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The classical optical theorem states that for a wave propagating in a lossless
medium and incident on a finite scatterer, the extinction cross section is
proportional to the real part of the scattering amplitude in the forward
direction. When developing a light scattering theory known as the generalized
Lorenz–Mie theory, it has been a surprise to observe that in 1982, the optical
theorem failed when the scatterer was illuminated by an arbitrary-shaped beam.
The extremely simple reason for that failure has been understood only in 2014 and
published in 2016. This represents a more than three-decade-long story, which is
called a “wow” story for reasons that will be mentioned in this paper. The
opportunity of this story which pertains to both the history and philosophy of
sciences is considered to provide a review of the optical theorem under arbitrary-
shaped beam incidence in electromagnetism, acoustics, and quantummechanics.
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1 Introduction

The classical optical theorem states that for an electromagnetic wave propagating in a
lossless medium and incident on a finite scatterer, the extinction cross section (total cross
section for elastic plus inelastic scattering), either for a spherical or non-spherical particle, is
proportional to the real part of the scattering amplitude in the forward direction [1–3]. This
optical theorem should not be confused with the Ewald–Oseen extinction theorem,
sometimes also known as an optical theorem, which states that a wave incident at the
speed of light on a medium of different refractive indexes is extinguished by light emitted by
the atom at the speed of light and is replaced by a wave (the refracted wave) traveling at a
speed slower than the speed of light [4].

The story of the electromagnetic optical theorem that will be discussed in the present
paper began in 1982, at the earlier stage of development of what is now known as the
generalized Lorenz–Mie theory. This theory describes the interaction between an
illuminating electromagnetic arbitrary-shaped beam (or structured beam, typically a laser
beam) and a homogeneous sphere defined by its radius and its complex refractive index of
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refraction, as shown in [5] and references therein. In the most
general case, the incident beam is encoded by two sets of beam shape
coefficients (BSCs) which are usually denoted as gm

n,TM and gm
n,TE (n

from 1 to ∞, m from (−n) to (+n), TM for “transverse magnetic,”
and TE for “transverse electric”). In some cases, in particular for on-
axis Gaussian beams, e.g., [6], this double set of coefficients may be
reduced to a single set of uni-index BSCs gn in which the distinction
between transverse magnetic and transverse electric waves is washed
out. The first archival paper on GLMT, dated 1982 [7], was restricted
to such a special framework, using the uni-index BSCs for the first
time, which, nevertheless, has been sufficient to demonstrate, soon
after, the failure of the electromagnetic optical theorem. Although
not released in the archival literature, the demonstration of this
failure has been stored in internal reports issued in 1984 [8, 9]. This
has been followed by a long story before the discovery in 2014,
published in 2016 [10], of the deep reason for failure. In this story,
there has been two surprises: 1) the failure of the optical theoremwas
completely unexpected and, in the recent words of Markel [11], “it
came as a bit of surprise that the optical theorem (in its conventional
form) does not hold for sufficiently narrow Gaussian beams”; 2)
although several analytical works have been performed to study this
failure, it is only approximately three decades after its discovery that
the gist of it has been understood and could be explained without the
requirement of any equation [10].

This constitutes what may be called a “wow” story which is
discussed in Section 2 of the present paper. The contents of this
paper are afterward complemented as follows. Section 3 provides
a discussion of worldwide contributions to the electromagnetic
optical theorem. There also exist other versions of the optical
theorem, in acoustics and in quantum mechanics. The case of
acoustical waves is discussed in Section 4, while quantum
mechanics is discussed in Section 5. Finally, Section 6
provides the conclusion.

2 Thewow story of the electromagnetic
optical theorem

For the expression of the extinction cross section Cext, the reader
may most conveniently refer to Eq. 6.58 in [5] to obtain

Cext � λ2

2π
Re∑∞

n�1
2n + 1( ) gn

∣∣∣∣ ∣∣∣∣2 an + bn( ), (1)

in which λ is the wavenumber in the free space surrounding the
scatterer, an and bn are the Mie coefficients encoding the properties
of the scatterer, and gn denotes the uni-index BSCs. Figure 1 shows
the 1984-vintage version of the same expression.

Equation 1 has been published for the first time in the archival
literature in 1985 [12]. For convenience, when dealing with the
sequel, Eq. 1 is better rewritten as follows:

Cext � 4π
k2

Re∑∞
n�1

n + 1/2( ) gn

∣∣∣∣ ∣∣∣∣2 an + bn( ). (2)

Wemay also directly use the optical theorem, which tells us that
Cext is given by [1–3]

Cext � 4π
k2

Re S 0( )[ ], (3)

where S(0) is the light-scattering amplitude in the forward direction
for θ = 0, given by [13]

S 0( ) � −S1 0( ) � −S2 0( ), (4)
where in the uni-index GLMT framework [7],

S1 �∑∞
n�1

2n + 1
n n + 1( )gn anπn cos θ( ) + bnτn cos θ( )[ ], (5)

S2 �∑∞
n�1

2n + 1
n n + 1( )gn anτn cos θ( ) + bnπn cos θ( )[ ], (6)

where πn and τn denote the generalized Legendre functions.

πn cos θ( ) � P1
n cos θ( )
sin θ

, (7)

τn cos θ( ) � d

dθ
P1
n cos θ( ), (8)

where Pm
n is an associated Legendre function, expressed using

Hobson’s definition according to [14].

Pm
n cos θ( ) � −1( )m sin θ( )m dm

d cos θ( )mPn cos θ( ), (9)

where Pn denotes the usual Legendre polynomials.
In the forward direction θ = 0 (cos θ = 1), the generalized

Legendre functions to be used, with Hobson’s notation, are found
to be

πn 1( ) � τn 1( ) � −n n + 1( )
2

, (10)

so Eqs 3–6 lead to

Cext � 4π
k2

Re∑∞
n�1

n + 1/2( )gn an + bn( ). (11)

For a plane wave with parallel illumination (for oblique
illumination, see [15]), which is the usual Mie configuration, the
uni-index BSCs are constant phase factors, which are usually just

FIGURE 1
Vintage version of Eq. 1 from a 1984 internal report.
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taken equal to 1, e.g., Section 6.4 in [5]. Then, Eqs 2, 11 identify as
they should. However, in general, they are different, illustrating the
failure of the classical theorem for arbitrary-shaped beams. Another
example is provided by a beam known as the top-hat beam, which
may be used for optical particle sizing (OPS) [16–18] and whose uni-
index BSCs are gn = 1 for 1 ≤ n ≤ nmax and gn = 0 for n > nmax [19].
This beam, although exhibiting transverse localization, behaves as a
plane wave in both amplitude and phase in its plateau region.

The results associated with Eqs 1–11 were not sufficient enough
to be published in the archival literature. Furthermore, the
emergency was to complete the GLMT formalism and to make it
useable for practical applications. Due to algorithmic difficulties
associated with excessive computational times and keeping in mind
applications in the field of OPS requiring successful computations
for large enough particles (say with a diameter of approximately
100 μm), the first relevant computations have been published only in
1988 by Corbin et al. [20], and the first genuine applications to OPS
have been published only in 1993–1994 by Gréhan et al. [21–23].

