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Abstract: The structure is said to be damaged if there is a permanent shift in the post-event natural
frequency of a structure as compared with the pre-event frequency. To assess the damage to the
structure, a time-frequency approach that can capture the pre-event and post-event frequency of the
structure is required. In this study, to determine these frequencies, a local maximum synchrosqueezing
transform (LMSST) method is employed. Through the simulation results, we have shown that the
traditional methods such as the Wigner distribution, Wigner–Ville distributions, pseudo-Wigner–Ville
distributions, smoothed pseudo-Wigner–Ville distribution, and synchrosqueezing transforms are
not capable of capturing the pre-event and post-event frequency of the structure. The amplitude of
the signal captured by sensors during those events is very small compared with the signal captured
during the seismic event. Thus, traditional methods cannot capture the frequency of pre-event and
post-event, whereas LMSST employed in this work can easily identify these frequencies. This attribute
of LMSST makes it a very attractive method for post-earthquake damage detection. In this study,
these claims are qualitatively and quantitatively substantiated by comprehensive numerical analysis.

Keywords: cross-term; Fourier transform; time-frequency method; natural frequency; LMSST;
structural health monitoring

1. Introduction

In recent decades, the number of multi-story buildings has exponentially increased
due to the urbanization and availability of modern technology and construction materials.
Post-earthquake damage assessment of buildings is necessary for seismic risk mitigation
and resilience planning [1]. With recent progress in signal processing and sensor tech-
nology, damage detection using data collected from the sensors attached to buildings is
becoming very popular in structural health monitoring (SHM) [2,3]. Modal parameters
such as damping ratio, mode shape, and natural frequency are the key parameters to assess
the dynamic characteristics of a building. When a structural system changes mass, stiffness,
or structural damping, the values of the parameters tend to vary. This approach can identify
the damaged state of the structure [4]. Recently, many researchers have employed time his-
tory analysis and Fourier transform (FT) for damage detection. The shifting of a structure’s
frequency components during an earthquake may be caused by nonlinearities such as the
surrounding environment, degree of excitement, and earthquake ground motion. If the
frequency fluctuation ceases after the earthquake and returns to the pre-event frequency
of the building (i.e., the natural frequency of the building), there is no structural damage.
However, if there is permanent structural damage, then the natural frequency of the build-
ing permanently changes [5]. Damage identification and real-time health monitoring can be
performed by comparing the pre-event and post-event frequencies of the building [6]. For
this purpose, a joint time-frequency (TF) method is required as this method simultaneously
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provides the time and frequency information of a signal. Black [7] applied a short-time
Fourier transform (STFT) on the data collected from the Sheraton Universal Hotel located
in Los Angeles, USA, to identify the damage. The study demonstrated that the natural
frequency of the building remained stationary even after the earthquake, and hence, it
was concluded that there was no damage to the building. The damage to the building has
also been identified using Wigner–Ville distribution (WVD). The presence of cross-terms
in WVD hinders the interpretations and creates a significant barrier to understanding the
response of the building. To overcome this drawback, extended versions of the WVD, such
as pseudo-Wigner–Ville distribution (PWVD), smoothed pseudo-Wigner–Ville distribution
(SPWVD), and reassigned smoothed pseudo-Wigner–Ville distribution (RSPWVD), were
employed for damage detections and other signal processing applications [8–11]. Similarly,
various TF methods, such as STFT, S-transform (ST), and local time-frequency transform
(LTFT), were also employed for damage detection [12]. It was reported that the TF method
with less cross-term interference and the least Renyi entropy is suitable for damage de-
tection. Similarly, the performances of the Gabor–Wigner transform (GWT), S-transform,
synchrosqueezing transform (SST), and other time-frequency methods were compared
in [13]. It was concluded that the SST is the best among all methods. However, SST suffers
from a smearing problem and is not capable of capturing the pre-event and post-event
frequencies of the structure.

