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The COVID-19 pandemic has become a global public health crisis, causing significant morbidity 
and mortality worldwide. As an early response, different lockdowns were imposed in the UK 
(and the world) to limit the spread of the disease. Although effective, these measures profoundly 
impacted mobility patterns across cities, significantly reducing the number of people commuting 
to work or travelling for leisure. As different governments introduced massive vaccination 
programs to tackle the pandemic, cities have significantly but slowly increased human mobility, 
enabling the resumption of travel, work, and social activities. Nevertheless, how much can this 
return to normal mobility patterns be attributed to vaccines? In this study, we answer this 
question using a statistical approach, analysing two different open urban mobility datasets to 
quantify the effect vaccination rollouts have had on increased human activities.

1. Introduction

In light of the COVID-19 pandemic, public health authorities worldwide initially responded with different restrictive, non-
pharmaceutical measures, from promoting the washing of hands to restricting the movement of people and establishing different 
rules concerning where and for what purposes people can meet and interact [1–6]. These restrictive measures have profoundly im-
pacted human mobility across several cities around the world [7–9]. Particularly, in the UK, at its most restrictive phase (26th March 
2020 to 21st June 2020), only essential workers were allowed to travel to work [10], which accounts for roughly only 20% of the 
population [11].

From the early stages of the pandemic, vaccination emerged as the most viable, permanent solution to contain, if not the number 
of infections, the number of hospitalisations that was one of the most pressuring factors worldwide [12–17]. The COVID-19 vaccines 
effectively prevent severe illness, hospitalisation and death. Vaccination protects the individual and contributes to community immu-
nity, which can help control the spread of the virus. By December 2020, the UK government set up a vaccine delivery plan to ensure 
the general population would have access to a safe and effective vaccine against COVID-19 [18]. Phase one offered only the vaccine 
to those aged 50 and over and those in clinical risk groups. From April 2021, the vaccine was offered to adults aged 18 to 49. Later 
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Fig. 1. The change of mobility and vaccination in London. The total mobility corresponds to the aggregated Google and Apple daily counts. We can observe an increase 
in mobility from June 2021, around the same time the UK vaccination program peaked. No causation is implied at this point. Nevertheless, a positive correlation is 
observed. Prepared by the authors from: Apple [27], Google [28], UK Health Security Agency [35].

that same year, aiming to maintain protection against COVID-19, a booster program took place to deliver new vaccine doses in the 
winter of 2021.

Vaccination programs had a positive impact in reducing the number of hospitalisation worldwide [19,20]. Particularly in England 
[21,22], the positive effect of this vaccination program and the easing of restricting measures was clear by March 2021, when a 
substantial drop in COVID-19-related hospitalisations was observed while the number of vaccinated people incrementally raised. 
However, this positive effect was observed not only in the number of hospitalisations but in the movement of people, as shown in 
Fig. 1. Previous research has already shown a link between vaccines and mobility, plus easing restrictions and COVID fatigue [23,24].

This study examined the linkage between human mobility and vaccination in the context of the COVID-19 pandemic [25,26].
We hypothesise that the reduction in COVID-19 cases does not fully explain the change in mobility. To test our hypothesis, 

we propose a regression model to explain the change in daily mobility based on the number of people vaccinated, the number of 
COVID-19 cases and the average daily temperature.

We organise the rest of this paper as follows: first, we review different human mobility patterns during the years 2020 and 2021, 
using as proxy Apple and Google mobility data; in section three, we propose two different linear regression models to measure the 
impact of the vaccination program and compare our results against a Null model; finally, we explore our results compared them 
against actual data drawing a set of conclusions and future directions.

2. Data

2.1. Mobility data

After the outbreak of the COVID-19 pandemic, Apple [27] and Google [28] released daily mobility figures that and has been 
extensively used as a proxy for transport activities in current studies [29–34]. The Apple data have three categories of human 
mobility: driving, transit and walking (Fig. 2), while the Google data includes six categories: retail and recreation (R&R), grocery and 
pharmacy (G&P), parks, transit stations (TS), workplaces and residential. In this work, to generally understand the mobility changes 
induced by vaccinations, we focus on transport mode instead of a type of location and group all categories of mobility from Apple 
and Google as the total mobility.

This increase in the mobility change ratio happened at a different rate for all transport modes. Plotting each mode individually 
(Fig. 2), we can trace the changes by mode and their relationship with the differences between the 1st and 3rd lockdowns after the 
loosening of travel restriction policies. When the 1st lockdown began to ease in London, the recovery speed of Driving mobility was 
the fastest, followed by Walking, and finally, Transit. There are obvious gaps between the three modes, and Driving tends to widen 
the gap with the other two modes. However, the situation was different during the third lockdown easing. Driving recovered the 
fastest at first, followed by Transit and Walking, which are about the same. During this time, Driving did not widen the gap with the 
other two modes, and even the growth in the mobility of the other two modes finally surpassed that of Driving. Also, we find that 
compared with the first lockdown and lockdown ease period, people tend to take more trips after the vaccination programme starts 
in London. It should be noted that, unlike the 1st lockdown, the entire 3rd lockdown period followed the launch of the vaccination 
programme.
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Fig. 2. Mobility for the three transportation modes in London in 2020 and 2021. The shaded areas represent the different lockdown stages. It is clear the abrupt 
drop in mobility counts when the first lockdown was declared and how slow it tried to recover during the No-lockdown periods. The increase in mobility since the 
beginning of the 3rd lockdown led to the typical pattern observed in December 2019, before the start of the Pandemic. Prepared by the authors from: Apple [27], UK 
Health Security Agency [35].

