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Deforestation is a global issue; however, each deforestation phenomenon occurs 
within its own local context. Elucidating this context in detail is important to 
prevent deforestation and maintain sustainable ecosystem management. In this 
study, we analyzed the land cover changes, forest characteristics, and modeled the 
forest decline over the last two decades to reveal the pattern and affecting factors 
of deforestation in the Honam-Jeongmaek mountain range. Forests less than 
50-years-old dominate the study area, indicating they were mainly regenerated 
after the 1970s. Reforestation policies such as planting trees have helped forest 
regeneration. In the study region, as deforestation occurred, agricultural and 
residential areas decreased, and barren and grassland increased. We applied the 
Weibull regression model to determine forest survivorship and covariates. The 
deforestation risks are significantly different among regions; protected areas lose 
less forest than non-protected areas but the losses in protected areas were also 
significant, with approximately 5% from 2000 to 2020. Areas of higher elevation 
and steep slopes experience less deforestation, whereas areas closer to the 
mountain ridge are at greater risk. With survival analysis, it is possible to assess the 
risk of deforestation quantitatively and predict long-term survival of forests. The 
findings and methods of this study could contribute to better forest management 
and policymaking.
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1. Introduction

Deforestation has been a global issue for decades (Morton et al., 2006; Hosonuma et al., 
2012; Yao et al., 2014; Barlow et al., 2016; Sandker et al., 2017). According to the Food and 
Agriculture Organization (FAO), the world had lost 178 million ha of forest since 1990, with a 
net loss rate of 4.7 million ha per year between 2010 and 2020 (FAO, 2020). The major causes of 
deforestation include, industrial agriculture, increasing cattle numbers, timber logging, mining, 
city expansion and infrastructure, forest fires, paper production, and climate change (Adams 
et al., 2012; Mon et al., 2012; López-Carr, 2021). Although deforestation is a global phenomenon, 
the specific patterns in which it occurs and its impact on socio-ecological relationships may vary 
by local context.

Forests in the Korean peninsula experienced severe depletion during the Korean war, but 
reforestation has been conducted since the 1960s in South Korea (Kim and Zsuffa, 1994; Park 
and Lee, 2014; Allison, 2016; Choi et al., 2019). The tree growing stocks increased from 9.6 m3/
ha in 1960 to 126.6 6 m3/ha in 2010. From 1953 to 2010, forest area in South Korea almost 
doubled, with a 13-fold increase in the density of trees (Buckingham and Hanson, 2015). Despite 
a very successful forest regeneration campaign, deforestation continued in some areas and the 
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issue has been receiving more attention. The forest area in South Korea 
has decreased from 6,551,000 ha in 1990 to 6,287,000 ha in 2020 (FAO, 
2020). The overall decreasing ratio is relatively low (4% of forest in 
1990), but this ratio varies in different regions (Global Forest 
Watch, 2021).

Most of the natural forests in Korea are located in mountains; 
thus, owing to the lack of accessibility, mountain forests are less 
affected by anthropogenic activities and have continued to grow after 
regeneration. Mountain forests are an important ecosystem 
component that plays a key role as a refuge for vulnerable species 
(Chung et  al., 2016, 2018) and an ecological corridor connecting 
various ecosystems (Choi, 2004; Cho et al., 2008; Hayes, 2010; Chung 
et  al., 2016, 2018). The network of mountain ridgelines has been 
traditionally conceptualized in Korea and are called “Daegan” and 
“Jeongmack” (Choi, 2004). The traditional concept of “mountains do 
not cross water and water does not go over mountains,” has been 
passed down over hundreds of years and is widely accepted as an 
important geographic idea. The traditional geographic concept, which 
is aware of the importance of ridge networks, is similar to the modern 
concept of watersheds. Of note, the traditional concept emphasizes the 
continuity rather than the divide of watersheds. The mountain 
network of the Korea peninsular was composed of one main ridgeline, 
Daegan, Baekdu–Daegan, and several Jeongmacks. The concept has 
been adapted to the management of mountain ranges. The Baekdu–
Daegan is the longest and highest mountain ridgeline range and is 
protected by a legislative act. Whereas Jeongmacks, a subsidiary of 
Beakdu–Daegan mountain ranges, are not well protected despite their 
importance to ecosystem functionality and socio-ecological linkage 
(Jang et al., 2008; Choi et al., 2014). Owing to the lack of protection 
laws, the forests on the Jeongmack mountain range are undergoing 
deforestation, especially around the villages near the ridgeline.