This was then the right time to return to the optical theorem
issue. The optical theorem material described previously has then
been incorporated in a paper published in 1995 by Lock et al. [24].
Then, let us consider the case of an on-axis Gaussian beam,
propagating in the z-direction, polarized in the x-direction at the
waist, and described using what is known as a localized
approximation in which the uni-index BSCs read as follows [25–29]:

gn � exp −s2 n + 1/2( )2[ ], (12)
where s is the beam’s confinement factor, which is defined as

s � 1
kw0

, (13)

where w0 is the beam’s waist radius. The value of s ranges from 0 for
a plane wave (corresponding to w0 →∞) to s ~ 1/(2π) ~ 0.16 when
the beam is focused down to the diffraction limit with w0 ~ λ. For a
plane wave, we obtained gn = 1 so that the classical optical theorem is
indeed valid.

It should be noted that the uni-index BSCs in Eq. 12 are real
numbers, and Taylor expanding one of the BSCs (but not both of
them) in Eq. 1, we obtain

Cext � 4π
k2
∑∞
j�0

−1( )js2j
j!

Re S2j+1 0( )[ ], (14)

where

Sj 0( ) �∑∞
n�1

n + 1/2( )jgn an + bn( ). (15)

We then remark that the j = 0 term in Eq. 14 reads as follows:

Cext j � 0( ) � 4π
k2

Re∑∞
n�1

n + 1/2( )gn an + bn( ), (16)

which is exactly the result of Eq. 11, now rewritten as Cext(OT)
obtained by using the classical optical theorem, and does not depend
on the beam confinement factor. Therefore, Eq. 14 may be rewritten
as follows:

Cext � Cext OT( ) + 4π
k2
∑∞
j�1

−1( )js2j
j!

Re S2j+1 0( )[ ], (17)

which shows thatCext is equal to the extinction cross section given by
the classical optical theorem, supplemented by an infinite series in
terms of successive powers of s2. The paper proposed by Lock et al.
[24] is complemented by studying two special cases, i.e., the wide-
beam approximation when w0 ≥ a (in which a is the radius of the
spherical scatterer) and the narrow-beam approximation
when w0 ≤ a.

The wide-beam approximation is studied using two assumptions
1) that diffraction dominates all other scattering processes in the
forward direction, allowing one to use a Debye-series decomposition
of the partial-wave scattering amplitude and 2) that the plane-wave
extinction efficiency is roughly equal to 2, e.g., [30], pp. 120–122. We
then obtain

Cext � 4π
k2

Re S 0( )[ ] − s2 S 0( )| |2{ }, (18)

where the expression for the classical optical theorem is
complemented by an O(s2)-term. Since the wide-beam
approximation “approaches” the case of a plane wave, only one
correctionO(s2)-term is required. Again, for a plane wave, i.e., s→ 0,
Eq. 18 reduces to Eq. 3. The result for the narrow–wide
approximation is more involved and, therefore, not
reproduced here.

The same issue, namely, the generalized optical theorem for on-
axis Gaussian beams, was considered in 1996 by Gouesbet et al. [31].
The uni-index BSCs are given as follows:

gn �∑∞
l�0

−1( )l
l!

Nls
2l, (19)

where three different approaches are considered. In the first
approach, Nl = nl, where

n0 � 1, (20)
nl � n − l( ) n − l + 1( ) . . . n − 1( ) n + 2( ) n + 3( ) . . . n + l + 1( ), l≥ 1.

(21)
A beam described by Eq. 19 is called a standard beam. It is

obtained by generalizing to infinite order the expressions of the BSCs
obtained when dealing with the first-order, third-order, and fifth-
order Davis scheme of approximations [6, 19, 32]. However, let us
note that the standard scheme has a finite radius of convergence and
has afterward been modified to an improved standard scheme [33].
Furthermore, it has unexpectedly been demonstrated that the Davis
scheme of approximations, the standard scheme, and the improved
standard scheme all lead to asymptotic series, similar to the ones
encountered in quantum electrodynamics, that is to say, series
whose first terms provide a satisfactory answer to the problem in
hand, although they eventually diverge [34].

In the second approach,

Nl � n + 1/2( )2l, (22)
which simply corresponds to the localized approximation of Eq. 12,
while the third approach leads to

Nl � n − 1( ) n + 2( )[ ]l, (23)
which corresponds to an improved localized approximation. For the
improved localized approximation and variants, see [35–38] for a
review and [39–41] for complements.
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Inserting Eq. 19 into Eq. 2 leads to

Cext � 4π
k2

Re Spw 0( )[ ] +∑∞
l�1

E2ls
2l

⎧⎨⎩ ⎫⎬⎭, (24)

where

E2l � −1( )lRe∑∞
n�1

n + 1/2( ) an + bn( )∑l
i�0

NiNl−i
i! l − i( )!, (25)

where the first term in the series of Eq. 24, with pw standing for the
“plane wave,” is expressed in terms of the optical theorem, i.e., using
Eq. 11 with gn = 1 as follows:

Cpw
ext � 4π

k2
Re∑∞

n�1
n + 1/2( ) an + bn( ). (26)

This is in contrast with Eq. 17 in which the first term Cext(OT)
given by Eq. 11 is obtained by applying the optical theorem to the
focused beam, in which the BSCs gn are the ones of the shaped beam
and not the ones for a plane wave. However, in both cases, the first
term is complemented by a series in powers of s2. It should also be
noted that in the case of a standard beam with Nl given by nl in Eqs
20, 21, we expect that Eq. 24 would generate an asymptotic series.

Furthermore, for the localized approximation and modified
localized approximation cases, we may use

∑l
i�0

1
i! l − i( )! �

2l

l!
(27)

and establish that Eq. 25 reduces to

E2l � −1( )l2l
l!

Re∑∞
n�1

n + 1/2( ) an + bn( )Xl, (28)

where X = (n + 1/2)2 in the localized approximation case and (n −
1)(n + 2) in the modified localized approximation. Finally, we may
also establish [31]

Cext � 4π
k2

Re S 0( )[ ] +∑∞
l�1

F2ls
2l

⎧⎨⎩ ⎫⎬⎭, (29)

in which the first term now corresponds to the classical optical
theorem applied to the shaped beam and F2l is given by

F2l � −1( )lRe∑∞
n�1

n + 1/2( ) an + bn( )∑l
i�1

NiNl−i
i! l − i( )!, (30)

which is observed to be similar to Eq. 25, but for the summation
index i which starts from 1 instead of 0.

At this stage, we possess a fairly complete analytical discussion of
the failure of the optical theorem, together with additional
comments and numerical results obtained from [24, 31]. The
issue has then been put aside for another 10 years. The next
ingredient for the final step has been the introduction of the
Angular Spectrum Representation (ASR). Instead of encoding the
shaped beam by using BSCs, it is indeed possible to represent it as a
combination of incident tilted plane waves. This ASR has been
extremely undervalued for a long time because, when handled
numerically, it performs very poorly as exemplified by a paper
from Lock [42], see also pp. 52–54 in [5]. However, we now
know that ASR may be in some cases handled analytically that it

may then be used to evaluate the BSCs of GLMT and then provides a
new method to complement the arsenal of methods which can be
used to encode the shaped beams, see, for instance, recent works in
[43–45], [46], [47], [48] and the review in [49].

