
Anti-oxidant effects of
cannabidiol relevant to
intracerebral hemorrhage

Gaili Yan1,2, Xiangyu Zhang1,2, Hongmin Li1,2, Yan Guo1,2,
V. Wee Yong3* and Mengzhou Xue1,2*
1Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University,
Zhengzhou, Henan, China, 2Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan,
China, 3Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary,
Calgary, AB, Canada

Intracerebral hemorrhage (ICH) is a subtype of stroke with a high mortality rate.
Oxidative stress cascades play an important role in brain injury after ICH.
Cannabidiol, a major non-psychotropic phytocannabinoids, has drawn
increasing interest in recent years as a potential therapeutic intervention for
various neuropsychiatric disorders. Here we provide a comprehensive review
of the potential therapeutic effects of cannabidiol in countering oxidative stress
resulting from ICH. The review elaborates on the various sources of oxidative
stress post-ICH, including mitochondrial dysfunction, excitotoxicity, iron toxicity,
inflammation, and also highlights cannabidiol’s ability to inhibit ROS/RNS
generation from these sources. The article also delves into cannabidiol’s role in
promoting ROS/RNS scavenging through the Nrf2/ARE pathway, detailing both
extranuclear and intranuclear regulatory mechanisms. Overall, the review
underscores cannabidiol’s promising antioxidant effects in the context of ICH
and suggests its potential as a therapeutic option.
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1 Introduction

Worldwide, millions of people die or develop permanent disability because of
intracerebral hemorrhage (ICH) (Feigin et al., 2009), and that number is anticipated to
rise significantly as the population ages. Currently, clinical trials for ICH treatment mostly
focus on surgery, blood and cranial pressure management, and hemostasis (Ren et al., 2020;
Schrag and Kirshner, 2020). While these approaches have some control of hematoma size
and reduce mortality following ICH, there is insufficient evidence to support the claims that
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they also improve functional outcomes or quality of life for patients.
Therefore, seeking new treatment strategy is essential for enhancing
ICH prognosis.

The damage after ICH includes primary and secondary brain
injuries (Shao et al., 2019). Primary injury refers to the direct
mechanical compression of the hematoma, which produces tissue
displacement and disruption. Secondary injury occurs within
minutes of ICH and ensues over days to weeks (Xue and Yong,
2020). Depending on damage severity, complex cascades of
biochemical events are triggered, such as excitotoxicity by
erythrocyte lytic products, inflammation and oxidative stress
(OS) (Hu et al., 2016) which influence the overall ICH outcome
and prognosis.

OS refers to the imbalance between oxidative and antioxidant
systems. Pro-oxidative systems include the overproduction of
reactive free radicals, principally reactive oxygen species (ROS)
and reactive nitrogen species (RNS). The former comprises
superoxide anion radical (•O2-), hydroxyl radical (•OH),
hydrogen peroxide (H2O2) and singlet oxygen (1O2) (Zhang Y.
et al., 2022). RNS is mainly composed of nitric oxide (NO),
nitrogen dioxide (NO2) and peroxynitrite (ONOO−).
Accumulating evidence suggests that there are multiple sources
of ROS/RNS, such as NADPH oxidase (NOX), mitochondria
respiratory chain and endothelial nitric oxide synthase (eNOS)
(Peoples et al., 2019). Antioxidant systems include non-enzymatic
and enzymatic parts. The former mainly consists of lipophilic and
hydrophilic antioxidants, such as glutathione and reducing
coenzyme Q10. The latter includes superoxide dismutase (SOD),
catalase (CAT), glutathione peroxidases (GPXs), peroxiredoxins
(PRXs), heme oxygenase-1 (HO-1, HMOX-1) and NAD (P)H
dehydrogenase quinone 1 (NQO1) (Cuadrado, 2022).

Many studies have found that ROS/RNS contribute to various
physiological processes such as gene expression, protein
modification, cell proliferation and differentiation, homeostasis
and hypoxia adaptation (Murphy et al., 2011; Zhang B. et al.,
2022). However, overproduction of ROS/RNS can occur,
attributed to a range of reasons including mitochondrial
dysfunction, glutamate excitotoxicity, iron toxicity and pro-
inflammatory cells (Zhang Y. et al., 2022). ROS/RNS
overabundance causes lipid peroxidation, protein destruction,
DNA damage and eventual cell death (Valko et al., 2007).

Cannabis sativa L, closely related to marijuana, has been used as
an herbal treatment for a variety of diseases for over 1,000 years. It
contains hundreds of chemical constituents termed
phytocannabinoids with Δ9-tetrahydrocannabinol (THC) and
cannabidiol (CBD) as the most abundant (Atakan, 2012). Unlike
Δ9-THC which has psychotropic effects, CBD is the major non-
psychotropic component and enjoys low abuse potential.