Deforestation monitoring is usually performed using remote 
sensing imagery (Greenberg et al., 2005; Songer et al., 2008; Sandker 
et al., 2017; Hadi et al., 2018). In a deforestation analysis study, it is 
common to create land cover/land use (LULC) maps using satellite 
images and compare the forest area of the LULC maps in two or more 
specific times (Sandker et al., 2017; Hadi et al., 2018). This approach 
quantifies the overall change in forest area; however, it has limitations 
in analyzing the trend of forest decline and predicting future decline 
(the time taken for a forest area to be reduced to a certain level).

The factors affecting deforestation have been analyzed using 
different models, including regression (Rosa et al., 2013; Pir Bavaghar, 
2016), machine learning (Mayfield et al., 2020; Larrea-GallegosIan and 
Vázquez-Rowe, 2021), and survival analysis models (Vance and 
Geoghegan, 2002; Greenberg et al., 2005). Greenberg et al. (2005) used 
survival analysis to determine decreases in rainforest area; by using 
this method, it was not only possible to identify the factors affecting 
the deforestation rate but also quantify the accelerating deforestation 
rate. Vance and Geoghenan (2002) applied survival analysis to identify 
the factors that influence deforestation probability. Although survival 
analysis is recognized as a promising method to model and predict 
land cover change (An and Brown, 2008; Wang et al., 2013), it has not 
been frequently applied in deforestation research.

To date, studies on the temporal pattern of deforestation in South 
Korea are scarce. Research has mainly focused on the deforestation 
quantity and its spatial distribution (Jang et al., 2008; Yu et al., 2016). 
To help ecosystem management, answers to the following questions 
are essential: (1) how much forest area has been destroyed and how 

has the rate of deforestation changed over time? and (2) what factors 
affect deforestation? We  believe that survival analysis is a useful 
statistical method to answer these questions. It models both the overall 
quantity and pattern change of deforestation over time. This study 
examined deforestation patterns and trends of the Honam–
Jeongamaek mountain forest, which has long been the background of 
socio–ecological interactions.

2. Methods

2.1. Study area

The study area is the north part of Honam–Jeongmack mountain 
range, located in the southwestern part of the Korean peninsula (35° 
36′ N, 128° 06′ E; Figure  1). One end of the mountain range is 
connected to the Baekdu–Daegan mountain range, the core ecological 
axis of the Korean Peninsula, and the other to the Naejangsan national 
park. The average temperature normals are 10.7 ~ 13.3 and 
precipitation total normals are 1329.8 ~ 1486.0 mm 
(Supplementary Table  1). The elevation range of the ridge line is 
between 166 meters and 1,230 meters above sea level. Among the 
broadleaf forests, oak forests are the most widespread, and among the 
coniferous forests, pine forests are the most widespread.

The administrative boundaries of the mountain villages roughly 
coincide with the 3 km buffer zone on the ridge; therefore, the 3 km 
buffer zone area was analyzed. The mountain range spans six 
municipalities. The study area can be  divided into three regions 
according to regional characteristics. The west region of the mountain 
range (Wangju-gun and Jeongup-si) is connected to a wide range of 
farmland. This region is also under pressure for development as a large 
city (Jeonju-si, with a population of 657,432). The northeast region 
(Jinan-gun and Jangsu-gun) is a typical mountainous area with high 
elevation. The southeast region is a mixture of mountainous and 
agricultural areas (Imsil-gun, Sunchang-gun, and Jeongeup-si) and the 
elevation of the mountain is relatively low compared to the northeast 
region. Jeongup-si encompasses two regions: the west and southeast 
regions divided by the ridgeline (Figure 1). Over the past 20 years, 
Wanju-gun and Jeongup-si have seen an increase in population, while 
other municipalities have seen a decrease (Supplementary Table 2).