During the seismic event, the amplitudes of the signals captured by the sensors are
relatively high due to external excitations (i.e., an earthquake). The inertia of the building
may prevent a sudden decline in the magnitude of the post-event signal following an
earthquake. A certain amount of time must pass before the structure settles and reaches
a stable state. In post-earthquake damage detection, the primary goal is to analyze the
building’s fundamental frequency during this stable state, both before and after seismic
events. In both cases, the amplitudes of the signals captured by the sensors are relatively
low; with traditional TF methods, it is challenging to deal with low-amplitude signals [14].
In this regard, the local maximum synchrosqueezing transform (LMSST) stands out as a
highly sensitive method for detecting amplitude-weak modes [14], making it a suitable
choice for post-earthquake damage detections.

In this research, LMSST is employed for damage detection. The usefulness of LMSST
is demonstrated using multi-component synthetic signals and various real earthquake data.
Through visual representations and qualitative measures, it is observed that LMSST has a
better TF resolution and can detect post and pre-event frequencies of the structure, which
play a very critical role in structural health monitoring. The amount of permanent shift at
the natural frequency of the building after any seismic event determines the health of the
building [3,6,11]. This research work is organized in the following manner: in Section 2,
various TF methods are discussed, followed by a discussion on Rényi entropy and the
analysis of the results in Sections 3 and 4, respectively. The paper is concluded in Section 5.

2. Time-Frequency Methods
2.1. Wigner Distribution

The Fourier transform of the autocorrelation of the input signals is defined as the
Wigner distribution. WD is mathematically expressed by the following equation:

WDs(t, f ) =
+∞∫
−∞

s
(

t +
τ

2

)
+ s∗

(
t− τ

2

)
e−j2π f τdτ (1)

where ∗ is the complex conjugate of a real signal. WD enhances time and frequency
resolutions. However, low-frequency artifacts due to the interactions of positive and
negative frequencies in the time-frequency plane were studied [8,15,16]. By modifying the
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WD with the analytic signal, these artifacts can be reduced, and it is now called Wigner–Ville
Distribution (WVD). Mathematically, WVD could be expressed by

WVDb(t, f ) =
+∞∫
−∞

b
(

t +
τ

2

)
b∗
(

t− τ

2

)
e−j2π f τdτ (2)

where b(t) is the Hilbert transform of the input signal. The analytic signal’s Fourier
transform is given by

b( f ) =


2S( f ), i f f > 0
S( f ), i f f = 0
0, i f f < 0

(3)

where b( f ) is an analytic signal of s(t). Thus, it can be assumed that the WVD is an
extension of WD. The analytic signal removes the low-frequency artifacts; however, the
cross-term interference caused by the actual frequency components cannot be eliminated,
which exhibits the disturbing tendency in the time-frequency plane and provides mis-
leading information [15,17]. Despite these drawbacks, it has been shown that the WVD
concentrates the signal energy along with the instantaneous frequency. As a result, the
WVD serves as the foundation for separating seismic events in the time–frequency plane.

2.2. Smoothed Wigner–Ville Distribution

The Pseudo Wigner–Ville Distribution (PWVD) is expressed by the following equation:

PWVDz(t, f ) =
+∞∫
−∞

d(τ)z
(

t +
τ

2

)
+ z∗

(
t− τ

2

)
e−j2π f τdτ (4)

WVD provides time–frequency resolution to a large extent. However, one of the major
challenges in WVD is the cross-term interference, which can be suppressed in the time–
frequency plane with a sliding window, d(τ). PWVD improves the resolution, although
it has interference terms that can make elucidation difficult [18]. Because of this problem,
PWVD has now been modified and is now known as SPWVD that can be expressed
mathematically as follows:

P(t, f ; m, n) =
+∞∫
−∞

n(τ)
+∞∫
−∞

m(u− τ)e−j2π f τxa(u +
τ

2
)x∗a (u−

τ

2
)dudτ (5)