Fig. 3. Underground ridership in London in 2019 and 2020. Prepared by the authors from: TfL [36].

We originally planned to compare the changes in mobility between 2019 and subsequent years to clarify the link between the 
epidemic, vaccinations, and travel. However, neither Apple nor Google provided mobility data before the epidemic. So we used data 
from the London Underground to show how people’s travel changed before and after the epidemic. The data we use comes from a 
database developed by TfL [36], and the raw data includes the average number of people entering and leaving the station every 15 
minutes a day at each station in London in a certain year. We add up the number of people entering and leaving the station at each 
period at all stations to represent the average ridership of the London Underground in that period (Fig. 3). From the figure, we find 
that the ridership of the London Underground in 2020 has declined significantly compared with that in almost all periods in 2019. 
The most severe decline occurred during the morning and evening rush hours, making the peak ridership of the underground appears
more moderate compared to noon in 2020.
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Table 1

Descriptive statistics for the input data.

Stage N Variable Mean Median Std Dev Min Max

1st lockdown 46 Driving (%) 33.87 33.91 4.99 22.54 43.56
Transit (%) 14.51 14.11 1.71 11.21 18.45
Walking (%) 26.28 26.25 4.56 17.83 40.92
Driving/Transit 2.33 2.38 0.20 1.75 2.70
Walking/Transit 1.82 1.80 0.27 1.27 2.36
Vac (person) 0.00 0.00 0.00 0.00 0.00
COVID (person) 532.50 510.00 253.95 123.00 1063.00
Temp (°C) 12.25 12.35 3.14 5.30 17.60

1st lockdown ease 55 Driving (%) 70.88 70.69 12.92 40.83 96.68
Transit (%) 32.91 31.34 8.53 18.60 50.91
Walking (%) 46.32 44.90 8.30 28.94 67.33
Driving/Transit 2.20 2.20 0.21 1.80 2.65
Walking/Transit 1.45 1.38 0.23 1.14 2.11
Vac (person) 0.00 0.00 0.00 0.00 0.00
COVID (person) 67.49 52.00 42.44 22.00 203.00
Temp (°C) 16.85 17.40 3.43 9.20 24.90

3rd lockdown 62 Driving (%) 63.18 62.28 8.27 43.39 83.80
Transit (%) 39.48 36.65 6.10 32.37 53.59
Walking (%) 44.89 42.91 7.80 29.99 73.42
Driving/Transit 1.61 1.65 0.13 1.29 1.85
Walking/Transit 1.14 1.12 0.11 0.85 1.45
Vac (person) 678100.65 561603.50 488739.57 80006.00 1627104.00
COVID (person) 3636.87 2023.00 3566.30 416.00 13885.00
Temp (°C) 5.94 6.30 3.61 −0.80 13.70

3rd lockdown ease 62 Driving (%) 104.24 104.10 18.33 65.83 149.11
Transit (%) 94.77 92.75 27.24 48.39 150.00
Walking (%) 90.41 86.18 27.57 45.28 162.50
Driving/Transit 1.14 1.12 0.18 0.82 1.55
Walking/Transit 0.96 0.95 0.08 0.79 1.21
Vac (person) 3322979.56 3143611.00 930899.50 1655679.00 4831843.00
COVID (person) 1172.77 457.00 1563.08 183.00 7817.00
Temp (°C) 13.29 11.80 4.79 3.50 24.40

2.2. Vaccination and COVID case data

To measure the severity of the COVID-19 pandemic, we use the daily number of new COVID-19 cases in London as an independent 
variable in our model. The case data are drawn from the coronavirus in the UK dashboard developed by the UK Health Security 
Agency [35]. This dashboard provides up-to-date and authoritative information about the COVID-19 pandemic. From this data, we 
only considered people aged between 12 and 69 who received the first vaccine dose in London. Younger and older people, due to 
physical limitations, lack of commuting purposes or smartphones, are misrepresented in Apple data.

2.3. Temperature data

As this study uses daily time series data for a region with an overall time span of two years, and the regressions and causality test 
uses a period of less than one year, we assume that factors such as London’s demographics, infrastructure, and economic indicators 
do not change over the study period, excluding them as influences on mobility. However, seasonal changes are more sensitive to 
temporal changes. Therefore, for time series data, special attention needs to be paid to seasonal changes. On the one hand, the two 
lockdowns studied in this research each span different months of a year, and that time span is long enough to cause significant 
changes in temperature. On the other hand, the weather is another important factor that could influence human activity [37–39]. 
Thereby, We use the daily average temperature in London as a variable in our model as a proxy of weather. Our temperature data is 
from the official weather station at St James’ Park in London, obtained by Meteomanz [40].

