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Introduction: Common variable immunodeficiency (CVID) is the most prevalent

symptomatic primary immunodeficiency. CVID is a heterogeneous disorder with

a presumed multifactorial etiology. Intravenous or subcutaneous

immunoglobulin replacement therapy (IgRT) can prevent severe infections but

not underlying immune dysregulation.

Methods: In this study, we evaluated the serum concentrations of

proinflammatory (TNF-a, IL-1b, IL-6) and immunoregulatory cytokines (IL-10),

as well as lipopolysaccharide (LPS) and soluble CD14 (sCD14) in CVID individuals

with infectious only (INF-CVID), and those with additional systemic autoimmune

and inflammatory disorders (NIC-CVID), and healthy donors (HD).

Results: Our results showed increased serum concentrations of TNF-a, IL-1b, IL-6,
and IL-10 in both INF-CVID and NIC-CVID subjects compared to HD. However,

elevations of TNF-a, IL-1b, IL-6, and IL-10 were significantly more marked in NIC-

CVID than INF-CVID. Additionally, LPS concentrations were increased only in NIC-

CVID but not in INF-CVID compared to HD. Circulating levels of sCD14 were

significantly increased in NIC-CVID compared to both INF-CVID and HD.

Discussion: These findings indicate persistent cytokine dysregulation despite

IgRT in individuals with CVID. Moreover, the circulating cytokine profile reveals

the heterogeneity of immune dysregulation in different subgroups of CVID

subjects.
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Introduction

Common variable immunodeficiency (CVID) is the most

prevalent symptomatic primary immunodeficiency characterized

by low immunoglobulin (Ig) levels (IgG and/or IgM) and impaired

production of specific antibodies in response to vaccinations (1, 2).

CVID is a heterogeneous disorder (3, 4) with a presumed

multifactorial etiology and an estimated heritability of

approximately 20% (2, 5–7).

Intravenous or subcutaneous immunoglobulin replacement

therapy (IgRT) is effective in preventing severe infections and

improving survival in CVID subjects (1, 3, 8). However, despite

optimal IgRT, a significant percentage (30% to 50%) of these

patients still experience complications related to immune

dysregulation (3, 9–11). These complications include

lymphoproliferative and autoimmune diseases, cytopenias,

enteropathy, chronic lung diseases, and cancer (9, 12–16). The

mechanisms underlying these heterogeneous manifestations of

immune dysregulation remain unclear (17–19). Recent evidence

suggests that gut microbiome alterations may be a driver of immune

dysregulation in CVID subjects (20, 21).

Early identification of predictive biomarkers and risk factors for

the development of immune dysregulation in CVID is crucial to

improve the clinical care of these patients. Previous studies have

suggested several potential risk factors, including low CD4+ T cells

(22), increased CD21low B cells (23, 24), IgA deficiency (22, 24) and

gut dysbiosis (21). More recently, the measurement of circulating

cytokines and chemokines is gaining ground in identifying CVID

immunophenotypes with different clinical manifestations (12, 13,

25–27). However, previous studies have reported conflicting results

about serum cytokines in CVID subjects compared to healthy

donors. For instance, serum concentrations of IL-10 have been

found to be both increased (28, 29) or decreased (30) in CVID

subjects compared to controls. These apparent discrepancies could

be attributed, at least in part, to the selection of CVID individuals

with different immunophenotypes.

In this study, we have evaluated the cytokine profile and

biomarkers of systemic inflammation in CVID individuals with a

clinical history of either infections only (INF-CVID) or

autoimmune disease, GLID, lymphoproliferation, splenomegaly,

bronchiectasis, and/or enteropathy (NIC-CVID) undergoing IgRT

compared to healthy donors.
Materials and methods

Subjects

Forty-six Caucasian individuals with CVID were recruited from

the outpatient clinic of the Division of Allergy and Clinical

Immunology, University of Naples Federico II (Naples, Italy).

Twenty-three healthy volunteers (HD) were enrolled as age and

gender-matched controls. Patients were eligible for enrollment in the

study if they had a CVID diagnosis based on the 2019 ESID criteria

(31). Exclusion criteria for both healthy donors and CVID subjects

were active bacterial or viral infections at the time of blood collection.
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There were no familiar cases of CVID. All patients were receiving

chronic IgRT and were not undergoing immunosuppressive therapy.