SPWVD is a windowed version of WVD that achieves a better time–frequency resolu-
tion by using independent time and frequency window functions. Window functions m and
n suppress cross-term interference along the time axis and the frequency axis, respectively.
SPWVD is also used in pulse oximetry to reduce motion artifacts, which enhances the
accuracy of wearable devices [19]. In addition to this, decompositions of the seismic spectra
of a sandstone dam were performed using the SPWVD in the West Sichuan depression to
detect the hydrocarbon. The degree of smoothing depends on the width of the window
function

2.3. Synchrosqueezing Transform

Synchrosqueezing transform is a widely used joint time–frequency method that re-
assigns the signal’s energy along the frequency axis while preserving the signal’s time
resolution. Secondly, this method controls the leakage/spreading effect caused by the
mother wavelet, and in turn, enhances the time–frequency resolution to some extent [20].
The SST is a consistent and powerful mathematical tool that is used to detect frequency
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components, which have been further used in various applications [21,22]. The wavelet
transform mathematical equation is defined as

W(m, τ) =
∫ ∞
−∞ s(t) 1

m ψ∗
( t−τ

m
)
dt (6)

where s(t) is the time domain signal, ψ(t) is the mother wavelet, τ indicates translation of
the window function, and m is the scale of the mother wavelet, which is responsible for
dilating and compressing the window. After computing the wavelet coefficient W(m, τ)
from the input signal, the instantaneous frequency is to be extracted at any point (m, τ).

ω(m, τ) =
−j

W(m, τ)

∂W(m, τ)

∂τ
(7)

The wavelet coefficient is calculated only on a discrete scale ( mk). The SST Ts(ω, τ)
can be computed at the centers of the frequency ωl with ωl −ωl−1 = ∆ω.

Ts(ωl , τ) =
1

∆ω ∑
ak :|ω(ak ,τ)−ωk |≤∆ω/2

W(mk, τ)m−3/2
k ∆mk (8)

SST improves the time–frequency resolution to some extent. However, the variations
of frequency components are difficult to distinguish due to the blurring effect.

2.4. Local Maximum Synchrosqueezing Transform

The analysis initiates with the fundamental concept of STFT, which has become the
most powerful mathematical tool for analysis of seismic signals. The STFT is expressed by
Equation (9).

STFT(t, w) =
∫ ∞
−∞ s(t)w∗(t− τ)e−jωτd (9)

where w(t) is a window function and τ indicates the position of the window. STFT divides
the signal into small segments called windowed signals, i.e., s(t)w∗(t− τ), and the width
of the window function determines its resolution [15,23,24]. Taking the square of the
magnitude of the STFT yields the spectrogram shown below.

SPSTFT(t, f ) = |STFT(t, f )|2 =
∣∣∫ s(t)w∗(t− τ)e−jω τdτ

∣∣2 (10)

It is possible to model a multi-component signal with the frequency-modulated (FM)
and amplitude-modulated (AM) laws as

s(t) =
n
∑

k=1
ak(t)eiφk(t) (11)

where ak(t) is the instantaneous amplitude (IA) and φ
′
k(t) is an instantaneous frequency

(IF). The IA and IF are two significant features that are used to gain insight into the signals’
time-varying characteristics. However, STFT has poor time and frequency resolutions
and provides smeared energy distribution. To obtain sharper results, SST was recently
introduced, which reassigns the existing time–frequency coefficients into the newly mea-
sured time–frequency position. However, the SST method also provides a poor energy
concentration in the time–frequency plane. Recently, a local maximum synchrosqueezing
transform (LMSST) was proposed, which increases the time–frequency resolution of a
signal to a large extent [14]. The mathematical expression for LMSST is as follows:

LMSST(t, η) =
∫ +∞
−∞ STFT(t, ω) ∂(η −ωm(t, ω))dω (12)