Various studies have employed diverse sources of CBD and
different suspension agents for administration, yielding considerable
pharmacokinetic variability among formulations (Abbotts et al.,
2022). Here we exclusively present the metabolism characteristics
of Epidiolex®, the only CBD form that has undergone rigorous
pharmacokinetic evaluation and earned approval from the U.S.
Food and Drug Administration. This specific formulation of
CBD demonstrated a dose-dependent, albeit non-linear peak
concentration response (Taylor et al., 2018). In healthy adults,
the Cmax values for Epidiolex® were 292 ng/mL and 782 ng/mL

after 1,500 mg and 6,000 mg doses, respectively (Taylor et al.,
2018). At steady state (750 and 1,500 mg CBD twice daily. After
7 days), the time to reach maximal concentration was between
2.5 and 5 h, the distribution volume was between 20,963 and
42,849 L and the protracted elimination half-life was around 60 h
(Taylor et al., 2018). Notably, the intake of high-fat/high-calorie
meals led to a 4.85-fold increase in CBD plasma exposure (Cmax),
and a 4.2-fold increase in AUC (area under the curve) (Taylor et al.,
2018). CBD is predominantly metabolized within the liver through
the involvement of cytochrome P450 (CYP2C19 and CYP3A) as
well as uridine 5′-diphosphoglucuronosyltransferase (UGT1A7,
UGT1A9, and UGT2B7) (Jiang et al., 2011; White, 2019).
Furthermore, CBD may be the inhibitor or inducer of several
cytochrome P450 isoforms, which underscores a notable risk for
potential drug interactions with CYP substrates. For instance, a
pediatric expanded-access study involving 13 participants
concurrently using clobazam (a CYP2C19 substrate) and CBD
(gradually increased to 20 mg/kg/day) over a 4-week period
demonstrated a 60% surge in serum clobazam levels and a 500%
increase in the norclobazam metabolite (Wheless et al., 2019). It
should also be pointed out that patients with hepatic impairment
may necessitate CBD dosage adjustments. In one investigation, AUC
levels escalated proportionally with the severity of hepatic
impairment, with patients experiencing severe impairment
witnessing an approximately 5-fold increase in AUC (Taylor
et al., 2019).

In recent years, CBD was reported to be useful for ameliorating
symptoms related to epilepsy (Zhan et al., 2022; Reddy et al., 2023),
pain (Britch and Craft, 2023), anxiety (Fabris et al., 2022) as well as
other neurological diseases (Yang et al., 2022). The antioxidant
effects of CBD have been highlighted. The phenolic hydroxyl (-OH)
group is a functional group for CBD, and is a good hydrogen donor.
Due to the π-electrons delocalization of the benzene ring, the free
radicals produced from the -OH group are chemically more stable
than those generated from ROS/RNS. Therefore, the reaction of the
-OH group and ROS/RNS in a chain reaction can terminate the
continued generation of uncontrolled new radicals (Kim et al.,
2021). In addition to direct radical-scavenging, the antioxidant
effects of CBD are achieved through specific receptor-mediated
pathways. There is an endocannabinoid system in the human
body that is responsible for pain, sleep, appetite, and immune
response (Maccarrone et al., 2023). CBD may also exert
antioxidant effects through binding with endocannabinoid
receptors CB1 and CB2. Overall, CBD has better antioxidant
capacity than either alpha-tocopherol or ascorbate (Hampson
et al., 1998), which indicates that it may be a potential treatment
for ICH.

Here, we review the factors that induce OS after ICH, including
mitochondrial dysfunction, excitotoxicity, iron toxicity and over-
activated inflammatory cells. We discuss the inhibitory effects of
CBD on these factors, which contribute to the reduction of ROS/
RNS production. The Nrf2/ARE (nuclear factor erythroid-2 related
factor 2/antioxidant response element) pathway is a crucial signaling
pathway for cellular resistance to OS, as it regulates the expression of
multiple proteins that are responsible for free radical elimination.
Here, we explore the possible regulatory effects of CBD on key
factors in the anti-oxidant pathway, including KEAP1, p62, GSK3β,
Nrf2, p65, and BACH1. These effects suggest that CBD could
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enhance antioxidant capacity including that in ICH. To date,
however, few studies have examined CBD in ICH. Thus, the
following sections provide instructive effects of CBD which we
propose would be relevant for ICH.