From the medical files of CVID subjects, we recorded serum Ig levels at

diagnosis, T cell subsets, monocytes, B cells, clinical history of recurrent

infections, chronic diarrhea, bronchiectasis, autoimmune diseases,

polyclonal lymphoproliferation (splenomegaly, lymphadenopathy,

and granulomatous disease), and malignancies. This study was

approved by the institutional Ethics Committee of the University of

Naples Federico II (Prot. 198/18), and informed consent was obtained

from all participants prior to blood collection according to

recommendations from the Declaration of Helsinki.
IgG, IgA, and IgM measurements

Serum samples obtained from venous blood were aliquoted and

stored at − 80°C until testing. IgG, IgA, and IgM were measured by

nephelometry employing the Behring BN™ II System (Siemens

Healthcare Diagnostics Ltd, Erlangen, Germany) (32). To evaluate

the precision of immunoglobulin measurement, the coefficient of

variation (CV) was determined according to the Clinical and

Laboratory Standards Institute (CLSI) EP05-A3 guidelines (33).

The intra-assay CVs ranged from 1.8% to 3.6%. The linearity of the

IgG measurement (coefficient of determination: R2) was assessed

according to the CLSI EP06-A guidelines (34). The R2 values ranged

from 0.97 to 0.99.
Cytokine, soluble CD14, and LPS
measurements

Serum concentrations of TNF-a (Quantikine HS ELISA

HSTA00E), IL-1b (Quantikine HS ELISA HSLB00D), IL-6

(Quantikine HS ELISA HS600C), and IL-10 (Quantikine HS

HS100C) were measured in duplicate using ELISA assays from R&D

Systems (Bio-Techne). The concentration of soluble CD14 (sCD14)

was measured using the Quantikine ELISA DC140 kit from R&D

Systems (Bio-Techne). The concentration of lipopolysaccharide (LPS)

was also measured using an ELISA kit from Abbexa (Cambridge, UK).

All reagents and chemicals used in these experiments were molecular

biology grade to reduce endotoxin contamination. Disposable pipets,

tubes, and plates were used in all experiments.
Statistical analysis

Statistical analysis was performed using GraphPad Prism 9

software (GraphPad Software, La Jolla, CA, USA). Data are

presented as mean ± standard error of the mean (SEM). Group

comparisons were made using Student’s t-test or Mann–Whitney U

test, based on the parametric or nonparametric distribution of the

continuous variables. Multiple comparisons were assessed using

one-way analysis of variance (ANOVA) followed by Tukey’s post

hoc test. Correlation analyses were conducted using Pearson’s

correlation method. A p value less than 0.05 was considered

statistically significant.
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Results

Demographic and clinical characteristics of
CVID subjects and healthy donors

CVID subjects were categorized as INF-CVID if they had a clinical

history of recurrent infections only. NIC-CVID included patients with

recurrent infections as well as one or more of the following non-

infectious complications: enteropathy, lymphoproliferation,

autoimmune disease, cytopenia, splenomegaly, granulomatous

lymphocytic interstitial lung disease (GILD) or bronchiectasis. All

CVID subjects were on IgRT at the time of sample collection.

Table 1 presents the demographic and clinical characteristics of

healthy donors (HD), while Tables 2, 3 provide the characteristics of

23 subjects with INF-CVID and 23 subjects with NIC-CVID,

respectively. The median age was 44.5 ± 2.5 years for INF-CVID,
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41.3 ± 2.5 years for NIC-CVID, and 39.6 ± 2.2 years for HD. Among

the INF-CVID patients, eleven (47.8%) were female and among

NIC-CVID ten (43.4%) were female.
Serum concentrations of IgG, IgA, and IgM
in INF-CVID, NIC-CVID, and healthy
donors

We evaluated the serum concentrations of IgG, IgA, and IgM in

subjects with INF-CVID or NIC-CVID compared to HD. Figure 1A

shows that both INF-CVID and NIC-CVID had significantly lower

IgG serum concentrations than HD (p < 0.0001). N difference was

found between the two groups of CVID. Similarly, serum

concentrations of both IgA (Figure 1B) and IgM (Figure 1C) were

markedly lower in both CVID groups compared to HD (p < 0.0001).
TABLE 1 Demographic and clinical characteristics of healthy donors (HD).

