separated into

a parity conserving, and parity changing component. The Q1 and Q2 operators are

the product of two bilinear currents with V −A Dirac structure, and it can therefore

be seen that the parity conserving component of the (V −A)⊗ (V −A) structure is

V ⊗ V + A⊗ A, and the parity violating part is −(V ⊗ A + A⊗ V ). These parity

components give rise to the definite parity 4-quark operators

Q+ =
∑
µ

(
[d̄γµs][q̄γµq] + [d̄γµγ5s][q̄γµγ5q]

)
, (6.14)

Q− =
∑
µ

(
[d̄γµs][q̄γµγ5q] + [d̄γµγ5s][q̄γµq]

)
, (6.15)

where we have suppressed the color indices that distinguish Q1 and Q2. The full

4-quark operator is then given by Q = Q+ −Q−.

While data has been collected for both parity components, no signal is observed at

the correlator level for the negative parity component, and therefore in this analysis

we only investigate the positive parity weak Hamiltonian. Since the positive parity

form factor a is ill-constrained by experiment, a lattice calculation of just this form

factor would already be of phenomenological interest.
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6.1.4 4-point Functions

The 4-point functions used in our analysis are defined by

Γ4,HW
µ (tJ , tH , tf ,k,p) =

1

Nt

∑
ti

〈Ψσ
p(tf + ti,p)HW (tH + ti)Jµ(tJ + ti,k − p) Ψ̄σ

Σ(ti,k)〉

(6.16)

Γ4,S
µ (tJ , tS, tf ,k,p) =

1

Nt

∑
ti

〈Ψσ
p(tf + ti,p)S(tS + ti)Jµ(tJ + ti,k − p) Ψ̄σ

Σ(ti,k)〉 ,

(6.17)

where Jµ(t, q) is the conserved vector current with momentum transfer q.

The values of tf , Nt and N are the same as for the corresponding 3-point functions,

and the vector current is inserted midway between the source and sink at tJ = tf/2.

In order to isolate the two positive parity form factors, two values of the vector

current index µ are required. For this we use µ = t, z.

In order to extract the rare hyperon decay amplitudes, we follow the method pre-

sented in chapter 5 of amputating the 4-point correlation functions and integrating

the weak Hamiltonian around the vector current. As has been discussed, this only

provides a measure of the finite-volume estimator, which is in general distinct from

the amplitude. However, with our use of sufficiently heavy pions, there are no power-

like finite volume effects, and therefore the amplitude and finite-volume estimator

are equivalent up to exponentially suppressed finite volume effects that we ignore

on this lattice with mπL ' 4.5.

When constructing the integrated 4-point function, instead of integrating from

tJ − Ta to tJ + Tb, giving an object with a 2-dimensional time dependence, we

separate the integral into two parts
∫ tJ
tJ−Ta dtH and

∫ tJ+Tb
tJ

dtH . This separates the

two time orderings, and therefore gives access to the ρ and σ spectral integrals

separately, which affords multiple benefits compared to the traditional strategy used

in the rare kaon decay analysis in chapter 3.

The most important of these benefits is that since this clean separation is possible,

the non-separated integrated correlator contains redundant information, which in

turn gives rise to very large correlations that can be seen in fig. 3.4 for the rare

kaon decay calculation. With this separation made, however, it is possible to fit

the two time orderings separately, and combine their results. This removes the

redundancy, and its corresponding correlation, as well as reducing the complexity
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of each individual fit.

Taking into account the finite lattice spacing, the integrals become sums, and one

must be careful not to double count the shared point at tH = tJ . This is accounted

for by including only half of this point in each sum. The amputated integrated

4-point functions are then defined as

Îρµ(Ta) =
1

ζµ,γ ZΣp(tJ , tf )

(
1

2
tr
[
Γ(4)
µ (tJ , tJ , tf )P

+γ
]

+

tJ−1∑
tH=tJ−Ta

tr
[
Γ(4)
µ (tH , tJ , tf )P

+γ
])

(6.18)

Îσµ (Tb) =
1

ζµ,γ ZΣp(tJ , tf )

(
1

2
tr
[
Γ(4)
µ (tJ , tJ , tf )P

+γ
]

+

tJ+Tb∑
tH=tJ+1

tr
[
Γ(4)
µ (tH , tJ , tf )P

+γ
])

,

(6.19)

where we have suppressed the additional momentum arguments. The creation,

propagation, and annihilation of the external states are amputated with the factor

(5.31) appropriately shifted to tJ 6= 0 and tΣ = 0

ZΣp(tJ , tf ) =
Zp(p)Z∗Σ(k)mΣmp

EΣ(k)Ep(p)
e−EΣ(k)tJe−Ep(p)(tf−tJ ) . (6.20)

Since the correlator is spin matrix valued, the trace is taken with an arbitrary Dirac

matrix γ and the positive parity projector, P+, which projects the stationary Σ

baryon to definite parity.

