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Introduction: Drought stress has become an important factor affecting global

food production. Screening and breeding new varieties of peas (Pisum sativum L.)

for drought-tolerant is of critical importance to ensure sustainable agricultural

production and global food security. Germination rate and germination index are

important indicators of seed germination vigor, and the level of germination vigor

of pea seeds directly affects their yield and quality. The traditional manual

germination detection can hardly meet the demand of full-time sequence

nondestructive detection. We propose YOLOv8-Peas, an improved YOLOv8-n

based method for the detection of pea germination vigor.

Methods: We constructed a pea germination dataset and used multiple data

augmentation methods to improve the robustness of the model in real-world

scenarios. By introducing the C2f-Ghost structure and depth-separable

convolution, the model computational complexity is reduced and the model

size is compressed. In addition, the original detector head is replaced by the self-

designed PDetect detector head, which significantly improves the computational

efficiency of the model. The Coordinate Attention (CA) mechanism is added to

the backbone network to enhance the model's ability to localize and extract

features from critical regions. The neck used a lightweight Content-Aware

ReAssembly of FEatures (CARAFE) upsampling operator to capture and retain

detailed features at low levels. The Adam optimizer is used to improve the

model's learning ability in complex parameter spaces, thus improving themodel's

detection performance.

Results: The experimental results showed that the Params, FLOPs, and Weight

Size of YOLOv8-Peas were 1.17M, 3.2G, and 2.7MB, respectively, which

decreased by 61.2%, 61%, and 56.5% compared with the original YOLOv8-n.

The mAP of YOLOv8-Peas was on par with that of YOLOv8-n, reaching 98.7%,

and achieved a detection speed of 116.2FPS. We used PEG6000 to simulate

different drought environments and YOLOv8-Peas to analyze and quantify the

germination vigor of different genotypes of peas, and screened for the best

drought-resistant pea varieties.
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Discussion: Our model effectively reduces deployment costs, improves

detection efficiency, and provides a scientific theoretical basis for drought-

resistant genotype screening in pea.
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1 Introduction

Peas (Pisum sativum L.), one of the four major global legume

crops in the world, are rich in protein, fiber, and other key nutrients,

providing an important food source for humans and animals

(Cousin, 1997; Dahl et al., 2012). Their rich dietary fiber and

antioxidant contents and important biomolecules have significant

potential in promoting health and preventing chronic diseases

(Devi et al., 2023). With global climate change, water scarcity has

become the major abiotic factor limiting the survival and output of

peas, so screening and breeding new drought-tolerant pea varieties

is the key to enhance their yield and quality (Magyar-Tábori et al.,

2011). Seed germination rate and germination index can be

calculated by examining the germination status of pea seeds,

which are key indicators for assessing the vigor of seed

germination, reflecting the ability of seeds to germinate in

suboptimal environments such as low moisture availability (Ranal

and Santana, 2006). However, traditional methods of seed

germination detection usually destroy seed integrity and the

processes are labor intensive, time consuming, and rely on

subjective judgment, limiting throughput and accuracy (Mir et al.,

2015; Jahnke et al., 2016). Therefore, a high-precision, automated,

and high-throughput assay should be proposed for pea seed

germination vigor monitoring.

With the development of machine learning, many scholars

started to explore the nondestructive testing of agricultural seed

viability (Mladenov et al., 2019; Tang et al., 2020). For example, He

et al. (2019) achieved the detection of rice seed germination vigor in

different years by near-infrared hyperspectral imaging (NIR-HSI)

technique combined with an Extreme Learning Machine model

with 93.67% accuracy. Wang et al. (2022b) used Support Vector

Machine (SVM) method to achieve rapid detection of seed vigor of

glutinous maize under different aging levels. de Medeiros et al.

(2020a) proposed a seed quality classification method that uses

Fourier transform near infrared (FT-NIR) spectroscopy and X-ray

imaging techniques to merge data and compare and analyze the

detection performance of six classification models. de Medeiros

et al. (2020b) combined automated X-ray analysis and Latent

Dirichlet Allocation (LDA) models to predict the germination

rate and seedling vigor of Cyathea seeds. Škrubej et al. (2015)

used a Artificial Neural Network (ANN) to achieve accurate

assessment of tomato seed germination. However, machine

learning mainly relies on low-level features, making it difficult to

extract deep semantic information. Especially in recognizing the
02
sprouting process, changes in the light source and acquisition

environment may lead to degradation of image quality, and the

complex morphology of the root system may produce confusing

and blurred areas in the image (Barredo Arrieta et al., 2020; Fu et al.,

2021). The above problem poses a challenge to the use of machine

learning for seed germination detection as it requires specific

algorithms to be developed for different environments with low

robustness. And deep learning models such as Convolutional

Neural Networks (CNN) can capture different levels of features of

an image. Such a hierarchical structure, from the edges and textures

at the bottom to the overall morphology and structure at the top,

allows deep learning to capture richer and more complex semantic

information. This enables these complexities and disturbances to be

more accurately identified and dealt with, improving the quality of

image interpretation and analysis.

With the rapid development of deep learning, target detection

technology based on deep learning has become an important driver

for the transformation of agricultural production to digitalization

and intelligence (Girshick et al., 2014; Kamilaris and Prenafeta-

Boldú, 2018). In particular, the You Only Look Once (YOLO)

family of algorithms, with its excellent detection speed and

accuracy, has become the most widely used and efficient target

detection methods in the field (Redmon et al., 2016; Redmon and

Farhadi, 2018; Bochkovskiy et al., 2020; Jiang et al., 2022; Li et al.,

2022; Wang et al., 2023). Many scholars have optimized and

improved it according to specific problems in agricultural

production to further improve detection accuracy and efficiency

(Wu et al., 2020). For example, Zhao et al. (2023) designed a YOLO-

r network to assess the germination status and total number of

germinated rice seeds. Kundu et al. (2021) used an improved

YOLOv5 network for seed classification and quality detection to

address the challenge of differentiating seeds of different crops in

mixed cropping. Zhang and Li (2022) constructed a multi-growth

detection model for hydroponic oilseed rape based on YOLOv5,

which has helped to accurately monitor crop survival and

significantly improve space utilization in cultivation scenarios

such as greenhouses. Fu et al. (2022) produced a YOLOv4-based

wheat salt tolerance detection platform with 97.59% detection

accuracy for wheat salt tolerance genotype screening. Wang et al.