In the framework of the present story, two papers published in
2015 by Gouesbet and Lock are important [50, 51]. It means that, in
2014, the two authors of these papers had everything in mind for the
final step. This final step happened in September 2014, during a tour
in the French Alps, after the “laser-light and interaction with
particles” conference held in Marseille from 25 to 29 August
[52]. During a meal, Lock began a sentence which was completed
by Gouesbet. The content of this sentence is explained in Figure 2,
which provides the final explanation of the failure of the optical
theorem for shaped beams: The classical optical theorem applies
with respect to the direction of propagation of each tilted plane wave
of ASR, but these directions generically do not identify with the
direction of the beam. In other words, the plane-wave illumination
assumption behind the optical theorem is very restrictive, i.e., the
plane-wave illumination assumption is a prerequisite for the
application of the optical theorem, as explicitly stated, for
example, in [53–55]. This will also apply to acoustical and
quantum mechanical waves discussed in the sequel.

This is the end of the wow story for the optical theorem, but it
must be complemented by an additional wow result which is
strongly connected to the optical theorem issue by an incredible
coincidence. Soon after the revelation of the deep reason as to
why the classical optical theorem fails for structured beams, one
of them (G. Gouesbet) heard of an experimental result, according
to which photons in a structured beam travel at a velocity slower
than the speed of light (even in vacuum). In these experiments,
Giovannini et al. [56] dealt with single photons propagating in a
confocal telescope. Two photons are generated as a photon pair
that is strongly correlated in wavelength and generation time.
The arrival times of the photons traveling through two different
arms of an interferometer are compared with femtosecond
precision using a quantum effect known as the
Hong–Ou–Mandel effect. Then, they found that these arrival
times indicate that photons did not travel at the same speed.
G. Gouesbet met one of the authors, Miles Padgett, in March
2015, during a European/French Israeli Symposium on non-
linear and quantum optics. Padgett expressed his
disappointment that the news was badly received.

Actually, it has a very easy classical explanation drawn in
Figure 3 which is quite similar to Figure 2. Photons travel at the
speed of light in the direction of propagation of the tilted waves
which is not the direction of propagation of the beam. The
velocity V of a photon in the direction of propagation of the
beam is actually equal to c cos θ in which θ is the axicon angle of a
tilted plane wave. An interesting case is the one of Bessel beams
whose tilted waves all have the same tilt θ, which is the axicon
angle of the whole beam. Then, we determined that the speed of a
laser light of Bessel beams can be made very slow, actually in
principle arbitrary slow (notwithstanding the fact that there
would be experimental practical limitations and that Bessel
beams are not physical because they propagate an infinite
amount of energy). A quantitative analysis of the effects
shown in Figures 2, 3 is available in the work of Gouesbet and
Lock [10].
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3 Worldwide contributions to the
failures of the optical theorem in
electromagnetism

In this section, we deal with worldwide contributions toward the
failures of the optical theorem, therefore restricting ourselves to the
case of arbitrary-shaped beams and excluding generalized optical
theorems under plane-wave excitation. We also exclude papers
which, although dealing with non-plane excitation, deal with
formulations that cannot be embedded in a framework using
BSCs, excepted possibly if a failure caused due to non-plane-
wave excitation is explicitly considered. Non-exhaustive examples
of such papers which, for such reasons, are not deeply analyzed are
by Jones [57], Carney et al. [53, 54], Gulyaev et al. [58], Lytle II et al.
[55], Berg et al. [59, 60], Cotanch [61], Small et al. [62], Eremin and
Svesnikov [63-65], Eremin [66]. A story of the issue is due to Newton

[67]. There are also papers dealing with incident spherical waves
emitted by point sources, such as the work of Athanasiadis et al. [68],
leading particularly to a mixed reciprocity theorem which relates
plane-wave incidence to point-source incidence. This paper
proposed by Athanasiadis et al. is quoted in [69] which dealt
with the fact that the spontaneous emission from an emitter
depends on the surrounding medium and the modification of the
optical theorem in the case of incident point-source fields was
examined. Point sources were also discussed by Eremin and
Sveshnikov [63] who provided a version of the optical theorem
for the field of a point source in the presence of a transparent semi-
space. The case of invariant beams (another name for “non-
diffracting” beams) was analyzed by Rondon-Ojeda and Soto-
Eguibar [70] using an angular spectrum representation, ASR
(which could be converted to an analysis in terms of BSCs, as
observed in [51]) with applications to Rayleigh scattering and to

FIGURE 2
Understanding the failure of the optical theorem.

FIGURE 3
Speed of laser light is slower than the speed of light.
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Bessel beam scattering, as shown by Rondon and Lee [71], for a
similar complementary discussion. Another paper by Rondon [72]
proposed a general expression for the optical theorem in terms of
localized waves (which have frozen waves as a special case), e.g.,
[73–76] and references therein. They used ASR to write a physical
condition related to the optical theorem. Then, the author
commented that he explored several general mathematical
representations of generating structured beams and found that
the use of localized waves were the best one to fulfill the physical
solution, i.e., he missed the possibility to use BSCs. Although
devoted to plane waves and outside of the main stream of the
present review, it is worth quoting a paper proposed in [77] which
dealt with the optical theorem in the case of weakly absorbing media,
i.e., when the host medium surrounding scatterers is not
transparent.

An issue correlated with the one of the optical theorem concerns the
properties of diffracted light. Indeed, for a sufficiently large size
parameter (ka ≫ 1) and small scattering angle (θ < 6°) and for a
uniform plane wave, it is known that diffraction leads to a narrow and
intense lobe in the forward direction, as stated by van de Hulst [2], that
is to say in the same direction than the one used for the optical theorem.
The same argument which has been used for the optical theorem,
relying on Figure 2, may then be used for diffraction as well, such that
van de Hulst statement holds for each tilted plane wave of ASR but does
not hold for the structured beam as a whole. Then, we may expect
departures between GLMT and diffraction theory (DT) in the forward
direction.

Although the aforementioned argument was not yet understood
in 1990, the study in [78] devoted to the comparison between GLMT
and DT demonstrated that such departures do exist. In this study,
the far-field light scattered by a spherical particle illuminated by an
on-axis Gaussian beam, with the BSCs evaluated by using a localized
approximation, was considered. The expression for the localized
approximation is more general than the one in Eq. 12 because it
incorporates the parameter z0 which is the z-coordinate of the beam
waist center with respect to the center of the scatterer, read as

gn � i �Q exp −i �Q s2 n + 1/2( )2[ ]{ }exp ikz0( ), (31)
where

�Q � 1

i − 2z0
kw2

0

, (32)

which reduces to Eq. 12 when z0 = 0.
Extensive comparisons between GLMT and DT for a scattering

angle ranging from 0 to 0.04 radians (approximately 2°), both from
transparent and opaque particles, with radii ranging from
approximately 10 μm to approximately 30 μm, for a wavelength
equal to 632.8 nm, then showed that this is indeed the case,
particularly when the particle is not located at the beam waist
center of the beam. Departures between GLMT and DT can be
observed in the strict forward direction, i.e., for θ = 0°.