Finally, we have include an extra factor ζµ,γ in the amputation, which is done to

remove the artificial γ dependence from the traced correlator. It can be seen from

appendix C, that with our kinematic setup k = 0 and p = (px, 0, 0), the traced

amplitudes can be written in the form

tr
[
Pp(p)ÃµPΣ(k)P+γ

]
= ζµ,γfµ , (6.21)

where fµ is a linear combination of the form factors. For µ = t, z this can be written

as the matrix equation(
ft

fz

)
=

(
1 mΣ +mp

mΣ +mp q2

)(
a

c

)
. (6.22)
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The relevant non-zero coefficients, ζµ,γ, are given by

ζt,1 = − p
2
x

mp

, ζt,γx = i
px
mp

(Ep −mp) ,

ζz,γz = −Ep −mp

mp

, ζz,γyγ5 = i
px
mp

. (6.23)

Some interesting observations are that: for the positive parity coefficients above

ζµ,γ → 0 as px → 0 and therefore the correlators vanish and the form factors become

inaccessible at zero spatial momentum transfer; and at the q2 = 0 point fz contains

only the a form factor, and therefore at this kinematic point a could be extracted

from a single vector current component µ = z.

With the amputation of this additional factor ζµ,γ, it can be seen that instead of

measuring the amplitude directly, we are measuring the form factor combinations

fµ. The matrix eq. (6.22) can then be inverted using the measured masses from the

2-point functions to give the form factors a and c.

Using the information above, and the spectral decomposition of the 4-point function

in eq. (5.43), the amputated integrated 4-point functions from eqs. (6.18) and (6.19)

are given by

Îρµ(Ta) =fρµ −
∫ ∞

0

dω
tr[Ppρ̃µ(ω)PΣP

+γ]

ζµ,γ

e−(ω−mΣ)Ta

eω−mΣ − 1
(6.24)

Îσµ (Tb) =fσµ −
∫ ∞

0

dω
tr[Ppσ̃µ(ω)PΣP

+γ]

ζµ,γ

e−(ω−mp)Tb

eω−mp − 1
, (6.25)

where fXµ represents the X = ρ, σ spectral contribution to the form factor

combination fµ at finite lattice spacing

fXµ =

∫ ∞
0

dω
tr
[
PpX̃µ(ω)PΣP

+γ
]

ζµ,γ

1 + e−(ω−ωX)

2(1− e−(ω−ωX))
, (6.26)

with ωρ = mΣ and ωσ = mp. The full form factor combination is then obtained as

fµ = fρµ + fσµ . (6.27)

Since the energies in eq. (6.26) are in lattice units, it can be seen that as the lattice

spacing goes to zero, the energies must also go to zero to maintain their physical

value (up to vanishing lattice artefacts). Therefore as the continuum limit is taken,
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the second factor becomes

1 + e−(ω−ωX)

2(1− e−(ω−ωX))
→ 1

ω − ωX
(6.28)

which recovers the continuum spectral integration kernel in eq. (5.20), and therefore

gives fXµ the correct continuum limit.

6.2 Numerical Results

6.2.1 Fit Strategy

In order to extract physical observables from the lattice data described in the

previous section, the correlators must be fit with a functional form containing

the appropriate parameters. Since there are parameters shared between many

correlators, e.g. baryon masses, it would be advantageous to perform a combined fit

of all correlators together, where all fit parameters are determined simultaneously.

This has the advantage of allowing every correlator to influence all relevant

parameters, giving the maximum constraint on their values.

However, due to the large number of correlators involved in this analysis, such a

fitting method results in highly unstable fits that often fail to converge on a minimum

of the correlated χ2 function. In addition, correlated fits require the estimation and

inversion of the correlation matrix, which can easily break down for sufficiently large

datasets. Some correlators may also be more constraining for certain parameters

than others. For example, the 2-point functions are able to constrain the masses very

well, however, the 4-point functions have much larger statistical errors, and more

complicated functional dependence on the masses. Therefore the 4-point functions

will likely not improve the measurements of these masses very significantly.

For these reasons, we decide to perform a hierarchy of fits, with the parameters of the

earlier fits being given as fixed inputs to later fits. We use a bootstrap resampling

method for the error estimation [128], allowing the earlier fit parameters to be passed

sample-per-sample to later fits, in order to correctly maintain correlations.

We first fit the 2-point functions as two independent fits, one for each baryon, which

are themselves combined fits to correlators with different momentum. Since the

analytic form of the baryon lattice dispersion relation is not known, we impose the

continuum dispersion relation on the energies, leaving only the baryon mass and
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overlap factors as fit parameters. This is a reasonable assumption to our level of

precision as we only consider a single unit of lattice momentum, and corrections to

the dispersion relation are most relevant for large momenta.

These masses and overlap factors are then used to amputate the integrated 4-point

functions, and are given to the corresponding 4-point function fits as constants.

Since the 4-point functions only share these previously fixed constants, there are no

longer any fit parameter in common between the different vector current components

µ, and time orderings, and therefore these 4-point functions can be separated into

independent fits.