2 Method

The search was performed in the PubMed database for papers
published up to June 2023, using the following search terms:
[(intracerebral hemorrhage) AND (oxidative stress)] OR
[(cannabidiol) AND (oxidative stress)]. The gathered literature is
imported into an Excel table, and after an initial review of the titles,
any literature not aligned with the topic is excluded. Following this,
the abstracts of the remaining articles are individually assessed, with
a focus on closely related articles that pertain to the topic.

3 Inhibition of ROS/RNS generation by
CBD: relevance for ICH

3.1 CBD inhibits ROS/RNS generated from
mitochondria dysfunction

ROS/RNS are generated in mitochondria as products of
mitochondrial respiration. Approximately 1%-2% of oxygen
reacting with electrons leaking from the electron transport chain
(ETC) is converted into ROS, especially superoxide anions, during
normal physiological respiration (Chance et al., 1979; Zorov et al.,
2014). Under conditions of OS, more electrons generated during the
citric acid cycle are pushed into the ETC (Brownlee, 2005). At the
same time, mitoKATP is activated and increases K+ levels in the
mitochondrial matrix which also results in mitochondrial ROS/RNS
production from the ETC (Malinska et al., 2010). During ICH, large
amounts of ROS/RNS are detected in mitochondria, inducing their
disintegration and cell death. A study of 6 brain tissue samples
adjacent to the hematoma from patients with ICH showed that
mitochondrial respiration declined as early as 2 h following ICH,
despite adequate levels of metabolic substrates and O2 (Kim-Han
et al., 2006).

A significant increase in the production of ROS was detected
with MitoSOX Red reagent, an indicator of ROS generated from
mitochondria, in HT22 cells suffering oxygen–glucose-deprivation/
reperfusion (Sun et al., 2017), in BV-2 cells exposed to
lipopolysaccharide (Li M. et al., 2022), and in human coronary
artery endothelial cells subjected to high glucose (Rajesh et al., 2007);
CBD treatment reduced levels of ROS in these conditions. In models
induced by mitochondria-targeted toxins including rotenone
(Echeverry et al., 2021), aluminum phosphide (Hooshangi
Shayesteh et al., 2022) and oligomycin (Ryan et al., 2009),
treatment with CBD restored mitochondrial membrane potential,
increase ATP production and thus improved mitochondrial stability
and cell viability (Baban et al., 2018; Hooshangi Shayesteh et al.,
2022). Taken together, CBD is a potential mitochondria-targeting
agent that exerts powerful protective effects under pathological
conditions.

The mechanisms that CBD protect mitochondria and reduce
mitochondrial ROS production have been reported as follows. CBD

significantly increases the expression and activity of the ETC
complexes I, II, IV, and V (Sagredo et al., 2007; Ryan et al.,
2009; Hao et al., 2015; Hooshangi Shayesteh et al., 2022; Kumar
Kalvala et al., 2022) which reduces electron leakage and the
overproduction of ROS. In addition, CBD restores energy
metabolism. CBD is reported to enhance glucose 6-phosphate
dehydrogenase activity and to inhibit abnormal glycolysis and
lactate accumulation (Sun et al., 2017; Lu et al., 2021).
Cannabidiol also maintains mitochondrial morphology by
modulating mitochondrial fission and fusion. (Li M. et al., 2022;
Wang et al., 2023; Xu et al., 2023). For example, CBD can inhibit the
expression of fission genes including mitochondrial fission 1 protein
(FIS1), dynamin-1-like protein (DRP1) and optic atrophy type 1
(OPA1), and increase the expression of fusion genes, such as
mitochondrial elongation factor (MIEF1), mitofusin 1 (Mfn1)
and mitofusin 2 (Mfn2), in vitro model of pulmonary
hypertension (Lu et al., 2021).

3.2 CBD inhibits ROS/RNS generated from
excitotoxicity

Excitotoxicity, a type of glutamate-mediated neurotoxicity, has
been a focus of stroke research for the past few decades. Brain tissue
contains high concentrations of the excitatory neurotransmitter
glutamate, and many neurons contain receptors that respond to
glutamate; these make brain tissue susceptible to suffer excitotoxicity
(Lai et al., 2014). Following ICH, glutamate release rises while
reuptake falls, causing accumulation of excessive glutamate to
constantly stimulate the N-methyl-D-aspartate receptor
(NMDAR) and induce calcium influx. These lead to intracellular
calcium overload and calcium homeostasis imbalance which in turn
exacerbates the release of glutamate. Eventually, the calcium-
dependent death pathway is activated (Shen et al., 2022).
Moreover, high level of intracellular calcium also activates
neuronal NOS and NADPH oxidase to synthesize NO and
superoxide, respectively (Love, 1999). Consistently, ROS
accumulation was detected in brain microvascular endothelial
cells treated with glutamate (Parfenova et al., 2006). To sum up,
inhibiting excitotoxicity could control the production of ROS/RNS.