Further, ωm(t, ω) is a frequency-reassignment operator and can be defined as

ωm(t, ω) =

{
argmax|STFT(t, ω)|, ω ∈ [ω− ∆, ω + ∆], i f |STFT(t, ω)| 6= 0
0, i f |STFT(t, ω)| = 0

(13)



Buildings 2023, 13, 1614 5 of 12

to separate the two arbitrary modes, with the frequency distance φ′k+1(t)− φ′k(t) > 4∆k ∈
{1, 2 . . . . . . n− 1}. The picking of a smoothing filter is an important task. Furthermore, it is
supposed that a window function’s Fourier transform reaches its maximum at zero. The
operator for frequency reassignment can be written as

ωm(t, ω) =

{
φ′k(t), i f ω ∈ [φ′k(t)− ∆, φ′k(t) + ∆]
0, otherwise

(14)

where φ′k(t) is the instantaneous frequency. LMSST diminishes the blurring effect and of-
fers a promising approach that can further be utilized in the area of earthquake engineering
to detect damage to buildings.

3. Assessment Criteria of Time–Frequency Method

In most cases, it has been observed that visual inspection does not provide a consistent
result. Therefore, an objective evaluation method has been developed to identify the
best time–frequency method. In this work, Renyi entropy is designated to identify the
appropriate time–frequency method.

Shannon first proposed the concept of entropy measurement in 1949. Later, in sig-
nal processing, entropy measures were used to quantify information. Renyi entropy is
mathematically defined as

Rα = 1
1−α log2

∫ +∞
−∞

∫ +∞
−∞ ρα

norm(t, f )dtd f (15)

Here, α = 3 is selected for analysis [25,26]. ρα
norm is the normalized time–frequency

distribution, which can be expressed as

ρnorm(t, f ) = ρ(t, f )∫ +∞
−∞

∫ +∞
−∞ ρ(t, f )dtd f (16)

The time–frequency methods are quantified using Renyi entropy. The selection of
time–frequency methods through visual inspection becomes hard when there are slight
changes in two different time–frequency plots. As a result, researchers used Renyi entropy
to classify the best time–frequency method and concluded that the lowest Renyi entropy
provides the most concentrated time–frequency method [26,27]. Hence, Renyi entropy is
employed to inspect the suitable time–frequency method, which can further be applied in
the damage detection of buildings.

4. Results and Discussion

To demonstrate the superiority of the LMSST method over WD, WVD, PWVD, SPWVD,
and SST methods, a multi-component synthetic signal and the real earthquake data recorded
during the San Fernando Earthquake in 1971 and the Northridge Earthquake in 1994
are used.

4.1. Synthetic Signal

A synthetic signal comprises of a constant frequency signal, exponentially decay-
ing signal, nonlinear frequency varying signal, and chirp signal is generated using the
following equation:

x1 = 2.5 sin(2π5t); 0 ≤ t ≤ 2
x2 = e−(t

2/10) cos(2π20t); 2 < t ≤ 2.23
x3 = 1.5 sin(2π10t); 2.24 < t ≤ 4

x4 = 3 sin(3(150πt + 3sin(2πt))); 4 < t ≤ 6
x5 = 2chirp (10 Hz–25 Hz); 6 < t ≤ 8

yt =
5
∑

i=1
xi

(17)
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The multi-component signal contains five components with epochs of 2 s, 0.23 s, 1.76 s,
and 2 s for the rest of the components, respectively. The time domain representation of a
signal is plotted in Figure 1a with a sampling frequency of 100 Hz. The synthetic signal is
processed with the help of the WD, WVD, PWVD, SPWVD, SST, and LMSST methods, and
the results are plotted in Figure 1b–g, respectively.
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From Figure 1b, it can be observed that there are many cross-terms present in the TF
plot, and therefore it is almost impossible to extract any meaningful information from it.
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WD uses the real signal, and hence the positive and negative frequencies generate those
cross-term products. In WVD, the cross-terms are minimized by using an analytical signal
instead of a real one [23,28]. The analytic signal does not contain negative frequencies and
reduces the cross-terms. From Figure 1c, it can be observed that there are still significant
cross-terms present between each pair of harmonics that obstruct the proper interpretation
of the given synthetic signal.