2.2. Data

Global forest change (GFC) data (Hansen et al., 2013) was used 
for survival analysis because it provides deforestation information. 
The dataset provides global tree (taller than 5 m in height) cover in 
2000, and indications of deforestation from 2000 to 2020 on an annual 
basis. For this study, the vegetated areas in GFC data are regarded as 
forests. The data was produced based on the multi-temporal Landsat 
imagery with a spatial resolution of 30 m. In the GFC data, forest loss 
was defined as a complete removal of canopy tree cover; forest 
degradation, such as selective removals, was not characterized as a 
change (Hansen et al., 2013).

Although GFC data can provide an approximation of forest 
loss (Galiatsatos et al., 2020), the uncertainties exist in the dataset 
(Galiatsatos et  al., 2020; Shimizu et  al., 2020). In addition to 
modeling long-term deforestation trends based on GFC data, 
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we  used quality-controlled land cover maps for detailed 
quantitative analysis of land cover change and forest type maps to 
characterize forests.

Land cover (LC) and forest type (FT) maps were used to identify 
the characteristics of the forest area. The LC maps are produced and 
distributed by the Ministry of Environment, South Korea. There are 
three different levels of LC types: level 1 consists of six LC types, 
namely, used (built-up) area, agricultural land, forest, grassland, wet 
land, barren, and water. Level 2 and 3 LC types provide more detailed 
classifications of land cover. Level 2 and 3 maps were used for analysis 
(Table 1), which have 22 and 41 LC types, respectively. For consistency, 
the level 2 LC classification (Supplementary Table 3) was used in the 
analysis. There are three forest types: broadleaf, coniferous, and mixed 
forests. Forest type maps are produced and provided by the Korea 
Forest Service. These maps provide detailed forest information on 42 
tree types, decadal age classes, and stand density classes, and have 
been updated in the last decade. We used the FT map, published in 
2015 and updated using aerial images from the early 2010s to identify 
characteristics of forest stand. Information of accuracy evaluation for 
each map is not provided, but there is a quality control condition that 

each map must have an overall accuracy of 95% or higher in order to 
be published (Environmental Spatial Information Service, 2023).

The Advanced Land Observing Satellite (ALOS) World 3D-30 m 
(AW3D30) global digital surface model data (Tadono et al., 2016) was 
used to analyze topographic characteristics such as elevation and 
slope. The latitude and longitude coordinates were projected onto the 
Universal Transverse Mercator (UTM) coordinate system (EPSG: 
32652). The maps had different projected coordinate systems that were 
reprojected using the UTM.

2.3. Survival analysis

Survival analysis accounts for the time when an event occurs in 
addition to the magnitude of that event. It is a useful tool to develop 
regression models that best fit the relationship between the time of 
deforestation and covariates. We applied the Weibull regression model 
for parametric survival analysis, which has advantages of estimating 
baseline hazard function and modeling the effects of covariates (Lee 
and Wang, 2003; Zhang, 2016). The parametric survival model is used 
to predict future trends. In the practical application of survival 
analysis, it is common to use log transformations for the distribution 
of time to an event (T), and the relationship between T and the 
covariates can be expressed as:

 ln T( ) = + +…+ +β β β σε0 1 1x xp p

where 𝛽0,…, 𝛽𝑝 are the regression coefficients for corresponding 
covariates; 𝑥1,…, 𝑥𝑝, σ is a scale parameter, and ε is the random 
disturbance term. The Weibull regression model assumes ε follows the 

FIGURE 1

The ridgeline of Honam-Jeongmaek mountain range (red line) with elevation profile, and the Baekdu-Daegan protection area (orange area). Image 
data: Google.

TABLE 1 Specification of used land cover maps.

