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Background: Postoperative complications following total hip arthroplasty (THA)
often require revision surgery. X-rays are usually used to detect such
complications, but manually identifying the location of the problem and
making an accurate assessment can be subjective and time-consuming.
Therefore, in this study, we propose a multi-branch network to automatically
detect postoperative complications on X-ray images.

Methods: We developed a multi-branch network using ResNet as the backbone
and two additional branches with a global feature stream and a channel feature
stream for extracting features of interest. Additionally, inspired by our domain
knowledge, we designed amulti-coefficient class-specific residual attention block
to learn the correlations between different complications to improve the
performance of the system.

Results:Our proposed method achieved state-of-the-art (SOTA) performance
in detecting multiple complications, with mean average precision (mAP) and
F1 scores of 0.346 and 0.429, respectively. The network also showed excellent
performance at identifying aseptic loosening, with recall and precision rates of
0.929 and 0.897, respectively. Ablation experiments were conducted on
detecting multiple complications and single complications, as well as
internal and external datasets, demonstrating the effectiveness of our
proposed modules.

Conclusion:Our deep learningmethod provides an accurate end-to-end solution
for detecting postoperative complications following THA.
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1 Introduction

Total hip arthroplasty (THA) is a common surgical procedure used to treat end-stage
hip diseases (Learmonth et al., 2007; Ferguson et al., 2018), such as osteoarthritis. While
THA is generally safe and effective, postoperative complications, including
periprosthetic joint infections, dislocation, aseptic loosening, and periprosthetic
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fractures, often arise, leading to failure of the prosthesis (Healy
et al., 2016; Kelmer et al., 2021; Patel et al., 2023). The
identification of these complications typically relies on plain
radiographs (Awan et al., 2013; Thejeel and Endo, 2022),
which can be subjective, time-consuming, and prone to
misdiagnosis. Therefore, a more accurate and timely method
for detecting postoperative complications would help to optimize
treatment planning and improve patient outcomes.

Recent advances in artificial intelligence have shown great
promise in medical imaging analysis. Deep learning has been
successfully applied to various medical imaging tasks, such as
breast cancer screening (Shen et al., 2021), detecting skin lesions
(Soenksen et al., 2021; Wu et al., 2022), osteoarthritis recognition
(Thomas et al., 2020; Bayramoglu et al., 2021), and brain tumor
segmentation (Grøvik et al., 2020). While several studies have made
progress in recognizing individual complications, such as aseptic
loosening (Shah et al., 2020; Lau et al., 2022; Loppini et al., 2022;
Rahman et al., 2022) or dislocation (Rouzrokh et al., 2021), using
deep learning methods, significant challenges remain in
automatically identifying THA complications on X-ray images.
These challenges include a lack of publicly available data, noisy
and scattered features on medical image data, and the need to
identify multiple complications simultaneously.

To address these challenges, this study introduces a novel deep
learning method to automatically identify complications following
THA on X-ray images. This study constructed a large dataset of hip
revision cases with multi-label labelling of complications based on
medical history data and radiographic findings. The performance of
various state-of-the-art (SOTA) image classification models was
evaluated using the dataset, with ResNet18 being used as a baseline.
A novel multi-branch network model was then proposed that achieved
better performance than alternative models at identifying both multi-
label and single-task complications.

In summary, our work aims to provide a more effective and
accurate method for identifying multiple complications following

THA, leading to improved patient outcomes. Our main
contributions include:

1. A dataset containing 443 X-ray images of hip prosthesis failures with
multiclass annotation of postoperative complications following THA.

2. Amulti-scale andmulti-level networkmodel for identifying post-
THA complications on X-ray images.

FIGURE 1
Architecture of the proposed model. The model features a ResNet18 backbone for initial feature extraction, and introduces Channel and Global
Feature Flows formulti-scale feature extraction. Additionally, theMC-CSRAmodule is incorporated for learning label correlations, which can improve the
accuracy of detecting complications.

FIGURE 2
Global feature block. Each block processes fixed-size, non-
overlapping patches of the input image, running through Patch
Merging, Layer Norm, Window-based Multi-head Self-Attention
(W-MSA) or Shifted Window-based Multi-head Self-Attention
(SW-MSA), Linear, and GELU modules. This structure enhances the
extraction of broad feature patterns and is designed to capture spatial
relationships between patches, enabling a holistic understanding of
the image and improving the model’s diagnostic capabilities.