ONOO- is a NO derivative and strong oxidant formed by NO
and superoxide anion. Excessive formation of ONOO- was elicited
in the NMDA-induced rat model of retinal excitotoxicity;
administration with CBD reduced ONOO- production and lipid
peroxidation, leading to attenuation of retinal neuronal apoptosis
and loss (El-Remessy et al., 2003). In traumatic brain injury models,
oral CBD pretreatment at all doses (50, 100, or 200 mg/kg)
dramatically lessened local glutamate concentration at 30 min
post-TBI. Significant suppression of glutamate concentration was
also noted at several hours and even weeks (Santiago-Castañeda
et al., 2022). In another study, these authors observed that CBD
administration lessened glutamate release in synaptosomes collected
from cocaine-treated rat hippocampus (Gobira et al., 2015).
Additionally, CBD has been demonstrated to lower glutamate
levels and excitotoxicity in neonatal animal models of ischemia-
hypoxia (Pazos et al., 2012; Pazos et al., 2013; Lafuente et al., 2016).

Although the exact mechanisms by which CBD suppresses the
over-release of glutamate and subsequent excitotoxicity are
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unknown, there are several possibilities. The first likely mechanism
involves the endocannabinoid system. The regulatory role of the
endogenous cannabinoid system in glutamatergic neurons has been
widely reported, particularly for CB1 receptors. Although CBD has a
low affinity for CB1, it can increase CB1 agonist endogenous
cannabinoid levels by inhibiting cannabinoid hydrolases.
Moreover, endogenous cannabinoids system was shown to have
neuroprotective effects in excitotoxicity (Kreutz et al., 2009; Grabiec
et al., 2012). However, Pazos et al. suggested that both CB2 and
5HT1A receptors or their heteromers are involved in anti-excitotoxic
effects in an endocannabinoid-independent manner (Pazos et al.,
2013). It is also possible that the positive effect of CBD on glutamate
level is the result of an increase in brain blood flow brought on by
5HT1A receptor activation, and not a specific neuroprotective effect
(Pazos et al., 2013). The sodium-calcium exchanger is an important
regulator of excitotoxic calcium homeostasis which extrudes
intracellular calcium via driving force of sodium influx
(Rodrigues et al., 2022). CBD is proposed to counteract
excitotoxicity partly by enhancing the expression of sodium-
calcium exchanger (Khaksar and Bigdeli, 2017).

3.3 CBD inhibits ROS/RNS generated from
iron toxicity

In the late periods of ICH, the erythrocytes from hematoma lyse,
releasing hemoglobins. The latter can be phagocytosed by
infiltrating microglia or macrophages and metabolized into iron.
Then, excess iron will be transported into surrounding neurons (Lu
et al., 2022). Iron overload plays a significant role in secondary brain
injury as the reaction of iron and H2O2 via Fenton reaction yields
excessive •OH (Wan et al., 2019). A number of studies have
demonstrated that iron toxicity causes brain damage after ICH
and that reducing iron level with iron chelators attenuates the
injury and reduces ROS production (Li et al., 2017; Wang et al.,
2021; Zhu et al., 2021).

Few studies have reported on the role of CBD in iron toxicity. Da
Silva et al. found abnormal expression of intrinsic apoptotic proteins
(Caspase 9, APAF1, Caspase 3, and cleaved PARP) and
mitochondrial fusion/fission proteins (DNM1L and OPA1) in
iron overload rat models, while treatment with CBD reversed
iron-induced damage and recovered proteins expression levels
back to values comparable to the control groups (da Silva et al.,
2014; da Silva et al., 2018b). They also found that CBD rescued the
reduced levels of methylcytosine and hydroxymethylcytosine in
mitochondrial DNA induced by iron overdose (da Silva et al.,
2018a).

Interestingly, because phenolic and polyphenolic compounds
has iron binding affinity (Horniblow et al., 2017; Kejík et al., 2021),
Antonyová et al. reported that CBD stably binds ferrous iron as
tested by UV-Vis spectroscopy; it acted as a chelator and strongly
inhibited (IC50 = 4.8 μM) a Fe(II)-dependent protein, ten-eleven
translocation methylcytosine dioxygenase 1, which converts 5-
methylcytosine to 5- hydroxymethylcytosine (Antonyová et al.,
2022). Given its dual action of iron chelation and inhibition of
heme oxygenase mentioned in the next part, CBD holds promise as a
treatment for iron toxicity or ferroptosis.