Another comparison between GLMT and DT is available in [79]
where the sensitivity of the forward field to the particle axial position
and beam width was studied for the case of an on-axis Gaussian
beam both theoretically and experimentally, revealing significant
departures from plane-wave scattering behavior. In particular,
Figure 4 in [79] shows and compares a diffraction-based
description of the forward field with GLMT simulations.

Computations are carried out in the far-field referring to a
criterion for the validity of the far-field approximation obtained
as πa2/(λr) ≤ 0.2 [80] in which r is the distance from the center of the
scatterer. The authors comment that the forward direction θ = 0 has
a particular significance because the total intensity in the forward
direction correlates with the extinction of the incident beam. It is
then found that for w0/a ≥ 1, i.e., when the particle interacts with
what is locally a plane wave, from the point of view of the particle,
GLMT and DT agree in contrast with the case w0/a ≤ 1, when the
beam is essentially “blocked” by the particle, in which the
diffraction-based description cannot completely account for the
behavior of the total field in the forward direction. Another
interesting result concerns the efficiency factor Qext defined as
the scattered power divided by the power that is geometrically
incident upon the particle, the latter being evaluated accounting
for the fact that the incident beam is not a plane wave, leading to

Qext � Cext

πw2
0

2 1 − exp −2a2
w2
0

( )[ ]{ }, (33)

from which we may obtain the usual plane-wave result Qext = Cext/
(πa2) when w0 → ∞. Then, Figure 3 of [79] shows that Qext rapidly
tends to become 2 when the particle radius is large enough. This is
another justification of an assumption made by Lock [24] when
studying the wide-beam approximation.

A discussion of extinction in Gaussian beam scattering by Lock
has been available in the same year [81]. This paper is not related to
the optical theorem so far as it does not focus on the forward
direction nor on comparisons with the plane-wave behavior, but it is
worth being quoted in the present review paper because it provides a
thorough analysis of the behavior of extinction (more specifically of
extinction efficiency Qext) in the case of on-axis arbitrary-shaped
beam illumination (more specifically the Gaussian beam). Two
expectations are discussed when the particle is non-absorbing.
For the first one, it is expected that in the large-particle limit
a ≫ λ, that is to say when the particle is illuminated by a wave
somehow similar to a plane wave, Qext is approximately equal to 2.0
(a result already mentioned above), half of this value being due to the
diffraction of rays that graze the edge of the particle, the other half
being understood as the deflection of the geometrical rays that strike
the particle surface. The second expectation concerns the case when
a narrow beam is incident upon a large particle. The portion of the
wave that grazes the particle’s edge is exceedingly weak, so the
contribution of diffraction should be 0, andQext should be equal to 1.
The first expectation is confirmed by numerical computations, while
the second expectation is not confirmed. Instead, in the narrow-
beam limit, Qext as a function of the particle size parameter
continues to oscillate approximately about 2.0. These features are
examined in the GLMT framework using the localized approximation
of Eq. 12, with Qext defined by an equation similar to that of Eq. 33,
although the denominator used is a bit more complicated. This study
conducted by Lock must be complemented by the paper proposed by
Lai et al. dealing with the case of a two-dimensional light beam
interacting with a long transverse cylinder without absorption,
assuming short wavelengths, i.e., large size parameters ka, where a is
the radius of the cylinder cross section [82].

In [83], a small particle is located in front of a glass prism in
which a plane wave is propagating with incidence at a subcritical
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angle. This plane wave at the surface of the prism is partly reflected
and partly refracted. The refracted wave may be expressed using
either a p- or an s-polarization wave. Expressions for the scattering
and extinction cross sections have been derived, assuming that the
illuminating wave is an evanescent wave, using a formulation that is
somewhat similar to GLMT formalism, i.e., relying on the expansion
of fields (incident, scattered, and in the interior of the sphere) and on
the use of boundary conditions. The definition of cross sections for
evanescent-wave excitation allows quantitative comparison with the
case of plane-wave excitation. It is found that, within the dipole
approximation, the cross sections for plane-wave excitation lies
between those for p- and s-polarized evanescent-wave excitation.
It is also found that higher multipole contributions are strongly
enhanced as compared to plane-wave excitation. It is mentioned that
the present approach has already been discussed in the case of
Gaussian beam illumination, referring to papers mentioned
previously in the present review [24, 31, 81]. Numerical results
are explicitly provided in the case of scattering of evanescent waves
by “small” silver particles, such as for particles with radii equal to
5 and 100 nm and wavelengths between 300 and 1,000 nm.

Returning to the optical theorem, we now have a paper by
Mitri [84] that dealt with the generalization of the optical
theorem in cylindrical coordinates when an arbitrary EM-
shaped beam illuminates an elongated object of arbitrary
shape. The theoretical analysis relies on a GLMT-like
approach, in which the fields are expanded in terms of vector
wave functions, and the relationship between incident and
scattered waves are obtained through the use of boundary
conditions, see [85] for a review. The incident beam is then
encoded by using cylindrical BSCs An(kz) and Bn(kz) in which kz
is the axial wavenumber of the incident field. Similar to the
double-quadrature method used in GLMT for spherical particles
[86], the cylindrical BSCs are expressed by a double-quadrature
(over the scattering angle and over the axial coordinate).
Asymptotic limits for the cylindrical Bessel and Hankel
functions and their derivatives are considered in the far-field,
although this is not compulsory as discussed in Appendix. The
main result is then provided by Eq. 16, which is given with a slight
modification, according to

Cext � −2K ∑+∞
n�−∞

∫+∞−∞k−3k2r an + an*( ) An kz( )| |2[{
+ bn + bn*( ) Bn kz( )| |2]dkz}, (34)

where kr is the radial wavenumber and an and bn are scattering
coefficients of the objects determined by applying boundary
conditions, similar to the Mie coefficients an and bn in spherical
coordinates. The constant K, homogeneous to a length, may be
viewed as a normalization constant, which is considered to be the
length L of the cylinder in [84], whichmay also be considered to be 1,
or better defined according to the actual properties of the
incident beam.

Section 2 deals with on-axis beams, where BSCs were uni-index
coefficients. However, in general, they are double-index coefficients,
traditionally denoted as gm

n,TM and gm
n,TE (n from 1 to ∞, m from

(−n) to (+n), TM for “transverse magnetic,” and TE for “transverse
electric”), e.g., [5]. In cylindrical coordinates, BSCs depend on two
indices, but one (n) is discrete, while the other (kz) is continuous.

Accordingly, Cext of Eq. 34 is expressed by a summation associated
to n and with an integral associated with kz. This contrasts with the
spherical case where, BSCs having two discrete indices, the spherical
Cext is expressed by a double summation. Finally, let us note that
although [84] provides a generalized optical theorem, there is no
explicit comparison with the case of a plane-wave incidence so that
the failure of the optical theorem is not explicitly described, a
possible issue for future work.