The model introduced in the next section uses the mobility (by transport mode), vaccination, temperature and COVID cases 
data described as input. Table 1 shows the descriptive statistics for these variables during the different lockdown stages in the UK. 
The mean and median values give an approximate picture of the situation over the period. Compared with the first lockdown and 
lockdown ease period, people tend to take more trips after the vaccination programme starts in London. As in Fig. 1, the observed 
variables follow the logic of these stages, incrementing their values over time. For example, the mean for walking during the 1st 
lockdown is 26.29, increasing to 90.41 at the 3rd lockdown ease. It’s notable that the number of vaccinated population is zero for 
the first 1st lockdown and its ease.
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3. Methods

3.1. Regression model

To determine the relationship between the vaccination campaign and London’s human mobility, a classic Linear Regression 
model is established in our study [41]. Linear regression has good interpretability because it can demonstrate a simple linear 
relationship between the independent and dependent variables through the coefficients of the variables in the model. Also, due to 
its simplicity, linear regression is an easy-to-use model. Because of these characteristics, empirical studies focusing on transportation 
during epidemics also favour this method [42–46]. It should be noted that the linear regression model needs to focus on the goodness 
of fit, the normality of residuals, the homogeneity of variance, and multicollinearity to ensure that the model is effective and 
unbiased. The validated model can draw easily interpretable conclusions from regression coefficients, coefficient significance, model 
significance, goodness of fit, and other aspects.

In this case, they can help us identify potential causal relationships between vaccination and transportation modes during 1st and 
3rd lockdown stages.

We can express the relationship between our variables as follows:

𝑀𝑡 =Φ𝑋𝑡 +Σ𝑡 (1)

where

𝑀𝑡 =

⎡⎢⎢⎢⎢⎢⎣

𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝑡
𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑡
𝑊 𝑎𝑙𝑘𝑖𝑛𝑔𝑡

𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝑡∕𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑡
𝑊 𝑎𝑙𝑘𝑖𝑛𝑔𝑡∕𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑡

⎤⎥⎥⎥⎥⎥⎦
, 𝑋𝑡 =

⎡⎢⎢⎣
𝑉 𝑎𝑐𝑡−3

𝐶𝑂𝑉 𝐼𝐷𝑡

𝑇 𝑒𝑚𝑝𝑡

⎤⎥⎥⎦
.

Φ is the coefficient matrix and Σ𝑡 are the regression errors. The Vector 𝑋𝑡 is the model’s input (independent variables), composed by:

• 𝑉 𝑎𝑐𝑡−3 - Cumulative number of people aged between 12 and 69 who received the first vaccination dose on the day 𝑡 − 3. The 12 
to 69 restriction is due to physical limitations and the lack of commuting purposes that make younger children and older people 
travel less.

• 𝐶𝑂𝑉 𝐼𝐷𝑡-The number of daily new COVID cases on day 𝑡.
• 𝑇 𝑒𝑚𝑝𝑡-Average temperature (°C) on day 𝑡. The two lockdown stages analysed span several months and have seasonal differences, 

so we use 𝑇 𝑒𝑚𝑝 to control seasonal factors.

As in any standard linear model, we will use 𝑋𝑡 as an explanatory vector at 𝑡.
In addition to the observed data, we developed two new dependent variables, 𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝑡∕𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑡 and 𝑊 𝑎𝑙𝑘𝑖𝑛𝑔𝑡∕𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑡, which 

are referred to as mobility ratio in our study. We use this ratio to observe the relative changes between driving and transit mobility 
and between walking and transit mobility.

Based on the UK’s lockdown phases, we ran separate regressions using the following two samples:

• Sample 1 for lockdown phases one and three
• Sample 2 for ease phases one and three

3.2. Null model

To provide a baseline against which our results can be compared, we define the null model in Eq. (2)

𝑀𝑡 = 𝜓𝑋𝑛𝑢𝑙𝑙
𝑡

+Σ𝑛𝑢𝑙𝑙
𝑡

(2)

where 𝑋𝑛𝑢𝑙𝑙
𝑡

denotes the explanatory vector at time 𝑡; Ψ, the coefficient matrix; and Σ𝑛𝑢𝑙𝑙
𝑡

denotes the regression errors. In this case, 
𝑋𝑛𝑢𝑙𝑙

𝑡
does not include the variable 𝑉 𝑎𝑐𝑡−3, assuming that vaccination has no effect or relationship with mobility.

In addition to our models, we conducted a causality analysis based on the Toda-Yamamoto to further explore the relation between 
vaccinations and mobility methods.