3.4 CBD inhibits ROS/RNS generated from
inflammatory cells

Pathological analysis of ICH has revealed that resident
microglia are activated by blood-derived products within
1 hour after stroke onset. Subsequently, other immune cells in
the blood, especially neutrophils, also enter the brain and migrate
around the haematoma (Xue and Yong, 2020). In addition to
releasing inflammatory factors, these immune cells that are
initially recruited for debris clearance are also involved in
ROS/RNS production.

CBD was reported to reduce NO and ROS production,
induced by lipopolysaccharide, in BV-22 cells and primary
microglia. (Sonego et al., 2018; Dos-Santos-Pereira et al., 2020;
Kim et al., 2021). ROS production was decreased with 1 μM CBD
by over 70% and returned to control levels with 10 μM (Dos-
Santos-Pereira et al., 2020). The inhibitory effect of CBD on
microglia activation, as indicated by Iba-1, is observed in various
experimental models in vitro and vivo (Kozela et al., 2011;
Ceprián et al., 2017; Meyer et al., 2022). For example, CBD
decreased the release of proinflammatory mediators (TNF-α
and IL-1β) and chemotactic factors from microglia (Kozela
et al., 2010; Dos-Santos-Pereira et al., 2020). Interestingly,
some of the findings showed that CBD enhanced phagocytosis
capability of microglia while inhibiting their activation. In
organotypic oxygen-glucose deprivation (OGD) slices, CBD
treatment was accompanied by fewer activated microglia but
more rod microglia, which tended to migrate to the damaged area
(Lana et al., 2022). In summary, on the one hand, CBD can
suppress inflammatory events associated with excessive
activation of microglia; on the other hand, it promotes
hematoma clearance by microglia, both of which are beneficial
in reducing ROS/RNS production and improving ICH prognosis.

The transient receptor potential (TRP) channel, particularly
the TRPV2 channel, appears to be the most likely receptor
involved in the phagocytosis effects mentioned above (Yang
et al., 2022). TRPV2, located mainly in neurons, decreased
significantly in OGD (Lana et al., 2022) and Alzheimer’s
disease models (Yang et al., 2022). Nevertheless, CBD
enhances its translocation to microglia in injury models,
predominantly in the membrane fraction. Moreover, CBD
enhancement of microglia phagocytosis was blocked by
TRPV2 knockdown (Yang et al., 2022) or by a TRP channel
blocker, ruthenium red (Hassan et al., 2014).

Previous literature shows that CBD inhibits neutrophil
migration and infiltration in vivo and vitro (Mabou Tagne et al.,
2019; Gómez et al., 2021; Robaina Cabrera et al., 2021). Thus,
treatment with CBD may ameliorate excessive inflammatory
responses involving neutrophils. This may be attributed to the
inhibition of chemokine production by CBD (Wang et al., 2017).
Some work suggested that CBD inhibits neutrophil recruitment via
adenosine receptors A2A (Ribeiro et al., 2012) or 5-HT1A (Thapa
et al., 2018), but strong evidence is lacking. Moreover, CBD reduces
ROS production directly from neutrophils induced by fMLP
(Mabou Tagne et al., 2019) or isolated from mice and patients
with chronic binge alcohol diet (Wang et al., 2017) (Figure 1;
Table 1).
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4 CBD promotes the scavenging of
ROS/RNS: relevance for ICH

There are a variety of defense mechanisms, including
detoxification and antioxidant enzymes, to counteract the over-
production of free radicals after ICH. Many of these enzymes are
under the control of the Nrf2/ARE pathway which is currently
regarded as the major system in cellular antioxidant response (Zhao
et al., 2007; Loan et al., 2022). Nrf2 was reported to increase
significantly at 2 h, peaking at 24 h in the perihematomal region
in rats with ICH (Shang et al., 2013). Furthermore, Nrf2 knockdown
mice underwent more serious brain damage and Nrf2 activation
reduces peroxide formation (Zeng et al., 2017). Therefore, activation
of Nrf2 by drugs is a promising target for attenuating OS-induced
brain damage after ICH.

Under physiological conditions, Nrf2 is negatively regulated by
Keap1 and maintained at a low level. In detail,
Keap1 homodimerizes and binds to an E3 ubiquitin ligase
complex via cullin-3 (Keap1-Cul3-RBX1 complex), which
mediates Nrf2 ubiquitination and subsequent 26S proteasome
degradation. Under stress conditions, like excessive ROS or
electrophiles, the Keap1-Nrf2 binding is impaired, leading to
Nrf2 stabilization and nuclear translocation (Buendia et al., 2016;
Fão et al., 2019). In the nucleus, Nrf2 binds to small
musculoaponeurotic fibrosarcoma (sMaf) proteins and the
created complex identifies specific antioxidant response elements
(AREs), promoting the transcription of genes encoding free radical
scavenging proteins, including HMOX-1, NQO1, CAT, GPXs, and
SOD. Here the regulation of the Nrf2/ARE pathway by CBD is

described as extranuclear and intranuclear regulation, and the
former mechanism can be further divided into Keap1-dependent
and Keap1-independent pathways (Figure 2).