For the 2-point function fits, we find the best fit in a systematic way by scanning

over fit ranges and assigning each a score according to some criteria. For this we

use a weight related to the Akaike Information Criterion (AIC) [129] which in this

context is evaluated as

w = e−
1
2

(χ2−2ndof) , (6.29)

as is used in [29]. Maximising this weight favours lower χ2 values, but in addition

tries to maximise the number of degrees of freedom ndof. The fit range with the

maximum weight is then selected to define the central value and statistical error of

the parameters. The fit systematic error on these parameters is then taken to be

half of the spread of central values within the top 10 fits, ranked by w.

The 4-point functions do not undergo a similar scanning process as there is only

a small set of fit ranges available, resulting from the relatively short source-sink

separations for which we obtain a signal. Instead, the range is selected by hand,

and the stability of this range is determined by varying the range by ±1 timeslice.

This variation is then propagated to the form factors by completing the analysis for

each fit range and taking half the spread as the systematic error.

Finally, in order to evaluate the systematic error on the form factors due to the 2-

point functions fits, the fit parameters from the top 10 fits of each 2-point function

are used to reperform the analysis with the chosen 4-point function fit ranges. Again

half the range of the resulting form factors is used to determine this component of

the systematic error. The full fit systematics are then taken to be the quadrature

sum of the variation from the 2- and 4-point fit ranges.

131



6.2.2 2-point Functions

The 2-point functions constructed in eq. (6.9) are fit to the single state functional

form

Γ2,B(t,p) =L3|ZB(p)|2
(

1 +
mB

EB(p)

)
e−EB(p)t , (6.30)

with the fit parameters mB and ZB(p), and the dispersion relation EB(p) =√
m2
B + p2 imposed. Figure 6.4 shows the p = 0 effective masses of the p and

Σ 2-point functions. The results of the combined fits to each baryon, with both

momenta p = 0 and p = (2π
L
, 0, 0), are shown in table 6.1. Figures 6.5 and 6.6 show

the variation of the fit parameters over the 10 best scoring fits.
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Figure 6.4 Effective mass of the p (left) and Σ (right) baryon 2-point functions.
Band indicates the mass parameter from the resulting fits. Note this is
a visualisation of the fit result. The fit is not performed to the effective
mass directly, but to the 2-point functions.

Baryon |p| Fit Range Mass |Z(p)| [×10−7] P-value

p
0 [6, 15]

0.6611(66)(67)
4.94(11)(14)

0.972π
24

[6, 11] 3.67(7)(10)

Σ
0 [7, 14]

0.7703(49)(52)
4.90(8)(17)

0.982π
24

[6, 15] 3.86(6)(7)

Table 6.1 Results of fits to 2-point functions of the p and Σ baryons. The first
errors are statistical and the second are systematic resulting from fit
range variation.
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Figure 6.5 Variation of the mass of the p (left) and Σ (right) for the top 10 scoring
fits. Fits are ordered by weight (6.29), with Fit 1 defining the central
value (blue line) and statistical error (dark band). The total error
combining the statistical and systematic error in quadrature is given
by the light band.

	3.55
	3.6
	3.65
	3.7
	3.75
	3.8
	3.85
	3.9
	3.95
	4

	2 	4 	6 	8 	10

Z N
(p
=1
)	[
10
-7
]

Fit

	4.7

	4.8

	4.9

	5

	5.1

	5.2

	5.3

	2 	4 	6 	8 	10

Z Σ
(p
=0
)	[
10
-7
]

Fit

Figure 6.6 Variation of the overlap factors Zp(p) (left) and ZΣ(k) (right) for the
top 10 scoring fits. Fits are ordered by weight (6.29), with Fit 1 defining
the central value (blue line) and statistical error (dark band). The total
error combining the statistical and systematic error in quadrature is
given by the light band.

6.2.3 Scalar Shift Method

Due to the heavy pion mass used in this calculation, the only intermediate state

with an exponentially growing contribution in the integrated 4-point function is the

single proton state at rest. Therefore, the problem of growing contributions can in

principle be resolved using only the scalar shift method discussed in section 5.2.

In order to construct the 4-point function with the shifted weak Hamiltonian
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H ′W = HW − csS, the value of cs must be determined such that the matrix element

〈p(0), r|H ′W |Σ(0), s〉 = 0, and therefore

cs =
〈p(0), r|HW |Σ(0), s〉
〈p(0), r| S |Σ(0), s〉

, (6.31)

which can be measured by fitting a constant to the ratio of 3-point functions

Rs(t, tf ,0) =
Γ3,HW (t, tf ,0)

Γ3,S(t, tf ,0)
. (6.32)

Figure 6.7 shows a fit of this constant for tf = 12 using only the non-eye contribution

to the weak Hamiltonian which gives the result cNE
s = −4.88(40)× 10−3. Figure 6.8

then shows a comparison of the non-eye weak Hamiltonian and scalar 4-point

correlation functions Γ
4,HNE

W
t and cNE

s Γ4S
t . It is clear that the the latter has

significantly larger errors than the former, to such an extent that when taking the

difference no signal is observed. It is therefore clear that with the current level of

statistics, we are unable to apply the scalar shift method to remove the growing

single proton intermediate state, and therefore it must be handled by other means.
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Figure 6.7 Fit to the ratio Rs(t, tf ,0) of the (non-eye) weak Hamiltonian and
the scalar current 3-point functions in eq. (6.32), with a source-sink
separation tf = 12.