3.3. Toda-Yamamoto causality test

In most real-life phenomena, it is incorrect to directly test the causal relationship between variables, such as Granger causality 
testing between inappropriate time series [47]. The Toda-Yamamoto causality test has been proposed as a robust alternative to 
extracting causal relationships between time series [48], which adds additional lags instead of requiring variables to be stationary or 
cointegrated [49–51]. In this study, the formulation of augmented VAR is shown as follows:
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𝑙𝑛𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑡 = 𝐶1 +
𝑝+𝑑𝑚𝑎𝑥∑
𝑖=1

𝛼1𝑖𝑙𝑛𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑡−𝑖 +
𝑝+𝑑𝑚𝑎𝑥∑
𝑖=1

𝛽1𝑖𝑙𝑛𝑉 𝑎𝑐𝑡−𝑖 +
𝑝+𝑑𝑚𝑎𝑥∑
𝑖=1

𝛾1𝑖𝑙𝑛𝐶𝑂𝑉 𝐼𝐷𝑡−𝑖 + 𝜖1𝑡

𝑙𝑛𝑉 𝑎𝑐𝑡 = 𝐶2 +
𝑝+𝑑𝑚𝑎𝑥∑
𝑖=1

𝛼2𝑖𝑙𝑛𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑡−𝑖 +
𝑝+𝑑𝑚𝑎𝑥∑
𝑖=1

𝛽2𝑖𝑙𝑛𝑉 𝑎𝑐𝑡−𝑖 +
𝑝+𝑑𝑚𝑎𝑥∑
𝑖=1

𝛾2𝑖𝑙𝑛𝐶𝑂𝑉 𝐼𝐷𝑡−𝑖 + 𝜖2𝑡

𝑙𝑛𝐶𝑂𝑉 𝐼𝐷𝑡 = 𝐶3 +
𝑝+𝑑𝑚𝑎𝑥∑
𝑖=1

𝛼3𝑖𝑙𝑛𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑡−𝑖 +
𝑝+𝑑𝑚𝑎𝑥∑
𝑖=1

𝛽3𝑖𝑙𝑛𝑉 𝑎𝑐𝑡−𝑖 +
𝑝+𝑑𝑚𝑎𝑥∑
𝑖=1

𝛾3𝑖𝑙𝑛𝐶𝑂𝑉 𝐼𝐷𝑡−𝑖 + 𝜖3𝑡

(3)

where 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 represents the sum of Apple mobility and Google mobility. 𝑝 is the optimal lag length of original var model, 𝑑𝑚𝑎𝑥 is 
the maximal order of integration of the variables. 𝜖 is the error term. The Toda-Yamamoto method is based on the null hypothesis 
expressed as zero restrictions on the coefficients of the augmented VAR model. For example, reject the null hypothesis that 𝛾11 = 𝛾12 =
⋯ = 𝛾1𝑝 = 0 implies a unidirectional causality from the COVID cases to the overall mobility. Afterwards, we can determine whether 
to reject these null assumptions about coefficients by detecting the Wald statistic (𝜒2).

For the Toda-Yamamoto test, we used the daily data from 6th January 2021 to 31st October 2021 for London, as the 6th was the 
start of the third lockdown in England, and the UK vaccination programme started before December 2020.

For all our analyses, we used the SPSS (version 26.0) and EVIEWS (version 10.0) statistical software.

4. Results and discussion

4.1. Regression model

We first performed logarithmic transformation on all variables to ensure the normality and homogeneity of variance of the model 
residuals. Table 2 shows the regression results of Eq. (1). As we can see from the result of Sample 1, the Vac (𝑉 𝑎𝑐𝑡−3 variable) term 
has a positive and significant effect on the mobility of driving, transit and walking (i.e., the Apple mobility), with transit being the 
most affected. For every 0.1 increase in lnVac, lnTransit will increase by 0.0086%. As for Google mobility, results show that the Vac 
term positively influenced the mobility of R&R, G&P, Parks, TS and workplaces while negatively affecting the mobility of residential. 
For the COVID variable, the results indicate that additional new COVID cases are negatively associated with the mobility of driving, 
transit, walking, R&R, G&P, parks, TS, and workplaces.

According to the regression results of Sample 2, the vaccination progress has a significant and positive impact on all types of 
mobility except for residential mobility. In addition, it can be seen that transit mobility is most affected by vaccination, as it has the 
largest lnVac coefficient and for every 0.1 increase in lnVac, the transit mobility rate increases by 0.009%. Moreover, the daily new 
COVID cases are found to be negatively associated with all types of mobility except for residential mobility.

Furthermore, it is worth noting that the temperature impact in Sample 2 is relatively more significant than in Sample 1, indicating 
that people tend to consider temperature factors more during the lockdown ease phase.

As described in Section 2, changes in how people travel were observed during the first and third lockdown ease stage, and 
the results of descriptive statistics confirmed this change. We also want to explore the relationship between these changes and 
vaccination. Therefore, we used the ratio of driving mobility to transit mobility and walking mobility to transit mobility as the 
dependent variable to run the regressions, respectively, and the results are shown in Table 3. According to our results, vaccination 
progress at the lockdown ease stage negatively impacted these two ratios at the 1% significance level. Furthermore, the results 
indicate that the additional daily new COVID cases would significantly increase both ratios. The results also showed that the impact 
of vaccination on 𝐷𝑟𝑖𝑣𝑖𝑛𝑔∕𝑇 𝑟𝑎𝑛𝑠𝑖𝑡 was greater than on 𝑊 𝑎𝑙𝑘𝑖𝑛𝑔∕𝑇 𝑟𝑎𝑛𝑠𝑖𝑡, and for every 0.1 increase in lnVac could lead to a 0.0082 
reduction in the 𝐷𝑟𝑖𝑣𝑖𝑛𝑔∕𝑇 𝑟𝑎𝑛𝑠𝑖𝑡.

