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Background: Hepatocellular Carcinoma (HCC) is a common lethal digestive
system tumor. The oxidative stress mechanism is crucial in the HCC genesis
and progression.

Methods: Our study analyzed single-cell and bulk sequencing data to compare
the microenvironment of non-tumor liver tissues and HCC tissues. Through these
analyses, we aimed to investigate the effect of oxidative stress on cells in the HCC
microenvironment and identify critical oxidative stress response-related genes
that impact the survival of HCC patients.

Results:Our results showed increased oxidative stress in HCC tissue compared to
non-tumor tissue. Immune cells in the HCC microenvironment exhibited higher
oxidative detoxification capacity, and oxidative stress-induced cell death of
dendritic cells was attenuated. HCC cells demonstrated enhanced
communication with immune cells through the MIF pathway in a highly
oxidative hepatoma microenvironment. Meanwhile, using machine learning and
Cox regression screening, we identified PRDX1 as a predictor of early occurrence
and prognosis in patients with HCC. The expression level of PRDX1 in HCC was
related to dysregulated ribosome biogenesis and positively correlated with the
expression of immunological checkpoints (PDCD1LG2, CTLA4, TIGIT, LAIR1). High
PRDX1 expression in HCC patients correlated with better sensitivity to
immunotherapy agents such as sorafenib, IGF-1R inhibitor, and JAK inhibitor.

Conclusion: In conclusion, our study unveiled variations in oxidative stress levels
between non-tumor liver and HCC tissues. And we identified oxidative stress gene
markers associated with hepatocarcinogenesis development, offering novel
insights into the oxidative stress response mechanism in HCC.
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1 Introduction

Hepatocellular Carcinoma (HCC), the most prevalent
malignant tumor of the digestive system, is the world’s third
cause of mortality from cancer (Ganesan and Kulik, 2023).
Chronic alcohol consumption, diabetes or obesity, metabolic
syndromes, and infection by Hepatitis B virus are key factors
responsible for HCC progression, which promotes cirrhosis,
ultimately HCC (Mittal and El-Serag, 2013; Kim and Viatour,
2020; Zhang et al., 2023). Now, therapeutic options for HCC are
evolving from surgical treatments such as liver transplantation,
surgical resection, percutaneous ablation, and radiotherapy to
diversified immunotherapeutic strategies (Vogel et al., 2022).
However, the efficacy of immunotherapy for HCC still needs to
be improved and faces significant challenges. It has an association
with the microenvironment of HCC.

The HCC microenvironment is mainly composed of cellular
components such as tumor cells, tumor-infiltrating lymphocytes,
and tumor-associated neutrophils, as well as noncellular
components such as cytokines and chemokines (Anderson and
Simon, 2020). The microenvironment of HCC differs greatly
from that of normal liver tissues, in which inflammation is one
of the leading environmental cues that mediate tumorigenesis. It has
been demonstrated that acute and chronic inflammation can induce
oxidative stress in the liver. During this process, hepatocytes become
affected by reactive oxygen species (ROS) generated from electron
leakage from mitochondrial electron transport, leading to the
activation of oncogenic pathways (Takaki and Yamamoto, 2015).
The interactions among the HCC microenvironment are also rather
complex. ROS in the environment can promote malignant
transformation via excessive activation of cell growth,
differentiation, and survival signaling pathways such as PI3K/
Akt/mTOR, and MAPK/ERK (Aboelella et al., 2021).

Oxidative stress is a circumstance that occurs when there is an
imbalance between the oxidative and antioxidant effects within
tissues (Forman and Zhang, 2021). It is not only one of the
major causes of hepatic inflammatory diseases but intimately
associated with the generation and progression of HCC (Sasaki,
2006). Our study analyzed the effect of oxidative stress on cells in the
microenvironment by combining single-cell and bulk sequencing
data from the non-tumor liver and HCC tissues and identified
oxidative stress-related genes that have a critical impact on the
survival of HCC patients.

2 Materials and methods

2.1 Data acquisition

Raw single-cell transcriptome profiling data for ten HCC
patients from two relevant sites, primary tumor (HCC01T,
HCC02T, HCC03T, HCC04T, HCC05T, HCC06T, HCC07T,
HCC08T, HCC09T, and HCC10T) and adjacent non-tumor liver
(HCC03N, HCC04N, HCC05N, HCC06N, HCC07N, HCC08N,
HCC09N, and HCC10N), was achieved from GSE149614 dataset
in Gene Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/). Bulk RNA-seq data of HCC patients were
collected as follows, TCGA-LIHC dataset from The Cancer

Genome Atlas (https://portal.gdc.cancer.gov/repository) database,
HCCDB18 dataset from Integrative Molecular Database of
Hepatocellular Carcinoma (http://lifeome.net/database/hccdb/
download.html) database, and GSE datasets (GSE76427,
GSE54236, GSE36376, GSE69715, GSE121248, GSE107170, and
GSE45267) from GEO database. 110 normal liver samples RNA-
seq data were retrieved from Genotype-Tissue Expression (GTEx,
https://gtexportal.org/home/) database. The samples information in
all data sets can be seen in Supplementary Table S1.

2.2 Data processing

We used “Seurat” packages (Hao et al., 2021) in R software to
process the single cell data. Gene number, relative hemoglobin, and
mitochondrial and ribosomal abundance (Supplementary Figure
S1), indicating that the cellular readouts were comparable
between samples and no transcriptional batch effects were
observed. Cells with <1,500 or >20,000 detected genes containing
mitochondrial genome >5% were excluded. Indicating that the
cellular readouts were comparable between samples and no
transcriptional batch effects were observed. Cells
with <2,500 or >20,000 detected genes containing mitochondrial
genome >4% were excluded. Next, single-cell data were normalized,
and variable genes were hunted by the “SCTransform” method.
After, 20 most powerful principal components were found by PCA
analysis (Supplementary Figure S2). Further dimension reduction of
those principal components was proceeded by the UMAPmethod to
visualize cell distribution. Cell types of principal components were
annotated by “CellMarker” (http://xteam.xbio.top/CellMarker/) and
“PanglaoDB” (https://panglaodb.se/) databases. Cell-cell
communication were conducted by “CellChat” R package. In
addition, Bulk RNA-sequencing expression datasets were
normalized by log2 (FPKM+1) through “limma” package in R.