(2022a) combined transformer with the YOLOv5 backbone to

enhance the sensitivity of the model to weeds and added spatially

adaptive feature fusion to reduce the loss of features. Zhang et al.

(2022) used YOLOv5-s to detect dragon fruit in different

environments and added a coordinate attention mechanism to
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enable the accuracy of model localization and the ability to identify

dense targets, as well as introduced SIOU to accelerate model

convergence (Gevorgyan, 2022).

The above research results show that the target detection

technology has a wide range of applications in the field of

agriculture and achieved better results, based on the combination

of agricultural production and target detection of smart agriculture

has become a major trend in the development of modern

agriculture in various countries. YOLOv8 is the latest proposed

target detection model, which achieves the best level in several

indexes such as detection accuracy and real-time performance.

However, there are still some limitations in pea germination vigor

detection. First of all, uneven illumination can lead to imbalance in

image color and contrast, and due to the large seed particles, it can

lead to severe root overlap and affect the image quality. To cope

with the impact of these complex conditions on model

performance, the model needs to be provided with a large

amount of training data from different environments, whereas

pea germination is a long process and difficult to collect a large

amount of data in a given environment, and it takes a lot of time to

collect and label the data. Data augmentation is a better option for

boosting the amount of data in a given environment. Although

some data enhancements such as mosaic enhancement are used in

YOLOv8, it is difficult to satisfy the model’s need for specific data

due to its inability to scale the amount of data. And many data

enhancement methods cannot be expanded together with the

labeled data due to its complexity, and need to be labeled again,

which is very consuming of manpower and time costs. Second,

although the buds are a small percentage of the whole pea, they are a

key basis for determining whether or not to sprout, and each bud

needs to be matched to the coordinates of the corresponding pea.

YOLOv8, on the other hand, has a weak feature extraction

capability for small targets and can further affect the model’s

ability to capture and localize key features due to issues such as

root-bud interleaving. At the same time, the quality of up-sampling

to generate feature maps is also the key to the accuracy of the model.

YOLOv8 uses a simple bilinear interpolation method for up-

sampling, which has some limitations in processing the semantic

information of the feature maps and the perceptual range. In

addition, from an economic cost point of view, practical models

should be lightweight while maintaining accuracy to accommodate

low-performance device deployments. To address these issues, this

paper presents a lightweight target detection model YOLOv8-Peas

specifically for pea germination vigor detection. The main

contributions are as follows:

(1) Enhanced data augmentation strategy: In order to improve

the robustness of the model in real-world application scenarios, we

adopt a variety of simple but effective data augmentation techniques

to expand the image and label data correspondingly. This not only

reduces the labor cost, but also improves the model’s ability to adapt

to different environments and changes, which further ensures the

accuracy of detection. (2) Lightweight characteristics: The

YOLOv8-Peas model proposed in this paper has been deeply

lightweighted and designed to successfully reduce the number of

model parameters and computation by using deeply differentiable

convolution, C2f-Ghost structure and specially designed PDetect
Frontiers in Plant Science 03
detection head. This ensures model deployment and detection in

resource-limited environments. (3) Introduction of the Coordinate

Attention Mechanism: In order to capture the germination features

of peas more accurately in complex backgrounds and

environments, we introduced the Coordinate Attention

Mechanism for the first time in this type of task. This mechanism

enables the model to pay more targeted attention to key

germination regions in the image. (4)Optimization of the up-

sampling operator: CARAFE is able to adaptively generate up-

sampling kernels and perform instance-specific content-aware

processing, which effectively integrates a larger range of

contextual information, and is able to accurately recover image

details without the need to introduce more additional learning

parameters. (5) Verification of practical application scenarios: This

paper also verified the practical application effect of the model in the

drought environment simulated by using PEG6000, collected the

growth images of four genotypes of pea seeds under two kinds of

drought conditions, and evaluated the germination rate and

germination index with the help of the optimized model to

achieve the screening of drought-resistant genotypes of peas,

which further demonstrated the value of its practical application.
2 Materials and methods

2.1 Data acquisition equipment

Figure 1 depicts the structure of the seed germination incubator

and image acquisition system used for our experiments. The

incubator is equipped with an embedded PTC hot air circulation

system and LED lighting with a temperature range of 5°C to 50°C to

provide a constant and suitable environment to promote seed

germination. Mounted on top of the incubator is an MV-

HS510GC model Vivision RGB industrial camera, which utilizes a

GigE Gigabit network high-speed interface for data transmission

and has the advantage of being small and cost-effective. The lens is a

Comptroller M1224-MPW2model, connected to the camera via the

C-mount interface, with an image capture resolution of 2448×2048

pixels. The camera unit was selected in 12 mm fixed focus mode and

mounted 40 cm directly above the subject. It can collect high-

quality image data of seeds at each germination stage in real time,

which provides the necessary data support for model training. The

crop seed germination collection system allows easy operation of

the imaging equipment and storage of data. Users can select the

shooting interval and adjust parameters such as contrast and screen

size to obtain high-quality images through the software interface on

the PC. The acquired images are stored, and image processing is

performed. Finally, the processed dataset is labeled, and a pea

sprouting detection model is trained.
2.2 Data acquisition and pre-processing

2.2.1 Data acquisition
A total of 126 uniform and full pea seeds were selected for the

seed germination experiment, and the experimental procedure is
frontiersin.org
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shown in Figure 2A. Each experiment lasted for 5 days, and the

experiment was repeated four times. After screening, a total of 1017

images were collected throughout the experimental period, and all

images were saved in.jpg format with a resolution of 2448×2048

pixels. The growth process of pea seeds is shown in Figure 2B. At

the same time, drought stress experiments were conducted.

Different drought conditions were simulated using different

concentrations of PEG6000 solution to inhibit water uptake in

pea. Zhonghua No. 6, Zhonghua No. 11, Qizhen No. 76, and Gancui

No. 2, four pea varieties with different drought tolerance were

selected for the experiment, and 36 seeds were placed in each

culture plate, including four pea varieties with nine seeds each. A

single experiment lasted five days. Two sets of replicated trials were

set up for each variety to minimize errors. All culture plates were

subjected to two treatments in the same environment: a control

with deionized water added (CK) and a 10% concentration of

PEG6000 solution to simulate drought stress (S1). A total of 1440

images were collected during the experiment.