Published 
Year

Mapping 
level

Spatial 
resolution

Data 
type

2002 Level 2 5 m polygon

2007 Level 2 5 m polygon

2013 Level 2 5 m polygon

2020 Level 3 1 m polygon
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Weibull distribution. The hazard function (the risk of event function, 
e.g., death or deforestation) at any moment in the Weibull regression 
model can be expressed with shape parameter λ as:
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The baseline hazard is formulated as h0(𝑡) = λe−𝜆𝛽0𝑡𝜆−1. The 
Weibull regression model can be used to test the relative effect of 
covariates (hazard ratio) and the change of hazard over time 
(accelerated failure-time, AFT).

Survival analysis requires the information of start, end, and 
event times. As the GFC data recorded a deforestation event after 
2000, the LC map published in 2002 was used for the base 
information of the forest at the start time. The LC map is usually 
created based on the images taken a few years ago; thus, 
we  decided to set 2000 as the start time (year) to maintain 
consistency with the GFC data. Each raster pixel of the GFC data 
located in the forest area of the map was considered as an alive 
forest pixel. The event was defined as forest loss on the GFC data. 
If a forest pixel had no forest loss indication, it was considered 
that the forest remained intact until 2020. The intact forest is dealt 
as right-censored data. We estimated the effect of covariates on 
survival time based on the Weibull regression model. A total five 
covariates, two categorical variables, and three continuous 
variables were used (Table 2). The correlation coefficient between 
the elevation and slope was 0.29, the correlation coefficient 
between the elevation and the distance to ridgeline was −0.19, and 
the correlation coefficient between the slope and the distance to 
the ridgeline was −0.14 (Supplementary Table 3).

2.4. Software

The quantum geographic information system (QGIS Development 
Team, 2023) was used for GIS data analysis, and R software (version 
4.2.1; R Core Team, 2023) was used for statistical analysis. A Survival 
analysis was conducted using the “survival” package (version 3.2–10; 
Therneau and Grambsch, 2000).

3. Results

3.1. Land cover change

Land cover changes over the last two decades are listed in Table 3. 
The overall change of used (built-up) area was ~15–20 km2 (Table 2). 
But detailed LC change analysis revealed larger variation, residential 
area decreased from 10.3 km2 in 2002 LC map to 2.5 km2 in 2020 LC 
map, while transportation infrastructure area increased from 5.9 to 
15.4 km2 during the same period. The grass and barren land types 
increased, and majority of the incensement was caused by 
anthropogenic activity. In the case of grass, the artificial grassland had 
an area of 77.3 km2 on the 2020 LC map, while natural meadow had 
an area of only 0.2 km2. Similarly, artificial barren land area was 
17.0 km2, while natural barren land was 2.7 km2 on the 2020 LC map. 
The water area has been fluctuating around 22 km2. During the last 
two decades, the net decrease in forest area was 49.9 km2. Even in areas 
with new forests, owing to afforestation activities, the deforestation 
area increased. Among the areas that were forests on the 2002 LC map, 
a total forest area of 49.9 km2 was changed to other land cover types 
on the 2020 LC map. Most of the decreased area turned into grassland 
(45.7 km2), barren land (12.0 km2) and agricultural land (11.1 km2) on 
the 2020 LC map (Table 4). 83% of the new forest grew on agricultural 
land (12.7  km2) and grasslands (7.59km2; Table  4). The area of 
broadleaf, coniferous, and mixed forest was 386.5, 128.6, and 30.9 km2, 
respectively on the 2020 LC map.

The study area includes several types of protected areas, such as 
national parks, wildlife sanctuaries, and wetlands, among others. The 
forest area in the protected areas was 113.5 km2 on the 2002 LC map 
and 107.2 km2 on the 2020 LC map. The forest area in the 
non-protected areas was 510.5 km2 on the 2002 LC map and 446.9 km2 
on the 2020 LC map.