2.3 Pathway analysis

The verified pathways containing gene sets provided in the
Molecular Signatures database were utilized by Gene Set
Variation Analysis (GSEA) (Mo et al., 2003) to analyze the
biological functions of single-cell data. Gene-related differential
expression biological processes in transcriptome data were
analyzed by single-sample Gene Set Variation Analysis (ssGSEA)
(Rooney et al., 2015; Zhang et al., 2021b). Metascape (a gene
annotation and analysis resource, https://metascape.org/) and
molecular complex detection (MCODE) (Osterman et al., 2020)
methods analyzed oxidative stress-related genes’ interactions and
functional pathways.

2.4 Analysis of cell–cell communications

CellChat (Jin et al., 2021) toolkit in R enables the analysis and
interpretation of cell-cell communication within complex biological
systems. Using CellChat, the gene expression profiles are analyzed to
identify ligand-receptor pairs between different cell types. CellChat
provides a comprehensive database of known ligand-receptor

Frontiers in Cell and Developmental Biology frontiersin.org02

Zhang et al. 10.3389/fcell.2023.1191074

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/repository
http://lifeome.net/database/hccdb/download.html
http://lifeome.net/database/hccdb/download.html
https://gtexportal.org/home/
http://xteam.xbio.top/CellMarker/
https://panglaodb.se/
https://metascape.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1191074


interactions, which is used to identify potential communication
channels between cell types. It evaluates the significance of ligand-
receptor pairs in cell-cell interactions using correlation analysis
(Cowen et al., 2017; Ronen and Akalin, 2018; Szklarczyk et al.,
2019). Once the ligand-receptor pairs are identified, CellChat
analyzes the signaling pathways associated with these
interactions. We utilize information from the secreted signaling
pathways database (Jin et al., 2020) in CellChat to determine the
ligand-receptor interactions in intercellular communication.

2.5 Screening and evaluation of oxidative
stress response-related gene markers with
diagnostic value by multiple machine
learning algorithms

Due to the relatively small number of non-tumor liver tissue
samples in TCGA-LIHC dataset compared to HCC samples, we
used “Sva” package to merge the normalized GTEX dataset with
the TCGA dataset and remove batch effects. The two datasets
after removal of batch effects are shown in Supplementary Figure
S3. Model building was based on the oxidative stress-related
genes expression profile of merged dataset. The samples in the
merged dataset were randomly split into training sets and test sets
in the proportion 7:3, respectively. First, we applied machine
learning algorithms, including extreme gradient boosting (XGB)
(Li et al., 2023), support vector machine (SVM) (Huang et al.,
2023), generalized linear model (GLM) (Wang et al., 2023), and
random forest (RF) (Su et al., 2023), to create models that
screened for significant oxidative stress-related gene feature
variables. All machine learning methods used default settings
to generate models. The grid search function in the “caret” R
package was used to modify model parameters automatically,
which were tested using 5-fold cross-validation. Secondly, we
interpreted the four machine learning models obtained above
using the explaining features function of the “Dalex” R package.
The explaining features, including model performance analysis
and variable importance analysis, were then used to analyze the
four models described above. Model performance analysis
visualized the performance distribution of the four models.
The models’ cumulative residual and box plot distribution
diagrams were drawn, respectively. The variable importance
analyzes the relative importance of different variables in the
model to the model’s prediction. It explains the impact of
missing the variable on the prediction value of the response
variable through the root mean square error loss function.
Thirdly, the area under the curve was obtained by receiver
operating characteristic curves (ROC) analysis to identify the
best machine-learning model. The top six significant variable
features from the optimal model were considered diagnostic gene
markers for predicting the occurrence of HCC. Finally, for
clinical usability, we used these diagnostic gene markers to
conduct nomogram model construction and to judge their
prediction error from the actual situation through the
calibration curves. Additionally, the prediction performance of
the diagnostic gene markers was examined by seven external
independent cohorts, including GSE76427, GSE54236,
GSE36376, GSE69715, GSE121248, GSE107170, and GSE45267.

2.6 Prognostic value analysis of
PRDX1 in HCC

We further analyzed six oxidative stress-related gene markers
(GPX4, HMOX1, PRDX1, FOS, PRDX5, and TXN) with the
diagnostic value, which from the machine learning analysis steps.
To judge whether they also play a role in predicting the prognosis of
HCC patients. Univariate and multivariate Cox regression analyses
were performed for these six genes based on survival and gene
expression information of HCC patients in the TCGA cohort. After
screening, PRDX1 was correlated with the prognostic survival status
of HCC patients. The patients with HCC were then classified into
high and low-expression groups by median cut-off value, using
Kaplan-Meier survival estimate (KM) and time-dependent ROC
analysis to assess whether PRDX1 was a prognostic factor. The
survival analysis results were finally validated using an independent
HCCDB18 cohort.

2.7 Correlation analysis between PRDX1 and
immune microenvironment of HCC

To explore the correlation of PRDX1 with the immune
microenvironment in HCC. We used six algorithms
[CIBERSORT (Chen et al., 2018), CIBERSOR-ABS (Wang et al.,
2020), QUANTISEQ (Plattner et al., 2020), MCP-counter (Zhang
et al., 2021a), XCELL (Aran et al., 2017), and TIMER (Li et al., 2017)]
for immune cell infiltration analyses to assess HCC individuals with
the different expression level of PRDX1. Differences in immune
function between different PRDX1 expression groups were then
analyzed using the “GSVA” package.

2.8 Statistical analysis

The analyses of our study were all employed by R 4.1.1 software.
Analyses used a false discovery rate (FDR) < 0.05 from the p-value,
which was adjusted by the Bonferroni method. Figure 1 displays a
flow chart outlining our study.

3 Results

3.1 Landscape of the cell composition in
non-tumor and HCC tissues

The GSE149614 dataset was utilized for single-cell analysis in
our study. After quality control for scRNA-seq data, we filtered out
28,687 cells in tumor-adjacent noncancerous tissues (control) and
34,414 cells in HCC tissues for further study. We characterized the
cellular landscape using cell classification marker genes identified in
previous studies (Ronen and Akalin, 2018) (Supplementary Figure
S4). Following, seven cell types, including dendritic cells, gamma
delta T cells, mucosal−associated invariant T cells, T memory cells,
B cells, and hepatocytes or malignant hepatocyte cells, were
identified from the landscape (Figure 2A). When we compared
cell type proportions (Figure 2B) between non-tumor liver tissues
and HCC tissues, we discovered that the ratio of mucosal-associated
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invariant T cell, T memory cell, and gamma delta T cell in HCC
tissues were significantly decreased. In contrast, the proportion of
B cells increased in HCC tissues.

