

Multitek Indonesia: Jurnal Ilmiah
Volume: 17 No. 1, Juli 2023, Hal. 69 - 78

ISSN: 1907-6223 (print)

ISSN: 2579-3497 (Online)

http://journal.umpo.ac.id/index.php/multitek

Muhammad Fahmi Al Azhar, Ruki Harwahyu.. Detection Of SQL Injection Vulnerability In Codeigniter Framework Using Static Analysis

. 69

DETECTION OF SQL INJECTION VULNERABILITY IN CODEIGNITER

FRAMEWORK USING STATIC ANALYSIS

Muhammad Fahmi Al Azhar

1)
, Ruki Harwahyu

2)

1), 2)
Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok,

Indonesia

Corresponding Email : ruki.h@ui.ac.id

Abstrak

Serangan SQL Injection masih menjadi salah satu jenis serangan yang sering terjadi pada aplikasi berbasis

web. Penyebab dan cara mencegah SQL Injection telah banyak dijelaskan di berbagai sumber. Sayangnya

sampai saat ini kerentanan SQL Injection masih sering ditemukan pada berbagai aplikasi. Framework

aplikasi berbasis web yang sudah memiliki fungsi untuk melindungi dari serangan seringkali tidak digunakan

dengan maksimal. Hal ini tidak terlepas dari peran programmer yang seringkali melupakan aturan penulisan

kode program untuk mencegah serangan SQL Injection. Penelitian ini kami lakukan untuk mendeteksi

kerentanan SQL Injection pada source code menggunakan studi kasus framework PHP CodeIgniter. Kami

membandingkan penelitian ini dengan tools static analysis seperti RIPS, Synopsys Coverity, dan Sonarqube.

Tool yang kami kembangkan dapat mendeteksi adanya kerentanan SQL Injection yang tidak dapat dideteksi

oleh kedua tools tersebut dengan akurasi sebesar 88.8%. Hasil penelitian kami dapat memberikan sugesti

terhadap programmer sehingga mereka dapat memperbaiki kode yang mereka tulis.

Kata kunci: Static Analysis, SQL Injection, Php, Codeigniter

Abstract

SQL Injection attacks are still one type of attack that often occurs in web-based applications. The causes and

ways to prevent SQL Injection have been widely explained in various sources. Unfortunately, until now, SQL

Injection vulnerabilities are still often found in multiple applications. Web-based application frameworks

that already have functions to protect against attacks are often not used optimally. This is inseparable from

the role of programmers, who often forget the rules for writing program code to prevent SQL Injection

attacks. We conducted this research to detect SQL Injection vulnerabilities in source code using a case study

of the PHP CodeIgniter framework. We compared this research with static analysis tools like RIPS,

Synopsys Coverity, and Sonarqube. The tool we have developed can detect SQL Injection vulnerabilities that

cannot be detected by the two tools with an accuracy of 88.8%. The results of our research can provide

suggestions for programmers so that they can improve the code they write.

Keyword: Static Analysis, SQL Injection, Php, Codeigniter.

INTRODUCTION

Web-based applications increasingly play a

very important role in various fields [1]. Based on

data from the Open Web Application Security

Project (OWASP) for 2021, SQL Injection is still

one of the top 10 attacks in web-based applications.

In 2021, Injection occupied the number 3 position

as a source of security risks in web applications [2].

SQL Injection is an exploitation technique by

modifying SQL commands in the input form

contained in the application, thus allowing the

attacker to send SQL syntax to the database. SQL

Jurnal Ilmiah Multitek Indonesia, Vol. 17, No.1, Juli 2023

 ISSN: 1907-6223 (Print)

ISSN:2579-3497 (Online)

Muhammad Fahmi Al Azhar, Ruki Harwahyu.. Detection Of SQL Injection Vulnerability In Codeigniter Framework Using Static Analysis 70

Injection can also occur via parameters in the URL

of a specific web application page. SQL Injection

occurs due to the lack of validation performed from

the input form in the application. SQL Injection has

harmful effects such as unauthorized access, loss of

confidentiality, and data integrity [3].