2.2.2 Data pre-processing
The main factors affecting the accuracy of pea germination

detection are picture brightness, seed placement, the number of

seeds in a single picture, root interlacing, etc., and considering the

cost of manpower annotation, in order to effectively expand the

amount of data under different conditions and increase the

robustness of the proposed method. We consider using the

following simple and effective enhancement methods to enhance

the corresponding image and label data: 1) Enhance the recognition

ability of the model under different lighting conditions by adjusting

the image brightness to cope with brightness fluctuations in practical

applications. 2) Picture mirroring simulates different orientations of
Frontiers in Plant Science 04
pea growth to enhance detection. 3) Stochastic scaling improves the

model’s ability to recognize at different scales. 4) Add Gaussian noise

to simulate various perturbations encountered by images in the real

world (e.g., sensor noise due to poor lighting conditions or high

temperatures), thus enhancing the model’s resistance to noise

interference. Equation (1) represents the original image Pi obtained

by data enhancement F l to obtain Pi0, where l represents the method

of data enhancement. In our study, each image was subjected to at

least one data enhancement technique. This composite data

enhancement strategy aims to enhance the model’s recognition

performance in complex environments and reduce the interference

of external factors on detection, thus enhancing the model’s

generalization and effectively preventing overfitting phenomena.

The specific data enhancement process is shown in Figure 3. Our

final dataset contained 2034 images, 1017 original images, and 1017

images after data enhancement.

The correspondence between the enhanced label coordinates

and the original label coordinates is shown in Equations (2) and (3).

The label corresponding to each image Pi is Li, with n annotation

boxes inside Li. The coordinates of the upper left corner of the k-th

(k< n) annotation box are ( Xk1, Yk1), and the coordinates of the

lower right corner are ( Xk2, Yk2). The label Li
0 corresponding to Pi0

can be calculated based on the label Li of Pi combined with the

specific enhancement method. M   represents the mapping

relationship of the labeled data. Li0k denotes the coordinates of the

upper-left and lower-right corners of the k-th labeled box of Li0. W
and H represent the image width and height, respectively, and s

represents the scaling factor (0< s< 1 for scaling down, s > 1 for

scaling up). Since adding Gaussian noise results in some

perturbation of the coordinates, we assume that the perturbations

are dx and dy.
A B

D E F G H

C

FIGURE 1

Pea seed germination data acquisition equipment. (A) Physical image of the incubator. (B) Structure of the incubator. (C) Module training process.
(D) Data acquisition system. (E) Edge computer. (F) LED fill light. (G) Data acquisition camera. (H) Schematic of the acquired images.
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Pi0 = F l(Pi) (1)

Li0k = Ml(Lik)

=

(Xk1,Yk1), (Xk2,Yk2) l = brightness adjustment

(W − Xk2,Yk1), (W − Xk1,Yk2) l = Horizontal Flip

(Xk1,H − Yk2), (Xk2,H − Yk1)  l = vertical flip

(s � Xk1, s � Yk1), (s � Xk2, s � Yk2)  l = random scaling

(Xk1 + dx,Yk1 + dy   ), (Xk2 + dx  ,Yk2 + dy)   l = Gaussian noise

 

8>>>>>>>><
>>>>>>>>:

(2)

Li0 =on
k=1Li

0
k (3)

The LabelImg tool was used to annotate the dataset, and

evaluation criteria were developed for the germination status of

the seeds. We label a seed as germinated when the length of the

germ reaches half the length of the seed itself (the length of the
Frontiers in Plant Science 05
germ to the bottom of its seed). An example is shown

in Figure 4.
2.3 Design for YOLOv8-Peas

To improve the accuracy of pea germination detection and to

achieve model lightweighting to reduce the deployment cost. We

propose an efficient detection model YOLOv8-Peas based on

YOLOv8-n. As shown in Figure 5, this model included three

major parts: the main stem, the neck, and the predicted head.

The Spatial Pyramid Pooling - Fast (SPPF) module in the backbone

section can handle objects at different scales, and it has a set of

maximal pooling layers with different sized pooling kernels, which

allows the network to extract features at multiple scales and

enhances the model’s adaptability to the target scale. In the neck

of the model, a Path Aggregation Network for Feature Pyramid
A

B

FIGURE 2

(A) Experimental flow chart. (B) Schematic of pea seed growth process.
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Network (PAN-FPN) structure is used for feature fusion to deliver

deep semantic features in a top-down manner. In the detection head

section, decoupled heads are used to enhance the classification and

localization capabilities of the model.

Compared to YOLOv8, we have made the following

optimizations: 1) In the C2f module, we adopt the efficient

Ghost_Bottleneck structure to optimize Bottleneck, which not
Frontiers in Plant Science 06
only improves the performance of the model, but also reduces the

computational complexity of the model, making the model more

lightweight and efficient. 2) Some CBS modules (consisting of

convolutional layers, a batch normalization layer, and a SiLU

activation function) have been replaced with DBS modules with

fewer parameters and more efficient calculations (consisting of

depthwise convolutional layers, a batch normalization layer, and a
FIGURE 4

Schematic of not sprout and sprout pea seeds.
FIGURE 3

Data augmentation process.
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SiLU activation function). 3) We designed the PDetect detection

head using the PCC module, which effectively reduces redundant

calculations and memory access, thereby improving the detection

rate and significantly reducing the number of parameters. 4) At the

backbone, we introduced the CA mechanism, which helps the

model to extract and localize the germination features of peas

more accurately, while reducing the interference of complex

background. 5) At the neck, we adopted the CARAFE

upsampling operator, a lightweight upsampling strategy that

enhances the model’s perception of details and optimizes the

representation of semantic features.

2.3.1 Lightweight design
In this section, we detail the lightweight design strategy

employed in YOLOv8-Peas. In order to achieve more efficient

and accurate object detection, we have introduced several new

modules and technologies. These innovative designs aim to

reduce the computational complexity and volume of the model,

thereby meeting the requirements of embedded devices and real-

time applications while maintaining high detection accuracy. The

following subsections describe in detail the design and
Frontiers in Plant Science 07
implementation of the C2f-Ghost module, the DBS module and

the PDetect detection header in turn.

2.3.1.1 C2f-Ghost

To compress model size and reduce model deployment costs.

We will replace the Bottleneck inside the C2f module with Ghost_

Bottleneck, which in turn forms the C2f Ghost module (Han et al.,

2020). The structures of C2f-Ghost and Ghost_Bottleneck are

demonstrated in Figures 6A, B, where c is the number of

channels and the activation function is used when act equals True.