HD Gender
(M/F)

Age
(years)

IgG
(mg/dL)

IgA
(mg/dL)

IgM
(mg/dL)

1 F 23 1030 91 68

2 M 40 1050 134 93

3 M 51 1130 253 199

4 F 24 982 269 130

5 M 30 1230 167 82

6 F 48 1370 144 121

7 M 54 1070 124 101

8 M 33 1180 106 48

9 F 35 1160 131 86

10 F 37 774 246 201

11 M 42 1420 186 131

12 F 45 955 148 85

13 F 31 990 189 73

14 M 29 838 261 164

15 M 45 859 281 173

16 F 25 907 212 135

17 M 50 850 205 138

18 F 34 824 117 87

19 M 41 1070 276 172

20 F 28 1350 216 149

21 M 49 890 194 130

22 F 59 1060 224 135

23 M 58 775 201 102

Mean
±

SEM

39.61
±

2.28

1033
±

39.25

190.2
±

12.12

121.9
±

8.72
fro
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Serum concentrations of cytokines in INF-
CVID, NIC-CVID, and healthy donors

To investigate the mechanisms underlying chronic immune

dysregulation in CVID, we measured serum levels of different

cytokines in subjects with INF-CVID and NIC-CVID compared

to HD. We found a significant elevation of TNF-a in both INF-

CVID and NIC-CVID compared to HD (Figure 2A). Elevation of

serum TNF-a was more marked in NIC-CVID compared to INF-

CVID. Similarly, serum concentration of IL-1b were increased in

both INF-CVID and NIC-CVID compared to HD (Figure 2B). The

proinflammatory cytokine IL-6 was significantly increased in both

INF-CVID and NIC-CVID, compared to HD (Figure 2C). The

immunomodulatory cytokine IL-10 was significantly increased in

both INF-CVID and NIC-CVID compared to HD (Figure 2D).

Serum concentrations of IL-10 were more markedly increased in

NIC-CVID compared to NF-CVID.
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Serum concentrations of LPS and sCD14 in
INF-CVID, NIC-CVID, and healthy donors

LPS is the major component of the outer membrane of Gram-

negative bacteria (35, 36). LPS activates the multimeric receptor

composed of Toll-like receptor-4 (TLR4), CD14, and MD2 on the

membrane of several immune cells (e.g., macrophages, monocytes,

neutrophils) (35–38). Circulating concentration of LPS is

considered a biomarker of gut microbial translocation, a process

facilitated by immune deficiency that may drive inflammation via

endotoxemia (20, 39). Serum concentrations of LPS were not

elevated in INF-CVID compared to HD (Figure 3A). By contrast,

NIC-CVID subjects showed increased levels of LPS compared to

both INF-CVID and HD (Figure 3A).

CD14 is a glycosylphosphatidylinositol (GPI)-anchored

receptor which serves as a co-receptor for Toll-like receptor

(TLR)-4 at the cell surface or can be secreted in a soluble form
TABLE 2 Demographic and clinical characteristics of CVID subjects with recurrent infections (INF-CVID).

INF-CVID subjects Gender
(M/F)

Age
(years)

IgG at diagnosis
(mg/dL)

IgA at diagnosis
(mg/dL)

IgM at diagnosis
(mg/dL)

IgG through level
(mg/dL)

1 M 40 7 7 0 643

2 F 22 360 8 31 1070

3 M 46 41 5 27 616

4 F 49 103 5 0 484

5 F 48 312 28 29 733

6 F 50 50 5 30 1160

7 M 36 167 5 11 1030

8 F 49 134 0 17 870

9 M 61 104 10 16 625

10 F 54 175 9 56 940

11 M 60 346 24 43 1005

12 F 55 15 0 10 650

13 M 48 84 0 0 875

14 F 62 5 0 0 740

15 M 43 168 0 20 573

16 M 51 96 21 0 486

17 F 29 250 0 5 525

18 M 23 116 10 0 638

19 M 39 83 0 0 1080

20 F 27 206 5 21 1100

21 M 51 412 7 10 636

22 F 25 102 0 0 1078

23 M 57 114 0 5 910

Mean
±

SEM

44.57
±

2.58

150.0
±

24.12

6.47
±

1.66

14.39
±

3.27

802.9
±

46.28
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TABLE 3 Demographic and clinical characteristics of CVID subjects with addition of a variety of immune disorders (NIC-CVID).