SQL Injection vulnerabilities are also

inseparable from how programmers/developers

write source code. Programmers often use open-

source third-party libraries to speed up the

application development process. Even though it

could be that the library has a vulnerability [4]. By

using specific libraries and frameworks,

applications can be completed more quickly, but

this also increases the vulnerability risk of the

applications they make [5].

SQL Injection can occur in any application

that uses a relational database, including PHP-

based applications. Based on data from W3Tech

[6], 77.4% of server-side applications are made

using PHP. The size of this percentage is directly

proportional to the number of vulnerabilities found

in PHP-based applications. Creating applications

using PHP frameworks to simplify and speed up

application development [7]. Within the PHP

framework, a helper function is used to perform

queries to the database. The framework also has

security features to protect applications from SQL

Injection attacks.

SQL Injection consists of several types [3],

in general, SQL Injection can be prevented in

several ways (1). Sanitation is the process of

converting data input into the application into safe

data. (2). Validation is the process of ensuring that

the input data is data that matches the pattern

required by the application. (3). Using the binding

function when querying the database. In addition to

these three methods, [8] also mentions a

configuration on the server that must be considered

to minimize SQL Injection vulnerabilities. As long

as the input in the database query is secure, SQL

Injection attacks should not occur.

The essential thing that programmers can do

is implement secure coding [8] to secure the

applications they make. Unfortunately,

programmers often neglect to implement this, even

though the framework often used already has

security features. The experience of programmers

and the close deadlines for making applications are

often the reasons for the emergence of SQL

Injection security holes [9].

Static application security testing (SAST) is

an option for testing application security. SAST

conducts tests based on the application's source

code to look for vulnerabilities and defects in the

source code. The advantage of SAST is that

programmers can immediately make corrections to

the detected source code [10]. Unfortunately, SAST

tools often produce false positives or false

negatives [5].

Sonarqube [11] is one of the industry's most

frequently used static analysis tools. Sonarqube is

available in both community and paid versions.

Sonarqube can scan and calculate using metrics

such as code coverage, number of lines of code, and

compliance with coding rules. We have tried to test

this research object using Sonarqube but could not

find any SQL Injection vulnerabilities in the source

code.

RIPS [4] is a static source code analyzer to

find vulnerabilities in PHP scripts. This tool is free

and well-known for its fast scanning speed.

Unfortunately, RIPS is out of date and no longer

being developed. When we tested the application, it

didn't find any vulnerabilities related to SQL

Injection.

Synopsys Coverity [12] is a commercial tool

capable of performing static application source

code analysis. Synopsys provides a comprehensive

report but has not been able to find SQL Injection

vulnerabilities in the CodeIgniter framework [13].

Several related studies from our research

were SQLIFIX [9], using training data to improve

PHP and Java application source code. However,

this research does not mention how to detect SQL

Injection in PHP applications that use frameworks.

Research [14] makes OOPIXY static analysis

tools to detect vulnerabilities in PHP programs.

OOPIXY is a development of previous research,

namely PIXY [15]. The advantage of OOPIXY is

that it is an OOP feature that can detect

Jurnal Ilmiah Multitek Indonesia, Vol. 17, No.1, Juli 2023

ISSN: 1907-6223 (Print)

ISSN:2579-3497 (Online)

Muhammad Fahmi Al Azhar, Ruki Harwahyu.. Detection Of SQL Injection Vulnerability In Codeigniter Framework Using Static Analysis 71

interprocedural data flows in application source

code. OOPIXY can detect vulnerabilities in PHP

version 5 and above, but there is no discussion

about how to detect them for specific frameworks.

In this research, we develop a new method

for detecting SQL Injection vulnerabilities in

source code using a static analysis approach. The

main contribution of this research is to detect

coding errors that can cause SQL Injection in the

CodeIgniter version 3 framework. This research

differs from previous research, where previous

research only focused on PHP without a specific

framework. Current application development is

always created using a framework. Based on a

survey conducted by Jetbrains in 2021 [16], 93% of

respondents said they used a certain framework to

build applications.