In addition, several diagnostic tests were performed to evaluate the validity of the regression model. First, we tested multi-
collinearity for each variable. The variance inflation factor (VIF) for 𝑙𝑛𝑉 𝑎𝑐𝑡−3, 𝑙𝑛𝐶𝑂𝑉 𝐼𝐷 and 𝑙𝑛𝑇 𝑒𝑚𝑝 in Sample 1 is 1.684, 1.648, 
and 1.463, and in Sample 2, it is 4.444, 3.975, and 1.622, respectively. The VIF values for all variables in both samples are lower 
than 5, indicating insufficient evidence of collinearity between variables.

Second, a normal probability plot like the one in Fig. 4 was plotted for each model to check whether the model residuals followed 
a normal distribution. The closer the distribution of the scatter is to the straight line in the graph, the closer the distribution of the 
residuals is to the normal distribution.

Third, We also plotted residual vs predicted values for each model to observe whether the model follows the same variance 
assumption. As shown in Fig. 5, the model does not have heteroscedasticity if scattering points are randomly distributed within a 
certain residual range.

Finally, in Appendix A, we compare our model with the null model regarding the observed versus modelled trends. All of the 
diagnostic plots of the other models are shown in Appendix B.

4.2. Null model

Table 4 displays the outcomes of the null model. The results show that once the variable 𝑉 𝑎𝑐𝑡−3 was removed, each model’s 
adjusted r-squared dropped significantly for both samples. Adjusted r-squared is used to measure the goodness of fit of the regression 
model while considering the effect of the number of variables on the fitting. In this case, the value of the adjusted r-squared increases 
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Table 2

Regression results with the mobility as the dependent variable for the two sample groups.

Dependent 
variable

Independent 
variable

Sample 1 Sample 2

Coef. Std.Error Std.Coef. Coef. Std.Error Std.Coef.

lnDriving Constant 3.764∗∗∗ 0.099 3.295∗∗∗ 0.080
lnVac 0.056∗∗∗ 0.002 1.054 0.042∗∗∗ 0.003 1.114
lnCOVID −0.049∗∗∗ 0.012 −0.166 −0.048∗∗∗ 0.014 −0.263
lnTemp 0.020 0.017 0.046 0.407∗∗∗ 0.033 0.583
Adjusted 𝑅2 0.891 0.735

lnTransit Constant 3.068∗∗∗ 0.064 1.823∗∗∗ 0.118
lnVac 0.086∗∗∗ 0.001 1.081 0.090∗∗∗ 0.004 1.089
lnCOVID −0.069∗∗∗ 0.008 −0.157 −0.043∗∗ 0.020 −0.107
lnTemp 0.011 0.011 0.017 0.645∗∗∗ 0.050 0.419
Adjusted 𝑅2 0.979 0.880

lnWalking Constant 3.526∗∗∗ 0.114 2.265∗∗∗ 0.115
lnVac 0.053∗∗∗ 0.003 1.079 0.057∗∗∗ 0.004 0.969
lnCOVID −0.063∗∗∗ 0.014 −0.234 −0.018 0.020 −0.064
lnTemp 0.049∗∗ 0.020 0.121 0.580∗∗∗ 0.048 0.526
Adjusted 𝑅2 0.829 0.779

lnR&R Constant 3.140∗∗∗ 0.107 2.234∗∗∗ 0.100
lnVac 0.045∗∗∗ 0.002 1.021 0.052∗∗∗ 0.004 1.025
lnCOVID −0.039∗∗∗ 0.013 −0.160 −0.030∗ 0.017 −0.125
lnTemp 0.025 0.019 0.068 0.483∗∗∗ 0.042 0.514
Adjusted 𝑅2 0.817 0.768

lnG&P Constant 4.410∗∗∗ 0.069 4.113∗∗∗ 0.033
lnVac 0.018∗∗∗ 0.002 0.940 0.015∗∗∗ 0.001 1.032
lnCOVID −0.040∗∗∗ 0.009 −0.379 −0.011∗∗ 0.006 −0.159
lnTemp 0.003 0.012 0.022 0.111∗∗∗ 0.014 0.403
Adjusted 𝑅2 0.586 0.705

lnParks Constant 4.701∗∗∗ 0.196 4.190∗∗∗ 0.130
lnVac 0.023∗∗∗ 0.004 0.573 0.010∗∗ 0.005 0.301
lnCOVID −0.094∗∗∗ 0.024 −0.426 −0.053∗∗ 0.022 −0.317
lnTemp 0.100∗∗∗ 0.034 0.305 0.323∗∗∗ 0.055 0.502
Adjusted 𝑅2 0.245 0.161

lnTS Constant 3.448∗∗∗ 0.071 2.746∗∗∗ 0.072
lnVac 0.033∗∗∗ 0.002 1.099 0.040∗∗∗ 0.003 1.159
lnCOVID −0.058∗∗∗ 0.009 −0.348 −0.050∗∗∗ 0.012 −0.304
lnTemp 0.017 0.012 0.067 0.361∗∗∗ 0.030 0.565
Adjusted 𝑅2 0.829 0.739