134



	0

	2

	4

	6

	8

	10

	0 	2 	4 	6 	8 	10 	12

Γ4
t	[
10
-1
9 ]

t/a

Hw
Scalar
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current µ = t and source sink separation tf = 12. Points are offset
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Figure 6.9 Breakdown of the 4-point correlation function Γ4,HW into non-eye, eye
and total contributions. The source-sink separation is tf = 16, the
current is located at tJ = 8 and the current component is µ = t. Points
are offset on the x-axis for clarity.

6.2.4 4-point Functions

The breakdown of the temporal component of the weak Hamiltonian 4-point function

into non-eye and eye components is given in fig. 6.9. It is clear that the non-eye

diagrams can be significantly resolved, while the eye diagrams have large statistical

errors coming from the stochastic estimation of the quark loop. Due to these large

errors, the total 4-point function is then dominated by the eye type diagrams.

Similarly, fig. 6.10 shows the amputated-integrated 4-point function for each of these

components. While for a fixed tH the central value and error of the eye diagrams

dominates those of the total, when integrated the non-eye diagrams contribute the

most to the central value, although the error is still dominated by the eye-diagrams.

This is likely due to the cancellation of the eye diagrams between neighbouring times

during the integral. This suggests (although more statistics are needed to confirm)

that the eye contribution to the amplitude may be subdominant compared to the

non-eye contribution.

Instead of directly constructing the exponential Ta and Tb dependence in eq. (6.24)

from the 2- and 3-point functions explicitly, we opt to fix the energy of the leading

exponential from the known masses, and leave the coefficient as a fittable parameter.

This is chosen since the explicit construction method introduces additional statistical

error from the measurement of the matrix elements, and therefore gives less precise
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Figure 6.10 Breakdown of the integrated and amputated 4-point correlation
functions Îρ(Ta) (left) and Îσ(Tb) (right) into non-eye, eye and total
contributions. The source-sink separation is tf = 16, the current is
located at tJ = 8 and the current component is µ = t. Points are
offset on the x-axis for clarity.

results. The fit ansätze used are therefore given by

Îρµ(Ta) =fρµ + αρµ e
(mΣ−mp)Ta , (6.33)

Îσµ (Tb) =fσµ + ασµ e
−(EΣ(p)−Ep(p))Tb . (6.34)

The fit to the non-eye contribution for both time orderings is shown in fig. 6.11.

The fit range for the correlator with source sink separation tf and current insertion

at tJ = tf/2, is taken to be Ta, Tb ∈ [1, tJ/2]. This is chosen to balance maximising

the number of fit points, with minimising the contamination from external excited

states. The excited state problem, however, is a very challenging issue to overcome

with such small source-sink separations for which we observe a signal. For reference,

with tf = 16 and tJ = 8, the Ta, Tb = 4 point is a physical distance of 0.44 fm from

the source/sink. The issue of this contamination must therefore be resolved once a

sufficient precision is attained.

Tables 6.2 and 6.3 give the fit results for fXµ defined by eq. (6.26), when fitting to

only the non-eye or eye contributions separately, as well as to the total data. In

addition, the sum of the fit results for the two types of diagrams separately is given.

It can be seen from these results that the eye-type contributions are dominated

by > 100% errors, as would be expected from the large stochastic noise observed

in the correlators. The non-eye contributions, however, have significantly better

errors at the level of 10− 15% when considering the two time orderings separately.

It is therefore unfortunate that these two time orderings have opposite sign and
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Figure 6.11 Fits to the non-eye contribution to the integrated-amputated 4-point
function Îρ(Ta) (left) and Îσ(Tb) (right). The source sink separation
is tf = 16 and the vector current is at tJ = 8.

almost equal magnitude, resulting in a large cancellation when combined together.

This gives a value fNE
µ consistent with zero even though its constituent parts are

individually well resolved.

Parameter Result p-value ft = fρt + fσt

fρ,NE
t 2.16(31) 0.70 −4.7(21.8)× 10−2

fσ,NE
t −2.21(21) 0.40

fρ,Eye
t 0.20(1.03) 0.72 −0.37(1.21)
fσ,Eye
t −0.57(71) 0.32

fNE
t + fEye

t - - −0.42(1.21)
fρt 2.52(1.62) 0.69 −0.25(1.75)
fσt −2.78(92) 0.34

Table 6.2 Fit results for the combined form factor ft from the non-eye and eye
diagrams, as well as all diagrams. In addition the sum of the non-eye
and eye fit values is given. Errors are purely statistical.

Parameter Result p-value fz = fρz + fσz
fρ,NE
z −0.25(6) 0.96 −2.2(5.8)× 10−2

fσ,NE
z 0.23(4) 0.54
fρ,Eye
z 0.16(28) 0.43

0.20(36)
fσ,Eye
z 0.04(20) 0.86

fNE
z + fEye

z - - 0.18(36)
fρz −0.08(28) 0.46

0.19(40)
fσz 0.27(27) 0.85

Table 6.3 Fit results for the combined form factor fz from the non-eye and eye
diagrams, as well as all diagrams. In addition the sum of the non-eye
and eye fit values is given. Errors are purely statistical.