NIC-CVID
subjects

Gender
(M/F)

Age
(years)

IgG at diagnosis
(mg/dL)

IgA at diagnosis
(mg/dL)

IgM at diagnosis
(mg/dL)

IgG through level
(mg/dL)

1 F 42 5 0 0 785

2 F 24 272 0 0 1080

3 M 53 109 0 0 760

4 F 25 167 0 0 785

5 M 54 90 17 37 767

6 M 30 23 0 15 1160

7 M 45 28 5 0 755

8 M 47 260 5 0 476

9 F 38 275 5 0 649

10 F 36 112 5 0 1100

11 M 33 85 5 0 1010

12 M 53 300 50 20 869

13 M 47 164 42 0 619

14 M 29 209 0 12 941

15 M 23 433 35 72 1010

16 F 50 186 0 0 648

17 F 41 169 5 0 473

18 M 21 404 58 39 471

19 F 59 96 14 19 510

20 F 61 310 16 21 1090

21 M 55 38 5 29 980

22 F 48 115 15 0 1150

23 M 36 251 0 12 690

Mean
±

SEM

41.30
±

2.53

178.3
±

24.85

12.26
±

3.59

12.00
±

3.80

816.4
±

47.54
F
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A B C

FIGURE 1

Serum concentrations of IgG (A), IgA (B), and IgM (C) in healthy donors (HD), CVID subjects with recurrent infections only (INF-CVID) or with
addition of a variety of immune disorders (NIC-CVID). **** p < 0.0001.
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(sCD14) (40, 41). To assess the degree of systemic immune

activation in CVID, we analyzed the serum levels of sCD14, a

recognized marker of monocyte activation (42). Serum

concentrations of sCD14 were increased in INF-CVID compared

to HD. Moreover, sCD14 levels were significantly increased in NIC-

CVID compared to both INF-CVID and HD (Figure 3B).
Correlations between cytokines, LPS,
sCD14, and IgG concentrations

In our study, we examined the correlations between cytokine

(TNF-a, IL-6, IL-1b, IL-10) levels and IgG concentrations after

IgRT in patients with INF-CVID (Supplementary Figure 1:
Frontiers in Immunology 06
sFigure1) and NIC-CVID (Supplementary Figure 2: sFigure 2).

No significant correlations were observed in both groups of CVID

patients. Previous studies have reported an inverse correlation

between endotoxemia and serum IgG levels in CVID patients

(43). However, in our study, we did not find any correlation

between LPS and sCD14 levels with IgG concentrations

(Supplementary Figures 3, 4: sFigures 3, 4). No correlations were

also found between cytokine levels and sCD14 concentrations in

patients with INF-CVID (Supplementary Figure 5: sFigure 5) and

NIC-CVID (Supplementary Figure 6: sFigure 6). Similarly, no

correlations were found between cytokines and LPS in patients

with INF-CVID (Supplementary Figure 7: sFigure 7) and NIC-

CVID (Supplementary Figure 8: sFigure 8). No correlations

were also found between sCD14 and LPS concentrations in both
A B

C D

FIGURE 2

Serum concentrations of TNF-a (A), IL-1b (B), IL-6 (C), and IL-10 (D) in healthy donors (HD), CVID subjects with recurrent infections only (INF-CVID)
or with addition of a variety of immune disorders (NIC-CVID). * p < 0.05; ** p < 0.01; **** p < 0.0001.
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patients with INF-CVID and NIC-CVID (Supplementary

Figure 9: sFigure 9).
Correlations between the different
cytokines in the single subjects with INF-
CVID and NIC-CVID

We have also examined the correlations between the different

cytokines in the single subjects with both INF-CVID (Supplementary

Figure 10: sFigure 10) and NIC-CVID (Supplementary Figure 11:

sFigure 11). No correlations were found between the different cytokines

with the exception of the significant correlation between IL-10 and IL-

1b in INF-CVID subjects (p < 0.001).
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Discussion

The results of this observational study demonstrate that

individuals with different CVID phenotypes exhibit varying

degrees of systemic cytokine dysregulation in peripheral blood. In

particular, low-grade inflammation is more evident in subjects with

NIC-CVID compared to INF-CVID. This condition of systemic

inflammation, characterized by elevated levels of proinflammatory

(i.e., TNF-a, IL-1b, IL-6) and immunoregulatory cytokines (i.e., IL-

10) persists in CVID subjects despite receiving adequate IgG

replacement therapy. Interestingly, we did not find significant

correlations between serum concentrations of IgG and several

inflammatory markers.