3.2 Oxidative stress of cell clusters between
non-tumor and HCC samples

To investigate the oxidative stress characteristics of non-
malignant samples and HCC samples, oxidative stress AUC
(oxidative stress scoring for each cell) was generated based on
the expression profile of genes in oxidative stress response
collected from the Molecular Signatures database, which
summarized genes involved in oxidative stress from validated
experimental studies (Supplementary Table S2). The AUCell R
package was used to determine each cell line’s oxidative stress
AUC activity based on the differential expression level of

oxidative stress-related genes in each cell type. Cells expressing
higher oxidative stress AUC values in HCC samples were mainly in
T memory cells, dendritic cells, and malignant hepatocytes, colored
in yellow (Figures 3A, B). As mucosal-associated invariant T cell, T
memory cell, and gamma delta T cell clusters were remarkably
decreased in the non-tumor group, colored in purple. It can be seen
that the oxidative stress AUC of the cells was generally higher in the
HCC samples than in the non-tumor liver tissues of the control
group in the boxplot (Figure 3C). This means that cells in the HCC
microenvironment experienced more severe oxidative stress than
non-tumor tissues.

Gene set enrichment analyses were performed to explore the
biological processes changes of these cell clusters. In the group of
HCC, antigen processing via the MHC class II route and extrinsic
apoptosis of T memory cells were triggered. Immune cell receptor
pathways were blocked in T memory cells Supplementary Figure
S5A). In mucosal-associated invariant T cells from the tumor group,

FIGURE 1
Flow chart of our study.
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peptidase activity, catabolic process, and cellular response to
stress were elevated, and innate immune response, adaptive
immune response, and defense response were suppressed
(Supplementary Figure S5B). The biological function analysis
results revealed that the microtubule-based process, apoptotic
process, and response to heat were remarkably activated, while
the immune response regulating cell surface receptor signaling
pathway and cell recognition were inhibited in the gamma delta
T cells of the HCC group (Supplementary Figure S5C). The
metabolic process was enhanced in dendritic cells of the HCC
group, but the response to growth factor, regulation of
lymphocyte activation, and cell activation were repressed
(Supplementary Figure S5D). The response to endothelial
reticulum stress and monocarboxylic acid metabolic process
were greatly stimulated in the B cells of the tumor group,
whereas cytoplasmic translation and biosynthetic process were
significantly suppressed (Supplementary Figure S5E). Compared
to non-tumor hepatocytes, malignant hepatocytes have markedly
active cell proliferation and differentiation pathways, including
ribonucleoprotein complex subunit organization, electron
transport chain, and aerobic respiration. In addition,
malignant hepatocytes exhibited suppressed lymphocyte

activation, immunological response, and defensive response
(Supplementary Figure S5F).

3.3 Comparison of cell-cell communication
between adjacent non-tumor tissues
and HCC

Since there were apparent differences in the levels of oxidative
stress between HCC cells and adjacent non-tumor tissue cells, we
further compared the situations of intercellular communication in
the two tissues. According to the preliminary clustered cell-cell
communication network analysis results, the interaction strength
and net number of interactions between malignant hepatocytes cells
and immune cells communication were superior to those between
non-tumor hepatocytes cells and immune cells (Figures 4A, B;
Supplementary Figure S6). Next, we performed a Laplacian
clustering analysis of signaling pathways involved in intercellular
communication based on functional and structural similarities
(Figures 4C, D). Herein we focus on the functional similarity
(two signaling pathways or two ligand-receptor pairs with similar
roles) of intercellular communication. Inflammation and immune

FIGURE 2
Single-cell profiling of HCC and adjacent non-tumor samples. (A) UMAP distribution of cell types in HCC versus non-tumor (control) tissues. (B)
Contrasting differences in cell ratios in the two tissues.

FIGURE 3
Oxidative stress AUC of cell clusters between theHCC and non-tumor tissues. (A)UMAP plot of oxidative stress AUC in non-tumor tissues. (B)UMAP
plot of oxidative stress AUC in HCC tissues. (C) Comparison of oxidative stress AUC of cell clusters between non-tumor tissues and HCC tissues.
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cell chemotaxis signaling pathways (such as IFN−II, TNF, IL16,
IL10, and CXCL) were included in groups 1 and 2. In group 3, MIF,
MK, FN1, and Galectin pathways for communication and migration
between immune cells and malignant hepatocytes cells. Group
4 mainly involved the intra and exocrine pathways

(ANGPTL, GDF) in HCC. Our analysis of signaling pathways in
cell populations identified three synergistic patterns of efferent
(Figure 4E) and afferent signaling (Figure 4F). The inflammation
pathways were the synergistic efferent signaling pathways of T
memory cells of adjacent non-tumor tissue and gamma delta

FIGURE 4
Intracellular communication between HCC and immune cells. (A) Interaction of cells in adjacent non-tumor tissue and HCC tissue. The thickness of
the line indicates the number of connections or interaction strength, and the arrow indicates the direction of communication. (B)Heatmaps displayed the
number and strength of the interactions. (C) Functional similarity or (D) structural similarity classification of shared communication pathways between
cells. (E) Patterns of functional similarities signaling of secretory cells outcoming or (F) incoming to target cells.

FIGURE 5
Intercellular communication signaling changes between non-tumor tissue and HCC tissue. (A) Cells’ outgoing and incoming interaction strength
was analyzed in non-neoplastic andHCCenvironments. The difference in the size of the dots in the two environments represents the set of cells that have
changed sending or receiving signals. (B) The information flow changes of signaling pathways between non-tumor and HCC status. (C) Incoming and (D)
outcoming signaling expression differences of cell clusters under the two environments are demonstrated by heatmaps. (E) HCC cells have
significant ligand-receptor interactions of MIF pathway with immune cells.
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T cells, T memory cells, mucosal-associated invariant T cells, and
B cells from both tissues. In efferent immune inflammatory response
pathways, dendritic cells of adjacent non-tumor tissue and T
memory cells of HCC tissue communicate synergistically.
Inflammatory pathways were coordinately afferent in T memory
cells of adjacent non-tumor tissue, B cells, gamma delta T cells, and
mucosal−associated invariant T cells. Dendritic cells of adjacent
non-tumor tissue and T memory cells of HCC tissue had synergistic
immune chemotactic afferent pathways. Tumor growth and
differentiation pathways were coordinately afferent in malignant
hepatocytes cells.