Ghost_Bottleneck is an efficient network structure based on the

GhostConv module, and the GhostConv structure is shown in

Figure 6C. GhostConv obtains a feature map comparable with the

standard convolution through a two-stage process, which

significantly reduces the operational parameters and achieves the

dual optimization of computational efficiency and model accuracy.

First, the initial convolution operation is performed with a small

computational load, and the remaining feature maps are generated

by inexpensive linear transformations Fk. Finally, the feature maps

generated twice are superimposed on the channel dimensions to

generate the final output. This design approach improves the
FIGURE 5

YOLOv8-Peas detector structure scheme. The k in the module represents the convolution kernel size, s represents the step size, and p represents
the pooling kernel size.
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efficiency of the model while maintaining a rich feature

representation capability.
2.3.1.2 DBS module

In order to meet the computational efficiency requirements of

embedded device deployment and optimize the model structure,

we have chosen to convert some CBS modules into DBS modules.

The structure of the DBS module is shown in Figure 7B, which

consisted of depth convolution, batch normalization, and SiLU

activation function. Depthwise convolution (DConv) is an

efficient variant of traditional 2D convolution. Unlike the

traditional 2D convolution which has only one grouping, deep

convolution uses the maximum common denominator M of the

number of input channels and the number of output channels as

the number of groupings to group the feature maps, and each

convolution kernel of size k × k performs the feature extraction

within the group, and finally the results are stitched together to

obtain the output feature maps (Chollet, 2017). The structure of

depthwise convolution is shown in Figure 7A. Assuming that the

input feature map size is H × W × C and the output feature map

size is H0 �W0 � C0. The computational quantities of traditional

2D convolution operation and depthwise convolution are shown
Frontiers in Plant Science 08
in Equations (4) and (5), respectively.

FLOPsConv = k � k � C �H 0 �W 0 � C0 (4)

FLOPsDConv = k � k � Ci �H 0 �W 0 � Ci
0 �M (5)

By Equat ion (4-5) , s ince Ci = C=M, C0
i = C0=M. By

calculation, it can be seen that the FLOPs of depthwise

convolution is about 1/M of traditional 2D convolution, which

significantly reduces the computational burden of the model and

decreases the risk of overfitting.

2.3.1.3 PDetect

In order to improve the computational efficiency of the detection

head section, we designed the PCC module by combining the ideas of

PConv. The structure diagram of the PCC module is shown in

Figure 8A. PConv is a recently developed lightweight convolutional

technique. This technique is able to effectively reduce the number of

parameters by reducing redundant computations and memory

accesses, and in turn speeds up detection with little or no loss in

model accuracy (Chen et al., 2023). The working method of Pconv is as

follows: The input feature map X is first divided into two parts X1 and

X2 by the ℎr function scaled by r in the channel dimension. Then, X2 is
A B

C

FIGURE 6

Structure diagram of C2f_Ghost in YOLOv8-Peas. (A) C2f_Ghost module. (B) Ghost_Bottleneck module. (C) GhostConv module.
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subjected to feature extraction through the CBS module, and the

obtained feature map is directly spliced with another part X1 to

obtain the output feature map, which significantly reduces the

computational complexity of the model. Based on PConv, the PCC

module adds a CBS module with a convolutional kernel size of 1×1.

This improvement enhances the feature fusion and cross-channel

perception of the model without significantly increasing the

parameters, thus better enhancing the feature expressiveness of the
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model. Equations (6) and (7) represent the process by which the PCC

module obtains the output feature map Y through a two-part

operation, where ℊ stands for feature extraction with a CBS module

of convolutional kernel size i, and ⊕ stands for the splicing operation.

X1,X2 = hr(X)   (6)

Y = ℊ1(X1 ⊕  ℊ3(X2)) (7)
A

B

FIGURE 8

(A) Schematic of PCC module. (B) PDetect structure.
A B

FIGURE 7

(A) Depthwise convolution schematic. (B) DBS module structure.
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Apply the PCC module to the detection head and replace some

of the CBS modules to form the PDetect detection head. As shown

in Figure 8B. At this time, the size of both input and output feature

maps are H �  W �  C. Equation (8) demonstrates the ratio of the

FLOPs of the PCC module to that of the traditional convolution

operation, which is only 1/5-1/6 of that of the traditional

convolution when k = 3, r = 4.

s =
FLOPsPCC
FLOPsConv

=
k � k � C=r � W  � H � C=r + C � W  � H � C

k � k � C � H � W  � C
=

1
r2

+
1

k2
(8)
2.3.2 Coordinate attention mechanism
In order to enhance the accuracy of the model in locating core

regions in complex backgrounds, enhance the attention and feature

extraction capabilities of germinating regions, and reduce the impact

of lightweight technology on detection accuracy, we introduced the

Coordinate Attention (CA)mechanism (Hou et al., 2021). By refining

the channel attention into two parallel one-dimensional feature

encoding processes and integrating the spatial coordinate

information into the generated attention map, CA allows the

model to explore and utilize the intrinsic connections between the

feature channels in greater depth, thus enhancing the semantic

insight of the model and hence the accuracy of the detection. We

configure it after the first C2f_Ghost module of the backbone

network to realize the attention and extraction of key features

dynamically. In addition, the CA mechanism is both flexible and

lightweight, and can be easily integrated into lightweight networks,

requiring negligible computational overhead. The specific

architecture of the CA attention mechanism is demonstrated

in Figure 9.

CA mechanism can be subdivided into two phases: coordinate

information embedding and coordinate attention generation. In the

coordinate information embedding stage, first, a channel-by-

channel average pooling is performed on the input feature maps,

and each channel is encoded using the pooling kernels of (H, 1) and

(1, W) for the X and Y axes, respectively. As a result, CAmechanism

can capture long-range dependencies within a single channel and

retain accurate location information, enhancing the localization

capability of the network. In the coordinate attention generation

phase, we first concat the previously extracted feature maps in the
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spatial dimension and then perform a convolution operation for

feature dimensionality reduction to reduce the computational

burden. After that, Batch normalization and h-swish nonlinear

activation operations are performed. The obtained feature map is

split into two tensors by spatial dimension, dimensionally expanded

by 1×1 convolution, and activated using the sigmoid function to

generate a weight matrix with spatial information. Finally, the

weight matrix is multiplied with the input feature map to

complete the recalibration of the input feature space levels.