In addition, even though a framework is

used, if it is not appropriately implemented, the

application will remain vulnerable to attacks. With

this research, it is hoped that it is easier for

developers to check whether their source code is

safe and follow the rules for using the CodeIgniter

framework.

RESEARCH METHODS

This research takes a case study on a PHP-

based application created using the CodeIgniter 3

framework at the Badan Pusat Statistik (BPS). The

steps taken in this study were (1) testing the

application source code using SAST tools, (2)

manually checking the source code, (3) conducting

a literature study on the rules for using CodeIgniter,

and (4) developing SQL detection tools. Injection,

and (5) perform testing and evaluationn.

Figure 1. Research Methods

This study uses several SAST tools:

Synopsis Coverity, Sonarqube, and RIPS. Synopsys

Coverity is a commercial tool that tests the security

and defects of an application's source code.

Sonarqube is a tool used to detect bugs in source

code. Sonarqube also has a feature to detect

vulnerabilities in source code. Sonarqube is

available in both Community Edition and

commercial versions. RIPS is a static source

analyzer to find vulnerabilities in PHP scripts.

In addition to using these three tools, we

manually check how the application's source was

written to find SQL Injection vulnerabilities in the

source code. We also ensure that the source code

has been written according to the rules for writing

code from the CodeIgniter framework.

Jurnal Ilmiah Multitek Indonesia, Vol. 17, No.1, Juli 2023

 ISSN: 1907-6223 (Print)

ISSN:2579-3497 (Online)

Muhammad Fahmi Al Azhar, Ruki Harwahyu.. Detection Of SQL Injection Vulnerability In Codeigniter Framework Using Static Analysis 72

Testing Using Existing Tools

The first step we took was to examine the

application source code used as the object of this

research. The examination is carried out using tools

and manually. The tools used in this research are

Synopsys Coverity, a commercial SAST tool, and

RIPS, an open-source tool for performing static

analysis on PHP. We also use Sonarqube, a tool for

reviewing and finding bugs in source code. We did

not find any SQL Injection vulnerabilities in the

source code from testing these three tools.

Manual Testing

Furthermore, we manually check the source

code to find out which parts of the source code

have coding errors and can be the cause of SQL

Injection but are not detected by these two tools.

We also seek best practices for using certain helper

functions in CodeIgniter.

The following table shows coding errors that

may occur in the code. We put a checkmark to

indicate whether the tools used detected the coding

error. Apart from being based on the application's

source code, we have also added a list of mistakes

that can occur when writing the application's source

code.

STUDY OF LITERATURE

A literature study is used to determine the

appropriate methodology so that it can solve the

problems that exist in this study.

SQL Injection

SQL injection is an attack technique on web

applications that exploits the weaknesses of the

database system used by the application. In an SQL

injection attack, the attacker inserts malicious SQL

code into the input entered by a user on a

vulnerable web page. As a result, attackers can

access or manipulate databases unauthorized. SQL

injection is still one of the most common attacks

against web applications. These attacks can cause

significant organizational losses, such as data theft,

deletion, and even illegal access to database-

connected systems.

Some best practices to prevent SQL injection

include avoiding unverified input, validating input

correctly, and using parameterized queries to

prevent unintentionally manipulating SQL. In

addition, firewalls and input filtering can also help

prevent SQL injection attacks.

This study [8] explains in more detail that

there is a coding technique approach to prevent

SQL Injection, namely:

1. Input and URL validation

The main cause of security holes in applications

is the lack of input and URL validation. When

creating an application, the programmer must

assume that all input by the user is evil, so

validation must be carried out. For example, if a

user must fill in a telephone number, the

application must validate that the form can only

be inputted with numbers.

2. Data Sanitization

Sanitization is a method for modifying the input

data entered by the user to ensure that the data is

valid. Sanitization is the most appropriate way

to prevent SQL Injection. Data used as input in

SQL queries must be clean of dangerous

characters, for example, single quotes and white

spaces.

One example of data sanitization is when

logging in. The login form usually consists of

two fields, namely username and password. The

username field should not contain apostrophes

because these characters are dangerous

characters that can cause errors in SQL queries.