Further, by comparing outgoing and incoming interaction
strength in non-tumor and HCC tissues, we identified significant
changes in the signals sent or received by T memory cells, B cells,
and malignant hepatocytes (Figure 5A). The memory T cells and
B cells in the control group mainly served as signal receivers in cell
communication, while the memory T cells and B cells in HCC
mainly served as signal transmitters. In HCC, malignant hepatocytes
send a higher intensity of intercellular communication signals than
non-neoplastic hepatocytes in the control group. The dot plot
visually represents the dominant senders and receivers of
intercellular communication. The X and Y-axes correspond to
the total outgoing and incoming communication probabilities,
respectively, for each cell group. The size of the dots indicates
the number of inferred links associated with each cell block,
considering both outgoing and incoming interactions. Larger dots
indicate a higher number of links. The colors of the dots differentiate

between different cell groups, allowing for identification and
comparison. Interestingly, we discovered that only the MIF
pathway was significantly enriched in non-neoplastic and
neoplastic contexts (Figure 5B). Each cell cluster exhibited
significant MIF pathway communication in incoming (Figure 5C)
and outgoing (Figure 5D) modes under non-tumor and HCC
conditions. In light of the above findings, we further investigated
the communication between HCC cells and hepatocytes or immune
cells through receptor-ligand interaction studies (Figure 5E). The
results indicated that malignant hepatocytes and immune cells,
including B cells, dendritic cells, gamma delta T cells,
mucosal−associated invariant T cells, and T memory cells
interact via CD74-CXCR4. Second, HCC cells interact with
dendritic cells, gamma delta T cells, mucosal−associated invariant
T cells, and T memory cells through CD74−CD44. However, no
relevant communication between HCC cells and adjacent non-
tumor hepatocytes has been found in MIF signaling. Strikingly,
MIF communication was significantly more potent in the HCC
environment than in the non-tumor environment (Figures 6A, B).
The width of the edges in the graph is determined by the number of
interactions, which reflects the number of ligand-receptor pairs
involved in the communication between two interacting cell
clusters. A wider edge indicates a higher number of interactions
between the cells. In the HCC state of the MIF signaling pathway
(Figure 6C), malignant hepatocytes serve as signal senders. Gamma
delta T cells, mucosal−associated invariant T cells, and T memory
cells were recipients. Dendritic cells and mucosal−associated

FIGURE 6
MIF signaling pathway changes between the non-tumor environment and the HCC environment. (A,B) Network diagrams of malignant hepatocyte
cells communicating with immune cells through ligand receptors of MIF signaling pathway. (C) Functional roles in cell-cell communication played by
cells in HCC status. The darker the color, the more deterministic the role is. (D,E)Network diagrams of non-tumor hepatocyte cells communicating with
immune cells through ligand receptors of MIF signaling pathway. (F) Functional roles in cell-cell communication played by cells in non-tumor status.
The darker the color, the more deterministic the role is.
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invariant T cells act as mediators. B cells and mucosal−associated
invariant T cells were the influencers. In contrast, non-neoplastic
hepatocytes in the non-tumor state communicate significantly much
weaker with immune cells (Figures 6D–F).

3.4 Identification of oxidative stress
response-related hub genes in HCC

Next, differentially expressed oxidative stress response-related
genes (DEGs) of each cell type between non-tumor samples and
HCC samples were marked in the volcano and bar plot
(Supplementary Figures S7A, B; Supplementary Table S3). These
DEGs were further subjected to MCODE analysis to screen hub
genes of oxidative stress response in the pathogenesis of HCC. The
MCODE analysis determined that HMOX1, POR, SOD1, PRDX6,
P4HB, GPX4, PRDX3, PRDX5, JUN, PRDX2, TXN, FOS, and
PRDX1 were the oxidative stress-related hub genes among DEGs
(Figure 7A). Metascape analysis further revealed that the genes
HMOX1, POR, JUN, and FOS play a role in regulating the
p53 pathway as hub genes. Other hub genes regulate oxidative

stress response through the ROS pathway. All the DEGs were
associated with the ROS pathway, TNFA signaling via NFKB,
apoptosis, hypoxia, and mTORC1 signaling pathway (Figure 7B).
This analysis provided evidence of the involvement of these genes in
critical biological processes of HCC. Using cBioPortal (Cerami et al.,
2012; Gao et al., 2013) tools in the TCGA cohort, we further
investigated the mutational landscape of these 13 hub genes in
HCC. Chromosome mapping revealed that chromosomes 1 and
19 contain the most significant number of dysregulated oxidative
stress-related hub genes in HCC. In contrast, no X and Y
chromosomes contain dysregulated oxidative stress-related hub
genes (Figure 7C). We analyzed the somatic cell mutation
spectrum of 366 patients with HCC to determine the mutation
rate of these hub genes. Among the hub genes in HCC patients,
PRDX6, P4HB, and POR showed the most significant amplified
genetic alteration rates of 9%, 5%, and 1.9%, respectively.
PRDX1 displayed a high structural variation rate of 5%. It was
observed that FOS had a deep deletion rate of 1.3%. The remaining
hub genes exhibited minimal mutation rates below 0.5% in HCC
patients (Figure 7D). These findings shed light on the mutational
landscape of the hub genes associated with oxidative stress response

FIGURE 7
The hallmark pathways and genetic alterations analysis of the oxidative stress-related DEGs in HCC. (A) PPI network for hub genes related to
oxidative stress among DEGs. Hub genes were colored green and blue. (B) The hallmark pathways enrichment analysis of the oxidative stress-related
DEGs. (C) Circular visualization of chromosomal positions of 13 hub genes. (D) The genetic alteration profiles of the 13 hub genes.
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in HCC, highlighting specific genes with significant genetic
alterations.