In PWVD, frequency domain filtering is applied to the signals obtained from WVD,
which enhances the frequency domain resolution of the signals, but the resolution in
the time domain is still very poor, which can be observed in Figure 1d. In SPWVD,
signals obtained from WVD have been filtered in the time domain as well as the frequency
domain with the help of the window function. The consequence of using the windowing
function is that SPWVD fails to precisely localize the time and frequency components of the
signals [9,10]. From Figure 1e, it can be observed that the energy band of each frequency
component is very thick and hinders the detection of neighboring frequency components.
The result of the SST method is shown in Figure 1g, from which it can be observed that it
suffers from the blurring effects in the frequency plane. The result of LMSST is presented
in Figure 1g. From the TF plot, it can be observed that LMSST has the sharpest TF plane
among all mentioned methods. It achieves such superior TF resolution by detecting the
local maxima of the spectrogram in the frequency direction [14].

The Renyi entropy measures of test signal-1 for various TF methods are calculated
and presented in Table 1. From the table, it can be observed that among all the employed
methods, LMSST has the lowest Renyi entropy. Thus, it can be concluded that it has the
most concentrated TF plane among all TF methods discussed so far. Due to the concentrated
TF plane provided by LMSST, all the frequency components present in the synthetic signals
with their respective occurrences in time epoch can be easily identified in Figure 1g.

Table 1. Renyi entropy measures of various TF method for given synthetic signal.

Time–Frequency Methods
Renyi Entropy

Test Signal-1

WD 18.278

WVD 17.190

PWVD 16.132

SPWVD 15.613

SST 11.020

LMSST 10.910

4.2. Earthquake Data

The presence of damage in the structures permanently alters their natural frequencies.
By examining the pre-earthquake and post-earthquake frequencies of the structures, their
respective health can be determined. With appropriate TF tools, this assessment can be
quickly and reliably conducted.

4.2.1. Seismic Data-1: San Fernando Earthquake, 1971

The Millikan Library is a popular and historical nine-story instrumented building
constructed in 1966. The San Fernando earthquake occurred in 1971 with a magnitude
of 6.6, as mentioned in Table 2. Before the event, two 3-axis Teledyne Geotech RFT-250
accelerometers were placed in the basement and on the roof of the buildings. Figure 2a
depicts the time domain responses of the data recorded from the sensor placed on the top
floor of the building. The data recorded by the sensor can be classified into three parts:
pre-seismic, co-seismic, and post-seismic data [11].
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Table 2. Details of the damaged buildings.

Parameters Data-1 Data-2 Data-3

Earthquake, year San Fernando
earthquake, 1971

Northridge earthquake,
1994

Northridge earthquake,
1994

Magnitude 6.6 6.7 6.7
Epicenter 31 km 21 km 18 km

Name of buildings Millikan Library,
Pasadena, US

Ten-story inhabited
building, Burbank, US

Seven-story Van Nuys
hotel

Sensor’s position EW roof Roof-center Roof
Sampling frequency 50 Hz 50 Hz 50 Hz

Peak acceleration 340.8 cm/s2 511.99 cm/s2 550.22 cm/s2
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The signals from 0 to 5 s are pre-seismic, 5 to 32 s are co-seismic, and the rest are
post-seismic signals. TF representations of earthquake signals for various TF methods,
such as WD, WVD, PWVD, SPWVD, and SST, are illustrated in Figure 2b–f, respectively.
From the figures, it can be observed that the WD, WVD, PWVD, SPWVD, and SST methods
are not capable of capturing the pre-seismic frequencies as well as the tail ends of the
post-seismic frequencies. A similar conclusion can be found in [3,11], whereas LMSST
has a very well-defined TF plane, irrespective of the time epoch. This attribute makes it
a very effective and reliable technique for structural health monitoring. It can provide
the frequency components of the pre-seismic, co-seismic, and post-seismic events. By
comparing these frequencies, the health of the building can easily be determined.