3.2. Characteristics of forest

We calculated forest area by stand age class in the three regions 
(within the 3 km buffer from the ridgeline) based on the FT maps 
(Figures 2, 3). The majority of the forests belong to the stand age 31 to 
40 years, implying that these forests were regenerated post the 1970s. 
The northeast region has the largest forest area but old forests (> 
41 years) of the region are relatively small compared to that of other 
regions. The west region has the largest area of old forests. Pine tree 
covers the largest area of the coniferous forest. Among the pine tree 
forests, Pinus densiflora dominated forests are the largest (59.4 km2). 
The representative planted pine species occupying a large area are the 
larch (Larix kaempferi, 33.9 km2) and Rigida pine (Pinus rigida, 
35.1 km2; Table 5). Oak tree (Quercus spp.) covers the largest area 
(216.5 km2) of the broadleaf forest, while tulip tree (Liriodendron 
tulipifera) covers the largest area (12.0 km2) among planted broadleaf 
trees. Young forests (< 20 years) are dominated by naturally 
regenerating oak or pine trees (Table 5).

3.3. Survivorship of mountain forest

Hazard ratios (HRs) from the Weibull regression model for the 
deforestation event are listed in Table 6. The deforestation risk of the 

TABLE 2 Covariates used in the Weibull regression analysis.

Variable Data Spatial resolution

Region (Northeast, Southeast 

West)

Categorical 30 m

Protected area (protected, non-

protected)

Categorical 30 m

Elevation (m) Continuous 30 m

Slope (degree) Continuous 30 m

Distance to ridge (m) Continuous 30 m
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west and southeast regions is significantly lower than that of the 
northeast region (confidence intervals lower than 1). The west region 
had the lowest deforestation risk (Table 6). If the deforestation trends 
maintain the current trajectory, the amount of forest (LC map in 2002) 
in the northeast, west, and southeast regions will decrease by 75, 82.5, 
and 80%, respectively, by 2040 (Figure 4). The 95% confidence interval 

of the non-protected area is greater than 1 (Table 6), which means that 
the risk of deforestation in the non-protected area is significantly 
higher than that of the protected area. However, forests in the 
protected areas also undergo deforestation. The loss of forest in 
protected areas is predicted to reach 10% in 2035, and if unprotected, 
20% in the same year. As elevation, slope, and distance to ridge 
increases, deforestation risk decreases (confidence intervals of the 
covariates are lower than 1). Figure 5 shows the survival curves of the 
unprotected forest areas by region. The forest areas in the south and 
southeast regions are predicted around 80% in 2040. In contrast, the 
forest areas in the northeast region will decrease by 72% in the same 
year if the current trend continues without policy changes to protect 
the forest.

4. Discussion

To understand the characteristics and regional context of 
deforestation, we conducted two different analyses that related to each 

TABLE 4 Land cover change between forest and other land covers 
(2002–2020; km2).

Land cover type Forest to other 
land cover

Other land 
cover to forest

Used area (built-up area) 3.68 2.81

Agricultural land 11.10 12.46

Grass 45.72 7.59

Wet land 0.71 0.08

Barren 11.96 0.51

Water 0.78 0.61

TABLE 3 Land cover area (km2).

Land cover type 2002 2007 2013 2020 Change (2002–
2022)