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Guo et al. 10.3389/fbioe.2023.1239637

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1239637


3. An investigation of the effectiveness of domain prior knowledge
fusion for identifying multi-category complications after THA
surgery.

2 Methods

2.1 Overview of proposed architecture

As depicted in Figure 1, this study presents a multi-branch
neural network for the assessment of complications after hip
arthroplasty on X-ray images. Our network uses ResNet18 as the
backbone, facilitating the initial extraction of features from input
images through a deep convolutional neural network with residual
connections (He et al., 2016). Two additional branches were also
integrated, a channel feature stream and a global feature stream, to
extract multi-scale features. To boost the accuracy, we also designed
a multi-coefficient class-specific residual attention (MC-CSRA)
block, which aimed to fuse domain knowledge by learning
correlations between labels.

2.2 Global feature stream

As shown in Figure 2, a global feature stream was added to the
network to allow global features to be extracted. The input image is
first divided into fixed-size, non-overlapping patches using a 2D
convolutional layer, filled as needed, and finally flattened and
normalized. The output of the patch partition is then passed
through three successive global feature blocks to extract the
feature. The Swin transformer (Liu et al., 2021) uses the shift
window to allow the model to capture the spatial relationships
between adjacent patches, which can further improve the ability of
the model to extract global features. Inspired by the Swin
transformer, we designed global feature blocks that share a
similar structure, encompassing Patch Merging, Layer Norm,
Window-based Multi-head Self-Attention (W-MSA) or Shifted
Window-based Multi-head Self-Attention (SW-MSA), Linear, and
GELU modules. The global feature block can be formulated as:

fGF x( ) � LN x +M x( )( )MSA x( ) + x, (1)
where x is the input tensor, LN is the Layer Norm module, M is the
Patch Merging module, and MSA is the W-MSA/SW-MSA module.
Similar to the Swin transformer, the formula of the W-MSA/SW-
MSA module is expressed as follows:

MSA Q,K,V( ) � Sof tMax
QKT��
dk

√( )V, (2)

where Q, K, and V are the query, key, and value matrices,
respectively, and dk is the dimension of the key vectors.

2.3 Channel feature stream

The channel feature stream is an essential component of the
proposed method for extracting channel-level features from the
input image. Initially, the input image is passed through the Conv

Block and Maxpool layers, generating an initial feature
map. Subsequently, the output is fed into a three-stage channel
feature block, where a new feature map is extracted at each stage,
emphasizing the important channels.

Similar to the channel attention module (Woo et al., 2018), the
channel feature block is designed to enhance the channel-wise
relationships of feature maps by adaptively recalibrating feature
responses. As shown in Figure 3, the channel feature block consists
of two pooling layers (MaxPool and AvgPool) and a shared multi-
layer perceptron (MLP) with two convolutional layers. The output of
the pooling layers is fed into the shared MLP, which learns a
channel-wise attention map by weighting the feature responses.
The two attention maps obtained from the two pooling layers are
added and passed through a sigmoid activation function to obtain
the final attention map. The attention map is then multiplied
element-wise with the input feature map to generate the output
feature map. The formula for the channel feature block can be
expressed as follows:

fCF X( ) � σ g
1

H × W
∑H
i�1

∑W
j�1

xi,j
⎛⎝ ⎞⎠W2 δ W1X( )( )⎛⎝ ⎞⎠X, (3)

where σ is the sigmoid activation function, g and δ are both 1D
convolutional layers with kernel size 1, W1 and W2 are learnable
weight matrices.X represents the input feature map with dimensions
C × H × W, where C is the number of channels and H, W are the
height and width, respectively.

FIGURE 3
Channel feature block. The block consists of Conv, Maxpool
layers, and a multi-layer perceptron (MLP) to extract channel-level
features from the input image. Pooling layers (MaxPool and AvgPool)
feed into the shared MLP, producing two attention maps which
are added together and then passed through a sigmoid function to
generate a final attention map. This attention map is element-wise
multiplied with the input feature map to highlight important channels
and thus enhance channel-wise relationships, thereby promoting
more effective feature extraction and interpretation by the model.
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2.4 Multiple coefficient class-specific
residual attention block

As shown in Figure 4, the Multiple Coefficient Class-specific
Residual Attention (MC-CSRA) block is a variant of the CSRA block
(Zhu and Wu, 2021) that incorporates trainable matrices as
coefficients to learn the correlation between labels and achieve
domain knowledge fusion, which can be expressed
mathematically as:

Score � AvgPool x( ) ·Wfc · Coef k, (4)
where x represents the input feature map. AvgPool denotes the
average pooling operation, which computes the global average
feature representation of x. Wfc refers to the weight matrix of the
fully-connected layer, which transforms the average feature
representation to obtain the initial prediction scores. Coefk
represents the trainable matrix coefficient associated with the
label, and k represents the index of the trainable matrix Coefk,
which corresponds to a specific label.