4.1 Extranuclear regulation

4.1.1 Keap1-dependent pathway
In the environment of OS, the Keap1 cysteine residues are

modified resulting in changes in its conformational and
consequently Nrf2 release (Kopacz et al., 2020). In human oral
keratinocytes induced by 5-fluorouracil, CBD (0.5, 2.5, and 5 μM)
promotes Keap1 degradation and Nrf2 stabilization, which in
turn enhances Nrf2 target genes expression and cellular
antioxidant capacity (Li L. et al., 2022). In addition, p62, a
polyubiquitination binding protein, competes for the binding
site of Nrf2 to Keap1, resulting in Keap1 autophagy degradation
and Nrf2 activation (Komatsu et al., 2010). It has been observed
that CBD increases the level of p62 in primary human
keratinocytes (Jastrząb et al., 2019) and in rats with eccentric
contractions (Langer et al., 2021).

4.1.2 Keap1-independent pathway
There are several proteins that regulate the Nrf2/ARE pathway

mainly through the phosphorylation of Nrf2. Indeed, Nrf2 contains
several phosphorylation sites that have been described as crucial
regulators of Nrf2 activation and degradation. For example,
Glycogen synthase kinase-3β (GSK-3β) induces ubiquitinated
degradation of Nrf2 via phosphorylation in the cytosol (Saha

FIGURE 1
CBD effectively counteracts oxidative stress by targeting four key aspects: mitochondrial dysfunction, excitotoxicity, iron toxicity, and inflammatory
cells. CBD enhances mitochondrial respiratory chain complex activity, restores mitochondrial energy metabolism, and modulates mitochondrial fission
and fusion. For excitotoxicity, CBD inhibits glutamate release, probably by (i) inhibition of cannabinoid hydrolases activity (ii) direct action on CB2 and
5HT1A receptors or their heteromers, and (iii) action on sodium-calcium exchangers to reduce calcium inward flow. CBD can chelate iron ions and
thus exhibit an inhibitory effect on iron-dependent proteins. When it comes to inflammatory cells, CBD effectively suppresses microglia activation while
enhancing their phagocytic capacity through transient receptor potential channel. Additionally, CBD reduces neutrophil infiltration, potentially by
targeting chemokine and adenosine receptors.
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et al., 2020). CBD administration in vitro suppressed GSK3β
activation in PC12 neuronal cells (Esposito et al., 2006) favoring
Nrf2 stabilization. It is known that both PI3K/Akt and AMPK
pathways can indirectly mediate Nrf2, partly by inhibiting GSK-
3β activity (Deng et al., 2019; Lv et al., 2019). An upregulation of
PI3k/Akt and AMPK has been reported after treatment with CBD.
At 5 μM concentration, CBD was reported to inhibit GSK-3β
activity likely by promoting the PI3K/Akt pathway in
mesenchymal stem cells (Libro et al., 2016). The combination of
CBD and tetrahydrocannabinol reversed the decrease in AMPK
induced by paclitaxel (Kumar Kalvala et al., 2022). Several proteins,
including protein kinase C (PKC), casein kinase II (CK2), and
endoplasmic reticulum kinase (ERK) can also phosphorylate
Nrf2, leading to its dissociation from Keap1 and nuclear
accumulation. Of these, only ERK has been shown to be
positively regulated by CBD (Alegre-Zurano et al., 2022).

4.2 Intranuclear regulation

BTB And CNC Homology 1 (BACH1) competes with Nrf2 for
binding sMaf to form BACH1-sMaf heterodimer which also
recognizes AREs. Unlike the Nrf2-sMaf complexes, the BACH1-
sMaf primarily acts as a transcriptional repressor (Oyake et al., 1996;
Liu et al., 2022). Previous literature has indicated that BACH1-sMaf
represses NQO1 and HMOX-1 gene expression in a variety of cell
lines (Sun et al., 2002; Dhakshinamoorthy et al., 2005; Reichard
et al., 2007). Using siRNA to silence BACH1, HMOX-1 expression is
strongly upregulated in HaCaT cells and Huh-7 hepatocytes (Shan
et al., 2004; Casares et al., 2020). Importantly, treatment with CBD
induces HMOX-1 expression in HaCaT cells (mean 58-fold), but its
function is greatly impaired in BACH1 knocked-down cells (mean
10-fold). In other words, CBD can promote HMOX1 expression by
facilitating the nuclear export and degradation of BACH1 (Casares

TABLE 1 Mechanism of cannabidiol inhibiting ROS/RNS production.