Used area (built-up area) 19.69 18.35 15.15 21.03 1.34

 Residential area 10.29 9.38 5.42 2.51 −7.78

 Industrial area 0.33 0.64 0.34 0.17 −0.16

 Commercial area 0.75 0.90 1.13 1.29 0.54

  Cultural, sports, and recreational area 0.06 0.12 0.31 0.27 0.21

 Transportation area 5.90 6.03 6.75 15.40 9.50

 Public facilities area 2.36 1.28 1.20 1.39 −0.97

Agricultural Land 114.02 115.97 103.41 79.28 −34.74

 Rice paddy field 57.33 56.67 28.94 21.25 −36.08

 Field 52.86 55.13 62.69 43.62 −9.24

 Facility plantation 0.32 0.47 1.16 1.93 1.61

 Orchard 2.57 2.21 7.36 8.85 6.28

 Other cultivated area 0.94 1.49 3.26 3.63 2.69

Forest 623.98 617.17 600.16 574.11 −49.87

 Broadleaf forest 286.07 285.07 397.78 386.49 100.42

 Coniferous forest 250.93 245.96 167.59 154.54 −96.39

 Mixed forest 86.98 86.14 34.79 33.08 −53.9

Grass 13.11 16.72 43.28 77.55 64.44

 Natural meadow 5.48 5.60 33.20 0.23 −5.25

 Artificial grass 7.63 11.12 10.08 77.32 69.69

Wetland 1.53 3.01 5.44 5.66 4.13

 Inland wetland 1.53 3.01 5.44 5.66 4.13

Barren 3.51 6.11 8.37 19.74 16.23

 Natural barren 0.07 0.16 1.71 2.75 2.68

 Artificial barren 3.44 5.95 6.66 16.99 13.55

Water 22.74 21.23 22.75 21.21 −1.53

 Inland water 22.74 21.23 22.75 21.21 −1.53
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other: first, we analyzed land cover change and forest characteristics 
using maps that are spatially accurate but cover discrete time periods 
(LC maps) or single period (FT map); second, we used temporally 
detailed GFC data to model trends in deforestation over time. This 
approach complements the weaknesses of both datasets, one lacking 
temporal detail and the other with relatively large uncertainties.

4.1. Land cover change

Urbanization and agricultural expansion have been acknowledged 
as major driving forces of deforestation (Greenberg et  al., 2005; 
Morton et al., 2006; López-Carr, 2021). The FAO (2020) reported that 
agriculture has the biggest impact on deforestation (~ 80%), followed 

FIGURE 2

Forest in land cover maps within 3  km buffer of mountain ridge and protected area (blue, A) 2002, (B) 2007, (C) 2013 and (D) 2020.

FIGURE 3

Forest areas by stand age of three regions.

https://doi.org/10.3389/ffgc.2023.1183509
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Dhakal et al. 10.3389/ffgc.2023.1183509

Frontiers in Forests and Global Change 07 frontiersin.org

by construction (15%), and urbanization (~ 5%); however, the driving 
factors vary by country, geographic region, and era. Contrary to the 
results of previous studies, the decrease in forest in the study area 
occurred simultaneously with decreasing agricultural and residential 
areas. However, the net decreasing rate of agricultural lands is more 
rapid (−30%) than that of forest areas (−8%; Table  3). The net 
decreasing rate of residential areas is even more drastic; 10.3 km2 of 
the residential area on the 2002 LC map decreased to 2.5 km2 on the 
2020 LC map (−75%). However, transportation infrastructure area 
increased by 2.6 times (from 5.9 to 15.4 km2). This suggests that 
deforestation may continue to increase even in rural areas with 
declining populations. Figure  6A shows a constructed road after 
deforestation in 2003. During the two decades, the areas of barren and 
grassland have shown a 5.9-and 5.6-fold increase, respectively 
(Table  3), while 86% of the barren land on the 2020 LC map is 
artificial. Part of the barren land area is a construction site that is 
temporarily barren. The grassland areas are more difficult to interpret. 
Some areas may be sites with grass growth on abandoned land, but 
some areas may be classified as grassland when seedlings are planted 
after logging (Figure 6B). The exchange of agricultural land and forest 
area is worth noting. The changed area from forests to agricultural 
lands is similar to the area changed from agricultural lands to forests 
(Table  4). But the conditions under which the change occurs are 
different: forests with suitable conditions for agriculture are changing 
to agricultural land. In contrast, the new forests are growing on 
agricultural land that is difficult to farm, i.e., abandoned farmland. 
This pattern of forest expansion is found in places where large-scale 

migration to urban areas takes place (Cervera et al., 2019; Ameztegui 
et al., 2021).

Post-logging reforestation does not permanently destroy forest 
areas. However, the planted trees have a different species composition 
and vertical structure from the surrounding forests, and they take 
abundant time to obtain functional homogeneity with the surrounding 
forests. In addition to the amount of forest loss, the decline causes 
forest fragmentation (Figure  2). Although forest fragmentation 
analysis was not conducted because it deviates from the subject of this 
study, a study in Jinan-gun, which is located in the study area, revealed 
that forest fragmentation around the mountain village is progressing 
(Kang et al., 2012).