2.3.3 Lightweight CARAFE upsampling operator
Feature up-sampling is a key operation in many network

architectures, and the quality of the up-sampled generated feature

maps is critical to the accuracy of the model. CARAFE has unique

content-aware properties that can accurately recover image details

while reducing the information loss of small targets such as buds

caused by the downsampling process, and does not need to

introduce more additional learning parameters (Wang et al.,

2019). CARAFE is divided into two main modules, namely, the

kernel prediction module and the content-aware reassembly

module. The objective is to convert the original feature map X (C

× H × W) into the target feature map X0 (C� sH� sW). The

positions l0 = (i0, j0) on X0 all correspond to the positions l = (i, j) on

X, where i = ⌊ i0=s ⌋ and ⌊ j0=s ⌋. The up-sampling kernel

prediction module mainly predicts the up-sampling kernel W l0 at

each position l0 of the target feature map through a three-step

operation of Channel Compressor, Content Encoder, and Kernel

Normalizer. As shown in Equation (9), N (Xl , k) denotes the k × k

adjacent region of the feature map X centered at l. The kernel

prediction module first compresses the input feature map channels

to reduce the subsequent computational load and then converts the

number of channels to s² × kup² by convolutional layers with a

convolutional kernel size of kencoder × kencoder, where s is the

upsamp ratio. Finally, the channel dimension is expanded in the

spatial dimension and normalized with the sigmoid function to

form an upsampling kernel of size sH × sW × kup². The content-

aware reassembly process is shown in equation (10), where r = ⌊kup/
2⌋. For the target location l0, the content-aware reassembly module

first finds its corresponding region N (Xl , kup) on the input feature

map, and uses this region to do the dot product with the
FIGURE 9

Structure of CA attention mechanism.
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corresponding location of the up-sampling kernel in order to pay

better attention to the information from the correlation points in

the localized region, and generates a feature map with better

semantic features. The structure of CARAFE is shown in Figure 10.

W l0 = y (N(Xl , kencoder)) (9)

X0
l0 =or

n=−ror
m=−rW l0(n;m) · X(i+n,j+m) (10)
2.4 Optimizer improvement

The Adam optimizer combines the main advantages of the

adaptive gradient algorithm (AdaGrad) and the root mean square

propagation algorithm (RMSProp) have adaptive learning rates,

stable convergence, and bias correction mechanisms to avoid

models falling into local optimum regions (Kingma and Ba, 2014;

Goyal et al., 2017). Thus, it improves the optimization process of the

model and enhances the performance of target detection.

gt = ∇ q f t(q) (11)

In Equation (11), gt represents the gradient value, which is the

result of taking the partial derivative of the Loss function  ft(q) with
respect to q .Where t represents the number of iterations.

mt = b1mt−1 + (1 − b1)gt (12)

vt = b2vt−1 + (1 − b2)g
2
t (13)

The Adam optimizer uses a separate adaptive learning rate for

each parameter, which is obtained by calculating the first-order

moments (i.e., the expected value of the gradient) and second-order

moments (i.e., the variance of the gradient) of the historical gradient

for that parameter. As shown in Equations (12) and (13), mt

represents the exponential moving average, considering the

gradient momentum of the previous time step. vt represents the
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squared gradient, considering the squared gradient of the previous

time step. b1 and b2 represent the decay rate of the exponentially

shifted mean, in this experiment, b1 = 0.937 and b2 = 0.999. This

adaptive learning rate mechanism allows the Adam optimizer to

automatically adjust the step size of the parameter updates,

maintaining good optimization performance in various parameter

cases. Where m̂ t represents the bias-corrected first-order estimation

matrix and v̂ t   is the bias-corrected second-order estimation matrix.

m̂ t =
mt

1 − b t
1

(14)

v̂ t =
vt

1 − b t
2

(15)

Adam introduces a bias correction mechanism to prevent too

large learning rate due to small estimates of first-order moments

and second-order moments of the gradient at the early stage of

training. This bias correction allows Adam to maintain a stable

learning rate even in the early stages of training. The bias correction

process is shown in Equations (14) and (15).

q t+1 = q t −
hffiffiffiffiffi
v̂ t

p
+ϵ

m̂ t (16)

During each iteration, the parameter update process is shown in

Equation (16), where h is the learning rate, and ϵ is a

constant parameter.
2.5 Evaluation metrics

2.5.1 Model evaluation metrics
To comprehensively evaluate the performance of the pea

germination detection model. We considered the accuracy

requirements of the model and the lightweight requirements for

integrating the model into the embedded devices, the following

metrics were selected: precision, recall, average precision (AP),
FIGURE 10

Schematic of the CARAFE upsampling operator.
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mean average precision (mAP), FLOPs, Params, and Weight Size.

Precision, recall, AP, mAP, FLOPs, and Params were calculated as

shown in Equations (17)–(22).

Precision =
TP

TP+FP
(17)

Recall =
TP

TP+FN
(18)

AP =
Z 1

0
P(R)dR (19)

mAP =

Z Q
q=1AP(q)

n
(20)

FLOPS = 2�H �W(CinK
2 + 1)Cout      (21)

Params = Cin � K2 � Cout    (22)

True positive (TP) is the number of peas whose growth condition

was correctly identified by the model, whereas false positive (FP) and

false negative (FN) represent the number of peas that were actually

present but incorrectly identified and missed by the model,

respectively. Accuracy rate is the proportion of all predicted targets

correctly identified by the model, and recall rate is the proportion of

all actual targets correctly identified by the model. On the basis of

these two rates, we plotted precision–recall (PR) curves for each

category. The area under the curve is the AP value for that category,

with a value close to 1 indicating good model performance. The mAP

is the mean value of the multi-category AP, which is a common

evaluation metric in target detection and intuitively reflects the

current model performance. Model computational complexity is

reflected by FLOPs, model lightweighting is assessed by the

number of Params, and Weight Size can be used to measure the

ease of integration of the model and its suitability for implantation in

lightweight devices. Our goal is to achieve maximum lightweighting

and ease of integration while maintaining model accuracy.