lnWorkplaces Constant 3.909∗∗∗ 0.222 3.120∗∗∗ 0.162
lnVac 0.043∗∗∗ 0.005 0.789 0.042∗∗∗ 0.006 0.886
lnCOVID −0.080∗∗∗ 0.028 −0.264 −0.082∗∗∗ 0.028 −0.360
lnTemp −0.031 0.039 −0.069 0.344∗∗∗ 0.068 0.393
Adjusted 𝑅2 0.475 0.305

lnResidential Constant 4.752∗∗∗ 0.040 4.978∗∗∗ 0.029
lnVac −0.006∗∗∗ 0.001 −0.713 −0.010∗∗∗ 0.001 −1.058
lnCOVID 0.017∗∗∗ 0.005 0.351 0.018∗∗∗ 0.005 0.379
lnTemp 0.002 0.007 0.024 −0.087∗∗∗ 0.012 −0.482
Adjusted 𝑅2 0.329 0.493

Note: ∗ , ∗∗ and ∗∗∗ denote significance at 10%, 5% and 1% levels respectively.

Table 3

Regression results with the mobility ratio as the dependent variable for Sample 2.

Dependent variable Independent variable Coef. Std.Error Std.Coef.

Driving/Transit Constant 3.002∗∗∗ 0.086
lnVac −0.082∗∗∗ 0.003 −1.082
lnCOVID 0.029∗∗ 0.015 0.079
lnTemp −0.327∗∗∗ 0.036 −0.232
Adjusted 𝑅2 0.925

Walking/Transit Constant 1.545∗∗∗ 0.084
lnVac −0.041∗∗∗ 0.003 −1.052
lnCOVID 0.039∗∗∗ 0.014 0.203
lnTemp −0.089∗∗ 0.035 −0.122
Adjusted 𝑅2 0.730

Note: ∗ , ∗∗ and ∗∗∗ denote significance at 10%, 5% and 1% levels respectively.



Heliyon 9 (2023) e18769

8

H. Bei, P. Li, Z. Cai et al.

Fig. 4. Residual Normal Probability Graph of the Model with lnDriving as the Dependent Variable in Sample 2.

Fig. 5. Residual vs predicted values plot of the Model with lnDriving as the Dependent Variable in Sample 2.

when the 𝑉 𝑎𝑐𝑡−3 variable is in place, improving the model fit. In other words, compared with the Null model, vaccination played an 
important role in explaining the increase in mobility. We show the corresponding Null model for the Google data in Table 5.

4.3. Toda-Yamamoto test results

To estimate the augmented VAR model (Eq. (3)) for the Toda-Yamamoto test, the augmented Dicky-Fuller (ADF) test is used to 
examine the order of integration of the involved variables. From the results presented in Table 6, it can be seen that the 𝑙𝑛𝑉 𝑎𝑐 series 
reject the null hypothesis of a unit root at levels, and all variables reject the null hypothesis at the first differenced level. Furthermore, 
these results indicate that the 𝑙𝑛𝑉 𝑎𝑐 is a stationary series, while the 𝑙𝑛𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 and the 𝑙𝑛𝐶𝑜𝑣𝑖𝑑 are I(1) series. Thus, we determined 
that the maximal order of integration of all the variables is one.

Next, the Akaike Information Criterion (AIC) is used to determine the optimal lag order and cross-check it with the Schwarz 
information criterion (SC) and the Hannan-Quinn information criterion (HQ). As shown in Table 7, the lag structure results suggest 
that the optimal lag length for the VAR model is nine. Finally, the augmented VAR model is estimated with the maximal order of 
integration and the optimal lag length.
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Table 4

Null model results with the mobility as the dependent variable for the two sample groups.

Dependent 
variable

Independent 
variable

Sample 1 Sample 2

Coef. Std.Error Std.Coef. Coef. Std.Error Std.Coef.

lnDriving Constant 3.478∗∗∗ 0.262 3.538∗∗∗ 0.111
lnCOVID 0.088∗∗∗ 0.029 0.299 0.117∗∗∗ 0.010 0.648
lnTemp −0.114∗∗∗ 0.044 −0.261 0.117∗∗∗ 0.038 0.167
Adjusted 𝑅2 0.219 0.454

lnTransit Constant 2.626∗∗∗ 0.380 2.347∗∗∗ 0.208
lnCOVID 0.141∗∗∗ 0.043 0.320 0.313∗∗ 0.018 0.783
lnTemp −0.196∗∗∗ 0.063 −0.298 0.019 0.070 0.012
Adjusted 𝑅2 0.272 0.611

lnWalking Constant 3.256∗∗∗ 0.255 2.599∗∗∗ 0.157
lnCOVID 0.065∗∗∗ 0.029 0.242 0.208∗∗∗ 0.014 0.729
lnTemp −0.078∗∗ 0.043 −0.193 0.182∗∗∗ 0.053 0.165
Adjusted 𝑅2 0.125 0.566

Note: ∗ , ∗∗ and ∗∗∗ denote significance at 10%, 5% and 1% levels respectively.