3 Experiments and results

3.1 Dataset

Frontal and lateral X-ray images, MRI images, CT images, and
clinical history data of patients that had reported complications after
THR were collected by the author (GSJ) at Shanghai Ninth People’s
Hospital. The dataset utilized in this work consisted of
443 preoperative X-ray images from patients scheduled to
undergo revision after THR between 2014 and 2022. Data
labeling was determined by an experienced orthopedic surgeon
(ZJW) based on clinical history data and X-ray, CT, and
MRI images. Each X-ray was meticulously annotated with seven
2-category indicators, corresponding to the presence or absence of

aseptic loosening, periprosthetic osteolysis, periprosthetic fracture,
dislocation, wear, infection, and other complications. During the
data pre-processing phase, we initially trained an object recognition
network based on YOLO-v5 (Jocher et al., 2022) and used it to crop
the image surrounding the prosthesis. Subsequently, we normalized
and converted the high-resolution X-ray images to JPEG format,
which is required for inputting into the deep learning model.
Figure 5 illustrates some typical X-ray images of postoperative
complications after THA from our dataset.

In this study, we employed five-fold cross-validation to evaluate
the performance of our proposed method. The dataset was
randomly split into five equal folds. During each iteration of
training and testing, four of these folds were used for training
while the fifth was reserved for testing. This process was repeated
five times, ensuring each fold served as the testing set once. The
results across these five iterations were then averaged to produce a
comprehensive model performance evaluation. The specific
distribution of data in each fold is outlined in Table 1.

3.2 Implementation details

The model developed in this study is based on the PyTorch
framework. During the training phase, the model’s weights were
updated using the Adam optimizer. The learning rate started at
0.0002 and was reduced by 10% after 5 epochs if the validation loss
remained the same. The batch size of the model was set to 32 and the
total number of epochs was 50. In the binary classification task, the
dataset was divided into training, validation, and testing sets
according to 6:2:2. To prevent overfitting, an early stopping
strategy was used to terminates the training process before the
model fully converged to prevent excessive memorization of the
training data. We implement our method on Ubuntu with an
NVIDIA GeForce RTX 3090 GPU.

3.3 Evaluation metrics

This study mainly used mAP (mean Average Precision) and
F1 score as evaluation indicators to simultaneously identify multiple
complications on a single x-ray image. mAP measures the average
precision for each class and then takes the mean of these values to
give an overall measure of performance. mAP is represented as

mAP � 1
C
∑C
i�1

APi, (5)

where C is the number of classes and APi is the average precision for
class i. The formula for average precision is:

APi � 1
ni

∑ni
j�1

Precision j · rel j, (6)

where ni is the number of samples belonging to class i, Precisionj is
the precision at the jth sample, and relj is an indicator variable that
equals 1 if the jth sample belongs to class i and 0 otherwise.

The F1 score is expressed by Eq. 7, defined as the harmonic
average of the precision and recall.

FIGURE 4
Multiple Coefficient CSRA block. This block uses trainable
matrices as coefficients to capture the correlation between labels,
thereby fostering a fusion of domain knowledge. By performing an
average pooling operation on the input feature map and
multiplying it by a weight matrix and a trainable matrix coefficient
associatedwith a specific label, the block is able to generate prediction
scores, facilitating label-specific attention and learning.
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F1 � 2 · Precision · Recall
Precision + Recall

(7)
with the precision and recall calculated as

Precision � TP

TP + FP
(8)

Recall � TP

TP + FN
(9)

Given the challenges posed by class imbalance in our
dataset—especially pertinent in the context of multi-classification
problems—we adopted a weighted computational approach for
more nuanced performance assessment. We introduce weighted
variants of precision, recall, and the F1 score to better reflect the
significance and distribution of each category within the dataset.

This methodological refinement enhances the fairness and
robustness of our performance evaluation, affording a more
discerning analysis of the model’s capabilities.

The accuracy and F1 score were used to detect single
complications on the X-ray images, which is a single-task binary
classification problem. The accuracy measures the proportion of
correctly classified samples out of the total number of samples, while
the F1 score considers both the precision and recall, as previously
discussed. The accuracy is be calculated by Eq. 10.