From Figure 2g, it can be observed that the pre-seismic frequency of the building
is around 1.5 Hz. During the co-seismic phase, the frequency of the building gradually
decreases, and in the post-seismic phase, it tries to regain the natural frequency but fails
to regain it. A substantial shift of around 33% is recorded. As reported in [29], the
building is said to be damaged if its natural frequency is changed by 5%. Thus, it can be
concluded that the building was damaged by the earthquake. Building assessment reports
after the earthquake and the results obtained by [3,11] are in line with our findings. The
Renyi entropies obtained for all TF methods are listed in Table 3, where LMSST yields
minimum entropy.

Table 3. Renyi entropy measures of various TF method for Data-1.

Time–Frequency Methods
Renyi Entropy

Data-1 San-Fernando Earthquake, 1971

WD 17.256

WVD 15.980

PWVD 15.816

SPWVD 15.444

SST 12.797

LMSST 10.797

4.2.2. Seismic Data-2: Northridge Earthquake, 1994

A 10-story residential building was designed in 1974 in Northridge. Before the earth-
quake, four accelerometer sensors were installed on the first, fourth, and eighth floors
of the building. Earthquake data were collected from the top floor of the building for
approximately 60 s. Only the seismic signals for the first 25 s are analyzed because the
remaining signals do not provide useful information. The time-domain representations of
the signals and their LMSST responses could be seen in Figure 3a,b, respectively.
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The pre-event frequency of the building was about 2 Hz, and during the seismic event,
the frequency of the building kept fluctuating. The fluctuation in the building can be
attributed to seismic events, ground motion, and other parameters related to the building.
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After the seismic event, the building tried to regain its pre-event frequency, but the building
could not regain its natural frequency and a significant drop of around 25% can be observed.
As a result, we can conclude that the building has sustained permanent structural damages
due to the earthquake, as also reported on the website (http://www.strongmotioncenter.
org/vdc/scripts/download_tar.plx, accessed on 4 April 2019).

4.2.3. Seismic Data-3: Northridge Earthquake, 1994

The seven-story Van Nuys Hotel was built in 1966. The hotel was lavishly outfitted with
sensors on every floor. The time history data of the earthquake collected from the building’s
roof, as well as the time–frequency responses obtained with the LMSST technique, are plotted
in Figure 4a,b, respectively. From the figures, it can be observed that the pre-event frequency
of the building was around 1 Hz, and during the earthquake, it gradually decreased down
to 0.5 Hz. After the earthquake, the building tried to regain its pre-event frequency but
could not achieve it. The post-event frequency dropped by almost 50%. Thus, it can be
concluded that the building was permanently damaged by the earthquake, as also reported
on the website (http://www.strongmotioncenter.org/vdc/scripts/download_tar.plx).
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5. Conclusions

The health of the structure after any seismic event can be assessed by comparing
its pre-event and post-event natural frequencies when there is no influence of external
excitation (i.e., an earthquake). The amplitudes of the post-event and pre-event signals
captured by sensors are relatively low compared to the signals captured during seismic
events. Consequently, traditional TF methods such as WD, WVD, PWVD, SPWVD, and
SST—which do not have concentrated TF planes—cannot detect the post-event and pre-
event frequencies of the building. To overcome this problem, in this research, for the
first time, a new TF method called LMSST was employed for post-earthquake damage
detections. Through a multi-component synthetic signal, we have shown that it has
the most concentrated TF plane and the best temporal frequency localization capability.
Besides that, we have also analyzed the performance of LMSST for three different real-time
recorded earthquake data sets and found that, unlike traditional methods, it can precisely
and comprehensively detect the post and pre-event frequencies of the building. Thus, it
was concluded that it is the most suitable TF method for the post-earthquake damage
identifications of the buildings.
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