3.5 Screening and verification of diagnostic
markers

Since the oxidative stress response level was significantly
different between non-tumor tissues and HCC tissue cells, based
on the bulk transcript data, we further analyzed the diagnostic value
of oxidative stress response-related hub genes by four machine
learning models (RF, SVM, XGB, GLM). The RF and SVM
models performed the lowest residual values (Figures 8A, B).
Meanwhile, the top 10 ranked gene variables in the four machine
learning models were filtered out by root mean square error
(Figure 8C). By visual ROC analysis, the RF and SVM models
also had the highest AUC (0.981) in 5-fold cross-validation
(Figure 8D). Then, in conjunction with these outcomes, six
oxidative stress response-related gene markers (GPX4, HMOX1,
PRDX1, FOS, PRDX5, and TXN) with the highest diagnostic value

were chosen from the RF and SVM model (Supplementary Table
S4). Further, we constructed a diagnostic nomogram based on these
six gene markers to test their clinical decision-making efficiency in
predicting the early occurrence of HCC (Figure 9A). The calibration
curve analysis showed that the accuracy of the nomogram model in
predicting the occurrence risk of HCC was very close to the actual
sample probability (Figure 9B). The decision curve analysis reveals
that this nomogram is highly accurate with a considerable net
benefit (Figure 9C). Additionally, the effectiveness of our
nomogram model and gene markers has been verified in seven
external datasets by ROC analysis (GSE76427, AUC: 0.935;
GSE54236, AUC: 0.828; GSE36376, AUC: 0.963; GSE69715,
AUC: 1.000; GSE121248, AUC: 0.974; GSE107170, AUC: 0.883;
GSE45267, AUC: 0.974; Training cohort, AUC: 0.993) (Figure 9D,
Supplementary Figure S8). The differences in single-cell levels of
these six genes between non-neoplastic and malignant hepatocytes
were consistent with the transcriptome analysis (Figures 9E, F).
Additionally, we investigated the expression of these genes in
immunohistochemical pathological sections from The Human
Protein Atlas (www.proteinatlas.org/) and found that they were

FIGURE 8
Machine learning model construction and evaluation. (A) Eachmachine learning model’s cumulative residual distribution. (B) Boxplots were used to
display the residuals of machine learning models. The red dot shows the residuals’ root mean square. (C) Genes that are significant in machine learning
models. (D) ROC analysis for four machine learning models in the testing cohort.
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highly expressed, further supporting their potential as biomarkers
(Supplementary Figure S9). These results suggested that these six
gene diagnostic markers can effectively identify early-stage HCC
individuals.

3.6 Oxidative stress response-related
diagnostic marker PRDX1 was associated
with prognosis in HCC

We further performed survival analysis for the six oxidative
stress-related diagnostic gene markers from above steps to observe

their associations with HCC prognostic progression. Among them,
the expression levels of HMOX1, PRDX1, and TXN were
significantly related to overall survival in univariate Cox
regression analysis of the TCGA-LIHC cohort (p = 0.004, p <
0.001, p = 0.029, respectively). Meanwhile, in the
HCCDB18 cohort, PRDX1 and PRDX5 were markedly linked
with HCC individuals’ overall survival rate by univariate cox
regression analysis (p = 0.018, p = 0.018, respectively). Based on
multivariate cox regression in two cohorts (Supplementary Table
S5), PRDX1 was identified to be the independent prognostic
predictor for HCC (TCGA-LIHC: p < 0.001, Hazard ratio =
1.715, 95%Confidence interval = 1.326–2.217; HCCDB18:

FIGURE 9
Machine learning-based nomogram model validation. (A) Building a nomogram to forecast the risk of HCC. (B) Calibration curve analysis for
nomogram. (C) Decision curve analysis for nomogram. (D) ROC analysis for the nomogram model in testing and training cohorts. (E) Expression of six
gene signatures in non-neoplastic hepatocytes. (F) Expression of six gene signatures in malignant hepatocytes.
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p = 0.018, Hazard ratio = 1.787, 95%Confidence interval =
1.104–2.892). Thus, PRDX1 was selected for further research.

3.7 Validation of the prognostic value of
PRDX1 in HCC

Depending on median cut-off values, HCC patients in TCGA-
LIHC and HCCDB18 were divided into high and low
PRDX1 expression groups. The overall survival of HCC patients
in the high PRDX1 group was considerably worse than that of
patients in the low PRDX1 group, as shown by Kaplan-Meier
analysis (Figures 10A, B). We also found that HCC patients with
high expression of PRDX1 have much worse progress-free intervals
and disease-specific survival status (Supplementary Figure S10).
This tendency of HCC patients was also visible in the survival
plot (Figures 10C, D). In univariate cox analysis with
clinicopathological characteristics, the PRDX1 was significantly
related to the overall survival of HCC patients (TCGA-LIHC:
Hazard ratio = 2.449, 95%Confidence interval = 1.452–4.129, p <
0.001; HCCDB18: Hazard ratio = 2.988, 95%Confidence interval =
1.462–6.098, p = 0.003) (Figures 10E, G). Multivariate cox regression
determined that the PRDX1 was an independent predictive factor
for patients’ prognoses among clinicopathological characteristics
(TCGA-LIHC: Hazard ratio = 2.395, 95%Confidence interval =
1.394–4.115, p = 0.002; HCCDB18: Hazard ratio = 2.413, 95%
Confidence interval = 1.193–4.881, p = 0.014) (Figures 10F, H).
At the same time, the prognostic prediction power (AUC) for the
PRDX1 in 1 year, 2 years, and 3 years in the ROC analysis of two

cohorts was relative satisfaction (Figures 10I, J). Furthermore, a
nomogram was created to evaluate the prognosis status of HCC
patients by incorporating clinicopathological characteristics,
including grade, stage, age, gender, and the expression profile of
PRDX1 (Figure 10L). The ideal fitting degree of the calibration
curves to the observed values validated the accuracy of nomogram in
predicting HCC patients’ outcomes (Figures 10M, N). Moreover, we
found the expression level of PRDX1 was consistently high in most
HCC cell lines by Cancer Cell Line Encyclopedia (https://sites.
broadinstitute.org/ccle) (Figure 10K). As a result, as an
independent prognostic factor, PRDX1 has high clinical value in
assessing the progression of HCC patients.