Table 5

Null Model results with the mobility as the dependent variable for the two sample groups.

Dependent 
variable

Independent 
variable

Sample 1 Sample 2

Coef. Std.Error Std.Coef. Coef. Std.Error Std.Coef.

lnR&R Constant 2.907∗∗∗ 0.225 2.535∗∗∗ 0.139
lnCOVID 0.072∗∗∗ 0.025 0.291 0.174∗∗∗ 0.012 0.713
lnTemp −0.084∗∗ 0.037 −0.230 0.124∗∗∗ 0.047 0.131
Adjusted 𝑅2 0.187 0.531

lnG&P Constant 4.318∗∗∗ 0.104 4.202∗∗∗ 0.044
lnCOVID 0.004 0.012 0.036 0.049∗∗∗ 0.004 0.685
lnTemp −0.040∗∗ 0.017 −0.251 0.005 0.015 0.018
Adjusted 𝑅2 0.055 0.465

lnParks Constant 4.584∗∗∗ 0.217 4.251∗∗∗ 0.129
lnCOVID −0.038 0.024 −0.173 −0.012 0.011 −0.071
lnTemp 0.045 0.036 0.138 0.251∗∗∗ 0.044 0.390
Adjusted 𝑅2 0.054 0.145

lnTS Constant 3.278∗∗∗ 0.161 2.978∗∗∗ 0.104
lnCOVID 0.023 0.018 0.137 0.107∗∗∗ 0.009 0.644
lnTemp −0.063∗∗ 0.027 −0.253 0.084∗∗ 0.035 0.132
Adjusted 𝑅2 0.099 0.435

lnWorkplaces Constant 3.688∗∗∗ 0.289 3.363∗∗∗ 0.177
lnCOVID 0.025 0.032 0.085 0.083∗∗∗ 0.016 0.365
lnTemp −0.134∗∗∗ 0.048 −0.298 0.055 0.060 0.062
Adjusted 𝑅2 0.104 0.130

lnResidential Constant 4.784∗∗∗ 0.048 4.918∗∗∗ 0.034
lnCOVID 0.002 0.005 0.036 −0.023∗∗∗ 0.003 −0.487
lnTemp 0.017∗∗ 0.008 0.232 −0.016∗∗∗ 0.012 −0.087
Adjusted 𝑅2 0.028 0.241

Note: ∗ , ∗∗ and ∗∗∗ denote significance at 10%, 5% and 1% levels respectively.

Table 6

Unit root test results.

Variables Intercept Trend and intercept None

lnMobility −1.812 −1.552 2.437
lnVac −3.243∗∗ −3.891∗∗ −0.076
lnCOVID −1.866 −2.795 −0.147
ΔlnMobility −13.866∗∗∗ −13.950∗∗∗ −7.115∗∗∗

ΔlnVac −3.910∗∗∗ −2.685 −4.436∗∗∗

ΔlnCOVID −2.395 −2.409 −2.419∗∗

Note: ∗ , ∗∗ and ∗∗∗ denote significance at 10%, 5% and 1% levels respectively.

Finally, the modified Wald test for the augmented VAR model is implemented to explore the causal relationships between the 
variables. Table 8 shows that the null hypothesis of non-causality from Vac and COVID to Mobility is rejected at the 1% level. In 
contrast, the null hypothesis of non-causality from Mobility to Vac and COVID is accepted at the 10% level, indicating a unidirectional 
causality running from Vac and COVID to Mobility.



Heliyon 9 (2023) e18769

10

H. Bei, P. Li, Z. Cai et al.

Table 7

Lag structure based on AIC, SC and HQ.

Lags Criterion

AIC SC HQ

0 2.917 2.955 2.932
1 −10.853 −10.700 −10.791
2 −11.650 −11.382 −11.543
3 −11.899 −11.517 −11.746
4 −11.861 −11.364 −11.662
5 −11.958 −11.346 −11.713
6 −12.261 −11.534 −11.970
7 −12.514 −11.672 −12.176
8 −12.717 −11.760 −12.334
9 −12.920∗ −11.849∗ −12.490∗

10 −12.915 −11.730 −12.440
11 −12.876 −11.575 −12.354
12 −12.880 −11.465 −12.313

Note: ∗ denote the optimal lag length chosen by the criterion.

Table 8

Wald test results.

Excluded Chi-sq p-Value

Dependent variable: lnMobility
lnVac 27.32008∗∗∗ 0.0012
lnCOVID 43.38232∗∗∗ 0.0000
Dependent variable: lnVac
lnMobility 15.35406 0.0817
lnCovid 14.69043 0.0998
Dependent variable: lnCovid
lnMobility 15.43754 0.0796
lnVac 9.917031 0.3572

Note: ∗ , ∗∗ and ∗∗∗ denote significance at 10%, 5% and 1% levels respectively.

5. Conclusion

This work explored Covid-19 vaccinations’ effects on increasing human mobility in London, UK. We aimed to provide evidence 
about vaccinations’ role in London, UK’s “return to normal” stages. Although we present some projections, forecasting human mobility 
in Covid-19-like pandemics was not our aim but to investigate the change in this mobility pattern when a massive vaccination 
program is implemented.