Therefore it is necessary to check whether the

username field does not contain harmful

characters and only accepts characters that are

allowed. To remove these dangerous characters,

regular expressions can be used. Regular

expressions are powerful tools for parsing

strings and matching patterns.

In addition to input, the sanitization of cookies

also needs attention. The attacker can modify

the cookies stored in the user's browser.

Jurnal Ilmiah Multitek Indonesia, Vol. 17, No.1, Juli 2023

ISSN: 1907-6223 (Print)

ISSN:2579-3497 (Online)

Muhammad Fahmi Al Azhar, Ruki Harwahyu.. Detection Of SQL Injection Vulnerability In Codeigniter Framework Using Static Analysis 73

3. Prepared Statement (or PDO) for Query

Execution

Prepared statements are features in the PHP

programming language to perform queries more

efficiently. PHP is one of the most widely used

programming languages, which causes a lot of

insecure code. PHP Data Objects (PDO) is a

database abstraction layer that programmers can

use to work with databases more securely. By

using the abstraction layer, programmers don't

have to worry about the type of database used.

Programmers can focus on the API available by

PDO to perform queries into the database.

4. Query and session tokenization

Query tokenization is a technique for converting

input into several tokens. For example, all

characters before the quotation marks, dashes,

and spaces will be added as a token. By using

this method, it will be known whether the query

has been injected or not.

CodeIgniter Framework

A PHP framework is a software development

or structure written using the PHP programming

language. Framework provides a specific set of

functions, classes, and rules to facilitate the

development of complex and large-scale web

applications.

Frameworks make it easier to develop web

applications by providing an organized and

standardized structure for code generation, thus

speeding up the development process and

minimizing errors in software development. The

framework also offers unique features such as

database management, session management, form

validation, and a template system.

The advantages of using a PHP framework

are increasing efficiency in software development,

facilitating ongoing maintenance and development,

increasing application security, and reducing errors

in software development. However, using the

framework also has drawbacks, such as dependence

on specific rules, higher complexity, and lack of

flexibility in some software development cases.

CodeIgniter is a popular PHP framework

because of its small size and easy learning. In

addition, CodeIgniter uses the MVC pattern,

equipped with helper support, making it easier for

developers to create certain features. Unfortunately,

developers usually don't adhere to the framework's

coding rules. As a result, the code written can cause

bugs or security holes.

Figure 2 is a code snippet often found in

CodeIgniter controller files. There's nothing wrong

with the code at first glance, as it runs without

error. However, if we pay more attention, the

source code contains vulnerabilities, including SQL

Injection. Line 1 is a tainted variable where the user

can modify the input. The developer uses the global

variable GET function to retrieve the id attribute

that the user inputs. Instead of using $_GET, we

should use the helper in CodeIgniter, namely $this-

>input->get()

In line 9, a simple query retrieves records

from the database. There's nothing wrong with

writing this query, but the $id variable in the query

should use parameterized queries/bindings to

minimize SQL Injection attacks. By using

CodeIgniter, then writing the query should be

$query = $this->db->query("SELECT * FROM

projects WHERE id=? ORDER BY id DESC",

[$id]);

The following error from the source code is

that there is no sanitization or validation process for

the $id variable, which is user input. The $id

variable usually only accepts integers, so at least

intval() function can be used, which will take the

integer value of a variable. Furthermore, the use

form_validation feature in CodeIgniter 3 by using

only numeric rules on the $id variable also can

prevent any unwanted character.

Jurnal Ilmiah Multitek Indonesia, Vol. 17, No.1, Juli 2023

 ISSN: 1907-6223 (Print)

ISSN:2579-3497 (Online)

Muhammad Fahmi Al Azhar, Ruki Harwahyu.. Detection Of SQL Injection Vulnerability In Codeigniter Framework Using Static Analysis 74

Figure 2. Example of CodeIgniter 3 source which is vulnerable to SQL Injection

Abstract Syntax Tree (AST)

Abstract Syntax Tree (AST) is a data

structure representing a computer program's syntax

structure. AST is used by compilers and interpreters

in processing program code because it makes it

easier to analyze, optimize, and transform source

code.