References CBD dosing Results

Hao et al. (2015) Male C57BL/6J mice, 10 mg/kg, i.p., once daily for 5 days Improving mitochondrial complex I, II activity

Hooshangi Shayesteh et al. (2022) Adult male Albino Wistar rats, 5, 25, 50, and 100 μg/kg, i.v for
12 and 24 h

Improving mitochondrial complex I, IV activity

Kumar Kalvala et al. (2022) Primary dorsal root ganglions neuronal cells, 12 µM Improving mitochondrial complex I activity

Sagredo et al. (2007) Adult male Sprague Dawley rats, 5 mg⁄ kg, i.p. once daily for
5 days

Reducing the striatal atrophy caused by inhibitor of
mitochondrial complex II

Ryan et al. (2009) Human neuroblastoma cell line, 1 μM Increasing cell viability insulted by complex V inhibitor,
oligomycin, and uncoupler of ATP synthesis, FCCP

Sun et al. (2017) HT22 cells, 5 μM Increasing cells’ ATP production-linked OCR insulted by
complex V inhibitor, oligomycin, Increasing cells’ maximal
respiration and the spare respiratory capacity insulted by
uncoupler of ATP synthesis, FCCP

Lu et al. (2021) Male C57BL/6J mice, 10 mg/kg i.g. once daily for 12 days Inhibiting the expression of fission genes including FIS1,
DRP1 and OPA1; Increasing the expression of fusion genes
including MIEF1, Mfn1 and Mfn2

Li et al. (2022b) BV2 microglia cell line, primary microglia, 1 μM, C57BL/6 J
mice, 10 mg/kg, i.p., once daily

Suppressing microglia activation, Increasing fusion genes
Mfn2 expression

Wang et al. (2023) Male C57BL/6J mice, 10 mg/kg, i.g., once daily for 30 days Increasing the expression of Mfn1, Mfn2, Opa1; Decreasing the
expression of Drp1

Grabiec et al. (2012) Organotypic hippocampal slice, 100p.m.-10 μM Inhibiting excitotoxicity, Reducing the number of positive
degenerative cells

Pazos et al. (2013) Newborn pigs, 1 mg/kg, single dose Decreasing glutamate/N-acetylaspartate ratio partly via
5HT(1A) and CB2 receptors

Khaksar and Bigdeli (2017) Adult male Wistar rats, 50, 100, and 200 ng/rat; i.c.v. for 5 days Increasing NCX2 and NCX3 expression

Antonyová et al. (2022) - Chelating iron ions. Inhibiting iron-dependent proteins

Yang et al. (2022) Primary microglia, 5 μM Enhancing microglial Aβ phagocytosis via the TRPV2 channels

Hassan et al. (2014) BV-2 microglia, 10 μM Enhanceing microglial phagocytosis via TRP channel

Wang et al. (2017) C57BL/6 J mice, 5 or 10 mg/kg/day, i.p., 11 days Reducing neutrophil infiltration and chemokines production

Ribeiro et al. (2012) Male C57BL/6 mice
20 mg/kg, i.p., single dose

Reducing neutrophil infiltration and chemokines production
possibly by adenosine A(2A) receptor

Thapa et al. (2018) Male BALB/c mice
5 μL 5% CBD, topical

Reducing neutrophil infiltration possibly by 5-HT1A receptors

DRP1, dynamin-1-like protein; FCCP, carbonyl cyanide-p-trifluoromethoxyphenyl hydrazone; FIS1, mitochondrial fission 1 protein; i.c.v., intracerebroventricular; i.g., intragastric;

i.p. intraperitoneal; i.v. intravenous; Mfn1, mitofusin 1; Mfn2, Mitofusin 2; MIEF1, mitochondrial elongation factor; NCX, sodium-calcium exchanger; OCR, oxygen consumption rate; OPA1,