2.5.2 Evaluation metrics of seed
germination vigor

The quality and agricultural value of pea seeds are mainly

assessed by two key indicators: germination rate and germination

index. Germination rate refers to the ratio of the number of

normally germinated seeds to the total number of seeds in a given

environment, which directly reflects seed vitality and germination

potential and is the basic index for seed quality assessment. The

germination index shows the overall activity of the seed by

measuring the number and rate of germination of seeds within a

certain period. High germination index represents seeds with strong

vitality and growth potential. The germination index is critical in

the pursuit of maximum yield agricultural production. These two

quantitative parameters are scientific and objective and can

accurately reflect the seed viability of seeds under specific

environmental conditions and screen for quality peas with

excellent genotypes (Okçu et al., 2005). The formulae for

germination rate and germination index are shown in Equations
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(23) and (24). “Nt”,”N”, “Gt” and “Dt” represent the number of

seeds germinated on “t” days, the total number of seeds tested, the

number of seeds germinated on “t” days, and the seed growth time,

respectively.

Germination rate =
Nt

N
� 100% (23)

Germination index =o(
Gt

Dt
) (24)
3 Results and discussion

3.1 Training environment and
hyperparameter settings

In this experiment, the experimental environment was

configured as follows. We used an Intel(R) Xeon(R) Gold 6248R

@ 3.00GHz processor with an NVIDIA GeForce RTX3090 graphics

card. The deep learning model framework used Pytorch 2.0.0 and

Python 3.8, CUDA version was selected as 11.7, and the operating

system was selected as Windows 11. We randomly divided the

dataset into training, validation, and testing sets by 3:1:1. To ensure

fairness and comparability of model effects, we did not use pre-

training weights for the various model training processes in all

ablation experiments and comparison experiments. We resized the

input image size to 640 × 640, the number of iterations to 100. Some

of the important hyperparameter settings of the model in the

training phase are shown in Table 1.
3.2 CARAFE operator
performance evaluation

The two core parameters of the CARAFE upsampling operator,

kencoder and kup, denote the encoder kernel size and the upsampling

kernel size, respectively. kencoder is responsible for controlling the

efficiency and accuracy of feature encoding, whereas kup affects the

reconstruction ability of detailed features. The moderate choice of

parameters is crucial,.too large or too small parameters may
TABLE 1 Model hyperparameter settings.

Parameters setup

Epoch 100

Batch size 8

NMS IoU 0.65

Image Size 640×640

Initial Learning Rate 1×10-2

Final Learning Rate 1×10-4

Momentum 0.937

Weight-Decay 1×10-4
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adversely affect the accuracy, computational efficiency, and

lightweight characteristics of the model.

We conducted a series of experiments to explore the effects of

different kencoder and kup values on the detection results of the

YOLOv8-Peas model (all other training parameters are kept the

same), in order to find the optimal parameter configurations to

improve the model performance. The experimental results are shown

in Table 2. By analyzing the tabular data, when kup is small, although

the number of model parameters is small, the reconstruction ability of

the upsampling operator is insufficient to recover detailed features,

which leads to a decrease in the accuracy of the model. When kencoder
is small, the encoder perceptual field is limited and sufficient

contextual information cannot be obtained, which affects the

accuracy of the model. The oversized kup and kencoder not only

increase Params significantly but also degrade the model

performance. Comparing the experimental results, we believe that

kup of 3 and kencoder of 5 are the optimal parameter configurations for

the sampling operator on CARAFE. This parameter combination

ensures the highest accuracy of the model while effectively controlling

the model complexity and the number of Params.
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To demonstrate the significant superiority of the CARAFE

upsampling operator intuitively, we compared and analyzed the

feature maps obtained after using the bilinear interpolation method

and the CARAFE upsampling operator. As shown in the Figure 11,

the upsampled feature maps of the bilinear interpolation method

exhibited stark differences from those of CARAFE after

upsampling. The feature maps generated by the CARAFE

operator exhibited significant advantages in terms of accuracy

and detailed feature retention, providing clear, fine, and

informative feature maps. These results highlight the unique

advantages of the CARAFE upsampling operator in feature

recovery and information reconstruction, further justifying our

use of the CARAFE upsampling operator.
3.3 Ablation experiments

In the ablation experiments, we evaluated the role of each

module in detail. The experimental results are shown in Tables 3

and 4. First, introducing the C2f-Ghost module into YOLOv8-n
TABLE 2 Detection results for different kup and kencoder values.

kup kencoder mAP0.5(%) Params(M) FLOPs(G) Weight Size(MB)

1 3 98.5 1.06 3.0 2.4

1 5 98.4 1.07 3.0 2.5

3 3 98.5 1.10 3.1 2.5

3 5 98.7 1.17 3.2 2.7

5 5 98.6 1.38 3.6 3.1

5 7 98.5 1.68 4.2 3.7

7 7 98.5 2.29 5.4 4.9
Bold indicates the best experimental results.
FIGURE 11

Comparison of bilinear interpolation and CARAFE upsampling feature maps.
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reduced the Params, FLOPs, and Weight Size by 28.9%, 24.3%, and

25.8%, respectively, which effectively reduces the model size and

computation cost, and improves the efficiency of feature extraction.

After optimizing part of the CBS structure into DBS, the number of

Params, FLOPs, and Weight Size were further reduced by 26.8%,

16.2%, and 26%, respectively, and the FPS improved by 3.9. With

the addition of the CARAFE upsampling operator, the model

achieved an improvement in accuracy due to the effectiveness of

CARAFE in recovering image details, despite the slight increase in

the number of Params and FLOPs. The addition of the PDetect

detection header effectively reduces redundant computations and

memory accesses, resulted in a significant reduction of 31.9%,

41.8%, and 28.9% in the number of Params, FLOPs, and Weight

Size, respectively, and a 5.6 increase in FPS. Then the CA module

was added to the backbone network part, which improved the

model’s ability to localize and semantically understand the

germination area, and reduced the influence of the model’s

feature extraction due to the overlapping of the root system, and

the model’s mAP was improved to 98.4. Finally we replaced the

optimizer with Adam, and the mAP further improved to 98.7%,

which was in line with YOLOv8-n. We designed YOLOv8-Peas

with 61%, 61.2%, and 56.5% reduction in the Params, FLOPs, and

Weight Size, respectively, compared with the benchmark model.