Then, the work in [87] experimentally demonstrated a
complete violation of the classical optical theorem in the case
of radially polarized beams at both visible and microwave
frequencies. It was shown that a plasmonic particle
illuminated by such a beam experiences a strong extinction in
contrast with the fact that they have 0 scattering in the forward
direction. They argued that the violation is a direct consequence
of the appearance of the longitudinal field components at the
focal spot where the scattering object is located. They also
provided a generalized optical theorem which provides a good
agreement with the observed results. Similarly to the study
proposed by Rondon-Ojeda and Soto-Eguibar [70], their
generalized theorem is established by relying on ASR (and is
not expressed in terms of BSCs). Numerical calculations are
carried out by using finite element software dealing with the
scattering from a 100 nm spherical gold nanoparticle and
comparing linearly and radially polarized beam field
distribution obtained in the paraxial approximation.
Experiments are carried out with optical Fourier microcopy
with 100 nm gold colloidal nanoparticles and microwave
scanning microscopy at the frequency of 9.5 GHz with a
3.5 mm sphere made from stainless steel.

This section is concluded with a review paper by Markel,
dealing with the extinction of electromagnetic waves [11]. The
optical theorem is specifically discussed in Section 4.4 in [11].
The case of a single plane wave is discussed in Section 4.4.1. The
case of several plane waves is considered in Section 4.4.2. This
case is particularly interesting in the present paper because it
matches the explanation of the failure of the optical theorem
shown in Figure 2, although the author dealt with a discrete
superposition of plane waves, in contrast with the fact that the
ASR of an arbitrary-shaped beam, in general, is a continuous
spectrum. The section then proposes a generalized optical
theorem for several incident plane waves oscillating at the
same frequency, in which Qext is expressed by a discrete
summation. The author succeeds to reach the gist of the
failure by noting that, “in the case of several incident plane
waves, there is no well-defined forward direction, and therefore,
the extinction cross section does not have the same simple
interpretation as in the case of a single plane wave,” an
explanation already available in [10] for the more general
case of arbitrary-shaped beams (laser beams in practice).

4 Generalized and extended optical
theorems in acoustics and applications

Similar to the case of electromagnetism, failures of a classical
optical theorem in acoustics lead to an extended optical theorem in
acoustics which is reviewed in the present section.
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4.1 Some applications of the regular optical
theorem in acoustics

To appreciate the context of subsequent developments, it is
appropriate to recognize selected applications with plane-wave
illumination up to the year 2000. Morse and Feshbach in their
1953 textbook [88] included an analysis of the extinction cross
section of a sphere illuminated by a plane wave along with a
discussion of the absorption and scattering cross sections. The
extinction is equivalent to the ordinary optical theorem, Eq. 3,
by combining equations given on pages 1488 and 1489. In the
more specialized 1968 textbook devoted to acoustics, Morse and
Ingard [89] on pp. 426 and 427 explicitly expressed the
extinction power in terms of the complex forward scattering
amplitude as here in Eq. 3. During that era, an appreciable
fraction of researchers interested in acoustical scattering had
completed the coursework in quantum mechanics, and it was
unnecessary to emphasize the relationship with quantum
mechanical scattering theory and the generalization with
appropriate notation to three-dimensional acoustical
scattering theory by non-spherical objects. Expressions
relating the energy flux density to the local acoustic
amplitudes can be found in the publications referenced in
this section. In many acoustical publications, cross sections
are designated by σ instead of by the symbol C used in the
present article.

By 1990, Kargl and Marston [90] used results equivalent to Eq. 3
to compute the extinction of sound by an empty elastic shell in water
in the absence of significant energy absorption. The complex
scattering amplitude was evaluated using a partial-wave series
which was accurate for the idealized case in which there was no
absorption of energy in water. Using a notation analogous to Eq. 3,
the normalized cross section Cext/(πa

2) (where a is the shell’s outer
radius) was plotted as a function of ka, where k = 2π/λ and λ is the
wavelength in water. The important result is that Cext/(πa

2) differed
significantly from the analogous result for a rigid sphere in water
throughout the range ka of 0–100. For ka as large as 100, Cext/(πa

2)
for the shell differed significantly from the usual extinction paradox
value of 2, and it displayed a supposed structure approximately
periodic in ka. That additional structure was modeled using
quantitative ray theory that determined the contribution to
forward scattering caused by elastic waves guided by the surface
of the sphere. The elastic waves are excited by the illumination in
regions offset from the associated symmetry axis such that the
strength of the forward scattering is enhanced by a form of glory
scattering accounted for in the ray theory. It is noteworthy that the
measurements of the forward scattering amplitude using sufficiently
short duration tone-burst illumination revealed that guided wave
contributions arrived at the hydrophone before the ordinary forward
diffraction contribution associated with diffraction in the region of
the sphere’s equator. That is the expected relative timing because in
the ka region of interest, the group velocity of the guided elastic
waves significantly exceeds the speed of sound in water. See the ray
diagram in Figure 2 and the data in Figure 9 of [90]. It is evident that
surface-guided elastic waves and associated resonances complicate
the interpretation of Cext/(πa

2) for elastic shells in water even when
ka is as large as 100. For each resonance, there is an associated
partial-wave contribution.

4.2 Acoustic generalized optical theorem
(GOT) with plane-wave illumination

A derivation of GOT for a broad class of non-absorbing
scatterers producing three-dimensional scattered waves was
published in 2001 [91]. The GOT terminology used in the
present section follows that in the final edition (1968) of Leonard
Schiff’s acclaimed textbook [92]. The author primarily responsible
for the present section, Marston, can recall the profound impact of
Professor Schiff on experimental as well as theoretical physics
research at Stanford University, and the priority provided to his
terminology is appropriate in the present context. To present the
acoustical case [91], let pi denote the incident pressure amplitude
phase referenced to a point at the center of the symmetry of the
scatterer and let r be the distance from that point to the far-field
observer. The far-field complex scattered pressure is expressed as
follows using the exp(−iωt) time convention (which is not explicitly
expressed here and in subsequent developments, and opposite to the
usual exp(iωt) convention used in GLMT):

ps � pi A n,ni( )/r[ ]exp ikr( ), (35)
where ni and n are unit vectors in the direction of the incident and
scattered waves. The complex scattering amplitude A is a function of
the size and shape of the scatterer, its material properties, and k = ω/
c, where c is the speed of sound in the surrounding fluid. In the GOT
discussed here, the dissipation of energy in the surroundings and in
the scatterer are neglected such that the absorption cross section
vanishes. Under these circumstances, reciprocity holds giving
A(n,ni) = A(−ni,−n), corresponding to a reversal of the relative
directions. In addition, it is convenient to make the following
assumption concerning the shape and material properties of the
scatterer: inversion symmetry is satisfied by the scatterer.
Consequently, there is no change in the properties of the
scatterer when r is replaced by −r, where r is a vector from the
center of symmetry. It follows that A(n,ni) = A(−n,−ni). Letting Im
denote the imaginary part of a complex quantity and * denote
complex conjugation, the result of the analysis, Eq. 13 of [91], is as
follows:

4πIm A n′, ni( )[ ] � k∫A n, ni( )A* n, n′( )dΩ, (36)

where the solid angle differential dΩ pertains to the scattered
direction n within the integral and the integration is over 4π
steradians. The theorem allows a component of the complex
scattering amplitude in an arbitrary direction n′ to be expressed
in terms of an angular integration involving scattering amplitudes
evaluated at different directions n. The usual optical theorem for the
plane-wave illumination of a dissipationless target is given by taking
n′ = ni giving 4πIm[A(ni,ni)] = kCsca, which is equivalent to Eq. 3 for
this situation. With n′ = −ni, A(n′, ni) becomes the backscattering
amplitude and that special case of GOT was confirmed using
numerical integration for a perfectly soft sphere in [91]. For the
special case of scattering by spheres, A(n, ni) can be expressed using
a partial-wave series with coefficients in the series expressed as
proportional to (1 − sn) for the nth term [91]. The convention has
been widely used in acoustical scattering theory since the 1970s and
has the advantage that the complex sn are such that |sn| � 1 in the
absence of dissipation. Furthermore, that convention simplifies the
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comparison with standard results from quantum mechanical
scattering theory and will be retained in the present section. The
reader is cautioned that some recent authors designate a partial-
wave quantity sn in a different way occasionally resulting in
erroneous expressions for acoustical results. Equation 36 was also
shown to be relevant to certain multiple scattering problems [91].
The acoustic GOT in Eq. 36 is relevant to a combination of analytical
approaches to scattering and imaging [93].

4.3 Unusual scattering and radiation force
properties of spheres on the axis of zero-
order acoustic Bessel beams

To appreciate the need for an acoustical extended optical
theorem (EOT), it is appropriate to review the predicted
scattering and radiation force properties of spheres placed on the
axis of the acoustical Bessel beams. While it has been noted
previously that a true Bessel beam transports an infinite amount
of power, the power transported by a plane wave of infinite extent
also diverges and the scattering theory for both idealized cases are
worthy of attention. The complex scalar wave zero-order Bessel
function beam solution of the Helmholtz equation is

ψB0 R, z( ) � ψ0J0 μR( )exp iκz( ), (37)
where R � (x2 + y2)1/2 is the radial coordinate in a cylindrical sense,
z is the axial coordinate, μ2 + κ2 = k2 = (ω/c)2, μ is non-negative, and κ
is conveniently expressed in terms of the conic angle β as κ = k cos β.
While some of the modern interest in invariant beams of this type
and the associated geometric interpretation involving the angle β

were stimulated by Durnin [94], the explicit geometric
interpretation goes back to as far as lectures conducted by
Schelkunoff on waveguide modes in 1942 [95], where Bessel
wave fields were expressed using a “cone of directions of
elementary uniform plane waves.” The constant ψ0 expresses the
magnitude and in some cases a phase constant of the wave. In the
earliest publication on the scattering by spheres in acoustic Bessel
beams, ψB0 was considered to be an acoustic velocity potential ψ
related to the local complex velocity and acoustic pressure by u =▽
ψ and p = iωρ0ψ, where ρ0 is the density of the surrounding fluid. It is
to be noted that for a given ω, p is proportional to ψ. The general
solution for the far-field scattering for a sphere of radius a centered
at z = 0 on the axis of the beam is ψs = (a/2r)ψ0fB0 exp(ikr), where the
dimensionless form function fB0 is [96–99]

fB0 cos θ( ) � −i/ka( )∑∞
n�0

2n + 1( ) sn − 1( )Pn cos θ( )Pn cos β( ), (38)

where Pn are Legendre polynomials, θ is the scattering angle relative
to the z-axis, and the complex sn depend on ka and on the material
properties of the sphere and of the surrounding fluid, but not on the
beam parameter β (Figure 1 of [96] shows the parameter β and the
sphere). When β = 0, Pn(cos β) = 1, and the usual scattering solution
for plane waves incident on the sphere is recovered. The sn are
known for many types of spheres and in the special case of no
absorption of power |sn| � 1, as previously noted. An inspection of
Eq. 38 shows that the contribution of specific partial waves to the
scattering can be suppressed by selecting β such that Pn(cos β) = 0

[98]. This observation served to motivate the needed extension of
the optical theorem.

Another justification for considering an extended optical
theorem is the effect of β on the axial component of the
radiation force Frad on spheres. By 2006, conditions were found
where Frad < 0 corresponding to what is known as a tractor beam [96,
99]. In all cases where Frad < 0, the magnitude of the scattering into
the backward hemisphere was suppressed. In agreement with those
observations, in 2011, Frad was expressed directly in terms of the
extinction power Pext and the asymmetry of the scattering 〈cos θ〉
[100]as follows:

Frad � Pextc
−1 cos β − Pscac

−1〈cos θ〉, (39)
where the scattered power Psca is proportional to the denominator of
the scattering asymmetry

〈cos θ〉 � ∫1

−1
fB0

∣∣∣∣ ∣∣∣∣2wdw/∫1

−1
fB0

∣∣∣∣ ∣∣∣∣2dw, (40)

where w = cos θ and fB0 (w) is given by Eq. 38 for the present case of
zero-order Bessel beam illumination. Some readers may find the
related “open-access” discussion in [101] helpful.

The dependence on Pext motivated the interest in an extended
optical theorem even though other ways of evaluating Pext and Frad
were available in [98]. The result in Eq. 39 provides a simple
interpretation of negative Frad associated with momentum
transfer [100–102]. Figure 1 of [102] shows a helpful momentum
transfer diagram. By 2011, a corresponding result for light scattering
had appeared [103]. By 2012, the result in [92] had been generalized
to arbitrary scatterers in arbitrary diffraction-free beams [101] and a
partially analogous optical tractor beam had been demonstrated
[104]. By 2014, an acoustical tractor beam was demonstrated for a
specialized target having a large scattering asymmetry [105].

4.4 Simplest extended optical theorem
example—an axisymmetric object on the
axis of a zero-order Bessel beam

While the acoustical EOT derived in [101] and discussed in
[106] is more general, since those publications (and a related one in
[107]) are “open access,” for the purpose of illustration, the simplest
example will be shown here which is zero-order Bessel beam
illumination. Some readers may find the diagram in Figure 1 of
[106]helpful. Let the scattering amplitude be denoted by ψs = ψ0

[As(θ, ϕ)/r] exp(ikr), where ϕ is the azimuthal angle and ψ0 is defined
as in Eq. 37. For the present axisymmetric case, the EOT in Eq. 9 of
[101] reduces to an angular integration over the angular spectrum of
the illumination, giving the extinction cross section as

Cext � 2/k( )∫π

−π
Im As β, ϕ( )[ ]dϕ, (41)

where β is the conic angle of the beam. Equation 41 further reduces
this situation to

Cext � 4π/k( )Im As β, 0( )[ ], (42)
since for the present case, As does not depend on the azimuthal angle
ϕ. When the conic parameter β = 0, corresponding to plane-wave
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illumination, Eq. 42 reduces to the usual optical theorem [107]. For
the present example, the EOT in Eq. 42 necessitates the evaluation of
As at the conic angle β of the Bessel beam. The correctness of this
result is easily verified for scattering by a sphere where an
independently derived result for Cext is available [98]. In that case,
As = (a/2)fB0, where fB0 is given by Eq. 38, so Eq. 42 reduces to

Cext � 4π/k2( )∑∞
n�0

2n + 1( )Re 1 − sn( )Pn cos β( )2, (43)

where Re denotes the real part. Equation 43 agrees with the direct
analysis from conservation laws in Eqs 16–18 of [100]. When β = 0,
Pn(cos β) = 1 for all n and Eq. 43 reduces to the usual optical
theorem. It is to be noted that the nth partial-wave contribution is
suppressed by selecting β such that Pn(cos β) = 0 [98]. Consequently,
with Bessel beam illumination, the effect of specific elastic modes on
Cext for spherical shells in water (previously noted in relation to [90])
can be suppressed.