Accuracy � TP + TN

TP + TN + FP + FN
(10)

where TP is the true positives, TN is true negatives, FP is false
positives, and FN is false negatives.

FIGURE 5
Examples of X-ray images of complications after total hip arthroplasty (THA) in our dataset cropped by our own trained YOLO-v5model to preserve
the periprosthetic images. Corresponding labels are labeled by an experienced orthopaedic surgeon as (A) loosening, periprosthetic osteolysis, and
prosthetic wear; (B) periprosthetic fracture; (C) loosening; (D) dislocation; (E) loosening, periprosthetic osteolysis, and prosthetic wear; (F) periprosthetic
osteolysis, and prosthetic wear; (G) loosening, periprosthetic fracture; and (H) loosening, periprosthetic infection.

TABLE 1 Average number of images for each complication in training and testing sets across five-fold cross-validation.

Dataset Number of X-ray images Loosening Osteolysis Fracture Dislocation Wear Infection Other complications

Training Set 355 215 126 24 22 149 20 27

Testing Set 88 54 32 6 6 38 5 7

Total 443 269 158 30 28 187 25 34
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In addition to these performance metrics, we assessed the
model’s complexity by considering both its spatial and temporal
aspects. Such analysis allows the computational resources required
by the model to be determined, which allows for comparison with
other models and helps with selecting the most fitting model for
specific tasks within different computational contexts. Spatial
complexity was evaluated using the parameter count, as it is an
apt representation of this aspect. A greater number of parameters
denotes higher spatial complexity, a factor influenced by elements
such as the network’s architecture, layer quantity, and each layer’s
associated connection weights and biases. Temporal complexity,
conversely, gauges the neural network model’s computational
duration for either training or inference tasks. This is represented
by the Floating-Point Operations Per Second (FLOPs) metric, which
indicates the quantity of addition and multiplication operations
conducted by the model. A higher FLOP value signifies greater
temporal complexity. Elements such as the network’s architecture,
the number of layers, and the size of the inputs all contribute to the
computation of FLOPs. To provide a more tangible understanding
of our model’s temporal complexity, we also determined its actual
inference time.

3.4 Benchmark model comparison

Our study assessed the efficacy of various benchmark models at
image classification tasks using our dataset. Table 2 illustrates the
comparative average performance of these benchmarkmodels under
five-fold cross-validation. ResNet18 conspicuously stood out with an
mAP of 31.0% and an F1 score of 35.7%, both of which were the
highest among the evaluated models. This indicates ResNet18’s
superior performance in achieving a well-rounded classification
on our dataset. While DenseNet121 marginally surpassed
ResNet18 in precision with a score of 50.1%, it did not fare as
well in the other metrics. On the other hand, MobileNet_
v3 exhibited the highest recall at 36.8%. However, a high recall
without balanced precision can lead to an increased number of false
positives, which may not be ideal for clinical settings.

The ResNet18 model also demonstrated a clear balance between
computational efficiency and performance. The model’s parameter
count, indicative of its spatial complexity, is notably lower than that
of ResNet50 and ResNet101, while being comparable to models such

as DenseNet121 and GoogLeNet. This low spatial complexity
corresponds to low memory usage during both training and
inference stages, positioning ResNet18 as a cost-effective choice,
especially within resource-limited settings. Furthermore, the lower
FLOPs of ResNet18, indicative of its temporal complexity, are
considerably lower than most of the alternative models. This
suggests ResNet18 requires fewer computational resources for
either an inference or a training task, promoting faster training
and inference times, which are essential characteristics for
applications requiring a quick response.

In conclusion, although ResNet18 was not the top performer in
all metrics, the model was capable of a robust classification while
maintaining lower spatial and temporal complexity compared to the
other evaluated models. This balance between performance and
computational efficiency influenced our selection of ResNet18 as the
backbone for our methodology and served as a benchmark for
assessing the effectiveness of the proposed classification methods.
This enabled us to build on a strong model foundation while
optimizing the use of computational resources.

3.5 Results of ablation study

The comprehensive ablation study under five-fold cross-
validation clearly demonstrated the effectiveness of our proposed
model (ResNet18 + GFS + CFS +MC-CSRA). As detailed in Table 3,
the model performed exceptionally well across all classification
metrics tested, achieving an mAP of 34.6% and an F1 score of
42.9%. Notably, each individual component–the Global feature
stream (GFS), Channel feature stream (CFS), and the Multiple
Coefficient CSRA block (MC-CSRA) – made a significant
contribution to this augmented performance.