CVID is the most prevalent symptomatic primary

immunodeficiency (44, 45). Although genetic etiologies have been

identified in approximately 20% of CVID cases (2, 5–7), the

pathobiological mechanisms underlying the inflammatory

manifestations remain largely unknown (17, 18). Moreover, CVID is

a highly heterogeneous condition (3, 4) with different immunological

phenotypes characterized by various complications (12, 21, 26, 27, 46).

For instance, serum and sputum cytokine levels are markedly increased

in CVID subjects with chronic respiratory symptoms and airway

disease compared to those with normal airways (26). Similarly,

CVID subjects with autoimmune cytopenias (AIC) and

lymphadenopathy have elevated levels of LPS and exhibit

hyperplastic but inefficient germinal center responses compared to

CVID individuals without AIC (46). Previous studies by Jorgensen and

collaborators demonstrated that plasma levels of LPS, IL-6, and TNF-a
were increased in CVID subjects with dysimmune complications (e.g.,

splenomegaly, lymphadenopathy, autoimmunity, enteropathy,

granulomatous-lymphocytic interstitial lung disease [GLILD])

compared to CVID without dysimmune complications (27). Our

findings confirm and extend the previous observations, showing that

serum levels of inflammatory markers (LPS, sCD14) and cytokines

(TNF-a, IL-1b, IL-6) are increased in NIC-CVID subjects compared to

INF-CVID. Moreover, we found that circulating levels of the

immunoregulatory cytokine IL-10 were also increased in both NIC-

CVID and INF-CVID subjects.

LPS is a glycoprotein released by Gram-negative bacteria, which

represent the vast majority of gut microbiota (47). Circulating LPS

is considered a parameter of increased intestinal permeability and/

or microbial translocation of Gram-negative bacteria (48). LPS

activates the innate immune system by interacting with Toll-like

receptor 4, an important mediator of innate immunity (35, 49).

Previous studies investigating the circulating levels of LPS in

individuals with CVID have yielded conflicting results, likely due

to the inherent heterogeneity among CVID subjects (12, 27, 43, 46,

50, 51). Furthermore, the assays employed in these studies are

known to exhibit high variability, making it challenging to compare

findings obtained using different experimental methods (e.g., serum

vs. plasma). Finally, it is known that sCD14 can directly bind to LPS

(52, 53) and therefore can interfere with the measurement of

circulating endotoxin (54). Initial studies reported that circulating

levels of LPS were not increased in unselected CVID subjects (50,

51). By contrast, Perreau and coworkers found that plasma levels of

LPS were markedly increased in CVID subjects before IVIG therapy
A

B

FIGURE 3

Serum concentrations of LPS (A) and sCD14 (B) in healthy donors
(HD), CVID with recurrent infections only (INF-CVID) or with
addition of a variety of immune disorders (NIC-CVID). ** p < 0.01;
*** p < 0.001; **** p < 0.0001.
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(43). Also recent studies measuring circulating LPS in different

CVID subgroups compared to HD have been controversial (12, 27,

46). Two studies highlighted significant differences between CVID

subgroups showing that circulating levels of LPS are increased in

CVID with inflammatory complications (27) and with

autoimmunity (46) compared to uncomplicated CVID. By

contrast, another recent study reported no differences in plasma

LPS in patients with uncomplicated and complicated CVID and

controls (12). In our study, we found that LPS levels are more

markedly increased in NIC-CVID compared to INF-CVID.

Jorgensen and collaborators elegantly demonstrated that

increased plasma levels of LPS in CVID subjects were associated

with systemic inflammation and enhanced macrophage and T-cell

activation (27). Interestingly, LPS concentration correlated with gut

microbial dysbiosis in stool samples in CVID. More recently, it has

been shown that gut mucosa of CVID subjects has altered response

to LPS and viruses (55). Further studies are required to investigate

the true extent of endotoxemia and its association with systemic

and/or local (i.e., gastrointestinal) immune dysregulation in

different immunophenotypes of CVID.