Another method of verification is available by using Babinet’s
principle, which is an approximation in the case of a fixed rigid disk
having ka ≫ 1 placed on the axis of a Bessel beam. The resulting
approximation for As(β, ϕ), which again does not depend on ϕ, may
analytically be evaluated giving a simple approximation for Cext. The
result is compatible with the result of the partial-wave series for a
fixed rigid sphere, when the appropriate projection of the disk area is
included in the analysis [108].

4.5 Extension of EOT to acoustical vortex
beams

Another example of non-plane-wave illumination is the case of
integer-order acoustic vortex beams (VBs) with a complex velocity
potential of the form

ψVB R, z, ϕ( ) � ψ0 R, z( )exp iZ R, z( ) + imϕ[ ], (44)
where ϕ is an azimuthal angle of the beam axis and ψ0 and Z are
separate magnitude and phase functions, respectively. An acoustic
beam in water demonstrated near the axis to have the dependences
in Eq. 44, in which m = 1 was demonstrated by 1998 using an
appropriately phased array of source transducers [109]. A special
case of such a beam is an idealized Bessel VB: ψBVB(R, z, ϕ) =
ψ0Jm(μR) exp(iκz + imϕ), where μ and κ are defined in Eq. 37. By
2006, the effect on the scattering of taking m = 1 was known [110],
and soon thereafter, the radiation force Frad was also known [111].
For the general integer m case and the associated geometrical
interpretation, see [100] (a formal proof of the conic
representation is in the appendix of [110]). The result of the
EOT, Eq. 43 for m = 0, for spheres in the axis of an arbitrary
integer-order Bessel beam is given by Eq. 12 of the open-access
publication [106], which is equivalent to the direct calculation of
extinction obtained in Eq. 17 of [100]. In the discussion which
follows, it is noteworthy that in the partial-wave series expansion for
extinction, absorption, and scattering cross sections, each contains a
factor [Pm

n (cos β)]2, where Pm
n is an associated Legendre function.

The possibility of significantly modifying contributions associated
with elastic resonances previously discussed form = 0 is also present
for the arbitrary integer m case.

In the case of axisymmetric objects placed on the axis of VBs,
calculating the absorbed power Pabs has additional significance.
By 1999 [109], it was realized that the axial radiation torque N on
the object is N = mPabs/ω though the method of derivation was
limited to paraxial VBs. By 2011, the derivation had been
extended to include non-paraxial VBs, the result having been
published in the abstracted form in 2009 [112] (for comparison,
from Maxwell’s equations, the radiation torque on a sphere
illuminated by circularly polarized light is Pabs/ω [102, 113]).
In the acoustic case, the prediction N = mPabs/ω was observed in
2012 and supported by experiments [114]. For a sphere in a
Bessel VB, the partial-wave expansion for Pabs [100] contains
terms proportional to (1 − |sn|2)[Pm

n (cos β)]2. For spheres in
certain size ranges, it becomes necessary to include the effects
of viscous energy dissipation in the surrounding fluid in the
evaluation of |sn| for the n = 1 (dipole) term [115]. When the fluid
parameters are such that the viscous Stokes layer thickness is
small in comparison with the particle radius, for dense particles
with ka ≪ 1, it has been possible to numerically confirm (using
finite elements) that the approximation in [115] is useful for
predicting the radiation torque and, thus, Pabs for a wavefield
having m = 1 [116].

It is noteworthy that for all types of illumination, Pabs is non-
negative for all scatterers lacking internal energy sources, which
are known as passive scatterers, the usual case of interest. Though
this was noted in [101], by 2016, it was necessary to publish a
detailed proof applicable to arbitrary source waves and geometries
[117] as a consequence of assertions made to the contrary by other
researchers. For the case of scattering by spheres, the analytical
expression for Pext, Pabs, Psca, and Frad may be converted to useful
forms by defining δn and non-negative γn such that sn = exp[2i(δn
+ iγn)], where δn + iγn is a complex partial-wave phase shift using
terminology used for quantum mechanical scattering. The
relevant expressions for plane-wave and mth-order Bessel beam
illumination are derived in an open-access publication [118]. For
examples of applications with γn = 0, see [119], which includes the
case of Bessel standing waves, and [120] for the optimization of
tractor beams.

4.6 Extinction for two-dimensional
scattering and other research

By 2000, the close analogy between the ordinary acoustical
theorem and the quantum mechanical three-dimensional case
was such that it was unnecessary to separately develop a theorem
for two-dimensional (2-d) scattering. The optical theorem in the
quantum 2-d case was by then well known [121, 122]. The
acoustical 2-d result for extinction was by then textbook
material [123]. The resulting series expressions for extinction,
absorption, and scattering are reviewed in [117] in the form that
is easily verified to agree with the quantum results [121, 122]. An
alternative expression is proposed by Mitri [124]. By 2001, a 2-d
generalized optical theorem had been developed and numerically
confirmed for the acoustical case [125]. Justification for
separately considering 2-d scattering is that the investigations
of 2-d situations are often useful when developing new scattering
theory [126, 127].

Frontiers in Physics frontiersin.org10

Gouesbet and Marston 10.3389/fphy.2023.1271555

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1271555


4.7 Relationship between acoustical
theorems and some modern optical
theorems

In this subsection, the terminology from Section 4.2 is retained
where generalized optical theorems are similar to the ones reviewed
in Eq. 36, in agreement with Newton’s terminology [67]. Theorems
of the type discussed in [54, 55] and in Sections 4.4, 4.5 for non-
plane-wave illumination become extended optical theorems. The
scalar-field approach discussed in [54], as well as the acoustical
approaches reviewed here, account for the interference resulting
from the different plane-wave components of the illumination and
associated components of the scattering. However, there is a
distinction in the method of derivation. Carney et al. [54]
assumed the scatterer to be characterized by a “susceptibility”
associated with a spatial variation of the compressibility of a fluid
medium considering only the case of fluid scatterers; however, if
there are spatial variations in the fluid density, the wave field differs
from the form considered in [54] (compare Eq. (8.1.12) of the work
of Morse and Ingard [89] with Eq. 2 of [54]). However, in many
acoustic scattering situations of interest, not only does the density of
the scatterer differs from the surroundings but also the scatterer may
be a solid object. Hence, the approach commonly used in acoustics is
to begin with known solutions for the scattering by a plane wave and
built up solutions for more complicated types of acoustic
illumination by superposition [96, 100, 101, 106, 107].