138



Table 6.4 shows the values of the form factors along with their systematic error.

The various results come from inverting eq. (6.22) onto the values given in tables 6.2

and 6.3. Results are given restricted to the non-eye or eye diagrams only, as well as

the sum of the two, and the form factors evaluated from the fits to the sum of all

diagrams.

Figures 6.12 and 6.13 show the variation resulting from the scan over the 2-point

function fits for the non-eye and eye determinations of the a and c form factors

respectively. Figures 6.14 and 6.15 show the stability of the form factors with respect

to the ±1 fit range variation of the two time orderings of the integrated 4-point

functions. Fit 1 in all figures corresponds to the one chosen for the central value

and statistical error. The total systematic error resulting from the fitting procedure

is determined by adding the systematic from these two sources in quadrature.

Form Factor Value (Stat) (Sys)

aNE 5 (16) (7) MeV
cNE 0.009 (30) (15)
aEye −58 (100) (56) MeV
cEye 0.034 (173) (79)

aNE + aEye −53 (100) (56) MeV
cNE + cEye 0.043 (174) (79)

a −53 (114) (97) MeV
c 0.018 (249) (98)

Table 6.4 Results for the positive parity form factors a and c obtained from the
non-eye and eye diagrams separately, as well as the total of these results,
and the form factors extracted from the fit to all diagrams. Fits utilise
only a single source-sink separation tf = 16.
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form factor a, due to the change of input values from the 10 best fits
to each of the 2-point functions. Fit 1 corresponds to the result with
the best 2-point function fits.
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Figure 6.13 Variation of the non-eye (left) and eye (right) contributions to the
form factor c, due to the change of input values from the 10 best fits
to each of the 2-point functions. Fit 1 corresponds to the result with
the best 2-point function fits.
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Figure 6.14 Variation of the non-eye (left) and eye (right) contributions to the
form factor a, due to ±1 change to the fit range for each of the
contributing 4-point functions. Fit 1 corresponds to the chosen fit
range.
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Figure 6.15 Variation of the non-eye (left) and eye (right) contributions to the
form factor c, due to ±1 change to the fit range for each of the
contributing 4-point functions. Fit 1 corresponds to the chosen fit
range.
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6.3 Discussion

It is clear from the results in table 6.4, that the form factors extracted in this

analysis are heavily dominated by statistical errors. This results from two important

observations. First, the noise generated by the quark loops in the eye diagrams

dominates the error at the level of the integrated 4-point correlation functions, and

therefore also dominates in the fit results. From fig. 6.10 we can see that the non-eye

diagrams have the largest contribution to the central value, and it may therefore be

the case that with an increased number of noise hits, the error on the eye diagrams is

reduced to the level that they are either resolved from zero, or that they are negligible

compared to the non-eye contribution. Of course, this remains to be verified once

extra statistics are available. These additional noise hits can be obtained at reduced

cost by using the AMA approach (see section 2.4.3) to reduce the solver tolerance

on the loop propagators, as was done in chapter 3.

The second observation is that, for the non-eye contribution, there is a large

cancellation between the two time orderings of the spectrum fρµ and fσµ . As a result,

a reasonable statistical error on each part individually translates into no signal on

their total. While this cancellation is observed at the level of the integrated spectral

function, ∫ ∞
0

dω
Ppρ̃µ(ω)PΣ

ω − EΣ

' −
∫ ∞

0

dω
Ppσ̃µ(ω)PΣ

ω − Ep
, (6.35)

it is currently unknown if there is also a cancellation directly at the level of the

spectral functions, i.e.

Ppρ̃µ(ω)PΣ

ω − EΣ

' −Ppσ̃µ(ω)PΣ

ω − Ep
, (6.36)

which may be the result of some approximate symmetry (for example SU(3)F or

p = k symmetry). With investigation into the mechanism of this cancellation, it

may be possible to produce an improved approach to the form factor extraction that

avoid such cancellations.

As a result of this large cancellation, it is clear that even with improvements on the

estimation of the eye diagrams, the non-eye contribution also requires improvements.

Under the assumption that they eye diagrams give a small contribution that

can be well resolved in the near future, the non-eye diagrams have an error

not far from the value of the form factors from [105], Re a ∼ 10 MeV and
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Re b ∼ 10−2. It may be therefore be possible to achieve a non-zero result on

this ensemble simply from the 1/
√
N scaling of additional statistics. However,

this will likely be prohibitorily expensive to simulate directly at the physical point

without methodological improvement. This process will therefore heavily benefit

from research into overcoming signal-to-noise problems with variance reduction

techniques, such as multilevel algorithms [130]. Currently it is not known how

to apply multilevel algorithms to higher point correlation functions that are not

trivially factorisable, and it is not known if the technique is applicable to domain

wall fermions, both of which are required in order for this technique to be applied

to this decay.