3.8 Identification pathways and biological
functions of PRDX1 in HCC

Gene set enrichment analyses were conducted in HCC, and
PRDX1 was found to be mainly involved in digestion,
ribonucleoprotein complex biogenesis, ribosome biogenesis, gene
silencing by RNA, and smooth muscle cell differentiation
(Supplementary Figures S11A, B). Furthermore, we explored the
PRDX1-related specific biological process activation status in HCC
patients. In the bubble plot, the activated PRDX1-related pathways
in HCC patients mainly have ribosome biogenesis,
ribonucleoprotein complex biogenesis, ncRNA processing, cellular
glucuronidation, uronic acid metabolic process, snRNA processing,
and regulation of programmed necrotic cell death (Supplementary
Figure S11C). In contrast, PRDX1-related pathways, including

FIGURE 10
Survival analysis of PRDX1 in the two cohorts. TCGA-LIHC cohort (A,C,E,F,L,I,M), HCCDB18 cohort (B,D,G,H,J,N). (A,B) Kaplan–Meier survival
analysis result. (C,D) Survival status plots of HCC patients in the two cohorts. (E)Univariate independent Cox analysis for PRDX1 in TCGA-LIHC cohort. (F)
Multivariate independent Cox analysis for PRDX1 in TCGA-LIHC cohort. (G) Univariate independent Cox analysis for PRDX1 in the HCCDB18 cohort. (H)
Multivariate independent Cox analysis for PRDX1 in the HCCDB18 cohort. (I,J) Time-dependent ROC analysis for PRDX1 in HCC patients. (K)
Expression profile of PRDX1 in various HCC cell lines. (L) The predictive nomogram. (M) Calibration curves of nomogram model of the TCGA-LIHC
cohort. (N) Calibration curves of nomogram model of the HCCDB18 cohort.
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vascular-associated smooth muscle cell differentiation, smooth
muscle cell differentiation, IL-6 mediated signaling pathway,
endosome to plasma membrane protein transport, gene silencing
by RNA, and negative regulation of transporter activity, were
suppressed in HCC patients.

3.9 Correlation between PRDX1 and immune
microenvironment in HCC

By integrating multiple immune cell infiltration analysis
methods (Timer, Cibersort, Cibersort−abs, Quantise, Mcpcounter,
and Xcell), the abundances of immune cells, incorporated CD4+ T
memory resting cell, CD4+ T central memory cell, Tregs,
neutrophils, myeloid dendritic cell, and NK cells, were markedly
enriched in the high-PRDX1 group than the low-PRDX1
group. Non-immune cells, such as endothelial cells, and cancer-
associated fibroblast, were also significantly enriched in the high-
PRDX1 group (Figure 11A; Supplementary Figure S12). From
ESTIMATE algorithm analysis results, the immunological score
and estimated score (tumor purity) of HCC patients with
PRDX1 high expression were relatively high than those with low
expression (Figure 11B). Afterward, the group with high
PRDX1 expression held significant T cell exclusion and
microsatellite instability (MSI) (Figures 11C, D). Meanwhile, the
level of PRDX1 expression linked positively with HCC tumor
mutational burden (TMB) (Figure 11E). Moreover, using Human
Protein Atlas database (http://www.proteinatlas.org/), we
discovered immunohistochemical staining intensity of PRDX1 of
the HCC sample was considerably higher than the normal liver
sample (Figure 11F). Immune functions, including APC co-
inhibition, HLA, MHC class I, and para-inflammation, were
active in the HCC patients with high PRDX1 expression. At the
same time, type II IFN response was more active in the group with
low PRDX1 expression (Figure 12A).

Following, we explored the relationships between immune
checkpoints and HCC patients in different PRDX1 expression

groups. HCC patients in the high-PRDX1 group had elevated
immune checkpoints, incorporating PDCD1LG2, CTLA4, TIGIT,
LAIR1, CD86, CD47, TNFRSF9, TNFRSF18 and TNFRSF4 than the
patients in the low-PRDX1 group (Figure 12B). Increased expression
levels of immune checkpoints were positively correlated with the
expression of PRDX1 (Figure 12C). It implied that HCC patients
with high PRDX1 expression might benefit more from immune
checkpoint inhibitor therapies. To explore suitable drugs for HCC
patients with high expression of PRDX1, we used the oncoPredict R
package in testing the sensitivity of drugs between two groups with
differing PRDX1 expression levels, based on Cancer Therapeutics
Response Portal (http://portals.broadinstitute.org/ctrp.v2.1/) and
Genomics of Drug Sensitivity in Cancer (https://www.
cancerrxgene.org/) databases (Figure 12D). From the results,
HCC patients in the high PRDX1 expression group exhibited
greater sensitivity to twelve drugs, including Sorafenib (multi-
kinase inhibitor), Linsitinib (IGF-1R inhibitor), JAK inhibitor
(AZ960), ERK inhibitor (ERK 2440), Mitochondrial inhibitor
(Dihydrorotenone), IKK inhibitor (BMS-345541),
IRAK4 inhibitor (IRAK4_4710), SYK inhibitor (Entospletinib),
TGF-β Receptor I/II inhibitor (LY2109761), MCL-1 inhibitor
(AZD5991), KRAS (G12C) inhibitor, and I−BET inhibitor
(I-BET-762), than patients with low PRDX1 expression group.
These pharmaceuticals could be beneficial in treating HCC
patients with high PRDX1 expression.

4 Discussion

This present study systematically elucidated the differences in
oxidative stress levels between the microenvironment of HCC
tissues and the environment of non-tumor tissues as assessed by
the AUCell score of the oxidative stress response. The results
revealed that oxidative stress response of cells was higher in
HCC than in the non-tumor state. Among them, the increased
level of oxidative stress response in memory T cells was most notable
in the setting of HCC, where antigen processing by oxidative stress

FIGURE 11
Analysis for immune landscape in two PRDX1 expression groups (*: p < 0.05; **: p < 0.01; ***: p < 0.001). (A) The infiltration of immune cells in high-
and low-PRDX1 HCC patients. (B) Differences in the immune, stromal, and ESTIMATE scores between low- and high-PRDX1 groups. (C) T cell exclusion
score was different between the two groups. (D)Microsatellite instability was different between the two groups. (E) The correlation between the TMB and
PRDX1 expression level in HCC. (F) Immunohistochemical staining intensity for PRDX1 in normal liver tissue and HCC tissue.
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and presentation of exogenous peptide antigens via MHC class II
was enhanced, and extrinsic apoptosis induced by oxidative stress
was also enhanced, but lymphocyte activation function and antigen
receptor-mediated signaling pathways were suppressed. This
indicated that oxidative stress of immune cells may be a means
through which HCC escapes the immune system. In the HCC
microenvironment, oxidative stress-induced cell death was
attenuated in dendritic cells compared with other immune cells,
indicating that it may have a stronger intracellular antioxidant
capacity. Current evidence (Hu et al., 2021) shows that oxidative
stress is indispensable for dendritic cell functional activation, and
ROS-mediated DNA oxidation can enhance immune recognition by
dendritic cells, which as a metabolic regulator, can promote STING-
dependent dendritic cells’ antitumor immune responses. Clinical
treatments with antioxidant intervention may reduce the antitumor
activity of dendritic cells. Meanwhile, comparative analysis results
between the intercellular communication situation in the HCC
microenvironment and that in the non-tumor tissue environment
showed that malignant cells communicated more significantly with
immune cells through the MIF pathway. Suggesting that more
intense levels of oxidative stress in the tumor microenvironment
induced MIF secretion to promote HCC cell survival and
immunosuppression.