Incorporating GFS and CFS into the baseline ResNet18 model
validated the importance of these features in enhancing model
performance. When the GFS component was integrated, the
mAP increased to 33.3% and the F1 score rose to 48.7%, which
indicates that GFS is pivotal in capturing broader, global features. In
parallel, the introduction of a CFS component boosted the mAP to
31.8% and the F1 score to 44.0%, underscoring CFS’s capacity in
extracting local, nuanced features, subsequently enhancing
classification efficacy. The addition of an MC-CSRA
block further amplified the model’s performance. For the

TABLE 2 Performance comparison of benchmark methods using five-fold cross-validation: average results.

Method mAP (%) Precision (%) Recall (%) F1 score (%) Params (×106) FLOPs (×106)

ResNet18 He et al. (2016) 31.0 48.3 34.0 35.7 11.18 1.82

ResNet50 29.3 30.6 20.8 23.0 23.52 4.13

ResNet101 29.2 25.3 24.7 25.0 42.52 7.86

DenseNet121 Huang et al. (2017) 30.7 50.1 27.6 35.3 6.96 2.90

DenseNet161 29.9 39.0 21.3 26.4 26.49 7.84

GoogLeNet Szegedy et al. (2015) 30.2 37.9 30.6 32.9 5.61 1.51

MobileNet v3 Howard et al. (2019) 27.3 22.0 36.8 27.4 1.53 61.46

EfficientNet Tan and Le, (2019) 29.3 41.4 30.0 32.1 4.02 413.87
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ResNet18 + GFS model, the mAP slightly rose to 33.5%, however,
the F1 score saw a decrease to 40.3%. The ResNet18 + CFSmodel, on
the other hand, experienced improvements with the mAP advancing
to 33.5% and the F1 score surging to 46.4%. Such advancements
emphasize the critical role of the MC-CSRA block in elevating the
model’s discriminative prowess.

Further ablation studies were performed to validate the
robustness of the proposed modules against different backbone
models. These studies used ResNet50, DenseNet121, and
Densenet161 as the backbones, as detailed in the Supplementary
Tables S1–S3. The enhanced performance of the ResNet50-based
model is illustrated in Supplementary Table S1. As was observed
with the ResNet18 model, the inclusion of the Global Feature Stream
(GFS) and the Channel Feature Stream (CFS) bolstered the
ResNet50 model’s performance. The final addition of our
proposed Multiple Coefficient CSRA block (MC-CSRA) further
augmented the mean average precision (mAP) and F1 score,
reaching 31.5% and 33.7%, respectively, thus demonstrating the
strong contribution of each component to the model’s overall
performance. DenseNet121-based and Densenet161-based models
were similarly evaluated, with results outlined in Supplementary
Tables S2, S3. The performance of these models also improved after
the inclusion of the GFS, CFS, and MC-CSRA block, reaching a final
mAP of 32.5% and 33.2% and an F1 score of 34.6% and 37.7%,
respectively.

While improving performance, our proposed model (ResNet18
+ GFS + CFS + MC-CSRA) also maintained a reasonable model
complexity. The number of parameters slightly increased to
approximately 20.72 million, while the FLOPs rose to around
3.59 million, thus achieving a well-balanced trade-off between
performance and computational efficiency.

In addition, we have also conducted an analysis of the prediction
performance of different models for specific labels. Table 4 showcases
the accuracy and F1 scores of these models in predicting respective
complications. The ResNet18+GFS+CFS configuration outperformed
in “Osteolysis” with an accuracy of 68.2%. The “Loosening” label saw
the ResNet18+CFS model excel, posting an accuracy of 61.6%. While
accuracy for “Fracture” remained consistent across models, the
ResNet18+GFS+CFS+MC-CSRA edged out in F1 at 90.5%. For
“Dislocation” and “Wear” complications, the ResNet18+GFS and
ResNet18+GFS+MC-CSRA models respectively delivered peak

performances. In the “Infection” category, ResNet18+GFS+CFS+MC-
CSRA achieved an unmatched accuracy of 94.6% and F1 score of 92.4%.
Under the “Others” label, the same model continued to lead, registering
an accuracy of 93.0%.