Finally, once a significant signal is observed for the form factors, it is clear that

excited state contamination must be taken into account. In this study, we have

a minimum separation between the operators and the external state interpolators

of 0.44 fm which will not be enough to reliably isolate the ground state, even with

interpolators tuned to suppress excited states. This contamination could be assessed

and/or removed by using larger time separations, and by incorporating excited

states into the fit ansatz. Both of these methods require additional data points

that are affected by the exponential signal-to-noise loss, and therefore this must

be accompanied by variance reduction techniques, and/or alternate measurements

strategies that are of lower cost.
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CHAPTER

SEVEN

CONCLUSIONS AND OUTLOOK

In this thesis, we have presented the latest work towards calculating the form

factors of the rare kaon and rare hyperon decays, K+ → π+`+`− and Σ+ → p`+`−

respectively, on the lattice. This includes the first calculation of the rare kaon decay

at the physical point; an investigation into methodological improvements for the

rare kaon decay; the extension of the lattice framework to the rare hyperon decay;

and the first exploratory calculation of the rare hyperon decay.

The calculation of rare kaon decay directly at physical pion mass utilises a variety

of techniques to accelerate the measurement process, including low-mode deflation

and the zMöbius action for the light quarks, as well as sparsened noise quark loop

estimation with an AMA bias correction. The resulting measurement of the form

factor parameter is a = −0.87(4.44). The large error of this result is found to stem

from the GIM subtraction of the light and charm loops in the eye-type diagrams.

While the lattice result is currently highly statistics dominated, with an error

approximately 8 times larger than the experimentally measured value, it is only

3 times larger than the existing SM prediction, which is highly discrepant with the

experimental value. It may therefore be possible to achieve a bound comparable

to, or better than, the existing SM prediction in the near future simply via the

1/
√
N scaling of additional statistics. However, in order to achieve a result with

significantly improved errors without extremely high cost, new methodologies must

be investigated. Some promising directions include: cost reduction via direct

summation of the vector current; improvements of quark loop estimation such as
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frequency splitting techniques; and performing the calculation in a 3 flavour theory

in which the GIM cancellation is removed.

We have proceeded to investigate the first of these approaches, in which the time

coordinate of the vector current is summed over the entire lattice directly during the

measurement process, which has been shown to reduce the cost of the calculation.

This is closely linked with the summed method used in many LQCD calculations

of 3-point functions with degenerate initial and final states. We have discussed the

issues associated with breaking this degeneracy in the context of summed 3-point

functions, and shown that the 4-point summed method can in principle be used to

calculate the rare kaon decay, however, only reliably in the degenerate limit. This

significantly restricts the kinematic setups available, and therefore cannot be used as

a general method of computing the rare kaon decay without further modifications.

In addition to the calculation of the rare kaon decay, the original theoretical

framework has been extended to allow for the baryonic equivalent, the rare hyperon

decay, to be calculated on the lattice. This includes the handling of the additional

spin degrees of freedom; the identification and handling of the exponentially growing

intermediate state contributions; the extension of the scalar shift method to baryonic

states; and the correction of the power-like finite volume effects brought about by

on-shell multiparticle finite-volume states.

Finally, this framework is applied in an exploratory calculation of the rare hyperon

decay with an unphysical pion mass mπ = 340 MeV. In this calculation, the finite-

volume Nπ states are above the mΣ threshold, and therefore do not contribute

the finite-volume corrections or growing intermediate states. This leaves only the

problematic single proton state to be accounted for.

In the positive parity sector, the non-eye diagrams are observed to have a clear signal

at the correlator level, while the eye-type diagrams are error dominated due to the

noisy loop estimation. It is however, observed that the error from the eye diagrams

contributes to the integrated correlator at a level below the central value of the non-

eye diagrams. This suggests that with additional statistics on the loop estimators,

the eye diagrams may only give a small contribution to the total. However, this

remains to be seen once additional statistics are available.

Finally, it is observed that with the form factors separated into contributions from

the two time orderings, each ordering contributes to amplitude with approximately

equal magnitude and opposite sign. Therefore, even with a 10 − 15% error on

each contribution, the total non-eye amplitude is not significantly different from
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zero. The errors on the non-eye contributions are, however, of the order of the

phenomenological values, and therefore additional statistics may allow for a non-

zero result to be observed in the near future. Once this level of precision is reached,

the effects of excited state contamination must be taken into account, due to the

short source-sink separations utilised in this analysis.

Of course, with the added difficulty of the baryonic signal-to-noise problem, it is

unlikely a physical point calculation of the rare hyperon decay can be performed in

the near future without methodological improvements. While this decay will benefit

from improvements in the rare kaon decay calculation, investigation into variance

reduction techniques will be required to tackle this exponential degradation of signal.