4.2. Characteristics of forest

Government led reforestation policies started in 1973 are 
supporting the increase of overall growth of forests in South Korea 
(Bae et al., 2012; Park and Lee, 2014). Forests less than 40-years-old 
dominate in the study area. Considering that the data from the early 
2010s was used to create the FT map, the forests were mainly 
regenerated after the 1970s. Tree planting carried out as part of the 
reforestation policies has facilitated forest regeneration, but natural 
regeneration of Pinus densiflora and Quercus spp. also occurred in 
large areas. Naejangsan Natural Park and the surrounding areas were 
the main habitats of old forests (≥ 41 years old). The lack of old forests 
in the mountain regions indicates the extensive use of timber and 

TABLE 5 Stand age and area (km2) of major forest types.

Forest type Stand age (years)

1–10 11–20 21–30 31–40 41–50 >51

Oak forest (Quercus spp.) 15.81 3.90 14.63 151.33 30.51 0.36

Pine forest (Pinus densiflora) 5.57 0.68 4.16 38.15 10.72 0.04

Rigida pine forest (Pinus rigida) 0.03 0.03 0.77 34.15 0.12 0.00

Larch forest (Larix kaempferi) 0.52 0.49 4.14 28.42 0.28 0.00

Mixed forest 4.58 0.31 6.56 26.08 1.22 0.00

TABLE 6 Hazard ratios (HR) from the Weibull regression model for the deforestation dataset.

Covariates Coefficient (β) HR [exp(β)] 95% Confidence interval p value

Region <0.001

Northeast (0.00) (1.00)

West −2.137 0.118 0.115–0.121

Southeast −1.313 0.269 0.263–0.275

Protection <0.001

Protected (0.00) (1.00)

Non-protected 0.611 1.842 1.796–1.888

Elevation (m) −0.004 0.9956 0.9955–0.9956 <0.001

Slope (°) −0.018 0.982 0.981–0.983 <0.001

Distance to ridge (m) −0.00006 0.99994 0.99993–0.99995 <0.001

Scale = 0.707
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FIGURE 4

Predicted survival curves, based on a Weibull regression model, showing the effect of (A) regions and (B) protection area.

FIGURE 5

Predicted survival curves, based on a Weibull regression, showing the effect on regions of unprotected area.

https://doi.org/10.3389/ffgc.2023.1183509
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Dhakal et al. 10.3389/ffgc.2023.1183509

Frontiers in Forests and Global Change 09 frontiersin.org

woodland resources by the villagers before the 1970s. Since forest 
management after Korean War focused on the supply of fuel wood, 
fast-growing trees were selected as the main reforestation species (Bae 
et al., 2014). As a result, the larch, rigida pine, and tulip tree occupy 
the largest area in the afforestation sites. However, due to changing 
socioeconomic conditions, these species have less economic value 
currently, as fuel wood is no longer needed. In addition, naturally 
regenerated forest, especially oak forest, is considered to have low 
economic value. The forest dominated by these species are used for 
logging and replanting on a massive scale (Figure  6B). However, 
logging a matured forest to grow a managed young forest changes the 
forest structure and undermines habitat continuity and biodiversity 
(Hagar et al., 2014; Kuuluvainen and Gauthier, 2018).

4.3. Survivorship of mountain forest

Deforestation can be affected by several factors. Forests located 
near villages and infrastructure are more likely to be  removed or 
degraded than are remote forests (Greenberg et al., 2005; Sharma 
et  al., 2020). Additionally, deforestation can be  affected by 
topographical characteristics such as slope and elevation (Sharma 
et al., 2020; Feng et al., 2021). We applied the Weibull regression to 
model the forest survivorship and covariates that affect it. The 
northeast region has been affected more by deforestation than have 
the other regions (Figure 4A). As the northeast has the largest forest, 
the high risk in the region (Table 4) imposes a larger deforestation area 
(Figure 3).