It should be pointed out that different commercial preparations

of IVIG contain a broad spectrum of anti-carbohydrate antibodies,

including bacterial glycans (56). In particular, the bacterial

constituents containing these glycans include the cell wall

component LPS. These findings suggest that administration of

IVIG might interfere with the measurement of circulating LPS in

CVID subjects. Indeed, a study examining the presence of

endotoxin in CVID subjects before and after IVIG therapy

reported a decrease in endotoxin levels following immunoglobulin

treatment (43). This decrease was attributed to the reduction of

bacterial translocation caused by IVIG in CVID subjects.

Soluble CD14 (sCD14) is a circulating marker of monocyte

activation (40). Previous reports on circulating levels of sCD14 in

CVID have shown conflicting results (12, 27, 50, 51, 57, 58). Initial

studies reported increased serum concentrations of sCD14 in

unselected CVID subjects (50, 51), while others found no

significant difference compared to controls (58). Recently, two

studies reported that plasma levels of sCD14 were increased in

CVID, particularly in those with complications (12, 27). Our results

are consistent with the latter findings, showing that sCD14

concentrations are more markedly increased in NIC-CVID

compared to INF-CVID.

LPS activates the TLR4 on human macrophages inducing the

release of several proinflammatory cytokines, including TNF-a, IL-
1b, and IL-6 (36, 59). Circulating levels of TNF-a were found to be

increased in CVID compared to controls by several investigators

(12, 13, 26, 27, 29). Our results showing that circulating levels of

TNF-a are more markedly increased in NIC-CVID compared to

INF-CVID, are consistent with more recent findings (12, 26). IL-1b
is a classical proinflammatory cytokine mainly produced by human

macrophages and neutrophils (60, 61). To the best of our

knowledge, there is only one published study that has investigated

the serum concentration of IL-1b in CVID subjects (26). Schnell

and collaborators reported that serum concentrations of IL-1b were

increased in CVID compared to controls. Moreover, circulating and

sputum levels of IL-1b were more markedly increased in CVID with
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abnormal airways compared to normal airways (26). Our results

extend the previous findings showing that serum concentrations of

IL-1b are more markedly increased in NIC-CVID compared to

INF-CVID.

IL-6 is a proinflammatory cytokine mainly produced by human

macrophages (62, 63). Several groups of investigators reported

increased circulating levels of IL-6 in CVID (12, 13, 26, 27). In

particular, elevated levels of IL-6 were found in CVID with

abnormal airways (26) or with complications (12) compared to

controls. Our study extends the latter observations showing that

serum levels of IL-6 are particularly increased in NIC-CVID

compared to INF-CVID.

IL-10 is a pleiotropic cytokine that stimulates several immune cells

and exerts immunosuppressive effects on myeloid cells (64). IL-10 is a

powerful immunemediator with complicated, even opposite, biological

effects. Several investigators reported increased circulating IL-10 levels

in CVID subjects (12, 13, 25, 28, 29). In particular, in a study performed

in two large cohorts, serum concentrations of IL-10 were increased in

CVID with immune dysregulation compared to CVID with infections

only (13). In another study, circulating levels of IL-10 were found to be

increased in CVID with non-infectious complications compared to

CVID with infections only (12). Our results extend the previous

observations showing more pronounced elevation of IL-10 in NIC-

CVID compared to INF-CVID. These results are apparently surprising.

IL-10 is constitutively expressed by regulatory T cells (Treg cells) (65,

66). In CVID subjects, a low number of Treg cells has been associated

with autoimmune manifestations (67–69). Moreover, reduced IL-10

production by Treg cells has been found in CVID subjects (70).

However, it is possible that increased circulating levels of IL-10 in

CVID are influenced by IVIG therapy, which selectively activates Treg

cells (71). This hypothesis is supported by the observation that IVIG

administration in mice increased IL-10 levels compared to untreated

mice (72). Moreover, polyclonal immunoglobulins induced IL-10 from

mouse macrophages in vitro (73).