One such method is the multi-level algorithm, although it is not yet known if this

technique is applicable to processes of this type.
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APPENDIX

A

WICK CONTRACTIONS
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Figure A.1 Diagrams contributing to the rare kaon 4-point correlation function
(3.15) from the Connected (left) and Wing (right) topologies.
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Figure A.2 Diagrams contributing to the rare kaon 4-point correlation function
(3.15) from the Eye (left) and Saucer (right) topologies.
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Rare Hyperon
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Figure A.3 Diagrams contributing to the rare kaon 4-point correlation function
(5.38) from the Connected (left) and Cross-Connected (right)
topologies.
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Figure A.4 Diagrams contributing to the rare kaon 4-point correlation function
(5.38) from the Eye (left) and Saucer (right) topologies.
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APPENDIX

B

FORM FACTORS

Generally the matrix element of an operator O between two baryonic states |B(p), s〉
and |B′(p′), r〉 with momenta p and p′ and spin projections s and r can be split into

the external spinors u and a 4× 4 Dirac-matrix amplitude Ã

Ars(p, p′) = 〈B′(p′), r| O |B(p), s〉 = ūrB′(p
′)Ã(q, k)usB(p) , (B.1)

where we now parametrize in terms of the 4-momenta q = p − p′ and k = p +

p′. We then write Ã in terms of all of the available Dirac-matrix structures Γ ∈
{1, γ5, γµ, γµγ5, σµν} in such a way as the Lorentz structure of the matrix element is

recovered. These terms are associated with a form factor which is a scalar coefficient,

and can only be a function of the Lorentz and spin scalar objects q2 and k2. However,

k2 = 2m2+2m′2−q2 and therefore k2 and q2 are not independent, so the form factors

can be written as only a function of q2.

The base set of Dirac-matrix Lorentz (pseudo-)scalar objects is:

{1, γ5, /q, /qγ5, /k, /kγ5, σµνq
µkν , σµνq

µkνγ5} . (B.2)

The full list of structures is the infinite set of all combinations of these base elements.

These additional structures can always be decomposed into a linear combination of

the base elements using /p/p = p2 and /p/p′ = 2p · p′ − /p′/p for any p, p′.
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The base set of spin-matrix Lorentz (axial-)vectors objects is:

{qµ, qµγ5, kµ, kµγ5, γµ, γµγ5, σµνq
ν , σµνq

νγ5, σµνk
ν , σµνk

νγ5} , (B.3)

where again the infinite combinations can be decomposed in terms of the base set.

B.0.1 Explicit form-factor decompositions

Using the base set for a generic Lorentz (pseudo-)scalar operator S as given above

yields the form factor decomposition

Ars(p, p′) = 〈B′(p′), r| S |B(p), s〉 (B.4)

= ūrB′(p
′)
[
a(q2) + b(q2)γ5

]
usB(p) , (B.5)

which is relevant for the matrix element of the weak Hamiltonian in the rare hyperon

decay. Analogously, using the base set for a generic Lorentz (axial-)vector operator

Jµ one obtains

Arsµ (p, p′) = 〈B′(p′), r| Jµ |B(p), s〉 (B.6)

= ūrB′(p
′)
[
f1(q2)γµ + f2(q2)σµνq

ν + f3(q2)qµ (B.7)

+g1(q2)γµγ5 + g2(q2)σµνq
νγ5 + g3(q2)qµγ5

]
usB(p) ,

where we have used the generalisations of the Gordon decomposition identity with

initial and final states of different mass

ū′σµνk
νu =i(m−m′)ū′γµu− iqµū′u (B.8)

ū′σµνq
νu =i(m+m′)ū′γµu− ikµū′u (B.9)

ū′σµνk
νγ5u =− i(m+m′)ū′γµγ5u− iqµū′γ5u (B.10)

ū′σµνγ5q
νu =− i(m−m′)ū′γµγ5u− ikµū′γ5u . (B.11)

Finally, the relevant amplitude for the rare hyperon decay Σ+ → p`+`− decomposes

like

Arsµ (p, p′) = 〈p(p′), r|HWJµ
∣∣Σ+(p), s

〉
(B.12)

= ūrp(p
′)
[
(q2γµ − /qqµ)(a(q2) + b(q2)γ5) + (c(q2) + d(q2)γ5)σµνq

ν
]
usΣ(p)

(B.13)
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where we have used the Ward-Takahashi identity qµArsµ = 0. Note the different

definitions of momenta in this appendix and in the main text, where the p carries

momentum p and the Σ+ carries momentum k.
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APPENDIX

C

RARE HYPERON FORM FACTOR TRACES

All quantities in this section are understood to be using the Euclidean definitions.

The form factor decomposition of the rare hyperon decay amplitude is given by

Ãµ = σνµq
ν [a− γ5b] +

(
−q2γµ + qµ/q

)
[c− γ5d] , (C.1)

where the form factors a, b, c and d are all functions of the momentum transfer q2.