5 Failures of the optical theorem in
quantum mechanics

In quantum mechanics, there is a well-known version of the
optical theorem which is a landmark of basically all textbooks on the
issue. This classical version relies on the fact that when dealing with
the quantum mechanical scattering of a beam of projectiles by a
single force center, the projectile wave function is standardly
modeled by a plane wave since both the amplitude variation
along a phase front and the phase front curvature again are
negligible over the volume of a single target [128]. As noted by
[24], scattering by a transversely localized beam is generally not
important in quantum mechanical scattering, since the wave
function of a high-energy projectile incident on a small target is
well modeled by a plane wave. However, the need to model the
transverse localization of the beam is important for single or
multiple scattering of the projectile beam by a cluster of targets
when the cluster size is comparable to or larger than the beam
diameter. In this field, the approach to encode the incident beam is
by using an infinite series of partial waves, as revisited in [129] and
used below to reformulate the optical theorem, following [130].

Classically, when dealing with illuminating plane waves, the
optical theorem is usually expressed as follows [131–133]:

Cq
ext � 4π

k
Im fk 0( )[ ], (45)

where Cq
ext (q standing for “quantum”) is the quantum extinction

cross section, k is a quantum wavenumber, k the associated wave
vector, and fk(0) is the scattering angular function associated to a
quantum radial potential taken in the forward direction, for a

scattering angle θ = 0. The complete scattering angular function
(independently of the scattering angle) is given as follows:

fk θ( ) � 1
2ik

∑∞
l�0

���������
4π 2l + 1( )√

Sl − 1( )Y0
l θ( ), (46)

in which Sl’s are quantities (in general complex numbers) with a
modulus smaller than 1 and Y0

l ’s are spherical harmonics with
quantum number m equal to 0. Equation 46 may be rewritten as
follows:

Cq
ext � 2π

k2
∑∞
l�0

2l + 1( )Re 1 − Sl( ), (47)

which may be viewed as the quantum optical theorem expressed in
terms of partial waves. It may be worthwhile to note a structural
analogy between Eqs 43, 47, particularly for β = 0 (when the Bessel
beam is a plane wave). Furthermore, in both Eqs 43, 47, the partial-
wave summation ranges from 0 to ∞, due to the fact that both
acoustical and quantum scatterings are scalar scatterings, in contrast
with the vectorial electromagnetic scattering where the partial-wave
summation starts from 1, e.g., Eq. 1.

We now consider the interaction of a radial quantum potential
with a beam pertaining to a class of beams, called quantum
eigenarbitrary-shaped beams, defined by a Fourier transform read
as follows [129]:

Ψ r( ) � ∫
Ωk

a k( )exp ik.r( )dΩk, (48)

in which Ψ(r) is an incident (frozen) wave function, a(k) = a(k, θk,
φk) is the angular spectrum (with k � |k| fixed), and dΩk =
sin θkdθkdφk is an infinitesimal solid angle, with k, θk, and φk
spherical coordinates in the wavenumber space. The wave
function may be expanded over free spherical waves φ(0)

klm(r)
according to

Ψ r( ) �∑∞
l�0
∑+l
m�−l

aklmφ
0( )

klm r( ), (49)

in which the free spherical waves read as follows [131]:

φ 0( )
klm r( ) �

��
2
π

√
kjl kr( )Ym

l θ,φ( ), (50)

where jl(kr) are the spherical Bessel functions of the first kind and
Ym
l are the spherical harmonics. The expansion coefficients aklmmay

be called quantum beam shape coefficients (QBSCs) so far as they
play a role similar to the BSC-encoding electromagnetic beams.
Equation 49 shows that the QBSCs encode the quantum beam. By
inversion, we then show that these QBSC can be evaluated as
follows:

aklm � 4π

��
2
π

√
il

k
∫

Ωk

a k( )Ymp
l θk,φk( )dΩk, (51)

where the star denotes, as usual, a complex conjugation. Any choice
of QBSCs produces an eigenarbitrary-shaped beam. Given a set of
QBSCs, we may compute the spectrum a(k) by using the inverse of
Eq. 51 and then obtain the wave function of Eq. 48. This being said,
we may evaluate the associated quantum extinction cross section
reading as follows [134]:
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Cq
ext � 1

π
∑∞
l�0
∑+l
m�−l

aklm| |2Re 1 − Sl( ), (52)

which is the generalization of the classical optical theorem of Eq. 47,
both of these equations being valid for the elastic and inelastic cases
as well. Using the QBSCs of plane waves [135], we then demonstrate
that Eq. 47 is recovered from Eq. 52 as a special case. Furthermore,
the publication [130] discusses other special cases, such as on-axis
Gaussian eigenarbitrary-shaped beams and on-axis Bessel
eigenarbitrary-shaped beams.

The analogy between the Helmholtz equation in acoustics
and the spatial dependence of steady-state quantum wave
function Ψ(r) is such that quantum Bessel-shaped beams
analogous to the acoustic Bessel beam in Eq. 37 were
discussed in Eq. 23 of [130] and what corresponds to a QBSC
for the Bessel beam case was given in Eq. 25 of [130]. The result
obtained is directly analogous to the acoustic result reviewed in
Eq. 38 from [96, 97]. In this case, the quantum result in Eq. 52 and
Eq. 12 of [130] becomes analogous to the acoustic Bessel result
here in Eq. 43 based on the extended optical theorem stated in
[101, 106].

It is noteworthy in this context that quantum mechanical
“matter-wave” Bessel tractor beams have been proposed [136]
having a wave function analogous to Eq. 37 and scattering
properties directly analogous to those considered in the original
tractor beam case [96]. Unfortunately, the authors of [136] appear to
have been unaware of research subsequent to [96], greatly increasing
the magnitude of possible acoustic negative radiation forces on
spheres as known in 2016 in [99, 100, 111]. Even larger acoustic
negative force magnitudes for spheres and related issues were
subsequently discussed, for example, in [119, 120, 137], [138,
139]. Perhaps the greater interest in the present review is that the
expression for the stationary force on a scatterer centered in a
matter-wave Bessel beam, Eq. 4 of [136], is expressed using quantum
mechanical partial-wave phase shifts analogous to the acoustic phase
shifts δn discussed in Section 4.5. Furthermore, the expression
relating to the force and the δn in the quantum Bessel beam case,
has the same form as the acoustic result in Eq. 26 of the open-access
publication [118]. The result in [118] is actually more general in that
it also applies to acoustic Bessel vortex beams. For other examples of
how acoustics provides useful expressions for scattering and
radiation forces partially analogous to quantum mechanical
expressions, see [140].

6 Conclusion

Advances in science regularly occur when apparently well-
established results are found to be obsolete. One such well-
established result is the optical theorem. It was a major surprise
when G. Gouesbet discovered in the early 1980s that this theorem
was not valid for structured beams. More surprisingly, the deep
understanding of the reason for the failure of the classical optical
theorem had to wait more than 30 years, and still more surprising is the
fact that this reason could be explained with plain words in a very
easy way. Since then, several papers dealt with the same issue and
produced generalized (or extended) optical theorems, not only in
electromagnetism but also in acoustic and quantum mechanics. This
paper presented a comprehensive review of the literature devoted to the
optical theorem when the scatterer is illuminated by structured beams.
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