The AST consists of nodes representing

elements in the source code, such as variables,

operations, functions, and conditional statements.

Each node in the AST has children (subtrees) that

represent the part of the source code associated

with that node. In addition, in the AST, each node

has a type that indicates the type of element

represented by that node, such as "binary

expression" for mathematical operations, "function

declaration" for function declarations, and so on.

AST is used by compilers and interpreters in

the parsing and analysis of source code, where the

source code is converted into AST, which is easier

for the program to understand and process. AST is

also used in the optimization and transformation of

the source code, where the source code is converted

into a form that is more optimal or according to

particular needs.

An understanding of AST can help

developers understand and analyze source code, fix

syntax errors, perform code optimization, and

perform code transformations for specific purposes.

This study uses the Nikic PHP-AST library

to facilitate access and analysis of PHP source

code. This library supports all features of the PHP

programming language, including new features

introduced in PHP 7.x, such as type hinting,

nullable types, return type declarations, and more.

Tainted Source & Sink

Any input that someone outside the

application can modify is a risk that can cause SQL

Injection. This input can be a GET parameter from

a URL or a form in the application. This input will

be stored in a variable on the source code side. SQL

Injection can occur if the database server executes

the malicious input variable. For each tainted

source, at least one of the following treatments

should be given:

1. Sanitation, is a process to change the input data

to be safe.

2. Validation is the process of ensuring that the

input provided by the user matches the pattern

required by the application.

A taint sink is any function that can execute a

taint source. If not handled properly, taint sinks can

be exploited by attackers to carry out SQL Injection

attacks.

Jurnal Ilmiah Multitek Indonesia, Vol. 17, No.1, Juli 2023

ISSN: 1907-6223 (Print)

ISSN:2579-3497 (Online)

Muhammad Fahmi Al Azhar, Ruki Harwahyu.. Detection Of SQL Injection Vulnerability In Codeigniter Framework Using Static Analysis 75

Regular Expression

Regular Expression (Regex) is a pattern or

sequence of characters used to match and

manipulate text in a programming language. For

example, Regex is usually used to search and

replace strings (string matching and replacement) in

the text that meets a specific pattern.

Regex uses certain characters that have

special meanings such as ^, $, *, +, ?, |, (,), [,], {, }

as metacharacters. These metacharacters create

more complex patterns to match text to the desired

character sequence.

This study uses regular expressions to help

match specific patterns in source code to find SQL

Injection vulnerabilities in that source.

Detection Methods

Based on the literature study and

examination carried out in the previous step, we

created a detection method which can be seen in

Table 1. Our approach is to use the function

approach in a file. Checking is done line by line in

a function to conclude whether the function is

vulnerable. We avoid the per-line approach because

it minimizes errors in the checking results.

Table 1. SQL Injection vulnerability detection stages

No Stages Description

1. Detect taint sourcse and variables By using AST, for each detected function, a

variable will be listed in that function. Next will

be determined whether it is a taint source or not.

2. Detect the sanitization of the

variable.

Each function will be checked to determine

whether it contains sanitation or not.

3. Detect the presence of form

validation.

Each function will be checked to determine

whether it contains validation or not.

4. Detect the presence of dangerous

sink

Each function will be checked to determine

whether it contains a dangerous sink. This sink can

be an intermediary for SQL Injection errors in the

web view.

5. Detect the presence of query and

concatenated string

Each function will check whether it contains a

query with a concatenated string. Concatenated

strings are very dangerous because they can be

infiltrated by malicious code that can be executed

by the database, thus enabling SQL Injection

attacks to be successful.

To get the concatenated string, we use regex.

Based on the five steps above, we will

conclude that if a function contains a query and

contains a concatenated string, a warning must be

given. The essence of this check is the existence of

a query and a concatenated string in a function.

Tainted variables, sanitizers, and validations are

only used for informational purposes only with the

assumption that the query helper in CodeIgniter has

been able to protect against SQL Injection as long

as it is used correctly. Table 2 shows the algorithm

we use to detect whether a CodeIgniter 3 project

contains SQL Injection.