The object that is accessible on the lattice is the projected spin-matrix amplitude

Pp(p)ÃµPΣ(k) , (C.2)

where the projectors are defined by

PB(p) =
−i/p+mB

2mB

. (C.3)

We define the trace of this object with different gamma structures as

trγ,±µ ≡ Tr
[
Pp(p)Ã±µPΣ(k)γ

]
(C.4)

where the superscript ± indicates the separation between the positive and negative

parity contributions, which can be obtained using either the V V +AA or V A+AV

structures in the 4-quark operators. The goal is to find a complete set of traces and

µ values that give access to all form factors.
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We evaluate these traces for the kinematic point where the Σ+ is at rest k = 0 and

the proton is moving along the x-direction p = (pp, 0, 0). For the positive parity

sector

tr1,+
0 = trγ0,+

0 =−
p2
p

mp

(a+ c(mp +mΣ)) (C.5)

trγ1,+
0 = trγ1γ0,+

0 =i
pp(Ep −mp)

mp

(a+ c(mp +mΣ)) (C.6)

trγ2,+
2 = trγ2γ0,+

2 =− (Ep −mp)

mp

[
a(mp +mΣ+) + c((Ep −mΣ+)2 − p2

p)
]

(C.7)

trγ3γ5,+
2 = trγ1γ2,+

2 =i
pp
mp

[
a(mp +mΣ+) + c((Ep −mΣ+)2 − p2

p)
]
, (C.8)

and for the negative parity sector

trγ5,−
0 = trγ0γ5,−

0 =−
p2
p

mp

(b+ d(mp −mΣ+)) (C.9)

trγ1γ5,−
0 = trγ0γ1,−

0 =i
pp(mp + Ep)

mp

(b+ d(mp −mΣ+)) (C.10)

trγ3,−
2 = trγ3γ0,−

2 =− i pp
mp

[
b(mp −mΣ+) + d((Ep −mΣ+)2 − p2

p)
]

(C.11)

trγ2γ5,−
2 = −trγ1γ3,−

2 =
(Ep +mp)

mp

[
b(mp −mΣ+) + d((Ep −mΣ+)2 − p2

p)
]
. (C.12)

Traces with all other gamma matrices vanish identically, and similar relations can

be obtained for the 2 remaining µ = 1, 3. It can be seen that these results can be

separated into a prefactor that depends on the value of µ and the gamma structure,

and a combination of form factors that is only dependent on µ

trγ,±µ = ζγ,±µ f±µ . (C.13)

With f±0 and f±2 , the form factors can then be isolated by inverting the linear systems(
f+

0

f+
2

)
=

(
1 mp +mΣ

mp +mΣ q2

)(
a

c

)
(C.14)(

f−0
f−2

)
=

(
1 mp −mΣ

mp −mΣ q2

)(
b

d

)
, (C.15)

where we have identified q2 = (Ep −mΣ+)2 − p2
p as the momentum transfer.
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APPENDIX

D

SPIN 3/2

Rarita-Schwinger equation of motion for massive spin-3
2

fermions is given by

[εµνρσγ5γρ∂σ − imσµν ]ψν(x) = 0 , (D.1)

which can be equivalently decomposed into 4 equations [39]

[
∂ν∂

ν +m2
]
ψµ(x) = 0 (D.2)[

i/∂ −m
]
ψµ(x) = 0 (D.3)

∂µψµ(x) = 0 (D.4)

γµψµ(x) = 0 . (D.5)

The first and second are the Klein-Gordon and Dirac equations that are satisfied for

each µ component separately, and the third and fourth are the additional constraints

specific for spin-3
2

particles.

As shown in [39], the positive and negative energy spinor solutions can be written

as

uµs (p) =
1∑

λ=−1

1/2∑
m=−1/2

Csλm ε
µ
λ(p)um(p) δλ+m,s (D.6)

vµs (p) =
1∑

λ=−1

1/2∑
m=−1/2

Csλm ε
µ
λ
∗(p) vm(p) δλ+m,s . (D.7)
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Here s ∈ {±3
2
,±1

2
}, and the spinors u and v without the Lorentz index µ are the

spin-1
2

solutions to the Dirac equation. ε is the spin-1 solution to the Proca equation,

and Csλm the Clebsch-Gordan coefficients

Csλm =

√
(3/2 + s)!(3/2−m)!

3(1 + λ)!(1− λ)!(1/2 +m)!(1/2−m)!
. (D.8)

From [131], it can be seen that the positive energy solutions satisfy the orthogonality

relation

ūµ(p, s)uµ(p, s′) = −2mδss′ (D.9)

and the completeness relation

Πµν(p) =

3/2∑
s=−3/2

uµ(p, s)ūν(p, s) (D.10)

=− (/p+m)
(
ηµν −

pµpν
m2

)
− 1

3

(
γµ +

pµ
m

)
(/p−m)

(
γν +

pν
m

)
(D.11)

The stationary solution with p = 0 is the special case relevant in this work. In this

limit, the completeness relation becomes

Πµν(0) = −2mP+ (ηµν − δ0µδ0ν) +
2m

3
(γµ + δ0µ)P− (γν + δ0ν) (D.12)

where P± = 1
2
(1± γt) are the parity projectors. The only non-zero components are

the spatial ones

Πij(0) = 2mP+(δij +
1

3
γiγj) . (D.13)

which written in Euclidean form is equivalent to that given in [132]

ΠE
ij(0) = 2mP+(δij −

1

3
γEi γ

E
j ) . (D.14)
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LATTICE2011:051, 2011.

[28] Antonin Portelli, Ryan Abott, Nils Asmussen, Alessandro Barone, Peter A
Boyle, Felix Erben, Nelson Lachini, Michael Marshall, Vera Gülpers, Ryan C
Hill, Raoul Hodgson, Fabian Joswig, Fionn Ó hÓgáin, and James P Richings.
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