Protected areas lose less forest than non-protected area, but there 
has been a loss of ~5% of forest in protected areas over the past 

20 years. Since the early 2010s, deforestation rates have decreased due 
to an increase in protected areas. Not all protected areas area strictly 
protected as are national parks. Thus, even in protected areas forest 
loss may occur. Sustainable management of unprotected areas is 
essential for the conservation of the Jeongmack mountain range; the 
forest of this area has long been the ground for socio–ecological 
interactions in Korea. Excessive expansion of protected area can 
undermine forest use and the socio–ecological interactions. Temporal 
deforestation caused by logging and planting need to be regulated in 
a more organized manner. Therefore, it is necessary to expand the 
forestry direct payment project, which started in 2022, to motivate the 
preservation of forests without damaging them.

In contrast, the areas of higher elevation and steep slope are less 
affected by deforestation because the high elevation and steep slopes 
impose restrictions on land use. Notably, however, as the distance to 
the ridge decreases, the risk of deforestation increases (Table 6); that 
is, the closer the area to the ridge, the greater the risk of deforestation. 
Incidentally, there are many villages on the mountain range. The 
original villages were located on the periphery of the mountain range 
owing to the mild habitat condition. Thus, new developments 
accompanying deforestation occur mainly in undeveloped areas such 
as forest near mountain ridges. However, if the ridge area elevation is 
high, the area would have a low risk of deforestation because the 
elevation factor (coefficient: −0.004) compensates for the increased 
risk owing to the distance factor (coefficient: −0.00006) at the same 
unit meter.

Unplanned forest destruction or unauthorized deforestation, such 
as wildfires or illegal logging, are regularly monitored by the 
authorities. However, assessing the deforestation risk and preparing 
preemptive countermeasures based on the evaluation is difficult with 

FIGURE 6

Deforestation cases (A) constructed infrastructure (35.7734 ° N, 127.4712° E; B) post-logging reforestation (35.7411 ° N, 127.4642° E; google satellite 
images). Image data: Google.
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only monitoring. However, survival analysis makes it possible to assess 
the risk of deforestation quantitatively and predict long term 
deforestation based on the covariates and estimated risk. Figure 7 
shows the deforestation risk in 2022 calculated based on the Weibull 
regression results. The value changes depending on the year of 
prediction. The northern part of the mountain range is at a high 
deforestation risk, which has a relatively low elevation and gentle 
slope. The findings and method of this study could contribute to better 
forest management in Jeongmack mountain range, South Korea, but 
it is not restricted to this area.

5. Limitations of the study

There are several weaknesses and potential limitations to this 
study. The analyses are based on the published datasets. We have 
to admit no accuracy assessment of the GFC dataset has been 
conducted on a regional scale. The LC maps and FT map are 
quality controlled GIS data. However, the datasets have 
uncertainty related to the weakness in dating. Given the time it 
takes to create these data, there may be a time lag of one to 2 years 
between the information used and when the data is available. In 
contrast, GFC data provides continuous information over time, 
but has high accuracy uncertainty (Galiatsatos et  al., 2020; 
Shimizu et  al., 2020). Galiatsatos et  al. (2020) found that the 
annual accuracy varies with the availability of cloud-free imagery. 
If cloud-free imagery is not available for the year in which 
deforestation occurs, deforestation detection is postponed until 
the next year in which imagery is available. Shimizu et al. (2020) 
reported a scale issue, the GFC dataset tend to miss forest 
disturbances smaller than 3 ha. Counting for the limitation of the 
GFC dataset, the results might underestimate the deforestation 
area and hazard ratios. Overall, including spatial and 
temporal accuracy assessments will improve the reliability of 
deforestation analysis.

It is worth noting that the survival analysis did not take into 
account the time-varying covariates. The covariates used in the 
research were all static; however, some covariates (e.g., distance to 
built-up area) vary over time and they can affect the deforestation 
risk. The time varying covariates of survival analysis models can 
provide in-depth information for assessing deforestation risk. The 
use of additional factors such as population change, economic 
growth, and climatic conditions will improve the performance of 
the model.
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