Oxidative stress, a state of oxidative and antioxidant imbalance
in the body when it undergoes excessive accumulation of harmful
stimuli such as reactive oxygen species, is a critical factor in liver
disease progression and hepatocarcinogenesis (Bartsch and Nair,
2006). Several studies have found that the level of oxidative stress in

various tumors, such as gastric carcinoma, colon carcinoma, and
esophageal carcinoma, is significantly higher than that in non-tumor
tissues or healthy tissues, confirming a close relationship between
oxidative stress and cancer formation or progression (Dalle-Donne
et al., 2006; Agarwal et al., 2012; Bai et al., 2022). It has been
summarized that under various pathological conditions, oxidative
stress could be induced by ROS generated from electron leakage
through mitochondrial electron transport in liver disease, thereby
damaging hepatocytes, promoting pathological polyploidization,
triggering inflammation, and leading to the activation of
oncogenic pathways (Sasaki, 2006; Cichoz-Lach and Michalak,
2014; Higgs et al., 2014; Satapati et al., 2016).

Redox reactions are fundamental processes underpinning
critical cellular functions like oxidative phosphorylation for
energy production (Nath and Villadsen, 2015). Furthermore,
redox changes are instrumental in cell signaling, modulating the
activities of enzymes, receptors, and transcription factors through
the redox state of specific cysteine residues (Navarro-Yepes et al.,
2014). Differentiating between normal redox fluctuations and
oxidative stress is nuanced and multifaceted. This distinction
hinges on intricate factors, including the type of ROS, their
subcellular localization, and the duration of exposure. It is
important to note that transient increases in ROS during
immune responses or cellular differentiation are often essential
for these processes and do not constitute oxidative stress
(Forman et al., 2010). Cellular redox balance is maintained
through the collaborative efforts of enzymatic and non-enzymatic
antioxidants (Halliwell and Gutteridge, 1986). The equilibrium

FIGURE 12
The immune response and immune therapies differences between low-PRDX1 and high-PRDX1 groups (*: p < 0.05; **: p < 0.01; ***: p < 0.001). (A)
Immune functions analysis in two PRDX1 expression groups. (B) Differences of immune checkpoint expression between low- and high-PRDX1 groups.
(C) The correlation between the expression level of immune checkpoints and PRDX1 in HCC. (D) The targeting drug sensitivity in low- and high-PRDX1
groups.
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between ROS and antioxidants dictates whether a redox shift
remains adaptive or evolves into oxidative stress. Defining
oxidative stress lacks a universal threshold due to its context-
dependent nature. Researchers (Pouvreau, 2014; Wu et al., 2019;
Zaidieh et al., 2019) have employed various indicators such as the
glutathione redox ratio, ROS concentrations, or specific oxidative
damage products. These thresholds can differ based on cell types,
tissues, and disease conditions. Transitioning from a redox change
to oxidative stress carries profound biological implications.
Oxidative stress can damage lipids, proteins, and nucleic acids,
resulting in mutations, cellular dysfunction, and the initiation of
inflammatory cascades (Harrington et al., 2023).

The basal oxidative state is a cornerstone of cellular biology,
serving as a linchpin in cellular signaling. ROS act as vital signaling
molecules when present in controlled quantities, participating in cell
proliferation, differentiation, and apoptosis processes (Bae et al.,
2011). Key transcription factors like NF-κB and Nrf2, which
modulate inflammation and antioxidant defenses, are sensitive to
redox changes. Across diverse cell types and organelles, the basal
oxidative state exhibits variations. For example, renowned for their
redox activity, mitochondria meticulously regulate ROS production
and elimination to optimize their function (Rigoulet et al., 2011).
Typically, intracellular ROS concentrations fall within the picomolar
to low nanomolar range, underscoring the necessity for precise
regulation (Gupta et al., 2014). Cells employ a complex network of
antioxidant systems to preserve the basal oxidative state. This
network encompasses enzymatic antioxidants and non-enzymatic
antioxidants. These antioxidants collaborate to scavenge surplus
ROS and uphold redox equilibrium. Departures from the basal
oxidative state can have far-reaching consequences for cellular
processes. Elevated ROS levels can lead to oxidative damage to
biomolecules, inducing DNA mutations, protein misfolding, and
lipid peroxidation. Conversely, an overly reduced environment can
disrupt redox-sensitive signaling pathways, impair immune
responses, and contribute to disease pathogenesis (Nakamura
et al., 1997). Dysregulation of redox balance underpins a
multitude of pathological conditions. Chronic oxidative stress is
implicated in cancer. A comprehensive understanding of and
interventions targeting the basal oxidative state hold profound
clinical implications for disease management and prevention.

To further explore the possible impact of oxidative stress levels
on cellular crosstalk, we contrasted the strength of intercellular
communication in a non-tumor environment with low versus a
tumor environment with higher levels of oxidative stress.
Interestingly, in an analysis of intercellular communication, this
study found that the communication strength between malignant
and immune cells in theMIF pathway was significantly greater in the
setting of HCC with higher levels of oxidative stress than in the
setting of non-tumor hepatocytes. MIF is a pleiotropic cytokine
overexpressed in many tumors and has pro-inflammatory and
tumor-promoting activities (Bucala, 2012). Studies have shown
that MIF can affect the migration of tumor cells and inhibit
immune cell infiltration into tumor tissue, affecting tumor cells
and tumor stroma through multiple mechanisms (Simpson et al.,
2012; Pasupuleti et al., 2014). There were evidences that a variety of
immune and non-immune cells, including T cells, macrophages,
dendritic cells, and epithelial cells, upon stimulation by noxious
factors such as hypoxia and UV irradiation, secretes MIF

(Sakamoto et al., 2002; Simons et al., 2011; Heise et al., 2012;
Merk et al., 2012). Currently, it is unclear how MIF is modulated
in tumor. The complexity of MIF in cancer emphasizes the necessity
of gaining a deeper understanding of its biological function. Gupta
et al. (2016) found that the regulation of p53 did not induce MIF
secretions in renal, breast, and lung cancerous cells, but oxidative
stress was a mediator of the stimulator of MIF secretions. The
CD74−CD44 receptor complex and the chemokine receptor
CXCR4 activated MIF signaling, which in different types of cells
activates both anti-apoptotic and pro-survival pathways via MAPK,
Akt, and SRC pathways (Leng et al., 2003; Shi et al., 2006; Bernhagen
et al., 2007; Mitchell and Yaddanapudi, 2014). Takahashi et al.
1(998) found that inhibition of endogenous MIF expression could
slow the growth rate of tumor cells, and knockdown of MIF
inhibited HCC cells proliferation. Wirtz et al. (2021)
experimentally demonstrated that inhibition of the MIF/
CD74 axis, which induces HCC cell death and activates ERK, can
reduce the number of tumors and the proliferation rate. These are
consistent with our findings. Although some progress has been
made in the current study on MIF regulation of immune responses
and inflammatory responses in cancer, its biological functions
related to oxidative stress need to be further explored.