Thus, we effectively reduced the complexity and optimizing the

efficiency of the model, making it suitable for low-performance

devices and easy to integrate. The FPS reached 116.2, which was

better than that of the benchmark model, but it met the demand for
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real-time detection of pea sprouting. The ablation experiments

clearly demonstrated the superiority and effectiveness of our

model in terms of accuracy and light weight, proving the

feasibility of our designed scheme applied to pea seed

germination detection.
3.4 Comparison experiments

As shown in the Table 5, the detection accuracy and various

metrics of YOLOv8-Peas were compared with the lightweight

versions of YOLOv3 to YOLOv8, as well as the classical model

Deformable–DETR in the transformer architecture(Zhu et al., 2020;

Ge et al., 2021; Xu et al., 2022). The results of each indicator for

different models are shown in Table 5. The mAP of the model, the

recognition accuracy of sprout and not sprout peas (APsprout and

APnot sprout), Params, FLOPs, and Weight Size were mainly

examined. In terms of the computational complexity of the

model, YOLOv8-Peas was much lower than all the other models

in terms of the Params, FLOPs, and Weight Size, which were only

1.17M, 3.2G, and 2.7MB, respectively, with 80.5%, 75.7%, and 78%

decreases compared with YOLOv7-Tiny, a network commonly used

for target detection in agriculture. Compared with YOLOv5-s, it

decreased by 83.3%, 80%, and 81.2%,respectively. In terms of

detection accuracy, YOLOv8-Peas achieved 98.7% on mAP,

reaching the highest level, which is 1.7%, 1.0%, and 0.3% higher

than YOLOv5-s, YOLOv6-n, and YOLOv7-Tiny, respectively. It
TABLE 3 Results of ablation experiments in terms of model lightweighting.

Model mAP@0.5 (%) Params (M) FLOPs (G) Weight Size (MB) FPS

YOLOv8-n 98.7 3.011 8.2 6.2 151.5

C2fGhost 98.5 2.145 6.2 4.6 136.9

C2f-Ghost+DBS 98.3 1.580 5.2 3.4 140.8

C2f-Ghost+DBS+CARAFE 98.5 1.710 5.5 3.7 125

C2f-Ghost+DBS+CARAFE+PDetect 98.2 1.171 3.2 2.7 130.6

C2f-Ghost+DBS+CARAFE+PDetect
+CA

98.4 1.176 3.2 2.7 116.2

YOLOv8-Peas 98.7 1.176 3.2 2.7 116.2
frontier
Bold indicates the best experimental results.
TABLE 4 Results of ablation experiments in terms of model detection accuracy.

Model mAP@0.5 (%) APsprout (%) APnot sprout (%) Precision Recall

YOLOv8-n 98.7 98.6 98.7 97.6 97.0

C2fGhost 98.5 98.4 98.5 97.3 97.1

C2f-Ghost+DBS 98.3 98.1 98.6 97.3 96.8

C2f-Ghost+DBS+CARAFE 98.5 98.5 98.4 97.0 96.7

C2f-Ghost+DBS+CARAFE+PDetect 98.2 98.0 98.3 97.0 96.5

C2f-Ghost+DBS+CARAFE+PDetect
+CA

98.4 98.2 98.6 96.9 96.8

YOLOv8-Peas 98.7 98.8 98.5 97.8 96.9
Bold indicates the best experimental results.
sin.org

https://doi.org/10.3389/fpls.2023.1257947
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jiang et al. 10.3389/fpls.2023.1257947
achieved 98.8% on APsprout, surpassing all other models. Reaching

98.5% on APnot sprout, which is in the leading position. It can

effectively identify the two growth states of peas.

Comparative experiments demonstrated that our model not only

has excellent accuracy but also a clear advantage in computational

complexity for the pea seed germination detection task. Thus,

YOLOv8-Peas is particularly suitable for scenarios where resources

are limited but high accuracy detection is required, such as real-time

pea germination detection on embedded devices or mobile devices.

To demonstrate the performance of the models in these

evaluation metrics more intuitively, we plotted the normalized

histograms of the YOLOv4-Tiny,YOLOv5-s,YOLOv6-n, YOLOv7-

Tiny,YOLOv8-n, and YOLOv8-Pea models. The values were

obtained by the Min-Max standard normalization process. The

Params, FLOPs, and Weight Size were processed in the opposite
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way; the larger the true value, the lower the score. The closer the

value is to 1, the better the model performs on this metric. The

results are shown in Figure 12. Star-tagged YOLOv8-Peas achieved

the highest level in the five indexes of Params, FLOPs, Weight Size,

mAP, and APsprout, and it was far ahead of other models in Params,

FLOPs, and Weight Size. The overall performance has reached the

best, with high precision and lightweight characteristics, which can

better meet the actual needs of agricultural production.
3.5 Predicting performance

We compared and analyzed the recognition effect of YOLOv8-

Peas with three lightweight models, YOLOv8-n, YOLOv7-Tiny, and

YOLOv5-s, at various stages of pea germination, and the detection
TABLE 5 Results of each indicator for different models.

Model mAP@0.5 (%) APsprout (%) APnot sprout (%) Params (M) FLOPs (G) Weight Size (MB)

Deformable-DETR 98.2 97.9 98.5 39.84 176.83 457.66

YOLOv3 90.6 86.0 95.3 61.52 155.2 235.07

YOLOv4-tiny 81.2 74.4 87.9 5.89 16.17 22.48

YOLOv5-s 97.0 96.6 97.5 7.02 16.0 14.4

YOLOv6-n 97.7 97.5 97.9 6.43 11.34 10.2

YOLOv7-tiny 98.4 98.2 98.6 6.01 13.2 12.3

YOLOv8-n 98.7 98.6 98.7 3.01 8.2 6.2

YOLOX-tiny 98.2 98.0 98.5 5.03 15.23 19.44

DAMO-YOLO-T 97.8 97.5 98.1 8.5 18.1 31.1

YOLOv8-Peas 98.7 98.8 98.5 1.17 3.2 2.7
Bold indicates the best experimental results.
FIGURE 12

Multi-indicator normalized analysis.
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results are shown in Figure 13. The pink marking area indicates the

identified ungerminated peas, while the red marking corresponds to

the germinated peas. In order to clearly demonstrate the problems in

detection, we have circled the areas where the model misdetects in

yellow, the areas where it misses detection in orange, and the areas

where it repeats detection in green. In stage (b), which is in the early

stage of sprouting, the pea shoot length gradually reaches the

sprouting standard, and the models YOLOv8-n, YOLOv5-s, and

YOLOv7-Tiny are all misdetected, but YOLOv8-Peas accomplished

the detection well. At stage C, reaching the middle stage of seed

germination, and most of the peas have sprouted, YOLOv5-s showed

a missed detection. At stage E, the late stage of pea seed germination

was reached and the root system interlacing condition was severe,

with a small number of missed detections for YOLOv8-n, YOLOv8-

Peas, and YOLOv5-s. YOLOv7-Tiny showed a problem of duplicate

detection for individual peas. Overall, YOLOv8-Peas improved in

detection performance compared with YOLOv5-s and YOLOv7-

Tiny, with slightly higher accuracy than YOLOv8-n. It can

effectively complete the detection task in the environment of

intertwined and shaded roots, and realize the efficient detection of

pea germination, which is helpful for the screening of new pea

varieties with drought resistance.
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3.6 Detection of drought tolerance
sprouting vigor in peas

The dependence of the seed germination stage on water

conditions is particularly sensitive, and drought stress leads to

changes in many physiological and biochemical processes that

control plant growth and productivity, causing severe impacts on

pea growth and development and resulting in reduced yield and

quality (Daie and Patrick, 1988). Therefore, we subjected different

genotypes of pea seeds to drought stress at the germination stage to

compare their drought resistance.