The alteration of circulating cytokines in CVID subjects, as

reported by us and other investigators (12, 13, 25–27, 29), may be

attributed to intrinsic immunologic changes or induced by

exogenous immunoglobulin administration. The first hypothesis

is indirectly supported by a wide spectrum of inflammatory and

immunologic alterations in different phenotypes of CVID patients

(25). The second hypothesis finds support in experimental mouse

models. For instance, it has been demonstrated that IVIG

administration in mice increased the circulating levels of several

cytokines (e.g., IL-10, IL-33) (72, 74). Interestingly, IVIG

potentiated LPS-induced IL-10 release from mouse bone marrow-

derived macrophages (73). This observation raises the possibility

that increased levels of circulating LPS in CVID subjects could

modulate the serum concentrations of certain cytokines. Similarly,

there is the possibility that IVIG might induce significant alterations

of innate and adaptive compartments in peripheral blood of CVID

subjects. For instance, it has been proposed that IVIG could

decrease the number of circulating inflammatory monocytes (75).

CVID patients with autoimmune and/or inflammatory

complications have a higher mortality rate compared to patients with

infections only (3, 9, 76, 77). In addition, there is compelling evidence

that CVID subjects are associated with increased prevalence of
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lymphoproliferative disorders and other malignancies (9, 10, 14, 15, 78–

81). In particular, an increased prevalence of malignant lymphoma (82)

and gastric cancer (15) has been reported in CVID compared to the

general population. In the past, this phenomenon was simplistically

attributed to defects in B and/or T cell levels or functions (14, 22, 83,

84). More recently, it has been recognized that several risk factors can

contribute tomalignant transformation in primary immunodeficiencies

(78). Among these factors, low-grade inflammation is emerging as one

of the hallmarks of cancer (78, 85–87). The present and previous studies

have demonstrated the presence of increased concentrations of at least

two biomarkers (e.g., cytokines, LPS) of low-grade inflammation in

peripheral blood of CVID subjects (12, 13, 25–27, 29, 43, 46). The first

biomarker is represented by an increase of circulating proinflammatory

cytokines (e.g., IL-1b, TNF-a, IL-6) demonstrated in previous (12, 13,

26, 27, 29) and in our study. These cytokines are involved in tumor

initiation and growth (61, 62, 88). Another relevant biomarker is

represented by an increase in LPS concentrations, particularly in

subjects with complicated CVID (17, 27, 43). Recent evidence has

demonstrated that LPS can favor the onset of cancer (89, 90) and the

formation of metastasis (91, 92). These observations suggest that

persistent elevation of proinflammatory cytokines and LPS

concentrations, despite IgRT, could contribute to chronic

inflammation, favoring the onset of solid and hematologic cancers in

CVID subjects.

Our study has several limitations that should be pointed out. First,

our study is limited by the small sample size of subgroups of CVID

subjects and healthy donors. Multicenter studies examining CVID

patients with different complications (e.g., lymphoproliferative,

autoimmune and gastrointestinal diseases, cancer) will be necessary

to identify specific circulating biomarkers of immune dysregulation

(e.g., cytokines, chemokines). In addition, the small sample sizes of

INF-CVID and NIC-CVID subjects from a single center do not allow

for meaningful statistical correlations with clinical features and phases

of clinical activity. Moreover, in this study we measured a limited

number of circulating proinflammatory and immunomodulatory

cytokines. Additional investigations are required to evaluate a wider

spectrum of cytokines, including epithelium-derived alarmins (e.g.,

TSLP, IL-33, IL-25) (93–96), and chemokines (25, 97), presumably

involved in immune dysregulation in patients with different CVID

phenotypes. Moreover, the enrolled individuals with different

phenotypes of CVID lacked a molecular diagnosis. Finally, multiple

LPS-binding proteins have been found in human serum. Among

these, LPS-binding protein (LBP) and bactericidial/permeability

increasing protein (BPI) both bind the Lipid A component of LPS

(98, 99). In this study, we did not evaluate the concentrations of LBP,

BPI, plasma phospholipid transfer protein (PLTP) (100, 101) and LPS-

neutralizing capacity (LPS-NC) (102), which could interfere with

LPS measurement.

Despite these limitations, our findings expand previous results

(25, 28, 29), indicating that several biomarkers of systemic

inflammation persist in CVID patients, particularly in those with

inflammatory and autoimmune complications (12, 13, 17, 26, 27),

despite receiving IgRT. Further efforts appear necessary to

understand the possible pathophysiological implications,

particularly in relation to cancer development, of cytokine

dysregulation in CVID subjects with different phenotypes.
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