Table 2. SQL Injection Detection Algorithm on the CodeIgniter framework

 Input: path to CodeIgniter project, and application name

Output: list of files, functions detected as vulnerable to SQL Injection, along with their

recommendations

1 folder project ← Read PHP files in the application and model folders

Jurnal Ilmiah Multitek Indonesia, Vol. 17, No.1, Juli 2023

 ISSN: 1907-6223 (Print)

ISSN:2579-3497 (Online)

Muhammad Fahmi Al Azhar, Ruki Harwahyu.. Detection Of SQL Injection Vulnerability In Codeigniter Framework Using Static Analysis 76

2 foreach(file in project folder)

3 variable initialization, to save files and lines

4 detect all function in a file, using PHP parser

5 foreach(fungsi in file)

6 check for tainted variable

7 check for sanitizer

8 check for validation

9 check for dangerous sink

10 check for query and concatenated string

11 draw conclusions

12 Save result to database

13 endforeach

14 endforeach

The programming language we used to

implement this algorithm is PHP using the

CodeIgniter framework version 4. We utilize the

Spark Command feature in CodeIgniter to make

executing the source code to be examined easier.

Each stage in Table 1 will be stored in the database

for analysis and conclusion. The database design

used to store test results is shown in Figure 3 below

Figure 3. Database design

Saving the test results in a database can facilitate

the process of analyzing and developing these tools

in the future.

Evaluation Method

The evaluation method used in this research

compares the test results from existing tools with

the method we created. Next, we manually verify

whether the detection results are correct or not.

RESULTS AND DISCUSSION

Jurnal Ilmiah Multitek Indonesia, Vol. 17, No.1, Juli 2023

ISSN: 1907-6223 (Print)

ISSN:2579-3497 (Online)

Muhammad Fahmi Al Azhar, Ruki Harwahyu.. Detection Of SQL Injection Vulnerability In Codeigniter Framework Using Static Analysis 77

The test results from this study can be seen in

Table 3. We tested 4 real applications at the Badan

Pusat Statistik and disguised the names of these

applications for security reasons.

RIPS, Synopsys Coverity, and RIPS could

not find SQL Injection vulnerabilities in the

CodeIgniter 3 source code. However, the method

we proposed was able to find SQL Injection

vulnerabilities in 138 functions out of 1182

functions, of which 6 functions turned out to be

false positives. This false positive can occur

because the lines in the function have the same

pattern as the source code, which is vulnerable to

SQL Injection.

Tabel 3. SQL Injection detection test results

No Application
Number of SQLI Vulnerable Functions Detected

Sonarqube/RIPS Our Method False Positive

1. Application 1 - 69 -

2. Application 2 - 6 1

3. Application 3 - 49 2

4. Application 4 - 14 3

Figure 2 shows one of the functions detected as

vulnerable to SQL Injection. The problem with this

function is the use of concatenated strings and no

binding so that injecting the $id variable in the

function is possible.

Figure 4. The detected function is vulnerable to SQL Injection attacks

The accuracy obtained from this study is

88.8%, with a very low false positive rate.

However, even though our method produces low

false positives, we admit that the method we use

can only detect up to the function level. To detect

up to the line level is very difficult because we have

to understand the context and flow of the running

program. This research produces tools that are easy

to apply to other frameworks by making some

adjustments.

CONCLUSION

This study concludes that using AST and

Regular Expressions can detect coding errors that

can cause SQL Injection in the CodeIgniter version

3 framework. Our method shows very good results

for detecting SQL Injection vulnerabilities. By

using the tools from this research, the development

team can easily test SQL injection vulnerabilities

from the source code they write. This research can

be further developed to detect the line level by

paying attention to the flow of the program. In

addition, the results of this research can be

integrated into the CI/CD process when developing

applications to find vulnerabilities and coding

errors early on.

ACKNOWLEDGMENTS

This research was sponsored by the

Kementerian Komunikasi dan Informatika

Republik Indonesia at program Beasiswa S2 Dalam

dan Luar Negeri Tahun 2021. The researchers

would like to thank the Kementerian Komunikasi

dan Informasi for supporting this research.