Images from the drought stress dataset were examined using

YOLOv8-Peas, and germination rate and germination index were

used as indicators to assess the germination vigor of four genotypes of

peas under different drought conditions. A schematic of seed

placement and a diagram of the growth process are shown in

Figure 14A. As shown in Figure 14B, the drought environment

simulated by 10% of PEG6000 solution had a significant effect on

the germination rate of peas, resulting in an approximate 31.1%

decrease in cumulative germination rate and an approximate 52.4%

decrease in germination index. Figure 14C shows the germination

rates and germination index of these four pea genotypes over time in
A

B

D

E

C

FIGURE 13

Detection results of four lightweight algorithms for different growth conditions of peas. (A–E) Five different stages of pea germination.
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both environments. In the control (CK) environment, pea seeds

started to germinate from the second day and reached about 80%

germination rate by the fifth day. However, the germination speed of

pea seeds was significantly depressed under drought conditions, with

all peas starting to germinate from the third day. This response was

more pronounced in Zhonghua No. 6 and Zhonghua No. 11 peas,

which had less than 50% germination and germination index of 4.3

and 5.3, respectively, indicating a significant decrease compared with

the control group. Gancui No.2 was the most sensitive to the effects of

drought, and its germination rate on the fifth day was only 38%, with

a germination index of only 3.5, showing poor drought resistance. By

contrast, Qizhen No.76 was more tolerant to drought conditions and

showed no significant changes in the germination rate and

germination index relative to the control group. Although a slight

decrease in the germination speed was found at middle stage of seed

germination, the germination rate could still reach about 80% at the

final stage with a germination index of 7.3. These results

experimentally confirmed that all four pea cultivars were affected

by drought conditions in the middle of germination. Meanwhile,

Qizhen No. 76 showed high drought tolerance and could be grown in

areas with scarce water or drought.
4 Summary, limitations and
future work

In order to achieve full-time non-destructive detection of pea

seed germination vigor and in-depth analysis of the effects of

drought stress on various stages of pea germination, so as to
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screen out pea varieties with excellent drought resistance, and

also need to take into account the reduction of the cost of the

deployment of the model in order to enhance the potential of its

practical application. To address this need, this paper proposes the

lightweight pea germination detection model YOLOv8-Peas. First,

we use a variety of simple and effective data enhancement

techniques to provide data in a variety of specific scenarios, to

solve the problems of difficult data collection and high cost of

human labeling, and to improve the detection results of the model

under complex environmental changes. Secondly, in order to

enhance the practical value of the model and meet the demand of

embedded deployment. In this paper, C2f-Ghost is constructed to

reduce the number of parameters and computational complexity,

and improve the efficiency of feature extraction. And the DBS

module is used to replace part of the CBS module to achieve

effective lightweighting while maintaining the model performance,

which brings substantial benefits to the overall optimization and

deployment. Meanwhile, the PCC module is used to optimize the

detection head to reduce redundant computation and improve the

detection speed. Finally, to solve the problem of poor feature

extraction for small targets such as buds. We add CA attention

mechanism in the trunk part to enhance the model’s ability to

recognize and localize the key sprouting regions in the complex

background. And the CARAFE operator is used in the up-sampling

process to enhance the model’s ability to perceive details, reduce the

information loss of small targets caused in the down-sampling

process, and improve the detection accuracy.

The experimental results show that YOLOv8 Peas achieved

98.7% in mAP, with a decrease of 61.2%, 61%, and 56.5% in Params,
A B

C

FIGURE 14

(A) Schematic of the placement and growth process of different genotypes of peas. (B) Comparison of germination rate and germination index
under two conditions. (C) Results of germination rate and germination index of four cultivars of peas under two conditions with time.
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FLOPs, and Weight Size compared to YOLOv8-n. They were only

1.17M, 3.2G, and 2.7MB, achieving a detection speed of 116.2FPS.

Compared with other lightweight detection models in the YOLO

series, YOLOv8-Peas offers a smaller model size and better

detection performance. The method considers detection accuracy,

computational complexity, and weight file size, making it suitable

for deployment on low-cost devices and mobile terminals.

To demonstrate the practical application of the model, we

simulated drought environments by inhibiting water uptake by

peas using PEG6000 solution, and tested the germination rate and

germination index of four genotypes of peas in two different drought

environments. Histograms reflecting the germination rate and

germination index of pea seeds over time were plotted to compare

and analyzed the differences in germination speed and seed vigor of

peas under different drought conditions. The pea seed with the best

drought tolerance, Qizhen No.76, was selected, and this research

result provides insight into drought breeding technology for peas.

However, the present method has some limitations.

Misdetection occurs when pea buds reach a length near the

germination criterion. It may be due to the fact that the model is

not sensitive to length information, and the model cannot be

trained to understand well the criteria for judging germination in

terms of length. Subsequently, techniques such as semantic

segmentation and key point detection can be considered to be

combined with object detection to help the model improve its

ability to perceive the length. Subsequently, techniques such as

semantic segmentation and key point detection can be considered

to be combined with object detection to help the model improve its

ability to understand the length.

In the future, we will further develop our detection model to

extract other characteristics of pea seed germination such as

roundness, area, shoot length and other parameters, combine

with germination rate and germination index to conduct a full

time-series analysis of pea growth status with multiple indicators,

analyze the effect of drought on the stage of pea germination in

more detail, and deploy our model and system to embedded devices.

We hope that our proposed work can help users achieve low-cost

and high-accuracy screening of high-quality genotypes of pea seeds.
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