optic atrophy type 1; TRP, transient receptor potential.
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et al., 2020). In addition, Nrf2 transcription activity is also negatively
mediated by p65 (RelA), a subunit of NF-κB complex. Liu and others
found that p65 selectively deprives CBP (CREB binding protein, a
major coactivator of Nrf2) of Nrf2 and enhances the recruitment of
histone deacetylase 3 (HDAC3) which deacetylates CBP and thus
suppresses CBP coactivator activity, resulting in local histone
hypoacetylation (Liu et al., 2008). The inhibitory effect of CBD
on p65 has been reported elsewhere. CBD administration inhibits
p65 phosphorylation and subsequent nuclear translocation, thereby
suppressing the expression of its target genes such as tumor necrosis
factor (TNF) (Huang et al., 2019; Lubschinski et al., 2022). Nrf2 also
can be phosphorylated by Fyn kinase, a member of Src family
member, leading to Nrf2 nuclear export and degradation (Jain and
Jaiswal, 2007; Kaspar and Jaiswal, 2011). Downregulation of Fyn was
observed in peripheral blood mononuclear cells collected from
patients with multiple sclerosis treated with CBD for 4 weeks
(Sorosina et al., 2018). Moreover, Fyn protein has also been
shown to be phosphorylated by GSK3β mentioned above, which
causes its nuclear transport (Demuro et al., 2021). Overall, CBD
inhibits Nrf2 repressor BACH1, p65 and Fyn favoring Nrf2 activity.
Of these, CBD appears to have the most pronounced effect on
BACH1.

In summary, given the protective role of the Nrf2/ARE pathway
after ICHmentioned above and the potent activation of this pathway by
CBD, we can infer that CBD may significantly activate the Nrf2/ARE
pathway after ICH, thereby promoting expression of multiple
antioxidant gene and enhancing antioxidant capacity.

In addition to the anti-oxidant effects covered in the current
review, Henry and others, in their review, suggest that CBDmay also
have exciting anti-inflammatory, vascular effects, and
neuroprotective function in subarachnoid hemorrhage (Henry
et al., 2023). We believe that these may also be potential
protective mechanisms for ICH. In other words, CBD may
protect against ICH from different ways.

While this review and previous studies propose the potential
anti-inflammatory and anti-oxidant effects of CBD against ICH, it is
important to note that research in this area is still in its initial stage.
There remain numerous unexplored avenues that warrant further
investigation. Previous preclinical studies utilize a diverse range of
vehicles and doses for CBD administration, resulting in considerable
variability in bioavailability. This variability poses challenges in
effectively comparing findings across different studies. Thus, a
more comprehensive understanding of the pharmacokinetics
derived from preclinical research could substantially enhance
future CBD investigations. Furthermore, the commonly employed
preclinical models for ICH encompass the autologous blood
injection model and the collagenase model. Each model boasts
distinct characteristics, and evaluating the effectiveness of
cannabidiol on both models could offer valuable theoretical
insights for subsequent clinical trials.

Moreover, with the increased interest in cannabinoids, more and
more clinical trials related to CBD are being conducted. Alarmingly,
however, some of these trials have been conducted without adequate
theoretical support and rigorous experimental design. We suggest

FIGURE 2
Regulation of CBD on Nrf2/ARE pathway. In the cytoplasm, Nrf2 is ubiquitinated by Keap1 and degraded by the proteasome under physiological
conditions. Positive regulation of ERK and p62 by CBD via phosphorylation of Nrf2 and binding competitively of Keap1, respectively, promotes
dissociation of Nrf2 from Keap1. CBD downregulates GSK3β to favor Nrf2 accumulation, and it can further enhanceGSK inhibition by upregulating PIK and
AMPK. In the nucleus, Fyn phosphorylated by GSK promotes the nuclear export of Nrf2 and CBD can downregulate Fyn expression. Additionally,
BACH1 can competitively bind sMaf and ARE and thus inhibit the expression of antioxidant genes, while CBD can inhibit the competitive binding of
BACH1 to sMaf and ARE. Moreover, CBD reduces the expression of the NFκB subunit p65 to suppress its induced deacetylation environment. In
conclusion, CBD can modulate the antioxidant pathways through multiple ways, resulting in a significant increase in antioxidant gene expression.
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that preclinical studies of CBD in ICH or other aged-related
degenerative conditions should be conducted to fully assess the
actual effects of CBD, and then clinical trials could be carried out if
necessary.

5 Conclusion

The review summarizes the inhibition of ROS/RNS production and
the promotion of ROS/RNS elimination by CBD. These results suggest
that CBD may be an effective treatment against ICH-induced OS.
However, several recent reports have also indicated that CBD can
promote ROS production in cancer cells to induce cell apoptosis (Yan
et al., 2023). The conflicting results may be partly related to the type of
cells examined. Therefore, it is necessary to conduct comparative studies
with various cell types. Furthermore, previous work on the anti-oxidant
effects of CBD seems to be attributed more to its -OH group, when in
fact CBD has been identified as a ligand for several receptors, especially
the endogenous cannabinoid receptor. The further work on its related
receptors in relation to antioxidant effects is necessary. Moreover, it
seems imperative to test CBD first in preclinical models of ICH and
then in patients with ICH.
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