In conclusion, our model leveraged the strengths of GFS, CFS,
and the MC-CSRA block to achieve robust performance. The
notable improvements in mAP, F1 scores, and specific
complication accuracies underline its effectiveness. Importantly,
these results were achieved while striking a balance between
performance and computational efficiency.

3.6 Results of binary classification tasks and
external datasets

Our proposed multi-branch neural network model (ResNet18 +
GFS + CFS) exhibited superior performance over the baseline model
(ResNet18) at binary classification tasks, which demonstrated the
effectiveness of the additional modules. This performance was
assessed on two datasets: a labeled loosening subset of our multi-
labeled dataset and an external loosening dataset (Rahman et al., 2022).

Table 5 details the binary classification performance on our
internal dataset. The proposed model significantly outperformed the
baseline ResNet18, achieving an accuracy of 88.1% and an F1 score
of 89.7%. In contrast, the baseline model yielded an accuracy of
71.4% and an F1 score of 84.0%, highlighting the substantial
improvement attained by incorporating the Global feature
streams (GFS) and Channel feature streams (CFS) into the
baseline model.

Comparative experiments against methods proposed in (Lau
et al., 2022; Loppini et al., 2022) further highlighted the robustness of
our model, as seen in Table 6. Our approach exhibited noteworthy
gains, surpassing the performance of these cited methods on the
loosening subset of our dataset, both in terms of accuracy and F1-
score. The results on the external loosening dataset, as shown in
Table 6, reveal a more nuanced picture. While our model
outperformed both the method by Loppini et al. and Lau et al.
with accuracy scores of 54.5% and 58.0%, respectively, it fell slightly
short of the HipXNet (Rahman et al., 2022) performance. The
HipXNet model achieved an accuracy of 96.1%, with our model
trailing at 92.9%. Given that HipXNet employs a more complex,

TABLE 3 Ablation study results using five-fold cross-validation: average results.

Method mAP
(%)

Precision
(%)

Recall
(%)

F1 score (%) Params
(×106)

FLOPs
(×106)

Inference
(s)

ResNet18 (Baseline) 31.0 48.3 34.0 39.9 11.18 1.82 0.0019

RestNet18 + GFS 33.3 55.1 43.7 48.7 20.69 3.47 0.0025

RestNet18 + GFS + MC-CSRA 33.5 56.7 42.5 40.3 20.69 3.47 0.0025

RestNet18 + CFS 31.8 53.8 37.3 44.0 11.25 2.06 0.0019

RestNet18 + CFS + MC-CSRA 33.5 57.8 38.7 46.4 11.25 2.06 0.0019

RestNet18 + GFS + CFS 32.1 55.1 40.7 46.8 20.72 3.59 0.0029

RestNet18 + GFS + CFS + MC-CSRA
(Proposed)

34.6 57.3 34.3 42.9 20.72 3.59 0.0029

GFS, Global feature stream; CFS, Channel feature stream; MC-CSRA, Multiple Coefficient CSRA block.
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stacked CNN model, we perceive this narrow performance
differential as acceptable.

In conclusion, the binary classification tests performed on both
the internal and external datasets corroborate the effectiveness of
our proposed multi-branch neural network model. The substantial
improvements over the baseline model on both datasets underscore
the contribution of the Global and Channel feature streams (GFS
and CFS) towards enhancing the model’s performance. The model’s
robust performance, even in comparison to specialized methods
such as HipXNet on external datasets demonstrates its potential for
use in diverse and complex classification tasks.

4 Discussion

Diagnosing complications after THA can be challenging in
clinical practice due to the complexity and variability of X-ray

manifestations, as well as the potential overlap between
symptoms and other diseases. However, using an artificial
intelligence system to assess the radiographs can potentially
improve the speed and accuracy of the diagnosis. This study
presents a multi-branch network that was capable of accurately
detecting complications following THA. By utilizing multiscale and
multilevel network models, different image features can be
effectively captured, yielding a better performance than
conventional methods. The assessments in this study were
carried out using a comprehensive multi-label dataset of
complications following THA, composed of high-quality X-ray
images of hip prosthesis failures. Furthermore, this study
demonstrated the effectiveness of domain prior fusion, showing
that combining domain-specific information can drastically
improve model performance.

The ablation studies presented in this report, performed across
both multi-label and binary classification tasks, clearly show that the

TABLE 4 Comparative performance of various models in identifying each post-surgical complication using five-fold cross-validation: average results (%).