First, we find a positive correlation between vaccination and human mobility and human behaviour. The vaccination is positively 
associated with all types of mobility except for residential mobility during the lockdown ease stage (i.e., Sample 2), i.e., mobility 
for different modes of travel responds differently to vaccination. We observed a different mobility pattern between the first and 
third lockdowns. However, more importantly, in conjunction with the null model, they sustain our hypothesis that the vaccination 
programme positively affected mobility. Our observations suggest that public vaccination might reduce the public’s perceived risk of 
infection, thus changing the travel mode choice.

Second, we find that the effect of temperature on mobility is significant during the period of lockdown ease. Interestingly, this 
effect varies by different types of points of interest. A relatively large effect occurs for parks, as it has a larger coefficient and standard 
coefficient for temperature. This suggests that, compared to the perceived risk of COVID infection, the weather is the major factor 
that to consider for people planning to go to parks during the mobility recovery.

Third, possible modal transfers from driving and walking to transit were observed, as both two ratios declined in the third 
lockdown and lockdown ease phases. Moreover, vaccination has a negative impact on these two ratios, suggesting that modal 
transfers from driving and walking to public transportation may be associated with public vaccination.

It is important to acknowledge that the reasons behind these mobility changes are not easy to point out. A possible factor is a 
change in the public’s perceived risk of COVID infection caused by the increase in the vaccinated population, as mentioned by Serisier 
et al. [52]. Their study reported that participants were more likely to report non-household close contacts and use nonessential shops 
and services 14 days after their first dose of a COVID-19 vaccine than they were before vaccination in England and Wales. The 
changing mobility trend may also be caused by COVID fatigue [23]. Furthermore, the local policy variable strongly affects mobility 
in different lockdown stages. Although we further examined the relationship between the variables by applying a causality analysis 
method and the single-directional causality running from vaccination and COVID cases to total mobility is confirmed, we must not 
attribute the change in mobility solely to a large number of people vaccinated.

Although we found a correlation between multiple types of mobility and vaccination in the London area using regression meth-
ods and have proved the “causal relationship” between mobility and vaccination using a causality test, we need to note that the 
relationship between variables cannot be proven to be a true causal relationship, because the essential of Granger causality is that 
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the previous changes in one variable can effectively predict another variable. This is also a limitation of our research. More empirical 
studies in different regions and geographical levels must be combined to demonstrate the causal relationship between mobility and 
vaccination, which requires further research. All these different factors are absent in our model, limiting its explanatory capabilities. 
What is needed is to keep presenting further evidence which needs to be taken forward to understand how epidemiological processes 
affect our daily lives and mobility in cities.

Our findings provide some insights into how vaccination programs affect people’s behaviour and movement, suggesting that 
people feel more confident and safer moving around and resume their normal activities once the population is vaccinated. This 
information could encourage more people to vaccinate and plan for increased city mobility. Understanding the relationship between 
vaccination and mobility can help public health authorities, and policymakers make informed decisions about easing or tightening 
restrictions and implementing measures to control the spread of the virus.
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Appendix A. General trends by activity

To further test our model’s performance, we compared their general trends with the figures obtained from Google data. Fig. A.1
depicts the Google data (by activity) for March 2021, i.e., the first lockdown. From the working panel, we can observe that the actual 
walking mobility fluctuates strongly and increases gradually. From the retail panel, we can find that the actual data has four major 
peaks and fluctuate strongly. Finally, in the transit station panel, the actual data increases significantly and has a weak fluctuation. 
For all three panels mentioned above, their model results follow the trend of actual data and can simulate the fluctuations to a certain 
extent.

Now, Fig. A.2 (July 2021) gives us an idea of what happened at the end of the third lockdown, ease phase. We can observe at the 
working panel that the actual walking mobility has four peaks and get the maximum at the end of the month. The retail panel shows 
that the actual data fluctuate strongly at a certain level. The actual data in the transit station panel also showed four peaks and got 
the maximum at the end of the month. For all three panels mentioned above, their model results only follow the trend of actual data, 
and it cannot simulate the fluctuations of actual data.

Appendix B. Diagnostic test

Figs. B.1, B.2, B.3, and B.4 show the diagnostic plots of the regression models. Scattered points tend to form a cluster in the 
residuals vs predicted values plots on both sides. The predicted values’ distribution is the cause of this and does not indicate a clear 
pattern in the distribution of residuals relative to the predicted values. Therefore, when determining the homogeneity of variance, 
we consider the distribution of scattered points within the cluster.

The residual of the models using sample 2 is closer to the Normal distribution, and there is no obvious heteroscedasticity, 
which indicates that the lockdown period model is more reliable and unbiased than the other model. In addition, the residual 
distribution of the model with the mobility of working areas and residential areas as the dependent variable is not close to the 
Normal distribution. There is an obvious heteroscedasticity phenomenon, mainly because the cyclical changes of these two types of 
mobility are particularly obvious within a week. Our model does not consider the impact of controlling working days and weekends.
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Fig. A.1. March model.

Fig. A.2. July model.
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