Based on the close relationship between oxidative stress and
tumorigenesis and the significant difference in oxidative stress
between HCC tissues and HCC tissues, we analyzed the hub genes
of oxidative stress-related DEGs in cells to provide more clues for
clinical decision-making. The thirteen oxidative stress-related
hub genes are HMOX1, POR, SOD1, PRDX6, P4HB, GPX4,
PRDX3, PRDX5, JUN, PRDX2, TXN, FOS, and PRDX1. They
were significantly enriched in TNF, apoptosis, hypoxia, and
mTOR pathways, in addition to their significant expression in
ROS pathways. Previous studies have revealed that machine
learning with multivariate analysis, which considers the
correlations between factors, has a lower error rate than
univariate analysis and can vastly boost the precision of
forecasting tumor susceptibility (Cruz and Wishart, 2007;
Painuli et al., 2022). In this study, we included four machine
learning models (RF, GLM, SVM, and XGB) validated to have
robust classification ability (Tan et al., 2014; Rigatti, 2017;
Zopluoglu, 2019; de Melo et al., 2022). Since the RF versus
SVM model had the equal highest predictive power (AUC =
0.981) in the test cohort, we selected the utmost important six
feature gene variables (GPX4, HMOX1, PRDX1, FOS, PRDX5,
and TXN) in both models. Then we constructed a nomogram
model for the clinical diagnosis of HCC based on these six genes.
In both the calibration curves and the evaluation in three external
validation sets (AUC = 0.974, 0.883, 0.974), our nomogram
model effectively predicted HCC. Therefore, the nomogram
obtained by screening six oxidative stress-related genes
through multiple machine learning algorithms was a reliable
indicator for evaluating the pathological outcomes of patients,
providing new insights into the potential role of oxidative stress
in the clinical diagnosis of HCC.

In a further analysis, we found that PRDX1, among these six
oxidative stress-related genes in the nomogram, was strongly
associated with the prognosis of HCC and could contribute to
judging the prognosis of HCC patients. Individuals with HCC
who had high PRDX1 expression exhibited shorter overall
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survival, progression-free interval, and disease-specific survival time.
Additionally, we found that PRDX1 was ubiquitously highly
expressed in multiple liver cancer cell lines. PRDX1 is a
multifunctional protein involved in cell proliferation,
differentiation, and apoptosis that belongs to the peroxidase
family and whose function in cancer is not well understood (Sun
et al., 2022). It has been shown that overexpressed PRDX1 can
activate toll-like receptor4, mTOR pathway, and TGF-β1 promotes
tumor development and progression (Riddell et al., 2012). The single
gene functional GSEA analysis of PRDX1 in HCC patients revealed a
strong association between PRDX1 and the digestive system.
PRDX1-related regulation of ribosome biogenesis, ncRNA
processing, and snRNA processing was hyperactivated in HCC
patients. In contrast, the PRDX1-associated IL-6-mediated
signaling pathway, RNA gene silencing, and negative regulation
of transporter activity were suppressed. Recent evidence
(Elhamamsy et al., 2022) has revealed that ribosome biogenesis is
a central process that promotes cell survival and stress-adaptive
responses, collectively triggering tumor initiation and metastasis
through ribosome modification. Cancer cells contain specialized
oncogenic ribosomes that promote the translational program of
oncogenes, regulate cellular functions and promote metabolic
restructuring, increasing the risk of malignancy. Inferring low
expression of PRDX1 may have an inhibitory effect on tumor
progression.

For now, there are relatively few studies on the involvement
of PRDX1 in the immunological microenvironment of HCC,
which was analyzed by bioinformatics in our study. In the tumor
microenvironment, HCC patients with low PRDX1 expression
had more significant infiltration levels of M0 macrophages,
M1 macrophages, CD4+ Th1 cells, CD4+ Th2 cells, myeloid
dendritic cells, monocytes, and lymphoid progenitor cells.
Whereas the endothelial cells and cancer associated fibroblasts
were more abundant in the poor prognosis PRDX1 high
expressing HCC patient population. Microsatellite instability,
tumor mutational burden, and T cell exclusion are more
pronounced in HCCs with high PRDX1 expression. Relevant
immune functions APC co-inhibition, MHC class Ⅰ, and para-
inflammation were more active in patients with high
PRDX1 expression. Type Ⅱ INF response was more active in
the low PRDX1 expression patient group. The expression levels of
immune checkpoints (as PDCDL1G2, LAIR1, CTLA4, TIGIT)
were positively correlated with the expression level of PRDX1.
Our analysis of the potential role of PRDX1 in clinical therapeutic
intervention revealed that HCC patients with high
PRDX1 expression were susceptible to immunotherapy agents
such as sorafenib, JAK inhibitor, IRAK4 inhibitor, and TGF-β
Receptor I/II inhibitor, SKY inhibitor, and ERK inhibitor have a
high degree of sensitivity. These findings indicated that PRDX1 is
a prospective biomarker for predicting the prognosis and guiding
treatment decisions for HCC.

However, this study relying on single-cell data from public
databases have limitations that constraints on sample size and
cell numbers and incomplete coverage of cell types and
conditions. Therefore, the results may be affected by the inherent
bias in case selection. Further large-scale prospective studies and in
vivo and in vitro experiments were required.

5 Conclusion

In conclusion, our study unveiled variations in oxidative stress
levels between non-tumor liver and HCC tissues. And we identified
oxidative stress gene markers associated with hepatocarcinogenesis
development, offering novel insights into the oxidative stress
response mechanism in HCC.
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