Model Osteolysis Loosening Fracture Dislocation Wear Infection Others

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

ResNet18 62.7 53.2 58.0 55.9 93.3 90.0 93.7 90.6 60.0 57.4 94.4 91.6 92.3 88.6

ResNet18 + GFS 62.5 58.8 59.8 59.1 93.3 90.0 94.1 91.6 62.3 61.1 94.4 91.6 92.8 89.6

ResNet18 + GFS + MC-CSRA 63.2 60.5 56.7 55.6 93.3 90.0 94.1 91.6 63.0 60.2 94.4 91.6 92.8 89.6

ResNet18 + CFS 66.1 58.5 61.6 61.2 93.3 90.0 93.7 90.6 62.5 59.8 94.4 91.6 92.3 88.6

ResNet18 + CFS + MC-CSRA 64.5 58.7 60.6 59.1 92.8 90.5 93.7 91.0 59.3 56.9 94.4 91.6 92.8 89.6

ResNet18 + GFS + CFS 68.2 62.5 60.7 60.4 93.3 90.0 93.7 90.6 61.8 59.9 94.4 91.6 92.3 88.6

ResNet18 + GFS + CFS + MC-CSRA 65.7 57.9 54.0 52.7 93.5 90.5 94.1 91.6 58.2 53.9 94.6 92.4 93.0 90.3

GFS, Global feature stream; CFS, Channel feature stream; MC-CSRA, Multiple Coefficient CSRA block; Acc, Accuracy; F1, F1-score.

TABLE 5 Comparison of the binary classification performance of different methods on loosening subset of our dataset (%).

Method Accuracy Precision Recall F1-score

ResNet18 71.4 84.0 72.4 77.8

ResNet18 + GFS + CFS (Proposed) 88.1 92.9 89.7 91.2

Loppini et al. (2022) 78.6 91.7 75.9 83.0

Lau et al. (2022) 73.8 85.7 72.4 79.2

GFS, Global feature stream; CFS, Channel feature stream.

TABLE 6 Comparison of the binary classification performance of different methods on external loosening dataset (%).

Method Accuracy Precision Recall F1-score

ResNet18 56.8 67.3 62.5 64.8

ResNet18 + GFS + CFS (Proposed) 92.9 96.4 93.1 94.7

Loppini et al. (2022) 54.5 73.7 44.6 55.6

Lau et al. (2022) 58.0 73.2 53.6 61.9

HipXNet Rahman et al. (2022) 96.1 96.4 96.4 96.7

GFS, Global feature stream; CFS, Channel feature stream.
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proposed ResNet18+GFS+CFS model outperforms the baseline
ResNet18. The superior performance enhancement is primarily
due to the seamless integration of GFS and CFS, allowing the
module to capture both global and local features. This, in turn,
produces a more comprehensive feature map of THR complications.
These findings echo previous research (Xie et al., 2021),
substantiating the claim that a judicious combination of global
and local features substantially boosts image classification
performance. In particular, this highlights the importance of both
fine-grained local features and global context for discerning complex
patterns, especially in the realm of medical imaging. This study also
serves as a proof of concept that existing models like ResNet18 can
be refined by integrating task-specific components, which can
potentially be generalized to various image-based medical
diagnostic tasks.

From clinical practice experience, the authors observed that
there may be certain underlying correlations between the occurrence
of postoperative complications in the same patient during the same
period. For example, post-THA infections typically occur
independently from other complications, whereas periprosthetic
osteolysis can lead to aseptic loosening. Therefore, we
hypothesized a correlation between the labels. To exploit the
potential relationships between these label classes, we devised an
MC-CSRA (multi-label classification with class-specific regional
attention) block that enabled the model to learn correlations
between different labels, thereby improving the prediction
accuracy. Ablation experiments also demonstrated a considerable
improvement in overall performance after integration of the MC-
CSRA module. These findings are consistent with previous research
(Muralidhar et al., 2018; Xie et al., 2021), which suggests that
integrating domain knowledge can improve the efficiency and
accuracy when data is scarce or noisy. In contrast, rather than
introducing domain knowledge directly, we designed a module that
allows the model to independently acquire or focus on relevant
domain knowledge, even if it appears to be easily understandable to
humans, which can greatly improve the performance of the model.