Jurnal Ilmiah Multitek Indonesia, Vol. 17, No.1, Juli 2023

 ISSN: 1907-6223 (Print)

ISSN:2579-3497 (Online)

Muhammad Fahmi Al Azhar, Ruki Harwahyu.. Detection Of SQL Injection Vulnerability In Codeigniter Framework Using Static Analysis 78

REFERENCES

 [1] M. Liu, K. Li, and T. Chen, “Security testing

of web applications: A search-based approach

for detecting SQL injection vulnerabilities,” in

GECCO 2019 Companion - Proceedings of the

2019 Genetic and Evolutionary Computation

Conference Companion, Association for

Computing Machinery, Inc, Jul. 2019, pp.

417–418. doi: 10.1145/3319619.3322026.

[2] N. Larson, “OWASP Top Ten 2021: Where

we’ve been and where we are,” 2022.

[3] P. Vats and A. Saha, “An Overview of SQL

Injection Attacks,” SSRN Electronic Journal,

May 2019, doi: 10.2139/ssrn.3479001.

[4] A. Ibrahim, M. El-Ramly, and A. Badr,

“Beware of the Vulnerability! How Vulnerable

are GitHub’s Most Popular PHP

Applications?,” in 2019 IEEE/ACS 16th

International Conference on Computer

Systems and Applications (AICCSA), 2019, pp.

1–7. doi:

10.1109/AICCSA47632.2019.9035265.

[5] I. Medeiros and N. Neves, “Effect of Coding

Styles in Detection of Web Application

Vulnerabilities,” in 2020 16th European

Dependable Computing Conference (EDCC),

2020, pp. 111–118. doi:

10.1109/EDCC51268.2020.00027.

[6] W3Techs, “Usage Statistics and Market Share

of PHP for Websites, May 2023,” 2023.

https://w3techs.com/technologies/details/pl-

php

[7] S. Tenzin, “PHP Framework for Web

Application Development,” IARJSET

International Advanced Research Journal in

Science, vol. 9, no. 2, 2022, doi:

10.17148/IARJSET.2022.9218.

[8] B. Gautam, J. Tripathi, S. Singh, and M. T.

Student, “A Secure Coding Approach For

Prevention of SQL Injection Attacks,” 2018.

[Online]. Available:

http://www.ripublication.com

[9] M. L. Siddiq, Md. R. R. Jahin, M. R. Ul Islam,

R. Shahriyar, and A. Iqbal, “SQLIFIX:

Learning Based Approach to Fix SQL

Injection Vulnerabilities in Source Code,” in

2021 IEEE International Conference on

Software Analysis, Evolution and

Reengineering (SANER), 2021, pp. 354–364.

doi: 10.1109/SANER50967.2021.00040.

[10] Synopsys, “Managing Web Application

Security With Coverity,” 2021.

[11] Sonar, “Code Quality Tool & Secure Analysis

with SonarQube,” 2023.

https://www.sonarsource.com/products/sonarq

ube/

[12] Synopsys, “Coverity SAST Software |

Synopsys,” 2023.

https://www.synopsys.com/software-

integrity/security-testing/static-analysis-

sast.html

[13] CodeIgniter, “CodeIgniter User Guide,” 2023.

https://www.codeigniter.com/userguide3/

(accessed May 31, 2023).

[14] M. Nashaat, K. Ali, and J. Miller, “Detecting

Security Vulnerabilities in Object-Oriented

PHP Programs,” in 2017 IEEE 17th

International Working Conference on Source

Code Analysis and Manipulation (SCAM),

2017, pp. 159–164. doi:

10.1109/SCAM.2017.20.

[15] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy:

a static analysis tool for detecting Web

application vulnerabilities,” in 2006 IEEE

Symposium on Security and Privacy (S&P’06),

2006, pp. 6 pp. – 263. doi:

10.1109/SP.2006.29.

[16] JetBrains, “PHP Programming - The State of

Developer Ecosystem in 2021 Infographic,”

2023.

https://www.jetbrains.com/lp/devecosystem-

2021/php/