Building upon this, our findings from the five-fold cross-
validated ablation experiments offer valuable insights. The
incorporation of the MC-CSRA block unmistakably enhanced the
model’s overall mAP. It also heightened the predictive accuracy for
complication classes with fewer images, albeit with a mild reduction
in the predictive acumen for more image-abundant complication
classes. This trend can be traced back to the MC-CSRAmechanism’s
design, which accentuates inter-class dynamics. By earnestly seeking
out correlations amongst diverse labels and amalgamating domain-
specific knowledge, the mechanism might amplify the focus on
infrequent complications. This shift can occasionally temper the
performance for more dominant complications, exemplified by
‘loosening’. Given today’s medical imaging milieu marked by
pronounced data imbalances, the MC-CSRA’s approach provides
a meaningful way to balance performance across varied categories.
While the MC-CSRA block has shown potential in enhancing model
performance for classes with fewer images, it is essential to note the
observed decrement in performance for classes with abundant data.
This deviation is not negligible, especially when considering the
clinical relevance of categories like ‘loosening’ that are often key
indicators for postoperative revision surgery. This effect is likely
attributable to the attention shift induced by the MC-CSRA

mechanism, causing the model to dilute its focus on dominant
yet clinically significant classes. Therefore, the adoption of the MC-
CSRA block comes with an implicit trade-off that practitioners
should consider carefully based on the clinical objectives. Future
work should explore mechanisms for tuning the MC-CSRA block to
mitigate the observed performance decrements in dominant classes,
potentially through weighting schemes or hybrid attention models.
In a clinical setting where both prevalent and infrequent
complications are of significant concern, the choice to
incorporate MC-CSRA must be clinically justified, and the
limitations carefully weighed against its advantages.

Our study, to the best of our knowledge, is the first to use deep
learning for the automatic detection of multiple complications in
X-ray images. Prior research in the field, such as the works by Shah
et al. (2020), Rahman et al. (2022), Loppini et al. (2022), and Lau
et al. (2022) , showed promising results but often focused on
identifying specific types of complications like loosening or
dislocation. Our approach broadens the horizon by being able to
detect a wider spectrum of complications. Specifically, our model is
not only capable of identifying different types of complications but
can also automatically flag multiple complications. Unlike previous
approaches, it does not depend on historical or demographic data
from patients or specific information about the diagnosed
complications. The proposed model can pinpoint complications
on X-ray images, whether they are in the anterior or lateral view.

Our research is a significant step forward from previous
attempts at applying multi-label classification to X-ray imaging
(Xu et al., 2020; Wang et al., 2021). The approach drew from
similar concepts using multi-label classification but innovatively
applied it to THA complications. Moreover, our method uniquely
allows for the interrelationships between different complications to
be understood, whereby the MC-CSRA block is intentionally
designed to learn the correlations between distinct labels. This
enhances not only the prediction accuracy but also offers
insightful observations into the interconnected nature of
postoperative complications. Our model operates independently,
identifying complications solely from X-ray images regardless of
their orientation, which underscores the robustness of our approach.
We believe these advancements clearly demonstrate the novelty of
our work, extending the boundaries of deep learning applications in
medical imaging and setting a new standard for the automatic
detection of multiple THA complications.

Although our study yielded positive results, it also has some
limitations. Firstly, the number of images of some complications in
our dataset, such as infections and fractures, is limited, and even
with model improvements, the accuracy may need further validation
for clinical use. Secondly, our imaging data originated from
preoperative images of patients scheduled for THA revision
surgery. Therefore, the algorithm has not been assessed in
patients that have not been diagnosed with a complication or if
symptoms are not severe enough to warrant surgery. The accuracy,
sensitivity, and specificity values for the proposed model may not be
applicable to this population. Lastly, further studies are required to
authenticate the generalisability of our proposed multi-branch
network using larger datasets across multiple institutions.

Future research in this area should aim to broaden the scope of
the dataset and incorporate a more comprehensive range of
complications for more precise results that are applicable to a
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wider population. It is pertinent to accurately identify complications
on X-ray images for effective preoperative planning of THA revision
surgery as this helps delineate appropriate surgical access, implant
selection and surgical techniques. Therefore, an encouraging
strategy would be to integrate deep learning methods for
identifying complications during the preoperative planning of
THA revision surgery.

In conclusion, this study presents a pioneering approach to
using a multi-branch network based on X-ray images to identify
complications following THA. The findings of this study highlight
the efficacy of using deep learning techniques for detecting
complications as well as the benefits of leveraging domain-
specific prior knowledge to enhance the model’s performance.
The findings of this study serve as a foundation for further
research in diagnosing complications after THA. Future research
could focus on constructing larger datasets with different
complications to improve the accuracy and robustness of the model.
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